Expr.h revision b2f295c8050fb8c141bf2cf38eed0a56e99d0092
1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/Stmt.h"
19#include "clang/AST/Type.h"
20#include "llvm/ADT/APSInt.h"
21#include "llvm/ADT/APFloat.h"
22#include "llvm/ADT/SmallVector.h"
23#include <vector>
24
25namespace clang {
26  class ASTContext;
27  class APValue;
28  class Decl;
29  class IdentifierInfo;
30  class ParmVarDecl;
31  class NamedDecl;
32  class ValueDecl;
33  class BlockDecl;
34  class CXXOperatorCallExpr;
35  class CXXMemberCallExpr;
36
37/// Expr - This represents one expression.  Note that Expr's are subclasses of
38/// Stmt.  This allows an expression to be transparently used any place a Stmt
39/// is required.
40///
41class Expr : public Stmt {
42  QualType TR;
43
44protected:
45  /// TypeDependent - Whether this expression is type-dependent
46  /// (C++ [temp.dep.expr]).
47  bool TypeDependent : 1;
48
49  /// ValueDependent - Whether this expression is value-dependent
50  /// (C++ [temp.dep.constexpr]).
51  bool ValueDependent : 1;
52
53  // FIXME: Eventually, this constructor should go away and we should
54  // require every subclass to provide type/value-dependence
55  // information.
56  Expr(StmtClass SC, QualType T)
57    : Stmt(SC), TypeDependent(false), ValueDependent(false) {
58    setType(T);
59  }
60
61  Expr(StmtClass SC, QualType T, bool TD, bool VD)
62    : Stmt(SC), TypeDependent(TD), ValueDependent(VD) {
63    setType(T);
64  }
65
66  /// \brief Construct an empty expression.
67  explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
68
69public:
70  /// \brief Increases the reference count for this expression.
71  ///
72  /// Invoke the Retain() operation when this expression
73  /// is being shared by another owner.
74  Expr *Retain() {
75    Stmt::Retain();
76    return this;
77  }
78
79  QualType getType() const { return TR; }
80  void setType(QualType t) {
81    // In C++, the type of an expression is always adjusted so that it
82    // will not have reference type an expression will never have
83    // reference type (C++ [expr]p6). Use
84    // QualType::getNonReferenceType() to retrieve the non-reference
85    // type. Additionally, inspect Expr::isLvalue to determine whether
86    // an expression that is adjusted in this manner should be
87    // considered an lvalue.
88    assert((TR.isNull() || !TR->isReferenceType()) &&
89           "Expressions can't have reference type");
90
91    TR = t;
92  }
93
94  /// isValueDependent - Determines whether this expression is
95  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
96  /// array bound of "Chars" in the following example is
97  /// value-dependent.
98  /// @code
99  /// template<int Size, char (&Chars)[Size]> struct meta_string;
100  /// @endcode
101  bool isValueDependent() const { return ValueDependent; }
102
103  /// \brief Set whether this expression is value-dependent or not.
104  void setValueDependent(bool VD) { ValueDependent = VD; }
105
106  /// isTypeDependent - Determines whether this expression is
107  /// type-dependent (C++ [temp.dep.expr]), which means that its type
108  /// could change from one template instantiation to the next. For
109  /// example, the expressions "x" and "x + y" are type-dependent in
110  /// the following code, but "y" is not type-dependent:
111  /// @code
112  /// template<typename T>
113  /// void add(T x, int y) {
114  ///   x + y;
115  /// }
116  /// @endcode
117  bool isTypeDependent() const { return TypeDependent; }
118
119  /// \brief Set whether this expression is type-dependent or not.
120  void setTypeDependent(bool TD) { TypeDependent = TD; }
121
122  /// SourceLocation tokens are not useful in isolation - they are low level
123  /// value objects created/interpreted by SourceManager. We assume AST
124  /// clients will have a pointer to the respective SourceManager.
125  virtual SourceRange getSourceRange() const = 0;
126
127  /// getExprLoc - Return the preferred location for the arrow when diagnosing
128  /// a problem with a generic expression.
129  virtual SourceLocation getExprLoc() const { return getLocStart(); }
130
131  /// isUnusedResultAWarning - Return true if this immediate expression should
132  /// be warned about if the result is unused.  If so, fill in Loc and Ranges
133  /// with location to warn on and the source range[s] to report with the
134  /// warning.
135  bool isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
136                              SourceRange &R2) const;
137
138  /// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or
139  /// incomplete type other than void. Nonarray expressions that can be lvalues:
140  ///  - name, where name must be a variable
141  ///  - e[i]
142  ///  - (e), where e must be an lvalue
143  ///  - e.name, where e must be an lvalue
144  ///  - e->name
145  ///  - *e, the type of e cannot be a function type
146  ///  - string-constant
147  ///  - reference type [C++ [expr]]
148  ///  - b ? x : y, where x and y are lvalues of suitable types [C++]
149  ///
150  enum isLvalueResult {
151    LV_Valid,
152    LV_NotObjectType,
153    LV_IncompleteVoidType,
154    LV_DuplicateVectorComponents,
155    LV_InvalidExpression,
156    LV_MemberFunction
157  };
158  isLvalueResult isLvalue(ASTContext &Ctx) const;
159
160  // Same as above, but excluding checks for non-object and void types in C
161  isLvalueResult isLvalueInternal(ASTContext &Ctx) const;
162
163  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
164  /// does not have an incomplete type, does not have a const-qualified type,
165  /// and if it is a structure or union, does not have any member (including,
166  /// recursively, any member or element of all contained aggregates or unions)
167  /// with a const-qualified type.
168  ///
169  /// \param Loc [in] [out] - A source location which *may* be filled
170  /// in with the location of the expression making this a
171  /// non-modifiable lvalue, if specified.
172  enum isModifiableLvalueResult {
173    MLV_Valid,
174    MLV_NotObjectType,
175    MLV_IncompleteVoidType,
176    MLV_DuplicateVectorComponents,
177    MLV_InvalidExpression,
178    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
179    MLV_IncompleteType,
180    MLV_ConstQualified,
181    MLV_ArrayType,
182    MLV_NotBlockQualified,
183    MLV_ReadonlyProperty,
184    MLV_NoSetterProperty,
185    MLV_MemberFunction
186  };
187  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx,
188                                              SourceLocation *Loc = 0) const;
189
190  /// \brief If this expression refers to a bit-field, retrieve the
191  /// declaration of that bit-field.
192  FieldDecl *getBitField();
193
194  const FieldDecl *getBitField() const {
195    return const_cast<Expr*>(this)->getBitField();
196  }
197
198  /// isIntegerConstantExpr - Return true if this expression is a valid integer
199  /// constant expression, and, if so, return its value in Result.  If not a
200  /// valid i-c-e, return false and fill in Loc (if specified) with the location
201  /// of the invalid expression.
202  bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
203                             SourceLocation *Loc = 0,
204                             bool isEvaluated = true) const;
205  bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const {
206    llvm::APSInt X;
207    return isIntegerConstantExpr(X, Ctx, Loc);
208  }
209  /// isConstantInitializer - Returns true if this expression is a constant
210  /// initializer, which can be emitted at compile-time.
211  bool isConstantInitializer(ASTContext &Ctx) const;
212
213  /// EvalResult is a struct with detailed info about an evaluated expression.
214  struct EvalResult {
215    /// Val - This is the value the expression can be folded to.
216    APValue Val;
217
218    /// HasSideEffects - Whether the evaluated expression has side effects.
219    /// For example, (f() && 0) can be folded, but it still has side effects.
220    bool HasSideEffects;
221
222    /// Diag - If the expression is unfoldable, then Diag contains a note
223    /// diagnostic indicating why it's not foldable. DiagLoc indicates a caret
224    /// position for the error, and DiagExpr is the expression that caused
225    /// the error.
226    /// If the expression is foldable, but not an integer constant expression,
227    /// Diag contains a note diagnostic that describes why it isn't an integer
228    /// constant expression. If the expression *is* an integer constant
229    /// expression, then Diag will be zero.
230    unsigned Diag;
231    const Expr *DiagExpr;
232    SourceLocation DiagLoc;
233
234    EvalResult() : HasSideEffects(false), Diag(0), DiagExpr(0) {}
235  };
236
237  /// Evaluate - Return true if this is a constant which we can fold using
238  /// any crazy technique (that has nothing to do with language standards) that
239  /// we want to.  If this function returns true, it returns the folded constant
240  /// in Result.
241  bool Evaluate(EvalResult &Result, ASTContext &Ctx) const;
242
243  /// isEvaluatable - Call Evaluate to see if this expression can be constant
244  /// folded, but discard the result.
245  bool isEvaluatable(ASTContext &Ctx) const;
246
247  /// EvaluateAsInt - Call Evaluate and return the folded integer. This
248  /// must be called on an expression that constant folds to an integer.
249  llvm::APSInt EvaluateAsInt(ASTContext &Ctx) const;
250
251  /// EvaluateAsLValue - Evaluate an expression to see if it's a lvalue
252  /// with link time known address.
253  bool EvaluateAsLValue(EvalResult &Result, ASTContext &Ctx) const;
254
255  /// EvaluateAsAnyLValue - The same as EvaluateAsLValue, except that it
256  /// also succeeds on stack based, immutable address lvalues.
257  bool EvaluateAsAnyLValue(EvalResult &Result, ASTContext &Ctx) const;
258
259  /// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
260  /// integer constant expression with the value zero, or if this is one that is
261  /// cast to void*.
262  bool isNullPointerConstant(ASTContext &Ctx) const;
263
264  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
265  /// write barrier.
266  bool isOBJCGCCandidate(ASTContext &Ctx) const;
267
268  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
269  ///  its subexpression.  If that subexpression is also a ParenExpr,
270  ///  then this method recursively returns its subexpression, and so forth.
271  ///  Otherwise, the method returns the current Expr.
272  Expr* IgnoreParens();
273
274  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
275  /// or CastExprs, returning their operand.
276  Expr *IgnoreParenCasts();
277
278  /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
279  /// value (including ptr->int casts of the same size).  Strip off any
280  /// ParenExpr or CastExprs, returning their operand.
281  Expr *IgnoreParenNoopCasts(ASTContext &Ctx);
282
283  const Expr* IgnoreParens() const {
284    return const_cast<Expr*>(this)->IgnoreParens();
285  }
286  const Expr *IgnoreParenCasts() const {
287    return const_cast<Expr*>(this)->IgnoreParenCasts();
288  }
289  const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const {
290    return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
291  }
292
293  static bool hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs);
294  static bool hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs);
295
296  static bool classof(const Stmt *T) {
297    return T->getStmtClass() >= firstExprConstant &&
298           T->getStmtClass() <= lastExprConstant;
299  }
300  static bool classof(const Expr *) { return true; }
301};
302
303
304//===----------------------------------------------------------------------===//
305// Primary Expressions.
306//===----------------------------------------------------------------------===//
307
308/// DeclRefExpr - [C99 6.5.1p2] - A reference to a declared variable, function,
309/// enum, etc.
310class DeclRefExpr : public Expr {
311  NamedDecl *D;
312  SourceLocation Loc;
313
314protected:
315  // FIXME: Eventually, this constructor will go away and all subclasses
316  // will have to provide the type- and value-dependent flags.
317  DeclRefExpr(StmtClass SC, NamedDecl *d, QualType t, SourceLocation l) :
318    Expr(SC, t), D(d), Loc(l) {}
319
320  DeclRefExpr(StmtClass SC, NamedDecl *d, QualType t, SourceLocation l, bool TD,
321              bool VD) :
322    Expr(SC, t, TD, VD), D(d), Loc(l) {}
323
324public:
325  // FIXME: Eventually, this constructor will go away and all clients
326  // will have to provide the type- and value-dependent flags.
327  DeclRefExpr(NamedDecl *d, QualType t, SourceLocation l) :
328    Expr(DeclRefExprClass, t), D(d), Loc(l) {}
329
330  DeclRefExpr(NamedDecl *d, QualType t, SourceLocation l, bool TD, bool VD) :
331    Expr(DeclRefExprClass, t, TD, VD), D(d), Loc(l) {}
332
333  /// \brief Construct an empty declaration reference expression.
334  explicit DeclRefExpr(EmptyShell Empty)
335    : Expr(DeclRefExprClass, Empty) { }
336
337  NamedDecl *getDecl() { return D; }
338  const NamedDecl *getDecl() const { return D; }
339  void setDecl(NamedDecl *NewD) { D = NewD; }
340
341  SourceLocation getLocation() const { return Loc; }
342  void setLocation(SourceLocation L) { Loc = L; }
343  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
344
345  static bool classof(const Stmt *T) {
346    return T->getStmtClass() == DeclRefExprClass ||
347           T->getStmtClass() == CXXConditionDeclExprClass ||
348           T->getStmtClass() == QualifiedDeclRefExprClass;
349  }
350  static bool classof(const DeclRefExpr *) { return true; }
351
352  // Iterators
353  virtual child_iterator child_begin();
354  virtual child_iterator child_end();
355};
356
357/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
358class PredefinedExpr : public Expr {
359public:
360  enum IdentType {
361    Func,
362    Function,
363    PrettyFunction
364  };
365
366private:
367  SourceLocation Loc;
368  IdentType Type;
369public:
370  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
371    : Expr(PredefinedExprClass, type, type->isDependentType(),
372           type->isDependentType()), Loc(l), Type(IT) {}
373
374  /// \brief Construct an empty predefined expression.
