Expr.h revision b4609806e9232593ece09ce08b630836e825865c
1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/Stmt.h"
18#include "clang/AST/Type.h"
19#include "llvm/ADT/APSInt.h"
20#include "llvm/ADT/APFloat.h"
21#include "llvm/ADT/SmallVector.h"
22#include <vector>
23
24namespace clang {
25  class ASTContext;
26  class APValue;
27  class Decl;
28  class IdentifierInfo;
29  class ParmVarDecl;
30  class NamedDecl;
31  class ValueDecl;
32  class BlockDecl;
33
34/// Expr - This represents one expression.  Note that Expr's are subclasses of
35/// Stmt.  This allows an expression to be transparently used any place a Stmt
36/// is required.
37///
38class Expr : public Stmt {
39  QualType TR;
40protected:
41  Expr(StmtClass SC, QualType T) : Stmt(SC) { setType(T); }
42public:
43  QualType getType() const { return TR; }
44  void setType(QualType t) {
45    // In C++, the type of an expression is always adjusted so that it
46    // will not have reference type an expression will never have
47    // reference type (C++ [expr]p6). Use
48    // QualType::getNonReferenceType() to retrieve the non-reference
49    // type. Additionally, inspect Expr::isLvalue to determine whether
50    // an expression that is adjusted in this manner should be
51    // considered an lvalue.
52    assert((TR.isNull() || !TR->isReferenceType()) &&
53           "Expressions can't have reference type");
54
55    TR = t;
56  }
57
58  /// SourceLocation tokens are not useful in isolation - they are low level
59  /// value objects created/interpreted by SourceManager. We assume AST
60  /// clients will have a pointer to the respective SourceManager.
61  virtual SourceRange getSourceRange() const = 0;
62
63  /// getExprLoc - Return the preferred location for the arrow when diagnosing
64  /// a problem with a generic expression.
65  virtual SourceLocation getExprLoc() const { return getLocStart(); }
66
67  /// hasLocalSideEffect - Return true if this immediate expression has side
68  /// effects, not counting any sub-expressions.
69  bool hasLocalSideEffect() const;
70
71  /// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or
72  /// incomplete type other than void. Nonarray expressions that can be lvalues:
73  ///  - name, where name must be a variable
74  ///  - e[i]
75  ///  - (e), where e must be an lvalue
76  ///  - e.name, where e must be an lvalue
77  ///  - e->name
78  ///  - *e, the type of e cannot be a function type
79  ///  - string-constant
80  ///  - reference type [C++ [expr]]
81  ///
82  enum isLvalueResult {
83    LV_Valid,
84    LV_NotObjectType,
85    LV_IncompleteVoidType,
86    LV_DuplicateVectorComponents,
87    LV_InvalidExpression
88  };
89  isLvalueResult isLvalue(ASTContext &Ctx) const;
90
91  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
92  /// does not have an incomplete type, does not have a const-qualified type,
93  /// and if it is a structure or union, does not have any member (including,
94  /// recursively, any member or element of all contained aggregates or unions)
95  /// with a const-qualified type.
96  enum isModifiableLvalueResult {
97    MLV_Valid,
98    MLV_NotObjectType,
99    MLV_IncompleteVoidType,
100    MLV_DuplicateVectorComponents,
101    MLV_InvalidExpression,
102    MLV_IncompleteType,
103    MLV_ConstQualified,
104    MLV_ArrayType,
105    MLV_NotBlockQualified
106  };
107  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx) const;
108
109  bool isNullPointerConstant(ASTContext &Ctx) const;
110  bool isBitField();
111
112  /// getIntegerConstantExprValue() - Return the value of an integer
113  /// constant expression. The expression must be a valid integer
114  /// constant expression as determined by isIntegerConstantExpr.
115  llvm::APSInt getIntegerConstantExprValue(ASTContext &Ctx) const {
116    llvm::APSInt X;
117    bool success = isIntegerConstantExpr(X, Ctx);
118    success = success;
119    assert(success && "Illegal argument to getIntegerConstantExpr");
120    return X;
121  }
122
123  /// isIntegerConstantExpr - Return true if this expression is a valid integer
124  /// constant expression, and, if so, return its value in Result.  If not a
125  /// valid i-c-e, return false and fill in Loc (if specified) with the location
126  /// of the invalid expression.
