Expr.h revision ad0fe03b897f9486191e75c8d90c3ffa9b4fd6a5
1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/Decl.h"
19#include "clang/AST/Stmt.h"
20#include "clang/AST/Type.h"
21#include "clang/AST/DeclAccessPair.h"
22#include "clang/AST/OperationKinds.h"
23#include "clang/AST/ASTVector.h"
24#include "clang/AST/TemplateBase.h"
25#include "clang/Basic/TargetInfo.h"
26#include "clang/Basic/TypeTraits.h"
27#include "llvm/ADT/APSInt.h"
28#include "llvm/ADT/APFloat.h"
29#include "llvm/ADT/SmallVector.h"
30#include "llvm/ADT/StringRef.h"
31#include "llvm/Support/Compiler.h"
32#include <cctype>
33
34namespace clang {
35  class ASTContext;
36  class APValue;
37  class Decl;
38  class IdentifierInfo;
39  class ParmVarDecl;
40  class NamedDecl;
41  class ValueDecl;
42  class BlockDecl;
43  class CXXBaseSpecifier;
44  class CXXOperatorCallExpr;
45  class CXXMemberCallExpr;
46  class ObjCPropertyRefExpr;
47  class OpaqueValueExpr;
48
49/// \brief A simple array of base specifiers.
50typedef SmallVector<CXXBaseSpecifier*, 4> CXXCastPath;
51
52/// Expr - This represents one expression.  Note that Expr's are subclasses of
53/// Stmt.  This allows an expression to be transparently used any place a Stmt
54/// is required.
55///
56class Expr : public Stmt {
57  QualType TR;
58
59protected:
60  Expr(StmtClass SC, QualType T, ExprValueKind VK, ExprObjectKind OK,
61       bool TD, bool VD, bool ID, bool ContainsUnexpandedParameterPack)
62    : Stmt(SC)
63  {
64    ExprBits.TypeDependent = TD;
65    ExprBits.ValueDependent = VD;
66    ExprBits.InstantiationDependent = ID;
67    ExprBits.ValueKind = VK;
68    ExprBits.ObjectKind = OK;
69    ExprBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
70    setType(T);
71  }
72
73  /// \brief Construct an empty expression.
74  explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
75
76public:
77  QualType getType() const { return TR; }
78  void setType(QualType t) {
79    // In C++, the type of an expression is always adjusted so that it
80    // will not have reference type an expression will never have
81    // reference type (C++ [expr]p6). Use
82    // QualType::getNonReferenceType() to retrieve the non-reference
83    // type. Additionally, inspect Expr::isLvalue to determine whether
84    // an expression that is adjusted in this manner should be
85    // considered an lvalue.
86    assert((t.isNull() || !t->isReferenceType()) &&
87           "Expressions can't have reference type");
88
89    TR = t;
90  }
91
92  /// isValueDependent - Determines whether this expression is
93  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
94  /// array bound of "Chars" in the following example is
95  /// value-dependent.
96  /// @code
97  /// template<int Size, char (&Chars)[Size]> struct meta_string;
98  /// @endcode
99  bool isValueDependent() const { return ExprBits.ValueDependent; }
100
101  /// \brief Set whether this expression is value-dependent or not.
102  void setValueDependent(bool VD) {
103    ExprBits.ValueDependent = VD;
104    if (VD)
105      ExprBits.InstantiationDependent = true;
106  }
107
108  /// isTypeDependent - Determines whether this expression is
109  /// type-dependent (C++ [temp.dep.expr]), which means that its type
110  /// could change from one template instantiation to the next. For
111  /// example, the expressions "x" and "x + y" are type-dependent in
112  /// the following code, but "y" is not type-dependent:
113  /// @code
114  /// template<typename T>
115  /// void add(T x, int y) {
116  ///   x + y;
117  /// }
118  /// @endcode
119  bool isTypeDependent() const { return ExprBits.TypeDependent; }
120
121  /// \brief Set whether this expression is type-dependent or not.
122  void setTypeDependent(bool TD) {
123    ExprBits.TypeDependent = TD;
124    if (TD)
125      ExprBits.InstantiationDependent = true;
126  }
127
128  /// \brief Whether this expression is instantiation-dependent, meaning that
129  /// it depends in some way on a template parameter, even if neither its type
130  /// nor (constant) value can change due to the template instantiation.
131  ///
132  /// In the following example, the expression \c sizeof(sizeof(T() + T())) is
133  /// instantiation-dependent (since it involves a template parameter \c T), but
134  /// is neither type- nor value-dependent, since the type of the inner
135  /// \c sizeof is known (\c std::size_t) and therefore the size of the outer
136  /// \c sizeof is known.
137  ///
138  /// \code
139  /// template<typename T>
140  /// void f(T x, T y) {
141  ///   sizeof(sizeof(T() + T());
142  /// }
143  /// \endcode
144  ///
145  bool isInstantiationDependent() const {
146    return ExprBits.InstantiationDependent;
147  }
148
149  /// \brief Set whether this expression is instantiation-dependent or not.
150  void setInstantiationDependent(bool ID) {
151    ExprBits.InstantiationDependent = ID;
152  }
153
154  /// \brief Whether this expression contains an unexpanded parameter
155  /// pack (for C++0x variadic templates).
156  ///
157  /// Given the following function template:
158  ///
159  /// \code
160  /// template<typename F, typename ...Types>
161  /// void forward(const F &f, Types &&...args) {
162  ///   f(static_cast<Types&&>(args)...);
163  /// }
164  /// \endcode
165  ///
166  /// The expressions \c args and \c static_cast<Types&&>(args) both
167  /// contain parameter packs.
168  bool containsUnexpandedParameterPack() const {
169    return ExprBits.ContainsUnexpandedParameterPack;
170  }
171
172  /// \brief Set the bit that describes whether this expression
173  /// contains an unexpanded parameter pack.
174  void setContainsUnexpandedParameterPack(bool PP = true) {
175    ExprBits.ContainsUnexpandedParameterPack = PP;
176  }
177
178  /// getExprLoc - Return the preferred location for the arrow when diagnosing
179  /// a problem with a generic expression.
180  SourceLocation getExprLoc() const LLVM_READONLY;
181
182  /// isUnusedResultAWarning - Return true if this immediate expression should
183  /// be warned about if the result is unused.  If so, fill in expr, location,
184  /// and ranges with expr to warn on and source locations/ranges appropriate
185  /// for a warning.
186  bool isUnusedResultAWarning(const Expr *&WarnExpr, SourceLocation &Loc,
187                              SourceRange &R1, SourceRange &R2,
188                              ASTContext &Ctx) const;
189
190  /// isLValue - True if this expression is an "l-value" according to
191  /// the rules of the current language.  C and C++ give somewhat
192  /// different rules for this concept, but in general, the result of
193  /// an l-value expression identifies a specific object whereas the
194  /// result of an r-value expression is a value detached from any
195  /// specific storage.
196  ///
197  /// C++0x divides the concept of "r-value" into pure r-values
198  /// ("pr-values") and so-called expiring values ("x-values"), which
199  /// identify specific objects that can be safely cannibalized for
200  /// their resources.  This is an unfortunate abuse of terminology on
201  /// the part of the C++ committee.  In Clang, when we say "r-value",
202  /// we generally mean a pr-value.
203  bool isLValue() const { return getValueKind() == VK_LValue; }
204  bool isRValue() const { return getValueKind() == VK_RValue; }
205  bool isXValue() const { return getValueKind() == VK_XValue; }
206  bool isGLValue() const { return getValueKind() != VK_RValue; }
207
208  enum LValueClassification {
209    LV_Valid,
210    LV_NotObjectType,
211    LV_IncompleteVoidType,
212    LV_DuplicateVectorComponents,
213    LV_InvalidExpression,
214    LV_InvalidMessageExpression,
215    LV_MemberFunction,
216    LV_SubObjCPropertySetting,
217    LV_ClassTemporary,
218    LV_ArrayTemporary
219  };
220  /// Reasons why an expression might not be an l-value.
221  LValueClassification ClassifyLValue(ASTContext &Ctx) const;
222
223  enum isModifiableLvalueResult {
224    MLV_Valid,
225    MLV_NotObjectType,
226    MLV_IncompleteVoidType,
227    MLV_DuplicateVectorComponents,
228    MLV_InvalidExpression,
229    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
230    MLV_IncompleteType,
231    MLV_ConstQualified,
232    MLV_ArrayType,
233    MLV_ReadonlyProperty,
234    MLV_NoSetterProperty,
235    MLV_MemberFunction,
236    MLV_SubObjCPropertySetting,
237    MLV_InvalidMessageExpression,
238    MLV_ClassTemporary,
239    MLV_ArrayTemporary
240  };
241  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
242  /// does not have an incomplete type, does not have a const-qualified type,
243  /// and if it is a structure or union, does not have any member (including,
244  /// recursively, any member or element of all contained aggregates or unions)
245  /// with a const-qualified type.
246  ///
247  /// \param Loc [in,out] - A source location which *may* be filled
248  /// in with the location of the expression making this a
249  /// non-modifiable lvalue, if specified.
250  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx,
251                                              SourceLocation *Loc = 0) const;
252
253  /// \brief The return type of classify(). Represents the C++0x expression
254  ///        taxonomy.
255  class Classification {
256  public:
257    /// \brief The various classification results. Most of these mean prvalue.
258    enum Kinds {
259      CL_LValue,
260      CL_XValue,
261      CL_Function, // Functions cannot be lvalues in C.
262      CL_Void, // Void cannot be an lvalue in C.
263      CL_AddressableVoid, // Void expression whose address can be taken in C.
264      CL_DuplicateVectorComponents, // A vector shuffle with dupes.
265      CL_MemberFunction, // An expression referring to a member function
266      CL_SubObjCPropertySetting,
267      CL_ClassTemporary, // A temporary of class type, or subobject thereof.
268      CL_ArrayTemporary, // A temporary of array type.
269      CL_ObjCMessageRValue, // ObjC message is an rvalue
270      CL_PRValue // A prvalue for any other reason, of any other type
271    };
272    /// \brief The results of modification testing.
273    enum ModifiableType {
274      CM_Untested, // testModifiable was false.
275      CM_Modifiable,
276      CM_RValue, // Not modifiable because it's an rvalue
277      CM_Function, // Not modifiable because it's a function; C++ only
278      CM_LValueCast, // Same as CM_RValue, but indicates GCC cast-as-lvalue ext
279      CM_NoSetterProperty,// Implicit assignment to ObjC property without setter
280      CM_ConstQualified,
281      CM_ArrayType,
282      CM_IncompleteType
283    };
284
285  private:
286    friend class Expr;
287
288    unsigned short Kind;
289    unsigned short Modifiable;
290
291    explicit Classification(Kinds k, ModifiableType m)
292      : Kind(k), Modifiable(m)
293    {}
294
295  public:
296    Classification() {}
297
298    Kinds getKind() const { return static_cast<Kinds>(Kind); }
299    ModifiableType getModifiable() const {
300      assert(Modifiable != CM_Untested && "Did not test for modifiability.");
301      return static_cast<ModifiableType>(Modifiable);
302    }
303    bool isLValue() const { return Kind == CL_LValue; }
304    bool isXValue() const { return Kind == CL_XValue; }
305    bool isGLValue() const { return Kind <= CL_XValue; }
306    bool isPRValue() const { return Kind >= CL_Function; }
307    bool isRValue() const { return Kind >= CL_XValue; }
308    bool isModifiable() const { return getModifiable() == CM_Modifiable; }
309
310    /// \brief Create a simple, modifiably lvalue
311    static Classification makeSimpleLValue() {
312      return Classification(CL_LValue, CM_Modifiable);
313    }
314
315  };
316  /// \brief Classify - Classify this expression according to the C++0x
317  ///        expression taxonomy.
318  ///
319  /// C++0x defines ([basic.lval]) a new taxonomy of expressions to replace the
320  /// old lvalue vs rvalue. This function determines the type of expression this
321  /// is. There are three expression types:
322  /// - lvalues are classical lvalues as in C++03.
323  /// - prvalues are equivalent to rvalues in C++03.
324  /// - xvalues are expressions yielding unnamed rvalue references, e.g. a
325  ///   function returning an rvalue reference.
326  /// lvalues and xvalues are collectively referred to as glvalues, while
327  /// prvalues and xvalues together form rvalues.
328  Classification Classify(ASTContext &Ctx) const {
329    return ClassifyImpl(Ctx, 0);
330  }
331
332  /// \brief ClassifyModifiable - Classify this expression according to the
333  ///        C++0x expression taxonomy, and see if it is valid on the left side
334  ///        of an assignment.
335  ///
336  /// This function extends classify in that it also tests whether the
337  /// expression is modifiable (C99 6.3.2.1p1).
338  /// \param Loc A source location that might be filled with a relevant location
339  ///            if the expression is not modifiable.
340  Classification ClassifyModifiable(ASTContext &Ctx, SourceLocation &Loc) const{
341    return ClassifyImpl(Ctx, &Loc);
342  }
343
344  /// getValueKindForType - Given a formal return or parameter type,
345  /// give its value kind.
346  static ExprValueKind getValueKindForType(QualType T) {
347    if (const ReferenceType *RT = T->getAs<ReferenceType>())
348      return (isa<LValueReferenceType>(RT)
349                ? VK_LValue
350                : (RT->getPointeeType()->isFunctionType()
351                     ? VK_LValue : VK_XValue));
352    return VK_RValue;
353  }
354
355  /// getValueKind - The value kind that this expression produces.
356  ExprValueKind getValueKind() const {
357    return static_cast<ExprValueKind>(ExprBits.ValueKind);
358  }
359
360  /// getObjectKind - The object kind that this expression produces.
361  /// Object kinds are meaningful only for expressions that yield an
362  /// l-value or x-value.
363  ExprObjectKind getObjectKind() const {
364    return static_cast<ExprObjectKind>(ExprBits.ObjectKind);
365  }
366
367  bool isOrdinaryOrBitFieldObject() const {
368    ExprObjectKind OK = getObjectKind();
369    return (OK == OK_Ordinary || OK == OK_BitField);
370  }
371
372  /// setValueKind - Set the value kind produced by this expression.
373  void setValueKind(ExprValueKind Cat) { ExprBits.ValueKind = Cat; }
374
375  /// setObjectKind - Set the object kind produced by this expression.
376  void setObjectKind(ExprObjectKind Cat) { ExprBits.ObjectKind = Cat; }
377
378private:
379  Classification ClassifyImpl(ASTContext &Ctx, SourceLocation *Loc) const;
380
381public:
382
383  /// \brief If this expression refers to a bit-field, retrieve the
384  /// declaration of that bit-field.
385  FieldDecl *getBitField();
386
387  const FieldDecl *getBitField() const {
388    return const_cast<Expr*>(this)->getBitField();
389  }
390
391  /// \brief If this expression is an l-value for an Objective C
392  /// property, find the underlying property reference expression.
393  const ObjCPropertyRefExpr *getObjCProperty() const;
394
395  /// \brief Returns whether this expression refers to a vector element.
396  bool refersToVectorElement() const;
397
398  /// \brief Returns whether this expression has a placeholder type.
399  bool hasPlaceholderType() const {
400    return getType()->isPlaceholderType();
401  }
402
403  /// \brief Returns whether this expression has a specific placeholder type.
404  bool hasPlaceholderType(BuiltinType::Kind K) const {
405    assert(BuiltinType::isPlaceholderTypeKind(K));
406    if (const BuiltinType *BT = dyn_cast<BuiltinType>(getType()))
407      return BT->getKind() == K;
408    return false;
409  }
410
411  /// isKnownToHaveBooleanValue - Return true if this is an integer expression
412  /// that is known to return 0 or 1.  This happens for _Bool/bool expressions
413  /// but also int expressions which are produced by things like comparisons in
414  /// C.
415  bool isKnownToHaveBooleanValue() const;
416
417  /// isIntegerConstantExpr - Return true if this expression is a valid integer
418  /// constant expression, and, if so, return its value in Result.  If not a
419  /// valid i-c-e, return false and fill in Loc (if specified) with the location
420  /// of the invalid expression.
421  ///
422  /// Note: This does not perform the implicit conversions required by C++11
423  /// [expr.const]p5.
424  bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
425                             SourceLocation *Loc = 0,
426                             bool isEvaluated = true) const;
427  bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const;
428
429  /// isCXX98IntegralConstantExpr - Return true if this expression is an
430  /// integral constant expression in C++98. Can only be used in C++.
431  bool isCXX98IntegralConstantExpr(ASTContext &Ctx) const;
432
433  /// isCXX11ConstantExpr - Return true if this expression is a constant
434  /// expression in C++11. Can only be used in C++.
435  ///
436  /// Note: This does not perform the implicit conversions required by C++11
437  /// [expr.const]p5.
438  bool isCXX11ConstantExpr(ASTContext &Ctx, APValue *Result = 0,
439                           SourceLocation *Loc = 0) const;
440
441  /// isPotentialConstantExpr - Return true if this function's definition
442  /// might be usable in a constant expression in C++11, if it were marked
443  /// constexpr. Return false if the function can never produce a constant
444  /// expression, along with diagnostics describing why not.
445  static bool isPotentialConstantExpr(const FunctionDecl *FD,
446                                      llvm::SmallVectorImpl<
447                                        PartialDiagnosticAt> &Diags);
448
449  /// isConstantInitializer - Returns true if this expression can be emitted to
450  /// IR as a constant, and thus can be used as a constant initializer in C.
451  bool isConstantInitializer(ASTContext &Ctx, bool ForRef) const;
452
453  /// EvalStatus is a struct with detailed info about an evaluation in progress.
454  struct EvalStatus {
455    /// HasSideEffects - Whether the evaluated expression has side effects.
456    /// For example, (f() && 0) can be folded, but it still has side effects.
457    bool HasSideEffects;
458
459    /// Diag - If this is non-null, it will be filled in with a stack of notes
460    /// indicating why evaluation failed (or why it failed to produce a constant
461    /// expression).
462    /// If the expression is unfoldable, the notes will indicate why it's not
463    /// foldable. If the expression is foldable, but not a constant expression,
464    /// the notes will describes why it isn't a constant expression. If the
465    /// expression *is* a constant expression, no notes will be produced.
466    llvm::SmallVectorImpl<PartialDiagnosticAt> *Diag;
467
468    EvalStatus() : HasSideEffects(false), Diag(0) {}
469
470    // hasSideEffects - Return true if the evaluated expression has
471    // side effects.
472    bool hasSideEffects() const {
473      return HasSideEffects;
474    }
475  };
476
477  /// EvalResult is a struct with detailed info about an evaluated expression.
478  struct EvalResult : EvalStatus {
479    /// Val - This is the value the expression can be folded to.
480    APValue Val;
481
482    // isGlobalLValue - Return true if the evaluated lvalue expression
483    // is global.
484    bool isGlobalLValue() const;
485  };
486
487  /// EvaluateAsRValue - Return true if this is a constant which we can fold to
488  /// an rvalue using any crazy technique (that has nothing to do with language
489  /// standards) that we want to, even if the expression has side-effects. If
490  /// this function returns true, it returns the folded constant in Result. If
491  /// the expression is a glvalue, an lvalue-to-rvalue conversion will be
492  /// applied.
493  bool EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx) const;
494
495  /// EvaluateAsBooleanCondition - Return true if this is a constant
496  /// which we we can fold and convert to a boolean condition using
497  /// any crazy technique that we want to, even if the expression has
498  /// side-effects.
499  bool EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx) const;
500
501  enum SideEffectsKind { SE_NoSideEffects, SE_AllowSideEffects };
502
503  /// EvaluateAsInt - Return true if this is a constant which we can fold and
504  /// convert to an integer, using any crazy technique that we want to.
505  bool EvaluateAsInt(llvm::APSInt &Result, const ASTContext &Ctx,
506                     SideEffectsKind AllowSideEffects = SE_NoSideEffects) const;
507
508  /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
509  /// constant folded without side-effects, but discard the result.
510  bool isEvaluatable(const ASTContext &Ctx) const;
511
512  /// HasSideEffects - This routine returns true for all those expressions
513  /// which have any effect other than producing a value. Example is a function
514  /// call, volatile variable read, or throwing an exception.
515  bool HasSideEffects(const ASTContext &Ctx) const;
516
517  /// \brief Determine whether this expression involves a call to any function
518  /// that is not trivial.
519  bool hasNonTrivialCall(ASTContext &Ctx);
520
521  /// EvaluateKnownConstInt - Call EvaluateAsRValue and return the folded
522  /// integer. This must be called on an expression that constant folds to an
523  /// integer.
524  llvm::APSInt EvaluateKnownConstInt(const ASTContext &Ctx) const;
525
526  /// EvaluateAsLValue - Evaluate an expression to see if we can fold it to an
527  /// lvalue with link time known address, with no side-effects.
528  bool EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const;
529
530  /// EvaluateAsInitializer - Evaluate an expression as if it were the
531  /// initializer of the given declaration. Returns true if the initializer
532  /// can be folded to a constant, and produces any relevant notes. In C++11,
533  /// notes will be produced if the expression is not a constant expression.
534  bool EvaluateAsInitializer(APValue &Result, const ASTContext &Ctx,
535                             const VarDecl *VD,
536                       llvm::SmallVectorImpl<PartialDiagnosticAt> &Notes) const;
537
538  /// \brief Enumeration used to describe the kind of Null pointer constant
539  /// returned from \c isNullPointerConstant().
540  enum NullPointerConstantKind {
541    /// \brief Expression is not a Null pointer constant.
542    NPCK_NotNull = 0,
543
544    /// \brief Expression is a Null pointer constant built from a zero integer
545    /// expression that is not a simple, possibly parenthesized, zero literal.
546    /// C++ Core Issue 903 will classify these expressions as "not pointers"
547    /// once it is adopted.
548    /// http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
549    NPCK_ZeroExpression,
550
551    /// \brief Expression is a Null pointer constant built from a literal zero.
552    NPCK_ZeroLiteral,
553
554    /// \brief Expression is a C++0X nullptr.
555    NPCK_CXX0X_nullptr,
556
557    /// \brief Expression is a GNU-style __null constant.
558    NPCK_GNUNull
559  };
560
561  /// \brief Enumeration used to describe how \c isNullPointerConstant()
562  /// should cope with value-dependent expressions.
563  enum NullPointerConstantValueDependence {
564    /// \brief Specifies that the expression should never be value-dependent.
565    NPC_NeverValueDependent = 0,
566
567    /// \brief Specifies that a value-dependent expression of integral or
568    /// dependent type should be considered a null pointer constant.
569    NPC_ValueDependentIsNull,
570
571    /// \brief Specifies that a value-dependent expression should be considered
572    /// to never be a null pointer constant.
573    NPC_ValueDependentIsNotNull
574  };
575
576  /// isNullPointerConstant - C99 6.3.2.3p3 - Test if this reduces down to
577  /// a Null pointer constant. The return value can further distinguish the
578  /// kind of NULL pointer constant that was detected.
579  NullPointerConstantKind isNullPointerConstant(
580      ASTContext &Ctx,
581      NullPointerConstantValueDependence NPC) const;
582
583  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
584  /// write barrier.