375  explicit PredefinedExpr(EmptyShell Empty)
376    : Expr(PredefinedExprClass, Empty) { }
377
378  IdentType getIdentType() const { return Type; }
379  void setIdentType(IdentType IT) { Type = IT; }
380
381  SourceLocation getLocation() const { return Loc; }
382  void setLocation(SourceLocation L) { Loc = L; }
383
384  static std::string ComputeName(ASTContext &Context, IdentType IT,
385                                 const Decl *CurrentDecl);
386
387  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
388
389  static bool classof(const Stmt *T) {
390    return T->getStmtClass() == PredefinedExprClass;
391  }
392  static bool classof(const PredefinedExpr *) { return true; }
393
394  // Iterators
395  virtual child_iterator child_begin();
396  virtual child_iterator child_end();
397};
398
399class IntegerLiteral : public Expr {
400  llvm::APInt Value;
401  SourceLocation Loc;
402public:
403  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
404  // or UnsignedLongLongTy
405  IntegerLiteral(const llvm::APInt &V, QualType type, SourceLocation l)
406    : Expr(IntegerLiteralClass, type), Value(V), Loc(l) {
407    assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
408  }
409
410  /// \brief Construct an empty integer literal.
411  explicit IntegerLiteral(EmptyShell Empty)
412    : Expr(IntegerLiteralClass, Empty) { }
413
414  const llvm::APInt &getValue() const { return Value; }
415  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
416
417  /// \brief Retrieve the location of the literal.
418  SourceLocation getLocation() const { return Loc; }
419
420  void setValue(const llvm::APInt &Val) { Value = Val; }
421  void setLocation(SourceLocation Location) { Loc = Location; }
422
423  static bool classof(const Stmt *T) {
424    return T->getStmtClass() == IntegerLiteralClass;
425  }
426  static bool classof(const IntegerLiteral *) { return true; }
427
428  // Iterators
429  virtual child_iterator child_begin();
430  virtual child_iterator child_end();
431};
432
433class CharacterLiteral : public Expr {
434  unsigned Value;
435  SourceLocation Loc;
436  bool IsWide;
437public:
438  // type should be IntTy
439  CharacterLiteral(unsigned value, bool iswide, QualType type, SourceLocation l)
440    : Expr(CharacterLiteralClass, type), Value(value), Loc(l), IsWide(iswide) {
441  }
442
443  /// \brief Construct an empty character literal.
444  CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
445
446  SourceLocation getLocation() const { return Loc; }
447  bool isWide() const { return IsWide; }
448
449  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
450
451  unsigned getValue() const { return Value; }
452
453  void setLocation(SourceLocation Location) { Loc = Location; }
454  void setWide(bool W) { IsWide = W; }
455  void setValue(unsigned Val) { Value = Val; }
456
457  static bool classof(const Stmt *T) {
458    return T->getStmtClass() == CharacterLiteralClass;
459  }
460  static bool classof(const CharacterLiteral *) { return true; }
461
462  // Iterators
463  virtual child_iterator child_begin();
464  virtual child_iterator child_end();
465};
466
467class FloatingLiteral : public Expr {
468  llvm::APFloat Value;
469  bool IsExact : 1;
470  SourceLocation Loc;
471public:
472  FloatingLiteral(const llvm::APFloat &V, bool isexact,
473                  QualType Type, SourceLocation L)
474    : Expr(FloatingLiteralClass, Type), Value(V), IsExact(isexact), Loc(L) {}
475
476  /// \brief Construct an empty floating-point literal.
477  explicit FloatingLiteral(EmptyShell Empty)
478    : Expr(FloatingLiteralClass, Empty), Value(0.0) { }
479
480  const llvm::APFloat &getValue() const { return Value; }
481  void setValue(const llvm::APFloat &Val) { Value = Val; }
482
483  bool isExact() const { return IsExact; }
484  void setExact(bool E) { IsExact = E; }
485
486  /// getValueAsApproximateDouble - This returns the value as an inaccurate
487  /// double.  Note that this may cause loss of precision, but is useful for
488  /// debugging dumps, etc.
489  double getValueAsApproximateDouble() const;
490
491  SourceLocation getLocation() const { return Loc; }
492  void setLocation(SourceLocation L) { Loc = L; }
493
494  // FIXME: The logic for computing the value of a predefined expr should go
495  // into a method here that takes the inner-most code decl (a block, function
496  // or objc method) that the expr lives in.  This would allow sema and codegen
497  // to be consistent for things like sizeof(__func__) etc.
498
499  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
500
501  static bool classof(const Stmt *T) {
502    return T->getStmtClass() == FloatingLiteralClass;
503  }
504  static bool classof(const FloatingLiteral *) { return true; }
505
506  // Iterators
507  virtual child_iterator child_begin();
508  virtual child_iterator child_end();
509};
510
511/// ImaginaryLiteral - We support imaginary integer and floating point literals,
512/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
513/// IntegerLiteral classes.  Instances of this class always have a Complex type
514/// whose element type matches the subexpression.
515///
516class ImaginaryLiteral : public Expr {
517  Stmt *Val;
518public:
519  ImaginaryLiteral(Expr *val, QualType Ty)
520    : Expr(ImaginaryLiteralClass, Ty), Val(val) {}
521
522  /// \brief Build an empty imaginary literal.
523  explicit ImaginaryLiteral(EmptyShell Empty)
524    : Expr(ImaginaryLiteralClass, Empty) { }
525
526  const Expr *getSubExpr() const { return cast<Expr>(Val); }
527  Expr *getSubExpr() { return cast<Expr>(Val); }
528  void setSubExpr(Expr *E) { Val = E; }
529
530  virtual SourceRange getSourceRange() const { return Val->getSourceRange(); }
531  static bool classof(const Stmt *T) {
532    return T->getStmtClass() == ImaginaryLiteralClass;
533  }
534  static bool classof(const ImaginaryLiteral *) { return true; }
535
536  // Iterators
537  virtual child_iterator child_begin();
538  virtual child_iterator child_end();
539};
540
541/// StringLiteral - This represents a string literal expression, e.g. "foo"
542/// or L"bar" (wide strings).  The actual string is returned by getStrData()
543/// is NOT null-terminated, and the length of the string is determined by
544/// calling getByteLength().  The C type for a string is always a
545/// ConstantArrayType.  In C++, the char type is const qualified, in C it is
546/// not.
547///
548/// Note that strings in C can be formed by concatenation of multiple string
549/// literal pptokens in translation phase #6.  This keeps track of the locations
550/// of each of these pieces.
551///
552/// Strings in C can also be truncated and extended by assigning into arrays,
553/// e.g. with constructs like:
554///   char X[2] = "foobar";
555/// In this case, getByteLength() will return 6, but the string literal will
556/// have type "char[2]".
557class StringLiteral : public Expr {
558  const char *StrData;
559  unsigned ByteLength;
560  bool IsWide;
561  unsigned NumConcatenated;
562  SourceLocation TokLocs[1];
563
564  StringLiteral(QualType Ty) : Expr(StringLiteralClass, Ty) {}
565
566protected:
567  virtual void DoDestroy(ASTContext &C);
568
569public:
570  /// This is the "fully general" constructor that allows representation of
571  /// strings formed from multiple concatenated tokens.
572  static StringLiteral *Create(ASTContext &C, const char *StrData,
573                               unsigned ByteLength, bool Wide, QualType Ty,
574                               const SourceLocation *Loc, unsigned NumStrs);
575
576  /// Simple constructor for string literals made from one token.
577  static StringLiteral *Create(ASTContext &C, const char *StrData,
578                               unsigned ByteLength,
579                               bool Wide, QualType Ty, SourceLocation Loc) {
580    return Create(C, StrData, ByteLength, Wide, Ty, &Loc, 1);
581  }
582
583  /// \brief Construct an empty string literal.
584  static StringLiteral *CreateEmpty(ASTContext &C, unsigned NumStrs);
585
586  const char *getStrData() const { return StrData; }
587  unsigned getByteLength() const { return ByteLength; }
588
589  /// \brief Sets the string data to the given string data.
590  void setStrData(ASTContext &C, const char *Str, unsigned Len);
591
592  bool isWide() const { return IsWide; }
593  void setWide(bool W) { IsWide = W; }
594
595  bool containsNonAsciiOrNull() const {
596    for (unsigned i = 0; i < getByteLength(); ++i)
597      if (!isascii(getStrData()[i]) || !getStrData()[i])
598        return true;
599    return false;
600  }
601  /// getNumConcatenated - Get the number of string literal tokens that were
602  /// concatenated in translation phase #6 to form this string literal.
603  unsigned getNumConcatenated() const { return NumConcatenated; }
604
605  SourceLocation getStrTokenLoc(unsigned TokNum) const {
606    assert(TokNum < NumConcatenated && "Invalid tok number");
607    return TokLocs[TokNum];
608  }
609  void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
610    assert(TokNum < NumConcatenated && "Invalid tok number");
611    TokLocs[TokNum] = L;
612  }
613
614  typedef const SourceLocation *tokloc_iterator;
615  tokloc_iterator tokloc_begin() const { return TokLocs; }
616  tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; }
617
618  virtual SourceRange getSourceRange() const {
619    return SourceRange(TokLocs[0], TokLocs[NumConcatenated-1]);
620  }
621  static bool classof(const Stmt *T) {
622    return T->getStmtClass() == StringLiteralClass;
623  }
624  static bool classof(const StringLiteral *) { return true; }
625
626  // Iterators
627  virtual child_iterator child_begin();
628  virtual child_iterator child_end();
629};
630
631/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
632/// AST node is only formed if full location information is requested.
633class ParenExpr : public Expr {
634  SourceLocation L, R;
635  Stmt *Val;
636public:
637  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
638    : Expr(ParenExprClass, val->getType(),
639           val->isTypeDependent(), val->isValueDependent()),
640      L(l), R(r), Val(val) {}
641
642  /// \brief Construct an empty parenthesized expression.
643  explicit ParenExpr(EmptyShell Empty)
644    : Expr(ParenExprClass, Empty) { }
645
646  const Expr *getSubExpr() const { return cast<Expr>(Val); }
647  Expr *getSubExpr() { return cast<Expr>(Val); }
648  void setSubExpr(Expr *E) { Val = E; }
649
650  virtual SourceRange getSourceRange() const { return SourceRange(L, R); }
651
652  /// \brief Get the location of the left parentheses '('.
653  SourceLocation getLParen() const { return L; }
654  void setLParen(SourceLocation Loc) { L = Loc; }
655
656  /// \brief Get the location of the right parentheses ')'.
657  SourceLocation getRParen() const { return R; }
658  void setRParen(SourceLocation Loc) { R = Loc; }
659
660  static bool classof(const Stmt *T) {
661    return T->getStmtClass() == ParenExprClass;
662  }
663  static bool classof(const ParenExpr *) { return true; }
664
665  // Iterators
666  virtual child_iterator child_begin();
667  virtual child_iterator child_end();
668};
669
670
671/// UnaryOperator - This represents the unary-expression's (except sizeof and
672/// alignof), the postinc/postdec operators from postfix-expression, and various
673/// extensions.
674///
675/// Notes on various nodes:
676///
677/// Real/Imag - These return the real/imag part of a complex operand.  If
678///   applied to a non-complex value, the former returns its operand and the
679///   later returns zero in the type of the operand.
680///
681/// __builtin_offsetof(type, a.b[10]) is represented as a unary operator whose
682///   subexpression is a compound literal with the various MemberExpr and
683///   ArraySubscriptExpr's applied to it.
684///
685class UnaryOperator : public Expr {
686public:
687  // Note that additions to this should also update the StmtVisitor class.
688  enum Opcode {
689    PostInc, PostDec, // [C99 6.5.2.4] Postfix increment and decrement operators
690    PreInc, PreDec,   // [C99 6.5.3.1] Prefix increment and decrement operators.
691    AddrOf, Deref,    // [C99 6.5.3.2] Address and indirection operators.
692    Plus, Minus,      // [C99 6.5.3.3] Unary arithmetic operators.
693    Not, LNot,        // [C99 6.5.3.3] Unary arithmetic operators.
694    Real, Imag,       // "__real expr"/"__imag expr" Extension.
695    Extension,        // __extension__ marker.
696    OffsetOf          // __builtin_offsetof
697  };
698private:
699  Stmt *Val;
700  Opcode Opc;
701  SourceLocation Loc;
702public:
703
704  UnaryOperator(Expr *input, Opcode opc, QualType type, SourceLocation l)
705    : Expr(UnaryOperatorClass, type,
706           input->isTypeDependent() && opc != OffsetOf,
707           input->isValueDependent()),
708      Val(input), Opc(opc), Loc(l) {}
709
710  /// \brief Build an empty unary operator.
711  explicit UnaryOperator(EmptyShell Empty)
712    : Expr(UnaryOperatorClass, Empty), Opc(AddrOf) { }
713
714  Opcode getOpcode() const { return Opc; }
715  void setOpcode(Opcode O) { Opc = O; }
716
717  Expr *getSubExpr() const { return cast<Expr>(Val); }
718  void setSubExpr(Expr *E) { Val = E; }
719
720  /// getOperatorLoc - Return the location of the operator.
721  SourceLocation getOperatorLoc() const { return Loc; }
722  void setOperatorLoc(SourceLocation L) { Loc = L; }
723
724  /// isPostfix - Return true if this is a postfix operation, like x++.
725  static bool isPostfix(Opcode Op) {
726    return Op == PostInc || Op == PostDec;
727  }
728
729  /// isPostfix - Return true if this is a prefix operation, like --x.