127  bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
128                             SourceLocation *Loc = 0,
129                             bool isEvaluated = true) const;
130  bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const {
131    llvm::APSInt X;
132    return isIntegerConstantExpr(X, Ctx, Loc);
133  }
134  /// isConstantExpr - Return true if this expression is a valid constant expr.
135  bool isConstantExpr(ASTContext &Ctx, SourceLocation *Loc) const;
136
137  /// tryEvaluate - Return true if this is a constant which we can fold using
138  /// any crazy technique (that has nothing to do with language standards) that
139  /// we want to.  If this function returns true, it returns the folded constant
140  /// in Result.
141  bool tryEvaluate(APValue& Result, ASTContext &Ctx) const;
142
143  /// isEvaluatable - Call tryEvaluate to see if this expression can be constant
144  /// folded, but discard the result.
145  bool isEvaluatable(ASTContext &Ctx) const;
146
147  /// hasGlobalStorage - Return true if this expression has static storage
148  /// duration.  This means that the address of this expression is a link-time
149  /// constant.
150  bool hasGlobalStorage() const;
151
152  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
153  ///  its subexpression.  If that subexpression is also a ParenExpr,
154  ///  then this method recursively returns its subexpression, and so forth.
155  ///  Otherwise, the method returns the current Expr.
156  Expr* IgnoreParens();
157
158  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
159  /// or CastExprs, returning their operand.
160  Expr *IgnoreParenCasts();
161
162  const Expr* IgnoreParens() const {
163    return const_cast<Expr*>(this)->IgnoreParens();
164  }
165  const Expr *IgnoreParenCasts() const {
166    return const_cast<Expr*>(this)->IgnoreParenCasts();
167  }
168
169  static bool classof(const Stmt *T) {
170    return T->getStmtClass() >= firstExprConstant &&
171           T->getStmtClass() <= lastExprConstant;
172  }
173  static bool classof(const Expr *) { return true; }
174
175  static inline Expr* Create(llvm::Deserializer& D, ASTContext& C) {
176    return cast<Expr>(Stmt::Create(D, C));
177  }
178};
179
180
181//===----------------------------------------------------------------------===//
182// Primary Expressions.
183//===----------------------------------------------------------------------===//
184
185/// DeclRefExpr - [C99 6.5.1p2] - A reference to a declared variable, function,
186/// enum, etc.
187class DeclRefExpr : public Expr {
188  NamedDecl *D;
189  SourceLocation Loc;
190
191protected:
192  DeclRefExpr(StmtClass SC, NamedDecl *d, QualType t, SourceLocation l) :
193    Expr(SC, t), D(d), Loc(l) {}
194
195public:
196  DeclRefExpr(NamedDecl *d, QualType t, SourceLocation l) :
197    Expr(DeclRefExprClass, t), D(d), Loc(l) {}
198
199  NamedDecl *getDecl() { return D; }
200  const NamedDecl *getDecl() const { return D; }
201  void setDecl(NamedDecl *NewD) { D = NewD; }
202
203  SourceLocation getLocation() const { return Loc; }
204  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
205
206  static bool classof(const Stmt *T) {
207    return T->getStmtClass() == DeclRefExprClass ||
208           T->getStmtClass() == CXXConditionDeclExprClass;
209  }
210  static bool classof(const DeclRefExpr *) { return true; }
211
212  // Iterators
213  virtual child_iterator child_begin();
214  virtual child_iterator child_end();
215
216  virtual void EmitImpl(llvm::Serializer& S) const;
217  static DeclRefExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
218};
219
220/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
221class PredefinedExpr : public Expr {
222public:
223  enum IdentType {
224    Func,
225    Function,
226    PrettyFunction
227  };
228
229private:
230  SourceLocation Loc;
231  IdentType Type;
232public:
233  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
234    : Expr(PredefinedExprClass, type), Loc(l), Type(IT) {}
235
236  IdentType getIdentType() const { return Type; }
237
238  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
239
240  static bool classof(const Stmt *T) {
241    return T->getStmtClass() == PredefinedExprClass;
242  }
243  static bool classof(const PredefinedExpr *) { return true; }
244
245  // Iterators
246  virtual child_iterator child_begin();
247  virtual child_iterator child_end();
248
249  virtual void EmitImpl(llvm::Serializer& S) const;
250  static PredefinedExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