585  bool isOBJCGCCandidate(ASTContext &Ctx) const;
586
587  /// \brief Returns true if this expression is a bound member function.
588  bool isBoundMemberFunction(ASTContext &Ctx) const;
589
590  /// \brief Given an expression of bound-member type, find the type
591  /// of the member.  Returns null if this is an *overloaded* bound
592  /// member expression.
593  static QualType findBoundMemberType(const Expr *expr);
594
595  /// IgnoreImpCasts - Skip past any implicit casts which might
596  /// surround this expression.  Only skips ImplicitCastExprs.
597  Expr *IgnoreImpCasts() LLVM_READONLY;
598
599  /// IgnoreImplicit - Skip past any implicit AST nodes which might
600  /// surround this expression.
601  Expr *IgnoreImplicit() LLVM_READONLY {
602    return cast<Expr>(Stmt::IgnoreImplicit());
603  }
604
605  const Expr *IgnoreImplicit() const LLVM_READONLY {
606    return const_cast<Expr*>(this)->IgnoreImplicit();
607  }
608
609  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
610  ///  its subexpression.  If that subexpression is also a ParenExpr,
611  ///  then this method recursively returns its subexpression, and so forth.
612  ///  Otherwise, the method returns the current Expr.
613  Expr *IgnoreParens() LLVM_READONLY;
614
615  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
616  /// or CastExprs, returning their operand.
617  Expr *IgnoreParenCasts() LLVM_READONLY;
618
619  /// IgnoreParenImpCasts - Ignore parentheses and implicit casts.  Strip off
620  /// any ParenExpr or ImplicitCastExprs, returning their operand.
621  Expr *IgnoreParenImpCasts() LLVM_READONLY;
622
623  /// IgnoreConversionOperator - Ignore conversion operator. If this Expr is a
624  /// call to a conversion operator, return the argument.
625  Expr *IgnoreConversionOperator() LLVM_READONLY;
626
627  const Expr *IgnoreConversionOperator() const LLVM_READONLY {
628    return const_cast<Expr*>(this)->IgnoreConversionOperator();
629  }
630
631  const Expr *IgnoreParenImpCasts() const LLVM_READONLY {
632    return const_cast<Expr*>(this)->IgnoreParenImpCasts();
633  }
634
635  /// Ignore parentheses and lvalue casts.  Strip off any ParenExpr and
636  /// CastExprs that represent lvalue casts, returning their operand.
637  Expr *IgnoreParenLValueCasts() LLVM_READONLY;
638
639  const Expr *IgnoreParenLValueCasts() const LLVM_READONLY {
640    return const_cast<Expr*>(this)->IgnoreParenLValueCasts();
641  }
642
643  /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
644  /// value (including ptr->int casts of the same size).  Strip off any
645  /// ParenExpr or CastExprs, returning their operand.
646  Expr *IgnoreParenNoopCasts(ASTContext &Ctx) LLVM_READONLY;
647
648  /// Ignore parentheses and derived-to-base casts.
649  Expr *ignoreParenBaseCasts() LLVM_READONLY;
650
651  const Expr *ignoreParenBaseCasts() const LLVM_READONLY {
652    return const_cast<Expr*>(this)->ignoreParenBaseCasts();
653  }
654
655  /// \brief Determine whether this expression is a default function argument.
656  ///
657  /// Default arguments are implicitly generated in the abstract syntax tree
658  /// by semantic analysis for function calls, object constructions, etc. in
659  /// C++. Default arguments are represented by \c CXXDefaultArgExpr nodes;
660  /// this routine also looks through any implicit casts to determine whether
661  /// the expression is a default argument.
662  bool isDefaultArgument() const;
663
664  /// \brief Determine whether the result of this expression is a
665  /// temporary object of the given class type.
666  bool isTemporaryObject(ASTContext &Ctx, const CXXRecordDecl *TempTy) const;
667
668  /// \brief Whether this expression is an implicit reference to 'this' in C++.
669  bool isImplicitCXXThis() const;
670
671  const Expr *IgnoreImpCasts() const LLVM_READONLY {
672    return const_cast<Expr*>(this)->IgnoreImpCasts();
673  }
674  const Expr *IgnoreParens() const LLVM_READONLY {
675    return const_cast<Expr*>(this)->IgnoreParens();
676  }
677  const Expr *IgnoreParenCasts() const LLVM_READONLY {
678    return const_cast<Expr*>(this)->IgnoreParenCasts();
679  }
680  const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const LLVM_READONLY {
681    return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
682  }
683
684  static bool hasAnyTypeDependentArguments(llvm::ArrayRef<Expr *> Exprs);
685
686  /// \brief For an expression of class type or pointer to class type,
687  /// return the most derived class decl the expression is known to refer to.
688  ///
689  /// If this expression is a cast, this method looks through it to find the
690  /// most derived decl that can be inferred from the expression.
691  /// This is valid because derived-to-base conversions have undefined
692  /// behavior if the object isn't dynamically of the derived type.
693  const CXXRecordDecl *getBestDynamicClassType() const;
694
695  static bool classof(const Stmt *T) {
696    return T->getStmtClass() >= firstExprConstant &&
697           T->getStmtClass() <= lastExprConstant;
698  }
699  static bool classof(const Expr *) { return true; }
700};
701
702
703//===----------------------------------------------------------------------===//
704// Primary Expressions.
705//===----------------------------------------------------------------------===//
706
707/// OpaqueValueExpr - An expression referring to an opaque object of a
708/// fixed type and value class.  These don't correspond to concrete
709/// syntax; instead they're used to express operations (usually copy
710/// operations) on values whose source is generally obvious from
711/// context.
712class OpaqueValueExpr : public Expr {
713  friend class ASTStmtReader;
714  Expr *SourceExpr;
715  SourceLocation Loc;
716
717public:
718  OpaqueValueExpr(SourceLocation Loc, QualType T, ExprValueKind VK,
719                  ExprObjectKind OK = OK_Ordinary,
720                  Expr *SourceExpr = 0)
721    : Expr(OpaqueValueExprClass, T, VK, OK,
722           T->isDependentType(),
723           T->isDependentType() ||
724           (SourceExpr && SourceExpr->isValueDependent()),
725           T->isInstantiationDependentType(),
726           false),
727      SourceExpr(SourceExpr), Loc(Loc) {
728  }
729
730  /// Given an expression which invokes a copy constructor --- i.e.  a
731  /// CXXConstructExpr, possibly wrapped in an ExprWithCleanups ---
732  /// find the OpaqueValueExpr that's the source of the construction.
733  static const OpaqueValueExpr *findInCopyConstruct(const Expr *expr);
734
735  explicit OpaqueValueExpr(EmptyShell Empty)
736    : Expr(OpaqueValueExprClass, Empty) { }
737
738  /// \brief Retrieve the location of this expression.
739  SourceLocation getLocation() const { return Loc; }
740
741  SourceRange getSourceRange() const LLVM_READONLY {
742    if (SourceExpr) return SourceExpr->getSourceRange();
743    return Loc;
744  }
745  SourceLocation getExprLoc() const LLVM_READONLY {
746    if (SourceExpr) return SourceExpr->getExprLoc();
747    return Loc;
748  }
749
750  child_range children() { return child_range(); }
751
752  /// The source expression of an opaque value expression is the
753  /// expression which originally generated the value.  This is
754  /// provided as a convenience for analyses that don't wish to
755  /// precisely model the execution behavior of the program.
756  ///
757  /// The source expression is typically set when building the
758  /// expression which binds the opaque value expression in the first
759  /// place.
760  Expr *getSourceExpr() const { return SourceExpr; }
761
762  static bool classof(const Stmt *T) {
763    return T->getStmtClass() == OpaqueValueExprClass;
764  }
765  static bool classof(const OpaqueValueExpr *) { return true; }
766};
767
768/// \brief A reference to a declared variable, function, enum, etc.
769/// [C99 6.5.1p2]
770///
771/// This encodes all the information about how a declaration is referenced
772/// within an expression.
773///
774/// There are several optional constructs attached to DeclRefExprs only when
775/// they apply in order to conserve memory. These are laid out past the end of
776/// the object, and flags in the DeclRefExprBitfield track whether they exist:
777///
778///   DeclRefExprBits.HasQualifier:
779///       Specifies when this declaration reference expression has a C++
780///       nested-name-specifier.
781///   DeclRefExprBits.HasFoundDecl:
782///       Specifies when this declaration reference expression has a record of
783///       a NamedDecl (different from the referenced ValueDecl) which was found
784///       during name lookup and/or overload resolution.
785///   DeclRefExprBits.HasTemplateKWAndArgsInfo:
786///       Specifies when this declaration reference expression has an explicit
787///       C++ template keyword and/or template argument list.
788///   DeclRefExprBits.RefersToEnclosingLocal
789///       Specifies when this declaration reference expression (validly)
790///       refers to a local variable from a different function.
791class DeclRefExpr : public Expr {
792  /// \brief The declaration that we are referencing.
793  ValueDecl *D;
794
795  /// \brief The location of the declaration name itself.
796  SourceLocation Loc;
797
798  /// \brief Provides source/type location info for the declaration name
799  /// embedded in D.
800  DeclarationNameLoc DNLoc;
801
802  /// \brief Helper to retrieve the optional NestedNameSpecifierLoc.
803  NestedNameSpecifierLoc &getInternalQualifierLoc() {
804    assert(hasQualifier());
805    return *reinterpret_cast<NestedNameSpecifierLoc *>(this + 1);
806  }
807
808  /// \brief Helper to retrieve the optional NestedNameSpecifierLoc.
809  const NestedNameSpecifierLoc &getInternalQualifierLoc() const {
810    return const_cast<DeclRefExpr *>(this)->getInternalQualifierLoc();
811  }
812
813  /// \brief Test whether there is a distinct FoundDecl attached to the end of
814  /// this DRE.
815  bool hasFoundDecl() const { return DeclRefExprBits.HasFoundDecl; }
816
817  /// \brief Helper to retrieve the optional NamedDecl through which this
818  /// reference occured.
819  NamedDecl *&getInternalFoundDecl() {
820    assert(hasFoundDecl());
821    if (hasQualifier())
822      return *reinterpret_cast<NamedDecl **>(&getInternalQualifierLoc() + 1);
823    return *reinterpret_cast<NamedDecl **>(this + 1);
824  }
825
826  /// \brief Helper to retrieve the optional NamedDecl through which this
827  /// reference occured.
828  NamedDecl *getInternalFoundDecl() const {
829    return const_cast<DeclRefExpr *>(this)->getInternalFoundDecl();
830  }
831
832  DeclRefExpr(ASTContext &Ctx,
833              NestedNameSpecifierLoc QualifierLoc,
834              SourceLocation TemplateKWLoc,
835              ValueDecl *D, bool refersToEnclosingLocal,
836              const DeclarationNameInfo &NameInfo,
837              NamedDecl *FoundD,
838              const TemplateArgumentListInfo *TemplateArgs,
839              QualType T, ExprValueKind VK);
840
841  /// \brief Construct an empty declaration reference expression.
842  explicit DeclRefExpr(EmptyShell Empty)
843    : Expr(DeclRefExprClass, Empty) { }
844
845  /// \brief Computes the type- and value-dependence flags for this
846  /// declaration reference expression.
847  void computeDependence(ASTContext &C);
848
849public:
850  DeclRefExpr(ValueDecl *D, bool refersToEnclosingLocal, QualType T,
851              ExprValueKind VK, SourceLocation L,
852              const DeclarationNameLoc &LocInfo = DeclarationNameLoc())
853    : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
854      D(D), Loc(L), DNLoc(LocInfo) {
855    DeclRefExprBits.HasQualifier = 0;
856    DeclRefExprBits.HasTemplateKWAndArgsInfo = 0;
857    DeclRefExprBits.HasFoundDecl = 0;
858    DeclRefExprBits.HadMultipleCandidates = 0;
859    DeclRefExprBits.RefersToEnclosingLocal = refersToEnclosingLocal;
860    computeDependence(D->getASTContext());
861  }
862
863  static DeclRefExpr *Create(ASTContext &Context,
864                             NestedNameSpecifierLoc QualifierLoc,
865                             SourceLocation TemplateKWLoc,
866                             ValueDecl *D,
867                             bool isEnclosingLocal,
868                             SourceLocation NameLoc,
869                             QualType T, ExprValueKind VK,
870                             NamedDecl *FoundD = 0,
871                             const TemplateArgumentListInfo *TemplateArgs = 0);
872
873  static DeclRefExpr *Create(ASTContext &Context,
874                             NestedNameSpecifierLoc QualifierLoc,
875                             SourceLocation TemplateKWLoc,
876                             ValueDecl *D,
877                             bool isEnclosingLocal,
878                             const DeclarationNameInfo &NameInfo,
879                             QualType T, ExprValueKind VK,
880                             NamedDecl *FoundD = 0,
881                             const TemplateArgumentListInfo *TemplateArgs = 0);
882
883  /// \brief Construct an empty declaration reference expression.
884  static DeclRefExpr *CreateEmpty(ASTContext &Context,
885                                  bool HasQualifier,
886                                  bool HasFoundDecl,
887                                  bool HasTemplateKWAndArgsInfo,
888                                  unsigned NumTemplateArgs);
889
890  ValueDecl *getDecl() { return D; }
891  const ValueDecl *getDecl() const { return D; }
892  void setDecl(ValueDecl *NewD) { D = NewD; }
893
894  DeclarationNameInfo getNameInfo() const {
895    return DeclarationNameInfo(getDecl()->getDeclName(), Loc, DNLoc);
896  }
897
898  SourceLocation getLocation() const { return Loc; }
899  void setLocation(SourceLocation L) { Loc = L; }
900  SourceRange getSourceRange() const LLVM_READONLY;
901  SourceLocation getLocStart() const LLVM_READONLY;
902  SourceLocation getLocEnd() const LLVM_READONLY;
903
904  /// \brief Determine whether this declaration reference was preceded by a
905  /// C++ nested-name-specifier, e.g., \c N::foo.
906  bool hasQualifier() const { return DeclRefExprBits.HasQualifier; }
907
908  /// \brief If the name was qualified, retrieves the nested-name-specifier
909  /// that precedes the name. Otherwise, returns NULL.
910  NestedNameSpecifier *getQualifier() const {
911    if (!hasQualifier())
912      return 0;
913
914    return getInternalQualifierLoc().getNestedNameSpecifier();
915  }
916
917  /// \brief If the name was qualified, retrieves the nested-name-specifier
918  /// that precedes the name, with source-location information.
919  NestedNameSpecifierLoc getQualifierLoc() const {
920    if (!hasQualifier())
921      return NestedNameSpecifierLoc();
922
923    return getInternalQualifierLoc();
924  }
925
926  /// \brief Get the NamedDecl through which this reference occured.
927  ///
928  /// This Decl may be different from the ValueDecl actually referred to in the
929  /// presence of using declarations, etc. It always returns non-NULL, and may
930  /// simple return the ValueDecl when appropriate.
931  NamedDecl *getFoundDecl() {
932    return hasFoundDecl() ? getInternalFoundDecl() : D;
933  }
934
935  /// \brief Get the NamedDecl through which this reference occurred.
936  /// See non-const variant.
937  const NamedDecl *getFoundDecl() const {
938    return hasFoundDecl() ? getInternalFoundDecl() : D;
939  }
940
941  bool hasTemplateKWAndArgsInfo() const {
942    return DeclRefExprBits.HasTemplateKWAndArgsInfo;
943  }
944
945  /// \brief Return the optional template keyword and arguments info.
946  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
947    if (!hasTemplateKWAndArgsInfo())
948      return 0;
949
950    if (hasFoundDecl())
951      return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(
952        &getInternalFoundDecl() + 1);
953
954    if (hasQualifier())
955      return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(
956        &getInternalQualifierLoc() + 1);
957
958    return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(this + 1);
959  }
960
961  /// \brief Return the optional template keyword and arguments info.
962  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
963    return const_cast<DeclRefExpr*>(this)->getTemplateKWAndArgsInfo();
964  }
965
966  /// \brief Retrieve the location of the template keyword preceding
967  /// this name, if any.
968  SourceLocation getTemplateKeywordLoc() const {
969    if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
970    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
971  }
972
973  /// \brief Retrieve the location of the left angle bracket starting the
974  /// explicit template argument list following the name, if any.
975  SourceLocation getLAngleLoc() const {
976    if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
977    return getTemplateKWAndArgsInfo()->LAngleLoc;
978  }
979
980  /// \brief Retrieve the location of the right angle bracket ending the
981  /// explicit template argument list following the name, if any.
982  SourceLocation getRAngleLoc() const {
983    if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
984    return getTemplateKWAndArgsInfo()->RAngleLoc;
985  }
986
987  /// \brief Determines whether the name in this declaration reference
988  /// was preceded by the template keyword.
989  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
990
991  /// \brief Determines whether this declaration reference was followed by an
992  /// explicit template argument list.
993  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
994
995  /// \brief Retrieve the explicit template argument list that followed the
996  /// member template name.
997  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
998    assert(hasExplicitTemplateArgs());
999    return *getTemplateKWAndArgsInfo();
1000  }
1001
1002  /// \brief Retrieve the explicit template argument list that followed the
1003  /// member template name.
1004  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
1005    return const_cast<DeclRefExpr *>(this)->getExplicitTemplateArgs();
1006  }
1007
1008  /// \brief Retrieves the optional explicit template arguments.
1009  /// This points to the same data as getExplicitTemplateArgs(), but
1010  /// returns null if there are no explicit template arguments.
1011  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() const {
1012    if (!hasExplicitTemplateArgs()) return 0;
1013    return &getExplicitTemplateArgs();
1014  }
1015
1016  /// \brief Copies the template arguments (if present) into the given
1017  /// structure.
1018  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1019    if (hasExplicitTemplateArgs())
1020      getExplicitTemplateArgs().copyInto(List);
1021  }
1022
1023  /// \brief Retrieve the template arguments provided as part of this
1024  /// template-id.
1025  const TemplateArgumentLoc *getTemplateArgs() const {
1026    if (!hasExplicitTemplateArgs())
1027      return 0;
1028
1029    return getExplicitTemplateArgs().getTemplateArgs();
1030  }
1031
1032  /// \brief Retrieve the number of template arguments provided as part of this
1033  /// template-id.
1034  unsigned getNumTemplateArgs() const {
1035    if (!hasExplicitTemplateArgs())
1036      return 0;
1037
1038    return getExplicitTemplateArgs().NumTemplateArgs;
1039  }
1040
1041  /// \brief Returns true if this expression refers to a function that
1042  /// was resolved from an overloaded set having size greater than 1.
1043  bool hadMultipleCandidates() const {
1044    return DeclRefExprBits.HadMultipleCandidates;
1045  }
1046  /// \brief Sets the flag telling whether this expression refers to
1047  /// a function that was resolved from an overloaded set having size
1048  /// greater than 1.
1049  void setHadMultipleCandidates(bool V = true) {
1050    DeclRefExprBits.HadMultipleCandidates = V;
1051  }
1052
1053  /// Does this DeclRefExpr refer to a local declaration from an
1054  /// enclosing function scope?
1055  bool refersToEnclosingLocal() const {
1056    return DeclRefExprBits.RefersToEnclosingLocal;
1057  }
1058
1059  static bool classof(const Stmt *T) {
1060    return T->getStmtClass() == DeclRefExprClass;
1061  }
1062  static bool classof(const DeclRefExpr *) { return true; }
1063
1064  // Iterators
1065  child_range children() { return child_range(); }
1066
1067  friend class ASTStmtReader;
1068  friend class ASTStmtWriter;
1069};
1070
1071/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
1072class PredefinedExpr : public Expr {
1073public:
1074  enum IdentType {
1075    Func,
1076    Function,
1077    LFunction,  // Same as Function, but as wide string.
1078    PrettyFunction,
1079    /// PrettyFunctionNoVirtual - The same as PrettyFunction, except that the
1080    /// 'virtual' keyword is omitted for virtual member functions.
1081    PrettyFunctionNoVirtual
1082  };
1083
1084private:
1085  SourceLocation Loc;
1086  IdentType Type;
1087public:
1088  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
1089    : Expr(PredefinedExprClass, type, VK_LValue, OK_Ordinary,
1090           type->isDependentType(), type->isDependentType(),
1091           type->isInstantiationDependentType(),
1092           /*ContainsUnexpandedParameterPack=*/false),
1093      Loc(l), Type(IT) {}
1094
1095  /// \brief Construct an empty predefined expression.
1096  explicit PredefinedExpr(EmptyShell Empty)
1097    : Expr(PredefinedExprClass, Empty) { }
1098
1099  IdentType getIdentType() const { return Type; }
1100  void setIdentType(IdentType IT) { Type = IT; }
1101
1102  SourceLocation getLocation() const { return Loc; }
1103  void setLocation(SourceLocation L) { Loc = L; }
1104
1105  static std::string ComputeName(IdentType IT, const Decl *CurrentDecl);
1106
1107  SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(Loc); }
1108
1109  static bool classof(const Stmt *T) {
1110    return T->getStmtClass() == PredefinedExprClass;
1111  }
1112  static bool classof(const PredefinedExpr *) { return true; }
1113
1114  // Iterators
1115  child_range children() { return child_range(); }
1116};
1117
1118/// \brief Used by IntegerLiteral/FloatingLiteral to store the numeric without
1119/// leaking memory.
1120///
1121/// For large floats/integers, APFloat/APInt will allocate memory from the heap
1122/// to represent these numbers.  Unfortunately, when we use a BumpPtrAllocator
1123/// to allocate IntegerLiteral/FloatingLiteral nodes the memory associated with
1124/// the APFloat/APInt values will never get freed. APNumericStorage uses
1125/// ASTContext's allocator for memory allocation.
1126class APNumericStorage {
1127  union {
1128    uint64_t VAL;    ///< Used to store the <= 64 bits integer value.
1129    uint64_t *pVal;  ///< Used to store the >64 bits integer value.
1130  };
1131  unsigned BitWidth;
1132
1133  bool hasAllocation() const { return llvm::APInt::getNumWords(BitWidth) > 1; }
1134
1135  APNumericStorage(const APNumericStorage&); // do not implement
1136  APNumericStorage& operator=(const APNumericStorage&); // do not implement
1137
1138protected:
1139  APNumericStorage() : VAL(0), BitWidth(0) { }
1140
1141  llvm::APInt getIntValue() const {
1142    unsigned NumWords = llvm::APInt::getNumWords(BitWidth);
1143    if (NumWords > 1)
1144      return llvm::APInt(BitWidth, NumWords, pVal);
1145    else
1146      return llvm::APInt(BitWidth, VAL);
1147  }
1148  void setIntValue(ASTContext &C, const llvm::APInt &Val);
1149};
1150
1151class APIntStorage : private APNumericStorage {
1152public:
1153  llvm::APInt getValue() const { return getIntValue(); }
1154  void setValue(ASTContext &C, const llvm::APInt &Val) { setIntValue(C, Val); }
1155};
1156
1157class APFloatStorage : private APNumericStorage {
1158public:
1159  llvm::APFloat getValue(bool IsIEEE) const {
1160    return llvm::APFloat(getIntValue(), IsIEEE);
1161  }
1162  void setValue(ASTContext &C, const llvm::APFloat &Val) {
1163    setIntValue(C, Val.bitcastToAPInt());
1164  }
1165};
1166
1167class IntegerLiteral : public Expr, public APIntStorage {
1168  SourceLocation Loc;
1169
1170  /// \brief Construct an empty integer literal.
