Expr.h revision b0c3e0909bb04af0bfb82ad01ab6909649d68cca
1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/Stmt.h"
19#include "clang/AST/Type.h"
20#include "clang/AST/DeclAccessPair.h"
21#include "clang/AST/OperationKinds.h"
22#include "clang/AST/ASTVector.h"
23#include "clang/AST/UsuallyTinyPtrVector.h"
24#include "clang/Basic/TypeTraits.h"
25#include "llvm/ADT/APSInt.h"
26#include "llvm/ADT/APFloat.h"
27#include "llvm/ADT/SmallVector.h"
28#include "llvm/ADT/StringRef.h"
29#include <cctype>
30
31namespace clang {
32  class ASTContext;
33  class APValue;
34  class Decl;
35  class IdentifierInfo;
36  class ParmVarDecl;
37  class NamedDecl;
38  class ValueDecl;
39  class BlockDecl;
40  class CXXBaseSpecifier;
41  class CXXOperatorCallExpr;
42  class CXXMemberCallExpr;
43  class ObjCPropertyRefExpr;
44  class TemplateArgumentLoc;
45  class TemplateArgumentListInfo;
46  class OpaqueValueExpr;
47
48/// \brief A simple array of base specifiers.
49typedef SmallVector<CXXBaseSpecifier*, 4> CXXCastPath;
50
51/// Expr - This represents one expression.  Note that Expr's are subclasses of
52/// Stmt.  This allows an expression to be transparently used any place a Stmt
53/// is required.
54///
55class Expr : public Stmt {
56  QualType TR;
57
58protected:
59  Expr(StmtClass SC, QualType T, ExprValueKind VK, ExprObjectKind OK,
60       bool TD, bool VD, bool ID, bool ContainsUnexpandedParameterPack)
61    : Stmt(SC)
62  {
63    ExprBits.TypeDependent = TD;
64    ExprBits.ValueDependent = VD;
65    ExprBits.InstantiationDependent = ID;
66    ExprBits.ValueKind = VK;
67    ExprBits.ObjectKind = OK;
68    ExprBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
69    setType(T);
70  }
71
72  /// \brief Construct an empty expression.
73  explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
74
75public:
76  QualType getType() const { return TR; }
77  void setType(QualType t) {
78    // In C++, the type of an expression is always adjusted so that it
79    // will not have reference type an expression will never have
80    // reference type (C++ [expr]p6). Use
81    // QualType::getNonReferenceType() to retrieve the non-reference
82    // type. Additionally, inspect Expr::isLvalue to determine whether
83    // an expression that is adjusted in this manner should be
84    // considered an lvalue.
85    assert((t.isNull() || !t->isReferenceType()) &&
86           "Expressions can't have reference type");
87
88    TR = t;
89  }
90
91  /// isValueDependent - Determines whether this expression is
92  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
93  /// array bound of "Chars" in the following example is
94  /// value-dependent.
95  /// @code
96  /// template<int Size, char (&Chars)[Size]> struct meta_string;
97  /// @endcode
98  bool isValueDependent() const { return ExprBits.ValueDependent; }
99
100  /// \brief Set whether this expression is value-dependent or not.
101  void setValueDependent(bool VD) {
102    ExprBits.ValueDependent = VD;
103    if (VD)
104      ExprBits.InstantiationDependent = true;
105  }
106
107  /// isTypeDependent - Determines whether this expression is
108  /// type-dependent (C++ [temp.dep.expr]), which means that its type
109  /// could change from one template instantiation to the next. For
110  /// example, the expressions "x" and "x + y" are type-dependent in
111  /// the following code, but "y" is not type-dependent:
112  /// @code
113  /// template<typename T>
114  /// void add(T x, int y) {
115  ///   x + y;
116  /// }
117  /// @endcode
118  bool isTypeDependent() const { return ExprBits.TypeDependent; }
119
120  /// \brief Set whether this expression is type-dependent or not.
121  void setTypeDependent(bool TD) {
122    ExprBits.TypeDependent = TD;
123    if (TD)
124      ExprBits.InstantiationDependent = true;
125  }
126
127  /// \brief Whether this expression is instantiation-dependent, meaning that
128  /// it depends in some way on a template parameter, even if neither its type
129  /// nor (constant) value can change due to the template instantiation.
130  ///
131  /// In the following example, the expression \c sizeof(sizeof(T() + T())) is
132  /// instantiation-dependent (since it involves a template parameter \c T), but
133  /// is neither type- nor value-dependent, since the type of the inner
134  /// \c sizeof is known (\c std::size_t) and therefore the size of the outer
135  /// \c sizeof is known.
136  ///
137  /// \code
138  /// template<typename T>
139  /// void f(T x, T y) {
140  ///   sizeof(sizeof(T() + T());
141  /// }
142  /// \endcode
143  ///
144  bool isInstantiationDependent() const {
145    return ExprBits.InstantiationDependent;
146  }
147
148  /// \brief Set whether this expression is instantiation-dependent or not.
149  void setInstantiationDependent(bool ID) {
150    ExprBits.InstantiationDependent = ID;
151  }
152
153  /// \brief Whether this expression contains an unexpanded parameter
154  /// pack (for C++0x variadic templates).
155  ///
156  /// Given the following function template:
157  ///
158  /// \code
159  /// template<typename F, typename ...Types>
160  /// void forward(const F &f, Types &&...args) {
161  ///   f(static_cast<Types&&>(args)...);
162  /// }
163  /// \endcode
164  ///
165  /// The expressions \c args and \c static_cast<Types&&>(args) both
166  /// contain parameter packs.
167  bool containsUnexpandedParameterPack() const {
168    return ExprBits.ContainsUnexpandedParameterPack;
169  }
170
171  /// \brief Set the bit that describes whether this expression
172  /// contains an unexpanded parameter pack.
173  void setContainsUnexpandedParameterPack(bool PP = true) {
174    ExprBits.ContainsUnexpandedParameterPack = PP;
175  }
176
177  /// getExprLoc - Return the preferred location for the arrow when diagnosing
178  /// a problem with a generic expression.
179  SourceLocation getExprLoc() const;
180
181  /// isUnusedResultAWarning - Return true if this immediate expression should
182  /// be warned about if the result is unused.  If so, fill in Loc and Ranges
183  /// with location to warn on and the source range[s] to report with the
184  /// warning.
185  bool isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
186                              SourceRange &R2, ASTContext &Ctx) const;
187
188  /// isLValue - True if this expression is an "l-value" according to
189  /// the rules of the current language.  C and C++ give somewhat
190  /// different rules for this concept, but in general, the result of
191  /// an l-value expression identifies a specific object whereas the
192  /// result of an r-value expression is a value detached from any
193  /// specific storage.
194  ///
195  /// C++0x divides the concept of "r-value" into pure r-values
196  /// ("pr-values") and so-called expiring values ("x-values"), which
197  /// identify specific objects that can be safely cannibalized for
198  /// their resources.  This is an unfortunate abuse of terminology on
199  /// the part of the C++ committee.  In Clang, when we say "r-value",
200  /// we generally mean a pr-value.
201  bool isLValue() const { return getValueKind() == VK_LValue; }
202  bool isRValue() const { return getValueKind() == VK_RValue; }
203  bool isXValue() const { return getValueKind() == VK_XValue; }
204  bool isGLValue() const { return getValueKind() != VK_RValue; }
205
206  enum LValueClassification {
207    LV_Valid,
208    LV_NotObjectType,
209    LV_IncompleteVoidType,
210    LV_DuplicateVectorComponents,
211    LV_InvalidExpression,
212    LV_InvalidMessageExpression,
213    LV_MemberFunction,
214    LV_SubObjCPropertySetting,
215    LV_ClassTemporary
216  };
217  /// Reasons why an expression might not be an l-value.
218  LValueClassification ClassifyLValue(ASTContext &Ctx) const;
219
220  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
221  /// does not have an incomplete type, does not have a const-qualified type,
222  /// and if it is a structure or union, does not have any member (including,
223  /// recursively, any member or element of all contained aggregates or unions)
224  /// with a const-qualified type.
225  ///
226  /// \param Loc [in] [out] - A source location which *may* be filled
227  /// in with the location of the expression making this a
228  /// non-modifiable lvalue, if specified.
229  enum isModifiableLvalueResult {
230    MLV_Valid,
231    MLV_NotObjectType,
232    MLV_IncompleteVoidType,
233    MLV_DuplicateVectorComponents,
234    MLV_InvalidExpression,
235    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
236    MLV_IncompleteType,
237    MLV_ConstQualified,
238    MLV_ArrayType,
239    MLV_NotBlockQualified,
240    MLV_ReadonlyProperty,
241    MLV_NoSetterProperty,
242    MLV_MemberFunction,
243    MLV_SubObjCPropertySetting,
244    MLV_InvalidMessageExpression,
245    MLV_ClassTemporary
246  };
247  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx,
248                                              SourceLocation *Loc = 0) const;
249
250  /// \brief The return type of classify(). Represents the C++0x expression
251  ///        taxonomy.
252  class Classification {
253  public:
254    /// \brief The various classification results. Most of these mean prvalue.
255    enum Kinds {
256      CL_LValue,
257      CL_XValue,
258      CL_Function, // Functions cannot be lvalues in C.
259      CL_Void, // Void cannot be an lvalue in C.
260      CL_AddressableVoid, // Void expression whose address can be taken in C.
261      CL_DuplicateVectorComponents, // A vector shuffle with dupes.
262      CL_MemberFunction, // An expression referring to a member function
263      CL_SubObjCPropertySetting,
264      CL_ClassTemporary, // A prvalue of class type
265      CL_ObjCMessageRValue, // ObjC message is an rvalue
266      CL_PRValue // A prvalue for any other reason, of any other type
267    };
268    /// \brief The results of modification testing.
269    enum ModifiableType {
270      CM_Untested, // testModifiable was false.
271      CM_Modifiable,
272      CM_RValue, // Not modifiable because it's an rvalue
273      CM_Function, // Not modifiable because it's a function; C++ only
274      CM_LValueCast, // Same as CM_RValue, but indicates GCC cast-as-lvalue ext
275      CM_NotBlockQualified, // Not captured in the closure
276      CM_NoSetterProperty,// Implicit assignment to ObjC property without setter
277      CM_ConstQualified,
278      CM_ArrayType,
279      CM_IncompleteType
280    };
281
282  private:
283    friend class Expr;
284
285    unsigned short Kind;
286    unsigned short Modifiable;
287
288    explicit Classification(Kinds k, ModifiableType m)
289      : Kind(k), Modifiable(m)
290    {}
291
292  public:
293    Classification() {}
294
295    Kinds getKind() const { return static_cast<Kinds>(Kind); }
296    ModifiableType getModifiable() const {
297      assert(Modifiable != CM_Untested && "Did not test for modifiability.");
298      return static_cast<ModifiableType>(Modifiable);
299    }
300    bool isLValue() const { return Kind == CL_LValue; }
301    bool isXValue() const { return Kind == CL_XValue; }
302    bool isGLValue() const { return Kind <= CL_XValue; }
303    bool isPRValue() const { return Kind >= CL_Function; }
304    bool isRValue() const { return Kind >= CL_XValue; }
305    bool isModifiable() const { return getModifiable() == CM_Modifiable; }
306
307    /// \brief Create a simple, modifiably lvalue
308    static Classification makeSimpleLValue() {
309      return Classification(CL_LValue, CM_Modifiable);
310    }
311
312  };
313  /// \brief Classify - Classify this expression according to the C++0x
314  ///        expression taxonomy.
315  ///
316  /// C++0x defines ([basic.lval]) a new taxonomy of expressions to replace the
317  /// old lvalue vs rvalue. This function determines the type of expression this
318  /// is. There are three expression types:
319  /// - lvalues are classical lvalues as in C++03.
320  /// - prvalues are equivalent to rvalues in C++03.
321  /// - xvalues are expressions yielding unnamed rvalue references, e.g. a
322  ///   function returning an rvalue reference.
323  /// lvalues and xvalues are collectively referred to as glvalues, while
324  /// prvalues and xvalues together form rvalues.
325  Classification Classify(ASTContext &Ctx) const {
326    return ClassifyImpl(Ctx, 0);
327  }
328
329  /// \brief ClassifyModifiable - Classify this expression according to the
330  ///        C++0x expression taxonomy, and see if it is valid on the left side
331  ///        of an assignment.
332  ///
333  /// This function extends classify in that it also tests whether the
334  /// expression is modifiable (C99 6.3.2.1p1).
335  /// \param Loc A source location that might be filled with a relevant location
336  ///            if the expression is not modifiable.
337  Classification ClassifyModifiable(ASTContext &Ctx, SourceLocation &Loc) const{
338    return ClassifyImpl(Ctx, &Loc);
339  }
340
341  /// getValueKindForType - Given a formal return or parameter type,
342  /// give its value kind.
343  static ExprValueKind getValueKindForType(QualType T) {
344    if (const ReferenceType *RT = T->getAs<ReferenceType>())
345      return (isa<LValueReferenceType>(RT)
346                ? VK_LValue
347                : (RT->getPointeeType()->isFunctionType()
348                     ? VK_LValue : VK_XValue));
349    return VK_RValue;
350  }
351
352  /// getValueKind - The value kind that this expression produces.
353  ExprValueKind getValueKind() const {
354    return static_cast<ExprValueKind>(ExprBits.ValueKind);
355  }
356
357  /// getObjectKind - The object kind that this expression produces.
358  /// Object kinds are meaningful only for expressions that yield an
359  /// l-value or x-value.
360  ExprObjectKind getObjectKind() const {
361    return static_cast<ExprObjectKind>(ExprBits.ObjectKind);
362  }
363
364  bool isOrdinaryOrBitFieldObject() const {
365    ExprObjectKind OK = getObjectKind();
366    return (OK == OK_Ordinary || OK == OK_BitField);
367  }
368
369  /// setValueKind - Set the value kind produced by this expression.
370  void setValueKind(ExprValueKind Cat) { ExprBits.ValueKind = Cat; }
371
372  /// setObjectKind - Set the object kind produced by this expression.
373  void setObjectKind(ExprObjectKind Cat) { ExprBits.ObjectKind = Cat; }
374
375private:
376  Classification ClassifyImpl(ASTContext &Ctx, SourceLocation *Loc) const;
377
378public:
379
380  /// \brief If this expression refers to a bit-field, retrieve the
381  /// declaration of that bit-field.
382  FieldDecl *getBitField();
383
384  const FieldDecl *getBitField() const {
385    return const_cast<Expr*>(this)->getBitField();
386  }
387
388  /// \brief If this expression is an l-value for an Objective C
389  /// property, find the underlying property reference expression.
390  const ObjCPropertyRefExpr *getObjCProperty() const;
391
392  /// \brief Returns whether this expression refers to a vector element.
393  bool refersToVectorElement() const;
394
395  /// isKnownToHaveBooleanValue - Return true if this is an integer expression
396  /// that is known to return 0 or 1.  This happens for _Bool/bool expressions
397  /// but also int expressions which are produced by things like comparisons in
398  /// C.
399  bool isKnownToHaveBooleanValue() const;
400
401  /// isIntegerConstantExpr - Return true if this expression is a valid integer
402  /// constant expression, and, if so, return its value in Result.  If not a
403  /// valid i-c-e, return false and fill in Loc (if specified) with the location
404  /// of the invalid expression.
405  bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
406                             SourceLocation *Loc = 0,
407                             bool isEvaluated = true) const;
408  bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const {
409    llvm::APSInt X;
410    return isIntegerConstantExpr(X, Ctx, Loc);
411  }
412  /// isConstantInitializer - Returns true if this expression is a constant
413  /// initializer, which can be emitted at compile-time.
414  bool isConstantInitializer(ASTContext &Ctx, bool ForRef) const;
415
416  /// EvalResult is a struct with detailed info about an evaluated expression.
417  struct EvalResult {
418    /// Val - This is the value the expression can be folded to.
419    APValue Val;
420
421    /// HasSideEffects - Whether the evaluated expression has side effects.
422    /// For example, (f() && 0) can be folded, but it still has side effects.
423    bool HasSideEffects;
424
425    /// Diag - If the expression is unfoldable, then Diag contains a note
426    /// diagnostic indicating why it's not foldable. DiagLoc indicates a caret
427    /// position for the error, and DiagExpr is the expression that caused
428    /// the error.
429    /// If the expression is foldable, but not an integer constant expression,
430    /// Diag contains a note diagnostic that describes why it isn't an integer
431    /// constant expression. If the expression *is* an integer constant
432    /// expression, then Diag will be zero.
433    unsigned Diag;
434    const Expr *DiagExpr;
435    SourceLocation DiagLoc;
436
437    EvalResult() : HasSideEffects(false), Diag(0), DiagExpr(0) {}
438
439    // isGlobalLValue - Return true if the evaluated lvalue expression
440    // is global.
441    bool isGlobalLValue() const;
442    // hasSideEffects - Return true if the evaluated expression has
443    // side effects.
444    bool hasSideEffects() const {
445      return HasSideEffects;
446    }
447  };
448
449  /// Evaluate - Return true if this is a constant which we can fold using
450  /// any crazy technique (that has nothing to do with language standards) that
451  /// we want to.  If this function returns true, it returns the folded constant
452  /// in Result.
453  bool Evaluate(EvalResult &Result, const ASTContext &Ctx) const;
454
455  /// EvaluateAsBooleanCondition - Return true if this is a constant
456  /// which we we can fold and convert to a boolean condition using
457  /// any crazy technique that we want to.
458  bool EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx) const;
459
460  /// isEvaluatable - Call Evaluate to see if this expression can be constant
461  /// folded, but discard the result.
462  bool isEvaluatable(const ASTContext &Ctx) const;
463
464  /// HasSideEffects - This routine returns true for all those expressions
465  /// which must be evaluated each time and must not be optimized away
466  /// or evaluated at compile time. Example is a function call, volatile
467  /// variable read.
468  bool HasSideEffects(const ASTContext &Ctx) const;
469
470  /// EvaluateAsInt - Call Evaluate and return the folded integer. This
471  /// must be called on an expression that constant folds to an integer.
472  llvm::APSInt EvaluateAsInt(const ASTContext &Ctx) const;
473
474  /// EvaluateAsLValue - Evaluate an expression to see if it's a lvalue
475  /// with link time known address.
476  bool EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const;
477
478  /// EvaluateAsLValue - Evaluate an expression to see if it's a lvalue.
479  bool EvaluateAsAnyLValue(EvalResult &Result, const ASTContext &Ctx) const;
480
481  /// \brief Enumeration used to describe the kind of Null pointer constant
482  /// returned from \c isNullPointerConstant().
483  enum NullPointerConstantKind {
484    /// \brief Expression is not a Null pointer constant.
485    NPCK_NotNull = 0,
486
487    /// \brief Expression is a Null pointer constant built from a zero integer.
488    NPCK_ZeroInteger,
489
490    /// \brief Expression is a C++0X nullptr.
491    NPCK_CXX0X_nullptr,
492
493    /// \brief Expression is a GNU-style __null constant.
494    NPCK_GNUNull
495  };
496
497  /// \brief Enumeration used to describe how \c isNullPointerConstant()
498  /// should cope with value-dependent expressions.
499  enum NullPointerConstantValueDependence {
500    /// \brief Specifies that the expression should never be value-dependent.
501    NPC_NeverValueDependent = 0,
502
503    /// \brief Specifies that a value-dependent expression of integral or
504    /// dependent type should be considered a null pointer constant.
505    NPC_ValueDependentIsNull,
506
507    /// \brief Specifies that a value-dependent expression should be considered
508    /// to never be a null pointer constant.
509    NPC_ValueDependentIsNotNull
510  };
511
512  /// isNullPointerConstant - C99 6.3.2.3p3 - Test if this reduces down to
513  /// a Null pointer constant. The return value can further distinguish the
514  /// kind of NULL pointer constant that was detected.
515  NullPointerConstantKind isNullPointerConstant(
516      ASTContext &Ctx,
517      NullPointerConstantValueDependence NPC) const;
518
519  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
520  /// write barrier.
521  bool isOBJCGCCandidate(ASTContext &Ctx) const;
522
523  /// \brief Returns true if this expression is a bound member function.
524  bool isBoundMemberFunction(ASTContext &Ctx) const;
525
526  /// \brief Given an expression of bound-member type, find the type
527  /// of the member.  Returns null if this is an *overloaded* bound
528  /// member expression.
529  static QualType findBoundMemberType(const Expr *expr);
530
531  /// \brief Result type of CanThrow().
532  enum CanThrowResult {
533    CT_Cannot,
534    CT_Dependent,
535    CT_Can
536  };
537  /// \brief Test if this expression, if evaluated, might throw, according to
538  ///        the rules of C++ [expr.unary.noexcept].