251};
252
253class IntegerLiteral : public Expr {
254  llvm::APInt Value;
255  SourceLocation Loc;
256public:
257  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
258  // or UnsignedLongLongTy
259  IntegerLiteral(const llvm::APInt &V, QualType type, SourceLocation l)
260    : Expr(IntegerLiteralClass, type), Value(V), Loc(l) {
261    assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
262  }
263  const llvm::APInt &getValue() const { return Value; }
264  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
265
266  static bool classof(const Stmt *T) {
267    return T->getStmtClass() == IntegerLiteralClass;
268  }
269  static bool classof(const IntegerLiteral *) { return true; }
270
271  // Iterators
272  virtual child_iterator child_begin();
273  virtual child_iterator child_end();
274
275  virtual void EmitImpl(llvm::Serializer& S) const;
276  static IntegerLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
277};
278
279class CharacterLiteral : public Expr {
280  unsigned Value;
281  SourceLocation Loc;
282  bool IsWide;
283public:
284  // type should be IntTy
285  CharacterLiteral(unsigned value, bool iswide, QualType type, SourceLocation l)
286    : Expr(CharacterLiteralClass, type), Value(value), Loc(l), IsWide(iswide) {
287  }
288  SourceLocation getLoc() const { return Loc; }
289  bool isWide() const { return IsWide; }
290
291  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
292
293  unsigned getValue() const { return Value; }
294
295  static bool classof(const Stmt *T) {
296    return T->getStmtClass() == CharacterLiteralClass;
297  }
298  static bool classof(const CharacterLiteral *) { return true; }
299
300  // Iterators
301  virtual child_iterator child_begin();
302  virtual child_iterator child_end();
303
304  virtual void EmitImpl(llvm::Serializer& S) const;
305  static CharacterLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
306};
307
308class FloatingLiteral : public Expr {
309  llvm::APFloat Value;
310  bool IsExact : 1;
311  SourceLocation Loc;
312public:
313  FloatingLiteral(const llvm::APFloat &V, bool* isexact,
314                  QualType Type, SourceLocation L)
315    : Expr(FloatingLiteralClass, Type), Value(V), IsExact(*isexact), Loc(L) {}
316
317  const llvm::APFloat &getValue() const { return Value; }
318
319  bool isExact() const { return IsExact; }
320
321  /// getValueAsApproximateDouble - This returns the value as an inaccurate
322  /// double.  Note that this may cause loss of precision, but is useful for
323  /// debugging dumps, etc.
324  double getValueAsApproximateDouble() const;
325
326  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
327
328  static bool classof(const Stmt *T) {
329    return T->getStmtClass() == FloatingLiteralClass;
330  }
331  static bool classof(const FloatingLiteral *) { return true; }
332
333  // Iterators
334  virtual child_iterator child_begin();
335  virtual child_iterator child_end();
336
337  virtual void EmitImpl(llvm::Serializer& S) const;
338  static FloatingLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
339};
340
341/// ImaginaryLiteral - We support imaginary integer and floating point literals,
342/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
343/// IntegerLiteral classes.  Instances of this class always have a Complex type
344/// whose element type matches the subexpression.
345///
346class ImaginaryLiteral : public Expr {
347  Stmt *Val;
348public:
349  ImaginaryLiteral(Expr *val, QualType Ty)
350    : Expr(ImaginaryLiteralClass, Ty), Val(val) {}
351
352  const Expr *getSubExpr() const { return cast<Expr>(Val); }
353  Expr *getSubExpr() { return cast<Expr>(Val); }
354
355  virtual SourceRange getSourceRange() const { return Val->getSourceRange(); }
356  static bool classof(const Stmt *T) {
357    return T->getStmtClass() == ImaginaryLiteralClass;
358  }
359  static bool classof(const ImaginaryLiteral *) { return true; }
360
361  // Iterators
362  virtual child_iterator child_begin();
363  virtual child_iterator child_end();
364
365  virtual void EmitImpl(llvm::Serializer& S) const;
366  static ImaginaryLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
367};
368
369/// StringLiteral - This represents a string literal expression, e.g. "foo"
370/// or L"bar" (wide strings).  The actual string is returned by getStrData()
371/// is NOT null-terminated, and the length of the string is determined by
372/// calling getByteLength().  The C type for a string is always a
373/// ConstantArrayType.