1171  explicit IntegerLiteral(EmptyShell Empty)
1172    : Expr(IntegerLiteralClass, Empty) { }
1173
1174public:
1175  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
1176  // or UnsignedLongLongTy
1177  IntegerLiteral(ASTContext &C, const llvm::APInt &V, QualType type,
1178                 SourceLocation l);
1179
1180  /// \brief Returns a new integer literal with value 'V' and type 'type'.
1181  /// \param type - either IntTy, LongTy, LongLongTy, UnsignedIntTy,
1182  /// UnsignedLongTy, or UnsignedLongLongTy which should match the size of V
1183  /// \param V - the value that the returned integer literal contains.
1184  static IntegerLiteral *Create(ASTContext &C, const llvm::APInt &V,
1185                                QualType type, SourceLocation l);
1186  /// \brief Returns a new empty integer literal.
1187  static IntegerLiteral *Create(ASTContext &C, EmptyShell Empty);
1188
1189  SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(Loc); }
1190
1191  /// \brief Retrieve the location of the literal.
1192  SourceLocation getLocation() const { return Loc; }
1193
1194  void setLocation(SourceLocation Location) { Loc = Location; }
1195
1196  static bool classof(const Stmt *T) {
1197    return T->getStmtClass() == IntegerLiteralClass;
1198  }
1199  static bool classof(const IntegerLiteral *) { return true; }
1200
1201  // Iterators
1202  child_range children() { return child_range(); }
1203};
1204
1205class CharacterLiteral : public Expr {
1206public:
1207  enum CharacterKind {
1208    Ascii,
1209    Wide,
1210    UTF16,
1211    UTF32
1212  };
1213
1214private:
1215  unsigned Value;
1216  SourceLocation Loc;
1217public:
1218  // type should be IntTy
1219  CharacterLiteral(unsigned value, CharacterKind kind, QualType type,
1220                   SourceLocation l)
1221    : Expr(CharacterLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
1222           false, false),
1223      Value(value), Loc(l) {
1224    CharacterLiteralBits.Kind = kind;
1225  }
1226
1227  /// \brief Construct an empty character literal.
1228  CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
1229
1230  SourceLocation getLocation() const { return Loc; }
1231  CharacterKind getKind() const {
1232    return static_cast<CharacterKind>(CharacterLiteralBits.Kind);
1233  }
1234
1235  SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(Loc); }
1236
1237  unsigned getValue() const { return Value; }
1238
1239  void setLocation(SourceLocation Location) { Loc = Location; }
1240  void setKind(CharacterKind kind) { CharacterLiteralBits.Kind = kind; }
1241  void setValue(unsigned Val) { Value = Val; }
1242
1243  static bool classof(const Stmt *T) {
1244    return T->getStmtClass() == CharacterLiteralClass;
1245  }
1246  static bool classof(const CharacterLiteral *) { return true; }
1247
1248  // Iterators
1249  child_range children() { return child_range(); }
1250};
1251
1252class FloatingLiteral : public Expr, private APFloatStorage {
1253  SourceLocation Loc;
1254
1255  FloatingLiteral(ASTContext &C, const llvm::APFloat &V, bool isexact,
1256                  QualType Type, SourceLocation L);
1257
1258  /// \brief Construct an empty floating-point literal.
1259  explicit FloatingLiteral(ASTContext &C, EmptyShell Empty);
1260
1261public:
1262  static FloatingLiteral *Create(ASTContext &C, const llvm::APFloat &V,
1263                                 bool isexact, QualType Type, SourceLocation L);
1264  static FloatingLiteral *Create(ASTContext &C, EmptyShell Empty);
1265
1266  llvm::APFloat getValue() const {
1267    return APFloatStorage::getValue(FloatingLiteralBits.IsIEEE);
1268  }
1269  void setValue(ASTContext &C, const llvm::APFloat &Val) {
1270    APFloatStorage::setValue(C, Val);
1271  }
1272
1273  bool isExact() const { return FloatingLiteralBits.IsExact; }
1274  void setExact(bool E) { FloatingLiteralBits.IsExact = E; }
1275
1276  /// getValueAsApproximateDouble - This returns the value as an inaccurate
1277  /// double.  Note that this may cause loss of precision, but is useful for
1278  /// debugging dumps, etc.
1279  double getValueAsApproximateDouble() const;
1280
1281  SourceLocation getLocation() const { return Loc; }
1282  void setLocation(SourceLocation L) { Loc = L; }
1283
1284  SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(Loc); }
1285
1286  static bool classof(const Stmt *T) {
1287    return T->getStmtClass() == FloatingLiteralClass;
1288  }
1289  static bool classof(const FloatingLiteral *) { return true; }
1290
1291  // Iterators
1292  child_range children() { return child_range(); }
1293};
1294
1295/// ImaginaryLiteral - We support imaginary integer and floating point literals,
1296/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
1297/// IntegerLiteral classes.  Instances of this class always have a Complex type
1298/// whose element type matches the subexpression.
1299///
1300class ImaginaryLiteral : public Expr {
1301  Stmt *Val;
1302public:
1303  ImaginaryLiteral(Expr *val, QualType Ty)
1304    : Expr(ImaginaryLiteralClass, Ty, VK_RValue, OK_Ordinary, false, false,
1305           false, false),
1306      Val(val) {}
1307
1308  /// \brief Build an empty imaginary literal.
1309  explicit ImaginaryLiteral(EmptyShell Empty)
1310    : Expr(ImaginaryLiteralClass, Empty) { }
1311
1312  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1313  Expr *getSubExpr() { return cast<Expr>(Val); }
1314  void setSubExpr(Expr *E) { Val = E; }
1315
1316  SourceRange getSourceRange() const LLVM_READONLY { return Val->getSourceRange(); }
1317  static bool classof(const Stmt *T) {
1318    return T->getStmtClass() == ImaginaryLiteralClass;
1319  }
1320  static bool classof(const ImaginaryLiteral *) { return true; }
1321
1322  // Iterators
1323  child_range children() { return child_range(&Val, &Val+1); }
1324};
1325
1326/// StringLiteral - This represents a string literal expression, e.g. "foo"
1327/// or L"bar" (wide strings).  The actual string is returned by getStrData()
1328/// is NOT null-terminated, and the length of the string is determined by
1329/// calling getByteLength().  The C type for a string is always a
1330/// ConstantArrayType.  In C++, the char type is const qualified, in C it is
1331/// not.
1332///
1333/// Note that strings in C can be formed by concatenation of multiple string
1334/// literal pptokens in translation phase #6.  This keeps track of the locations
1335/// of each of these pieces.
1336///
1337/// Strings in C can also be truncated and extended by assigning into arrays,
1338/// e.g. with constructs like:
1339///   char X[2] = "foobar";
1340/// In this case, getByteLength() will return 6, but the string literal will
1341/// have type "char[2]".
1342class StringLiteral : public Expr {
1343public:
1344  enum StringKind {
1345    Ascii,
1346    Wide,
1347    UTF8,
1348    UTF16,
1349    UTF32
1350  };
1351
1352private:
1353  friend class ASTStmtReader;
1354
1355  union {
1356    const char *asChar;
1357    const uint16_t *asUInt16;
1358    const uint32_t *asUInt32;
1359  } StrData;
1360  unsigned Length;
1361  unsigned CharByteWidth : 4;
1362  unsigned Kind : 3;
1363  unsigned IsPascal : 1;
1364  unsigned NumConcatenated;
1365  SourceLocation TokLocs[1];
1366
1367  StringLiteral(QualType Ty) :
1368    Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary, false, false, false,
1369         false) {}
1370
1371  static int mapCharByteWidth(TargetInfo const &target,StringKind k);
1372
1373public:
1374  /// This is the "fully general" constructor that allows representation of
1375  /// strings formed from multiple concatenated tokens.
1376  static StringLiteral *Create(ASTContext &C, StringRef Str, StringKind Kind,
1377                               bool Pascal, QualType Ty,
1378                               const SourceLocation *Loc, unsigned NumStrs);
1379
1380  /// Simple constructor for string literals made from one token.
1381  static StringLiteral *Create(ASTContext &C, StringRef Str, StringKind Kind,
1382                               bool Pascal, QualType Ty,
1383                               SourceLocation Loc) {
1384    return Create(C, Str, Kind, Pascal, Ty, &Loc, 1);
1385  }
1386
1387  /// \brief Construct an empty string literal.
1388  static StringLiteral *CreateEmpty(ASTContext &C, unsigned NumStrs);
1389
1390  StringRef getString() const {
1391    assert(CharByteWidth==1
1392           && "This function is used in places that assume strings use char");
1393    return StringRef(StrData.asChar, getByteLength());
1394  }
1395
1396  /// Allow access to clients that need the byte representation, such as
1397  /// ASTWriterStmt::VisitStringLiteral().
1398  StringRef getBytes() const {
1399    // FIXME: StringRef may not be the right type to use as a result for this.
1400    if (CharByteWidth == 1)
1401      return StringRef(StrData.asChar, getByteLength());
1402    if (CharByteWidth == 4)
1403      return StringRef(reinterpret_cast<const char*>(StrData.asUInt32),
1404                       getByteLength());
1405    assert(CharByteWidth == 2 && "unsupported CharByteWidth");
1406    return StringRef(reinterpret_cast<const char*>(StrData.asUInt16),
1407                     getByteLength());
1408  }
1409
1410  void outputString(raw_ostream &OS);
1411
1412  uint32_t getCodeUnit(size_t i) const {
1413    assert(i < Length && "out of bounds access");
1414    if (CharByteWidth == 1)
1415      return static_cast<unsigned char>(StrData.asChar[i]);
1416    if (CharByteWidth == 4)
1417      return StrData.asUInt32[i];
1418    assert(CharByteWidth == 2 && "unsupported CharByteWidth");
1419    return StrData.asUInt16[i];
1420  }
1421
1422  unsigned getByteLength() const { return CharByteWidth*Length; }
1423  unsigned getLength() const { return Length; }
1424  unsigned getCharByteWidth() const { return CharByteWidth; }
1425
1426  /// \brief Sets the string data to the given string data.
1427  void setString(ASTContext &C, StringRef Str,
1428                 StringKind Kind, bool IsPascal);
1429
1430  StringKind getKind() const { return static_cast<StringKind>(Kind); }
1431
1432
1433  bool isAscii() const { return Kind == Ascii; }
1434  bool isWide() const { return Kind == Wide; }
1435  bool isUTF8() const { return Kind == UTF8; }
1436  bool isUTF16() const { return Kind == UTF16; }
1437  bool isUTF32() const { return Kind == UTF32; }
1438  bool isPascal() const { return IsPascal; }
1439
1440  bool containsNonAsciiOrNull() const {
1441    StringRef Str = getString();
1442    for (unsigned i = 0, e = Str.size(); i != e; ++i)
1443      if (!isascii(Str[i]) || !Str[i])
1444        return true;
1445    return false;
1446  }
1447
1448  /// getNumConcatenated - Get the number of string literal tokens that were
1449  /// concatenated in translation phase #6 to form this string literal.
1450  unsigned getNumConcatenated() const { return NumConcatenated; }
1451
1452  SourceLocation getStrTokenLoc(unsigned TokNum) const {
1453    assert(TokNum < NumConcatenated && "Invalid tok number");
1454    return TokLocs[TokNum];
1455  }
1456  void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
1457    assert(TokNum < NumConcatenated && "Invalid tok number");
1458    TokLocs[TokNum] = L;
1459  }
1460
1461  /// getLocationOfByte - Return a source location that points to the specified
1462  /// byte of this string literal.
1463  ///
1464  /// Strings are amazingly complex.  They can be formed from multiple tokens
1465  /// and can have escape sequences in them in addition to the usual trigraph
1466  /// and escaped newline business.  This routine handles this complexity.
1467  ///
1468  SourceLocation getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
1469                                   const LangOptions &Features,
1470                                   const TargetInfo &Target) const;
1471
1472  typedef const SourceLocation *tokloc_iterator;
1473  tokloc_iterator tokloc_begin() const { return TokLocs; }
1474  tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; }
1475
1476  SourceRange getSourceRange() const LLVM_READONLY {
1477    return SourceRange(TokLocs[0], TokLocs[NumConcatenated-1]);
1478  }
1479  static bool classof(const Stmt *T) {
1480    return T->getStmtClass() == StringLiteralClass;
1481  }
1482  static bool classof(const StringLiteral *) { return true; }
1483
1484  // Iterators
1485  child_range children() { return child_range(); }
1486};
1487
1488/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
1489/// AST node is only formed if full location information is requested.
1490class ParenExpr : public Expr {
1491  SourceLocation L, R;
1492  Stmt *Val;
1493public:
1494  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
1495    : Expr(ParenExprClass, val->getType(),
1496           val->getValueKind(), val->getObjectKind(),
1497           val->isTypeDependent(), val->isValueDependent(),
1498           val->isInstantiationDependent(),
1499           val->containsUnexpandedParameterPack()),
1500      L(l), R(r), Val(val) {}
1501
1502  /// \brief Construct an empty parenthesized expression.
1503  explicit ParenExpr(EmptyShell Empty)
1504    : Expr(ParenExprClass, Empty) { }
1505
1506  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1507  Expr *getSubExpr() { return cast<Expr>(Val); }
1508  void setSubExpr(Expr *E) { Val = E; }
1509
1510  SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(L, R); }
1511
1512  /// \brief Get the location of the left parentheses '('.
1513  SourceLocation getLParen() const { return L; }
1514  void setLParen(SourceLocation Loc) { L = Loc; }
1515
1516  /// \brief Get the location of the right parentheses ')'.
1517  SourceLocation getRParen() const { return R; }
1518  void setRParen(SourceLocation Loc) { R = Loc; }
1519
1520  static bool classof(const Stmt *T) {
1521    return T->getStmtClass() == ParenExprClass;
1522  }
1523  static bool classof(const ParenExpr *) { return true; }
1524
1525  // Iterators
1526  child_range children() { return child_range(&Val, &Val+1); }
1527};
1528
1529
1530/// UnaryOperator - This represents the unary-expression's (except sizeof and
1531/// alignof), the postinc/postdec operators from postfix-expression, and various
1532/// extensions.
1533///
1534/// Notes on various nodes:
1535///
1536/// Real/Imag - These return the real/imag part of a complex operand.  If
1537///   applied to a non-complex value, the former returns its operand and the
1538///   later returns zero in the type of the operand.
1539///
1540class UnaryOperator : public Expr {
1541public:
1542  typedef UnaryOperatorKind Opcode;
1543
1544private:
1545  unsigned Opc : 5;
1546  SourceLocation Loc;
1547  Stmt *Val;
1548public:
1549
1550  UnaryOperator(Expr *input, Opcode opc, QualType type,
1551                ExprValueKind VK, ExprObjectKind OK, SourceLocation l)
1552    : Expr(UnaryOperatorClass, type, VK, OK,
1553           input->isTypeDependent() || type->isDependentType(),
1554           input->isValueDependent(),
1555           (input->isInstantiationDependent() ||
1556            type->isInstantiationDependentType()),
1557           input->containsUnexpandedParameterPack()),
1558      Opc(opc), Loc(l), Val(input) {}
1559
1560  /// \brief Build an empty unary operator.
1561  explicit UnaryOperator(EmptyShell Empty)
1562    : Expr(UnaryOperatorClass, Empty), Opc(UO_AddrOf) { }
1563
1564  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
1565  void setOpcode(Opcode O) { Opc = O; }
1566
1567  Expr *getSubExpr() const { return cast<Expr>(Val); }
1568  void setSubExpr(Expr *E) { Val = E; }
1569
1570  /// getOperatorLoc - Return the location of the operator.
1571  SourceLocation getOperatorLoc() const { return Loc; }
1572  void setOperatorLoc(SourceLocation L) { Loc = L; }
1573
1574  /// isPostfix - Return true if this is a postfix operation, like x++.
1575  static bool isPostfix(Opcode Op) {
1576    return Op == UO_PostInc || Op == UO_PostDec;
1577  }
1578
1579  /// isPrefix - Return true if this is a prefix operation, like --x.
1580  static bool isPrefix(Opcode Op) {
1581    return Op == UO_PreInc || Op == UO_PreDec;
1582  }
1583
1584  bool isPrefix() const { return isPrefix(getOpcode()); }
1585  bool isPostfix() const { return isPostfix(getOpcode()); }
1586
1587  static bool isIncrementOp(Opcode Op) {
1588    return Op == UO_PreInc || Op == UO_PostInc;
1589  }
1590  bool isIncrementOp() const {
1591    return isIncrementOp(getOpcode());
1592  }
1593
1594  static bool isDecrementOp(Opcode Op) {
1595    return Op == UO_PreDec || Op == UO_PostDec;
1596  }
1597  bool isDecrementOp() const {
1598    return isDecrementOp(getOpcode());
1599  }
1600
1601  static bool isIncrementDecrementOp(Opcode Op) { return Op <= UO_PreDec; }
1602  bool isIncrementDecrementOp() const {
1603    return isIncrementDecrementOp(getOpcode());
1604  }
1605
1606  static bool isArithmeticOp(Opcode Op) {
1607    return Op >= UO_Plus && Op <= UO_LNot;
1608  }
1609  bool isArithmeticOp() const { return isArithmeticOp(getOpcode()); }
1610
1611  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1612  /// corresponds to, e.g. "sizeof" or "[pre]++"
1613  static const char *getOpcodeStr(Opcode Op);
1614
1615  /// \brief Retrieve the unary opcode that corresponds to the given
1616  /// overloaded operator.
1617  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
1618
1619  /// \brief Retrieve the overloaded operator kind that corresponds to
1620  /// the given unary opcode.
1621  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
1622
1623  SourceRange getSourceRange() const LLVM_READONLY {
1624    if (isPostfix())
1625      return SourceRange(Val->getLocStart(), Loc);
1626    else
1627      return SourceRange(Loc, Val->getLocEnd());
1628  }
1629  SourceLocation getExprLoc() const LLVM_READONLY { return Loc; }
1630
1631  static bool classof(const Stmt *T) {
1632    return T->getStmtClass() == UnaryOperatorClass;
1633  }
1634  static bool classof(const UnaryOperator *) { return true; }
1635
1636  // Iterators
1637  child_range children() { return child_range(&Val, &Val+1); }
1638};
1639
1640/// OffsetOfExpr - [C99 7.17] - This represents an expression of the form
1641/// offsetof(record-type, member-designator). For example, given:
1642/// @code
1643/// struct S {
1644///   float f;
1645///   double d;
1646/// };
1647/// struct T {
1648///   int i;
1649///   struct S s[10];
1650/// };
1651/// @endcode
1652/// we can represent and evaluate the expression @c offsetof(struct T, s[2].d).
1653
1654class OffsetOfExpr : public Expr {
1655public:
1656  // __builtin_offsetof(type, identifier(.identifier|[expr])*)
1657  class OffsetOfNode {
1658  public:
1659    /// \brief The kind of offsetof node we have.
1660    enum Kind {
1661      /// \brief An index into an array.
1662      Array = 0x00,
1663      /// \brief A field.
1664      Field = 0x01,
1665      /// \brief A field in a dependent type, known only by its name.
1666      Identifier = 0x02,
1667      /// \brief An implicit indirection through a C++ base class, when the
1668      /// field found is in a base class.
1669      Base = 0x03
1670    };
1671
1672  private:
1673    enum { MaskBits = 2, Mask = 0x03 };
1674
1675    /// \brief The source range that covers this part of the designator.
1676    SourceRange Range;
1677
1678    /// \brief The data describing the designator, which comes in three
1679    /// different forms, depending on the lower two bits.
1680    ///   - An unsigned index into the array of Expr*'s stored after this node
1681    ///     in memory, for [constant-expression] designators.
1682    ///   - A FieldDecl*, for references to a known field.
1683    ///   - An IdentifierInfo*, for references to a field with a given name
1684    ///     when the class type is dependent.
1685    ///   - A CXXBaseSpecifier*, for references that look at a field in a
1686    ///     base class.
1687    uintptr_t Data;
1688
1689  public:
1690    /// \brief Create an offsetof node that refers to an array element.
1691    OffsetOfNode(SourceLocation LBracketLoc, unsigned Index,
1692                 SourceLocation RBracketLoc)
1693      : Range(LBracketLoc, RBracketLoc), Data((Index << 2) | Array) { }
1694
1695    /// \brief Create an offsetof node that refers to a field.
1696    OffsetOfNode(SourceLocation DotLoc, FieldDecl *Field,
1697                 SourceLocation NameLoc)
1698      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1699        Data(reinterpret_cast<uintptr_t>(Field) | OffsetOfNode::Field) { }
1700
1701    /// \brief Create an offsetof node that refers to an identifier.
1702    OffsetOfNode(SourceLocation DotLoc, IdentifierInfo *Name,
1703                 SourceLocation NameLoc)
1704      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1705        Data(reinterpret_cast<uintptr_t>(Name) | Identifier) { }
1706
1707    /// \brief Create an offsetof node that refers into a C++ base class.
1708    explicit OffsetOfNode(const CXXBaseSpecifier *Base)
1709      : Range(), Data(reinterpret_cast<uintptr_t>(Base) | OffsetOfNode::Base) {}
1710
1711    /// \brief Determine what kind of offsetof node this is.
1712    Kind getKind() const {
1713      return static_cast<Kind>(Data & Mask);
1714    }
1715
1716    /// \brief For an array element node, returns the index into the array
1717    /// of expressions.
1718    unsigned getArrayExprIndex() const {
1719      assert(getKind() == Array);
1720      return Data >> 2;
1721    }
1722
1723    /// \brief For a field offsetof node, returns the field.
1724    FieldDecl *getField() const {
1725      assert(getKind() == Field);
1726      return reinterpret_cast<FieldDecl *>(Data & ~(uintptr_t)Mask);
1727    }
1728
1729    /// \brief For a field or identifier offsetof node, returns the name of
1730    /// the field.
1731    IdentifierInfo *getFieldName() const;
1732
1733    /// \brief For a base class node, returns the base specifier.
1734    CXXBaseSpecifier *getBase() const {
1735      assert(getKind() == Base);
1736      return reinterpret_cast<CXXBaseSpecifier *>(Data & ~(uintptr_t)Mask);
1737    }
1738
1739    /// \brief Retrieve the source range that covers this offsetof node.
1740    ///
1741    /// For an array element node, the source range contains the locations of
1742    /// the square brackets. For a field or identifier node, the source range
1743    /// contains the location of the period (if there is one) and the
1744    /// identifier.