539  CanThrowResult CanThrow(ASTContext &C) const;
540
541  /// IgnoreImpCasts - Skip past any implicit casts which might
542  /// surround this expression.  Only skips ImplicitCastExprs.
543  Expr *IgnoreImpCasts();
544
545  /// IgnoreImplicit - Skip past any implicit AST nodes which might
546  /// surround this expression.
547  Expr *IgnoreImplicit() { return cast<Expr>(Stmt::IgnoreImplicit()); }
548
549  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
550  ///  its subexpression.  If that subexpression is also a ParenExpr,
551  ///  then this method recursively returns its subexpression, and so forth.
552  ///  Otherwise, the method returns the current Expr.
553  Expr *IgnoreParens();
554
555  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
556  /// or CastExprs, returning their operand.
557  Expr *IgnoreParenCasts();
558
559  /// IgnoreParenImpCasts - Ignore parentheses and implicit casts.  Strip off any
560  /// ParenExpr or ImplicitCastExprs, returning their operand.
561  Expr *IgnoreParenImpCasts();
562
563  /// IgnoreConversionOperator - Ignore conversion operator. If this Expr is a
564  /// call to a conversion operator, return the argument.
565  Expr *IgnoreConversionOperator();
566
567  const Expr *IgnoreConversionOperator() const {
568    return const_cast<Expr*>(this)->IgnoreConversionOperator();
569  }
570
571  const Expr *IgnoreParenImpCasts() const {
572    return const_cast<Expr*>(this)->IgnoreParenImpCasts();
573  }
574
575  /// Ignore parentheses and lvalue casts.  Strip off any ParenExpr and
576  /// CastExprs that represent lvalue casts, returning their operand.
577  Expr *IgnoreParenLValueCasts();
578
579  const Expr *IgnoreParenLValueCasts() const {
580    return const_cast<Expr*>(this)->IgnoreParenLValueCasts();
581  }
582
583  /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
584  /// value (including ptr->int casts of the same size).  Strip off any
585  /// ParenExpr or CastExprs, returning their operand.
586  Expr *IgnoreParenNoopCasts(ASTContext &Ctx);
587
588  /// \brief Determine whether this expression is a default function argument.
589  ///
590  /// Default arguments are implicitly generated in the abstract syntax tree
591  /// by semantic analysis for function calls, object constructions, etc. in
592  /// C++. Default arguments are represented by \c CXXDefaultArgExpr nodes;
593  /// this routine also looks through any implicit casts to determine whether
594  /// the expression is a default argument.
595  bool isDefaultArgument() const;
596
597  /// \brief Determine whether the result of this expression is a
598  /// temporary object of the given class type.
599  bool isTemporaryObject(ASTContext &Ctx, const CXXRecordDecl *TempTy) const;
600
601  /// \brief Whether this expression is an implicit reference to 'this' in C++.
602  bool isImplicitCXXThis() const;
603
604  const Expr *IgnoreImpCasts() const {
605    return const_cast<Expr*>(this)->IgnoreImpCasts();
606  }
607  const Expr *IgnoreParens() const {
608    return const_cast<Expr*>(this)->IgnoreParens();
609  }
610  const Expr *IgnoreParenCasts() const {
611    return const_cast<Expr*>(this)->IgnoreParenCasts();
612  }
613  const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const {
614    return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
615  }
616
617  static bool hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs);
618  static bool hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs);
619
620  static bool classof(const Stmt *T) {
621    return T->getStmtClass() >= firstExprConstant &&
622           T->getStmtClass() <= lastExprConstant;
623  }
624  static bool classof(const Expr *) { return true; }
625};
626
627
628//===----------------------------------------------------------------------===//
629// Primary Expressions.
630//===----------------------------------------------------------------------===//
631
632/// OpaqueValueExpr - An expression referring to an opaque object of a
633/// fixed type and value class.  These don't correspond to concrete
634/// syntax; instead they're used to express operations (usually copy
635/// operations) on values whose source is generally obvious from
636/// context.
637class OpaqueValueExpr : public Expr {
638  friend class ASTStmtReader;
639  Expr *SourceExpr;
640  SourceLocation Loc;
641
642public:
643  OpaqueValueExpr(SourceLocation Loc, QualType T, ExprValueKind VK,
644                  ExprObjectKind OK = OK_Ordinary)
645    : Expr(OpaqueValueExprClass, T, VK, OK,
646           T->isDependentType(), T->isDependentType(),
647           T->isInstantiationDependentType(),
648           false),
649      SourceExpr(0), Loc(Loc) {
650  }
651
652  /// Given an expression which invokes a copy constructor --- i.e.  a
653  /// CXXConstructExpr, possibly wrapped in an ExprWithCleanups ---
654  /// find the OpaqueValueExpr that's the source of the construction.
655  static const OpaqueValueExpr *findInCopyConstruct(const Expr *expr);
656
657  explicit OpaqueValueExpr(EmptyShell Empty)
658    : Expr(OpaqueValueExprClass, Empty) { }
659
660  /// \brief Retrieve the location of this expression.
661  SourceLocation getLocation() const { return Loc; }
662
663  SourceRange getSourceRange() const {
664    if (SourceExpr) return SourceExpr->getSourceRange();
665    return Loc;
666  }
667  SourceLocation getExprLoc() const {
668    if (SourceExpr) return SourceExpr->getExprLoc();
669    return Loc;
670  }
671
672  child_range children() { return child_range(); }
673
674  /// The source expression of an opaque value expression is the
675  /// expression which originally generated the value.  This is
676  /// provided as a convenience for analyses that don't wish to
677  /// precisely model the execution behavior of the program.
678  ///
679  /// The source expression is typically set when building the
680  /// expression which binds the opaque value expression in the first
681  /// place.
682  Expr *getSourceExpr() const { return SourceExpr; }
683  void setSourceExpr(Expr *e) { SourceExpr = e; }
684
685  static bool classof(const Stmt *T) {
686    return T->getStmtClass() == OpaqueValueExprClass;
687  }
688  static bool classof(const OpaqueValueExpr *) { return true; }
689};
690
691/// \brief Represents an explicit template argument list in C++, e.g.,
692/// the "<int>" in "sort<int>".
693/// This is safe to be used inside an AST node, in contrast with
694/// TemplateArgumentListInfo.
695struct ASTTemplateArgumentListInfo {
696  /// \brief The source location of the left angle bracket ('<');
697  SourceLocation LAngleLoc;
698
699  /// \brief The source location of the right angle bracket ('>');
700  SourceLocation RAngleLoc;
701
702  /// \brief The number of template arguments in TemplateArgs.
703  /// The actual template arguments (if any) are stored after the
704  /// ExplicitTemplateArgumentList structure.
705  unsigned NumTemplateArgs;
706
707  /// \brief Retrieve the template arguments
708  TemplateArgumentLoc *getTemplateArgs() {
709    return reinterpret_cast<TemplateArgumentLoc *> (this + 1);
710  }
711
712  /// \brief Retrieve the template arguments
713  const TemplateArgumentLoc *getTemplateArgs() const {
714    return reinterpret_cast<const TemplateArgumentLoc *> (this + 1);
715  }
716
717  void initializeFrom(const TemplateArgumentListInfo &List);
718  void initializeFrom(const TemplateArgumentListInfo &List,
719                      bool &Dependent, bool &InstantiationDependent,
720                      bool &ContainsUnexpandedParameterPack);
721  void copyInto(TemplateArgumentListInfo &List) const;
722  static std::size_t sizeFor(unsigned NumTemplateArgs);
723  static std::size_t sizeFor(const TemplateArgumentListInfo &List);
724};
725
726/// \brief A reference to a declared variable, function, enum, etc.
727/// [C99 6.5.1p2]
728///
729/// This encodes all the information about how a declaration is referenced
730/// within an expression.
731///
732/// There are several optional constructs attached to DeclRefExprs only when
733/// they apply in order to conserve memory. These are laid out past the end of
734/// the object, and flags in the DeclRefExprBitfield track whether they exist:
735///
736///   DeclRefExprBits.HasQualifier:
737///       Specifies when this declaration reference expression has a C++
738///       nested-name-specifier.
739///   DeclRefExprBits.HasFoundDecl:
740///       Specifies when this declaration reference expression has a record of
741///       a NamedDecl (different from the referenced ValueDecl) which was found
742///       during name lookup and/or overload resolution.
743///   DeclRefExprBits.HasExplicitTemplateArgs:
744///       Specifies when this declaration reference expression has an explicit
745///       C++ template argument list.
746class DeclRefExpr : public Expr {
747  /// \brief The declaration that we are referencing.
748  ValueDecl *D;
749
750  /// \brief The location of the declaration name itself.
751  SourceLocation Loc;
752
753  /// \brief Provides source/type location info for the declaration name
754  /// embedded in D.
755  DeclarationNameLoc DNLoc;
756
757  /// \brief Helper to retrieve the optional NestedNameSpecifierLoc.
758  NestedNameSpecifierLoc &getInternalQualifierLoc() {
759    assert(hasQualifier());
760    return *reinterpret_cast<NestedNameSpecifierLoc *>(this + 1);
761  }
762
763  /// \brief Helper to retrieve the optional NestedNameSpecifierLoc.
764  const NestedNameSpecifierLoc &getInternalQualifierLoc() const {
765    return const_cast<DeclRefExpr *>(this)->getInternalQualifierLoc();
766  }
767
768  /// \brief Test whether there is a distinct FoundDecl attached to the end of
769  /// this DRE.
770  bool hasFoundDecl() const { return DeclRefExprBits.HasFoundDecl; }
771
772  /// \brief Helper to retrieve the optional NamedDecl through which this
773  /// reference occured.
774  NamedDecl *&getInternalFoundDecl() {
775    assert(hasFoundDecl());
776    if (hasQualifier())
777      return *reinterpret_cast<NamedDecl **>(&getInternalQualifierLoc() + 1);
778    return *reinterpret_cast<NamedDecl **>(this + 1);
779  }
780
781  /// \brief Helper to retrieve the optional NamedDecl through which this
782  /// reference occured.
783  NamedDecl *getInternalFoundDecl() const {
784    return const_cast<DeclRefExpr *>(this)->getInternalFoundDecl();
785  }
786
787  DeclRefExpr(NestedNameSpecifierLoc QualifierLoc,
788              ValueDecl *D, const DeclarationNameInfo &NameInfo,
789              NamedDecl *FoundD,
790              const TemplateArgumentListInfo *TemplateArgs,
791              QualType T, ExprValueKind VK);
792
793  /// \brief Construct an empty declaration reference expression.
794  explicit DeclRefExpr(EmptyShell Empty)
795    : Expr(DeclRefExprClass, Empty) { }
796
797  /// \brief Computes the type- and value-dependence flags for this
798  /// declaration reference expression.
799  void computeDependence();
800
801public:
802  DeclRefExpr(ValueDecl *D, QualType T, ExprValueKind VK, SourceLocation L,
803              const DeclarationNameLoc &LocInfo = DeclarationNameLoc())
804    : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
805      D(D), Loc(L), DNLoc(LocInfo) {
806    DeclRefExprBits.HasQualifier = 0;
807    DeclRefExprBits.HasExplicitTemplateArgs = 0;
808    DeclRefExprBits.HasFoundDecl = 0;
809    computeDependence();
810  }
811
812  static DeclRefExpr *Create(ASTContext &Context,
813                             NestedNameSpecifierLoc QualifierLoc,
814                             ValueDecl *D,
815                             SourceLocation NameLoc,
816                             QualType T, ExprValueKind VK,
817                             NamedDecl *FoundD = 0,
818                             const TemplateArgumentListInfo *TemplateArgs = 0);
819
820  static DeclRefExpr *Create(ASTContext &Context,
821                             NestedNameSpecifierLoc QualifierLoc,
822                             ValueDecl *D,
823                             const DeclarationNameInfo &NameInfo,
824                             QualType T, ExprValueKind VK,
825                             NamedDecl *FoundD = 0,
826                             const TemplateArgumentListInfo *TemplateArgs = 0);
827
828  /// \brief Construct an empty declaration reference expression.
829  static DeclRefExpr *CreateEmpty(ASTContext &Context,
830                                  bool HasQualifier,
831                                  bool HasFoundDecl,
832                                  bool HasExplicitTemplateArgs,
833                                  unsigned NumTemplateArgs);
834
835  ValueDecl *getDecl() { return D; }
836  const ValueDecl *getDecl() const { return D; }
837  void setDecl(ValueDecl *NewD) { D = NewD; }
838
839  DeclarationNameInfo getNameInfo() const {
840    return DeclarationNameInfo(getDecl()->getDeclName(), Loc, DNLoc);
841  }
842
843  SourceLocation getLocation() const { return Loc; }
844  void setLocation(SourceLocation L) { Loc = L; }
845  SourceRange getSourceRange() const;
846
847  /// \brief Determine whether this declaration reference was preceded by a
848  /// C++ nested-name-specifier, e.g., \c N::foo.
849  bool hasQualifier() const { return DeclRefExprBits.HasQualifier; }
850
851  /// \brief If the name was qualified, retrieves the nested-name-specifier
852  /// that precedes the name. Otherwise, returns NULL.
853  NestedNameSpecifier *getQualifier() const {
854    if (!hasQualifier())
855      return 0;
856
857    return getInternalQualifierLoc().getNestedNameSpecifier();
858  }
859
860  /// \brief If the name was qualified, retrieves the nested-name-specifier
861  /// that precedes the name, with source-location information.
862  NestedNameSpecifierLoc getQualifierLoc() const {
863    if (!hasQualifier())
864      return NestedNameSpecifierLoc();
865
866    return getInternalQualifierLoc();
867  }
868
869  /// \brief Get the NamedDecl through which this reference occured.
870  ///
871  /// This Decl may be different from the ValueDecl actually referred to in the
872  /// presence of using declarations, etc. It always returns non-NULL, and may
873  /// simple return the ValueDecl when appropriate.
874  NamedDecl *getFoundDecl() {
875    return hasFoundDecl() ? getInternalFoundDecl() : D;
876  }
877
878  /// \brief Get the NamedDecl through which this reference occurred.
879  /// See non-const variant.
880  const NamedDecl *getFoundDecl() const {
881    return hasFoundDecl() ? getInternalFoundDecl() : D;
882  }
883
884  /// \brief Determines whether this declaration reference was followed by an
885  /// explict template argument list.
886  bool hasExplicitTemplateArgs() const {
887    return DeclRefExprBits.HasExplicitTemplateArgs;
888  }
889
890  /// \brief Retrieve the explicit template argument list that followed the
891  /// member template name.
892  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
893    assert(hasExplicitTemplateArgs());
894    if (hasFoundDecl())
895      return *reinterpret_cast<ASTTemplateArgumentListInfo *>(
896        &getInternalFoundDecl() + 1);
897
898    if (hasQualifier())
899      return *reinterpret_cast<ASTTemplateArgumentListInfo *>(
900        &getInternalQualifierLoc() + 1);
901
902    return *reinterpret_cast<ASTTemplateArgumentListInfo *>(this + 1);
903  }
904
905  /// \brief Retrieve the explicit template argument list that followed the
906  /// member template name.
907  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
908    return const_cast<DeclRefExpr *>(this)->getExplicitTemplateArgs();
909  }
910
911  /// \brief Retrieves the optional explicit template arguments.
912  /// This points to the same data as getExplicitTemplateArgs(), but
913  /// returns null if there are no explicit template arguments.
914  const ASTTemplateArgumentListInfo *getExplicitTemplateArgsOpt() const {
915    if (!hasExplicitTemplateArgs()) return 0;
916    return &getExplicitTemplateArgs();
917  }
918
919  /// \brief Copies the template arguments (if present) into the given
920  /// structure.
921  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
922    if (hasExplicitTemplateArgs())
923      getExplicitTemplateArgs().copyInto(List);
924  }
925
926  /// \brief Retrieve the location of the left angle bracket following the
927  /// member name ('<'), if any.
928  SourceLocation getLAngleLoc() const {
929    if (!hasExplicitTemplateArgs())
930      return SourceLocation();
931
932    return getExplicitTemplateArgs().LAngleLoc;
933  }
934
935  /// \brief Retrieve the template arguments provided as part of this
936  /// template-id.
937  const TemplateArgumentLoc *getTemplateArgs() const {
938    if (!hasExplicitTemplateArgs())
939      return 0;
940
941    return getExplicitTemplateArgs().getTemplateArgs();
942  }
943
944  /// \brief Retrieve the number of template arguments provided as part of this
945  /// template-id.
946  unsigned getNumTemplateArgs() const {
947    if (!hasExplicitTemplateArgs())
948      return 0;
949
950    return getExplicitTemplateArgs().NumTemplateArgs;
951  }
952
953  /// \brief Retrieve the location of the right angle bracket following the
954  /// template arguments ('>').
955  SourceLocation getRAngleLoc() const {
956    if (!hasExplicitTemplateArgs())
957      return SourceLocation();
958
959    return getExplicitTemplateArgs().RAngleLoc;
960  }
961
962  static bool classof(const Stmt *T) {
963    return T->getStmtClass() == DeclRefExprClass;
964  }
965  static bool classof(const DeclRefExpr *) { return true; }
966
967  // Iterators
968  child_range children() { return child_range(); }
969
970  friend class ASTStmtReader;
971  friend class ASTStmtWriter;
972};
973
974/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
975class PredefinedExpr : public Expr {
976public:
977  enum IdentType {
978    Func,
979    Function,
980    PrettyFunction,
981    /// PrettyFunctionNoVirtual - The same as PrettyFunction, except that the
982    /// 'virtual' keyword is omitted for virtual member functions.
983    PrettyFunctionNoVirtual
984  };
985
986private:
987  SourceLocation Loc;
988  IdentType Type;
989public:
990  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
991    : Expr(PredefinedExprClass, type, VK_LValue, OK_Ordinary,
992           type->isDependentType(), type->isDependentType(),
993           type->isInstantiationDependentType(),
994           /*ContainsUnexpandedParameterPack=*/false),
995      Loc(l), Type(IT) {}
996
997  /// \brief Construct an empty predefined expression.
998  explicit PredefinedExpr(EmptyShell Empty)
999    : Expr(PredefinedExprClass, Empty) { }
1000
1001  IdentType getIdentType() const { return Type; }
1002  void setIdentType(IdentType IT) { Type = IT; }
1003
1004  SourceLocation getLocation() const { return Loc; }
1005  void setLocation(SourceLocation L) { Loc = L; }
1006
1007  static std::string ComputeName(IdentType IT, const Decl *CurrentDecl);
1008
1009  SourceRange getSourceRange() const { return SourceRange(Loc); }
1010
1011  static bool classof(const Stmt *T) {
1012    return T->getStmtClass() == PredefinedExprClass;
1013  }
1014  static bool classof(const PredefinedExpr *) { return true; }
1015
1016  // Iterators
1017  child_range children() { return child_range(); }
1018};
1019
1020/// \brief Used by IntegerLiteral/FloatingLiteral to store the numeric without
1021/// leaking memory.
1022///
1023/// For large floats/integers, APFloat/APInt will allocate memory from the heap
1024/// to represent these numbers.  Unfortunately, when we use a BumpPtrAllocator
1025/// to allocate IntegerLiteral/FloatingLiteral nodes the memory associated with
1026/// the APFloat/APInt values will never get freed. APNumericStorage uses
1027/// ASTContext's allocator for memory allocation.
1028class APNumericStorage {
1029  unsigned BitWidth;
1030  union {
1031    uint64_t VAL;    ///< Used to store the <= 64 bits integer value.
1032    uint64_t *pVal;  ///< Used to store the >64 bits integer value.
1033  };
1034
1035  bool hasAllocation() const { return llvm::APInt::getNumWords(BitWidth) > 1; }
1036
1037  APNumericStorage(const APNumericStorage&); // do not implement
1038  APNumericStorage& operator=(const APNumericStorage&); // do not implement
1039
1040protected:
1041  APNumericStorage() : BitWidth(0), VAL(0) { }
1042
1043  llvm::APInt getIntValue() const {
1044    unsigned NumWords = llvm::APInt::getNumWords(BitWidth);
1045    if (NumWords > 1)
1046      return llvm::APInt(BitWidth, NumWords, pVal);
1047    else
1048      return llvm::APInt(BitWidth, VAL);
1049  }
1050  void setIntValue(ASTContext &C, const llvm::APInt &Val);
1051};
1052
1053class APIntStorage : public APNumericStorage {
1054public:
1055  llvm::APInt getValue() const { return getIntValue(); }
1056  void setValue(ASTContext &C, const llvm::APInt &Val) { setIntValue(C, Val); }
1057};
1058
1059class APFloatStorage : public APNumericStorage {
1060public:
1061  llvm::APFloat getValue() const { return llvm::APFloat(getIntValue()); }
1062  void setValue(ASTContext &C, const llvm::APFloat &Val) {
1063    setIntValue(C, Val.bitcastToAPInt());
1064  }
1065};
1066
1067class IntegerLiteral : public Expr {
1068  APIntStorage Num;
1069  SourceLocation Loc;
1070
1071  /// \brief Construct an empty integer literal.