374class StringLiteral : public Expr {
375  const char *StrData;
376  unsigned ByteLength;
377  bool IsWide;
378  // if the StringLiteral was composed using token pasting, both locations
379  // are needed. If not (the common case), firstTokLoc == lastTokLoc.
380  // FIXME: if space becomes an issue, we should create a sub-class.
381  SourceLocation firstTokLoc, lastTokLoc;
382public:
383  StringLiteral(const char *strData, unsigned byteLength, bool Wide,
384                QualType t, SourceLocation b, SourceLocation e);
385  virtual ~StringLiteral();
386
387  const char *getStrData() const { return StrData; }
388  unsigned getByteLength() const { return ByteLength; }
389  bool isWide() const { return IsWide; }
390
391  virtual SourceRange getSourceRange() const {
392    return SourceRange(firstTokLoc,lastTokLoc);
393  }
394  static bool classof(const Stmt *T) {
395    return T->getStmtClass() == StringLiteralClass;
396  }
397  static bool classof(const StringLiteral *) { return true; }
398
399  // Iterators
400  virtual child_iterator child_begin();
401  virtual child_iterator child_end();
402
403  virtual void EmitImpl(llvm::Serializer& S) const;
404  static StringLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
405};
406
407/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
408/// AST node is only formed if full location information is requested.
409class ParenExpr : public Expr {
410  SourceLocation L, R;
411  Stmt *Val;
412public:
413  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
414    : Expr(ParenExprClass, val->getType()), L(l), R(r), Val(val) {}
415
416  const Expr *getSubExpr() const { return cast<Expr>(Val); }
417  Expr *getSubExpr() { return cast<Expr>(Val); }
418  virtual SourceRange getSourceRange() const { return SourceRange(L, R); }
419
420  static bool classof(const Stmt *T) {
421    return T->getStmtClass() == ParenExprClass;
422  }
423  static bool classof(const ParenExpr *) { return true; }
424
425  // Iterators
426  virtual child_iterator child_begin();
427  virtual child_iterator child_end();
428
429  virtual void EmitImpl(llvm::Serializer& S) const;
430  static ParenExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
431};
432
433
434/// UnaryOperator - This represents the unary-expression's (except sizeof and
435/// alignof), the postinc/postdec operators from postfix-expression, and various
436/// extensions.
437///
438/// Notes on various nodes:
439///
440/// Real/Imag - These return the real/imag part of a complex operand.  If
441///   applied to a non-complex value, the former returns its operand and the
442///   later returns zero in the type of the operand.
443///
444/// __builtin_offsetof(type, a.b[10]) is represented as a unary operator whose
445///   subexpression is a compound literal with the various MemberExpr and
446///   ArraySubscriptExpr's applied to it.
447///
448class UnaryOperator : public Expr {
449public:
450  // Note that additions to this should also update the StmtVisitor class.
451  enum Opcode {
452    PostInc, PostDec, // [C99 6.5.2.4] Postfix increment and decrement operators
453    PreInc, PreDec,   // [C99 6.5.3.1] Prefix increment and decrement operators.
454    AddrOf, Deref,    // [C99 6.5.3.2] Address and indirection operators.
455    Plus, Minus,      // [C99 6.5.3.3] Unary arithmetic operators.
456    Not, LNot,        // [C99 6.5.3.3] Unary arithmetic operators.
457    Real, Imag,       // "__real expr"/"__imag expr" Extension.
458    Extension,        // __extension__ marker.
459    OffsetOf          // __builtin_offsetof
460  };
461private:
462  Stmt *Val;
463  Opcode Opc;
464  SourceLocation Loc;
465public:
466
467  UnaryOperator(Expr *input, Opcode opc, QualType type, SourceLocation l)
468    : Expr(UnaryOperatorClass, type), Val(input), Opc(opc), Loc(l) {}
469
470  Opcode getOpcode() const { return Opc; }
471  Expr *getSubExpr() const { return cast<Expr>(Val); }
472
473  /// getOperatorLoc - Return the location of the operator.