730  static bool isPrefix(Opcode Op) {
731    return Op == PreInc || Op == PreDec;
732  }
733
734  bool isPrefix() const { return isPrefix(Opc); }
735  bool isPostfix() const { return isPostfix(Opc); }
736  bool isIncrementOp() const {return Opc==PreInc || Opc==PostInc; }
737  bool isIncrementDecrementOp() const { return Opc>=PostInc && Opc<=PreDec; }
738  bool isOffsetOfOp() const { return Opc == OffsetOf; }
739  static bool isArithmeticOp(Opcode Op) { return Op >= Plus && Op <= LNot; }
740  bool isArithmeticOp() const { return isArithmeticOp(Opc); }
741
742  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
743  /// corresponds to, e.g. "sizeof" or "[pre]++"
744  static const char *getOpcodeStr(Opcode Op);
745
746  /// \brief Retrieve the unary opcode that corresponds to the given
747  /// overloaded operator.
748  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
749
750  /// \brief Retrieve the overloaded operator kind that corresponds to
751  /// the given unary opcode.
752  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
753
754  virtual SourceRange getSourceRange() const {
755    if (isPostfix())
756      return SourceRange(Val->getLocStart(), Loc);
757    else
758      return SourceRange(Loc, Val->getLocEnd());
759  }
760  virtual SourceLocation getExprLoc() const { return Loc; }
761
762  static bool classof(const Stmt *T) {
763    return T->getStmtClass() == UnaryOperatorClass;
764  }
765  static bool classof(const UnaryOperator *) { return true; }
766
767  // Iterators
768  virtual child_iterator child_begin();
769  virtual child_iterator child_end();
770};
771
772/// SizeOfAlignOfExpr - [C99 6.5.3.4] - This is for sizeof/alignof, both of
773/// types and expressions.
774class SizeOfAlignOfExpr : public Expr {
775  bool isSizeof : 1;  // true if sizeof, false if alignof.
776  bool isType : 1;    // true if operand is a type, false if an expression
777  union {
778    void *Ty;
779    Stmt *Ex;
780  } Argument;
781  SourceLocation OpLoc, RParenLoc;
782
783protected:
784  virtual void DoDestroy(ASTContext& C);
785
786public:
787  SizeOfAlignOfExpr(bool issizeof, QualType T,
788                    QualType resultType, SourceLocation op,
789                    SourceLocation rp) :
790      Expr(SizeOfAlignOfExprClass, resultType,
791           false, // Never type-dependent (C++ [temp.dep.expr]p3).
792           // Value-dependent if the argument is type-dependent.
793           T->isDependentType()),
794      isSizeof(issizeof), isType(true), OpLoc(op), RParenLoc(rp) {
795    Argument.Ty = T.getAsOpaquePtr();
796  }
797
798  SizeOfAlignOfExpr(bool issizeof, Expr *E,
799                    QualType resultType, SourceLocation op,
800                    SourceLocation rp) :
801      Expr(SizeOfAlignOfExprClass, resultType,
802           false, // Never type-dependent (C++ [temp.dep.expr]p3).
803           // Value-dependent if the argument is type-dependent.
804           E->isTypeDependent()),
805      isSizeof(issizeof), isType(false), OpLoc(op), RParenLoc(rp) {
806    Argument.Ex = E;
807  }
808
809  /// \brief Construct an empty sizeof/alignof expression.
810  explicit SizeOfAlignOfExpr(EmptyShell Empty)
811    : Expr(SizeOfAlignOfExprClass, Empty) { }
812
813  bool isSizeOf() const { return isSizeof; }
814  void setSizeof(bool S) { isSizeof = S; }
815
816  bool isArgumentType() const { return isType; }
817  QualType getArgumentType() const {
818    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
819    return QualType::getFromOpaquePtr(Argument.Ty);
820  }
821  Expr *getArgumentExpr() {
822    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
823    return static_cast<Expr*>(Argument.Ex);
824  }
825  const Expr *getArgumentExpr() const {
826    return const_cast<SizeOfAlignOfExpr*>(this)->getArgumentExpr();
827  }
828
829  void setArgument(Expr *E) { Argument.Ex = E; isType = false; }
830  void setArgument(QualType T) {
831    Argument.Ty = T.getAsOpaquePtr();
832    isType = true;
833  }
834
835  /// Gets the argument type, or the type of the argument expression, whichever
836  /// is appropriate.
837  QualType getTypeOfArgument() const {
838    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
839  }
840
841  SourceLocation getOperatorLoc() const { return OpLoc; }
842  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
843
844  SourceLocation getRParenLoc() const { return RParenLoc; }
845  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
846
847  virtual SourceRange getSourceRange() const {
848    return SourceRange(OpLoc, RParenLoc);
849  }
850
851  static bool classof(const Stmt *T) {
852    return T->getStmtClass() == SizeOfAlignOfExprClass;
853  }
854  static bool classof(const SizeOfAlignOfExpr *) { return true; }
855
856  // Iterators
857  virtual child_iterator child_begin();
858  virtual child_iterator child_end();
859};
860
861//===----------------------------------------------------------------------===//
862// Postfix Operators.
863//===----------------------------------------------------------------------===//
864
865/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
866class ArraySubscriptExpr : public Expr {
867  enum { LHS, RHS, END_EXPR=2 };
868  Stmt* SubExprs[END_EXPR];
869  SourceLocation RBracketLoc;
870public:
871  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
872                     SourceLocation rbracketloc)
873  : Expr(ArraySubscriptExprClass, t,
874         lhs->isTypeDependent() || rhs->isTypeDependent(),
875         lhs->isValueDependent() || rhs->isValueDependent()),
876    RBracketLoc(rbracketloc) {
877    SubExprs[LHS] = lhs;
878    SubExprs[RHS] = rhs;
879  }
880
881  /// \brief Create an empty array subscript expression.
882  explicit ArraySubscriptExpr(EmptyShell Shell)
883    : Expr(ArraySubscriptExprClass, Shell) { }
884
885  /// An array access can be written A[4] or 4[A] (both are equivalent).
886  /// - getBase() and getIdx() always present the normalized view: A[4].
887  ///    In this case getBase() returns "A" and getIdx() returns "4".
888  /// - getLHS() and getRHS() present the syntactic view. e.g. for
889  ///    4[A] getLHS() returns "4".
890  /// Note: Because vector element access is also written A[4] we must
891  /// predicate the format conversion in getBase and getIdx only on the
892  /// the type of the RHS, as it is possible for the LHS to be a vector of
893  /// integer type
894  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
895  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
896  void setLHS(Expr *E) { SubExprs[LHS] = E; }
897
898  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
899  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
900  void setRHS(Expr *E) { SubExprs[RHS] = E; }
901
902  Expr *getBase() {
903    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
904  }
905
906  const Expr *getBase() const {
907    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
908  }
909
910  Expr *getIdx() {
911    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
912  }
913
914  const Expr *getIdx() const {
915    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
916  }
917
918  virtual SourceRange getSourceRange() const {
919    return SourceRange(getLHS()->getLocStart(), RBracketLoc);
920  }
921
922  SourceLocation getRBracketLoc() const { return RBracketLoc; }
923  void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
924
925  virtual SourceLocation getExprLoc() const { return getBase()->getExprLoc(); }
926
927  static bool classof(const Stmt *T) {
928    return T->getStmtClass() == ArraySubscriptExprClass;
929  }
930  static bool classof(const ArraySubscriptExpr *) { return true; }
931
932  // Iterators
933  virtual child_iterator child_begin();
934  virtual child_iterator child_end();
935};
936
937
938/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
939/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
940/// while its subclasses may represent alternative syntax that (semantically)
941/// results in a function call. For example, CXXOperatorCallExpr is
942/// a subclass for overloaded operator calls that use operator syntax, e.g.,
943/// "str1 + str2" to resolve to a function call.
944class CallExpr : public Expr {
945  enum { FN=0, ARGS_START=1 };
946  Stmt **SubExprs;
947  unsigned NumArgs;
948  SourceLocation RParenLoc;
949
950protected:
951  // This version of the constructor is for derived classes.
952  CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args, unsigned numargs,
953           QualType t, SourceLocation rparenloc);
954
955  virtual void DoDestroy(ASTContext& C);
956
957public:
958  CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, QualType t,
959           SourceLocation rparenloc);
960
961  /// \brief Build an empty call expression.
962  CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty);
963
964  ~CallExpr() {}
965
966  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
967  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
968  void setCallee(Expr *F) { SubExprs[FN] = F; }
969
970  /// \brief If the callee is a FunctionDecl, return it. Otherwise return 0.
971  FunctionDecl *getDirectCallee();
972
973  /// getNumArgs - Return the number of actual arguments to this call.
974  ///
975  unsigned getNumArgs() const { return NumArgs; }
976
977  /// getArg - Return the specified argument.
978  Expr *getArg(unsigned Arg) {
979    assert(Arg < NumArgs && "Arg access out of range!");
980    return cast<Expr>(SubExprs[Arg+ARGS_START]);
981  }
982  const Expr *getArg(unsigned Arg) const {
983    assert(Arg < NumArgs && "Arg access out of range!");
984    return cast<Expr>(SubExprs[Arg+ARGS_START]);
985  }
986
987  /// setArg - Set the specified argument.
988  void setArg(unsigned Arg, Expr *ArgExpr) {
989    assert(Arg < NumArgs && "Arg access out of range!");
990    SubExprs[Arg+ARGS_START] = ArgExpr;
991  }
992
993  /// setNumArgs - This changes the number of arguments present in this call.
994  /// Any orphaned expressions are deleted by this, and any new operands are set
995  /// to null.
996  void setNumArgs(ASTContext& C, unsigned NumArgs);
997
998  typedef ExprIterator arg_iterator;
999  typedef ConstExprIterator const_arg_iterator;
1000
1001  arg_iterator arg_begin() { return SubExprs+ARGS_START; }
1002  arg_iterator arg_end() { return SubExprs+ARGS_START+getNumArgs(); }
1003  const_arg_iterator arg_begin() const { return SubExprs+ARGS_START; }
1004  const_arg_iterator arg_end() const { return SubExprs+ARGS_START+getNumArgs();}
1005
1006  /// getNumCommas - Return the number of commas that must have been present in
1007  /// this function call.
1008  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
1009
1010  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
1011  /// not, return 0.
1012  unsigned isBuiltinCall(ASTContext &Context) const;
1013
1014  /// getCallReturnType - Get the return type of the call expr. This is not
1015  /// always the type of the expr itself, if the return type is a reference
1016  /// type.
1017  QualType getCallReturnType() const;
1018
1019  SourceLocation getRParenLoc() const { return RParenLoc; }
1020  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1021
1022  virtual SourceRange getSourceRange() const {
1023    return SourceRange(getCallee()->getLocStart(), RParenLoc);
1024  }
1025
1026  static bool classof(const Stmt *T) {
1027    return T->getStmtClass() == CallExprClass ||
1028           T->getStmtClass() == CXXOperatorCallExprClass ||
1029           T->getStmtClass() == CXXMemberCallExprClass;
1030  }
1031  static bool classof(const CallExpr *) { return true; }
1032  static bool classof(const CXXOperatorCallExpr *) { return true; }
1033  static bool classof(const CXXMemberCallExpr *) { return true; }
1034
1035  // Iterators
1036  virtual child_iterator child_begin();
1037  virtual child_iterator child_end();
1038};
1039
1040/// \brief Represents the qualifier that may precede a C++ name, e.g., the
1041/// "std::" in "std::sort".
1042struct NameQualifier {
1043  /// \brief The nested name specifier.
1044  NestedNameSpecifier *NNS;
1045
1046  /// \brief The source range covered by the nested name specifier.
1047  SourceRange Range;
1048};
1049
1050/// \brief Represents an explicit template argument list in C++, e.g.,
1051/// the "<int>" in "sort<int>".
1052struct ExplicitTemplateArgumentList {
1053  /// \brief The source location of the left angle bracket ('<');
1054  SourceLocation LAngleLoc;
1055
1056  /// \brief The source location of the right angle bracket ('>');
1057  SourceLocation RAngleLoc;
1058
1059  /// \brief The number of template arguments in TemplateArgs.
1060  /// The actual template arguments (if any) are stored after the
1061  /// ExplicitTemplateArgumentList structure.
1062  unsigned NumTemplateArgs;
1063
1064  /// \brief Retrieve the template arguments
1065  TemplateArgument *getTemplateArgs() {
1066    return reinterpret_cast<TemplateArgument *> (this + 1);
1067  }
1068
1069  /// \brief Retrieve the template arguments
1070  const TemplateArgument *getTemplateArgs() const {
1071    return reinterpret_cast<const TemplateArgument *> (this + 1);
1072  }
1073};
1074
1075/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.  X->F and X.F.
1076///
1077class MemberExpr : public Expr {
1078  /// Base - the expression for the base pointer or structure references.  In
1079  /// X.F, this is "X".
1080  Stmt *Base;
1081
1082  /// MemberDecl - This is the decl being referenced by the field/member name.
1083  /// In X.F, this is the decl referenced by F.
1084  NamedDecl *MemberDecl;
1085
1086  /// MemberLoc - This is the location of the member name.
1087  SourceLocation MemberLoc;
1088
1089  /// IsArrow - True if this is "X->F", false if this is "X.F".
1090  bool IsArrow : 1;
1091
1092  /// \brief True if this member expression used a nested-name-specifier to
1093  /// refer to the member, e.g., "x->Base::f". When true, a NameQualifier
1094  /// structure is allocated immediately after the MemberExpr.