1745    SourceRange getSourceRange() const LLVM_READONLY { return Range; }
1746  };
1747
1748private:
1749
1750  SourceLocation OperatorLoc, RParenLoc;
1751  // Base type;
1752  TypeSourceInfo *TSInfo;
1753  // Number of sub-components (i.e. instances of OffsetOfNode).
1754  unsigned NumComps;
1755  // Number of sub-expressions (i.e. array subscript expressions).
1756  unsigned NumExprs;
1757
1758  OffsetOfExpr(ASTContext &C, QualType type,
1759               SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1760               OffsetOfNode* compsPtr, unsigned numComps,
1761               Expr** exprsPtr, unsigned numExprs,
1762               SourceLocation RParenLoc);
1763
1764  explicit OffsetOfExpr(unsigned numComps, unsigned numExprs)
1765    : Expr(OffsetOfExprClass, EmptyShell()),
1766      TSInfo(0), NumComps(numComps), NumExprs(numExprs) {}
1767
1768public:
1769
1770  static OffsetOfExpr *Create(ASTContext &C, QualType type,
1771                              SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1772                              OffsetOfNode* compsPtr, unsigned numComps,
1773                              Expr** exprsPtr, unsigned numExprs,
1774                              SourceLocation RParenLoc);
1775
1776  static OffsetOfExpr *CreateEmpty(ASTContext &C,
1777                                   unsigned NumComps, unsigned NumExprs);
1778
1779  /// getOperatorLoc - Return the location of the operator.
1780  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1781  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
1782
1783  /// \brief Return the location of the right parentheses.
1784  SourceLocation getRParenLoc() const { return RParenLoc; }
1785  void setRParenLoc(SourceLocation R) { RParenLoc = R; }
1786
1787  TypeSourceInfo *getTypeSourceInfo() const {
1788    return TSInfo;
1789  }
1790  void setTypeSourceInfo(TypeSourceInfo *tsi) {
1791    TSInfo = tsi;
1792  }
1793
1794  const OffsetOfNode &getComponent(unsigned Idx) const {
1795    assert(Idx < NumComps && "Subscript out of range");
1796    return reinterpret_cast<const OffsetOfNode *> (this + 1)[Idx];
1797  }
1798
1799  void setComponent(unsigned Idx, OffsetOfNode ON) {
1800    assert(Idx < NumComps && "Subscript out of range");
1801    reinterpret_cast<OffsetOfNode *> (this + 1)[Idx] = ON;
1802  }
1803
1804  unsigned getNumComponents() const {
1805    return NumComps;
1806  }
1807
1808  Expr* getIndexExpr(unsigned Idx) {
1809    assert(Idx < NumExprs && "Subscript out of range");
1810    return reinterpret_cast<Expr **>(
1811                    reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx];
1812  }
1813  const Expr *getIndexExpr(unsigned Idx) const {
1814    return const_cast<OffsetOfExpr*>(this)->getIndexExpr(Idx);
1815  }
1816
1817  void setIndexExpr(unsigned Idx, Expr* E) {
1818    assert(Idx < NumComps && "Subscript out of range");
1819    reinterpret_cast<Expr **>(
1820                reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx] = E;
1821  }
1822
1823  unsigned getNumExpressions() const {
1824    return NumExprs;
1825  }
1826
1827  SourceRange getSourceRange() const LLVM_READONLY {
1828    return SourceRange(OperatorLoc, RParenLoc);
1829  }
1830
1831  static bool classof(const Stmt *T) {
1832    return T->getStmtClass() == OffsetOfExprClass;
1833  }
1834
1835  static bool classof(const OffsetOfExpr *) { return true; }
1836
1837  // Iterators
1838  child_range children() {
1839    Stmt **begin =
1840      reinterpret_cast<Stmt**>(reinterpret_cast<OffsetOfNode*>(this + 1)
1841                               + NumComps);
1842    return child_range(begin, begin + NumExprs);
1843  }
1844};
1845
1846/// UnaryExprOrTypeTraitExpr - expression with either a type or (unevaluated)
1847/// expression operand.  Used for sizeof/alignof (C99 6.5.3.4) and
1848/// vec_step (OpenCL 1.1 6.11.12).
1849class UnaryExprOrTypeTraitExpr : public Expr {
1850  union {
1851    TypeSourceInfo *Ty;
1852    Stmt *Ex;
1853  } Argument;
1854  SourceLocation OpLoc, RParenLoc;
1855
1856public:
1857  UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, TypeSourceInfo *TInfo,
1858                           QualType resultType, SourceLocation op,
1859                           SourceLocation rp) :
1860      Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
1861           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1862           // Value-dependent if the argument is type-dependent.
1863           TInfo->getType()->isDependentType(),
1864           TInfo->getType()->isInstantiationDependentType(),
1865           TInfo->getType()->containsUnexpandedParameterPack()),
1866      OpLoc(op), RParenLoc(rp) {
1867    UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
1868    UnaryExprOrTypeTraitExprBits.IsType = true;
1869    Argument.Ty = TInfo;
1870  }
1871
1872  UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, Expr *E,
1873                           QualType resultType, SourceLocation op,
1874                           SourceLocation rp) :
1875      Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
1876           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1877           // Value-dependent if the argument is type-dependent.
1878           E->isTypeDependent(),
1879           E->isInstantiationDependent(),
1880           E->containsUnexpandedParameterPack()),
1881      OpLoc(op), RParenLoc(rp) {
1882    UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
1883    UnaryExprOrTypeTraitExprBits.IsType = false;
1884    Argument.Ex = E;
1885  }
1886
1887  /// \brief Construct an empty sizeof/alignof expression.
1888  explicit UnaryExprOrTypeTraitExpr(EmptyShell Empty)
1889    : Expr(UnaryExprOrTypeTraitExprClass, Empty) { }
1890
1891  UnaryExprOrTypeTrait getKind() const {
1892    return static_cast<UnaryExprOrTypeTrait>(UnaryExprOrTypeTraitExprBits.Kind);
1893  }
1894  void setKind(UnaryExprOrTypeTrait K) { UnaryExprOrTypeTraitExprBits.Kind = K;}
1895
1896  bool isArgumentType() const { return UnaryExprOrTypeTraitExprBits.IsType; }
1897  QualType getArgumentType() const {
1898    return getArgumentTypeInfo()->getType();
1899  }
1900  TypeSourceInfo *getArgumentTypeInfo() const {
1901    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
1902    return Argument.Ty;
1903  }
1904  Expr *getArgumentExpr() {
1905    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
1906    return static_cast<Expr*>(Argument.Ex);
1907  }
1908  const Expr *getArgumentExpr() const {
1909    return const_cast<UnaryExprOrTypeTraitExpr*>(this)->getArgumentExpr();
1910  }
1911
1912  void setArgument(Expr *E) {
1913    Argument.Ex = E;
1914    UnaryExprOrTypeTraitExprBits.IsType = false;
1915  }
1916  void setArgument(TypeSourceInfo *TInfo) {
1917    Argument.Ty = TInfo;
1918    UnaryExprOrTypeTraitExprBits.IsType = true;
1919  }
1920
1921  /// Gets the argument type, or the type of the argument expression, whichever
1922  /// is appropriate.
1923  QualType getTypeOfArgument() const {
1924    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
1925  }
1926
1927  SourceLocation getOperatorLoc() const { return OpLoc; }
1928  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
1929
1930  SourceLocation getRParenLoc() const { return RParenLoc; }
1931  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1932
1933  SourceRange getSourceRange() const LLVM_READONLY {
1934    return SourceRange(OpLoc, RParenLoc);
1935  }
1936
1937  static bool classof(const Stmt *T) {
1938    return T->getStmtClass() == UnaryExprOrTypeTraitExprClass;
1939  }
1940  static bool classof(const UnaryExprOrTypeTraitExpr *) { return true; }
1941
1942  // Iterators
1943  child_range children();
1944};
1945
1946//===----------------------------------------------------------------------===//
1947// Postfix Operators.
1948//===----------------------------------------------------------------------===//
1949
1950/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
1951class ArraySubscriptExpr : public Expr {
1952  enum { LHS, RHS, END_EXPR=2 };
1953  Stmt* SubExprs[END_EXPR];
1954  SourceLocation RBracketLoc;
1955public:
1956  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
1957                     ExprValueKind VK, ExprObjectKind OK,
1958                     SourceLocation rbracketloc)
1959  : Expr(ArraySubscriptExprClass, t, VK, OK,
1960         lhs->isTypeDependent() || rhs->isTypeDependent(),
1961         lhs->isValueDependent() || rhs->isValueDependent(),
1962         (lhs->isInstantiationDependent() ||
1963          rhs->isInstantiationDependent()),
1964         (lhs->containsUnexpandedParameterPack() ||
1965          rhs->containsUnexpandedParameterPack())),
1966    RBracketLoc(rbracketloc) {
1967    SubExprs[LHS] = lhs;
1968    SubExprs[RHS] = rhs;
1969  }
1970
1971  /// \brief Create an empty array subscript expression.
1972  explicit ArraySubscriptExpr(EmptyShell Shell)
1973    : Expr(ArraySubscriptExprClass, Shell) { }
1974
1975  /// An array access can be written A[4] or 4[A] (both are equivalent).
1976  /// - getBase() and getIdx() always present the normalized view: A[4].
1977  ///    In this case getBase() returns "A" and getIdx() returns "4".
1978  /// - getLHS() and getRHS() present the syntactic view. e.g. for
1979  ///    4[A] getLHS() returns "4".
1980  /// Note: Because vector element access is also written A[4] we must
1981  /// predicate the format conversion in getBase and getIdx only on the
1982  /// the type of the RHS, as it is possible for the LHS to be a vector of
1983  /// integer type
1984  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
1985  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1986  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1987
1988  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
1989  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1990  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1991
1992  Expr *getBase() {
1993    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1994  }
1995
1996  const Expr *getBase() const {
1997    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1998  }
1999
2000  Expr *getIdx() {
2001    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
2002  }
2003
2004  const Expr *getIdx() const {
2005    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
2006  }
2007
2008  SourceRange getSourceRange() const LLVM_READONLY {
2009    return SourceRange(getLHS()->getLocStart(), RBracketLoc);
2010  }
2011
2012  SourceLocation getRBracketLoc() const { return RBracketLoc; }
2013  void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
2014
2015  SourceLocation getExprLoc() const LLVM_READONLY { return getBase()->getExprLoc(); }
2016
2017  static bool classof(const Stmt *T) {
2018    return T->getStmtClass() == ArraySubscriptExprClass;
2019  }
2020  static bool classof(const ArraySubscriptExpr *) { return true; }
2021
2022  // Iterators
2023  child_range children() {
2024    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
2025  }
2026};
2027
2028
2029/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
2030/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
2031/// while its subclasses may represent alternative syntax that (semantically)
2032/// results in a function call. For example, CXXOperatorCallExpr is
2033/// a subclass for overloaded operator calls that use operator syntax, e.g.,
2034/// "str1 + str2" to resolve to a function call.
2035class CallExpr : public Expr {
2036  enum { FN=0, PREARGS_START=1 };
2037  Stmt **SubExprs;
2038  unsigned NumArgs;
2039  SourceLocation RParenLoc;
2040
2041protected:
2042  // These versions of the constructor are for derived classes.
2043  CallExpr(ASTContext& C, StmtClass SC, Expr *fn, unsigned NumPreArgs,
2044           Expr **args, unsigned numargs, QualType t, ExprValueKind VK,
2045           SourceLocation rparenloc);
2046  CallExpr(ASTContext &C, StmtClass SC, unsigned NumPreArgs, EmptyShell Empty);
2047
2048  Stmt *getPreArg(unsigned i) {
2049    assert(i < getNumPreArgs() && "Prearg access out of range!");
2050    return SubExprs[PREARGS_START+i];
2051  }
2052  const Stmt *getPreArg(unsigned i) const {
2053    assert(i < getNumPreArgs() && "Prearg access out of range!");
2054    return SubExprs[PREARGS_START+i];
2055  }
2056  void setPreArg(unsigned i, Stmt *PreArg) {
2057    assert(i < getNumPreArgs() && "Prearg access out of range!");
2058    SubExprs[PREARGS_START+i] = PreArg;
2059  }
2060
2061  unsigned getNumPreArgs() const { return CallExprBits.NumPreArgs; }
2062
2063public:
2064  CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, QualType t,
2065           ExprValueKind VK, SourceLocation rparenloc);
2066
2067  /// \brief Build an empty call expression.
2068  CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty);
2069
2070  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
2071  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
2072  void setCallee(Expr *F) { SubExprs[FN] = F; }
2073
2074  Decl *getCalleeDecl();
2075  const Decl *getCalleeDecl() const {
2076    return const_cast<CallExpr*>(this)->getCalleeDecl();
2077  }
2078
2079  /// \brief If the callee is a FunctionDecl, return it. Otherwise return 0.
2080  FunctionDecl *getDirectCallee();
2081  const FunctionDecl *getDirectCallee() const {
2082    return const_cast<CallExpr*>(this)->getDirectCallee();
2083  }
2084
2085  /// getNumArgs - Return the number of actual arguments to this call.
2086  ///
2087  unsigned getNumArgs() const { return NumArgs; }
2088
2089  /// \brief Retrieve the call arguments.
2090  Expr **getArgs() {
2091    return reinterpret_cast<Expr **>(SubExprs+getNumPreArgs()+PREARGS_START);
2092  }
2093  const Expr *const *getArgs() const {
2094    return const_cast<CallExpr*>(this)->getArgs();
2095  }
2096
2097  /// getArg - Return the specified argument.
2098  Expr *getArg(unsigned Arg) {
2099    assert(Arg < NumArgs && "Arg access out of range!");
2100    return cast<Expr>(SubExprs[Arg+getNumPreArgs()+PREARGS_START]);
2101  }
2102  const Expr *getArg(unsigned Arg) const {
2103    assert(Arg < NumArgs && "Arg access out of range!");
2104    return cast<Expr>(SubExprs[Arg+getNumPreArgs()+PREARGS_START]);
2105  }
2106
2107  /// setArg - Set the specified argument.
2108  void setArg(unsigned Arg, Expr *ArgExpr) {
2109    assert(Arg < NumArgs && "Arg access out of range!");
2110    SubExprs[Arg+getNumPreArgs()+PREARGS_START] = ArgExpr;
2111  }
2112
2113  /// setNumArgs - This changes the number of arguments present in this call.
2114  /// Any orphaned expressions are deleted by this, and any new operands are set
2115  /// to null.
2116  void setNumArgs(ASTContext& C, unsigned NumArgs);
2117
2118  typedef ExprIterator arg_iterator;
2119  typedef ConstExprIterator const_arg_iterator;
2120
2121  arg_iterator arg_begin() { return SubExprs+PREARGS_START+getNumPreArgs(); }
2122  arg_iterator arg_end() {
2123    return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
2124  }
2125  const_arg_iterator arg_begin() const {
2126    return SubExprs+PREARGS_START+getNumPreArgs();
2127  }
2128  const_arg_iterator arg_end() const {
2129    return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
2130  }
2131
2132  /// getNumCommas - Return the number of commas that must have been present in
2133  /// this function call.
2134  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
2135
2136  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
2137  /// not, return 0.
2138  unsigned isBuiltinCall() const;
2139
2140  /// getCallReturnType - Get the return type of the call expr. This is not
2141  /// always the type of the expr itself, if the return type is a reference
2142  /// type.
2143  QualType getCallReturnType() const;
2144
2145  SourceLocation getRParenLoc() const { return RParenLoc; }
2146  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2147
2148  SourceRange getSourceRange() const LLVM_READONLY;
2149  SourceLocation getLocStart() const LLVM_READONLY;
2150  SourceLocation getLocEnd() const LLVM_READONLY;
2151
2152  static bool classof(const Stmt *T) {
2153    return T->getStmtClass() >= firstCallExprConstant &&
2154           T->getStmtClass() <= lastCallExprConstant;
2155  }
2156  static bool classof(const CallExpr *) { return true; }
2157
2158  // Iterators
2159  child_range children() {
2160    return child_range(&SubExprs[0],
2161                       &SubExprs[0]+NumArgs+getNumPreArgs()+PREARGS_START);
2162  }
2163};
2164
2165/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.  X->F and X.F.
2166///
2167class MemberExpr : public Expr {
2168  /// Extra data stored in some member expressions.
2169  struct MemberNameQualifier {
2170    /// \brief The nested-name-specifier that qualifies the name, including
2171    /// source-location information.
2172    NestedNameSpecifierLoc QualifierLoc;
2173
2174    /// \brief The DeclAccessPair through which the MemberDecl was found due to
2175    /// name qualifiers.
2176    DeclAccessPair FoundDecl;
2177  };
2178
2179  /// Base - the expression for the base pointer or structure references.  In
2180  /// X.F, this is "X".
2181  Stmt *Base;
2182
2183  /// MemberDecl - This is the decl being referenced by the field/member name.
2184  /// In X.F, this is the decl referenced by F.
2185  ValueDecl *MemberDecl;
2186
2187  /// MemberDNLoc - Provides source/type location info for the
2188  /// declaration name embedded in MemberDecl.
2189  DeclarationNameLoc MemberDNLoc;
2190
2191  /// MemberLoc - This is the location of the member name.
2192  SourceLocation MemberLoc;
2193
2194  /// IsArrow - True if this is "X->F", false if this is "X.F".
2195  bool IsArrow : 1;
2196
2197  /// \brief True if this member expression used a nested-name-specifier to
2198  /// refer to the member, e.g., "x->Base::f", or found its member via a using
2199  /// declaration.  When true, a MemberNameQualifier
2200  /// structure is allocated immediately after the MemberExpr.
2201  bool HasQualifierOrFoundDecl : 1;
2202
2203  /// \brief True if this member expression specified a template keyword
2204  /// and/or a template argument list explicitly, e.g., x->f<int>,
2205  /// x->template f, x->template f<int>.
2206  /// When true, an ASTTemplateKWAndArgsInfo structure and its
2207  /// TemplateArguments (if any) are allocated immediately after
2208  /// the MemberExpr or, if the member expression also has a qualifier,
2209  /// after the MemberNameQualifier structure.
2210  bool HasTemplateKWAndArgsInfo : 1;
2211
2212  /// \brief True if this member expression refers to a method that
2213  /// was resolved from an overloaded set having size greater than 1.
2214  bool HadMultipleCandidates : 1;
2215
2216  /// \brief Retrieve the qualifier that preceded the member name, if any.
2217  MemberNameQualifier *getMemberQualifier() {
2218    assert(HasQualifierOrFoundDecl);
2219    return reinterpret_cast<MemberNameQualifier *> (this + 1);
2220  }
2221
2222  /// \brief Retrieve the qualifier that preceded the member name, if any.
2223  const MemberNameQualifier *getMemberQualifier() const {
2224    return const_cast<MemberExpr *>(this)->getMemberQualifier();
2225  }
2226
2227public:
2228  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
2229             const DeclarationNameInfo &NameInfo, QualType ty,
2230             ExprValueKind VK, ExprObjectKind OK)
2231    : Expr(MemberExprClass, ty, VK, OK,
2232           base->isTypeDependent(),
2233           base->isValueDependent(),
2234           base->isInstantiationDependent(),
2235           base->containsUnexpandedParameterPack()),
2236      Base(base), MemberDecl(memberdecl), MemberDNLoc(NameInfo.getInfo()),
2237      MemberLoc(NameInfo.getLoc()), IsArrow(isarrow),
2238      HasQualifierOrFoundDecl(false), HasTemplateKWAndArgsInfo(false),
2239      HadMultipleCandidates(false) {
2240    assert(memberdecl->getDeclName() == NameInfo.getName());
2241  }
2242
2243  // NOTE: this constructor should be used only when it is known that
2244  // the member name can not provide additional syntactic info
2245  // (i.e., source locations for C++ operator names or type source info
2246  // for constructors, destructors and conversion operators).
2247  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
2248             SourceLocation l, QualType ty,
2249             ExprValueKind VK, ExprObjectKind OK)
2250    : Expr(MemberExprClass, ty, VK, OK,
2251           base->isTypeDependent(), base->isValueDependent(),
2252           base->isInstantiationDependent(),
2253           base->containsUnexpandedParameterPack()),
2254      Base(base), MemberDecl(memberdecl), MemberDNLoc(), MemberLoc(l),
2255      IsArrow(isarrow),
2256      HasQualifierOrFoundDecl(false), HasTemplateKWAndArgsInfo(false),
2257      HadMultipleCandidates(false) {}
2258
2259  static MemberExpr *Create(ASTContext &C, Expr *base, bool isarrow,
2260                            NestedNameSpecifierLoc QualifierLoc,
2261                            SourceLocation TemplateKWLoc,
2262                            ValueDecl *memberdecl, DeclAccessPair founddecl,
2263                            DeclarationNameInfo MemberNameInfo,
2264                            const TemplateArgumentListInfo *targs,
2265                            QualType ty, ExprValueKind VK, ExprObjectKind OK);
2266
2267  void setBase(Expr *E) { Base = E; }
2268  Expr *getBase() const { return cast<Expr>(Base); }
2269
2270  /// \brief Retrieve the member declaration to which this expression refers.
2271  ///
2272  /// The returned declaration will either be a FieldDecl or (in C++)
2273  /// a CXXMethodDecl.
2274  ValueDecl *getMemberDecl() const { return MemberDecl; }
2275  void setMemberDecl(ValueDecl *D) { MemberDecl = D; }
2276
2277  /// \brief Retrieves the declaration found by lookup.
2278  DeclAccessPair getFoundDecl() const {
2279    if (!HasQualifierOrFoundDecl)
2280      return DeclAccessPair::make(getMemberDecl(),
2281                                  getMemberDecl()->getAccess());
2282    return getMemberQualifier()->FoundDecl;
2283  }
2284
2285  /// \brief Determines whether this member expression actually had
2286  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
2287  /// x->Base::foo.
2288  bool hasQualifier() const { return getQualifier() != 0; }
2289
2290  /// \brief If the member name was qualified, retrieves the
2291  /// nested-name-specifier that precedes the member name. Otherwise, returns
2292  /// NULL.
2293  NestedNameSpecifier *getQualifier() const {
2294    if (!HasQualifierOrFoundDecl)
2295      return 0;
2296
2297    return getMemberQualifier()->QualifierLoc.getNestedNameSpecifier();
2298  }
2299
2300  /// \brief If the member name was qualified, retrieves the
2301  /// nested-name-specifier that precedes the member name, with source-location
2302  /// information.
2303  NestedNameSpecifierLoc getQualifierLoc() const {
2304    if (!hasQualifier())
2305      return NestedNameSpecifierLoc();
2306
2307    return getMemberQualifier()->QualifierLoc;
2308  }
2309
2310  /// \brief Return the optional template keyword and arguments info.
2311  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
2312    if (!HasTemplateKWAndArgsInfo)
2313      return 0;
2314
2315    if (!HasQualifierOrFoundDecl)
2316      return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(this + 1);
2317
2318    return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(
2319                                                      getMemberQualifier() + 1);
2320  }
2321
2322  /// \brief Return the optional template keyword and arguments info.