474  SourceLocation getOperatorLoc() const { return Loc; }
475
476  /// isPostfix - Return true if this is a postfix operation, like x++.
477  static bool isPostfix(Opcode Op);
478
479  /// isPostfix - Return true if this is a prefix operation, like --x.
480  static bool isPrefix(Opcode Op);
481
482  bool isPrefix() const { return isPrefix(Opc); }
483  bool isPostfix() const { return isPostfix(Opc); }
484  bool isIncrementOp() const {return Opc==PreInc || Opc==PostInc; }
485  bool isIncrementDecrementOp() const { return Opc>=PostInc && Opc<=PreDec; }
486  bool isOffsetOfOp() const { return Opc == OffsetOf; }
487  static bool isArithmeticOp(Opcode Op) { return Op >= Plus && Op <= LNot; }
488
489  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
490  /// corresponds to, e.g. "sizeof" or "[pre]++"
491  static const char *getOpcodeStr(Opcode Op);
492
493  virtual SourceRange getSourceRange() const {
494    if (isPostfix())
495      return SourceRange(Val->getLocStart(), Loc);
496    else
497      return SourceRange(Loc, Val->getLocEnd());
498  }
499  virtual SourceLocation getExprLoc() const { return Loc; }
500
501  static bool classof(const Stmt *T) {
502    return T->getStmtClass() == UnaryOperatorClass;
503  }
504  static bool classof(const UnaryOperator *) { return true; }
505
506  int64_t evaluateOffsetOf(ASTContext& C) const;
507
508  // Iterators
509  virtual child_iterator child_begin();
510  virtual child_iterator child_end();
511
512  virtual void EmitImpl(llvm::Serializer& S) const;
513  static UnaryOperator* CreateImpl(llvm::Deserializer& D, ASTContext& C);
514};
515
516/// SizeOfAlignOfExpr - [C99 6.5.3.4] - This is for sizeof/alignof, both of
517/// types and expressions.
518class SizeOfAlignOfExpr : public Expr {
519  bool isSizeof : 1;  // true if sizeof, false if alignof.
520  bool isType : 1;    // true if operand is a type, false if an expression
521  void *Argument;
522  SourceLocation OpLoc, RParenLoc;
523public:
524  SizeOfAlignOfExpr(bool issizeof, bool istype, void *argument,
525                    QualType resultType, SourceLocation op,
526                    SourceLocation rp) :
527    Expr(SizeOfAlignOfExprClass, resultType),
528    isSizeof(issizeof), isType(istype), Argument(argument),
529    OpLoc(op), RParenLoc(rp) {}
530
531  virtual void Destroy(ASTContext& C);
532
533  bool isSizeOf() const { return isSizeof; }
534  bool isArgumentType() const { return isType; }
535  QualType getArgumentType() const {
536    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
537    return QualType::getFromOpaquePtr(Argument);
538  }
539  Expr* getArgumentExpr() const {
540    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
541    return (Expr *)Argument;
542  }
543  /// Gets the argument type, or the type of the argument expression, whichever
544  /// is appropriate.
545  QualType getTypeOfArgument() const {
546    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
547  }
548
549  SourceLocation getOperatorLoc() const { return OpLoc; }
550
551  virtual SourceRange getSourceRange() const {
552    return SourceRange(OpLoc, RParenLoc);
553  }
554
555  static bool classof(const Stmt *T) {
556    return T->getStmtClass() == SizeOfAlignOfExprClass;
557  }
558  static bool classof(const SizeOfAlignOfExpr *) { return true; }
559
560  // Iterators
561  virtual child_iterator child_begin();
562  virtual child_iterator child_end();
563
564  virtual void EmitImpl(llvm::Serializer& S) const;
565  static SizeOfAlignOfExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
566};
567
568//===----------------------------------------------------------------------===//
569// Postfix Operators.
570//===----------------------------------------------------------------------===//
571
572/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
573class ArraySubscriptExpr : public Expr {
574  enum { LHS, RHS, END_EXPR=2 };
575  Stmt* SubExprs[END_EXPR];
576  SourceLocation RBracketLoc;
577public:
578  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
579                     SourceLocation rbracketloc)
580  : Expr(ArraySubscriptExprClass, t), RBracketLoc(rbracketloc) {
581    SubExprs[LHS] = lhs;
582    SubExprs[RHS] = rhs;
583  }
584
585  /// An array access can be written A[4] or 4[A] (both are equivalent).