1095  bool HasQualifier : 1;
1096
1097  /// \brief True if this member expression specified a template argument list
1098  /// explicitly, e.g., x->f<int>. When true, an ExplicitTemplateArgumentList
1099  /// structure (and its TemplateArguments) are allocated immediately after
1100  /// the MemberExpr or, if the member expression also has a qualifier, after
1101  /// the NameQualifier structure.
1102  bool HasExplicitTemplateArgumentList : 1;
1103
1104  /// \brief Retrieve the qualifier that preceded the member name, if any.
1105  NameQualifier *getMemberQualifier() {
1106    if (!HasQualifier)
1107      return 0;
1108
1109    return reinterpret_cast<NameQualifier *> (this + 1);
1110  }
1111
1112  /// \brief Retrieve the qualifier that preceded the member name, if any.
1113  const NameQualifier *getMemberQualifier() const {
1114    return const_cast<MemberExpr *>(this)->getMemberQualifier();
1115  }
1116
1117  /// \brief Retrieve the explicit template argument list that followed the
1118  /// member template name, if any.
1119  ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() {
1120    if (!HasExplicitTemplateArgumentList)
1121      return 0;
1122
1123    if (!HasQualifier)
1124      return reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
1125
1126    return reinterpret_cast<ExplicitTemplateArgumentList *>(
1127                                                      getMemberQualifier() + 1);
1128  }
1129
1130  /// \brief Retrieve the explicit template argument list that followed the
1131  /// member template name, if any.
1132  const ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() const {
1133    return const_cast<MemberExpr *>(this)->getExplicitTemplateArgumentList();
1134  }
1135
1136  MemberExpr(Expr *base, bool isarrow, NestedNameSpecifier *qual,
1137             SourceRange qualrange, NamedDecl *memberdecl, SourceLocation l,
1138             bool has_explicit, SourceLocation langle,
1139             const TemplateArgument *targs, unsigned numtargs,
1140             SourceLocation rangle, QualType ty);
1141
1142public:
1143  MemberExpr(Expr *base, bool isarrow, NamedDecl *memberdecl, SourceLocation l,
1144             QualType ty)
1145    : Expr(MemberExprClass, ty,
1146           base->isTypeDependent(), base->isValueDependent()),
1147      Base(base), MemberDecl(memberdecl), MemberLoc(l), IsArrow(isarrow),
1148      HasQualifier(false), HasExplicitTemplateArgumentList(false) {}
1149
1150  /// \brief Build an empty member reference expression.
1151  explicit MemberExpr(EmptyShell Empty)
1152    : Expr(MemberExprClass, Empty), HasQualifier(false),
1153      HasExplicitTemplateArgumentList(false) { }
1154
1155  static MemberExpr *Create(ASTContext &C, Expr *base, bool isarrow,
1156                            NestedNameSpecifier *qual, SourceRange qualrange,
1157                            NamedDecl *memberdecl,
1158                            SourceLocation l,
1159                            bool has_explicit,
1160                            SourceLocation langle,
1161                            const TemplateArgument *targs,
1162                            unsigned numtargs,
1163                            SourceLocation rangle,
1164                            QualType ty);
1165
1166  void setBase(Expr *E) { Base = E; }
1167  Expr *getBase() const { return cast<Expr>(Base); }
1168
1169  /// \brief Retrieve the member declaration to which this expression refers.
1170  ///
1171  /// The returned declaration will either be a FieldDecl or (in C++)
1172  /// a CXXMethodDecl.
1173  NamedDecl *getMemberDecl() const { return MemberDecl; }
1174  void setMemberDecl(NamedDecl *D) { MemberDecl = D; }
1175
1176  /// \brief Determines whether this member expression actually had
1177  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
1178  /// x->Base::foo.
1179  bool hasQualifier() const { return HasQualifier; }
1180
1181  /// \brief If the member name was qualified, retrieves the source range of
1182  /// the nested-name-specifier that precedes the member name. Otherwise,
1183  /// returns an empty source range.
1184  SourceRange getQualifierRange() const {
1185    if (!HasQualifier)
1186      return SourceRange();
1187
1188    return getMemberQualifier()->Range;
1189  }
1190
1191  /// \brief If the member name was qualified, retrieves the
1192  /// nested-name-specifier that precedes the member name. Otherwise, returns
1193  /// NULL.
1194  NestedNameSpecifier *getQualifier() const {
1195    if (!HasQualifier)
1196      return 0;
1197
1198    return getMemberQualifier()->NNS;
1199  }
1200
1201  /// \brief Determines whether this member expression actually had a C++
1202  /// template argument list explicitly specified, e.g., x.f<int>.
1203  bool hasExplicitTemplateArgumentList() {
1204    return HasExplicitTemplateArgumentList;
1205  }
1206
1207  /// \brief Retrieve the location of the left angle bracket following the
1208  /// member name ('<'), if any.
1209  SourceLocation getLAngleLoc() const {
1210    if (!HasExplicitTemplateArgumentList)
1211      return SourceLocation();
1212
1213    return getExplicitTemplateArgumentList()->LAngleLoc;
1214  }
1215
1216  /// \brief Retrieve the template arguments provided as part of this
1217  /// template-id.
1218  const TemplateArgument *getTemplateArgs() const {
1219    if (!HasExplicitTemplateArgumentList)
1220      return 0;
1221
1222    return getExplicitTemplateArgumentList()->getTemplateArgs();
1223  }
1224
1225  /// \brief Retrieve the number of template arguments provided as part of this
1226  /// template-id.
1227  unsigned getNumTemplateArgs() const {
1228    if (!HasExplicitTemplateArgumentList)
1229      return 0;
1230
1231    return getExplicitTemplateArgumentList()->NumTemplateArgs;
1232  }
1233
1234  /// \brief Retrieve the location of the right angle bracket following the
1235  /// template arguments ('>').
1236  SourceLocation getRAngleLoc() const {
1237    if (!HasExplicitTemplateArgumentList)
1238      return SourceLocation();
1239
1240    return getExplicitTemplateArgumentList()->RAngleLoc;
1241  }
1242
1243  bool isArrow() const { return IsArrow; }
1244  void setArrow(bool A) { IsArrow = A; }
1245
1246  /// getMemberLoc - Return the location of the "member", in X->F, it is the
1247  /// location of 'F'.
1248  SourceLocation getMemberLoc() const { return MemberLoc; }
1249  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
1250
1251  virtual SourceRange getSourceRange() const {
1252    // If we have an implicit base (like a C++ implicit this),
1253    // make sure not to return its location
1254    SourceLocation EndLoc = MemberLoc;
1255    if (HasExplicitTemplateArgumentList)
1256      EndLoc = getRAngleLoc();
1257
1258    SourceLocation BaseLoc = getBase()->getLocStart();
1259    if (BaseLoc.isInvalid())
1260      return SourceRange(MemberLoc, EndLoc);
1261    return SourceRange(BaseLoc, EndLoc);
1262  }
1263
1264  virtual SourceLocation getExprLoc() const { return MemberLoc; }
1265
1266  static bool classof(const Stmt *T) {
1267    return T->getStmtClass() == MemberExprClass;
1268  }
1269  static bool classof(const MemberExpr *) { return true; }
1270
1271  // Iterators
1272  virtual child_iterator child_begin();
1273  virtual child_iterator child_end();
1274};
1275
1276/// CompoundLiteralExpr - [C99 6.5.2.5]
1277///
1278class CompoundLiteralExpr : public Expr {
1279  /// LParenLoc - If non-null, this is the location of the left paren in a
1280  /// compound literal like "(int){4}".  This can be null if this is a
1281  /// synthesized compound expression.
1282  SourceLocation LParenLoc;
1283  Stmt *Init;
1284  bool FileScope;
1285public:
1286  CompoundLiteralExpr(SourceLocation lparenloc, QualType ty, Expr *init,
1287                      bool fileScope)
1288    : Expr(CompoundLiteralExprClass, ty), LParenLoc(lparenloc), Init(init),
1289      FileScope(fileScope) {}
1290
1291  /// \brief Construct an empty compound literal.
1292  explicit CompoundLiteralExpr(EmptyShell Empty)
1293    : Expr(CompoundLiteralExprClass, Empty) { }
1294
1295  const Expr *getInitializer() const { return cast<Expr>(Init); }
1296  Expr *getInitializer() { return cast<Expr>(Init); }
1297  void setInitializer(Expr *E) { Init = E; }
1298
1299  bool isFileScope() const { return FileScope; }
1300  void setFileScope(bool FS) { FileScope = FS; }
1301
1302  SourceLocation getLParenLoc() const { return LParenLoc; }
1303  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
1304
1305  virtual SourceRange getSourceRange() const {
1306    // FIXME: Init should never be null.
1307    if (!Init)
1308      return SourceRange();
1309    if (LParenLoc.isInvalid())
1310      return Init->getSourceRange();
1311    return SourceRange(LParenLoc, Init->getLocEnd());
1312  }
1313
1314  static bool classof(const Stmt *T) {
1315    return T->getStmtClass() == CompoundLiteralExprClass;
1316  }
1317  static bool classof(const CompoundLiteralExpr *) { return true; }
1318
1319  // Iterators
1320  virtual child_iterator child_begin();
1321  virtual child_iterator child_end();
1322};
1323
1324/// CastExpr - Base class for type casts, including both implicit
1325/// casts (ImplicitCastExpr) and explicit casts that have some
1326/// representation in the source code (ExplicitCastExpr's derived
1327/// classes).
1328class CastExpr : public Expr {
1329public:
1330  /// CastKind - the kind of cast this represents.
1331  enum CastKind {
1332    /// CK_Unknown - Unknown cast kind.
1333    /// FIXME: The goal is to get rid of this and make all casts have a
1334    /// kind so that the AST client doesn't have to try to figure out what's
1335    /// going on.
1336    CK_Unknown,
1337
1338    /// CK_BitCast - Used for reinterpret_cast.
1339    CK_BitCast,
1340
1341    /// CK_NoOp - Used for const_cast.
1342    CK_NoOp,
1343
1344    /// CK_DerivedToBase - Derived to base class casts.
1345    CK_DerivedToBase,
1346
1347    /// CK_Dynamic - Dynamic cast.
1348    CK_Dynamic,
1349
1350    /// CK_ToUnion - Cast to union (GCC extension).
1351    CK_ToUnion,
1352
1353    /// CK_ArrayToPointerDecay - Array to pointer decay.
1354    CK_ArrayToPointerDecay,
1355
1356    // CK_FunctionToPointerDecay - Function to pointer decay.
1357    CK_FunctionToPointerDecay,
1358
1359    /// CK_NullToMemberPointer - Null pointer to member pointer.
1360    CK_NullToMemberPointer,
1361
1362    /// CK_BaseToDerivedMemberPointer - Member pointer in base class to
1363    /// member pointer in derived class.
1364    CK_BaseToDerivedMemberPointer,
1365
1366    /// CK_UserDefinedConversion - Conversion using a user defined type
1367    /// conversion function.
1368    CK_UserDefinedConversion,
1369
1370    /// CK_ConstructorConversion - Conversion by constructor
1371    CK_ConstructorConversion
1372  };
1373
1374  struct CastInfo {
1375    const CastKind Kind;
1376
1377    // FIXME: This should assert that the CastKind does not require extra
1378    // information.
1379    CastInfo(CastKind Kind)
1380      : Kind(Kind) { }
1381  };
1382
1383private:
1384  CastKind Kind;
1385  Stmt *Op;
1386protected:
1387  CastExpr(StmtClass SC, QualType ty, const CastInfo &info, Expr *op) :
1388    Expr(SC, ty,
1389         // Cast expressions are type-dependent if the type is
1390         // dependent (C++ [temp.dep.expr]p3).
1391         ty->isDependentType(),
1392         // Cast expressions are value-dependent if the type is
1393         // dependent or if the subexpression is value-dependent.
1394         ty->isDependentType() || (op && op->isValueDependent())),
1395    Kind(info.Kind), Op(op) {}
1396
1397  /// \brief Construct an empty cast.
1398  CastExpr(StmtClass SC, EmptyShell Empty)
1399    : Expr(SC, Empty) { }
1400
1401public:
1402  CastKind getCastKind() const { return Kind; }
1403  void setCastKind(CastKind K) { Kind = K; }
1404  const char *getCastKindName() const;
1405
1406  Expr *getSubExpr() { return cast<Expr>(Op); }
1407  const Expr *getSubExpr() const { return cast<Expr>(Op); }
1408  void setSubExpr(Expr *E) { Op = E; }
1409
1410  static bool classof(const Stmt *T) {
1411    StmtClass SC = T->getStmtClass();
1412    if (SC >= CXXNamedCastExprClass && SC <= CXXFunctionalCastExprClass)
1413      return true;
1414
1415    if (SC >= ImplicitCastExprClass && SC <= CStyleCastExprClass)
1416      return true;
1417
1418    return false;
1419  }
1420  static bool classof(const CastExpr *) { return true; }
1421
1422  // Iterators
1423  virtual child_iterator child_begin();
1424  virtual child_iterator child_end();
1425};
1426
1427/// ImplicitCastExpr - Allows us to explicitly represent implicit type
1428/// conversions, which have no direct representation in the original
1429/// source code. For example: converting T[]->T*, void f()->void
1430/// (*f)(), float->double, short->int, etc.