1072  explicit IntegerLiteral(EmptyShell Empty)
1073    : Expr(IntegerLiteralClass, Empty) { }
1074
1075public:
1076  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
1077  // or UnsignedLongLongTy
1078  IntegerLiteral(ASTContext &C, const llvm::APInt &V,
1079                 QualType type, SourceLocation l)
1080    : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
1081           false, false),
1082      Loc(l) {
1083    assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
1084    assert(V.getBitWidth() == C.getIntWidth(type) &&
1085           "Integer type is not the correct size for constant.");
1086    setValue(C, V);
1087  }
1088
1089  /// \brief Returns a new integer literal with value 'V' and type 'type'.
1090  /// \param type - either IntTy, LongTy, LongLongTy, UnsignedIntTy,
1091  /// UnsignedLongTy, or UnsignedLongLongTy which should match the size of V
1092  /// \param V - the value that the returned integer literal contains.
1093  static IntegerLiteral *Create(ASTContext &C, const llvm::APInt &V,
1094                                QualType type, SourceLocation l);
1095  /// \brief Returns a new empty integer literal.
1096  static IntegerLiteral *Create(ASTContext &C, EmptyShell Empty);
1097
1098  llvm::APInt getValue() const { return Num.getValue(); }
1099  SourceRange getSourceRange() const { return SourceRange(Loc); }
1100
1101  /// \brief Retrieve the location of the literal.
1102  SourceLocation getLocation() const { return Loc; }
1103
1104  void setValue(ASTContext &C, const llvm::APInt &Val) { Num.setValue(C, Val); }
1105  void setLocation(SourceLocation Location) { Loc = Location; }
1106
1107  static bool classof(const Stmt *T) {
1108    return T->getStmtClass() == IntegerLiteralClass;
1109  }
1110  static bool classof(const IntegerLiteral *) { return true; }
1111
1112  // Iterators
1113  child_range children() { return child_range(); }
1114};
1115
1116class CharacterLiteral : public Expr {
1117public:
1118  enum CharacterKind {
1119    Ascii,
1120    Wide,
1121    UTF16,
1122    UTF32
1123  };
1124
1125private:
1126  unsigned Value;
1127  SourceLocation Loc;
1128  unsigned Kind : 2;
1129public:
1130  // type should be IntTy
1131  CharacterLiteral(unsigned value, CharacterKind kind, QualType type,
1132                   SourceLocation l)
1133    : Expr(CharacterLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
1134           false, false),
1135      Value(value), Loc(l), Kind(kind) {
1136  }
1137
1138  /// \brief Construct an empty character literal.
1139  CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
1140
1141  SourceLocation getLocation() const { return Loc; }
1142  CharacterKind getKind() const { return static_cast<CharacterKind>(Kind); }
1143
1144  SourceRange getSourceRange() const { return SourceRange(Loc); }
1145
1146  unsigned getValue() const { return Value; }
1147
1148  void setLocation(SourceLocation Location) { Loc = Location; }
1149  void setKind(CharacterKind kind) { Kind = kind; }
1150  void setValue(unsigned Val) { Value = Val; }
1151
1152  static bool classof(const Stmt *T) {
1153    return T->getStmtClass() == CharacterLiteralClass;
1154  }
1155  static bool classof(const CharacterLiteral *) { return true; }
1156
1157  // Iterators
1158  child_range children() { return child_range(); }
1159};
1160
1161class FloatingLiteral : public Expr {
1162  APFloatStorage Num;
1163  bool IsExact : 1;
1164  SourceLocation Loc;
1165
1166  FloatingLiteral(ASTContext &C, const llvm::APFloat &V, bool isexact,
1167                  QualType Type, SourceLocation L)
1168    : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false,
1169           false, false),
1170      IsExact(isexact), Loc(L) {
1171    setValue(C, V);
1172  }
1173
1174  /// \brief Construct an empty floating-point literal.
1175  explicit FloatingLiteral(EmptyShell Empty)
1176    : Expr(FloatingLiteralClass, Empty), IsExact(false) { }
1177
1178public:
1179  static FloatingLiteral *Create(ASTContext &C, const llvm::APFloat &V,
1180                                 bool isexact, QualType Type, SourceLocation L);
1181  static FloatingLiteral *Create(ASTContext &C, EmptyShell Empty);
1182
1183  llvm::APFloat getValue() const { return Num.getValue(); }
1184  void setValue(ASTContext &C, const llvm::APFloat &Val) {
1185    Num.setValue(C, Val);
1186  }
1187
1188  bool isExact() const { return IsExact; }
1189  void setExact(bool E) { IsExact = E; }
1190
1191  /// getValueAsApproximateDouble - This returns the value as an inaccurate
1192  /// double.  Note that this may cause loss of precision, but is useful for
1193  /// debugging dumps, etc.
1194  double getValueAsApproximateDouble() const;
1195
1196  SourceLocation getLocation() const { return Loc; }
1197  void setLocation(SourceLocation L) { Loc = L; }
1198
1199  SourceRange getSourceRange() const { return SourceRange(Loc); }
1200
1201  static bool classof(const Stmt *T) {
1202    return T->getStmtClass() == FloatingLiteralClass;
1203  }
1204  static bool classof(const FloatingLiteral *) { return true; }
1205
1206  // Iterators
1207  child_range children() { return child_range(); }
1208};
1209
1210/// ImaginaryLiteral - We support imaginary integer and floating point literals,
1211/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
1212/// IntegerLiteral classes.  Instances of this class always have a Complex type
1213/// whose element type matches the subexpression.
1214///
1215class ImaginaryLiteral : public Expr {
1216  Stmt *Val;
1217public:
1218  ImaginaryLiteral(Expr *val, QualType Ty)
1219    : Expr(ImaginaryLiteralClass, Ty, VK_RValue, OK_Ordinary, false, false,
1220           false, false),
1221      Val(val) {}
1222
1223  /// \brief Build an empty imaginary literal.
1224  explicit ImaginaryLiteral(EmptyShell Empty)
1225    : Expr(ImaginaryLiteralClass, Empty) { }
1226
1227  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1228  Expr *getSubExpr() { return cast<Expr>(Val); }
1229  void setSubExpr(Expr *E) { Val = E; }
1230
1231  SourceRange getSourceRange() const { return Val->getSourceRange(); }
1232  static bool classof(const Stmt *T) {
1233    return T->getStmtClass() == ImaginaryLiteralClass;
1234  }
1235  static bool classof(const ImaginaryLiteral *) { return true; }
1236
1237  // Iterators
1238  child_range children() { return child_range(&Val, &Val+1); }
1239};
1240
1241/// StringLiteral - This represents a string literal expression, e.g. "foo"
1242/// or L"bar" (wide strings).  The actual string is returned by getStrData()
1243/// is NOT null-terminated, and the length of the string is determined by
1244/// calling getByteLength().  The C type for a string is always a
1245/// ConstantArrayType.  In C++, the char type is const qualified, in C it is
1246/// not.
1247///
1248/// Note that strings in C can be formed by concatenation of multiple string
1249/// literal pptokens in translation phase #6.  This keeps track of the locations
1250/// of each of these pieces.
1251///
1252/// Strings in C can also be truncated and extended by assigning into arrays,
1253/// e.g. with constructs like:
1254///   char X[2] = "foobar";
1255/// In this case, getByteLength() will return 6, but the string literal will
1256/// have type "char[2]".
1257class StringLiteral : public Expr {
1258public:
1259  enum StringKind {
1260    Ascii,
1261    Wide,
1262    UTF8,
1263    UTF16,
1264    UTF32
1265  };
1266
1267private:
1268  friend class ASTStmtReader;
1269
1270  const char *StrData;
1271  unsigned ByteLength;
1272  unsigned NumConcatenated;
1273  unsigned Kind : 3;
1274  bool IsPascal : 1;
1275  SourceLocation TokLocs[1];
1276
1277  StringLiteral(QualType Ty) :
1278    Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary, false, false, false,
1279         false) {}
1280
1281public:
1282  /// This is the "fully general" constructor that allows representation of
1283  /// strings formed from multiple concatenated tokens.
1284  static StringLiteral *Create(ASTContext &C, StringRef Str, StringKind Kind,
1285                               bool Pascal, QualType Ty,
1286                               const SourceLocation *Loc, unsigned NumStrs);
1287
1288  /// Simple constructor for string literals made from one token.
1289  static StringLiteral *Create(ASTContext &C, StringRef Str, StringKind Kind,
1290                               bool Pascal, QualType Ty,
1291                               SourceLocation Loc) {
1292    return Create(C, Str, Kind, Pascal, Ty, &Loc, 1);
1293  }
1294
1295  /// \brief Construct an empty string literal.
1296  static StringLiteral *CreateEmpty(ASTContext &C, unsigned NumStrs);
1297
1298  StringRef getString() const {
1299    return StringRef(StrData, ByteLength);
1300  }
1301
1302  unsigned getByteLength() const { return ByteLength; }
1303
1304  /// \brief Sets the string data to the given string data.
1305  void setString(ASTContext &C, StringRef Str);
1306
1307  StringKind getKind() const { return static_cast<StringKind>(Kind); }
1308  bool isAscii() const { return Kind == Ascii; }
1309  bool isWide() const { return Kind == Wide; }
1310  bool isUTF8() const { return Kind == UTF8; }
1311  bool isUTF16() const { return Kind == UTF16; }
1312  bool isUTF32() const { return Kind == UTF32; }
1313  bool isPascal() const { return IsPascal; }
1314
1315  bool containsNonAsciiOrNull() const {
1316    StringRef Str = getString();
1317    for (unsigned i = 0, e = Str.size(); i != e; ++i)
1318      if (!isascii(Str[i]) || !Str[i])
1319        return true;
1320    return false;
1321  }
1322  /// getNumConcatenated - Get the number of string literal tokens that were
1323  /// concatenated in translation phase #6 to form this string literal.
1324  unsigned getNumConcatenated() const { return NumConcatenated; }
1325
1326  SourceLocation getStrTokenLoc(unsigned TokNum) const {
1327    assert(TokNum < NumConcatenated && "Invalid tok number");
1328    return TokLocs[TokNum];
1329  }
1330  void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
1331    assert(TokNum < NumConcatenated && "Invalid tok number");
1332    TokLocs[TokNum] = L;
1333  }
1334
1335  /// getLocationOfByte - Return a source location that points to the specified
1336  /// byte of this string literal.
1337  ///
1338  /// Strings are amazingly complex.  They can be formed from multiple tokens
1339  /// and can have escape sequences in them in addition to the usual trigraph
1340  /// and escaped newline business.  This routine handles this complexity.
1341  ///
1342  SourceLocation getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
1343                                   const LangOptions &Features,
1344                                   const TargetInfo &Target) const;
1345
1346  typedef const SourceLocation *tokloc_iterator;
1347  tokloc_iterator tokloc_begin() const { return TokLocs; }
1348  tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; }
1349
1350  SourceRange getSourceRange() const {
1351    return SourceRange(TokLocs[0], TokLocs[NumConcatenated-1]);
1352  }
1353  static bool classof(const Stmt *T) {
1354    return T->getStmtClass() == StringLiteralClass;
1355  }
1356  static bool classof(const StringLiteral *) { return true; }
1357
1358  // Iterators
1359  child_range children() { return child_range(); }
1360};
1361
1362/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
1363/// AST node is only formed if full location information is requested.
1364class ParenExpr : public Expr {
1365  SourceLocation L, R;
1366  Stmt *Val;
1367public:
1368  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
1369    : Expr(ParenExprClass, val->getType(),
1370           val->getValueKind(), val->getObjectKind(),
1371           val->isTypeDependent(), val->isValueDependent(),
1372           val->isInstantiationDependent(),
1373           val->containsUnexpandedParameterPack()),
1374      L(l), R(r), Val(val) {}
1375
1376  /// \brief Construct an empty parenthesized expression.
1377  explicit ParenExpr(EmptyShell Empty)
1378    : Expr(ParenExprClass, Empty) { }
1379
1380  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1381  Expr *getSubExpr() { return cast<Expr>(Val); }
1382  void setSubExpr(Expr *E) { Val = E; }
1383
1384  SourceRange getSourceRange() const { return SourceRange(L, R); }
1385
1386  /// \brief Get the location of the left parentheses '('.
1387  SourceLocation getLParen() const { return L; }
1388  void setLParen(SourceLocation Loc) { L = Loc; }
1389
1390  /// \brief Get the location of the right parentheses ')'.
1391  SourceLocation getRParen() const { return R; }
1392  void setRParen(SourceLocation Loc) { R = Loc; }
1393
1394  static bool classof(const Stmt *T) {
1395    return T->getStmtClass() == ParenExprClass;
1396  }
1397  static bool classof(const ParenExpr *) { return true; }
1398
1399  // Iterators
1400  child_range children() { return child_range(&Val, &Val+1); }
1401};
1402
1403
1404/// UnaryOperator - This represents the unary-expression's (except sizeof and
1405/// alignof), the postinc/postdec operators from postfix-expression, and various
1406/// extensions.
1407///
1408/// Notes on various nodes:
1409///
1410/// Real/Imag - These return the real/imag part of a complex operand.  If
1411///   applied to a non-complex value, the former returns its operand and the
1412///   later returns zero in the type of the operand.
1413///
1414class UnaryOperator : public Expr {
1415public:
1416  typedef UnaryOperatorKind Opcode;
1417
1418private:
1419  unsigned Opc : 5;
1420  SourceLocation Loc;
1421  Stmt *Val;
1422public:
1423
1424  UnaryOperator(Expr *input, Opcode opc, QualType type,
1425                ExprValueKind VK, ExprObjectKind OK, SourceLocation l)
1426    : Expr(UnaryOperatorClass, type, VK, OK,
1427           input->isTypeDependent() || type->isDependentType(),
1428           input->isValueDependent(),
1429           (input->isInstantiationDependent() ||
1430            type->isInstantiationDependentType()),
1431           input->containsUnexpandedParameterPack()),
1432      Opc(opc), Loc(l), Val(input) {}
1433
1434  /// \brief Build an empty unary operator.
1435  explicit UnaryOperator(EmptyShell Empty)
1436    : Expr(UnaryOperatorClass, Empty), Opc(UO_AddrOf) { }
1437
1438  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
1439  void setOpcode(Opcode O) { Opc = O; }
1440
1441  Expr *getSubExpr() const { return cast<Expr>(Val); }
1442  void setSubExpr(Expr *E) { Val = E; }
1443
1444  /// getOperatorLoc - Return the location of the operator.
1445  SourceLocation getOperatorLoc() const { return Loc; }
1446  void setOperatorLoc(SourceLocation L) { Loc = L; }
1447
1448  /// isPostfix - Return true if this is a postfix operation, like x++.
1449  static bool isPostfix(Opcode Op) {
1450    return Op == UO_PostInc || Op == UO_PostDec;
1451  }
1452
1453  /// isPrefix - Return true if this is a prefix operation, like --x.
1454  static bool isPrefix(Opcode Op) {
1455    return Op == UO_PreInc || Op == UO_PreDec;
1456  }
1457
1458  bool isPrefix() const { return isPrefix(getOpcode()); }
1459  bool isPostfix() const { return isPostfix(getOpcode()); }
1460  bool isIncrementOp() const {
1461    return Opc == UO_PreInc || Opc == UO_PostInc;
1462  }
1463  bool isIncrementDecrementOp() const {
1464    return Opc <= UO_PreDec;
1465  }
1466  static bool isArithmeticOp(Opcode Op) {
1467    return Op >= UO_Plus && Op <= UO_LNot;
1468  }
1469  bool isArithmeticOp() const { return isArithmeticOp(getOpcode()); }
1470
1471  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1472  /// corresponds to, e.g. "sizeof" or "[pre]++"
1473  static const char *getOpcodeStr(Opcode Op);
1474
1475  /// \brief Retrieve the unary opcode that corresponds to the given
1476  /// overloaded operator.
1477  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
1478
1479  /// \brief Retrieve the overloaded operator kind that corresponds to
1480  /// the given unary opcode.
1481  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
1482
1483  SourceRange getSourceRange() const {
1484    if (isPostfix())
1485      return SourceRange(Val->getLocStart(), Loc);
1486    else
1487      return SourceRange(Loc, Val->getLocEnd());
1488  }
1489  SourceLocation getExprLoc() const { return Loc; }
1490
1491  static bool classof(const Stmt *T) {
1492    return T->getStmtClass() == UnaryOperatorClass;
1493  }
1494  static bool classof(const UnaryOperator *) { return true; }
1495
1496  // Iterators
1497  child_range children() { return child_range(&Val, &Val+1); }
1498};
1499
1500/// OffsetOfExpr - [C99 7.17] - This represents an expression of the form
1501/// offsetof(record-type, member-designator). For example, given:
1502/// @code
1503/// struct S {
1504///   float f;
1505///   double d;
1506/// };
1507/// struct T {
1508///   int i;
1509///   struct S s[10];
1510/// };
1511/// @endcode
1512/// we can represent and evaluate the expression @c offsetof(struct T, s[2].d).
1513
1514class OffsetOfExpr : public Expr {
1515public:
1516  // __builtin_offsetof(type, identifier(.identifier|[expr])*)
1517  class OffsetOfNode {
1518  public:
1519    /// \brief The kind of offsetof node we have.
1520    enum Kind {
1521      /// \brief An index into an array.
1522      Array = 0x00,
1523      /// \brief A field.
1524      Field = 0x01,
1525      /// \brief A field in a dependent type, known only by its name.
1526      Identifier = 0x02,
1527      /// \brief An implicit indirection through a C++ base class, when the
1528      /// field found is in a base class.
1529      Base = 0x03
1530    };
1531
1532  private:
1533    enum { MaskBits = 2, Mask = 0x03 };
1534
1535    /// \brief The source range that covers this part of the designator.
1536    SourceRange Range;
1537
1538    /// \brief The data describing the designator, which comes in three
1539    /// different forms, depending on the lower two bits.
1540    ///   - An unsigned index into the array of Expr*'s stored after this node
1541    ///     in memory, for [constant-expression] designators.
1542    ///   - A FieldDecl*, for references to a known field.
1543    ///   - An IdentifierInfo*, for references to a field with a given name
1544    ///     when the class type is dependent.
1545    ///   - A CXXBaseSpecifier*, for references that look at a field in a
1546    ///     base class.
1547    uintptr_t Data;
1548
1549  public:
1550    /// \brief Create an offsetof node that refers to an array element.
1551    OffsetOfNode(SourceLocation LBracketLoc, unsigned Index,
1552                 SourceLocation RBracketLoc)
1553      : Range(LBracketLoc, RBracketLoc), Data((Index << 2) | Array) { }
1554
1555    /// \brief Create an offsetof node that refers to a field.
1556    OffsetOfNode(SourceLocation DotLoc, FieldDecl *Field,
1557                 SourceLocation NameLoc)
1558      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1559        Data(reinterpret_cast<uintptr_t>(Field) | OffsetOfNode::Field) { }
1560
1561    /// \brief Create an offsetof node that refers to an identifier.
1562    OffsetOfNode(SourceLocation DotLoc, IdentifierInfo *Name,
1563                 SourceLocation NameLoc)
1564      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1565        Data(reinterpret_cast<uintptr_t>(Name) | Identifier) { }
1566
1567    /// \brief Create an offsetof node that refers into a C++ base class.
1568    explicit OffsetOfNode(const CXXBaseSpecifier *Base)
1569      : Range(), Data(reinterpret_cast<uintptr_t>(Base) | OffsetOfNode::Base) {}
1570
1571    /// \brief Determine what kind of offsetof node this is.
1572    Kind getKind() const {
1573      return static_cast<Kind>(Data & Mask);
1574    }
1575
1576    /// \brief For an array element node, returns the index into the array
1577    /// of expressions.
1578    unsigned getArrayExprIndex() const {
1579      assert(getKind() == Array);
1580      return Data >> 2;
1581    }
1582
1583    /// \brief For a field offsetof node, returns the field.
1584    FieldDecl *getField() const {
1585      assert(getKind() == Field);
1586      return reinterpret_cast<FieldDecl *>(Data & ~(uintptr_t)Mask);
1587    }
1588
1589    /// \brief For a field or identifier offsetof node, returns the name of
1590    /// the field.
1591    IdentifierInfo *getFieldName() const;
1592
1593    /// \brief For a base class node, returns the base specifier.
1594    CXXBaseSpecifier *getBase() const {
1595      assert(getKind() == Base);
1596      return reinterpret_cast<CXXBaseSpecifier *>(Data & ~(uintptr_t)Mask);
1597    }
1598
1599    /// \brief Retrieve the source range that covers this offsetof node.