586  /// - getBase() and getIdx() always present the normalized view: A[4].
587  ///    In this case getBase() returns "A" and getIdx() returns "4".
588  /// - getLHS() and getRHS() present the syntactic view. e.g. for
589  ///    4[A] getLHS() returns "4".
590  /// Note: Because vector element access is also written A[4] we must
591  /// predicate the format conversion in getBase and getIdx only on the
592  /// the type of the RHS, as it is possible for the LHS to be a vector of
593  /// integer type
594  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
595  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
596
597  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
598  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
599
600  Expr *getBase() {
601    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
602  }
603
604  const Expr *getBase() const {
605    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
606  }
607
608  Expr *getIdx() {
609    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
610  }
611
612  const Expr *getIdx() const {
613    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
614  }
615
616  virtual SourceRange getSourceRange() const {
617    return SourceRange(getLHS()->getLocStart(), RBracketLoc);
618  }
619
620  virtual SourceLocation getExprLoc() const { return RBracketLoc; }
621
622  static bool classof(const Stmt *T) {
623    return T->getStmtClass() == ArraySubscriptExprClass;
624  }
625  static bool classof(const ArraySubscriptExpr *) { return true; }
626
627  // Iterators
628  virtual child_iterator child_begin();
629  virtual child_iterator child_end();
630
631  virtual void EmitImpl(llvm::Serializer& S) const;
632  static ArraySubscriptExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
633};
634
635
636/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
637/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
638/// while its subclasses may represent alternative syntax that (semantically)
639/// results in a function call. For example, CXXOperatorCallExpr is
640/// a subclass for overloaded operator calls that use operator syntax, e.g.,
641/// "str1 + str2" to resolve to a function call.
642class CallExpr : public Expr {
643  enum { FN=0, ARGS_START=1 };
644  Stmt **SubExprs;
645  unsigned NumArgs;
646  SourceLocation RParenLoc;
647
648  // This version of the ctor is for deserialization.
649  CallExpr(StmtClass SC, Stmt** subexprs, unsigned numargs, QualType t,
650           SourceLocation rparenloc)
651  : Expr(SC,t), SubExprs(subexprs),
652    NumArgs(numargs), RParenLoc(rparenloc) {}
653
654protected:
655  // This version of the constructor is for derived classes.
656  CallExpr(StmtClass SC, Expr *fn, Expr **args, unsigned numargs, QualType t,
657           SourceLocation rparenloc);
658
659public:
660  CallExpr(Expr *fn, Expr **args, unsigned numargs, QualType t,
661           SourceLocation rparenloc);
662  ~CallExpr() {
663    delete [] SubExprs;
664  }
665
666  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
667  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
668  void setCallee(Expr *F) { SubExprs[FN] = F; }
669
670  /// getNumArgs - Return the number of actual arguments to this call.
671  ///
672  unsigned getNumArgs() const { return NumArgs; }
673
674  /// getArg - Return the specified argument.
675  Expr *getArg(unsigned Arg) {
676    assert(Arg < NumArgs && "Arg access out of range!");
677    return cast<Expr>(SubExprs[Arg+ARGS_START]);
678  }
679  const Expr *getArg(unsigned Arg) const {
680    assert(Arg < NumArgs && "Arg access out of range!");
681    return cast<Expr>(SubExprs[Arg+ARGS_START]);
682  }
683  /// setArg - Set the specified argument.
684  void setArg(unsigned Arg, Expr *ArgExpr) {
685    assert(Arg < NumArgs && "Arg access out of range!");
686    SubExprs[Arg+ARGS_START] = ArgExpr;
687  }
688
689  /// setNumArgs - This changes the number of arguments present in this call.
690  /// Any orphaned expressions are deleted by this, and any new operands are set
691  /// to null.
692  void setNumArgs(unsigned NumArgs);
693
694  typedef ExprIterator arg_iterator;
695  typedef ConstExprIterator const_arg_iterator;
696
697  arg_iterator arg_begin() { return SubExprs+ARGS_START; }
698  arg_iterator arg_end() { return SubExprs+ARGS_START+getNumArgs(); }
699  const_arg_iterator arg_begin() const { return SubExprs+ARGS_START; }
700  const_arg_iterator arg_end() const { return SubExprs+ARGS_START+getNumArgs();}
701
702  /// getNumCommas - Return the number of commas that must have been present in
703  /// this function call.