1431///
1432/// In C, implicit casts always produce rvalues. However, in C++, an
1433/// implicit cast whose result is being bound to a reference will be
1434/// an lvalue. For example:
1435///
1436/// @code
1437/// class Base { };
1438/// class Derived : public Base { };
1439/// void f(Derived d) {
1440///   Base& b = d; // initializer is an ImplicitCastExpr to an lvalue of type Base
1441/// }
1442/// @endcode
1443class ImplicitCastExpr : public CastExpr {
1444  /// LvalueCast - Whether this cast produces an lvalue.
1445  bool LvalueCast;
1446
1447public:
1448  ImplicitCastExpr(QualType ty, const CastInfo &info, Expr *op, bool Lvalue) :
1449    CastExpr(ImplicitCastExprClass, ty, info, op), LvalueCast(Lvalue) { }
1450
1451  /// \brief Construct an empty implicit cast.
1452  explicit ImplicitCastExpr(EmptyShell Shell)
1453    : CastExpr(ImplicitCastExprClass, Shell) { }
1454
1455
1456  virtual SourceRange getSourceRange() const {
1457    return getSubExpr()->getSourceRange();
1458  }
1459
1460  /// isLvalueCast - Whether this cast produces an lvalue.
1461  bool isLvalueCast() const { return LvalueCast; }
1462
1463  /// setLvalueCast - Set whether this cast produces an lvalue.
1464  void setLvalueCast(bool Lvalue) { LvalueCast = Lvalue; }
1465
1466  static bool classof(const Stmt *T) {
1467    return T->getStmtClass() == ImplicitCastExprClass;
1468  }
1469  static bool classof(const ImplicitCastExpr *) { return true; }
1470};
1471
1472/// ExplicitCastExpr - An explicit cast written in the source
1473/// code.
1474///
1475/// This class is effectively an abstract class, because it provides
1476/// the basic representation of an explicitly-written cast without
1477/// specifying which kind of cast (C cast, functional cast, static
1478/// cast, etc.) was written; specific derived classes represent the
1479/// particular style of cast and its location information.
1480///
1481/// Unlike implicit casts, explicit cast nodes have two different
1482/// types: the type that was written into the source code, and the
1483/// actual type of the expression as determined by semantic
1484/// analysis. These types may differ slightly. For example, in C++ one
1485/// can cast to a reference type, which indicates that the resulting
1486/// expression will be an lvalue. The reference type, however, will
1487/// not be used as the type of the expression.
1488class ExplicitCastExpr : public CastExpr {
1489  /// TypeAsWritten - The type that this expression is casting to, as
1490  /// written in the source code.
1491  QualType TypeAsWritten;
1492
1493protected:
1494  ExplicitCastExpr(StmtClass SC, QualType exprTy, const CastInfo &info,
1495                   Expr *op, QualType writtenTy)
1496    : CastExpr(SC, exprTy, info, op), TypeAsWritten(writtenTy) {}
1497
1498  /// \brief Construct an empty explicit cast.
1499  ExplicitCastExpr(StmtClass SC, EmptyShell Shell)
1500    : CastExpr(SC, Shell) { }
1501
1502public:
1503  /// getTypeAsWritten - Returns the type that this expression is
1504  /// casting to, as written in the source code.
1505  QualType getTypeAsWritten() const { return TypeAsWritten; }
1506  void setTypeAsWritten(QualType T) { TypeAsWritten = T; }
1507
1508  static bool classof(const Stmt *T) {
1509    StmtClass SC = T->getStmtClass();
1510    if (SC >= ExplicitCastExprClass && SC <= CStyleCastExprClass)
1511      return true;
1512    if (SC >= CXXNamedCastExprClass && SC <= CXXFunctionalCastExprClass)
1513      return true;
1514
1515    return false;
1516  }
1517  static bool classof(const ExplicitCastExpr *) { return true; }
1518};
1519
1520/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
1521/// cast in C++ (C++ [expr.cast]), which uses the syntax
1522/// (Type)expr. For example: @c (int)f.
1523class CStyleCastExpr : public ExplicitCastExpr {
1524  SourceLocation LPLoc; // the location of the left paren
1525  SourceLocation RPLoc; // the location of the right paren
1526public:
1527  CStyleCastExpr(QualType exprTy, CastKind kind, Expr *op, QualType writtenTy,
1528                    SourceLocation l, SourceLocation r) :
1529    ExplicitCastExpr(CStyleCastExprClass, exprTy, kind, op, writtenTy),
1530    LPLoc(l), RPLoc(r) {}
1531
1532  /// \brief Construct an empty C-style explicit cast.
1533  explicit CStyleCastExpr(EmptyShell Shell)
1534    : ExplicitCastExpr(CStyleCastExprClass, Shell) { }
1535
1536  SourceLocation getLParenLoc() const { return LPLoc; }
1537  void setLParenLoc(SourceLocation L) { LPLoc = L; }
1538
1539  SourceLocation getRParenLoc() const { return RPLoc; }
1540  void setRParenLoc(SourceLocation L) { RPLoc = L; }
1541
1542  virtual SourceRange getSourceRange() const {
1543    return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd());
1544  }
1545  static bool classof(const Stmt *T) {
1546    return T->getStmtClass() == CStyleCastExprClass;
1547  }
1548  static bool classof(const CStyleCastExpr *) { return true; }
1549};
1550
1551/// \brief A builtin binary operation expression such as "x + y" or "x <= y".
1552///
1553/// This expression node kind describes a builtin binary operation,
1554/// such as "x + y" for integer values "x" and "y". The operands will
1555/// already have been converted to appropriate types (e.g., by
1556/// performing promotions or conversions).
1557///
1558/// In C++, where operators may be overloaded, a different kind of
1559/// expression node (CXXOperatorCallExpr) is used to express the
1560/// invocation of an overloaded operator with operator syntax. Within
1561/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
1562/// used to store an expression "x + y" depends on the subexpressions
1563/// for x and y. If neither x or y is type-dependent, and the "+"
1564/// operator resolves to a built-in operation, BinaryOperator will be
1565/// used to express the computation (x and y may still be
1566/// value-dependent). If either x or y is type-dependent, or if the
1567/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
1568/// be used to express the computation.
1569class BinaryOperator : public Expr {
1570public:
1571  enum Opcode {
1572    // Operators listed in order of precedence.
1573    // Note that additions to this should also update the StmtVisitor class.
1574    PtrMemD, PtrMemI, // [C++ 5.5] Pointer-to-member operators.
1575    Mul, Div, Rem,    // [C99 6.5.5] Multiplicative operators.
1576    Add, Sub,         // [C99 6.5.6] Additive operators.
1577    Shl, Shr,         // [C99 6.5.7] Bitwise shift operators.
1578    LT, GT, LE, GE,   // [C99 6.5.8] Relational operators.
1579    EQ, NE,           // [C99 6.5.9] Equality operators.
1580    And,              // [C99 6.5.10] Bitwise AND operator.
1581    Xor,              // [C99 6.5.11] Bitwise XOR operator.
1582    Or,               // [C99 6.5.12] Bitwise OR operator.
1583    LAnd,             // [C99 6.5.13] Logical AND operator.
1584    LOr,              // [C99 6.5.14] Logical OR operator.
1585    Assign, MulAssign,// [C99 6.5.16] Assignment operators.
1586    DivAssign, RemAssign,
1587    AddAssign, SubAssign,
1588    ShlAssign, ShrAssign,
1589    AndAssign, XorAssign,
1590    OrAssign,
1591    Comma             // [C99 6.5.17] Comma operator.
1592  };
1593private:
1594  enum { LHS, RHS, END_EXPR };
1595  Stmt* SubExprs[END_EXPR];
1596  Opcode Opc;
1597  SourceLocation OpLoc;
1598public:
1599
1600  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
1601                 SourceLocation opLoc)
1602    : Expr(BinaryOperatorClass, ResTy,
1603           lhs->isTypeDependent() || rhs->isTypeDependent(),
1604           lhs->isValueDependent() || rhs->isValueDependent()),
1605      Opc(opc), OpLoc(opLoc) {
1606    SubExprs[LHS] = lhs;
1607    SubExprs[RHS] = rhs;
1608    assert(!isCompoundAssignmentOp() &&
1609           "Use ArithAssignBinaryOperator for compound assignments");
1610  }
1611
1612  /// \brief Construct an empty binary operator.
1613  explicit BinaryOperator(EmptyShell Empty)
1614    : Expr(BinaryOperatorClass, Empty), Opc(Comma) { }
1615
1616  SourceLocation getOperatorLoc() const { return OpLoc; }
1617  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
1618
1619  Opcode getOpcode() const { return Opc; }
1620  void setOpcode(Opcode O) { Opc = O; }
1621
1622  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1623  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1624  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1625  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1626
1627  virtual SourceRange getSourceRange() const {
1628    return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
1629  }
1630
1631  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1632  /// corresponds to, e.g. "<<=".
1633  static const char *getOpcodeStr(Opcode Op);
1634
1635  /// \brief Retrieve the binary opcode that corresponds to the given
1636  /// overloaded operator.
1637  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
1638
1639  /// \brief Retrieve the overloaded operator kind that corresponds to
1640  /// the given binary opcode.
1641  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
1642
1643  /// predicates to categorize the respective opcodes.
1644  bool isMultiplicativeOp() const { return Opc >= Mul && Opc <= Rem; }
1645  bool isAdditiveOp() const { return Opc == Add || Opc == Sub; }
1646  bool isShiftOp() const { return Opc == Shl || Opc == Shr; }
1647  bool isBitwiseOp() const { return Opc >= And && Opc <= Or; }
1648
1649  static bool isRelationalOp(Opcode Opc) { return Opc >= LT && Opc <= GE; }
1650  bool isRelationalOp() const { return isRelationalOp(Opc); }
1651
1652  static bool isEqualityOp(Opcode Opc) { return Opc == EQ || Opc == NE; }
1653  bool isEqualityOp() const { return isEqualityOp(Opc); }
1654
1655  static bool isLogicalOp(Opcode Opc) { return Opc == LAnd || Opc == LOr; }
1656  bool isLogicalOp() const { return isLogicalOp(Opc); }
1657
1658  bool isAssignmentOp() const { return Opc >= Assign && Opc <= OrAssign; }
1659  bool isCompoundAssignmentOp() const { return Opc > Assign && Opc <= OrAssign;}
1660  bool isShiftAssignOp() const { return Opc == ShlAssign || Opc == ShrAssign; }
1661
1662  static bool classof(const Stmt *S) {
1663    return S->getStmtClass() == BinaryOperatorClass ||
1664           S->getStmtClass() == CompoundAssignOperatorClass;
1665  }
1666  static bool classof(const BinaryOperator *) { return true; }
1667
1668  // Iterators
1669  virtual child_iterator child_begin();
1670  virtual child_iterator child_end();
1671
1672protected:
1673  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
1674                 SourceLocation oploc, bool dead)
1675    : Expr(CompoundAssignOperatorClass, ResTy), Opc(opc), OpLoc(oploc) {
1676    SubExprs[LHS] = lhs;
1677    SubExprs[RHS] = rhs;
1678  }
1679
1680  BinaryOperator(StmtClass SC, EmptyShell Empty)
1681    : Expr(SC, Empty), Opc(MulAssign) { }
1682};
1683
1684/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
1685/// track of the type the operation is performed in.  Due to the semantics of
1686/// these operators, the operands are promoted, the aritmetic performed, an
1687/// implicit conversion back to the result type done, then the assignment takes
1688/// place.  This captures the intermediate type which the computation is done
1689/// in.
1690class CompoundAssignOperator : public BinaryOperator {
1691  QualType ComputationLHSType;
1692  QualType ComputationResultType;
1693public:
1694  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc,
1695                         QualType ResType, QualType CompLHSType,
1696                         QualType CompResultType,
1697                         SourceLocation OpLoc)
1698    : BinaryOperator(lhs, rhs, opc, ResType, OpLoc, true),
1699      ComputationLHSType(CompLHSType),
1700      ComputationResultType(CompResultType) {
1701    assert(isCompoundAssignmentOp() &&
1702           "Only should be used for compound assignments");
1703  }
1704
1705  /// \brief Build an empty compound assignment operator expression.
1706  explicit CompoundAssignOperator(EmptyShell Empty)
1707    : BinaryOperator(CompoundAssignOperatorClass, Empty) { }
1708
1709  // The two computation types are the type the LHS is converted
1710  // to for the computation and the type of the result; the two are
1711  // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
1712  QualType getComputationLHSType() const { return ComputationLHSType; }
1713  void setComputationLHSType(QualType T) { ComputationLHSType = T; }
1714
1715  QualType getComputationResultType() const { return ComputationResultType; }
1716  void setComputationResultType(QualType T) { ComputationResultType = T; }
1717
1718  static bool classof(const CompoundAssignOperator *) { return true; }
1719  static bool classof(const Stmt *S) {
1720    return S->getStmtClass() == CompoundAssignOperatorClass;
1721  }
1722};
1723
1724/// ConditionalOperator - The ?: operator.  Note that LHS may be null when the
1725/// GNU "missing LHS" extension is in use.
1726///
1727class ConditionalOperator : public Expr {
1728  enum { COND, LHS, RHS, END_EXPR };
1729  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
1730  SourceLocation QuestionLoc, ColonLoc;
1731public:
1732  ConditionalOperator(Expr *cond, SourceLocation QLoc, Expr *lhs,
1733                      SourceLocation CLoc, Expr *rhs, QualType t)
1734    : Expr(ConditionalOperatorClass, t,
1735           // FIXME: the type of the conditional operator doesn't
1736           // depend on the type of the conditional, but the standard
1737           // seems to imply that it could. File a bug!