1600    ///
1601    /// For an array element node, the source range contains the locations of
1602    /// the square brackets. For a field or identifier node, the source range
1603    /// contains the location of the period (if there is one) and the
1604    /// identifier.
1605    SourceRange getSourceRange() const { return Range; }
1606  };
1607
1608private:
1609
1610  SourceLocation OperatorLoc, RParenLoc;
1611  // Base type;
1612  TypeSourceInfo *TSInfo;
1613  // Number of sub-components (i.e. instances of OffsetOfNode).
1614  unsigned NumComps;
1615  // Number of sub-expressions (i.e. array subscript expressions).
1616  unsigned NumExprs;
1617
1618  OffsetOfExpr(ASTContext &C, QualType type,
1619               SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1620               OffsetOfNode* compsPtr, unsigned numComps,
1621               Expr** exprsPtr, unsigned numExprs,
1622               SourceLocation RParenLoc);
1623
1624  explicit OffsetOfExpr(unsigned numComps, unsigned numExprs)
1625    : Expr(OffsetOfExprClass, EmptyShell()),
1626      TSInfo(0), NumComps(numComps), NumExprs(numExprs) {}
1627
1628public:
1629
1630  static OffsetOfExpr *Create(ASTContext &C, QualType type,
1631                              SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1632                              OffsetOfNode* compsPtr, unsigned numComps,
1633                              Expr** exprsPtr, unsigned numExprs,
1634                              SourceLocation RParenLoc);
1635
1636  static OffsetOfExpr *CreateEmpty(ASTContext &C,
1637                                   unsigned NumComps, unsigned NumExprs);
1638
1639  /// getOperatorLoc - Return the location of the operator.
1640  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1641  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
1642
1643  /// \brief Return the location of the right parentheses.
1644  SourceLocation getRParenLoc() const { return RParenLoc; }
1645  void setRParenLoc(SourceLocation R) { RParenLoc = R; }
1646
1647  TypeSourceInfo *getTypeSourceInfo() const {
1648    return TSInfo;
1649  }
1650  void setTypeSourceInfo(TypeSourceInfo *tsi) {
1651    TSInfo = tsi;
1652  }
1653
1654  const OffsetOfNode &getComponent(unsigned Idx) const {
1655    assert(Idx < NumComps && "Subscript out of range");
1656    return reinterpret_cast<const OffsetOfNode *> (this + 1)[Idx];
1657  }
1658
1659  void setComponent(unsigned Idx, OffsetOfNode ON) {
1660    assert(Idx < NumComps && "Subscript out of range");
1661    reinterpret_cast<OffsetOfNode *> (this + 1)[Idx] = ON;
1662  }
1663
1664  unsigned getNumComponents() const {
1665    return NumComps;
1666  }
1667
1668  Expr* getIndexExpr(unsigned Idx) {
1669    assert(Idx < NumExprs && "Subscript out of range");
1670    return reinterpret_cast<Expr **>(
1671                    reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx];
1672  }
1673  const Expr *getIndexExpr(unsigned Idx) const {
1674    return const_cast<OffsetOfExpr*>(this)->getIndexExpr(Idx);
1675  }
1676
1677  void setIndexExpr(unsigned Idx, Expr* E) {
1678    assert(Idx < NumComps && "Subscript out of range");
1679    reinterpret_cast<Expr **>(
1680                reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx] = E;
1681  }
1682
1683  unsigned getNumExpressions() const {
1684    return NumExprs;
1685  }
1686
1687  SourceRange getSourceRange() const {
1688    return SourceRange(OperatorLoc, RParenLoc);
1689  }
1690
1691  static bool classof(const Stmt *T) {
1692    return T->getStmtClass() == OffsetOfExprClass;
1693  }
1694
1695  static bool classof(const OffsetOfExpr *) { return true; }
1696
1697  // Iterators
1698  child_range children() {
1699    Stmt **begin =
1700      reinterpret_cast<Stmt**>(reinterpret_cast<OffsetOfNode*>(this + 1)
1701                               + NumComps);
1702    return child_range(begin, begin + NumExprs);
1703  }
1704};
1705
1706/// UnaryExprOrTypeTraitExpr - expression with either a type or (unevaluated)
1707/// expression operand.  Used for sizeof/alignof (C99 6.5.3.4) and
1708/// vec_step (OpenCL 1.1 6.11.12).
1709class UnaryExprOrTypeTraitExpr : public Expr {
1710  unsigned Kind : 2;
1711  bool isType : 1;    // true if operand is a type, false if an expression
1712  union {
1713    TypeSourceInfo *Ty;
1714    Stmt *Ex;
1715  } Argument;
1716  SourceLocation OpLoc, RParenLoc;
1717
1718public:
1719  UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, TypeSourceInfo *TInfo,
1720                           QualType resultType, SourceLocation op,
1721                           SourceLocation rp) :
1722      Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
1723           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1724           // Value-dependent if the argument is type-dependent.
1725           TInfo->getType()->isDependentType(),
1726           TInfo->getType()->isInstantiationDependentType(),
1727           TInfo->getType()->containsUnexpandedParameterPack()),
1728      Kind(ExprKind), isType(true), OpLoc(op), RParenLoc(rp) {
1729    Argument.Ty = TInfo;
1730  }
1731
1732  UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, Expr *E,
1733                           QualType resultType, SourceLocation op,
1734                           SourceLocation rp) :
1735      Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
1736           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1737           // Value-dependent if the argument is type-dependent.
1738           E->isTypeDependent(),
1739           E->isInstantiationDependent(),
1740           E->containsUnexpandedParameterPack()),
1741      Kind(ExprKind), isType(false), OpLoc(op), RParenLoc(rp) {
1742    Argument.Ex = E;
1743  }
1744
1745  /// \brief Construct an empty sizeof/alignof expression.
1746  explicit UnaryExprOrTypeTraitExpr(EmptyShell Empty)
1747    : Expr(UnaryExprOrTypeTraitExprClass, Empty) { }
1748
1749  UnaryExprOrTypeTrait getKind() const {
1750    return static_cast<UnaryExprOrTypeTrait>(Kind);
1751  }
1752  void setKind(UnaryExprOrTypeTrait K) { Kind = K; }
1753
1754  bool isArgumentType() const { return isType; }
1755  QualType getArgumentType() const {
1756    return getArgumentTypeInfo()->getType();
1757  }
1758  TypeSourceInfo *getArgumentTypeInfo() const {
1759    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
1760    return Argument.Ty;
1761  }
1762  Expr *getArgumentExpr() {
1763    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
1764    return static_cast<Expr*>(Argument.Ex);
1765  }
1766  const Expr *getArgumentExpr() const {
1767    return const_cast<UnaryExprOrTypeTraitExpr*>(this)->getArgumentExpr();
1768  }
1769
1770  void setArgument(Expr *E) { Argument.Ex = E; isType = false; }
1771  void setArgument(TypeSourceInfo *TInfo) {
1772    Argument.Ty = TInfo;
1773    isType = true;
1774  }
1775
1776  /// Gets the argument type, or the type of the argument expression, whichever
1777  /// is appropriate.
1778  QualType getTypeOfArgument() const {
1779    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
1780  }
1781
1782  SourceLocation getOperatorLoc() const { return OpLoc; }
1783  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
1784
1785  SourceLocation getRParenLoc() const { return RParenLoc; }
1786  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1787
1788  SourceRange getSourceRange() const {
1789    return SourceRange(OpLoc, RParenLoc);
1790  }
1791
1792  static bool classof(const Stmt *T) {
1793    return T->getStmtClass() == UnaryExprOrTypeTraitExprClass;
1794  }
1795  static bool classof(const UnaryExprOrTypeTraitExpr *) { return true; }
1796
1797  // Iterators
1798  child_range children();
1799};
1800
1801//===----------------------------------------------------------------------===//
1802// Postfix Operators.
1803//===----------------------------------------------------------------------===//
1804
1805/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
1806class ArraySubscriptExpr : public Expr {
1807  enum { LHS, RHS, END_EXPR=2 };
1808  Stmt* SubExprs[END_EXPR];
1809  SourceLocation RBracketLoc;
1810public:
1811  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
1812                     ExprValueKind VK, ExprObjectKind OK,
1813                     SourceLocation rbracketloc)
1814  : Expr(ArraySubscriptExprClass, t, VK, OK,
1815         lhs->isTypeDependent() || rhs->isTypeDependent(),
1816         lhs->isValueDependent() || rhs->isValueDependent(),
1817         (lhs->isInstantiationDependent() ||
1818          rhs->isInstantiationDependent()),
1819         (lhs->containsUnexpandedParameterPack() ||
1820          rhs->containsUnexpandedParameterPack())),
1821    RBracketLoc(rbracketloc) {
1822    SubExprs[LHS] = lhs;
1823    SubExprs[RHS] = rhs;
1824  }
1825
1826  /// \brief Create an empty array subscript expression.
1827  explicit ArraySubscriptExpr(EmptyShell Shell)
1828    : Expr(ArraySubscriptExprClass, Shell) { }
1829
1830  /// An array access can be written A[4] or 4[A] (both are equivalent).
1831  /// - getBase() and getIdx() always present the normalized view: A[4].
1832  ///    In this case getBase() returns "A" and getIdx() returns "4".
1833  /// - getLHS() and getRHS() present the syntactic view. e.g. for
1834  ///    4[A] getLHS() returns "4".
1835  /// Note: Because vector element access is also written A[4] we must
1836  /// predicate the format conversion in getBase and getIdx only on the
1837  /// the type of the RHS, as it is possible for the LHS to be a vector of
1838  /// integer type
1839  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
1840  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1841  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1842
1843  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
1844  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1845  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1846
1847  Expr *getBase() {
1848    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1849  }
1850
1851  const Expr *getBase() const {
1852    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1853  }
1854
1855  Expr *getIdx() {
1856    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1857  }
1858
1859  const Expr *getIdx() const {
1860    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1861  }
1862
1863  SourceRange getSourceRange() const {
1864    return SourceRange(getLHS()->getLocStart(), RBracketLoc);
1865  }
1866
1867  SourceLocation getRBracketLoc() const { return RBracketLoc; }
1868  void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
1869
1870  SourceLocation getExprLoc() const { return getBase()->getExprLoc(); }
1871
1872  static bool classof(const Stmt *T) {
1873    return T->getStmtClass() == ArraySubscriptExprClass;
1874  }
1875  static bool classof(const ArraySubscriptExpr *) { return true; }
1876
1877  // Iterators
1878  child_range children() {
1879    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
1880  }
1881};
1882
1883
1884/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
1885/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
1886/// while its subclasses may represent alternative syntax that (semantically)
1887/// results in a function call. For example, CXXOperatorCallExpr is
1888/// a subclass for overloaded operator calls that use operator syntax, e.g.,
1889/// "str1 + str2" to resolve to a function call.
1890class CallExpr : public Expr {
1891  enum { FN=0, PREARGS_START=1 };
1892  Stmt **SubExprs;
1893  unsigned NumArgs;
1894  SourceLocation RParenLoc;
1895
1896protected:
1897  // These versions of the constructor are for derived classes.
1898  CallExpr(ASTContext& C, StmtClass SC, Expr *fn, unsigned NumPreArgs,
1899           Expr **args, unsigned numargs, QualType t, ExprValueKind VK,
1900           SourceLocation rparenloc);
1901  CallExpr(ASTContext &C, StmtClass SC, unsigned NumPreArgs, EmptyShell Empty);
1902
1903  Stmt *getPreArg(unsigned i) {
1904    assert(i < getNumPreArgs() && "Prearg access out of range!");
1905    return SubExprs[PREARGS_START+i];
1906  }
1907  const Stmt *getPreArg(unsigned i) const {
1908    assert(i < getNumPreArgs() && "Prearg access out of range!");
1909    return SubExprs[PREARGS_START+i];
1910  }
1911  void setPreArg(unsigned i, Stmt *PreArg) {
1912    assert(i < getNumPreArgs() && "Prearg access out of range!");
1913    SubExprs[PREARGS_START+i] = PreArg;
1914  }
1915
1916  unsigned getNumPreArgs() const { return CallExprBits.NumPreArgs; }
1917
1918public:
1919  CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, QualType t,
1920           ExprValueKind VK, SourceLocation rparenloc);
1921
1922  /// \brief Build an empty call expression.
1923  CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty);
1924
1925  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
1926  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
1927  void setCallee(Expr *F) { SubExprs[FN] = F; }
1928
1929  Decl *getCalleeDecl();
1930  const Decl *getCalleeDecl() const {
1931    return const_cast<CallExpr*>(this)->getCalleeDecl();
1932  }
1933
1934  /// \brief If the callee is a FunctionDecl, return it. Otherwise return 0.
1935  FunctionDecl *getDirectCallee();
1936  const FunctionDecl *getDirectCallee() const {
1937    return const_cast<CallExpr*>(this)->getDirectCallee();
1938  }
1939
1940  /// getNumArgs - Return the number of actual arguments to this call.
1941  ///
1942  unsigned getNumArgs() const { return NumArgs; }
1943
1944  /// \brief Retrieve the call arguments.
1945  Expr **getArgs() {
1946    return reinterpret_cast<Expr **>(SubExprs+getNumPreArgs()+PREARGS_START);
1947  }
1948
1949  /// getArg - Return the specified argument.
1950  Expr *getArg(unsigned Arg) {
1951    assert(Arg < NumArgs && "Arg access out of range!");
1952    return cast<Expr>(SubExprs[Arg+getNumPreArgs()+PREARGS_START]);
1953  }
1954  const Expr *getArg(unsigned Arg) const {
1955    assert(Arg < NumArgs && "Arg access out of range!");
1956    return cast<Expr>(SubExprs[Arg+getNumPreArgs()+PREARGS_START]);
1957  }
1958
1959  /// setArg - Set the specified argument.
1960  void setArg(unsigned Arg, Expr *ArgExpr) {
1961    assert(Arg < NumArgs && "Arg access out of range!");
1962    SubExprs[Arg+getNumPreArgs()+PREARGS_START] = ArgExpr;
1963  }
1964
1965  /// setNumArgs - This changes the number of arguments present in this call.
1966  /// Any orphaned expressions are deleted by this, and any new operands are set
1967  /// to null.
1968  void setNumArgs(ASTContext& C, unsigned NumArgs);
1969
1970  typedef ExprIterator arg_iterator;
1971  typedef ConstExprIterator const_arg_iterator;
1972
1973  arg_iterator arg_begin() { return SubExprs+PREARGS_START+getNumPreArgs(); }
1974  arg_iterator arg_end() {
1975    return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
1976  }
1977  const_arg_iterator arg_begin() const {
1978    return SubExprs+PREARGS_START+getNumPreArgs();
1979  }
1980  const_arg_iterator arg_end() const {
1981    return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
1982  }
1983
1984  /// getNumCommas - Return the number of commas that must have been present in
1985  /// this function call.
1986  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
1987
1988  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
1989  /// not, return 0.
1990  unsigned isBuiltinCall(const ASTContext &Context) const;
1991
1992  /// getCallReturnType - Get the return type of the call expr. This is not
1993  /// always the type of the expr itself, if the return type is a reference
1994  /// type.
1995  QualType getCallReturnType() const;
1996
1997  SourceLocation getRParenLoc() const { return RParenLoc; }
1998  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1999
2000  SourceRange getSourceRange() const;
2001
2002  static bool classof(const Stmt *T) {
2003    return T->getStmtClass() >= firstCallExprConstant &&
2004           T->getStmtClass() <= lastCallExprConstant;
2005  }
2006  static bool classof(const CallExpr *) { return true; }
2007
2008  // Iterators
2009  child_range children() {
2010    return child_range(&SubExprs[0],
2011                       &SubExprs[0]+NumArgs+getNumPreArgs()+PREARGS_START);
2012  }
2013};
2014
2015/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.  X->F and X.F.
2016///
2017class MemberExpr : public Expr {
2018  /// Extra data stored in some member expressions.
2019  struct MemberNameQualifier {
2020    /// \brief The nested-name-specifier that qualifies the name, including
2021    /// source-location information.
2022    NestedNameSpecifierLoc QualifierLoc;
2023
2024    /// \brief The DeclAccessPair through which the MemberDecl was found due to
2025    /// name qualifiers.
2026    DeclAccessPair FoundDecl;
2027  };
2028
2029  /// Base - the expression for the base pointer or structure references.  In
2030  /// X.F, this is "X".
2031  Stmt *Base;
2032
2033  /// MemberDecl - This is the decl being referenced by the field/member name.
2034  /// In X.F, this is the decl referenced by F.
2035  ValueDecl *MemberDecl;
2036
2037  /// MemberLoc - This is the location of the member name.
2038  SourceLocation MemberLoc;
2039
2040  /// MemberDNLoc - Provides source/type location info for the
2041  /// declaration name embedded in MemberDecl.
2042  DeclarationNameLoc MemberDNLoc;
2043
2044  /// IsArrow - True if this is "X->F", false if this is "X.F".
2045  bool IsArrow : 1;
2046
2047  /// \brief True if this member expression used a nested-name-specifier to
2048  /// refer to the member, e.g., "x->Base::f", or found its member via a using
2049  /// declaration.  When true, a MemberNameQualifier
2050  /// structure is allocated immediately after the MemberExpr.
2051  bool HasQualifierOrFoundDecl : 1;
2052
2053  /// \brief True if this member expression specified a template argument list
2054  /// explicitly, e.g., x->f<int>. When true, an ExplicitTemplateArgumentList
2055  /// structure (and its TemplateArguments) are allocated immediately after
2056  /// the MemberExpr or, if the member expression also has a qualifier, after
2057  /// the MemberNameQualifier structure.
2058  bool HasExplicitTemplateArgumentList : 1;
2059
2060  /// \brief Retrieve the qualifier that preceded the member name, if any.
2061  MemberNameQualifier *getMemberQualifier() {
2062    assert(HasQualifierOrFoundDecl);
2063    return reinterpret_cast<MemberNameQualifier *> (this + 1);
2064  }
2065
2066  /// \brief Retrieve the qualifier that preceded the member name, if any.
2067  const MemberNameQualifier *getMemberQualifier() const {
2068    return const_cast<MemberExpr *>(this)->getMemberQualifier();
2069  }
2070
2071public:
2072  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
2073             const DeclarationNameInfo &NameInfo, QualType ty,
2074             ExprValueKind VK, ExprObjectKind OK)
2075    : Expr(MemberExprClass, ty, VK, OK,
2076           base->isTypeDependent(),
2077           base->isValueDependent(),
2078           base->isInstantiationDependent(),
2079           base->containsUnexpandedParameterPack()),
2080      Base(base), MemberDecl(memberdecl), MemberLoc(NameInfo.getLoc()),
2081      MemberDNLoc(NameInfo.getInfo()), IsArrow(isarrow),
2082      HasQualifierOrFoundDecl(false), HasExplicitTemplateArgumentList(false) {
2083    assert(memberdecl->getDeclName() == NameInfo.getName());
2084  }
2085
2086  // NOTE: this constructor should be used only when it is known that
2087  // the member name can not provide additional syntactic info
2088  // (i.e., source locations for C++ operator names or type source info
2089  // for constructors, destructors and conversion oeprators).
2090  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
2091             SourceLocation l, QualType ty,
2092             ExprValueKind VK, ExprObjectKind OK)
2093    : Expr(MemberExprClass, ty, VK, OK,
2094           base->isTypeDependent(), base->isValueDependent(),
2095           base->isInstantiationDependent(),
2096           base->containsUnexpandedParameterPack()),
2097      Base(base), MemberDecl(memberdecl), MemberLoc(l), MemberDNLoc(),
2098      IsArrow(isarrow),
2099      HasQualifierOrFoundDecl(false), HasExplicitTemplateArgumentList(false) {}
2100
2101  static MemberExpr *Create(ASTContext &C, Expr *base, bool isarrow,
2102                            NestedNameSpecifierLoc QualifierLoc,
2103                            ValueDecl *memberdecl, DeclAccessPair founddecl,
2104                            DeclarationNameInfo MemberNameInfo,
2105                            const TemplateArgumentListInfo *targs,
2106                            QualType ty, ExprValueKind VK, ExprObjectKind OK);
2107
2108  void setBase(Expr *E) { Base = E; }
2109  Expr *getBase() const { return cast<Expr>(Base); }
2110
2111  /// \brief Retrieve the member declaration to which this expression refers.
2112  ///
2113  /// The returned declaration will either be a FieldDecl or (in C++)
2114  /// a CXXMethodDecl.
2115  ValueDecl *getMemberDecl() const { return MemberDecl; }
2116  void setMemberDecl(ValueDecl *D) { MemberDecl = D; }
2117
2118  /// \brief Retrieves the declaration found by lookup.