2323  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
2324    return const_cast<MemberExpr*>(this)->getTemplateKWAndArgsInfo();
2325  }
2326
2327  /// \brief Retrieve the location of the template keyword preceding
2328  /// the member name, if any.
2329  SourceLocation getTemplateKeywordLoc() const {
2330    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2331    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
2332  }
2333
2334  /// \brief Retrieve the location of the left angle bracket starting the
2335  /// explicit template argument list following the member name, if any.
2336  SourceLocation getLAngleLoc() const {
2337    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2338    return getTemplateKWAndArgsInfo()->LAngleLoc;
2339  }
2340
2341  /// \brief Retrieve the location of the right angle bracket ending the
2342  /// explicit template argument list following the member name, if any.
2343  SourceLocation getRAngleLoc() const {
2344    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2345    return getTemplateKWAndArgsInfo()->RAngleLoc;
2346  }
2347
2348  /// Determines whether the member name was preceded by the template keyword.
2349  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
2350
2351  /// \brief Determines whether the member name was followed by an
2352  /// explicit template argument list.
2353  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
2354
2355  /// \brief Copies the template arguments (if present) into the given
2356  /// structure.
2357  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2358    if (hasExplicitTemplateArgs())
2359      getExplicitTemplateArgs().copyInto(List);
2360  }
2361
2362  /// \brief Retrieve the explicit template argument list that
2363  /// follow the member template name.  This must only be called on an
2364  /// expression with explicit template arguments.
2365  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
2366    assert(hasExplicitTemplateArgs());
2367    return *getTemplateKWAndArgsInfo();
2368  }
2369
2370  /// \brief Retrieve the explicit template argument list that
2371  /// followed the member template name.  This must only be called on
2372  /// an expression with explicit template arguments.
2373  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2374    return const_cast<MemberExpr *>(this)->getExplicitTemplateArgs();
2375  }
2376
2377  /// \brief Retrieves the optional explicit template arguments.
2378  /// This points to the same data as getExplicitTemplateArgs(), but
2379  /// returns null if there are no explicit template arguments.
2380  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() const {
2381    if (!hasExplicitTemplateArgs()) return 0;
2382    return &getExplicitTemplateArgs();
2383  }
2384
2385  /// \brief Retrieve the template arguments provided as part of this
2386  /// template-id.
2387  const TemplateArgumentLoc *getTemplateArgs() const {
2388    if (!hasExplicitTemplateArgs())
2389      return 0;
2390
2391    return getExplicitTemplateArgs().getTemplateArgs();
2392  }
2393
2394  /// \brief Retrieve the number of template arguments provided as part of this
2395  /// template-id.
2396  unsigned getNumTemplateArgs() const {
2397    if (!hasExplicitTemplateArgs())
2398      return 0;
2399
2400    return getExplicitTemplateArgs().NumTemplateArgs;
2401  }
2402
2403  /// \brief Retrieve the member declaration name info.
2404  DeclarationNameInfo getMemberNameInfo() const {
2405    return DeclarationNameInfo(MemberDecl->getDeclName(),
2406                               MemberLoc, MemberDNLoc);
2407  }
2408
2409  bool isArrow() const { return IsArrow; }
2410  void setArrow(bool A) { IsArrow = A; }
2411
2412  /// getMemberLoc - Return the location of the "member", in X->F, it is the
2413  /// location of 'F'.
2414  SourceLocation getMemberLoc() const { return MemberLoc; }
2415  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
2416
2417  SourceRange getSourceRange() const LLVM_READONLY;
2418  SourceLocation getLocStart() const LLVM_READONLY;
2419  SourceLocation getLocEnd() const LLVM_READONLY;
2420
2421  SourceLocation getExprLoc() const LLVM_READONLY { return MemberLoc; }
2422
2423  /// \brief Determine whether the base of this explicit is implicit.
2424  bool isImplicitAccess() const {
2425    return getBase() && getBase()->isImplicitCXXThis();
2426  }
2427
2428  /// \brief Returns true if this member expression refers to a method that
2429  /// was resolved from an overloaded set having size greater than 1.
2430  bool hadMultipleCandidates() const {
2431    return HadMultipleCandidates;
2432  }
2433  /// \brief Sets the flag telling whether this expression refers to
2434  /// a method that was resolved from an overloaded set having size
2435  /// greater than 1.
2436  void setHadMultipleCandidates(bool V = true) {
2437    HadMultipleCandidates = V;
2438  }
2439
2440  static bool classof(const Stmt *T) {
2441    return T->getStmtClass() == MemberExprClass;
2442  }
2443  static bool classof(const MemberExpr *) { return true; }
2444
2445  // Iterators
2446  child_range children() { return child_range(&Base, &Base+1); }
2447
2448  friend class ASTReader;
2449  friend class ASTStmtWriter;
2450};
2451
2452/// CompoundLiteralExpr - [C99 6.5.2.5]
2453///
2454class CompoundLiteralExpr : public Expr {
2455  /// LParenLoc - If non-null, this is the location of the left paren in a
2456  /// compound literal like "(int){4}".  This can be null if this is a
2457  /// synthesized compound expression.
2458  SourceLocation LParenLoc;
2459
2460  /// The type as written.  This can be an incomplete array type, in
2461  /// which case the actual expression type will be different.
2462  /// The int part of the pair stores whether this expr is file scope.
2463  llvm::PointerIntPair<TypeSourceInfo *, 1, bool> TInfoAndScope;
2464  Stmt *Init;
2465public:
2466  CompoundLiteralExpr(SourceLocation lparenloc, TypeSourceInfo *tinfo,
2467                      QualType T, ExprValueKind VK, Expr *init, bool fileScope)
2468    : Expr(CompoundLiteralExprClass, T, VK, OK_Ordinary,
2469           tinfo->getType()->isDependentType(),
2470           init->isValueDependent(),
2471           (init->isInstantiationDependent() ||
2472            tinfo->getType()->isInstantiationDependentType()),
2473           init->containsUnexpandedParameterPack()),
2474      LParenLoc(lparenloc), TInfoAndScope(tinfo, fileScope), Init(init) {}
2475
2476  /// \brief Construct an empty compound literal.
2477  explicit CompoundLiteralExpr(EmptyShell Empty)
2478    : Expr(CompoundLiteralExprClass, Empty) { }
2479
2480  const Expr *getInitializer() const { return cast<Expr>(Init); }
2481  Expr *getInitializer() { return cast<Expr>(Init); }
2482  void setInitializer(Expr *E) { Init = E; }
2483
2484  bool isFileScope() const { return TInfoAndScope.getInt(); }
2485  void setFileScope(bool FS) { TInfoAndScope.setInt(FS); }
2486
2487  SourceLocation getLParenLoc() const { return LParenLoc; }
2488  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2489
2490  TypeSourceInfo *getTypeSourceInfo() const {
2491    return TInfoAndScope.getPointer();
2492  }
2493  void setTypeSourceInfo(TypeSourceInfo *tinfo) {
2494    TInfoAndScope.setPointer(tinfo);
2495  }
2496
2497  SourceRange getSourceRange() const LLVM_READONLY {
2498    // FIXME: Init should never be null.
2499    if (!Init)
2500      return SourceRange();
2501    if (LParenLoc.isInvalid())
2502      return Init->getSourceRange();
2503    return SourceRange(LParenLoc, Init->getLocEnd());
2504  }
2505
2506  static bool classof(const Stmt *T) {
2507    return T->getStmtClass() == CompoundLiteralExprClass;
2508  }
2509  static bool classof(const CompoundLiteralExpr *) { return true; }
2510
2511  // Iterators
2512  child_range children() { return child_range(&Init, &Init+1); }
2513};
2514
2515/// CastExpr - Base class for type casts, including both implicit
2516/// casts (ImplicitCastExpr) and explicit casts that have some
2517/// representation in the source code (ExplicitCastExpr's derived
2518/// classes).
2519class CastExpr : public Expr {
2520public:
2521  typedef clang::CastKind CastKind;
2522
2523private:
2524  Stmt *Op;
2525
2526  void CheckCastConsistency() const;
2527
2528  const CXXBaseSpecifier * const *path_buffer() const {
2529    return const_cast<CastExpr*>(this)->path_buffer();
2530  }
2531  CXXBaseSpecifier **path_buffer();
2532
2533  void setBasePathSize(unsigned basePathSize) {
2534    CastExprBits.BasePathSize = basePathSize;
2535    assert(CastExprBits.BasePathSize == basePathSize &&
2536           "basePathSize doesn't fit in bits of CastExprBits.BasePathSize!");
2537  }
2538
2539protected:
2540  CastExpr(StmtClass SC, QualType ty, ExprValueKind VK,
2541           const CastKind kind, Expr *op, unsigned BasePathSize) :
2542    Expr(SC, ty, VK, OK_Ordinary,
2543         // Cast expressions are type-dependent if the type is
2544         // dependent (C++ [temp.dep.expr]p3).
2545         ty->isDependentType(),
2546         // Cast expressions are value-dependent if the type is
2547         // dependent or if the subexpression is value-dependent.
2548         ty->isDependentType() || (op && op->isValueDependent()),
2549         (ty->isInstantiationDependentType() ||
2550          (op && op->isInstantiationDependent())),
2551         (ty->containsUnexpandedParameterPack() ||
2552          op->containsUnexpandedParameterPack())),
2553    Op(op) {
2554    assert(kind != CK_Invalid && "creating cast with invalid cast kind");
2555    CastExprBits.Kind = kind;
2556    setBasePathSize(BasePathSize);
2557#ifndef NDEBUG
2558    CheckCastConsistency();
2559#endif
2560  }
2561
2562  /// \brief Construct an empty cast.
2563  CastExpr(StmtClass SC, EmptyShell Empty, unsigned BasePathSize)
2564    : Expr(SC, Empty) {
2565    setBasePathSize(BasePathSize);
2566  }
2567
2568public:
2569  CastKind getCastKind() const { return (CastKind) CastExprBits.Kind; }
2570  void setCastKind(CastKind K) { CastExprBits.Kind = K; }
2571  const char *getCastKindName() const;
2572
2573  Expr *getSubExpr() { return cast<Expr>(Op); }
2574  const Expr *getSubExpr() const { return cast<Expr>(Op); }
2575  void setSubExpr(Expr *E) { Op = E; }
2576
2577  /// \brief Retrieve the cast subexpression as it was written in the source
2578  /// code, looking through any implicit casts or other intermediate nodes
2579  /// introduced by semantic analysis.
2580  Expr *getSubExprAsWritten();
2581  const Expr *getSubExprAsWritten() const {
2582    return const_cast<CastExpr *>(this)->getSubExprAsWritten();
2583  }
2584
2585  typedef CXXBaseSpecifier **path_iterator;
2586  typedef const CXXBaseSpecifier * const *path_const_iterator;
2587  bool path_empty() const { return CastExprBits.BasePathSize == 0; }
2588  unsigned path_size() const { return CastExprBits.BasePathSize; }
2589  path_iterator path_begin() { return path_buffer(); }
2590  path_iterator path_end() { return path_buffer() + path_size(); }
2591  path_const_iterator path_begin() const { return path_buffer(); }
2592  path_const_iterator path_end() const { return path_buffer() + path_size(); }
2593
2594  void setCastPath(const CXXCastPath &Path);
2595
2596  static bool classof(const Stmt *T) {
2597    return T->getStmtClass() >= firstCastExprConstant &&
2598           T->getStmtClass() <= lastCastExprConstant;
2599  }
2600  static bool classof(const CastExpr *) { return true; }
2601
2602  // Iterators
2603  child_range children() { return child_range(&Op, &Op+1); }
2604};
2605
2606/// ImplicitCastExpr - Allows us to explicitly represent implicit type
2607/// conversions, which have no direct representation in the original
2608/// source code. For example: converting T[]->T*, void f()->void
2609/// (*f)(), float->double, short->int, etc.
2610///
2611/// In C, implicit casts always produce rvalues. However, in C++, an
2612/// implicit cast whose result is being bound to a reference will be
2613/// an lvalue or xvalue. For example:
2614///
2615/// @code
2616/// class Base { };
2617/// class Derived : public Base { };
2618/// Derived &&ref();
2619/// void f(Derived d) {
2620///   Base& b = d; // initializer is an ImplicitCastExpr
2621///                // to an lvalue of type Base
2622///   Base&& r = ref(); // initializer is an ImplicitCastExpr
2623///                     // to an xvalue of type Base
2624/// }
2625/// @endcode
2626class ImplicitCastExpr : public CastExpr {
2627private:
2628  ImplicitCastExpr(QualType ty, CastKind kind, Expr *op,
2629                   unsigned BasePathLength, ExprValueKind VK)
2630    : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, BasePathLength) {
2631  }
2632
2633  /// \brief Construct an empty implicit cast.
2634  explicit ImplicitCastExpr(EmptyShell Shell, unsigned PathSize)
2635    : CastExpr(ImplicitCastExprClass, Shell, PathSize) { }
2636
2637public:
2638  enum OnStack_t { OnStack };
2639  ImplicitCastExpr(OnStack_t _, QualType ty, CastKind kind, Expr *op,
2640                   ExprValueKind VK)
2641    : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, 0) {
2642  }
2643
2644  static ImplicitCastExpr *Create(ASTContext &Context, QualType T,
2645                                  CastKind Kind, Expr *Operand,
2646                                  const CXXCastPath *BasePath,
2647                                  ExprValueKind Cat);
2648
2649  static ImplicitCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize);
2650
2651  SourceRange getSourceRange() const LLVM_READONLY {
2652    return getSubExpr()->getSourceRange();
2653  }
2654  SourceLocation getLocStart() const LLVM_READONLY {
2655    return getSubExpr()->getLocStart();
2656  }
2657  SourceLocation getLocEnd() const LLVM_READONLY {
2658    return getSubExpr()->getLocEnd();
2659  }
2660
2661  static bool classof(const Stmt *T) {
2662    return T->getStmtClass() == ImplicitCastExprClass;
2663  }
2664  static bool classof(const ImplicitCastExpr *) { return true; }
2665};
2666
2667inline Expr *Expr::IgnoreImpCasts() {
2668  Expr *e = this;
2669  while (ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
2670    e = ice->getSubExpr();
2671  return e;
2672}
2673
2674/// ExplicitCastExpr - An explicit cast written in the source
2675/// code.
2676///
2677/// This class is effectively an abstract class, because it provides
2678/// the basic representation of an explicitly-written cast without
2679/// specifying which kind of cast (C cast, functional cast, static
2680/// cast, etc.) was written; specific derived classes represent the
2681/// particular style of cast and its location information.
2682///
2683/// Unlike implicit casts, explicit cast nodes have two different
2684/// types: the type that was written into the source code, and the
2685/// actual type of the expression as determined by semantic
2686/// analysis. These types may differ slightly. For example, in C++ one
2687/// can cast to a reference type, which indicates that the resulting
2688/// expression will be an lvalue or xvalue. The reference type, however,
2689/// will not be used as the type of the expression.
2690class ExplicitCastExpr : public CastExpr {
2691  /// TInfo - Source type info for the (written) type
2692  /// this expression is casting to.
2693  TypeSourceInfo *TInfo;
2694
2695protected:
2696  ExplicitCastExpr(StmtClass SC, QualType exprTy, ExprValueKind VK,
2697                   CastKind kind, Expr *op, unsigned PathSize,
2698                   TypeSourceInfo *writtenTy)
2699    : CastExpr(SC, exprTy, VK, kind, op, PathSize), TInfo(writtenTy) {}
2700
2701  /// \brief Construct an empty explicit cast.
2702  ExplicitCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
2703    : CastExpr(SC, Shell, PathSize) { }
2704
2705public:
2706  /// getTypeInfoAsWritten - Returns the type source info for the type
2707  /// that this expression is casting to.
2708  TypeSourceInfo *getTypeInfoAsWritten() const { return TInfo; }
2709  void setTypeInfoAsWritten(TypeSourceInfo *writtenTy) { TInfo = writtenTy; }
2710
2711  /// getTypeAsWritten - Returns the type that this expression is
2712  /// casting to, as written in the source code.
2713  QualType getTypeAsWritten() const { return TInfo->getType(); }
2714
2715  static bool classof(const Stmt *T) {
2716     return T->getStmtClass() >= firstExplicitCastExprConstant &&
2717            T->getStmtClass() <= lastExplicitCastExprConstant;
2718  }
2719  static bool classof(const ExplicitCastExpr *) { return true; }
2720};
2721
2722/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
2723/// cast in C++ (C++ [expr.cast]), which uses the syntax
2724/// (Type)expr. For example: @c (int)f.
2725class CStyleCastExpr : public ExplicitCastExpr {
2726  SourceLocation LPLoc; // the location of the left paren
2727  SourceLocation RPLoc; // the location of the right paren
2728
2729  CStyleCastExpr(QualType exprTy, ExprValueKind vk, CastKind kind, Expr *op,
2730                 unsigned PathSize, TypeSourceInfo *writtenTy,
2731                 SourceLocation l, SourceLocation r)
2732    : ExplicitCastExpr(CStyleCastExprClass, exprTy, vk, kind, op, PathSize,
2733                       writtenTy), LPLoc(l), RPLoc(r) {}
2734
2735  /// \brief Construct an empty C-style explicit cast.
2736  explicit CStyleCastExpr(EmptyShell Shell, unsigned PathSize)
2737    : ExplicitCastExpr(CStyleCastExprClass, Shell, PathSize) { }
2738
2739public:
2740  static CStyleCastExpr *Create(ASTContext &Context, QualType T,
2741                                ExprValueKind VK, CastKind K,
2742                                Expr *Op, const CXXCastPath *BasePath,
2743                                TypeSourceInfo *WrittenTy, SourceLocation L,
2744                                SourceLocation R);
2745
2746  static CStyleCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize);
2747
2748  SourceLocation getLParenLoc() const { return LPLoc; }
2749  void setLParenLoc(SourceLocation L) { LPLoc = L; }
2750
2751  SourceLocation getRParenLoc() const { return RPLoc; }
2752  void setRParenLoc(SourceLocation L) { RPLoc = L; }
2753
2754  SourceRange getSourceRange() const LLVM_READONLY {
2755    return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd());
2756  }
2757  static bool classof(const Stmt *T) {
2758    return T->getStmtClass() == CStyleCastExprClass;
2759  }
2760  static bool classof(const CStyleCastExpr *) { return true; }
2761};
2762
2763/// \brief A builtin binary operation expression such as "x + y" or "x <= y".
2764///
2765/// This expression node kind describes a builtin binary operation,
2766/// such as "x + y" for integer values "x" and "y". The operands will
2767/// already have been converted to appropriate types (e.g., by
2768/// performing promotions or conversions).
2769///
2770/// In C++, where operators may be overloaded, a different kind of
2771/// expression node (CXXOperatorCallExpr) is used to express the
2772/// invocation of an overloaded operator with operator syntax. Within
2773/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
2774/// used to store an expression "x + y" depends on the subexpressions
2775/// for x and y. If neither x or y is type-dependent, and the "+"
2776/// operator resolves to a built-in operation, BinaryOperator will be
2777/// used to express the computation (x and y may still be
2778/// value-dependent). If either x or y is type-dependent, or if the
2779/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
2780/// be used to express the computation.
2781class BinaryOperator : public Expr {
2782public:
2783  typedef BinaryOperatorKind Opcode;
2784
2785private:
2786  unsigned Opc : 6;
2787  SourceLocation OpLoc;
2788
2789  enum { LHS, RHS, END_EXPR };
2790  Stmt* SubExprs[END_EXPR];
2791public:
2792
2793  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2794                 ExprValueKind VK, ExprObjectKind OK,
2795                 SourceLocation opLoc)
2796    : Expr(BinaryOperatorClass, ResTy, VK, OK,
2797           lhs->isTypeDependent() || rhs->isTypeDependent(),
2798           lhs->isValueDependent() || rhs->isValueDependent(),
2799           (lhs->isInstantiationDependent() ||
2800            rhs->isInstantiationDependent()),
2801           (lhs->containsUnexpandedParameterPack() ||
2802            rhs->containsUnexpandedParameterPack())),
2803      Opc(opc), OpLoc(opLoc) {
2804    SubExprs[LHS] = lhs;
2805    SubExprs[RHS] = rhs;
2806    assert(!isCompoundAssignmentOp() &&
2807           "Use ArithAssignBinaryOperator for compound assignments");
2808  }
2809
2810  /// \brief Construct an empty binary operator.
2811  explicit BinaryOperator(EmptyShell Empty)
2812    : Expr(BinaryOperatorClass, Empty), Opc(BO_Comma) { }
2813
2814  SourceLocation getExprLoc() const LLVM_READONLY { return OpLoc; }
2815  SourceLocation getOperatorLoc() const { return OpLoc; }
2816  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
2817
2818  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
2819  void setOpcode(Opcode O) { Opc = O; }
2820
2821  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2822  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2823  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2824  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2825
2826  SourceRange getSourceRange() const LLVM_READONLY {
2827    return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
2828  }
2829
2830  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
2831  /// corresponds to, e.g. "<<=".
2832  static const char *getOpcodeStr(Opcode Op);
2833
2834  const char *getOpcodeStr() const { return getOpcodeStr(getOpcode()); }
2835
2836  /// \brief Retrieve the binary opcode that corresponds to the given
2837  /// overloaded operator.
2838  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
2839
2840  /// \brief Retrieve the overloaded operator kind that corresponds to
2841  /// the given binary opcode.
2842  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
2843
2844  /// predicates to categorize the respective opcodes.