1738           ((lhs && lhs->isTypeDependent()) || (rhs && rhs->isTypeDependent())),
1739           (cond->isValueDependent() ||
1740            (lhs && lhs->isValueDependent()) ||
1741            (rhs && rhs->isValueDependent()))),
1742      QuestionLoc(QLoc),
1743      ColonLoc(CLoc) {
1744    SubExprs[COND] = cond;
1745    SubExprs[LHS] = lhs;
1746    SubExprs[RHS] = rhs;
1747  }
1748
1749  /// \brief Build an empty conditional operator.
1750  explicit ConditionalOperator(EmptyShell Empty)
1751    : Expr(ConditionalOperatorClass, Empty) { }
1752
1753  // getCond - Return the expression representing the condition for
1754  //  the ?: operator.
1755  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
1756  void setCond(Expr *E) { SubExprs[COND] = E; }
1757
1758  // getTrueExpr - Return the subexpression representing the value of the ?:
1759  //  expression if the condition evaluates to true.  In most cases this value
1760  //  will be the same as getLHS() except a GCC extension allows the left
1761  //  subexpression to be omitted, and instead of the condition be returned.
1762  //  e.g: x ?: y is shorthand for x ? x : y, except that the expression "x"
1763  //  is only evaluated once.
1764  Expr *getTrueExpr() const {
1765    return cast<Expr>(SubExprs[LHS] ? SubExprs[LHS] : SubExprs[COND]);
1766  }
1767
1768  // getTrueExpr - Return the subexpression representing the value of the ?:
1769  // expression if the condition evaluates to false. This is the same as getRHS.
1770  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
1771
1772  Expr *getLHS() const { return cast_or_null<Expr>(SubExprs[LHS]); }
1773  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1774
1775  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1776  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1777
1778  SourceLocation getQuestionLoc() const { return QuestionLoc; }
1779  void setQuestionLoc(SourceLocation L) { QuestionLoc = L; }
1780
1781  SourceLocation getColonLoc() const { return ColonLoc; }
1782  void setColonLoc(SourceLocation L) { ColonLoc = L; }
1783
1784  virtual SourceRange getSourceRange() const {
1785    return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
1786  }
1787  static bool classof(const Stmt *T) {
1788    return T->getStmtClass() == ConditionalOperatorClass;
1789  }
1790  static bool classof(const ConditionalOperator *) { return true; }
1791
1792  // Iterators
1793  virtual child_iterator child_begin();
1794  virtual child_iterator child_end();
1795};
1796
1797/// AddrLabelExpr - The GNU address of label extension, representing &&label.
1798class AddrLabelExpr : public Expr {
1799  SourceLocation AmpAmpLoc, LabelLoc;
1800  LabelStmt *Label;
1801public:
1802  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelStmt *L,
1803                QualType t)
1804    : Expr(AddrLabelExprClass, t), AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
1805
1806  /// \brief Build an empty address of a label expression.
1807  explicit AddrLabelExpr(EmptyShell Empty)
1808    : Expr(AddrLabelExprClass, Empty) { }
1809
1810  SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
1811  void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
1812  SourceLocation getLabelLoc() const { return LabelLoc; }
1813  void setLabelLoc(SourceLocation L) { LabelLoc = L; }
1814
1815  virtual SourceRange getSourceRange() const {
1816    return SourceRange(AmpAmpLoc, LabelLoc);
1817  }
1818
1819  LabelStmt *getLabel() const { return Label; }
1820  void setLabel(LabelStmt *S) { Label = S; }
1821
1822  static bool classof(const Stmt *T) {
1823    return T->getStmtClass() == AddrLabelExprClass;
1824  }
1825  static bool classof(const AddrLabelExpr *) { return true; }
1826
1827  // Iterators
1828  virtual child_iterator child_begin();
1829  virtual child_iterator child_end();
1830};
1831
1832/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
1833/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
1834/// takes the value of the last subexpression.
1835class StmtExpr : public Expr {
1836  Stmt *SubStmt;
1837  SourceLocation LParenLoc, RParenLoc;
1838public:
1839  StmtExpr(CompoundStmt *substmt, QualType T,
1840           SourceLocation lp, SourceLocation rp) :
1841    Expr(StmtExprClass, T), SubStmt(substmt),  LParenLoc(lp), RParenLoc(rp) { }
1842
1843  /// \brief Build an empty statement expression.
1844  explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
1845
1846  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
1847  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
1848  void setSubStmt(CompoundStmt *S) { SubStmt = S; }
1849
1850  virtual SourceRange getSourceRange() const {
1851    return SourceRange(LParenLoc, RParenLoc);
1852  }
1853
1854  SourceLocation getLParenLoc() const { return LParenLoc; }
1855  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
1856  SourceLocation getRParenLoc() const { return RParenLoc; }
1857  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1858
1859  static bool classof(const Stmt *T) {
1860    return T->getStmtClass() == StmtExprClass;
1861  }
1862  static bool classof(const StmtExpr *) { return true; }
1863
1864  // Iterators
1865  virtual child_iterator child_begin();
1866  virtual child_iterator child_end();
1867};
1868
1869/// TypesCompatibleExpr - GNU builtin-in function __builtin_types_compatible_p.
1870/// This AST node represents a function that returns 1 if two *types* (not
1871/// expressions) are compatible. The result of this built-in function can be
1872/// used in integer constant expressions.
1873class TypesCompatibleExpr : public Expr {
1874  QualType Type1;
1875  QualType Type2;
1876  SourceLocation BuiltinLoc, RParenLoc;
1877public:
1878  TypesCompatibleExpr(QualType ReturnType, SourceLocation BLoc,
1879                      QualType t1, QualType t2, SourceLocation RP) :
1880    Expr(TypesCompatibleExprClass, ReturnType), Type1(t1), Type2(t2),
1881    BuiltinLoc(BLoc), RParenLoc(RP) {}
1882
1883  /// \brief Build an empty __builtin_type_compatible_p expression.
1884  explicit TypesCompatibleExpr(EmptyShell Empty)
1885    : Expr(TypesCompatibleExprClass, Empty) { }
1886
1887  QualType getArgType1() const { return Type1; }
1888  void setArgType1(QualType T) { Type1 = T; }
1889  QualType getArgType2() const { return Type2; }
1890  void setArgType2(QualType T) { Type2 = T; }
1891
1892  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
1893  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
1894
1895  SourceLocation getRParenLoc() const { return RParenLoc; }
1896  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1897
1898  virtual SourceRange getSourceRange() const {
1899    return SourceRange(BuiltinLoc, RParenLoc);
1900  }
1901  static bool classof(const Stmt *T) {
1902    return T->getStmtClass() == TypesCompatibleExprClass;
1903  }
1904  static bool classof(const TypesCompatibleExpr *) { return true; }
1905
1906  // Iterators
1907  virtual child_iterator child_begin();
1908  virtual child_iterator child_end();
1909};
1910
1911/// ShuffleVectorExpr - clang-specific builtin-in function
1912/// __builtin_shufflevector.
1913/// This AST node represents a operator that does a constant
1914/// shuffle, similar to LLVM's shufflevector instruction. It takes
1915/// two vectors and a variable number of constant indices,
1916/// and returns the appropriately shuffled vector.
1917class ShuffleVectorExpr : public Expr {
1918  SourceLocation BuiltinLoc, RParenLoc;
1919
1920  // SubExprs - the list of values passed to the __builtin_shufflevector
1921  // function. The first two are vectors, and the rest are constant
1922  // indices.  The number of values in this list is always
1923  // 2+the number of indices in the vector type.
1924  Stmt **SubExprs;
1925  unsigned NumExprs;
1926
1927protected:
1928  virtual void DoDestroy(ASTContext &C);
1929
1930public:
1931  ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr,
1932                    QualType Type, SourceLocation BLoc,
1933                    SourceLocation RP) :
1934    Expr(ShuffleVectorExprClass, Type), BuiltinLoc(BLoc),
1935    RParenLoc(RP), NumExprs(nexpr) {
1936
1937    SubExprs = new (C) Stmt*[nexpr];
1938    for (unsigned i = 0; i < nexpr; i++)
1939      SubExprs[i] = args[i];
1940  }
1941
1942  /// \brief Build an empty vector-shuffle expression.
1943  explicit ShuffleVectorExpr(EmptyShell Empty)
1944    : Expr(ShuffleVectorExprClass, Empty), SubExprs(0) { }
1945
1946  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
1947  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
1948
1949  SourceLocation getRParenLoc() const { return RParenLoc; }
1950  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1951
1952  virtual SourceRange getSourceRange() const {
1953    return SourceRange(BuiltinLoc, RParenLoc);
1954  }
1955  static bool classof(const Stmt *T) {
1956    return T->getStmtClass() == ShuffleVectorExprClass;
1957  }
1958  static bool classof(const ShuffleVectorExpr *) { return true; }
1959
1960  ~ShuffleVectorExpr() {}
1961
1962  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
1963  /// constant expression, the actual arguments passed in, and the function
1964  /// pointers.
1965  unsigned getNumSubExprs() const { return NumExprs; }
1966
1967  /// getExpr - Return the Expr at the specified index.
1968  Expr *getExpr(unsigned Index) {
1969    assert((Index < NumExprs) && "Arg access out of range!");
1970    return cast<Expr>(SubExprs[Index]);
1971  }
1972  const Expr *getExpr(unsigned Index) const {
1973    assert((Index < NumExprs) && "Arg access out of range!");
1974    return cast<Expr>(SubExprs[Index]);
1975  }
1976
1977  void setExprs(ASTContext &C, Expr ** Exprs, unsigned NumExprs);
1978
1979  unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) {
1980    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
1981    return getExpr(N+2)->EvaluateAsInt(Ctx).getZExtValue();
1982  }
1983
1984  // Iterators
1985  virtual child_iterator child_begin();
1986  virtual child_iterator child_end();
1987};
1988
1989/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
1990/// This AST node is similar to the conditional operator (?:) in C, with
1991/// the following exceptions:
1992/// - the test expression must be a integer constant expression.
1993/// - the expression returned acts like the chosen subexpression in every
1994///   visible way: the type is the same as that of the chosen subexpression,
1995///   and all predicates (whether it's an l-value, whether it's an integer
1996///   constant expression, etc.) return the same result as for the chosen
1997///   sub-expression.
1998class ChooseExpr : public Expr {
1999  enum { COND, LHS, RHS, END_EXPR };
2000  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
2001  SourceLocation BuiltinLoc, RParenLoc;
2002public:
2003  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs, QualType t,
2004             SourceLocation RP)
2005    : Expr(ChooseExprClass, t),
2006      BuiltinLoc(BLoc), RParenLoc(RP) {
2007      SubExprs[COND] = cond;
2008      SubExprs[LHS] = lhs;
2009      SubExprs[RHS] = rhs;
2010    }
2011
2012  /// \brief Build an empty __builtin_choose_expr.
2013  explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
2014
2015  /// isConditionTrue - Return whether the condition is true (i.e. not
2016  /// equal to zero).
2017  bool isConditionTrue(ASTContext &C) const;
2018
2019  /// getChosenSubExpr - Return the subexpression chosen according to the
2020  /// condition.
2021  Expr *getChosenSubExpr(ASTContext &C) const {
2022    return isConditionTrue(C) ? getLHS() : getRHS();
2023  }
2024
2025  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
2026  void setCond(Expr *E) { SubExprs[COND] = E; }
2027  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2028  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2029  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2030  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2031
2032  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2033  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2034
2035  SourceLocation getRParenLoc() const { return RParenLoc; }
2036  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2037
2038  virtual SourceRange getSourceRange() const {
2039    return SourceRange(BuiltinLoc, RParenLoc);
2040  }
2041  static bool classof(const Stmt *T) {
2042    return T->getStmtClass() == ChooseExprClass;
2043  }
2044  static bool classof(const ChooseExpr *) { return true; }
2045
2046  // Iterators
2047  virtual child_iterator child_begin();
2048  virtual child_iterator child_end();
2049};
2050
2051/// GNUNullExpr - Implements the GNU __null extension, which is a name
2052/// for a null pointer constant that has integral type (e.g., int or
2053/// long) and is the same size and alignment as a pointer. The __null
2054/// extension is typically only used by system headers, which define
2055/// NULL as __null in C++ rather than using 0 (which is an integer
2056/// that may not match the size of a pointer).
2057class GNUNullExpr : public Expr {
2058  /// TokenLoc - The location of the __null keyword.
2059  SourceLocation TokenLoc;
2060
2061public:
2062  GNUNullExpr(QualType Ty, SourceLocation Loc)
2063    : Expr(GNUNullExprClass, Ty), TokenLoc(Loc) { }
2064
2065  /// \brief Build an empty GNU __null expression.
2066  explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
2067
2068  /// getTokenLocation - The location of the __null token.
2069  SourceLocation getTokenLocation() const { return TokenLoc; }
2070  void setTokenLocation(SourceLocation L) { TokenLoc = L; }
2071
2072  virtual SourceRange getSourceRange() const {
2073    return SourceRange(TokenLoc);
2074  }
2075  static bool classof(const Stmt *T) {
2076    return T->getStmtClass() == GNUNullExprClass;
2077  }
2078  static bool classof(const GNUNullExpr *) { return true; }
2079
2080  // Iterators
2081  virtual child_iterator child_begin();
2082  virtual child_iterator child_end();
2083};
2084
2085/// VAArgExpr, used for the builtin function __builtin_va_start.