2119  DeclAccessPair getFoundDecl() const {
2120    if (!HasQualifierOrFoundDecl)
2121      return DeclAccessPair::make(getMemberDecl(),
2122                                  getMemberDecl()->getAccess());
2123    return getMemberQualifier()->FoundDecl;
2124  }
2125
2126  /// \brief Determines whether this member expression actually had
2127  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
2128  /// x->Base::foo.
2129  bool hasQualifier() const { return getQualifier() != 0; }
2130
2131  /// \brief If the member name was qualified, retrieves the
2132  /// nested-name-specifier that precedes the member name. Otherwise, returns
2133  /// NULL.
2134  NestedNameSpecifier *getQualifier() const {
2135    if (!HasQualifierOrFoundDecl)
2136      return 0;
2137
2138    return getMemberQualifier()->QualifierLoc.getNestedNameSpecifier();
2139  }
2140
2141  /// \brief If the member name was qualified, retrieves the
2142  /// nested-name-specifier that precedes the member name, with source-location
2143  /// information.
2144  NestedNameSpecifierLoc getQualifierLoc() const {
2145    if (!hasQualifier())
2146      return NestedNameSpecifierLoc();
2147
2148    return getMemberQualifier()->QualifierLoc;
2149  }
2150
2151  /// \brief Determines whether this member expression actually had a C++
2152  /// template argument list explicitly specified, e.g., x.f<int>.
2153  bool hasExplicitTemplateArgs() const {
2154    return HasExplicitTemplateArgumentList;
2155  }
2156
2157  /// \brief Copies the template arguments (if present) into the given
2158  /// structure.
2159  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2160    if (hasExplicitTemplateArgs())
2161      getExplicitTemplateArgs().copyInto(List);
2162  }
2163
2164  /// \brief Retrieve the explicit template argument list that
2165  /// follow the member template name.  This must only be called on an
2166  /// expression with explicit template arguments.
2167  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
2168    assert(HasExplicitTemplateArgumentList);
2169    if (!HasQualifierOrFoundDecl)
2170      return *reinterpret_cast<ASTTemplateArgumentListInfo *>(this + 1);
2171
2172    return *reinterpret_cast<ASTTemplateArgumentListInfo *>(
2173                                                      getMemberQualifier() + 1);
2174  }
2175
2176  /// \brief Retrieve the explicit template argument list that
2177  /// followed the member template name.  This must only be called on
2178  /// an expression with explicit template arguments.
2179  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2180    return const_cast<MemberExpr *>(this)->getExplicitTemplateArgs();
2181  }
2182
2183  /// \brief Retrieves the optional explicit template arguments.
2184  /// This points to the same data as getExplicitTemplateArgs(), but
2185  /// returns null if there are no explicit template arguments.
2186  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() const {
2187    if (!hasExplicitTemplateArgs()) return 0;
2188    return &getExplicitTemplateArgs();
2189  }
2190
2191  /// \brief Retrieve the location of the left angle bracket following the
2192  /// member name ('<'), if any.
2193  SourceLocation getLAngleLoc() const {
2194    if (!HasExplicitTemplateArgumentList)
2195      return SourceLocation();
2196
2197    return getExplicitTemplateArgs().LAngleLoc;
2198  }
2199
2200  /// \brief Retrieve the template arguments provided as part of this
2201  /// template-id.
2202  const TemplateArgumentLoc *getTemplateArgs() const {
2203    if (!HasExplicitTemplateArgumentList)
2204      return 0;
2205
2206    return getExplicitTemplateArgs().getTemplateArgs();
2207  }
2208
2209  /// \brief Retrieve the number of template arguments provided as part of this
2210  /// template-id.
2211  unsigned getNumTemplateArgs() const {
2212    if (!HasExplicitTemplateArgumentList)
2213      return 0;
2214
2215    return getExplicitTemplateArgs().NumTemplateArgs;
2216  }
2217
2218  /// \brief Retrieve the location of the right angle bracket following the
2219  /// template arguments ('>').
2220  SourceLocation getRAngleLoc() const {
2221    if (!HasExplicitTemplateArgumentList)
2222      return SourceLocation();
2223
2224    return getExplicitTemplateArgs().RAngleLoc;
2225  }
2226
2227  /// \brief Retrieve the member declaration name info.
2228  DeclarationNameInfo getMemberNameInfo() const {
2229    return DeclarationNameInfo(MemberDecl->getDeclName(),
2230                               MemberLoc, MemberDNLoc);
2231  }
2232
2233  bool isArrow() const { return IsArrow; }
2234  void setArrow(bool A) { IsArrow = A; }
2235
2236  /// getMemberLoc - Return the location of the "member", in X->F, it is the
2237  /// location of 'F'.
2238  SourceLocation getMemberLoc() const { return MemberLoc; }
2239  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
2240
2241  SourceRange getSourceRange() const;
2242
2243  SourceLocation getExprLoc() const { return MemberLoc; }
2244
2245  /// \brief Determine whether the base of this explicit is implicit.
2246  bool isImplicitAccess() const {
2247    return getBase() && getBase()->isImplicitCXXThis();
2248  }
2249
2250  static bool classof(const Stmt *T) {
2251    return T->getStmtClass() == MemberExprClass;
2252  }
2253  static bool classof(const MemberExpr *) { return true; }
2254
2255  // Iterators
2256  child_range children() { return child_range(&Base, &Base+1); }
2257
2258  friend class ASTReader;
2259  friend class ASTStmtWriter;
2260};
2261
2262/// CompoundLiteralExpr - [C99 6.5.2.5]
2263///
2264class CompoundLiteralExpr : public Expr {
2265  /// LParenLoc - If non-null, this is the location of the left paren in a
2266  /// compound literal like "(int){4}".  This can be null if this is a
2267  /// synthesized compound expression.
2268  SourceLocation LParenLoc;
2269
2270  /// The type as written.  This can be an incomplete array type, in
2271  /// which case the actual expression type will be different.
2272  TypeSourceInfo *TInfo;
2273  Stmt *Init;
2274  bool FileScope;
2275public:
2276  CompoundLiteralExpr(SourceLocation lparenloc, TypeSourceInfo *tinfo,
2277                      QualType T, ExprValueKind VK, Expr *init, bool fileScope)
2278    : Expr(CompoundLiteralExprClass, T, VK, OK_Ordinary,
2279           tinfo->getType()->isDependentType(),
2280           init->isValueDependent(),
2281           (init->isInstantiationDependent() ||
2282            tinfo->getType()->isInstantiationDependentType()),
2283           init->containsUnexpandedParameterPack()),
2284      LParenLoc(lparenloc), TInfo(tinfo), Init(init), FileScope(fileScope) {}
2285
2286  /// \brief Construct an empty compound literal.
2287  explicit CompoundLiteralExpr(EmptyShell Empty)
2288    : Expr(CompoundLiteralExprClass, Empty) { }
2289
2290  const Expr *getInitializer() const { return cast<Expr>(Init); }
2291  Expr *getInitializer() { return cast<Expr>(Init); }
2292  void setInitializer(Expr *E) { Init = E; }
2293
2294  bool isFileScope() const { return FileScope; }
2295  void setFileScope(bool FS) { FileScope = FS; }
2296
2297  SourceLocation getLParenLoc() const { return LParenLoc; }
2298  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2299
2300  TypeSourceInfo *getTypeSourceInfo() const { return TInfo; }
2301  void setTypeSourceInfo(TypeSourceInfo* tinfo) { TInfo = tinfo; }
2302
2303  SourceRange getSourceRange() const {
2304    // FIXME: Init should never be null.
2305    if (!Init)
2306      return SourceRange();
2307    if (LParenLoc.isInvalid())
2308      return Init->getSourceRange();
2309    return SourceRange(LParenLoc, Init->getLocEnd());
2310  }
2311
2312  static bool classof(const Stmt *T) {
2313    return T->getStmtClass() == CompoundLiteralExprClass;
2314  }
2315  static bool classof(const CompoundLiteralExpr *) { return true; }
2316
2317  // Iterators
2318  child_range children() { return child_range(&Init, &Init+1); }
2319};
2320
2321/// CastExpr - Base class for type casts, including both implicit
2322/// casts (ImplicitCastExpr) and explicit casts that have some
2323/// representation in the source code (ExplicitCastExpr's derived
2324/// classes).
2325class CastExpr : public Expr {
2326public:
2327  typedef clang::CastKind CastKind;
2328
2329private:
2330  Stmt *Op;
2331
2332  void CheckCastConsistency() const;
2333
2334  const CXXBaseSpecifier * const *path_buffer() const {
2335    return const_cast<CastExpr*>(this)->path_buffer();
2336  }
2337  CXXBaseSpecifier **path_buffer();
2338
2339  void setBasePathSize(unsigned basePathSize) {
2340    CastExprBits.BasePathSize = basePathSize;
2341    assert(CastExprBits.BasePathSize == basePathSize &&
2342           "basePathSize doesn't fit in bits of CastExprBits.BasePathSize!");
2343  }
2344
2345protected:
2346  CastExpr(StmtClass SC, QualType ty, ExprValueKind VK,
2347           const CastKind kind, Expr *op, unsigned BasePathSize) :
2348    Expr(SC, ty, VK, OK_Ordinary,
2349         // Cast expressions are type-dependent if the type is
2350         // dependent (C++ [temp.dep.expr]p3).
2351         ty->isDependentType(),
2352         // Cast expressions are value-dependent if the type is
2353         // dependent or if the subexpression is value-dependent.
2354         ty->isDependentType() || (op && op->isValueDependent()),
2355         (ty->isInstantiationDependentType() ||
2356          (op && op->isInstantiationDependent())),
2357         (ty->containsUnexpandedParameterPack() ||
2358          op->containsUnexpandedParameterPack())),
2359    Op(op) {
2360    assert(kind != CK_Invalid && "creating cast with invalid cast kind");
2361    CastExprBits.Kind = kind;
2362    setBasePathSize(BasePathSize);
2363#ifndef NDEBUG
2364    CheckCastConsistency();
2365#endif
2366  }
2367
2368  /// \brief Construct an empty cast.
2369  CastExpr(StmtClass SC, EmptyShell Empty, unsigned BasePathSize)
2370    : Expr(SC, Empty) {
2371    setBasePathSize(BasePathSize);
2372  }
2373
2374public:
2375  CastKind getCastKind() const { return (CastKind) CastExprBits.Kind; }
2376  void setCastKind(CastKind K) { CastExprBits.Kind = K; }
2377  const char *getCastKindName() const;
2378
2379  Expr *getSubExpr() { return cast<Expr>(Op); }
2380  const Expr *getSubExpr() const { return cast<Expr>(Op); }
2381  void setSubExpr(Expr *E) { Op = E; }
2382
2383  /// \brief Retrieve the cast subexpression as it was written in the source
2384  /// code, looking through any implicit casts or other intermediate nodes
2385  /// introduced by semantic analysis.
2386  Expr *getSubExprAsWritten();
2387  const Expr *getSubExprAsWritten() const {
2388    return const_cast<CastExpr *>(this)->getSubExprAsWritten();
2389  }
2390
2391  typedef CXXBaseSpecifier **path_iterator;
2392  typedef const CXXBaseSpecifier * const *path_const_iterator;
2393  bool path_empty() const { return CastExprBits.BasePathSize == 0; }
2394  unsigned path_size() const { return CastExprBits.BasePathSize; }
2395  path_iterator path_begin() { return path_buffer(); }
2396  path_iterator path_end() { return path_buffer() + path_size(); }
2397  path_const_iterator path_begin() const { return path_buffer(); }
2398  path_const_iterator path_end() const { return path_buffer() + path_size(); }
2399
2400  void setCastPath(const CXXCastPath &Path);
2401
2402  static bool classof(const Stmt *T) {
2403    return T->getStmtClass() >= firstCastExprConstant &&
2404           T->getStmtClass() <= lastCastExprConstant;
2405  }
2406  static bool classof(const CastExpr *) { return true; }
2407
2408  // Iterators
2409  child_range children() { return child_range(&Op, &Op+1); }
2410};
2411
2412/// ImplicitCastExpr - Allows us to explicitly represent implicit type
2413/// conversions, which have no direct representation in the original
2414/// source code. For example: converting T[]->T*, void f()->void
2415/// (*f)(), float->double, short->int, etc.
2416///
2417/// In C, implicit casts always produce rvalues. However, in C++, an
2418/// implicit cast whose result is being bound to a reference will be
2419/// an lvalue or xvalue. For example:
2420///
2421/// @code
2422/// class Base { };
2423/// class Derived : public Base { };
2424/// Derived &&ref();
2425/// void f(Derived d) {
2426///   Base& b = d; // initializer is an ImplicitCastExpr
2427///                // to an lvalue of type Base
2428///   Base&& r = ref(); // initializer is an ImplicitCastExpr
2429///                     // to an xvalue of type Base
2430/// }
2431/// @endcode
2432class ImplicitCastExpr : public CastExpr {
2433private:
2434  ImplicitCastExpr(QualType ty, CastKind kind, Expr *op,
2435                   unsigned BasePathLength, ExprValueKind VK)
2436    : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, BasePathLength) {
2437  }
2438
2439  /// \brief Construct an empty implicit cast.
2440  explicit ImplicitCastExpr(EmptyShell Shell, unsigned PathSize)
2441    : CastExpr(ImplicitCastExprClass, Shell, PathSize) { }
2442
2443public:
2444  enum OnStack_t { OnStack };
2445  ImplicitCastExpr(OnStack_t _, QualType ty, CastKind kind, Expr *op,
2446                   ExprValueKind VK)
2447    : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, 0) {
2448  }
2449
2450  static ImplicitCastExpr *Create(ASTContext &Context, QualType T,
2451                                  CastKind Kind, Expr *Operand,
2452                                  const CXXCastPath *BasePath,
2453                                  ExprValueKind Cat);
2454
2455  static ImplicitCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize);
2456
2457  SourceRange getSourceRange() const {
2458    return getSubExpr()->getSourceRange();
2459  }
2460
2461  static bool classof(const Stmt *T) {
2462    return T->getStmtClass() == ImplicitCastExprClass;
2463  }
2464  static bool classof(const ImplicitCastExpr *) { return true; }
2465};
2466
2467inline Expr *Expr::IgnoreImpCasts() {
2468  Expr *e = this;
2469  while (ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
2470    e = ice->getSubExpr();
2471  return e;
2472}
2473
2474/// ExplicitCastExpr - An explicit cast written in the source
2475/// code.
2476///
2477/// This class is effectively an abstract class, because it provides
2478/// the basic representation of an explicitly-written cast without
2479/// specifying which kind of cast (C cast, functional cast, static
2480/// cast, etc.) was written; specific derived classes represent the
2481/// particular style of cast and its location information.
2482///
2483/// Unlike implicit casts, explicit cast nodes have two different
2484/// types: the type that was written into the source code, and the
2485/// actual type of the expression as determined by semantic
2486/// analysis. These types may differ slightly. For example, in C++ one
2487/// can cast to a reference type, which indicates that the resulting
2488/// expression will be an lvalue or xvalue. The reference type, however,
2489/// will not be used as the type of the expression.
2490class ExplicitCastExpr : public CastExpr {
2491  /// TInfo - Source type info for the (written) type
2492  /// this expression is casting to.
2493  TypeSourceInfo *TInfo;
2494
2495protected:
2496  ExplicitCastExpr(StmtClass SC, QualType exprTy, ExprValueKind VK,
2497                   CastKind kind, Expr *op, unsigned PathSize,
2498                   TypeSourceInfo *writtenTy)
2499    : CastExpr(SC, exprTy, VK, kind, op, PathSize), TInfo(writtenTy) {}
2500
2501  /// \brief Construct an empty explicit cast.
2502  ExplicitCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
2503    : CastExpr(SC, Shell, PathSize) { }
2504
2505public:
2506  /// getTypeInfoAsWritten - Returns the type source info for the type
2507  /// that this expression is casting to.
2508  TypeSourceInfo *getTypeInfoAsWritten() const { return TInfo; }
2509  void setTypeInfoAsWritten(TypeSourceInfo *writtenTy) { TInfo = writtenTy; }
2510
2511  /// getTypeAsWritten - Returns the type that this expression is
2512  /// casting to, as written in the source code.
2513  QualType getTypeAsWritten() const { return TInfo->getType(); }
2514
2515  static bool classof(const Stmt *T) {
2516     return T->getStmtClass() >= firstExplicitCastExprConstant &&
2517            T->getStmtClass() <= lastExplicitCastExprConstant;
2518  }
2519  static bool classof(const ExplicitCastExpr *) { return true; }
2520};
2521
2522/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
2523/// cast in C++ (C++ [expr.cast]), which uses the syntax
2524/// (Type)expr. For example: @c (int)f.
2525class CStyleCastExpr : public ExplicitCastExpr {
2526  SourceLocation LPLoc; // the location of the left paren
2527  SourceLocation RPLoc; // the location of the right paren
2528
2529  CStyleCastExpr(QualType exprTy, ExprValueKind vk, CastKind kind, Expr *op,
2530                 unsigned PathSize, TypeSourceInfo *writtenTy,
2531                 SourceLocation l, SourceLocation r)
2532    : ExplicitCastExpr(CStyleCastExprClass, exprTy, vk, kind, op, PathSize,
2533                       writtenTy), LPLoc(l), RPLoc(r) {}
2534
2535  /// \brief Construct an empty C-style explicit cast.
2536  explicit CStyleCastExpr(EmptyShell Shell, unsigned PathSize)
2537    : ExplicitCastExpr(CStyleCastExprClass, Shell, PathSize) { }
2538
2539public:
2540  static CStyleCastExpr *Create(ASTContext &Context, QualType T,
2541                                ExprValueKind VK, CastKind K,
2542                                Expr *Op, const CXXCastPath *BasePath,
2543                                TypeSourceInfo *WrittenTy, SourceLocation L,
2544                                SourceLocation R);
2545
2546  static CStyleCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize);
2547
2548  SourceLocation getLParenLoc() const { return LPLoc; }
2549  void setLParenLoc(SourceLocation L) { LPLoc = L; }
2550
2551  SourceLocation getRParenLoc() const { return RPLoc; }
2552  void setRParenLoc(SourceLocation L) { RPLoc = L; }
2553
2554  SourceRange getSourceRange() const {
2555    return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd());
2556  }
2557  static bool classof(const Stmt *T) {
2558    return T->getStmtClass() == CStyleCastExprClass;
2559  }
2560  static bool classof(const CStyleCastExpr *) { return true; }
2561};
2562
2563/// \brief A builtin binary operation expression such as "x + y" or "x <= y".
2564///
2565/// This expression node kind describes a builtin binary operation,
2566/// such as "x + y" for integer values "x" and "y". The operands will
2567/// already have been converted to appropriate types (e.g., by
2568/// performing promotions or conversions).
2569///
2570/// In C++, where operators may be overloaded, a different kind of
2571/// expression node (CXXOperatorCallExpr) is used to express the
2572/// invocation of an overloaded operator with operator syntax. Within
2573/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
2574/// used to store an expression "x + y" depends on the subexpressions
2575/// for x and y. If neither x or y is type-dependent, and the "+"
2576/// operator resolves to a built-in operation, BinaryOperator will be
2577/// used to express the computation (x and y may still be
2578/// value-dependent). If either x or y is type-dependent, or if the
2579/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
2580/// be used to express the computation.
2581class BinaryOperator : public Expr {
2582public:
2583  typedef BinaryOperatorKind Opcode;
2584
2585private:
2586  unsigned Opc : 6;
2587  SourceLocation OpLoc;
2588
2589  enum { LHS, RHS, END_EXPR };
2590  Stmt* SubExprs[END_EXPR];
2591public:
2592
2593  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2594                 ExprValueKind VK, ExprObjectKind OK,
2595                 SourceLocation opLoc)
2596    : Expr(BinaryOperatorClass, ResTy, VK, OK,
2597           lhs->isTypeDependent() || rhs->isTypeDependent(),
2598           lhs->isValueDependent() || rhs->isValueDependent(),
2599           (lhs->isInstantiationDependent() ||
2600            rhs->isInstantiationDependent()),
2601           (lhs->containsUnexpandedParameterPack() ||
2602            rhs->containsUnexpandedParameterPack())),
2603      Opc(opc), OpLoc(opLoc) {
2604    SubExprs[LHS] = lhs;
2605    SubExprs[RHS] = rhs;
2606    assert(!isCompoundAssignmentOp() &&
2607           "Use ArithAssignBinaryOperator for compound assignments");
2608  }
2609
2610  /// \brief Construct an empty binary operator.