2845  bool isPtrMemOp() const { return Opc == BO_PtrMemD || Opc == BO_PtrMemI; }
2846  bool isMultiplicativeOp() const { return Opc >= BO_Mul && Opc <= BO_Rem; }
2847  static bool isAdditiveOp(Opcode Opc) { return Opc == BO_Add || Opc==BO_Sub; }
2848  bool isAdditiveOp() const { return isAdditiveOp(getOpcode()); }
2849  static bool isShiftOp(Opcode Opc) { return Opc == BO_Shl || Opc == BO_Shr; }
2850  bool isShiftOp() const { return isShiftOp(getOpcode()); }
2851
2852  static bool isBitwiseOp(Opcode Opc) { return Opc >= BO_And && Opc <= BO_Or; }
2853  bool isBitwiseOp() const { return isBitwiseOp(getOpcode()); }
2854
2855  static bool isRelationalOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_GE; }
2856  bool isRelationalOp() const { return isRelationalOp(getOpcode()); }
2857
2858  static bool isEqualityOp(Opcode Opc) { return Opc == BO_EQ || Opc == BO_NE; }
2859  bool isEqualityOp() const { return isEqualityOp(getOpcode()); }
2860
2861  static bool isComparisonOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_NE; }
2862  bool isComparisonOp() const { return isComparisonOp(getOpcode()); }
2863
2864  static bool isLogicalOp(Opcode Opc) { return Opc == BO_LAnd || Opc==BO_LOr; }
2865  bool isLogicalOp() const { return isLogicalOp(getOpcode()); }
2866
2867  static bool isAssignmentOp(Opcode Opc) {
2868    return Opc >= BO_Assign && Opc <= BO_OrAssign;
2869  }
2870  bool isAssignmentOp() const { return isAssignmentOp(getOpcode()); }
2871
2872  static bool isCompoundAssignmentOp(Opcode Opc) {
2873    return Opc > BO_Assign && Opc <= BO_OrAssign;
2874  }
2875  bool isCompoundAssignmentOp() const {
2876    return isCompoundAssignmentOp(getOpcode());
2877  }
2878  static Opcode getOpForCompoundAssignment(Opcode Opc) {
2879    assert(isCompoundAssignmentOp(Opc));
2880    if (Opc >= BO_AndAssign)
2881      return Opcode(unsigned(Opc) - BO_AndAssign + BO_And);
2882    else
2883      return Opcode(unsigned(Opc) - BO_MulAssign + BO_Mul);
2884  }
2885
2886  static bool isShiftAssignOp(Opcode Opc) {
2887    return Opc == BO_ShlAssign || Opc == BO_ShrAssign;
2888  }
2889  bool isShiftAssignOp() const {
2890    return isShiftAssignOp(getOpcode());
2891  }
2892
2893  static bool classof(const Stmt *S) {
2894    return S->getStmtClass() >= firstBinaryOperatorConstant &&
2895           S->getStmtClass() <= lastBinaryOperatorConstant;
2896  }
2897  static bool classof(const BinaryOperator *) { return true; }
2898
2899  // Iterators
2900  child_range children() {
2901    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
2902  }
2903
2904protected:
2905  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2906                 ExprValueKind VK, ExprObjectKind OK,
2907                 SourceLocation opLoc, bool dead)
2908    : Expr(CompoundAssignOperatorClass, ResTy, VK, OK,
2909           lhs->isTypeDependent() || rhs->isTypeDependent(),
2910           lhs->isValueDependent() || rhs->isValueDependent(),
2911           (lhs->isInstantiationDependent() ||
2912            rhs->isInstantiationDependent()),
2913           (lhs->containsUnexpandedParameterPack() ||
2914            rhs->containsUnexpandedParameterPack())),
2915      Opc(opc), OpLoc(opLoc) {
2916    SubExprs[LHS] = lhs;
2917    SubExprs[RHS] = rhs;
2918  }
2919
2920  BinaryOperator(StmtClass SC, EmptyShell Empty)
2921    : Expr(SC, Empty), Opc(BO_MulAssign) { }
2922};
2923
2924/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
2925/// track of the type the operation is performed in.  Due to the semantics of
2926/// these operators, the operands are promoted, the arithmetic performed, an
2927/// implicit conversion back to the result type done, then the assignment takes
2928/// place.  This captures the intermediate type which the computation is done
2929/// in.
2930class CompoundAssignOperator : public BinaryOperator {
2931  QualType ComputationLHSType;
2932  QualType ComputationResultType;
2933public:
2934  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResType,
2935                         ExprValueKind VK, ExprObjectKind OK,
2936                         QualType CompLHSType, QualType CompResultType,
2937                         SourceLocation OpLoc)
2938    : BinaryOperator(lhs, rhs, opc, ResType, VK, OK, OpLoc, true),
2939      ComputationLHSType(CompLHSType),
2940      ComputationResultType(CompResultType) {
2941    assert(isCompoundAssignmentOp() &&
2942           "Only should be used for compound assignments");
2943  }
2944
2945  /// \brief Build an empty compound assignment operator expression.
2946  explicit CompoundAssignOperator(EmptyShell Empty)
2947    : BinaryOperator(CompoundAssignOperatorClass, Empty) { }
2948
2949  // The two computation types are the type the LHS is converted
2950  // to for the computation and the type of the result; the two are
2951  // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
2952  QualType getComputationLHSType() const { return ComputationLHSType; }
2953  void setComputationLHSType(QualType T) { ComputationLHSType = T; }
2954
2955  QualType getComputationResultType() const { return ComputationResultType; }
2956  void setComputationResultType(QualType T) { ComputationResultType = T; }
2957
2958  static bool classof(const CompoundAssignOperator *) { return true; }
2959  static bool classof(const Stmt *S) {
2960    return S->getStmtClass() == CompoundAssignOperatorClass;
2961  }
2962};
2963
2964/// AbstractConditionalOperator - An abstract base class for
2965/// ConditionalOperator and BinaryConditionalOperator.
2966class AbstractConditionalOperator : public Expr {
2967  SourceLocation QuestionLoc, ColonLoc;
2968  friend class ASTStmtReader;
2969
2970protected:
2971  AbstractConditionalOperator(StmtClass SC, QualType T,
2972                              ExprValueKind VK, ExprObjectKind OK,
2973                              bool TD, bool VD, bool ID,
2974                              bool ContainsUnexpandedParameterPack,
2975                              SourceLocation qloc,
2976                              SourceLocation cloc)
2977    : Expr(SC, T, VK, OK, TD, VD, ID, ContainsUnexpandedParameterPack),
2978      QuestionLoc(qloc), ColonLoc(cloc) {}
2979
2980  AbstractConditionalOperator(StmtClass SC, EmptyShell Empty)
2981    : Expr(SC, Empty) { }
2982
2983public:
2984  // getCond - Return the expression representing the condition for
2985  //   the ?: operator.
2986  Expr *getCond() const;
2987
2988  // getTrueExpr - Return the subexpression representing the value of
2989  //   the expression if the condition evaluates to true.
2990  Expr *getTrueExpr() const;
2991
2992  // getFalseExpr - Return the subexpression representing the value of
2993  //   the expression if the condition evaluates to false.  This is
2994  //   the same as getRHS.
2995  Expr *getFalseExpr() const;
2996
2997  SourceLocation getQuestionLoc() const { return QuestionLoc; }
2998  SourceLocation getColonLoc() const { return ColonLoc; }
2999
3000  static bool classof(const Stmt *T) {
3001    return T->getStmtClass() == ConditionalOperatorClass ||
3002           T->getStmtClass() == BinaryConditionalOperatorClass;
3003  }
3004  static bool classof(const AbstractConditionalOperator *) { return true; }
3005};
3006
3007/// ConditionalOperator - The ?: ternary operator.  The GNU "missing
3008/// middle" extension is a BinaryConditionalOperator.
3009class ConditionalOperator : public AbstractConditionalOperator {
3010  enum { COND, LHS, RHS, END_EXPR };
3011  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
3012
3013  friend class ASTStmtReader;
3014public:
3015  ConditionalOperator(Expr *cond, SourceLocation QLoc, Expr *lhs,
3016                      SourceLocation CLoc, Expr *rhs,
3017                      QualType t, ExprValueKind VK, ExprObjectKind OK)
3018    : AbstractConditionalOperator(ConditionalOperatorClass, t, VK, OK,
3019           // FIXME: the type of the conditional operator doesn't
3020           // depend on the type of the conditional, but the standard
3021           // seems to imply that it could. File a bug!
3022           (lhs->isTypeDependent() || rhs->isTypeDependent()),
3023           (cond->isValueDependent() || lhs->isValueDependent() ||
3024            rhs->isValueDependent()),
3025           (cond->isInstantiationDependent() ||
3026            lhs->isInstantiationDependent() ||
3027            rhs->isInstantiationDependent()),
3028           (cond->containsUnexpandedParameterPack() ||
3029            lhs->containsUnexpandedParameterPack() ||
3030            rhs->containsUnexpandedParameterPack()),
3031                                  QLoc, CLoc) {
3032    SubExprs[COND] = cond;
3033    SubExprs[LHS] = lhs;
3034    SubExprs[RHS] = rhs;
3035  }
3036
3037  /// \brief Build an empty conditional operator.
3038  explicit ConditionalOperator(EmptyShell Empty)
3039    : AbstractConditionalOperator(ConditionalOperatorClass, Empty) { }
3040
3041  // getCond - Return the expression representing the condition for
3042  //   the ?: operator.
3043  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3044
3045  // getTrueExpr - Return the subexpression representing the value of
3046  //   the expression if the condition evaluates to true.
3047  Expr *getTrueExpr() const { return cast<Expr>(SubExprs[LHS]); }
3048
3049  // getFalseExpr - Return the subexpression representing the value of
3050  //   the expression if the condition evaluates to false.  This is
3051  //   the same as getRHS.
3052  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
3053
3054  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
3055  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
3056
3057  SourceRange getSourceRange() const LLVM_READONLY {
3058    return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
3059  }
3060  static bool classof(const Stmt *T) {
3061    return T->getStmtClass() == ConditionalOperatorClass;
3062  }
3063  static bool classof(const ConditionalOperator *) { return true; }
3064
3065  // Iterators
3066  child_range children() {
3067    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
3068  }
3069};
3070
3071/// BinaryConditionalOperator - The GNU extension to the conditional
3072/// operator which allows the middle operand to be omitted.
3073///
3074/// This is a different expression kind on the assumption that almost
3075/// every client ends up needing to know that these are different.
3076class BinaryConditionalOperator : public AbstractConditionalOperator {
3077  enum { COMMON, COND, LHS, RHS, NUM_SUBEXPRS };
3078
3079  /// - the common condition/left-hand-side expression, which will be
3080  ///   evaluated as the opaque value
3081  /// - the condition, expressed in terms of the opaque value
3082  /// - the left-hand-side, expressed in terms of the opaque value
3083  /// - the right-hand-side
3084  Stmt *SubExprs[NUM_SUBEXPRS];
3085  OpaqueValueExpr *OpaqueValue;
3086
3087  friend class ASTStmtReader;
3088public:
3089  BinaryConditionalOperator(Expr *common, OpaqueValueExpr *opaqueValue,
3090                            Expr *cond, Expr *lhs, Expr *rhs,
3091                            SourceLocation qloc, SourceLocation cloc,
3092                            QualType t, ExprValueKind VK, ExprObjectKind OK)
3093    : AbstractConditionalOperator(BinaryConditionalOperatorClass, t, VK, OK,
3094           (common->isTypeDependent() || rhs->isTypeDependent()),
3095           (common->isValueDependent() || rhs->isValueDependent()),
3096           (common->isInstantiationDependent() ||
3097            rhs->isInstantiationDependent()),
3098           (common->containsUnexpandedParameterPack() ||
3099            rhs->containsUnexpandedParameterPack()),
3100                                  qloc, cloc),
3101      OpaqueValue(opaqueValue) {
3102    SubExprs[COMMON] = common;
3103    SubExprs[COND] = cond;
3104    SubExprs[LHS] = lhs;
3105    SubExprs[RHS] = rhs;
3106    assert(OpaqueValue->getSourceExpr() == common && "Wrong opaque value");
3107  }
3108
3109  /// \brief Build an empty conditional operator.
3110  explicit BinaryConditionalOperator(EmptyShell Empty)
3111    : AbstractConditionalOperator(BinaryConditionalOperatorClass, Empty) { }
3112
3113  /// \brief getCommon - Return the common expression, written to the
3114  ///   left of the condition.  The opaque value will be bound to the
3115  ///   result of this expression.
3116  Expr *getCommon() const { return cast<Expr>(SubExprs[COMMON]); }
3117
3118  /// \brief getOpaqueValue - Return the opaque value placeholder.
3119  OpaqueValueExpr *getOpaqueValue() const { return OpaqueValue; }
3120
3121  /// \brief getCond - Return the condition expression; this is defined
3122  ///   in terms of the opaque value.
3123  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3124
3125  /// \brief getTrueExpr - Return the subexpression which will be
3126  ///   evaluated if the condition evaluates to true;  this is defined
3127  ///   in terms of the opaque value.
3128  Expr *getTrueExpr() const {
3129    return cast<Expr>(SubExprs[LHS]);
3130  }
3131
3132  /// \brief getFalseExpr - Return the subexpression which will be
3133  ///   evaluated if the condnition evaluates to false; this is
3134  ///   defined in terms of the opaque value.
3135  Expr *getFalseExpr() const {
3136    return cast<Expr>(SubExprs[RHS]);
3137  }
3138
3139  SourceRange getSourceRange() const LLVM_READONLY {
3140    return SourceRange(getCommon()->getLocStart(), getFalseExpr()->getLocEnd());
3141  }
3142  static bool classof(const Stmt *T) {
3143    return T->getStmtClass() == BinaryConditionalOperatorClass;
3144  }
3145  static bool classof(const BinaryConditionalOperator *) { return true; }
3146
3147  // Iterators
3148  child_range children() {
3149    return child_range(SubExprs, SubExprs + NUM_SUBEXPRS);
3150  }
3151};
3152
3153inline Expr *AbstractConditionalOperator::getCond() const {
3154  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3155    return co->getCond();
3156  return cast<BinaryConditionalOperator>(this)->getCond();
3157}
3158
3159inline Expr *AbstractConditionalOperator::getTrueExpr() const {
3160  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3161    return co->getTrueExpr();
3162  return cast<BinaryConditionalOperator>(this)->getTrueExpr();
3163}
3164
3165inline Expr *AbstractConditionalOperator::getFalseExpr() const {
3166  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3167    return co->getFalseExpr();
3168  return cast<BinaryConditionalOperator>(this)->getFalseExpr();
3169}
3170
3171/// AddrLabelExpr - The GNU address of label extension, representing &&label.
3172class AddrLabelExpr : public Expr {
3173  SourceLocation AmpAmpLoc, LabelLoc;
3174  LabelDecl *Label;
3175public:
3176  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelDecl *L,
3177                QualType t)
3178    : Expr(AddrLabelExprClass, t, VK_RValue, OK_Ordinary, false, false, false,
3179           false),
3180      AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
3181
3182  /// \brief Build an empty address of a label expression.
3183  explicit AddrLabelExpr(EmptyShell Empty)
3184    : Expr(AddrLabelExprClass, Empty) { }
3185
3186  SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
3187  void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
3188  SourceLocation getLabelLoc() const { return LabelLoc; }
3189  void setLabelLoc(SourceLocation L) { LabelLoc = L; }
3190
3191  SourceRange getSourceRange() const LLVM_READONLY {
3192    return SourceRange(AmpAmpLoc, LabelLoc);
3193  }
3194
3195  LabelDecl *getLabel() const { return Label; }
3196  void setLabel(LabelDecl *L) { Label = L; }
3197
3198  static bool classof(const Stmt *T) {
3199    return T->getStmtClass() == AddrLabelExprClass;
3200  }
3201  static bool classof(const AddrLabelExpr *) { return true; }
3202
3203  // Iterators
3204  child_range children() { return child_range(); }
3205};
3206
3207/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
3208/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
3209/// takes the value of the last subexpression.
3210///
3211/// A StmtExpr is always an r-value; values "returned" out of a
3212/// StmtExpr will be copied.
3213class StmtExpr : public Expr {
3214  Stmt *SubStmt;
3215  SourceLocation LParenLoc, RParenLoc;
3216public:
3217  // FIXME: Does type-dependence need to be computed differently?
3218  // FIXME: Do we need to compute instantiation instantiation-dependence for
3219  // statements? (ugh!)
3220  StmtExpr(CompoundStmt *substmt, QualType T,
3221           SourceLocation lp, SourceLocation rp) :
3222    Expr(StmtExprClass, T, VK_RValue, OK_Ordinary,
3223         T->isDependentType(), false, false, false),
3224    SubStmt(substmt), LParenLoc(lp), RParenLoc(rp) { }
3225
3226  /// \brief Build an empty statement expression.
3227  explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
3228
3229  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
3230  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
3231  void setSubStmt(CompoundStmt *S) { SubStmt = S; }
3232
3233  SourceRange getSourceRange() const LLVM_READONLY {
3234    return SourceRange(LParenLoc, RParenLoc);
3235  }
3236
3237  SourceLocation getLParenLoc() const { return LParenLoc; }
3238  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
3239  SourceLocation getRParenLoc() const { return RParenLoc; }
3240  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3241
3242  static bool classof(const Stmt *T) {
3243    return T->getStmtClass() == StmtExprClass;
3244  }
3245  static bool classof(const StmtExpr *) { return true; }
3246
3247  // Iterators
3248  child_range children() { return child_range(&SubStmt, &SubStmt+1); }
3249};
3250
3251
3252/// ShuffleVectorExpr - clang-specific builtin-in function
3253/// __builtin_shufflevector.
3254/// This AST node represents a operator that does a constant
3255/// shuffle, similar to LLVM's shufflevector instruction. It takes
3256/// two vectors and a variable number of constant indices,
3257/// and returns the appropriately shuffled vector.
3258class ShuffleVectorExpr : public Expr {
3259  SourceLocation BuiltinLoc, RParenLoc;
3260
3261  // SubExprs - the list of values passed to the __builtin_shufflevector
3262  // function. The first two are vectors, and the rest are constant
3263  // indices.  The number of values in this list is always
3264  // 2+the number of indices in the vector type.
3265  Stmt **SubExprs;
3266  unsigned NumExprs;
3267
3268public:
3269  ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr,
3270                    QualType Type, SourceLocation BLoc,
3271                    SourceLocation RP);
3272
3273  /// \brief Build an empty vector-shuffle expression.
3274  explicit ShuffleVectorExpr(EmptyShell Empty)
3275    : Expr(ShuffleVectorExprClass, Empty), SubExprs(0) { }
3276
3277  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3278  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3279
3280  SourceLocation getRParenLoc() const { return RParenLoc; }
3281  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3282
3283  SourceRange getSourceRange() const LLVM_READONLY {
3284    return SourceRange(BuiltinLoc, RParenLoc);
3285  }
3286  static bool classof(const Stmt *T) {
3287    return T->getStmtClass() == ShuffleVectorExprClass;
3288  }
3289  static bool classof(const ShuffleVectorExpr *) { return true; }
3290
3291  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
3292  /// constant expression, the actual arguments passed in, and the function
3293  /// pointers.
3294  unsigned getNumSubExprs() const { return NumExprs; }
3295
3296  /// \brief Retrieve the array of expressions.
3297  Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
3298
3299  /// getExpr - Return the Expr at the specified index.
3300  Expr *getExpr(unsigned Index) {
3301    assert((Index < NumExprs) && "Arg access out of range!");
3302    return cast<Expr>(SubExprs[Index]);
3303  }
3304  const Expr *getExpr(unsigned Index) const {
3305    assert((Index < NumExprs) && "Arg access out of range!");
3306    return cast<Expr>(SubExprs[Index]);
3307  }
3308
3309  void setExprs(ASTContext &C, Expr ** Exprs, unsigned NumExprs);
3310
3311  unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) {
3312    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
3313    return getExpr(N+2)->EvaluateKnownConstInt(Ctx).getZExtValue();
3314  }
3315
3316  // Iterators
3317  child_range children() {
3318    return child_range(&SubExprs[0], &SubExprs[0]+NumExprs);
3319  }
3320};
3321
3322/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
3323/// This AST node is similar to the conditional operator (?:) in C, with
3324/// the following exceptions:
3325/// - the test expression must be a integer constant expression.
3326/// - the expression returned acts like the chosen subexpression in every
3327///   visible way: the type is the same as that of the chosen subexpression,
3328///   and all predicates (whether it's an l-value, whether it's an integer
3329///   constant expression, etc.) return the same result as for the chosen
3330///   sub-expression.
3331class ChooseExpr : public Expr {
3332  enum { COND, LHS, RHS, END_EXPR };
3333  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
3334  SourceLocation BuiltinLoc, RParenLoc;
3335public:
3336  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs,
3337             QualType t, ExprValueKind VK, ExprObjectKind OK,
3338             SourceLocation RP, bool TypeDependent, bool ValueDependent)
3339    : Expr(ChooseExprClass, t, VK, OK, TypeDependent, ValueDependent,
3340           (cond->isInstantiationDependent() ||
3341            lhs->isInstantiationDependent() ||
3342            rhs->isInstantiationDependent()),
3343           (cond->containsUnexpandedParameterPack() ||
3344            lhs->containsUnexpandedParameterPack() ||
3345            rhs->containsUnexpandedParameterPack())),
3346      BuiltinLoc(BLoc), RParenLoc(RP) {
3347      SubExprs[COND] = cond;
3348      SubExprs[LHS] = lhs;
3349      SubExprs[RHS] = rhs;
3350    }
3351
3352  /// \brief Build an empty __builtin_choose_expr.
3353  explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
3354
3355  /// isConditionTrue - Return whether the condition is true (i.e. not
3356  /// equal to zero).
3357  bool isConditionTrue(const ASTContext &C) const;
3358
3359  /// getChosenSubExpr - Return the subexpression chosen according to the
3360  /// condition.
3361  Expr *getChosenSubExpr(const ASTContext &C) const {
3362    return isConditionTrue(C) ? getLHS() : getRHS();
3363  }
3364
3365  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3366  void setCond(Expr *E) { SubExprs[COND] = E; }
3367  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
3368  void setLHS(Expr *E) { SubExprs[LHS] = E; }
3369  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
3370  void setRHS(Expr *E) { SubExprs[RHS] = E; }
3371
3372  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3373  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3374
3375  SourceLocation getRParenLoc() const { return RParenLoc; }
3376  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3377
3378  SourceRange getSourceRange() const LLVM_READONLY {
3379    return SourceRange(BuiltinLoc, RParenLoc);
3380  }
3381  static bool classof(const Stmt *T) {
3382    return T->getStmtClass() == ChooseExprClass;
3383  }
3384  static bool classof(const ChooseExpr *) { return true; }
3385
3386  // Iterators
3387  child_range children() {
3388    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
3389  }
3390};
3391
3392/// GNUNullExpr - Implements the GNU __null extension, which is a name
3393/// for a null pointer constant that has integral type (e.g., int or
3394/// long) and is the same size and alignment as a pointer. The __null
3395/// extension is typically only used by system headers, which define
3396/// NULL as __null in C++ rather than using 0 (which is an integer
3397/// that may not match the size of a pointer).
3398class GNUNullExpr : public Expr {
3399  /// TokenLoc - The location of the __null keyword.
3400  SourceLocation TokenLoc;
3401
3402public:
3403  GNUNullExpr(QualType Ty, SourceLocation Loc)
3404    : Expr(GNUNullExprClass, Ty, VK_RValue, OK_Ordinary, false, false, false,
3405           false),
3406      TokenLoc(Loc) { }
3407
3408  /// \brief Build an empty GNU __null expression.
3409  explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
3410
3411  /// getTokenLocation - The location of the __null token.
3412  SourceLocation getTokenLocation() const { return TokenLoc; }
3413  void setTokenLocation(SourceLocation L) { TokenLoc = L; }
3414
3415  SourceRange getSourceRange() const LLVM_READONLY {
3416    return SourceRange(TokenLoc);
3417  }
3418  static bool classof(const Stmt *T) {
3419    return T->getStmtClass() == GNUNullExprClass;
3420  }
3421  static bool classof(const GNUNullExpr *) { return true; }
3422
3423  // Iterators
3424  child_range children() { return child_range(); }
3425};
3426
3427/// VAArgExpr, used for the builtin function __builtin_va_arg.