2086class VAArgExpr : public Expr {
2087  Stmt *Val;
2088  SourceLocation BuiltinLoc, RParenLoc;
2089public:
2090  VAArgExpr(SourceLocation BLoc, Expr* e, QualType t, SourceLocation RPLoc)
2091    : Expr(VAArgExprClass, t),
2092      Val(e),
2093      BuiltinLoc(BLoc),
2094      RParenLoc(RPLoc) { }
2095
2096  /// \brief Create an empty __builtin_va_start expression.
2097  explicit VAArgExpr(EmptyShell Empty) : Expr(VAArgExprClass, Empty) { }
2098
2099  const Expr *getSubExpr() const { return cast<Expr>(Val); }
2100  Expr *getSubExpr() { return cast<Expr>(Val); }
2101  void setSubExpr(Expr *E) { Val = E; }
2102
2103  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2104  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2105
2106  SourceLocation getRParenLoc() const { return RParenLoc; }
2107  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2108
2109  virtual SourceRange getSourceRange() const {
2110    return SourceRange(BuiltinLoc, RParenLoc);
2111  }
2112  static bool classof(const Stmt *T) {
2113    return T->getStmtClass() == VAArgExprClass;
2114  }
2115  static bool classof(const VAArgExpr *) { return true; }
2116
2117  // Iterators
2118  virtual child_iterator child_begin();
2119  virtual child_iterator child_end();
2120};
2121
2122/// @brief Describes an C or C++ initializer list.
2123///
2124/// InitListExpr describes an initializer list, which can be used to
2125/// initialize objects of different types, including
2126/// struct/class/union types, arrays, and vectors. For example:
2127///
2128/// @code
2129/// struct foo x = { 1, { 2, 3 } };
2130/// @endcode
2131///
2132/// Prior to semantic analysis, an initializer list will represent the
2133/// initializer list as written by the user, but will have the
2134/// placeholder type "void". This initializer list is called the
2135/// syntactic form of the initializer, and may contain C99 designated
2136/// initializers (represented as DesignatedInitExprs), initializations
2137/// of subobject members without explicit braces, and so on. Clients
2138/// interested in the original syntax of the initializer list should
2139/// use the syntactic form of the initializer list.
2140///
2141/// After semantic analysis, the initializer list will represent the
2142/// semantic form of the initializer, where the initializations of all
2143/// subobjects are made explicit with nested InitListExpr nodes and
2144/// C99 designators have been eliminated by placing the designated
2145/// initializations into the subobject they initialize. Additionally,
2146/// any "holes" in the initialization, where no initializer has been
2147/// specified for a particular subobject, will be replaced with
2148/// implicitly-generated ImplicitValueInitExpr expressions that
2149/// value-initialize the subobjects. Note, however, that the
2150/// initializer lists may still have fewer initializers than there are
2151/// elements to initialize within the object.
2152///
2153/// Given the semantic form of the initializer list, one can retrieve
2154/// the original syntactic form of that initializer list (if it
2155/// exists) using getSyntacticForm(). Since many initializer lists
2156/// have the same syntactic and semantic forms, getSyntacticForm() may
2157/// return NULL, indicating that the current initializer list also
2158/// serves as its syntactic form.
2159class InitListExpr : public Expr {
2160  // FIXME: Eliminate this vector in favor of ASTContext allocation
2161  std::vector<Stmt *> InitExprs;
2162  SourceLocation LBraceLoc, RBraceLoc;
2163
2164  /// Contains the initializer list that describes the syntactic form
2165  /// written in the source code.
2166  InitListExpr *SyntacticForm;
2167
2168  /// If this initializer list initializes a union, specifies which
2169  /// field within the union will be initialized.
2170  FieldDecl *UnionFieldInit;
2171
2172  /// Whether this initializer list originally had a GNU array-range
2173  /// designator in it. This is a temporary marker used by CodeGen.
2174  bool HadArrayRangeDesignator;
2175
2176public:
2177  InitListExpr(SourceLocation lbraceloc, Expr **initexprs, unsigned numinits,
2178               SourceLocation rbraceloc);
2179
2180  /// \brief Build an empty initializer list.
2181  explicit InitListExpr(EmptyShell Empty) : Expr(InitListExprClass, Empty) { }
2182
2183  unsigned getNumInits() const { return InitExprs.size(); }
2184
2185  const Expr* getInit(unsigned Init) const {
2186    assert(Init < getNumInits() && "Initializer access out of range!");
2187    return cast_or_null<Expr>(InitExprs[Init]);
2188  }
2189
2190  Expr* getInit(unsigned Init) {
2191    assert(Init < getNumInits() && "Initializer access out of range!");
2192    return cast_or_null<Expr>(InitExprs[Init]);
2193  }
2194
2195  void setInit(unsigned Init, Expr *expr) {
2196    assert(Init < getNumInits() && "Initializer access out of range!");
2197    InitExprs[Init] = expr;
2198  }
2199
2200  /// \brief Reserve space for some number of initializers.
2201  void reserveInits(unsigned NumInits);
2202
2203  /// @brief Specify the number of initializers
2204  ///
2205  /// If there are more than @p NumInits initializers, the remaining
2206  /// initializers will be destroyed. If there are fewer than @p
2207  /// NumInits initializers, NULL expressions will be added for the
2208  /// unknown initializers.
2209  void resizeInits(ASTContext &Context, unsigned NumInits);
2210
2211  /// @brief Updates the initializer at index @p Init with the new
2212  /// expression @p expr, and returns the old expression at that
2213  /// location.
2214  ///
2215  /// When @p Init is out of range for this initializer list, the
2216  /// initializer list will be extended with NULL expressions to
2217  /// accomodate the new entry.
2218  Expr *updateInit(unsigned Init, Expr *expr);
2219
2220  /// \brief If this initializes a union, specifies which field in the
2221  /// union to initialize.
2222  ///
2223  /// Typically, this field is the first named field within the
2224  /// union. However, a designated initializer can specify the
2225  /// initialization of a different field within the union.
2226  FieldDecl *getInitializedFieldInUnion() { return UnionFieldInit; }
2227  void setInitializedFieldInUnion(FieldDecl *FD) { UnionFieldInit = FD; }
2228
2229  // Explicit InitListExpr's originate from source code (and have valid source
2230  // locations). Implicit InitListExpr's are created by the semantic analyzer.
2231  bool isExplicit() {
2232    return LBraceLoc.isValid() && RBraceLoc.isValid();
2233  }
2234
2235  SourceLocation getLBraceLoc() const { return LBraceLoc; }
2236  void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
2237  SourceLocation getRBraceLoc() const { return RBraceLoc; }
2238  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
2239
2240  /// @brief Retrieve the initializer list that describes the
2241  /// syntactic form of the initializer.
2242  ///
2243  ///
2244  InitListExpr *getSyntacticForm() const { return SyntacticForm; }
2245  void setSyntacticForm(InitListExpr *Init) { SyntacticForm = Init; }
2246
2247  bool hadArrayRangeDesignator() const { return HadArrayRangeDesignator; }
2248  void sawArrayRangeDesignator(bool ARD = true) {
2249    HadArrayRangeDesignator = ARD;
2250  }
2251
2252  virtual SourceRange getSourceRange() const {
2253    return SourceRange(LBraceLoc, RBraceLoc);
2254  }
2255  static bool classof(const Stmt *T) {
2256    return T->getStmtClass() == InitListExprClass;
2257  }
2258  static bool classof(const InitListExpr *) { return true; }
2259
2260  // Iterators
2261  virtual child_iterator child_begin();
2262  virtual child_iterator child_end();
2263
2264  typedef std::vector<Stmt *>::iterator iterator;
2265  typedef std::vector<Stmt *>::reverse_iterator reverse_iterator;
2266
2267  iterator begin() { return InitExprs.begin(); }
2268  iterator end() { return InitExprs.end(); }
2269  reverse_iterator rbegin() { return InitExprs.rbegin(); }
2270  reverse_iterator rend() { return InitExprs.rend(); }
2271};
2272
2273/// @brief Represents a C99 designated initializer expression.
2274///
2275/// A designated initializer expression (C99 6.7.8) contains one or
2276/// more designators (which can be field designators, array
2277/// designators, or GNU array-range designators) followed by an
2278/// expression that initializes the field or element(s) that the
2279/// designators refer to. For example, given:
2280///
2281/// @code
2282/// struct point {
2283///   double x;
2284///   double y;
2285/// };
2286/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
2287/// @endcode
2288///
2289/// The InitListExpr contains three DesignatedInitExprs, the first of
2290/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
2291/// designators, one array designator for @c [2] followed by one field
2292/// designator for @c .y. The initalization expression will be 1.0.
2293class DesignatedInitExpr : public Expr {
2294public:
2295  /// \brief Forward declaration of the Designator class.
2296  class Designator;
2297
2298private:
2299  /// The location of the '=' or ':' prior to the actual initializer
2300  /// expression.
2301  SourceLocation EqualOrColonLoc;
2302
2303  /// Whether this designated initializer used the GNU deprecated
2304  /// syntax rather than the C99 '=' syntax.
2305  bool GNUSyntax : 1;
2306
2307  /// The number of designators in this initializer expression.
2308  unsigned NumDesignators : 15;
2309
2310  /// \brief The designators in this designated initialization
2311  /// expression.
2312  Designator *Designators;
2313
2314  /// The number of subexpressions of this initializer expression,
2315  /// which contains both the initializer and any additional
2316  /// expressions used by array and array-range designators.
2317  unsigned NumSubExprs : 16;
2318
2319
2320  DesignatedInitExpr(QualType Ty, unsigned NumDesignators,
2321                     const Designator *Designators,
2322                     SourceLocation EqualOrColonLoc, bool GNUSyntax,
2323                     Expr **IndexExprs, unsigned NumIndexExprs,
2324                     Expr *Init);
2325
2326  explicit DesignatedInitExpr(unsigned NumSubExprs)
2327    : Expr(DesignatedInitExprClass, EmptyShell()),
2328      NumDesignators(0), Designators(0), NumSubExprs(NumSubExprs) { }
2329
2330protected:
2331  virtual void DoDestroy(ASTContext &C);
2332
2333public:
2334  /// A field designator, e.g., ".x".
2335  struct FieldDesignator {
2336    /// Refers to the field that is being initialized. The low bit
2337    /// of this field determines whether this is actually a pointer
2338    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
2339    /// initially constructed, a field designator will store an
2340    /// IdentifierInfo*. After semantic analysis has resolved that
2341    /// name, the field designator will instead store a FieldDecl*.
2342    uintptr_t NameOrField;
2343
2344    /// The location of the '.' in the designated initializer.
2345    unsigned DotLoc;
2346
2347    /// The location of the field name in the designated initializer.
2348    unsigned FieldLoc;
2349  };
2350
2351  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
2352  struct ArrayOrRangeDesignator {
2353    /// Location of the first index expression within the designated
2354    /// initializer expression's list of subexpressions.
2355    unsigned Index;
2356    /// The location of the '[' starting the array range designator.
2357    unsigned LBracketLoc;
2358    /// The location of the ellipsis separating the start and end
2359    /// indices. Only valid for GNU array-range designators.
2360    unsigned EllipsisLoc;
2361    /// The location of the ']' terminating the array range designator.
2362    unsigned RBracketLoc;
2363  };
2364
2365  /// @brief Represents a single C99 designator.
2366  ///
2367  /// @todo This class is infuriatingly similar to clang::Designator,
2368  /// but minor differences (storing indices vs. storing pointers)
2369  /// keep us from reusing it. Try harder, later, to rectify these
2370  /// differences.
2371  class Designator {
2372    /// @brief The kind of designator this describes.
2373    enum {
2374      FieldDesignator,
2375      ArrayDesignator,
2376      ArrayRangeDesignator
2377    } Kind;
2378
2379    union {
2380      /// A field designator, e.g., ".x".
2381      struct FieldDesignator Field;
2382      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
2383      struct ArrayOrRangeDesignator ArrayOrRange;
2384    };
2385    friend class DesignatedInitExpr;
2386
2387  public:
2388    Designator() {}
2389
2390    /// @brief Initializes a field designator.
2391    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
2392               SourceLocation FieldLoc)
2393      : Kind(FieldDesignator) {
2394      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
2395      Field.DotLoc = DotLoc.getRawEncoding();
2396      Field.FieldLoc = FieldLoc.getRawEncoding();
2397    }
2398
2399    /// @brief Initializes an array designator.
2400    Designator(unsigned Index, SourceLocation LBracketLoc,
2401               SourceLocation RBracketLoc)
2402      : Kind(ArrayDesignator) {
2403      ArrayOrRange.Index = Index;
2404      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
2405      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
2406      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
2407    }
2408
2409    /// @brief Initializes a GNU array-range designator.