2611  explicit BinaryOperator(EmptyShell Empty)
2612    : Expr(BinaryOperatorClass, Empty), Opc(BO_Comma) { }
2613
2614  SourceLocation getOperatorLoc() const { return OpLoc; }
2615  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
2616
2617  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
2618  void setOpcode(Opcode O) { Opc = O; }
2619
2620  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2621  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2622  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2623  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2624
2625  SourceRange getSourceRange() const {
2626    return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
2627  }
2628
2629  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
2630  /// corresponds to, e.g. "<<=".
2631  static const char *getOpcodeStr(Opcode Op);
2632
2633  const char *getOpcodeStr() const { return getOpcodeStr(getOpcode()); }
2634
2635  /// \brief Retrieve the binary opcode that corresponds to the given
2636  /// overloaded operator.
2637  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
2638
2639  /// \brief Retrieve the overloaded operator kind that corresponds to
2640  /// the given binary opcode.
2641  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
2642
2643  /// predicates to categorize the respective opcodes.
2644  bool isPtrMemOp() const { return Opc == BO_PtrMemD || Opc == BO_PtrMemI; }
2645  bool isMultiplicativeOp() const { return Opc >= BO_Mul && Opc <= BO_Rem; }
2646  static bool isAdditiveOp(Opcode Opc) { return Opc == BO_Add || Opc==BO_Sub; }
2647  bool isAdditiveOp() const { return isAdditiveOp(getOpcode()); }
2648  static bool isShiftOp(Opcode Opc) { return Opc == BO_Shl || Opc == BO_Shr; }
2649  bool isShiftOp() const { return isShiftOp(getOpcode()); }
2650
2651  static bool isBitwiseOp(Opcode Opc) { return Opc >= BO_And && Opc <= BO_Or; }
2652  bool isBitwiseOp() const { return isBitwiseOp(getOpcode()); }
2653
2654  static bool isRelationalOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_GE; }
2655  bool isRelationalOp() const { return isRelationalOp(getOpcode()); }
2656
2657  static bool isEqualityOp(Opcode Opc) { return Opc == BO_EQ || Opc == BO_NE; }
2658  bool isEqualityOp() const { return isEqualityOp(getOpcode()); }
2659
2660  static bool isComparisonOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_NE; }
2661  bool isComparisonOp() const { return isComparisonOp(getOpcode()); }
2662
2663  static bool isLogicalOp(Opcode Opc) { return Opc == BO_LAnd || Opc==BO_LOr; }
2664  bool isLogicalOp() const { return isLogicalOp(getOpcode()); }
2665
2666  static bool isAssignmentOp(Opcode Opc) {
2667    return Opc >= BO_Assign && Opc <= BO_OrAssign;
2668  }
2669  bool isAssignmentOp() const { return isAssignmentOp(getOpcode()); }
2670
2671  static bool isCompoundAssignmentOp(Opcode Opc) {
2672    return Opc > BO_Assign && Opc <= BO_OrAssign;
2673  }
2674  bool isCompoundAssignmentOp() const {
2675    return isCompoundAssignmentOp(getOpcode());
2676  }
2677
2678  static bool isShiftAssignOp(Opcode Opc) {
2679    return Opc == BO_ShlAssign || Opc == BO_ShrAssign;
2680  }
2681  bool isShiftAssignOp() const {
2682    return isShiftAssignOp(getOpcode());
2683  }
2684
2685  static bool classof(const Stmt *S) {
2686    return S->getStmtClass() >= firstBinaryOperatorConstant &&
2687           S->getStmtClass() <= lastBinaryOperatorConstant;
2688  }
2689  static bool classof(const BinaryOperator *) { return true; }
2690
2691  // Iterators
2692  child_range children() {
2693    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
2694  }
2695
2696protected:
2697  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2698                 ExprValueKind VK, ExprObjectKind OK,
2699                 SourceLocation opLoc, bool dead)
2700    : Expr(CompoundAssignOperatorClass, ResTy, VK, OK,
2701           lhs->isTypeDependent() || rhs->isTypeDependent(),
2702           lhs->isValueDependent() || rhs->isValueDependent(),
2703           (lhs->isInstantiationDependent() ||
2704            rhs->isInstantiationDependent()),
2705           (lhs->containsUnexpandedParameterPack() ||
2706            rhs->containsUnexpandedParameterPack())),
2707      Opc(opc), OpLoc(opLoc) {
2708    SubExprs[LHS] = lhs;
2709    SubExprs[RHS] = rhs;
2710  }
2711
2712  BinaryOperator(StmtClass SC, EmptyShell Empty)
2713    : Expr(SC, Empty), Opc(BO_MulAssign) { }
2714};
2715
2716/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
2717/// track of the type the operation is performed in.  Due to the semantics of
2718/// these operators, the operands are promoted, the arithmetic performed, an
2719/// implicit conversion back to the result type done, then the assignment takes
2720/// place.  This captures the intermediate type which the computation is done
2721/// in.
2722class CompoundAssignOperator : public BinaryOperator {
2723  QualType ComputationLHSType;
2724  QualType ComputationResultType;
2725public:
2726  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResType,
2727                         ExprValueKind VK, ExprObjectKind OK,
2728                         QualType CompLHSType, QualType CompResultType,
2729                         SourceLocation OpLoc)
2730    : BinaryOperator(lhs, rhs, opc, ResType, VK, OK, OpLoc, true),
2731      ComputationLHSType(CompLHSType),
2732      ComputationResultType(CompResultType) {
2733    assert(isCompoundAssignmentOp() &&
2734           "Only should be used for compound assignments");
2735  }
2736
2737  /// \brief Build an empty compound assignment operator expression.
2738  explicit CompoundAssignOperator(EmptyShell Empty)
2739    : BinaryOperator(CompoundAssignOperatorClass, Empty) { }
2740
2741  // The two computation types are the type the LHS is converted
2742  // to for the computation and the type of the result; the two are
2743  // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
2744  QualType getComputationLHSType() const { return ComputationLHSType; }
2745  void setComputationLHSType(QualType T) { ComputationLHSType = T; }
2746
2747  QualType getComputationResultType() const { return ComputationResultType; }
2748  void setComputationResultType(QualType T) { ComputationResultType = T; }
2749
2750  static bool classof(const CompoundAssignOperator *) { return true; }
2751  static bool classof(const Stmt *S) {
2752    return S->getStmtClass() == CompoundAssignOperatorClass;
2753  }
2754};
2755
2756/// AbstractConditionalOperator - An abstract base class for
2757/// ConditionalOperator and BinaryConditionalOperator.
2758class AbstractConditionalOperator : public Expr {
2759  SourceLocation QuestionLoc, ColonLoc;
2760  friend class ASTStmtReader;
2761
2762protected:
2763  AbstractConditionalOperator(StmtClass SC, QualType T,
2764                              ExprValueKind VK, ExprObjectKind OK,
2765                              bool TD, bool VD, bool ID,
2766                              bool ContainsUnexpandedParameterPack,
2767                              SourceLocation qloc,
2768                              SourceLocation cloc)
2769    : Expr(SC, T, VK, OK, TD, VD, ID, ContainsUnexpandedParameterPack),
2770      QuestionLoc(qloc), ColonLoc(cloc) {}
2771
2772  AbstractConditionalOperator(StmtClass SC, EmptyShell Empty)
2773    : Expr(SC, Empty) { }
2774
2775public:
2776  // getCond - Return the expression representing the condition for
2777  //   the ?: operator.
2778  Expr *getCond() const;
2779
2780  // getTrueExpr - Return the subexpression representing the value of
2781  //   the expression if the condition evaluates to true.
2782  Expr *getTrueExpr() const;
2783
2784  // getFalseExpr - Return the subexpression representing the value of
2785  //   the expression if the condition evaluates to false.  This is
2786  //   the same as getRHS.
2787  Expr *getFalseExpr() const;
2788
2789  SourceLocation getQuestionLoc() const { return QuestionLoc; }
2790  SourceLocation getColonLoc() const { return ColonLoc; }
2791
2792  static bool classof(const Stmt *T) {
2793    return T->getStmtClass() == ConditionalOperatorClass ||
2794           T->getStmtClass() == BinaryConditionalOperatorClass;
2795  }
2796  static bool classof(const AbstractConditionalOperator *) { return true; }
2797};
2798
2799/// ConditionalOperator - The ?: ternary operator.  The GNU "missing
2800/// middle" extension is a BinaryConditionalOperator.
2801class ConditionalOperator : public AbstractConditionalOperator {
2802  enum { COND, LHS, RHS, END_EXPR };
2803  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
2804
2805  friend class ASTStmtReader;
2806public:
2807  ConditionalOperator(Expr *cond, SourceLocation QLoc, Expr *lhs,
2808                      SourceLocation CLoc, Expr *rhs,
2809                      QualType t, ExprValueKind VK, ExprObjectKind OK)
2810    : AbstractConditionalOperator(ConditionalOperatorClass, t, VK, OK,
2811           // FIXME: the type of the conditional operator doesn't
2812           // depend on the type of the conditional, but the standard
2813           // seems to imply that it could. File a bug!
2814           (lhs->isTypeDependent() || rhs->isTypeDependent()),
2815           (cond->isValueDependent() || lhs->isValueDependent() ||
2816            rhs->isValueDependent()),
2817           (cond->isInstantiationDependent() ||
2818            lhs->isInstantiationDependent() ||
2819            rhs->isInstantiationDependent()),
2820           (cond->containsUnexpandedParameterPack() ||
2821            lhs->containsUnexpandedParameterPack() ||
2822            rhs->containsUnexpandedParameterPack()),
2823                                  QLoc, CLoc) {
2824    SubExprs[COND] = cond;
2825    SubExprs[LHS] = lhs;
2826    SubExprs[RHS] = rhs;
2827  }
2828
2829  /// \brief Build an empty conditional operator.
2830  explicit ConditionalOperator(EmptyShell Empty)
2831    : AbstractConditionalOperator(ConditionalOperatorClass, Empty) { }
2832
2833  // getCond - Return the expression representing the condition for
2834  //   the ?: operator.
2835  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
2836
2837  // getTrueExpr - Return the subexpression representing the value of
2838  //   the expression if the condition evaluates to true.
2839  Expr *getTrueExpr() const { return cast<Expr>(SubExprs[LHS]); }
2840
2841  // getFalseExpr - Return the subexpression representing the value of
2842  //   the expression if the condition evaluates to false.  This is
2843  //   the same as getRHS.
2844  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
2845
2846  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2847  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2848
2849  SourceRange getSourceRange() const {
2850    return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
2851  }
2852  static bool classof(const Stmt *T) {
2853    return T->getStmtClass() == ConditionalOperatorClass;
2854  }
2855  static bool classof(const ConditionalOperator *) { return true; }
2856
2857  // Iterators
2858  child_range children() {
2859    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
2860  }
2861};
2862
2863/// BinaryConditionalOperator - The GNU extension to the conditional
2864/// operator which allows the middle operand to be omitted.
2865///
2866/// This is a different expression kind on the assumption that almost
2867/// every client ends up needing to know that these are different.
2868class BinaryConditionalOperator : public AbstractConditionalOperator {
2869  enum { COMMON, COND, LHS, RHS, NUM_SUBEXPRS };
2870
2871  /// - the common condition/left-hand-side expression, which will be
2872  ///   evaluated as the opaque value
2873  /// - the condition, expressed in terms of the opaque value
2874  /// - the left-hand-side, expressed in terms of the opaque value
2875  /// - the right-hand-side
2876  Stmt *SubExprs[NUM_SUBEXPRS];
2877  OpaqueValueExpr *OpaqueValue;
2878
2879  friend class ASTStmtReader;
2880public:
2881  BinaryConditionalOperator(Expr *common, OpaqueValueExpr *opaqueValue,
2882                            Expr *cond, Expr *lhs, Expr *rhs,
2883                            SourceLocation qloc, SourceLocation cloc,
2884                            QualType t, ExprValueKind VK, ExprObjectKind OK)
2885    : AbstractConditionalOperator(BinaryConditionalOperatorClass, t, VK, OK,
2886           (common->isTypeDependent() || rhs->isTypeDependent()),
2887           (common->isValueDependent() || rhs->isValueDependent()),
2888           (common->isInstantiationDependent() ||
2889            rhs->isInstantiationDependent()),
2890           (common->containsUnexpandedParameterPack() ||
2891            rhs->containsUnexpandedParameterPack()),
2892                                  qloc, cloc),
2893      OpaqueValue(opaqueValue) {
2894    SubExprs[COMMON] = common;
2895    SubExprs[COND] = cond;
2896    SubExprs[LHS] = lhs;
2897    SubExprs[RHS] = rhs;
2898
2899    OpaqueValue->setSourceExpr(common);
2900  }
2901
2902  /// \brief Build an empty conditional operator.
2903  explicit BinaryConditionalOperator(EmptyShell Empty)
2904    : AbstractConditionalOperator(BinaryConditionalOperatorClass, Empty) { }
2905
2906  /// \brief getCommon - Return the common expression, written to the
2907  ///   left of the condition.  The opaque value will be bound to the
2908  ///   result of this expression.
2909  Expr *getCommon() const { return cast<Expr>(SubExprs[COMMON]); }
2910
2911  /// \brief getOpaqueValue - Return the opaque value placeholder.
2912  OpaqueValueExpr *getOpaqueValue() const { return OpaqueValue; }
2913
2914  /// \brief getCond - Return the condition expression; this is defined
2915  ///   in terms of the opaque value.
2916  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
2917
2918  /// \brief getTrueExpr - Return the subexpression which will be
2919  ///   evaluated if the condition evaluates to true;  this is defined
2920  ///   in terms of the opaque value.
2921  Expr *getTrueExpr() const {
2922    return cast<Expr>(SubExprs[LHS]);
2923  }
2924
2925  /// \brief getFalseExpr - Return the subexpression which will be
2926  ///   evaluated if the condnition evaluates to false; this is
2927  ///   defined in terms of the opaque value.
2928  Expr *getFalseExpr() const {
2929    return cast<Expr>(SubExprs[RHS]);
2930  }
2931
2932  SourceRange getSourceRange() const {
2933    return SourceRange(getCommon()->getLocStart(), getFalseExpr()->getLocEnd());
2934  }
2935  static bool classof(const Stmt *T) {
2936    return T->getStmtClass() == BinaryConditionalOperatorClass;
2937  }
2938  static bool classof(const BinaryConditionalOperator *) { return true; }
2939
2940  // Iterators
2941  child_range children() {
2942    return child_range(SubExprs, SubExprs + NUM_SUBEXPRS);
2943  }
2944};
2945
2946inline Expr *AbstractConditionalOperator::getCond() const {
2947  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
2948    return co->getCond();
2949  return cast<BinaryConditionalOperator>(this)->getCond();
2950}
2951
2952inline Expr *AbstractConditionalOperator::getTrueExpr() const {
2953  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
2954    return co->getTrueExpr();
2955  return cast<BinaryConditionalOperator>(this)->getTrueExpr();
2956}
2957
2958inline Expr *AbstractConditionalOperator::getFalseExpr() const {
2959  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
2960    return co->getFalseExpr();
2961  return cast<BinaryConditionalOperator>(this)->getFalseExpr();
2962}
2963
2964/// AddrLabelExpr - The GNU address of label extension, representing &&label.
2965class AddrLabelExpr : public Expr {
2966  SourceLocation AmpAmpLoc, LabelLoc;
2967  LabelDecl *Label;
2968public:
2969  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelDecl *L,
2970                QualType t)
2971    : Expr(AddrLabelExprClass, t, VK_RValue, OK_Ordinary, false, false, false,
2972           false),
2973      AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
2974
2975  /// \brief Build an empty address of a label expression.
2976  explicit AddrLabelExpr(EmptyShell Empty)
2977    : Expr(AddrLabelExprClass, Empty) { }
2978
2979  SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
2980  void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
2981  SourceLocation getLabelLoc() const { return LabelLoc; }
2982  void setLabelLoc(SourceLocation L) { LabelLoc = L; }
2983
2984  SourceRange getSourceRange() const {
2985    return SourceRange(AmpAmpLoc, LabelLoc);
2986  }
2987
2988  LabelDecl *getLabel() const { return Label; }
2989  void setLabel(LabelDecl *L) { Label = L; }
2990
2991  static bool classof(const Stmt *T) {
2992    return T->getStmtClass() == AddrLabelExprClass;
2993  }
2994  static bool classof(const AddrLabelExpr *) { return true; }
2995
2996  // Iterators
2997  child_range children() { return child_range(); }
2998};
2999
3000/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
3001/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
3002/// takes the value of the last subexpression.
3003///
3004/// A StmtExpr is always an r-value; values "returned" out of a
3005/// StmtExpr will be copied.
3006class StmtExpr : public Expr {
3007  Stmt *SubStmt;
3008  SourceLocation LParenLoc, RParenLoc;
3009public:
3010  // FIXME: Does type-dependence need to be computed differently?
3011  // FIXME: Do we need to compute instantiation instantiation-dependence for
3012  // statements? (ugh!)
3013  StmtExpr(CompoundStmt *substmt, QualType T,
3014           SourceLocation lp, SourceLocation rp) :
3015    Expr(StmtExprClass, T, VK_RValue, OK_Ordinary,
3016         T->isDependentType(), false, false, false),
3017    SubStmt(substmt), LParenLoc(lp), RParenLoc(rp) { }
3018
3019  /// \brief Build an empty statement expression.
3020  explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
3021
3022  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
3023  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
3024  void setSubStmt(CompoundStmt *S) { SubStmt = S; }
3025
3026  SourceRange getSourceRange() const {
3027    return SourceRange(LParenLoc, RParenLoc);
3028  }
3029
3030  SourceLocation getLParenLoc() const { return LParenLoc; }
3031  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
3032  SourceLocation getRParenLoc() const { return RParenLoc; }
3033  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3034
3035  static bool classof(const Stmt *T) {
3036    return T->getStmtClass() == StmtExprClass;
3037  }
3038  static bool classof(const StmtExpr *) { return true; }
3039
3040  // Iterators
3041  child_range children() { return child_range(&SubStmt, &SubStmt+1); }
3042};
3043
3044
3045/// ShuffleVectorExpr - clang-specific builtin-in function
3046/// __builtin_shufflevector.
3047/// This AST node represents a operator that does a constant
3048/// shuffle, similar to LLVM's shufflevector instruction. It takes
3049/// two vectors and a variable number of constant indices,
3050/// and returns the appropriately shuffled vector.
3051class ShuffleVectorExpr : public Expr {
3052  SourceLocation BuiltinLoc, RParenLoc;
3053
3054  // SubExprs - the list of values passed to the __builtin_shufflevector
3055  // function. The first two are vectors, and the rest are constant
3056  // indices.  The number of values in this list is always
3057  // 2+the number of indices in the vector type.
3058  Stmt **SubExprs;
3059  unsigned NumExprs;
3060
3061public:
3062  ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr,
3063                    QualType Type, SourceLocation BLoc,
3064                    SourceLocation RP);
3065
3066  /// \brief Build an empty vector-shuffle expression.
3067  explicit ShuffleVectorExpr(EmptyShell Empty)
3068    : Expr(ShuffleVectorExprClass, Empty), SubExprs(0) { }
3069
3070  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3071  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3072
3073  SourceLocation getRParenLoc() const { return RParenLoc; }
3074  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3075
3076  SourceRange getSourceRange() const {
3077    return SourceRange(BuiltinLoc, RParenLoc);
3078  }
3079  static bool classof(const Stmt *T) {
3080    return T->getStmtClass() == ShuffleVectorExprClass;
3081  }
3082  static bool classof(const ShuffleVectorExpr *) { return true; }
3083
3084  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
3085  /// constant expression, the actual arguments passed in, and the function
3086  /// pointers.
3087  unsigned getNumSubExprs() const { return NumExprs; }
3088
3089  /// \brief Retrieve the array of expressions.
3090  Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
3091
3092  /// getExpr - Return the Expr at the specified index.
3093  Expr *getExpr(unsigned Index) {
3094    assert((Index < NumExprs) && "Arg access out of range!");
3095    return cast<Expr>(SubExprs[Index]);
3096  }
3097  const Expr *getExpr(unsigned Index) const {
3098    assert((Index < NumExprs) && "Arg access out of range!");
3099    return cast<Expr>(SubExprs[Index]);
3100  }
3101
3102  void setExprs(ASTContext &C, Expr ** Exprs, unsigned NumExprs);
3103
3104  unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) {
3105    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
3106    return getExpr(N+2)->EvaluateAsInt(Ctx).getZExtValue();
3107  }
3108
3109  // Iterators
3110  child_range children() {
3111    return child_range(&SubExprs[0], &SubExprs[0]+NumExprs);
3112  }
3113};
3114
3115/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
3116/// This AST node is similar to the conditional operator (?:) in C, with
3117/// the following exceptions:
3118/// - the test expression must be a integer constant expression.