3428class VAArgExpr : public Expr {
3429  Stmt *Val;
3430  TypeSourceInfo *TInfo;
3431  SourceLocation BuiltinLoc, RParenLoc;
3432public:
3433  VAArgExpr(SourceLocation BLoc, Expr* e, TypeSourceInfo *TInfo,
3434            SourceLocation RPLoc, QualType t)
3435    : Expr(VAArgExprClass, t, VK_RValue, OK_Ordinary,
3436           t->isDependentType(), false,
3437           (TInfo->getType()->isInstantiationDependentType() ||
3438            e->isInstantiationDependent()),
3439           (TInfo->getType()->containsUnexpandedParameterPack() ||
3440            e->containsUnexpandedParameterPack())),
3441      Val(e), TInfo(TInfo),
3442      BuiltinLoc(BLoc),
3443      RParenLoc(RPLoc) { }
3444
3445  /// \brief Create an empty __builtin_va_arg expression.
3446  explicit VAArgExpr(EmptyShell Empty) : Expr(VAArgExprClass, Empty) { }
3447
3448  const Expr *getSubExpr() const { return cast<Expr>(Val); }
3449  Expr *getSubExpr() { return cast<Expr>(Val); }
3450  void setSubExpr(Expr *E) { Val = E; }
3451
3452  TypeSourceInfo *getWrittenTypeInfo() const { return TInfo; }
3453  void setWrittenTypeInfo(TypeSourceInfo *TI) { TInfo = TI; }
3454
3455  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3456  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3457
3458  SourceLocation getRParenLoc() const { return RParenLoc; }
3459  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3460
3461  SourceRange getSourceRange() const LLVM_READONLY {
3462    return SourceRange(BuiltinLoc, RParenLoc);
3463  }
3464  static bool classof(const Stmt *T) {
3465    return T->getStmtClass() == VAArgExprClass;
3466  }
3467  static bool classof(const VAArgExpr *) { return true; }
3468
3469  // Iterators
3470  child_range children() { return child_range(&Val, &Val+1); }
3471};
3472
3473/// @brief Describes an C or C++ initializer list.
3474///
3475/// InitListExpr describes an initializer list, which can be used to
3476/// initialize objects of different types, including
3477/// struct/class/union types, arrays, and vectors. For example:
3478///
3479/// @code
3480/// struct foo x = { 1, { 2, 3 } };
3481/// @endcode
3482///
3483/// Prior to semantic analysis, an initializer list will represent the
3484/// initializer list as written by the user, but will have the
3485/// placeholder type "void". This initializer list is called the
3486/// syntactic form of the initializer, and may contain C99 designated
3487/// initializers (represented as DesignatedInitExprs), initializations
3488/// of subobject members without explicit braces, and so on. Clients
3489/// interested in the original syntax of the initializer list should
3490/// use the syntactic form of the initializer list.
3491///
3492/// After semantic analysis, the initializer list will represent the
3493/// semantic form of the initializer, where the initializations of all
3494/// subobjects are made explicit with nested InitListExpr nodes and
3495/// C99 designators have been eliminated by placing the designated
3496/// initializations into the subobject they initialize. Additionally,
3497/// any "holes" in the initialization, where no initializer has been
3498/// specified for a particular subobject, will be replaced with
3499/// implicitly-generated ImplicitValueInitExpr expressions that
3500/// value-initialize the subobjects. Note, however, that the
3501/// initializer lists may still have fewer initializers than there are
3502/// elements to initialize within the object.
3503///
3504/// Given the semantic form of the initializer list, one can retrieve
3505/// the original syntactic form of that initializer list (if it
3506/// exists) using getSyntacticForm(). Since many initializer lists
3507/// have the same syntactic and semantic forms, getSyntacticForm() may
3508/// return NULL, indicating that the current initializer list also
3509/// serves as its syntactic form.
3510class InitListExpr : public Expr {
3511  // FIXME: Eliminate this vector in favor of ASTContext allocation
3512  typedef ASTVector<Stmt *> InitExprsTy;
3513  InitExprsTy InitExprs;
3514  SourceLocation LBraceLoc, RBraceLoc;
3515
3516  /// Contains the initializer list that describes the syntactic form
3517  /// written in the source code.
3518  InitListExpr *SyntacticForm;
3519
3520  /// \brief Either:
3521  ///  If this initializer list initializes an array with more elements than
3522  ///  there are initializers in the list, specifies an expression to be used
3523  ///  for value initialization of the rest of the elements.
3524  /// Or
3525  ///  If this initializer list initializes a union, specifies which
3526  ///  field within the union will be initialized.
3527  llvm::PointerUnion<Expr *, FieldDecl *> ArrayFillerOrUnionFieldInit;
3528
3529public:
3530  InitListExpr(ASTContext &C, SourceLocation lbraceloc,
3531               Expr **initexprs, unsigned numinits,
3532               SourceLocation rbraceloc);
3533
3534  /// \brief Build an empty initializer list.
3535  explicit InitListExpr(ASTContext &C, EmptyShell Empty)
3536    : Expr(InitListExprClass, Empty), InitExprs(C) { }
3537
3538  unsigned getNumInits() const { return InitExprs.size(); }
3539
3540  /// \brief Retrieve the set of initializers.
3541  Expr **getInits() { return reinterpret_cast<Expr **>(InitExprs.data()); }
3542
3543  const Expr *getInit(unsigned Init) const {
3544    assert(Init < getNumInits() && "Initializer access out of range!");
3545    return cast_or_null<Expr>(InitExprs[Init]);
3546  }
3547
3548  Expr *getInit(unsigned Init) {
3549    assert(Init < getNumInits() && "Initializer access out of range!");
3550    return cast_or_null<Expr>(InitExprs[Init]);
3551  }
3552
3553  void setInit(unsigned Init, Expr *expr) {
3554    assert(Init < getNumInits() && "Initializer access out of range!");
3555    InitExprs[Init] = expr;
3556  }
3557
3558  /// \brief Reserve space for some number of initializers.
3559  void reserveInits(ASTContext &C, unsigned NumInits);
3560
3561  /// @brief Specify the number of initializers
3562  ///
3563  /// If there are more than @p NumInits initializers, the remaining
3564  /// initializers will be destroyed. If there are fewer than @p
3565  /// NumInits initializers, NULL expressions will be added for the
3566  /// unknown initializers.
3567  void resizeInits(ASTContext &Context, unsigned NumInits);
3568
3569  /// @brief Updates the initializer at index @p Init with the new
3570  /// expression @p expr, and returns the old expression at that
3571  /// location.
3572  ///
3573  /// When @p Init is out of range for this initializer list, the
3574  /// initializer list will be extended with NULL expressions to
3575  /// accommodate the new entry.
3576  Expr *updateInit(ASTContext &C, unsigned Init, Expr *expr);
3577
3578  /// \brief If this initializer list initializes an array with more elements
3579  /// than there are initializers in the list, specifies an expression to be
3580  /// used for value initialization of the rest of the elements.
3581  Expr *getArrayFiller() {
3582    return ArrayFillerOrUnionFieldInit.dyn_cast<Expr *>();
3583  }
3584  const Expr *getArrayFiller() const {
3585    return const_cast<InitListExpr *>(this)->getArrayFiller();
3586  }
3587  void setArrayFiller(Expr *filler);
3588
3589  /// \brief Return true if this is an array initializer and its array "filler"
3590  /// has been set.
3591  bool hasArrayFiller() const { return getArrayFiller(); }
3592
3593  /// \brief If this initializes a union, specifies which field in the
3594  /// union to initialize.
3595  ///
3596  /// Typically, this field is the first named field within the
3597  /// union. However, a designated initializer can specify the
3598  /// initialization of a different field within the union.
3599  FieldDecl *getInitializedFieldInUnion() {
3600    return ArrayFillerOrUnionFieldInit.dyn_cast<FieldDecl *>();
3601  }
3602  const FieldDecl *getInitializedFieldInUnion() const {
3603    return const_cast<InitListExpr *>(this)->getInitializedFieldInUnion();
3604  }
3605  void setInitializedFieldInUnion(FieldDecl *FD) {
3606    ArrayFillerOrUnionFieldInit = FD;
3607  }
3608
3609  // Explicit InitListExpr's originate from source code (and have valid source
3610  // locations). Implicit InitListExpr's are created by the semantic analyzer.
3611  bool isExplicit() {
3612    return LBraceLoc.isValid() && RBraceLoc.isValid();
3613  }
3614
3615  // Is this an initializer for an array of characters, initialized by a string
3616  // literal or an @encode?
3617  bool isStringLiteralInit() const;
3618
3619  SourceLocation getLBraceLoc() const { return LBraceLoc; }
3620  void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
3621  SourceLocation getRBraceLoc() const { return RBraceLoc; }
3622  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
3623
3624  /// @brief Retrieve the initializer list that describes the
3625  /// syntactic form of the initializer.
3626  ///
3627  ///
3628  InitListExpr *getSyntacticForm() const { return SyntacticForm; }
3629  void setSyntacticForm(InitListExpr *Init) { SyntacticForm = Init; }
3630
3631  bool hadArrayRangeDesignator() const {
3632    return InitListExprBits.HadArrayRangeDesignator != 0;
3633  }
3634  void sawArrayRangeDesignator(bool ARD = true) {
3635    InitListExprBits.HadArrayRangeDesignator = ARD;
3636  }
3637
3638  bool initializesStdInitializerList() const {
3639    return InitListExprBits.InitializesStdInitializerList != 0;
3640  }
3641  void setInitializesStdInitializerList(bool ISIL = true) {
3642    InitListExprBits.InitializesStdInitializerList = ISIL;
3643  }
3644
3645  SourceRange getSourceRange() const LLVM_READONLY;
3646
3647  static bool classof(const Stmt *T) {
3648    return T->getStmtClass() == InitListExprClass;
3649  }
3650  static bool classof(const InitListExpr *) { return true; }
3651
3652  // Iterators
3653  child_range children() {
3654    if (InitExprs.empty()) return child_range();
3655    return child_range(&InitExprs[0], &InitExprs[0] + InitExprs.size());
3656  }
3657
3658  typedef InitExprsTy::iterator iterator;
3659  typedef InitExprsTy::const_iterator const_iterator;
3660  typedef InitExprsTy::reverse_iterator reverse_iterator;
3661  typedef InitExprsTy::const_reverse_iterator const_reverse_iterator;
3662
3663  iterator begin() { return InitExprs.begin(); }
3664  const_iterator begin() const { return InitExprs.begin(); }
3665  iterator end() { return InitExprs.end(); }
3666  const_iterator end() const { return InitExprs.end(); }
3667  reverse_iterator rbegin() { return InitExprs.rbegin(); }
3668  const_reverse_iterator rbegin() const { return InitExprs.rbegin(); }
3669  reverse_iterator rend() { return InitExprs.rend(); }
3670  const_reverse_iterator rend() const { return InitExprs.rend(); }
3671
3672  friend class ASTStmtReader;
3673  friend class ASTStmtWriter;
3674};
3675
3676/// @brief Represents a C99 designated initializer expression.
3677///
3678/// A designated initializer expression (C99 6.7.8) contains one or
3679/// more designators (which can be field designators, array
3680/// designators, or GNU array-range designators) followed by an
3681/// expression that initializes the field or element(s) that the
3682/// designators refer to. For example, given:
3683///
3684/// @code
3685/// struct point {
3686///   double x;
3687///   double y;
3688/// };
3689/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
3690/// @endcode
3691///
3692/// The InitListExpr contains three DesignatedInitExprs, the first of
3693/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
3694/// designators, one array designator for @c [2] followed by one field
3695/// designator for @c .y. The initalization expression will be 1.0.
3696class DesignatedInitExpr : public Expr {
3697public:
3698  /// \brief Forward declaration of the Designator class.
3699  class Designator;
3700
3701private:
3702  /// The location of the '=' or ':' prior to the actual initializer
3703  /// expression.
3704  SourceLocation EqualOrColonLoc;
3705
3706  /// Whether this designated initializer used the GNU deprecated
3707  /// syntax rather than the C99 '=' syntax.
3708  bool GNUSyntax : 1;
3709
3710  /// The number of designators in this initializer expression.
3711  unsigned NumDesignators : 15;
3712
3713  /// The number of subexpressions of this initializer expression,
3714  /// which contains both the initializer and any additional
3715  /// expressions used by array and array-range designators.
3716  unsigned NumSubExprs : 16;
3717
3718  /// \brief The designators in this designated initialization
3719  /// expression.
3720  Designator *Designators;
3721
3722
3723  DesignatedInitExpr(ASTContext &C, QualType Ty, unsigned NumDesignators,
3724                     const Designator *Designators,
3725                     SourceLocation EqualOrColonLoc, bool GNUSyntax,
3726                     Expr **IndexExprs, unsigned NumIndexExprs,
3727                     Expr *Init);
3728
3729  explicit DesignatedInitExpr(unsigned NumSubExprs)
3730    : Expr(DesignatedInitExprClass, EmptyShell()),
3731      NumDesignators(0), NumSubExprs(NumSubExprs), Designators(0) { }
3732
3733public:
3734  /// A field designator, e.g., ".x".
3735  struct FieldDesignator {
3736    /// Refers to the field that is being initialized. The low bit
3737    /// of this field determines whether this is actually a pointer
3738    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
3739    /// initially constructed, a field designator will store an
3740    /// IdentifierInfo*. After semantic analysis has resolved that
3741    /// name, the field designator will instead store a FieldDecl*.
3742    uintptr_t NameOrField;
3743
3744    /// The location of the '.' in the designated initializer.
3745    unsigned DotLoc;
3746
3747    /// The location of the field name in the designated initializer.
3748    unsigned FieldLoc;
3749  };
3750
3751  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
3752  struct ArrayOrRangeDesignator {
3753    /// Location of the first index expression within the designated
3754    /// initializer expression's list of subexpressions.
3755    unsigned Index;
3756    /// The location of the '[' starting the array range designator.
3757    unsigned LBracketLoc;
3758    /// The location of the ellipsis separating the start and end
3759    /// indices. Only valid for GNU array-range designators.
3760    unsigned EllipsisLoc;
3761    /// The location of the ']' terminating the array range designator.
3762    unsigned RBracketLoc;
3763  };
3764
3765  /// @brief Represents a single C99 designator.
3766  ///
3767  /// @todo This class is infuriatingly similar to clang::Designator,
3768  /// but minor differences (storing indices vs. storing pointers)
3769  /// keep us from reusing it. Try harder, later, to rectify these
3770  /// differences.
3771  class Designator {
3772    /// @brief The kind of designator this describes.
3773    enum {
3774      FieldDesignator,
3775      ArrayDesignator,
3776      ArrayRangeDesignator
3777    } Kind;
3778
3779    union {
3780      /// A field designator, e.g., ".x".
3781      struct FieldDesignator Field;
3782      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
3783      struct ArrayOrRangeDesignator ArrayOrRange;
3784    };
3785    friend class DesignatedInitExpr;
3786
3787  public:
3788    Designator() {}
3789
3790    /// @brief Initializes a field designator.
3791    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
3792               SourceLocation FieldLoc)
3793      : Kind(FieldDesignator) {
3794      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
3795      Field.DotLoc = DotLoc.getRawEncoding();
3796      Field.FieldLoc = FieldLoc.getRawEncoding();
3797    }
3798
3799    /// @brief Initializes an array designator.
3800    Designator(unsigned Index, SourceLocation LBracketLoc,
3801               SourceLocation RBracketLoc)
3802      : Kind(ArrayDesignator) {
3803      ArrayOrRange.Index = Index;
3804      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3805      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
3806      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3807    }
3808
3809    /// @brief Initializes a GNU array-range designator.
3810    Designator(unsigned Index, SourceLocation LBracketLoc,
3811               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
3812      : Kind(ArrayRangeDesignator) {
3813      ArrayOrRange.Index = Index;
3814      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3815      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
3816      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3817    }
3818
3819    bool isFieldDesignator() const { return Kind == FieldDesignator; }
3820    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
3821    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
3822
3823    IdentifierInfo *getFieldName() const;
3824
3825    FieldDecl *getField() const {
3826      assert(Kind == FieldDesignator && "Only valid on a field designator");
3827      if (Field.NameOrField & 0x01)
3828        return 0;
3829      else
3830        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
3831    }
3832
3833    void setField(FieldDecl *FD) {
3834      assert(Kind == FieldDesignator && "Only valid on a field designator");
3835      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
3836    }
3837
3838    SourceLocation getDotLoc() const {
3839      assert(Kind == FieldDesignator && "Only valid on a field designator");
3840      return SourceLocation::getFromRawEncoding(Field.DotLoc);
3841    }
3842
3843    SourceLocation getFieldLoc() const {
3844      assert(Kind == FieldDesignator && "Only valid on a field designator");
3845      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
3846    }
3847
3848    SourceLocation getLBracketLoc() const {
3849      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3850             "Only valid on an array or array-range designator");
3851      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
3852    }
3853
3854    SourceLocation getRBracketLoc() const {
3855      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3856             "Only valid on an array or array-range designator");
3857      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
3858    }
3859
3860    SourceLocation getEllipsisLoc() const {
3861      assert(Kind == ArrayRangeDesignator &&
3862             "Only valid on an array-range designator");
3863      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
3864    }
3865
3866    unsigned getFirstExprIndex() const {
3867      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3868             "Only valid on an array or array-range designator");
3869      return ArrayOrRange.Index;
3870    }
3871
3872    SourceLocation getStartLocation() const {
3873      if (Kind == FieldDesignator)
3874        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
3875      else
3876        return getLBracketLoc();
3877    }
3878    SourceLocation getEndLocation() const {
3879      return Kind == FieldDesignator ? getFieldLoc() : getRBracketLoc();
3880    }
3881    SourceRange getSourceRange() const LLVM_READONLY {
3882      return SourceRange(getStartLocation(), getEndLocation());
3883    }
3884  };
3885
3886  static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators,
3887                                    unsigned NumDesignators,
3888                                    Expr **IndexExprs, unsigned NumIndexExprs,
3889                                    SourceLocation EqualOrColonLoc,
3890                                    bool GNUSyntax, Expr *Init);
3891
3892  static DesignatedInitExpr *CreateEmpty(ASTContext &C, unsigned NumIndexExprs);
3893
3894  /// @brief Returns the number of designators in this initializer.
3895  unsigned size() const { return NumDesignators; }
3896
3897  // Iterator access to the designators.
3898  typedef Designator *designators_iterator;
3899  designators_iterator designators_begin() { return Designators; }
3900  designators_iterator designators_end() {
3901    return Designators + NumDesignators;
3902  }
3903
3904  typedef const Designator *const_designators_iterator;
3905  const_designators_iterator designators_begin() const { return Designators; }
3906  const_designators_iterator designators_end() const {
3907    return Designators + NumDesignators;
3908  }
3909
3910  typedef std::reverse_iterator<designators_iterator>
3911          reverse_designators_iterator;
3912  reverse_designators_iterator designators_rbegin() {
3913    return reverse_designators_iterator(designators_end());
3914  }
3915  reverse_designators_iterator designators_rend() {
3916    return reverse_designators_iterator(designators_begin());
3917  }
3918
3919  typedef std::reverse_iterator<const_designators_iterator>
3920          const_reverse_designators_iterator;
3921  const_reverse_designators_iterator designators_rbegin() const {
3922    return const_reverse_designators_iterator(designators_end());
3923  }
3924  const_reverse_designators_iterator designators_rend() const {
3925    return const_reverse_designators_iterator(designators_begin());
3926  }
3927
3928  Designator *getDesignator(unsigned Idx) { return &designators_begin()[Idx]; }
3929
3930  void setDesignators(ASTContext &C, const Designator *Desigs,
3931                      unsigned NumDesigs);
3932
3933  Expr *getArrayIndex(const Designator& D);
3934  Expr *getArrayRangeStart(const Designator& D);
3935  Expr *getArrayRangeEnd(const Designator& D);
3936
3937  /// @brief Retrieve the location of the '=' that precedes the
3938  /// initializer value itself, if present.
3939  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
3940  void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
3941
3942  /// @brief Determines whether this designated initializer used the
3943  /// deprecated GNU syntax for designated initializers.
3944  bool usesGNUSyntax() const { return GNUSyntax; }
3945  void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
3946
3947  /// @brief Retrieve the initializer value.
3948  Expr *getInit() const {
3949    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
3950  }
3951
3952  void setInit(Expr *init) {
3953    *child_begin() = init;
3954  }
3955
3956  /// \brief Retrieve the total number of subexpressions in this
3957  /// designated initializer expression, including the actual
3958  /// initialized value and any expressions that occur within array
3959  /// and array-range designators.
3960  unsigned getNumSubExprs() const { return NumSubExprs; }
3961
3962  Expr *getSubExpr(unsigned Idx) {
3963    assert(Idx < NumSubExprs && "Subscript out of range");
3964    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3965    Ptr += sizeof(DesignatedInitExpr);
3966    return reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx];
3967  }
3968
3969  void setSubExpr(unsigned Idx, Expr *E) {
3970    assert(Idx < NumSubExprs && "Subscript out of range");
3971    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3972    Ptr += sizeof(DesignatedInitExpr);
3973    reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx] = E;
3974  }
3975
3976  /// \brief Replaces the designator at index @p Idx with the series
3977  /// of designators in [First, Last).
3978  void ExpandDesignator(ASTContext &C, unsigned Idx, const Designator *First,
3979                        const Designator *Last);
3980
3981  SourceRange getDesignatorsSourceRange() const;
3982
3983  SourceRange getSourceRange() const LLVM_READONLY;
3984
3985  static bool classof(const Stmt *T) {
3986    return T->getStmtClass() == DesignatedInitExprClass;
3987  }
3988  static bool classof(const DesignatedInitExpr *) { return true; }
3989
3990  // Iterators
3991  child_range children() {
3992    Stmt **begin = reinterpret_cast<Stmt**>(this + 1);
3993    return child_range(begin, begin + NumSubExprs);
3994  }
3995};
3996
3997/// \brief Represents an implicitly-generated value initialization of
3998/// an object of a given type.
3999///
4000/// Implicit value initializations occur within semantic initializer
4001/// list expressions (InitListExpr) as placeholders for subobject
4002/// initializations not explicitly specified by the user.
4003///
4004/// \see InitListExpr
4005class ImplicitValueInitExpr : public Expr {
4006public:
4007  explicit ImplicitValueInitExpr(QualType ty)
4008    : Expr(ImplicitValueInitExprClass, ty, VK_RValue, OK_Ordinary,
4009           false, false, ty->isInstantiationDependentType(), false) { }
4010
4011  /// \brief Construct an empty implicit value initialization.
4012  explicit ImplicitValueInitExpr(EmptyShell Empty)
4013    : Expr(ImplicitValueInitExprClass, Empty) { }
4014
4015  static bool classof(const Stmt *T) {
4016    return T->getStmtClass() == ImplicitValueInitExprClass;
4017  }
4018  static bool classof(const ImplicitValueInitExpr *) { return true; }
4019
4020  SourceRange getSourceRange() const LLVM_READONLY {
4021    return SourceRange();
4022  }
4023
4024  // Iterators
4025  child_range children() { return child_range(); }
4026};
4027
4028
4029class ParenListExpr : public Expr {
4030  Stmt **Exprs;
4031  unsigned NumExprs;
4032  SourceLocation LParenLoc, RParenLoc;
4033
4034public:
4035  ParenListExpr(ASTContext& C, SourceLocation lparenloc, Expr **exprs,
4036                unsigned numexprs, SourceLocation rparenloc);
4037
4038  /// \brief Build an empty paren list.