2410    Designator(unsigned Index, SourceLocation LBracketLoc,
2411               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
2412      : Kind(ArrayRangeDesignator) {
2413      ArrayOrRange.Index = Index;
2414      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
2415      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
2416      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
2417    }
2418
2419    bool isFieldDesignator() const { return Kind == FieldDesignator; }
2420    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
2421    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
2422
2423    IdentifierInfo * getFieldName();
2424
2425    FieldDecl *getField() {
2426      assert(Kind == FieldDesignator && "Only valid on a field designator");
2427      if (Field.NameOrField & 0x01)
2428        return 0;
2429      else
2430        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
2431    }
2432
2433    void setField(FieldDecl *FD) {
2434      assert(Kind == FieldDesignator && "Only valid on a field designator");
2435      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
2436    }
2437
2438    SourceLocation getDotLoc() const {
2439      assert(Kind == FieldDesignator && "Only valid on a field designator");
2440      return SourceLocation::getFromRawEncoding(Field.DotLoc);
2441    }
2442
2443    SourceLocation getFieldLoc() const {
2444      assert(Kind == FieldDesignator && "Only valid on a field designator");
2445      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
2446    }
2447
2448    SourceLocation getLBracketLoc() const {
2449      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
2450             "Only valid on an array or array-range designator");
2451      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
2452    }
2453
2454    SourceLocation getRBracketLoc() const {
2455      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
2456             "Only valid on an array or array-range designator");
2457      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
2458    }
2459
2460    SourceLocation getEllipsisLoc() const {
2461      assert(Kind == ArrayRangeDesignator &&
2462             "Only valid on an array-range designator");
2463      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
2464    }
2465
2466    unsigned getFirstExprIndex() const {
2467      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
2468             "Only valid on an array or array-range designator");
2469      return ArrayOrRange.Index;
2470    }
2471
2472    SourceLocation getStartLocation() const {
2473      if (Kind == FieldDesignator)
2474        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
2475      else
2476        return getLBracketLoc();
2477    }
2478  };
2479
2480  static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators,
2481                                    unsigned NumDesignators,
2482                                    Expr **IndexExprs, unsigned NumIndexExprs,
2483                                    SourceLocation EqualOrColonLoc,
2484                                    bool GNUSyntax, Expr *Init);
2485
2486  static DesignatedInitExpr *CreateEmpty(ASTContext &C, unsigned NumIndexExprs);
2487
2488  /// @brief Returns the number of designators in this initializer.
2489  unsigned size() const { return NumDesignators; }
2490
2491  // Iterator access to the designators.
2492  typedef Designator* designators_iterator;
2493  designators_iterator designators_begin() { return Designators; }
2494  designators_iterator designators_end() {
2495    return Designators + NumDesignators;
2496  }
2497
2498  Designator *getDesignator(unsigned Idx) { return &designators_begin()[Idx]; }
2499
2500  void setDesignators(const Designator *Desigs, unsigned NumDesigs);
2501
2502  Expr *getArrayIndex(const Designator& D);
2503  Expr *getArrayRangeStart(const Designator& D);
2504  Expr *getArrayRangeEnd(const Designator& D);
2505
2506  /// @brief Retrieve the location of the '=' that precedes the
2507  /// initializer value itself, if present.
2508  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
2509  void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
2510
2511  /// @brief Determines whether this designated initializer used the
2512  /// deprecated GNU syntax for designated initializers.
2513  bool usesGNUSyntax() const { return GNUSyntax; }
2514  void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
2515
2516  /// @brief Retrieve the initializer value.
2517  Expr *getInit() const {
2518    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
2519  }
2520
2521  void setInit(Expr *init) {
2522    *child_begin() = init;
2523  }
2524
2525  /// \brief Retrieve the total number of subexpressions in this
2526  /// designated initializer expression, including the actual
2527  /// initialized value and any expressions that occur within array
2528  /// and array-range designators.
2529  unsigned getNumSubExprs() const { return NumSubExprs; }
2530
2531  Expr *getSubExpr(unsigned Idx) {
2532    assert(Idx < NumSubExprs && "Subscript out of range");
2533    char* Ptr = static_cast<char*>(static_cast<void *>(this));
2534    Ptr += sizeof(DesignatedInitExpr);
2535    return reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx];
2536  }
2537
2538  void setSubExpr(unsigned Idx, Expr *E) {
2539    assert(Idx < NumSubExprs && "Subscript out of range");
2540    char* Ptr = static_cast<char*>(static_cast<void *>(this));
2541    Ptr += sizeof(DesignatedInitExpr);
2542    reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx] = E;
2543  }
2544
2545  /// \brief Replaces the designator at index @p Idx with the series
2546  /// of designators in [First, Last).
2547  void ExpandDesignator(unsigned Idx, const Designator *First,
2548                        const Designator *Last);
2549
2550  virtual SourceRange getSourceRange() const;
2551
2552  static bool classof(const Stmt *T) {
2553    return T->getStmtClass() == DesignatedInitExprClass;
2554  }
2555  static bool classof(const DesignatedInitExpr *) { return true; }
2556
2557  // Iterators
2558  virtual child_iterator child_begin();
2559  virtual child_iterator child_end();
2560};
2561
2562/// \brief Represents an implicitly-generated value initialization of
2563/// an object of a given type.
2564///
2565/// Implicit value initializations occur within semantic initializer
2566/// list expressions (InitListExpr) as placeholders for subobject
2567/// initializations not explicitly specified by the user.
2568///
2569/// \see InitListExpr
2570class ImplicitValueInitExpr : public Expr {
2571public:
2572  explicit ImplicitValueInitExpr(QualType ty)
2573    : Expr(ImplicitValueInitExprClass, ty) { }
2574
2575  /// \brief Construct an empty implicit value initialization.
2576  explicit ImplicitValueInitExpr(EmptyShell Empty)
2577    : Expr(ImplicitValueInitExprClass, Empty) { }
2578
2579  static bool classof(const Stmt *T) {
2580    return T->getStmtClass() == ImplicitValueInitExprClass;
2581  }
2582  static bool classof(const ImplicitValueInitExpr *) { return true; }
2583
2584  virtual SourceRange getSourceRange() const {
2585    return SourceRange();
2586  }
2587
2588  // Iterators
2589  virtual child_iterator child_begin();
2590  virtual child_iterator child_end();
2591};
2592
2593
2594class ParenListExpr : public Expr {
2595  Stmt **Exprs;
2596  unsigned NumExprs;
2597  SourceLocation LParenLoc, RParenLoc;
2598
2599protected:
2600  virtual void DoDestroy(ASTContext& C);
2601
2602public:
2603  ParenListExpr(ASTContext& C, SourceLocation lparenloc, Expr **exprs,
2604                unsigned numexprs, SourceLocation rparenloc);
2605
2606  ~ParenListExpr() {}
2607
2608  /// \brief Build an empty paren list.
2609  //explicit ParenListExpr(EmptyShell Empty) : Expr(ParenListExprClass, Empty) { }
2610
2611  unsigned getNumExprs() const { return NumExprs; }
2612
2613  const Expr* getExpr(unsigned Init) const {
2614    assert(Init < getNumExprs() && "Initializer access out of range!");
2615    return cast_or_null<Expr>(Exprs[Init]);
2616  }
2617
2618  Expr* getExpr(unsigned Init) {
2619    assert(Init < getNumExprs() && "Initializer access out of range!");
2620    return cast_or_null<Expr>(Exprs[Init]);
2621  }
2622
2623  Expr **getExprs() { return reinterpret_cast<Expr **>(Exprs); }
2624
2625  SourceLocation getLParenLoc() const { return LParenLoc; }
2626  SourceLocation getRParenLoc() const { return RParenLoc; }
2627
2628  virtual SourceRange getSourceRange() const {
2629    return SourceRange(LParenLoc, RParenLoc);
2630  }
2631  static bool classof(const Stmt *T) {
2632    return T->getStmtClass() == ParenListExprClass;
2633  }
2634  static bool classof(const ParenListExpr *) { return true; }
2635
2636  // Iterators
2637  virtual child_iterator child_begin();
2638  virtual child_iterator child_end();
2639};
2640
2641
2642//===----------------------------------------------------------------------===//
2643// Clang Extensions
2644//===----------------------------------------------------------------------===//
2645
2646
2647/// ExtVectorElementExpr - This represents access to specific elements of a
2648/// vector, and may occur on the left hand side or right hand side.  For example
2649/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
2650///
2651/// Note that the base may have either vector or pointer to vector type, just
2652/// like a struct field reference.
2653///
2654class ExtVectorElementExpr : public Expr {
2655  Stmt *Base;
2656  IdentifierInfo *Accessor;
2657  SourceLocation AccessorLoc;
2658public:
2659  ExtVectorElementExpr(QualType ty, Expr *base, IdentifierInfo &accessor,
2660                       SourceLocation loc)
2661    : Expr(ExtVectorElementExprClass, ty),
2662      Base(base), Accessor(&accessor), AccessorLoc(loc) {}
2663
2664  /// \brief Build an empty vector element expression.
2665  explicit ExtVectorElementExpr(EmptyShell Empty)
2666    : Expr(ExtVectorElementExprClass, Empty) { }
2667
2668  const Expr *getBase() const { return cast<Expr>(Base); }
2669  Expr *getBase() { return cast<Expr>(Base); }
2670  void setBase(Expr *E) { Base = E; }
2671
2672  IdentifierInfo &getAccessor() const { return *Accessor; }
2673  void setAccessor(IdentifierInfo *II) { Accessor = II; }
2674
2675  SourceLocation getAccessorLoc() const { return AccessorLoc; }
2676  void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
2677
2678  /// getNumElements - Get the number of components being selected.
2679  unsigned getNumElements() const;
2680
2681  /// containsDuplicateElements - Return true if any element access is
2682  /// repeated.
2683  bool containsDuplicateElements() const;
2684
2685  /// getEncodedElementAccess - Encode the elements accessed into an llvm
2686  /// aggregate Constant of ConstantInt(s).
2687  void getEncodedElementAccess(llvm::SmallVectorImpl<unsigned> &Elts) const;
2688
2689  virtual SourceRange getSourceRange() const {
2690    return SourceRange(getBase()->getLocStart(), AccessorLoc);
2691  }
2692
2693  /// isArrow - Return true if the base expression is a pointer to vector,
2694  /// return false if the base expression is a vector.
2695  bool isArrow() const;
2696
2697  static bool classof(const Stmt *T) {
2698    return T->getStmtClass() == ExtVectorElementExprClass;
2699  }
2700  static bool classof(const ExtVectorElementExpr *) { return true; }
2701
2702  // Iterators
2703  virtual child_iterator child_begin();
2704  virtual child_iterator child_end();
2705};
2706
2707
2708/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
2709/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
2710class BlockExpr : public Expr {
2711protected:
2712  BlockDecl *TheBlock;
2713  bool HasBlockDeclRefExprs;
2714public:
2715  BlockExpr(BlockDecl *BD, QualType ty, bool hasBlockDeclRefExprs)
2716    : Expr(BlockExprClass, ty),
2717      TheBlock(BD), HasBlockDeclRefExprs(hasBlockDeclRefExprs) {}
2718
2719  /// \brief Build an empty block expression.
2720  explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { }
2721
2722  const BlockDecl *getBlockDecl() const { return TheBlock; }
2723  BlockDecl *getBlockDecl() { return TheBlock; }
2724  void setBlockDecl(BlockDecl *BD) { TheBlock = BD; }
2725
2726  // Convenience functions for probing the underlying BlockDecl.
2727  SourceLocation getCaretLocation() const;
2728  const Stmt *getBody() const;
2729  Stmt *getBody();
2730
2731  virtual SourceRange getSourceRange() const {
2732    return SourceRange(getCaretLocation(), getBody()->getLocEnd());
2733  }
2734
2735  /// getFunctionType - Return the underlying function type for this block.
2736  const FunctionType *getFunctionType() const;
2737
2738  /// hasBlockDeclRefExprs - Return true iff the block has BlockDeclRefExpr
2739  /// inside of the block that reference values outside the block.
2740  bool hasBlockDeclRefExprs() const { return HasBlockDeclRefExprs; }
2741  void setHasBlockDeclRefExprs(bool BDRE) { HasBlockDeclRefExprs = BDRE; }
2742
2743  static bool classof(const Stmt *T) {
2744    return T->getStmtClass() == BlockExprClass;
2745  }
2746  static bool classof(const BlockExpr *) { return true; }
2747
2748  // Iterators
2749  virtual child_iterator child_begin();
2750  virtual child_iterator child_end();
2751};
2752
2753/// BlockDeclRefExpr - A reference to a declared variable, function,
2754/// enum, etc.
2755class BlockDeclRefExpr : public Expr {
2756  ValueDecl *D;
2757  SourceLocation Loc;
2758  bool IsByRef : 1;
2759  bool ConstQualAdded : 1;
2760public:
2761  BlockDeclRefExpr(ValueDecl *d, QualType t, SourceLocation l, bool ByRef,
2762                   bool constAdded = false) :
2763       Expr(BlockDeclRefExprClass, t), D(d), Loc(l), IsByRef(ByRef),
2764                                       ConstQualAdded(constAdded) {}
2765
2766  // \brief Build an empty reference to a declared variable in a
2767  // block.
2768  explicit BlockDeclRefExpr(EmptyShell Empty)
2769    : Expr(BlockDeclRefExprClass, Empty) { }
2770
2771  ValueDecl *getDecl() { return D; }
2772  const ValueDecl *getDecl() const { return D; }
2773  void setDecl(ValueDecl *VD) { D = VD; }
2774
2775  SourceLocation getLocation() const { return Loc; }
2776  void setLocation(SourceLocation L) { Loc = L; }
2777
2778  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
2779
2780  bool isByRef() const { return IsByRef; }
2781  void setByRef(bool BR) { IsByRef = BR; }
2782
2783  bool isConstQualAdded() const { return ConstQualAdded; }
2784  void setConstQualAdded(bool C) { ConstQualAdded = C; }
2785
2786  static bool classof(const Stmt *T) {
2787    return T->getStmtClass() == BlockDeclRefExprClass;
2788  }
2789  static bool classof(const BlockDeclRefExpr *) { return true; }
2790
2791  // Iterators
2792  virtual child_iterator child_begin();
2793  virtual child_iterator child_end();
2794};
2795
2796}  // end namespace clang
2797
2798#endif
2799