3119/// - the expression returned acts like the chosen subexpression in every
3120///   visible way: the type is the same as that of the chosen subexpression,
3121///   and all predicates (whether it's an l-value, whether it's an integer
3122///   constant expression, etc.) return the same result as for the chosen
3123///   sub-expression.
3124class ChooseExpr : public Expr {
3125  enum { COND, LHS, RHS, END_EXPR };
3126  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
3127  SourceLocation BuiltinLoc, RParenLoc;
3128public:
3129  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs,
3130             QualType t, ExprValueKind VK, ExprObjectKind OK,
3131             SourceLocation RP, bool TypeDependent, bool ValueDependent)
3132    : Expr(ChooseExprClass, t, VK, OK, TypeDependent, ValueDependent,
3133           (cond->isInstantiationDependent() ||
3134            lhs->isInstantiationDependent() ||
3135            rhs->isInstantiationDependent()),
3136           (cond->containsUnexpandedParameterPack() ||
3137            lhs->containsUnexpandedParameterPack() ||
3138            rhs->containsUnexpandedParameterPack())),
3139      BuiltinLoc(BLoc), RParenLoc(RP) {
3140      SubExprs[COND] = cond;
3141      SubExprs[LHS] = lhs;
3142      SubExprs[RHS] = rhs;
3143    }
3144
3145  /// \brief Build an empty __builtin_choose_expr.
3146  explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
3147
3148  /// isConditionTrue - Return whether the condition is true (i.e. not
3149  /// equal to zero).
3150  bool isConditionTrue(const ASTContext &C) const;
3151
3152  /// getChosenSubExpr - Return the subexpression chosen according to the
3153  /// condition.
3154  Expr *getChosenSubExpr(const ASTContext &C) const {
3155    return isConditionTrue(C) ? getLHS() : getRHS();
3156  }
3157
3158  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3159  void setCond(Expr *E) { SubExprs[COND] = E; }
3160  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
3161  void setLHS(Expr *E) { SubExprs[LHS] = E; }
3162  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
3163  void setRHS(Expr *E) { SubExprs[RHS] = E; }
3164
3165  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3166  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3167
3168  SourceLocation getRParenLoc() const { return RParenLoc; }
3169  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3170
3171  SourceRange getSourceRange() const {
3172    return SourceRange(BuiltinLoc, RParenLoc);
3173  }
3174  static bool classof(const Stmt *T) {
3175    return T->getStmtClass() == ChooseExprClass;
3176  }
3177  static bool classof(const ChooseExpr *) { return true; }
3178
3179  // Iterators
3180  child_range children() {
3181    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
3182  }
3183};
3184
3185/// GNUNullExpr - Implements the GNU __null extension, which is a name
3186/// for a null pointer constant that has integral type (e.g., int or
3187/// long) and is the same size and alignment as a pointer. The __null
3188/// extension is typically only used by system headers, which define
3189/// NULL as __null in C++ rather than using 0 (which is an integer
3190/// that may not match the size of a pointer).
3191class GNUNullExpr : public Expr {
3192  /// TokenLoc - The location of the __null keyword.
3193  SourceLocation TokenLoc;
3194
3195public:
3196  GNUNullExpr(QualType Ty, SourceLocation Loc)
3197    : Expr(GNUNullExprClass, Ty, VK_RValue, OK_Ordinary, false, false, false,
3198           false),
3199      TokenLoc(Loc) { }
3200
3201  /// \brief Build an empty GNU __null expression.
3202  explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
3203
3204  /// getTokenLocation - The location of the __null token.
3205  SourceLocation getTokenLocation() const { return TokenLoc; }
3206  void setTokenLocation(SourceLocation L) { TokenLoc = L; }
3207
3208  SourceRange getSourceRange() const {
3209    return SourceRange(TokenLoc);
3210  }
3211  static bool classof(const Stmt *T) {
3212    return T->getStmtClass() == GNUNullExprClass;
3213  }
3214  static bool classof(const GNUNullExpr *) { return true; }
3215
3216  // Iterators
3217  child_range children() { return child_range(); }
3218};
3219
3220/// VAArgExpr, used for the builtin function __builtin_va_arg.
3221class VAArgExpr : public Expr {
3222  Stmt *Val;
3223  TypeSourceInfo *TInfo;
3224  SourceLocation BuiltinLoc, RParenLoc;
3225public:
3226  VAArgExpr(SourceLocation BLoc, Expr* e, TypeSourceInfo *TInfo,
3227            SourceLocation RPLoc, QualType t)
3228    : Expr(VAArgExprClass, t, VK_RValue, OK_Ordinary,
3229           t->isDependentType(), false,
3230           (TInfo->getType()->isInstantiationDependentType() ||
3231            e->isInstantiationDependent()),
3232           (TInfo->getType()->containsUnexpandedParameterPack() ||
3233            e->containsUnexpandedParameterPack())),
3234      Val(e), TInfo(TInfo),
3235      BuiltinLoc(BLoc),
3236      RParenLoc(RPLoc) { }
3237
3238  /// \brief Create an empty __builtin_va_arg expression.
3239  explicit VAArgExpr(EmptyShell Empty) : Expr(VAArgExprClass, Empty) { }
3240
3241  const Expr *getSubExpr() const { return cast<Expr>(Val); }
3242  Expr *getSubExpr() { return cast<Expr>(Val); }
3243  void setSubExpr(Expr *E) { Val = E; }
3244
3245  TypeSourceInfo *getWrittenTypeInfo() const { return TInfo; }
3246  void setWrittenTypeInfo(TypeSourceInfo *TI) { TInfo = TI; }
3247
3248  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3249  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3250
3251  SourceLocation getRParenLoc() const { return RParenLoc; }
3252  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3253
3254  SourceRange getSourceRange() const {
3255    return SourceRange(BuiltinLoc, RParenLoc);
3256  }
3257  static bool classof(const Stmt *T) {
3258    return T->getStmtClass() == VAArgExprClass;
3259  }
3260  static bool classof(const VAArgExpr *) { return true; }
3261
3262  // Iterators
3263  child_range children() { return child_range(&Val, &Val+1); }
3264};
3265
3266/// @brief Describes an C or C++ initializer list.
3267///
3268/// InitListExpr describes an initializer list, which can be used to
3269/// initialize objects of different types, including
3270/// struct/class/union types, arrays, and vectors. For example:
3271///
3272/// @code
3273/// struct foo x = { 1, { 2, 3 } };
3274/// @endcode
3275///
3276/// Prior to semantic analysis, an initializer list will represent the
3277/// initializer list as written by the user, but will have the
3278/// placeholder type "void". This initializer list is called the
3279/// syntactic form of the initializer, and may contain C99 designated
3280/// initializers (represented as DesignatedInitExprs), initializations
3281/// of subobject members without explicit braces, and so on. Clients
3282/// interested in the original syntax of the initializer list should
3283/// use the syntactic form of the initializer list.
3284///
3285/// After semantic analysis, the initializer list will represent the
3286/// semantic form of the initializer, where the initializations of all
3287/// subobjects are made explicit with nested InitListExpr nodes and
3288/// C99 designators have been eliminated by placing the designated
3289/// initializations into the subobject they initialize. Additionally,
3290/// any "holes" in the initialization, where no initializer has been
3291/// specified for a particular subobject, will be replaced with
3292/// implicitly-generated ImplicitValueInitExpr expressions that
3293/// value-initialize the subobjects. Note, however, that the
3294/// initializer lists may still have fewer initializers than there are
3295/// elements to initialize within the object.
3296///
3297/// Given the semantic form of the initializer list, one can retrieve
3298/// the original syntactic form of that initializer list (if it
3299/// exists) using getSyntacticForm(). Since many initializer lists
3300/// have the same syntactic and semantic forms, getSyntacticForm() may
3301/// return NULL, indicating that the current initializer list also
3302/// serves as its syntactic form.
3303class InitListExpr : public Expr {
3304  // FIXME: Eliminate this vector in favor of ASTContext allocation
3305  typedef ASTVector<Stmt *> InitExprsTy;
3306  InitExprsTy InitExprs;
3307  SourceLocation LBraceLoc, RBraceLoc;
3308
3309  /// Contains the initializer list that describes the syntactic form
3310  /// written in the source code.
3311  InitListExpr *SyntacticForm;
3312
3313  /// \brief Either:
3314  ///  If this initializer list initializes an array with more elements than
3315  ///  there are initializers in the list, specifies an expression to be used
3316  ///  for value initialization of the rest of the elements.
3317  /// Or
3318  ///  If this initializer list initializes a union, specifies which
3319  ///  field within the union will be initialized.
3320  llvm::PointerUnion<Expr *, FieldDecl *> ArrayFillerOrUnionFieldInit;
3321
3322  /// Whether this initializer list originally had a GNU array-range
3323  /// designator in it. This is a temporary marker used by CodeGen.
3324  bool HadArrayRangeDesignator;
3325
3326public:
3327  InitListExpr(ASTContext &C, SourceLocation lbraceloc,
3328               Expr **initexprs, unsigned numinits,
3329               SourceLocation rbraceloc);
3330
3331  /// \brief Build an empty initializer list.
3332  explicit InitListExpr(ASTContext &C, EmptyShell Empty)
3333    : Expr(InitListExprClass, Empty), InitExprs(C) { }
3334
3335  unsigned getNumInits() const { return InitExprs.size(); }
3336
3337  /// \brief Retrieve the set of initializers.
3338  Expr **getInits() { return reinterpret_cast<Expr **>(InitExprs.data()); }
3339
3340  const Expr *getInit(unsigned Init) const {
3341    assert(Init < getNumInits() && "Initializer access out of range!");
3342    return cast_or_null<Expr>(InitExprs[Init]);
3343  }
3344
3345  Expr *getInit(unsigned Init) {
3346    assert(Init < getNumInits() && "Initializer access out of range!");
3347    return cast_or_null<Expr>(InitExprs[Init]);
3348  }
3349
3350  void setInit(unsigned Init, Expr *expr) {
3351    assert(Init < getNumInits() && "Initializer access out of range!");
3352    InitExprs[Init] = expr;
3353  }
3354
3355  /// \brief Reserve space for some number of initializers.
3356  void reserveInits(ASTContext &C, unsigned NumInits);
3357
3358  /// @brief Specify the number of initializers
3359  ///
3360  /// If there are more than @p NumInits initializers, the remaining
3361  /// initializers will be destroyed. If there are fewer than @p
3362  /// NumInits initializers, NULL expressions will be added for the
3363  /// unknown initializers.
3364  void resizeInits(ASTContext &Context, unsigned NumInits);
3365
3366  /// @brief Updates the initializer at index @p Init with the new
3367  /// expression @p expr, and returns the old expression at that
3368  /// location.
3369  ///
3370  /// When @p Init is out of range for this initializer list, the
3371  /// initializer list will be extended with NULL expressions to
3372  /// accommodate the new entry.
3373  Expr *updateInit(ASTContext &C, unsigned Init, Expr *expr);
3374
3375  /// \brief If this initializer list initializes an array with more elements
3376  /// than there are initializers in the list, specifies an expression to be
3377  /// used for value initialization of the rest of the elements.
3378  Expr *getArrayFiller() {
3379    return ArrayFillerOrUnionFieldInit.dyn_cast<Expr *>();
3380  }
3381  const Expr *getArrayFiller() const {
3382    return const_cast<InitListExpr *>(this)->getArrayFiller();
3383  }
3384  void setArrayFiller(Expr *filler);
3385
3386  /// \brief If this initializes a union, specifies which field in the
3387  /// union to initialize.
3388  ///
3389  /// Typically, this field is the first named field within the
3390  /// union. However, a designated initializer can specify the
3391  /// initialization of a different field within the union.
3392  FieldDecl *getInitializedFieldInUnion() {
3393    return ArrayFillerOrUnionFieldInit.dyn_cast<FieldDecl *>();
3394  }
3395  const FieldDecl *getInitializedFieldInUnion() const {
3396    return const_cast<InitListExpr *>(this)->getInitializedFieldInUnion();
3397  }
3398  void setInitializedFieldInUnion(FieldDecl *FD) {
3399    ArrayFillerOrUnionFieldInit = FD;
3400  }
3401
3402  // Explicit InitListExpr's originate from source code (and have valid source
3403  // locations). Implicit InitListExpr's are created by the semantic analyzer.
3404  bool isExplicit() {
3405    return LBraceLoc.isValid() && RBraceLoc.isValid();
3406  }
3407
3408  SourceLocation getLBraceLoc() const { return LBraceLoc; }
3409  void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
3410  SourceLocation getRBraceLoc() const { return RBraceLoc; }
3411  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
3412
3413  /// @brief Retrieve the initializer list that describes the
3414  /// syntactic form of the initializer.
3415  ///
3416  ///
3417  InitListExpr *getSyntacticForm() const { return SyntacticForm; }
3418  void setSyntacticForm(InitListExpr *Init) { SyntacticForm = Init; }
3419
3420  bool hadArrayRangeDesignator() const { return HadArrayRangeDesignator; }
3421  void sawArrayRangeDesignator(bool ARD = true) {
3422    HadArrayRangeDesignator = ARD;
3423  }
3424
3425  SourceRange getSourceRange() const;
3426
3427  static bool classof(const Stmt *T) {
3428    return T->getStmtClass() == InitListExprClass;
3429  }
3430  static bool classof(const InitListExpr *) { return true; }
3431
3432  // Iterators
3433  child_range children() {
3434    if (InitExprs.empty()) return child_range();
3435    return child_range(&InitExprs[0], &InitExprs[0] + InitExprs.size());
3436  }
3437
3438  typedef InitExprsTy::iterator iterator;
3439  typedef InitExprsTy::const_iterator const_iterator;
3440  typedef InitExprsTy::reverse_iterator reverse_iterator;
3441  typedef InitExprsTy::const_reverse_iterator const_reverse_iterator;
3442
3443  iterator begin() { return InitExprs.begin(); }
3444  const_iterator begin() const { return InitExprs.begin(); }
3445  iterator end() { return InitExprs.end(); }
3446  const_iterator end() const { return InitExprs.end(); }
3447  reverse_iterator rbegin() { return InitExprs.rbegin(); }
3448  const_reverse_iterator rbegin() const { return InitExprs.rbegin(); }
3449  reverse_iterator rend() { return InitExprs.rend(); }
3450  const_reverse_iterator rend() const { return InitExprs.rend(); }
3451
3452  friend class ASTStmtReader;
3453  friend class ASTStmtWriter;
3454};
3455
3456/// @brief Represents a C99 designated initializer expression.
3457///
3458/// A designated initializer expression (C99 6.7.8) contains one or
3459/// more designators (which can be field designators, array
3460/// designators, or GNU array-range designators) followed by an
3461/// expression that initializes the field or element(s) that the
3462/// designators refer to. For example, given:
3463///
3464/// @code
3465/// struct point {
3466///   double x;
3467///   double y;
3468/// };
3469/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
3470/// @endcode
3471///
3472/// The InitListExpr contains three DesignatedInitExprs, the first of
3473/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
3474/// designators, one array designator for @c [2] followed by one field
3475/// designator for @c .y. The initalization expression will be 1.0.
3476class DesignatedInitExpr : public Expr {
3477public:
3478  /// \brief Forward declaration of the Designator class.
3479  class Designator;
3480
3481private:
3482  /// The location of the '=' or ':' prior to the actual initializer
3483  /// expression.
3484  SourceLocation EqualOrColonLoc;
3485
3486  /// Whether this designated initializer used the GNU deprecated
3487  /// syntax rather than the C99 '=' syntax.
3488  bool GNUSyntax : 1;
3489
3490  /// The number of designators in this initializer expression.
3491  unsigned NumDesignators : 15;
3492
3493  /// \brief The designators in this designated initialization
3494  /// expression.
3495  Designator *Designators;
3496
3497  /// The number of subexpressions of this initializer expression,
3498  /// which contains both the initializer and any additional
3499  /// expressions used by array and array-range designators.
3500  unsigned NumSubExprs : 16;
3501
3502
3503  DesignatedInitExpr(ASTContext &C, QualType Ty, unsigned NumDesignators,
3504                     const Designator *Designators,
3505                     SourceLocation EqualOrColonLoc, bool GNUSyntax,
3506                     Expr **IndexExprs, unsigned NumIndexExprs,
3507                     Expr *Init);
3508
3509  explicit DesignatedInitExpr(unsigned NumSubExprs)
3510    : Expr(DesignatedInitExprClass, EmptyShell()),
3511      NumDesignators(0), Designators(0), NumSubExprs(NumSubExprs) { }
3512
3513public:
3514  /// A field designator, e.g., ".x".
3515  struct FieldDesignator {
3516    /// Refers to the field that is being initialized. The low bit
3517    /// of this field determines whether this is actually a pointer
3518    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
3519    /// initially constructed, a field designator will store an
3520    /// IdentifierInfo*. After semantic analysis has resolved that
3521    /// name, the field designator will instead store a FieldDecl*.
3522    uintptr_t NameOrField;
3523
3524    /// The location of the '.' in the designated initializer.
3525    unsigned DotLoc;
3526
3527    /// The location of the field name in the designated initializer.
3528    unsigned FieldLoc;
3529  };
3530
3531  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
3532  struct ArrayOrRangeDesignator {
3533    /// Location of the first index expression within the designated
3534    /// initializer expression's list of subexpressions.
3535    unsigned Index;
3536    /// The location of the '[' starting the array range designator.
3537    unsigned LBracketLoc;
3538    /// The location of the ellipsis separating the start and end
3539    /// indices. Only valid for GNU array-range designators.
3540    unsigned EllipsisLoc;
3541    /// The location of the ']' terminating the array range designator.
3542    unsigned RBracketLoc;
3543  };
3544
3545  /// @brief Represents a single C99 designator.
3546  ///
3547  /// @todo This class is infuriatingly similar to clang::Designator,
3548  /// but minor differences (storing indices vs. storing pointers)
3549  /// keep us from reusing it. Try harder, later, to rectify these
3550  /// differences.
3551  class Designator {
3552    /// @brief The kind of designator this describes.
3553    enum {
3554      FieldDesignator,
3555      ArrayDesignator,
3556      ArrayRangeDesignator
3557    } Kind;
3558
3559    union {
3560      /// A field designator, e.g., ".x".
3561      struct FieldDesignator Field;
3562      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
3563      struct ArrayOrRangeDesignator ArrayOrRange;
3564    };
3565    friend class DesignatedInitExpr;
3566
3567  public:
3568    Designator() {}
3569
3570    /// @brief Initializes a field designator.
3571    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
3572               SourceLocation FieldLoc)
3573      : Kind(FieldDesignator) {
3574      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
3575      Field.DotLoc = DotLoc.getRawEncoding();
3576      Field.FieldLoc = FieldLoc.getRawEncoding();
3577    }
3578
3579    /// @brief Initializes an array designator.
3580    Designator(unsigned Index, SourceLocation LBracketLoc,
3581               SourceLocation RBracketLoc)
3582      : Kind(ArrayDesignator) {
3583      ArrayOrRange.Index = Index;
3584      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3585      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
3586      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3587    }
3588
3589    /// @brief Initializes a GNU array-range designator.
3590    Designator(unsigned Index, SourceLocation LBracketLoc,
3591               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
3592      : Kind(ArrayRangeDesignator) {
3593      ArrayOrRange.Index = Index;
3594      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3595      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
3596      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3597    }
3598
3599    bool isFieldDesignator() const { return Kind == FieldDesignator; }
3600    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
3601    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
3602
3603    IdentifierInfo *getFieldName() const;
3604
3605    FieldDecl *getField() const {
3606      assert(Kind == FieldDesignator && "Only valid on a field designator");
3607      if (Field.NameOrField & 0x01)
3608        return 0;
3609      else
3610        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
3611    }
3612
3613    void setField(FieldDecl *FD) {
3614      assert(Kind == FieldDesignator && "Only valid on a field designator");
3615      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
3616    }
3617
3618    SourceLocation getDotLoc() const {
3619      assert(Kind == FieldDesignator && "Only valid on a field designator");
3620      return SourceLocation::getFromRawEncoding(Field.DotLoc);
3621    }
3622
3623    SourceLocation getFieldLoc() const {
3624      assert(Kind == FieldDesignator && "Only valid on a field designator");
3625      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
3626    }
3627
3628    SourceLocation getLBracketLoc() const {
3629      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3630             "Only valid on an array or array-range designator");
3631      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
3632    }
3633
3634    SourceLocation getRBracketLoc() const {
3635      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3636             "Only valid on an array or array-range designator");
3637      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
3638    }
3639
3640    SourceLocation getEllipsisLoc() const {
3641      assert(Kind == ArrayRangeDesignator &&
3642             "Only valid on an array-range designator");
3643      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
3644    }
3645
3646    unsigned getFirstExprIndex() const {
3647      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3648             "Only valid on an array or array-range designator");
3649      return ArrayOrRange.Index;
3650    }
3651
3652    SourceLocation getStartLocation() const {
3653      if (Kind == FieldDesignator)
3654        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
3655      else
3656        return getLBracketLoc();
3657    }
3658    SourceLocation getEndLocation() const {
3659      return Kind == FieldDesignator ? getFieldLoc() : getRBracketLoc();
3660    }
3661    SourceRange getSourceRange() const {
3662      return SourceRange(getStartLocation(), getEndLocation());
3663    }
3664  };
3665
3666  static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators,
3667                                    unsigned NumDesignators,
3668                                    Expr **IndexExprs, unsigned NumIndexExprs,
3669                                    SourceLocation EqualOrColonLoc,
3670                                    bool GNUSyntax, Expr *Init);
3671
3672  static DesignatedInitExpr *CreateEmpty(ASTContext &C, unsigned NumIndexExprs);
3673
3674  /// @brief Returns the number of designators in this initializer.