4039  explicit ParenListExpr(EmptyShell Empty) : Expr(ParenListExprClass, Empty) { }
4040
4041  unsigned getNumExprs() const { return NumExprs; }
4042
4043  const Expr* getExpr(unsigned Init) const {
4044    assert(Init < getNumExprs() && "Initializer access out of range!");
4045    return cast_or_null<Expr>(Exprs[Init]);
4046  }
4047
4048  Expr* getExpr(unsigned Init) {
4049    assert(Init < getNumExprs() && "Initializer access out of range!");
4050    return cast_or_null<Expr>(Exprs[Init]);
4051  }
4052
4053  Expr **getExprs() { return reinterpret_cast<Expr **>(Exprs); }
4054
4055  SourceLocation getLParenLoc() const { return LParenLoc; }
4056  SourceLocation getRParenLoc() const { return RParenLoc; }
4057
4058  SourceRange getSourceRange() const LLVM_READONLY {
4059    return SourceRange(LParenLoc, RParenLoc);
4060  }
4061  static bool classof(const Stmt *T) {
4062    return T->getStmtClass() == ParenListExprClass;
4063  }
4064  static bool classof(const ParenListExpr *) { return true; }
4065
4066  // Iterators
4067  child_range children() {
4068    return child_range(&Exprs[0], &Exprs[0]+NumExprs);
4069  }
4070
4071  friend class ASTStmtReader;
4072  friend class ASTStmtWriter;
4073};
4074
4075
4076/// \brief Represents a C11 generic selection.
4077///
4078/// A generic selection (C11 6.5.1.1) contains an unevaluated controlling
4079/// expression, followed by one or more generic associations.  Each generic
4080/// association specifies a type name and an expression, or "default" and an
4081/// expression (in which case it is known as a default generic association).
4082/// The type and value of the generic selection are identical to those of its
4083/// result expression, which is defined as the expression in the generic
4084/// association with a type name that is compatible with the type of the
4085/// controlling expression, or the expression in the default generic association
4086/// if no types are compatible.  For example:
4087///
4088/// @code
4089/// _Generic(X, double: 1, float: 2, default: 3)
4090/// @endcode
4091///
4092/// The above expression evaluates to 1 if 1.0 is substituted for X, 2 if 1.0f
4093/// or 3 if "hello".
4094///
4095/// As an extension, generic selections are allowed in C++, where the following
4096/// additional semantics apply:
4097///
4098/// Any generic selection whose controlling expression is type-dependent or
4099/// which names a dependent type in its association list is result-dependent,
4100/// which means that the choice of result expression is dependent.
4101/// Result-dependent generic associations are both type- and value-dependent.
4102class GenericSelectionExpr : public Expr {
4103  enum { CONTROLLING, END_EXPR };
4104  TypeSourceInfo **AssocTypes;
4105  Stmt **SubExprs;
4106  unsigned NumAssocs, ResultIndex;
4107  SourceLocation GenericLoc, DefaultLoc, RParenLoc;
4108
4109public:
4110  GenericSelectionExpr(ASTContext &Context,
4111                       SourceLocation GenericLoc, Expr *ControllingExpr,
4112                       TypeSourceInfo **AssocTypes, Expr **AssocExprs,
4113                       unsigned NumAssocs, SourceLocation DefaultLoc,
4114                       SourceLocation RParenLoc,
4115                       bool ContainsUnexpandedParameterPack,
4116                       unsigned ResultIndex);
4117
4118  /// This constructor is used in the result-dependent case.
4119  GenericSelectionExpr(ASTContext &Context,
4120                       SourceLocation GenericLoc, Expr *ControllingExpr,
4121                       TypeSourceInfo **AssocTypes, Expr **AssocExprs,
4122                       unsigned NumAssocs, SourceLocation DefaultLoc,
4123                       SourceLocation RParenLoc,
4124                       bool ContainsUnexpandedParameterPack);
4125
4126  explicit GenericSelectionExpr(EmptyShell Empty)
4127    : Expr(GenericSelectionExprClass, Empty) { }
4128
4129  unsigned getNumAssocs() const { return NumAssocs; }
4130
4131  SourceLocation getGenericLoc() const { return GenericLoc; }
4132  SourceLocation getDefaultLoc() const { return DefaultLoc; }
4133  SourceLocation getRParenLoc() const { return RParenLoc; }
4134
4135  const Expr *getAssocExpr(unsigned i) const {
4136    return cast<Expr>(SubExprs[END_EXPR+i]);
4137  }
4138  Expr *getAssocExpr(unsigned i) { return cast<Expr>(SubExprs[END_EXPR+i]); }
4139
4140  const TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) const {
4141    return AssocTypes[i];
4142  }
4143  TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) { return AssocTypes[i]; }
4144
4145  QualType getAssocType(unsigned i) const {
4146    if (const TypeSourceInfo *TS = getAssocTypeSourceInfo(i))
4147      return TS->getType();
4148    else
4149      return QualType();
4150  }
4151
4152  const Expr *getControllingExpr() const {
4153    return cast<Expr>(SubExprs[CONTROLLING]);
4154  }
4155  Expr *getControllingExpr() { return cast<Expr>(SubExprs[CONTROLLING]); }
4156
4157  /// Whether this generic selection is result-dependent.
4158  bool isResultDependent() const { return ResultIndex == -1U; }
4159
4160  /// The zero-based index of the result expression's generic association in
4161  /// the generic selection's association list.  Defined only if the
4162  /// generic selection is not result-dependent.
4163  unsigned getResultIndex() const {
4164    assert(!isResultDependent() && "Generic selection is result-dependent");
4165    return ResultIndex;
4166  }
4167
4168  /// The generic selection's result expression.  Defined only if the
4169  /// generic selection is not result-dependent.
4170  const Expr *getResultExpr() const { return getAssocExpr(getResultIndex()); }
4171  Expr *getResultExpr() { return getAssocExpr(getResultIndex()); }
4172
4173  SourceRange getSourceRange() const LLVM_READONLY {
4174    return SourceRange(GenericLoc, RParenLoc);
4175  }
4176  static bool classof(const Stmt *T) {
4177    return T->getStmtClass() == GenericSelectionExprClass;
4178  }
4179  static bool classof(const GenericSelectionExpr *) { return true; }
4180
4181  child_range children() {
4182    return child_range(SubExprs, SubExprs+END_EXPR+NumAssocs);
4183  }
4184
4185  friend class ASTStmtReader;
4186};
4187
4188//===----------------------------------------------------------------------===//
4189// Clang Extensions
4190//===----------------------------------------------------------------------===//
4191
4192
4193/// ExtVectorElementExpr - This represents access to specific elements of a
4194/// vector, and may occur on the left hand side or right hand side.  For example
4195/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
4196///
4197/// Note that the base may have either vector or pointer to vector type, just
4198/// like a struct field reference.
4199///
4200class ExtVectorElementExpr : public Expr {
4201  Stmt *Base;
4202  IdentifierInfo *Accessor;
4203  SourceLocation AccessorLoc;
4204public:
4205  ExtVectorElementExpr(QualType ty, ExprValueKind VK, Expr *base,
4206                       IdentifierInfo &accessor, SourceLocation loc)
4207    : Expr(ExtVectorElementExprClass, ty, VK,
4208           (VK == VK_RValue ? OK_Ordinary : OK_VectorComponent),
4209           base->isTypeDependent(), base->isValueDependent(),
4210           base->isInstantiationDependent(),
4211           base->containsUnexpandedParameterPack()),
4212      Base(base), Accessor(&accessor), AccessorLoc(loc) {}
4213
4214  /// \brief Build an empty vector element expression.
4215  explicit ExtVectorElementExpr(EmptyShell Empty)
4216    : Expr(ExtVectorElementExprClass, Empty) { }
4217
4218  const Expr *getBase() const { return cast<Expr>(Base); }
4219  Expr *getBase() { return cast<Expr>(Base); }
4220  void setBase(Expr *E) { Base = E; }
4221
4222  IdentifierInfo &getAccessor() const { return *Accessor; }
4223  void setAccessor(IdentifierInfo *II) { Accessor = II; }
4224
4225  SourceLocation getAccessorLoc() const { return AccessorLoc; }
4226  void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
4227
4228  /// getNumElements - Get the number of components being selected.
4229  unsigned getNumElements() const;
4230
4231  /// containsDuplicateElements - Return true if any element access is
4232  /// repeated.
4233  bool containsDuplicateElements() const;
4234
4235  /// getEncodedElementAccess - Encode the elements accessed into an llvm
4236  /// aggregate Constant of ConstantInt(s).
4237  void getEncodedElementAccess(SmallVectorImpl<unsigned> &Elts) const;
4238
4239  SourceRange getSourceRange() const LLVM_READONLY {
4240    return SourceRange(getBase()->getLocStart(), AccessorLoc);
4241  }
4242
4243  /// isArrow - Return true if the base expression is a pointer to vector,
4244  /// return false if the base expression is a vector.
4245  bool isArrow() const;
4246
4247  static bool classof(const Stmt *T) {
4248    return T->getStmtClass() == ExtVectorElementExprClass;
4249  }
4250  static bool classof(const ExtVectorElementExpr *) { return true; }
4251
4252  // Iterators
4253  child_range children() { return child_range(&Base, &Base+1); }
4254};
4255
4256
4257/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
4258/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
4259class BlockExpr : public Expr {
4260protected:
4261  BlockDecl *TheBlock;
4262public:
4263  BlockExpr(BlockDecl *BD, QualType ty)
4264    : Expr(BlockExprClass, ty, VK_RValue, OK_Ordinary,
4265           ty->isDependentType(), ty->isDependentType(),
4266           ty->isInstantiationDependentType() || BD->isDependentContext(),
4267           false),
4268      TheBlock(BD) {}
4269
4270  /// \brief Build an empty block expression.
4271  explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { }
4272
4273  const BlockDecl *getBlockDecl() const { return TheBlock; }
4274  BlockDecl *getBlockDecl() { return TheBlock; }
4275  void setBlockDecl(BlockDecl *BD) { TheBlock = BD; }
4276
4277  // Convenience functions for probing the underlying BlockDecl.
4278  SourceLocation getCaretLocation() const;
4279  const Stmt *getBody() const;
4280  Stmt *getBody();
4281
4282  SourceRange getSourceRange() const LLVM_READONLY {
4283    return SourceRange(getCaretLocation(), getBody()->getLocEnd());
4284  }
4285
4286  /// getFunctionType - Return the underlying function type for this block.
4287  const FunctionProtoType *getFunctionType() const;
4288
4289  static bool classof(const Stmt *T) {
4290    return T->getStmtClass() == BlockExprClass;
4291  }
4292  static bool classof(const BlockExpr *) { return true; }
4293
4294  // Iterators
4295  child_range children() { return child_range(); }
4296};
4297
4298/// AsTypeExpr - Clang builtin function __builtin_astype [OpenCL 6.2.4.2]
4299/// This AST node provides support for reinterpreting a type to another
4300/// type of the same size.
4301class AsTypeExpr : public Expr { // Should this be an ExplicitCastExpr?
4302private:
4303  Stmt *SrcExpr;
4304  SourceLocation BuiltinLoc, RParenLoc;
4305
4306  friend class ASTReader;
4307  friend class ASTStmtReader;
4308  explicit AsTypeExpr(EmptyShell Empty) : Expr(AsTypeExprClass, Empty) {}
4309
4310public:
4311  AsTypeExpr(Expr* SrcExpr, QualType DstType,
4312             ExprValueKind VK, ExprObjectKind OK,
4313             SourceLocation BuiltinLoc, SourceLocation RParenLoc)
4314    : Expr(AsTypeExprClass, DstType, VK, OK,
4315           DstType->isDependentType(),
4316           DstType->isDependentType() || SrcExpr->isValueDependent(),
4317           (DstType->isInstantiationDependentType() ||
4318            SrcExpr->isInstantiationDependent()),
4319           (DstType->containsUnexpandedParameterPack() ||
4320            SrcExpr->containsUnexpandedParameterPack())),
4321  SrcExpr(SrcExpr), BuiltinLoc(BuiltinLoc), RParenLoc(RParenLoc) {}
4322
4323  /// getSrcExpr - Return the Expr to be converted.
4324  Expr *getSrcExpr() const { return cast<Expr>(SrcExpr); }
4325
4326  /// getBuiltinLoc - Return the location of the __builtin_astype token.
4327  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
4328
4329  /// getRParenLoc - Return the location of final right parenthesis.
4330  SourceLocation getRParenLoc() const { return RParenLoc; }
4331
4332  SourceRange getSourceRange() const LLVM_READONLY {
4333    return SourceRange(BuiltinLoc, RParenLoc);
4334  }
4335
4336  static bool classof(const Stmt *T) {
4337    return T->getStmtClass() == AsTypeExprClass;
4338  }
4339  static bool classof(const AsTypeExpr *) { return true; }
4340
4341  // Iterators
4342  child_range children() { return child_range(&SrcExpr, &SrcExpr+1); }
4343};
4344
4345/// PseudoObjectExpr - An expression which accesses a pseudo-object
4346/// l-value.  A pseudo-object is an abstract object, accesses to which
4347/// are translated to calls.  The pseudo-object expression has a
4348/// syntactic form, which shows how the expression was actually
4349/// written in the source code, and a semantic form, which is a series
4350/// of expressions to be executed in order which detail how the
4351/// operation is actually evaluated.  Optionally, one of the semantic
4352/// forms may also provide a result value for the expression.
4353///
4354/// If any of the semantic-form expressions is an OpaqueValueExpr,
4355/// that OVE is required to have a source expression, and it is bound
4356/// to the result of that source expression.  Such OVEs may appear
4357/// only in subsequent semantic-form expressions and as
4358/// sub-expressions of the syntactic form.
4359///
4360/// PseudoObjectExpr should be used only when an operation can be
4361/// usefully described in terms of fairly simple rewrite rules on
4362/// objects and functions that are meant to be used by end-developers.
4363/// For example, under the Itanium ABI, dynamic casts are implemented
4364/// as a call to a runtime function called __dynamic_cast; using this
4365/// class to describe that would be inappropriate because that call is
4366/// not really part of the user-visible semantics, and instead the
4367/// cast is properly reflected in the AST and IR-generation has been
4368/// taught to generate the call as necessary.  In contrast, an
4369/// Objective-C property access is semantically defined to be
4370/// equivalent to a particular message send, and this is very much
4371/// part of the user model.  The name of this class encourages this
4372/// modelling design.
4373class PseudoObjectExpr : public Expr {
4374  // PseudoObjectExprBits.NumSubExprs - The number of sub-expressions.
4375  // Always at least two, because the first sub-expression is the
4376  // syntactic form.
4377
4378  // PseudoObjectExprBits.ResultIndex - The index of the
4379  // sub-expression holding the result.  0 means the result is void,
4380  // which is unambiguous because it's the index of the syntactic
4381  // form.  Note that this is therefore 1 higher than the value passed
4382  // in to Create, which is an index within the semantic forms.
4383  // Note also that ASTStmtWriter assumes this encoding.
4384
4385  Expr **getSubExprsBuffer() { return reinterpret_cast<Expr**>(this + 1); }
4386  const Expr * const *getSubExprsBuffer() const {
4387    return reinterpret_cast<const Expr * const *>(this + 1);
4388  }
4389
4390  friend class ASTStmtReader;
4391
4392  PseudoObjectExpr(QualType type, ExprValueKind VK,
4393                   Expr *syntactic, ArrayRef<Expr*> semantic,
4394                   unsigned resultIndex);
4395
4396  PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs);
4397
4398  unsigned getNumSubExprs() const {
4399    return PseudoObjectExprBits.NumSubExprs;
4400  }
4401
4402public:
4403  /// NoResult - A value for the result index indicating that there is
4404  /// no semantic result.
4405  enum { NoResult = ~0U };
4406
4407  static PseudoObjectExpr *Create(ASTContext &Context, Expr *syntactic,
4408                                  ArrayRef<Expr*> semantic,
4409                                  unsigned resultIndex);
4410
4411  static PseudoObjectExpr *Create(ASTContext &Context, EmptyShell shell,
4412                                  unsigned numSemanticExprs);
4413
4414  /// Return the syntactic form of this expression, i.e. the
4415  /// expression it actually looks like.  Likely to be expressed in
4416  /// terms of OpaqueValueExprs bound in the semantic form.
4417  Expr *getSyntacticForm() { return getSubExprsBuffer()[0]; }
4418  const Expr *getSyntacticForm() const { return getSubExprsBuffer()[0]; }
4419
4420  /// Return the index of the result-bearing expression into the semantics
4421  /// expressions, or PseudoObjectExpr::NoResult if there is none.
4422  unsigned getResultExprIndex() const {
4423    if (PseudoObjectExprBits.ResultIndex == 0) return NoResult;
4424    return PseudoObjectExprBits.ResultIndex - 1;
4425  }
4426
4427  /// Return the result-bearing expression, or null if there is none.
4428  Expr *getResultExpr() {
4429    if (PseudoObjectExprBits.ResultIndex == 0)
4430      return 0;
4431    return getSubExprsBuffer()[PseudoObjectExprBits.ResultIndex];
4432  }
4433  const Expr *getResultExpr() const {
4434    return const_cast<PseudoObjectExpr*>(this)->getResultExpr();
4435  }
4436
4437  unsigned getNumSemanticExprs() const { return getNumSubExprs() - 1; }
4438
4439  typedef Expr * const *semantics_iterator;
4440  typedef const Expr * const *const_semantics_iterator;
4441  semantics_iterator semantics_begin() {
4442    return getSubExprsBuffer() + 1;
4443  }
4444  const_semantics_iterator semantics_begin() const {
4445    return getSubExprsBuffer() + 1;
4446  }
4447  semantics_iterator semantics_end() {
4448    return getSubExprsBuffer() + getNumSubExprs();
4449  }
4450  const_semantics_iterator semantics_end() const {
4451    return getSubExprsBuffer() + getNumSubExprs();
4452  }
4453  Expr *getSemanticExpr(unsigned index) {
4454    assert(index + 1 < getNumSubExprs());
4455    return getSubExprsBuffer()[index + 1];
4456  }
4457  const Expr *getSemanticExpr(unsigned index) const {
4458    return const_cast<PseudoObjectExpr*>(this)->getSemanticExpr(index);
4459  }
4460
4461  SourceLocation getExprLoc() const LLVM_READONLY {
4462    return getSyntacticForm()->getExprLoc();
4463  }
4464  SourceRange getSourceRange() const LLVM_READONLY {
4465    return getSyntacticForm()->getSourceRange();
4466  }
4467
4468  child_range children() {
4469    Stmt **cs = reinterpret_cast<Stmt**>(getSubExprsBuffer());
4470    return child_range(cs, cs + getNumSubExprs());
4471  }
4472
4473  static bool classof(const Stmt *T) {
4474    return T->getStmtClass() == PseudoObjectExprClass;
4475  }
4476  static bool classof(const PseudoObjectExpr *) { return true; }
4477};
4478
4479/// AtomicExpr - Variadic atomic builtins: __atomic_exchange, __atomic_fetch_*,
4480/// __atomic_load, __atomic_store, and __atomic_compare_exchange_*, for the
4481/// similarly-named C++11 instructions, and __c11 variants for <stdatomic.h>.
4482/// All of these instructions take one primary pointer and at least one memory
4483/// order.
4484class AtomicExpr : public Expr {
4485public:
4486  enum AtomicOp {
4487#define BUILTIN(ID, TYPE, ATTRS)
4488#define ATOMIC_BUILTIN(ID, TYPE, ATTRS) AO ## ID,
4489#include "clang/Basic/Builtins.def"
4490    // Avoid trailing comma
4491    BI_First = 0
4492  };
4493
4494private:
4495  enum { PTR, ORDER, VAL1, ORDER_FAIL, VAL2, WEAK, END_EXPR };
4496  Stmt* SubExprs[END_EXPR];
4497  unsigned NumSubExprs;
4498  SourceLocation BuiltinLoc, RParenLoc;
4499  AtomicOp Op;
4500
4501  friend class ASTStmtReader;
4502
4503public:
4504  AtomicExpr(SourceLocation BLoc, Expr **args, unsigned nexpr, QualType t,
4505             AtomicOp op, SourceLocation RP);
4506
4507  /// \brief Determine the number of arguments the specified atomic builtin
4508  /// should have.
4509  static unsigned getNumSubExprs(AtomicOp Op);
4510
4511  /// \brief Build an empty AtomicExpr.
4512  explicit AtomicExpr(EmptyShell Empty) : Expr(AtomicExprClass, Empty) { }
4513
4514  Expr *getPtr() const {
4515    return cast<Expr>(SubExprs[PTR]);
4516  }
4517  Expr *getOrder() const {
4518    return cast<Expr>(SubExprs[ORDER]);
4519  }
4520  Expr *getVal1() const {
4521    if (Op == AO__c11_atomic_init)
4522      return cast<Expr>(SubExprs[ORDER]);
4523    assert(NumSubExprs > VAL1);
4524    return cast<Expr>(SubExprs[VAL1]);
4525  }
4526  Expr *getOrderFail() const {
4527    assert(NumSubExprs > ORDER_FAIL);
4528    return cast<Expr>(SubExprs[ORDER_FAIL]);
4529  }
4530  Expr *getVal2() const {
4531    if (Op == AO__atomic_exchange)
4532      return cast<Expr>(SubExprs[ORDER_FAIL]);
4533    assert(NumSubExprs > VAL2);
4534    return cast<Expr>(SubExprs[VAL2]);
4535  }
4536  Expr *getWeak() const {
4537    assert(NumSubExprs > WEAK);
4538    return cast<Expr>(SubExprs[WEAK]);
4539  }
4540
4541  AtomicOp getOp() const { return Op; }
4542  unsigned getNumSubExprs() { return NumSubExprs; }
4543
4544  Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
4545
4546  bool isVolatile() const {
4547    return getPtr()->getType()->getPointeeType().isVolatileQualified();
4548  }
4549
4550  bool isCmpXChg() const {
4551    return getOp() == AO__c11_atomic_compare_exchange_strong ||
4552           getOp() == AO__c11_atomic_compare_exchange_weak ||
4553           getOp() == AO__atomic_compare_exchange ||
4554           getOp() == AO__atomic_compare_exchange_n;
4555  }
4556
4557  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
4558  SourceLocation getRParenLoc() const { return RParenLoc; }
4559
4560  SourceRange getSourceRange() const LLVM_READONLY {
4561    return SourceRange(BuiltinLoc, RParenLoc);
4562  }
4563  static bool classof(const Stmt *T) {
4564    return T->getStmtClass() == AtomicExprClass;
4565  }
4566  static bool classof(const AtomicExpr *) { return true; }
4567
4568  // Iterators
4569  child_range children() {
4570    return child_range(SubExprs, SubExprs+NumSubExprs);
4571  }
4572};
4573}  // end namespace clang
4574
4575#endif
4576