3675  unsigned size() const { return NumDesignators; }
3676
3677  // Iterator access to the designators.
3678  typedef Designator *designators_iterator;
3679  designators_iterator designators_begin() { return Designators; }
3680  designators_iterator designators_end() {
3681    return Designators + NumDesignators;
3682  }
3683
3684  typedef const Designator *const_designators_iterator;
3685  const_designators_iterator designators_begin() const { return Designators; }
3686  const_designators_iterator designators_end() const {
3687    return Designators + NumDesignators;
3688  }
3689
3690  typedef std::reverse_iterator<designators_iterator>
3691          reverse_designators_iterator;
3692  reverse_designators_iterator designators_rbegin() {
3693    return reverse_designators_iterator(designators_end());
3694  }
3695  reverse_designators_iterator designators_rend() {
3696    return reverse_designators_iterator(designators_begin());
3697  }
3698
3699  typedef std::reverse_iterator<const_designators_iterator>
3700          const_reverse_designators_iterator;
3701  const_reverse_designators_iterator designators_rbegin() const {
3702    return const_reverse_designators_iterator(designators_end());
3703  }
3704  const_reverse_designators_iterator designators_rend() const {
3705    return const_reverse_designators_iterator(designators_begin());
3706  }
3707
3708  Designator *getDesignator(unsigned Idx) { return &designators_begin()[Idx]; }
3709
3710  void setDesignators(ASTContext &C, const Designator *Desigs,
3711                      unsigned NumDesigs);
3712
3713  Expr *getArrayIndex(const Designator& D);
3714  Expr *getArrayRangeStart(const Designator& D);
3715  Expr *getArrayRangeEnd(const Designator& D);
3716
3717  /// @brief Retrieve the location of the '=' that precedes the
3718  /// initializer value itself, if present.
3719  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
3720  void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
3721
3722  /// @brief Determines whether this designated initializer used the
3723  /// deprecated GNU syntax for designated initializers.
3724  bool usesGNUSyntax() const { return GNUSyntax; }
3725  void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
3726
3727  /// @brief Retrieve the initializer value.
3728  Expr *getInit() const {
3729    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
3730  }
3731
3732  void setInit(Expr *init) {
3733    *child_begin() = init;
3734  }
3735
3736  /// \brief Retrieve the total number of subexpressions in this
3737  /// designated initializer expression, including the actual
3738  /// initialized value and any expressions that occur within array
3739  /// and array-range designators.
3740  unsigned getNumSubExprs() const { return NumSubExprs; }
3741
3742  Expr *getSubExpr(unsigned Idx) {
3743    assert(Idx < NumSubExprs && "Subscript out of range");
3744    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3745    Ptr += sizeof(DesignatedInitExpr);
3746    return reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx];
3747  }
3748
3749  void setSubExpr(unsigned Idx, Expr *E) {
3750    assert(Idx < NumSubExprs && "Subscript out of range");
3751    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3752    Ptr += sizeof(DesignatedInitExpr);
3753    reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx] = E;
3754  }
3755
3756  /// \brief Replaces the designator at index @p Idx with the series
3757  /// of designators in [First, Last).
3758  void ExpandDesignator(ASTContext &C, unsigned Idx, const Designator *First,
3759                        const Designator *Last);
3760
3761  SourceRange getDesignatorsSourceRange() const;
3762
3763  SourceRange getSourceRange() const;
3764
3765  static bool classof(const Stmt *T) {
3766    return T->getStmtClass() == DesignatedInitExprClass;
3767  }
3768  static bool classof(const DesignatedInitExpr *) { return true; }
3769
3770  // Iterators
3771  child_range children() {
3772    Stmt **begin = reinterpret_cast<Stmt**>(this + 1);
3773    return child_range(begin, begin + NumSubExprs);
3774  }
3775};
3776
3777/// \brief Represents an implicitly-generated value initialization of
3778/// an object of a given type.
3779///
3780/// Implicit value initializations occur within semantic initializer
3781/// list expressions (InitListExpr) as placeholders for subobject
3782/// initializations not explicitly specified by the user.
3783///
3784/// \see InitListExpr
3785class ImplicitValueInitExpr : public Expr {
3786public:
3787  explicit ImplicitValueInitExpr(QualType ty)
3788    : Expr(ImplicitValueInitExprClass, ty, VK_RValue, OK_Ordinary,
3789           false, false, ty->isInstantiationDependentType(), false) { }
3790
3791  /// \brief Construct an empty implicit value initialization.
3792  explicit ImplicitValueInitExpr(EmptyShell Empty)
3793    : Expr(ImplicitValueInitExprClass, Empty) { }
3794
3795  static bool classof(const Stmt *T) {
3796    return T->getStmtClass() == ImplicitValueInitExprClass;
3797  }
3798  static bool classof(const ImplicitValueInitExpr *) { return true; }
3799
3800  SourceRange getSourceRange() const {
3801    return SourceRange();
3802  }
3803
3804  // Iterators
3805  child_range children() { return child_range(); }
3806};
3807
3808
3809class ParenListExpr : public Expr {
3810  Stmt **Exprs;
3811  unsigned NumExprs;
3812  SourceLocation LParenLoc, RParenLoc;
3813
3814public:
3815  ParenListExpr(ASTContext& C, SourceLocation lparenloc, Expr **exprs,
3816                unsigned numexprs, SourceLocation rparenloc, QualType T);
3817
3818  /// \brief Build an empty paren list.
3819  explicit ParenListExpr(EmptyShell Empty) : Expr(ParenListExprClass, Empty) { }
3820
3821  unsigned getNumExprs() const { return NumExprs; }
3822
3823  const Expr* getExpr(unsigned Init) const {
3824    assert(Init < getNumExprs() && "Initializer access out of range!");
3825    return cast_or_null<Expr>(Exprs[Init]);
3826  }
3827
3828  Expr* getExpr(unsigned Init) {
3829    assert(Init < getNumExprs() && "Initializer access out of range!");
3830    return cast_or_null<Expr>(Exprs[Init]);
3831  }
3832
3833  Expr **getExprs() { return reinterpret_cast<Expr **>(Exprs); }
3834
3835  SourceLocation getLParenLoc() const { return LParenLoc; }
3836  SourceLocation getRParenLoc() const { return RParenLoc; }
3837
3838  SourceRange getSourceRange() const {
3839    return SourceRange(LParenLoc, RParenLoc);
3840  }
3841  static bool classof(const Stmt *T) {
3842    return T->getStmtClass() == ParenListExprClass;
3843  }
3844  static bool classof(const ParenListExpr *) { return true; }
3845
3846  // Iterators
3847  child_range children() {
3848    return child_range(&Exprs[0], &Exprs[0]+NumExprs);
3849  }
3850
3851  friend class ASTStmtReader;
3852  friend class ASTStmtWriter;
3853};
3854
3855
3856/// \brief Represents a C1X generic selection.
3857///
3858/// A generic selection (C1X 6.5.1.1) contains an unevaluated controlling
3859/// expression, followed by one or more generic associations.  Each generic
3860/// association specifies a type name and an expression, or "default" and an
3861/// expression (in which case it is known as a default generic association).
3862/// The type and value of the generic selection are identical to those of its
3863/// result expression, which is defined as the expression in the generic
3864/// association with a type name that is compatible with the type of the
3865/// controlling expression, or the expression in the default generic association
3866/// if no types are compatible.  For example:
3867///
3868/// @code
3869/// _Generic(X, double: 1, float: 2, default: 3)
3870/// @endcode
3871///
3872/// The above expression evaluates to 1 if 1.0 is substituted for X, 2 if 1.0f
3873/// or 3 if "hello".
3874///
3875/// As an extension, generic selections are allowed in C++, where the following
3876/// additional semantics apply:
3877///
3878/// Any generic selection whose controlling expression is type-dependent or
3879/// which names a dependent type in its association list is result-dependent,
3880/// which means that the choice of result expression is dependent.
3881/// Result-dependent generic associations are both type- and value-dependent.
3882class GenericSelectionExpr : public Expr {
3883  enum { CONTROLLING, END_EXPR };
3884  TypeSourceInfo **AssocTypes;
3885  Stmt **SubExprs;
3886  unsigned NumAssocs, ResultIndex;
3887  SourceLocation GenericLoc, DefaultLoc, RParenLoc;
3888
3889public:
3890  GenericSelectionExpr(ASTContext &Context,
3891                       SourceLocation GenericLoc, Expr *ControllingExpr,
3892                       TypeSourceInfo **AssocTypes, Expr **AssocExprs,
3893                       unsigned NumAssocs, SourceLocation DefaultLoc,
3894                       SourceLocation RParenLoc,
3895                       bool ContainsUnexpandedParameterPack,
3896                       unsigned ResultIndex);
3897
3898  /// This constructor is used in the result-dependent case.
3899  GenericSelectionExpr(ASTContext &Context,
3900                       SourceLocation GenericLoc, Expr *ControllingExpr,
3901                       TypeSourceInfo **AssocTypes, Expr **AssocExprs,
3902                       unsigned NumAssocs, SourceLocation DefaultLoc,
3903                       SourceLocation RParenLoc,
3904                       bool ContainsUnexpandedParameterPack);
3905
3906  explicit GenericSelectionExpr(EmptyShell Empty)
3907    : Expr(GenericSelectionExprClass, Empty) { }
3908
3909  unsigned getNumAssocs() const { return NumAssocs; }
3910
3911  SourceLocation getGenericLoc() const { return GenericLoc; }
3912  SourceLocation getDefaultLoc() const { return DefaultLoc; }
3913  SourceLocation getRParenLoc() const { return RParenLoc; }
3914
3915  const Expr *getAssocExpr(unsigned i) const {
3916    return cast<Expr>(SubExprs[END_EXPR+i]);
3917  }
3918  Expr *getAssocExpr(unsigned i) { return cast<Expr>(SubExprs[END_EXPR+i]); }
3919
3920  const TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) const {
3921    return AssocTypes[i];
3922  }
3923  TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) { return AssocTypes[i]; }
3924
3925  QualType getAssocType(unsigned i) const {
3926    if (const TypeSourceInfo *TS = getAssocTypeSourceInfo(i))
3927      return TS->getType();
3928    else
3929      return QualType();
3930  }
3931
3932  const Expr *getControllingExpr() const {
3933    return cast<Expr>(SubExprs[CONTROLLING]);
3934  }
3935  Expr *getControllingExpr() { return cast<Expr>(SubExprs[CONTROLLING]); }
3936
3937  /// Whether this generic selection is result-dependent.
3938  bool isResultDependent() const { return ResultIndex == -1U; }
3939
3940  /// The zero-based index of the result expression's generic association in
3941  /// the generic selection's association list.  Defined only if the
3942  /// generic selection is not result-dependent.
3943  unsigned getResultIndex() const {
3944    assert(!isResultDependent() && "Generic selection is result-dependent");
3945    return ResultIndex;
3946  }
3947
3948  /// The generic selection's result expression.  Defined only if the
3949  /// generic selection is not result-dependent.
3950  const Expr *getResultExpr() const { return getAssocExpr(getResultIndex()); }
3951  Expr *getResultExpr() { return getAssocExpr(getResultIndex()); }
3952
3953  SourceRange getSourceRange() const {
3954    return SourceRange(GenericLoc, RParenLoc);
3955  }
3956  static bool classof(const Stmt *T) {
3957    return T->getStmtClass() == GenericSelectionExprClass;
3958  }
3959  static bool classof(const GenericSelectionExpr *) { return true; }
3960
3961  child_range children() {
3962    return child_range(SubExprs, SubExprs+END_EXPR+NumAssocs);
3963  }
3964
3965  friend class ASTStmtReader;
3966};
3967
3968//===----------------------------------------------------------------------===//
3969// Clang Extensions
3970//===----------------------------------------------------------------------===//
3971
3972
3973/// ExtVectorElementExpr - This represents access to specific elements of a
3974/// vector, and may occur on the left hand side or right hand side.  For example
3975/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
3976///
3977/// Note that the base may have either vector or pointer to vector type, just
3978/// like a struct field reference.
3979///
3980class ExtVectorElementExpr : public Expr {
3981  Stmt *Base;
3982  IdentifierInfo *Accessor;
3983  SourceLocation AccessorLoc;
3984public:
3985  ExtVectorElementExpr(QualType ty, ExprValueKind VK, Expr *base,
3986                       IdentifierInfo &accessor, SourceLocation loc)
3987    : Expr(ExtVectorElementExprClass, ty, VK,
3988           (VK == VK_RValue ? OK_Ordinary : OK_VectorComponent),
3989           base->isTypeDependent(), base->isValueDependent(),
3990           base->isInstantiationDependent(),
3991           base->containsUnexpandedParameterPack()),
3992      Base(base), Accessor(&accessor), AccessorLoc(loc) {}
3993
3994  /// \brief Build an empty vector element expression.
3995  explicit ExtVectorElementExpr(EmptyShell Empty)
3996    : Expr(ExtVectorElementExprClass, Empty) { }
3997
3998  const Expr *getBase() const { return cast<Expr>(Base); }
3999  Expr *getBase() { return cast<Expr>(Base); }
4000  void setBase(Expr *E) { Base = E; }
4001
4002  IdentifierInfo &getAccessor() const { return *Accessor; }
4003  void setAccessor(IdentifierInfo *II) { Accessor = II; }
4004
4005  SourceLocation getAccessorLoc() const { return AccessorLoc; }
4006  void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
4007
4008  /// getNumElements - Get the number of components being selected.
4009  unsigned getNumElements() const;
4010
4011  /// containsDuplicateElements - Return true if any element access is
4012  /// repeated.
4013  bool containsDuplicateElements() const;
4014
4015  /// getEncodedElementAccess - Encode the elements accessed into an llvm
4016  /// aggregate Constant of ConstantInt(s).
4017  void getEncodedElementAccess(SmallVectorImpl<unsigned> &Elts) const;
4018
4019  SourceRange getSourceRange() const {
4020    return SourceRange(getBase()->getLocStart(), AccessorLoc);
4021  }
4022
4023  /// isArrow - Return true if the base expression is a pointer to vector,
4024  /// return false if the base expression is a vector.
4025  bool isArrow() const;
4026
4027  static bool classof(const Stmt *T) {
4028    return T->getStmtClass() == ExtVectorElementExprClass;
4029  }
4030  static bool classof(const ExtVectorElementExpr *) { return true; }
4031
4032  // Iterators
4033  child_range children() { return child_range(&Base, &Base+1); }
4034};
4035
4036
4037/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
4038/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
4039class BlockExpr : public Expr {
4040protected:
4041  BlockDecl *TheBlock;
4042public:
4043  BlockExpr(BlockDecl *BD, QualType ty)
4044    : Expr(BlockExprClass, ty, VK_RValue, OK_Ordinary,
4045           ty->isDependentType(), false,
4046           // FIXME: Check for instantiate-dependence in the statement?
4047           ty->isInstantiationDependentType(),
4048           false),
4049      TheBlock(BD) {}
4050
4051  /// \brief Build an empty block expression.
4052  explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { }
4053
4054  const BlockDecl *getBlockDecl() const { return TheBlock; }
4055  BlockDecl *getBlockDecl() { return TheBlock; }
4056  void setBlockDecl(BlockDecl *BD) { TheBlock = BD; }
4057
4058  // Convenience functions for probing the underlying BlockDecl.
4059  SourceLocation getCaretLocation() const;
4060  const Stmt *getBody() const;
4061  Stmt *getBody();
4062
4063  SourceRange getSourceRange() const {
4064    return SourceRange(getCaretLocation(), getBody()->getLocEnd());
4065  }
4066
4067  /// getFunctionType - Return the underlying function type for this block.
4068  const FunctionType *getFunctionType() const;
4069
4070  static bool classof(const Stmt *T) {
4071    return T->getStmtClass() == BlockExprClass;
4072  }
4073  static bool classof(const BlockExpr *) { return true; }
4074
4075  // Iterators
4076  child_range children() { return child_range(); }
4077};
4078
4079/// BlockDeclRefExpr - A reference to a local variable declared in an
4080/// enclosing scope.
4081class BlockDeclRefExpr : public Expr {
4082  VarDecl *D;
4083  SourceLocation Loc;
4084  bool IsByRef : 1;
4085  bool ConstQualAdded : 1;
4086public:
4087  BlockDeclRefExpr(VarDecl *d, QualType t, ExprValueKind VK,
4088                   SourceLocation l, bool ByRef, bool constAdded = false);
4089
4090  // \brief Build an empty reference to a declared variable in a
4091  // block.
4092  explicit BlockDeclRefExpr(EmptyShell Empty)
4093    : Expr(BlockDeclRefExprClass, Empty) { }
4094
4095  VarDecl *getDecl() { return D; }
4096  const VarDecl *getDecl() const { return D; }
4097  void setDecl(VarDecl *VD) { D = VD; }
4098
4099  SourceLocation getLocation() const { return Loc; }
4100  void setLocation(SourceLocation L) { Loc = L; }
4101
4102  SourceRange getSourceRange() const { return SourceRange(Loc); }
4103
4104  bool isByRef() const { return IsByRef; }
4105  void setByRef(bool BR) { IsByRef = BR; }
4106
4107  bool isConstQualAdded() const { return ConstQualAdded; }
4108  void setConstQualAdded(bool C) { ConstQualAdded = C; }
4109
4110  static bool classof(const Stmt *T) {
4111    return T->getStmtClass() == BlockDeclRefExprClass;
4112  }
4113  static bool classof(const BlockDeclRefExpr *) { return true; }
4114
4115  // Iterators
4116  child_range children() { return child_range(); }
4117};
4118
4119/// AsTypeExpr - Clang builtin function __builtin_astype [OpenCL 6.2.4.2]
4120/// This AST node provides support for reinterpreting a type to another
4121/// type of the same size.
4122class AsTypeExpr : public Expr { // Should this be an ExplicitCastExpr?
4123private:
4124  Stmt *SrcExpr;
4125  SourceLocation BuiltinLoc, RParenLoc;
4126
4127  friend class ASTReader;
4128  friend class ASTStmtReader;
4129  explicit AsTypeExpr(EmptyShell Empty) : Expr(AsTypeExprClass, Empty) {}
4130
4131public:
4132  AsTypeExpr(Expr* SrcExpr, QualType DstType,
4133             ExprValueKind VK, ExprObjectKind OK,
4134             SourceLocation BuiltinLoc, SourceLocation RParenLoc)
4135    : Expr(AsTypeExprClass, DstType, VK, OK,
4136           DstType->isDependentType(),
4137           DstType->isDependentType() || SrcExpr->isValueDependent(),
4138           (DstType->isInstantiationDependentType() ||
4139            SrcExpr->isInstantiationDependent()),
4140           (DstType->containsUnexpandedParameterPack() ||
4141            SrcExpr->containsUnexpandedParameterPack())),
4142  SrcExpr(SrcExpr), BuiltinLoc(BuiltinLoc), RParenLoc(RParenLoc) {}
4143
4144  /// getSrcExpr - Return the Expr to be converted.
4145  Expr *getSrcExpr() const { return cast<Expr>(SrcExpr); }
4146
4147  /// getBuiltinLoc - Return the location of the __builtin_astype token.
4148  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
4149
4150  /// getRParenLoc - Return the location of final right parenthesis.
4151  SourceLocation getRParenLoc() const { return RParenLoc; }
4152
4153  SourceRange getSourceRange() const {
4154    return SourceRange(BuiltinLoc, RParenLoc);
4155  }
4156
4157  static bool classof(const Stmt *T) {
4158    return T->getStmtClass() == AsTypeExprClass;
4159  }
4160  static bool classof(const AsTypeExpr *) { return true; }
4161
4162  // Iterators
4163  child_range children() { return child_range(&SrcExpr, &SrcExpr+1); }
4164};
4165}  // end namespace clang
4166
4167#endif
4168