704  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
705
706  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
707  /// not, return 0.
708  unsigned isBuiltinCall() const;
709
710  SourceLocation getRParenLoc() const { return RParenLoc; }
711
712  virtual SourceRange getSourceRange() const {
713    return SourceRange(getCallee()->getLocStart(), RParenLoc);
714  }
715
716  static bool classof(const Stmt *T) {
717    return T->getStmtClass() == CallExprClass ||
718           T->getStmtClass() == CXXOperatorCallExprClass;
719  }
720  static bool classof(const CallExpr *) { return true; }
721
722  // Iterators
723  virtual child_iterator child_begin();
724  virtual child_iterator child_end();
725
726  virtual void EmitImpl(llvm::Serializer& S) const;
727  static CallExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C,
728                              StmtClass SC);
729};
730
731/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.
732///
733class MemberExpr : public Expr {
734  Stmt *Base;
735  FieldDecl *MemberDecl;
736  SourceLocation MemberLoc;
737  bool IsArrow;      // True if this is "X->F", false if this is "X.F".
738public:
739  MemberExpr(Expr *base, bool isarrow, FieldDecl *memberdecl, SourceLocation l,
740             QualType ty)
741    : Expr(MemberExprClass, ty),
742      Base(base), MemberDecl(memberdecl), MemberLoc(l), IsArrow(isarrow) {}
743
744  Expr *getBase() const { return cast<Expr>(Base); }
745  FieldDecl *getMemberDecl() const { return MemberDecl; }
746  bool isArrow() const { return IsArrow; }
747
748  virtual SourceRange getSourceRange() const {
749    return SourceRange(getBase()->getLocStart(), MemberLoc);
750  }
751
752  virtual SourceLocation getExprLoc() const { return MemberLoc; }
753
754  static bool classof(const Stmt *T) {
755    return T->getStmtClass() == MemberExprClass;
756  }
757  static bool classof(const MemberExpr *) { return true; }
758
759  // Iterators
760  virtual child_iterator child_begin();
761  virtual child_iterator child_end();
762
763  virtual void EmitImpl(llvm::Serializer& S) const;
764  static MemberExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
765};
766
767/// CompoundLiteralExpr - [C99 6.5.2.5]
768///
769class CompoundLiteralExpr : public Expr {
770  /// LParenLoc - If non-null, this is the location of the left paren in a
771  /// compound literal like "(int){4}".  This can be null if this is a
772  /// synthesized compound expression.
773  SourceLocation LParenLoc;
774  Stmt *Init;
775  bool FileScope;
776public:
777  CompoundLiteralExpr(SourceLocation lparenloc, QualType ty, Expr *init,
778                      bool fileScope)
779    : Expr(CompoundLiteralExprClass, ty), LParenLoc(lparenloc), Init(init),
780      FileScope(fileScope) {}
781
782  const Expr *getInitializer() const { return cast<Expr>(Init); }
783  Expr *getInitializer() { return cast<Expr>(Init); }
784
785  bool isFileScope() const { return FileScope; }
786
787  SourceLocation getLParenLoc() const { return LParenLoc; }
788
789  virtual SourceRange getSourceRange() const {
790    // FIXME: Init should never be null.
791    if (!Init)
792      return SourceRange();
793    if (LParenLoc.isInvalid())
794      return Init->getSourceRange();
795    return SourceRange(LParenLoc, Init->getLocEnd());
796  }
797
798  static bool classof(const Stmt *T) {
799    return T->getStmtClass() == CompoundLiteralExprClass;
800  }
801  static bool classof(const CompoundLiteralExpr *) { return true; }
802
803  // Iterators
804  virtual child_iterator child_begin();
805  virtual child_iterator child_end();
806
807  virtual void EmitImpl(llvm::Serializer& S) const;
808  static CompoundLiteralExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
809};
810
811/// CastExpr - Base class for type casts, including both implicit
812/// casts (ImplicitCastExpr) and explicit casts that have some
813/// representation in the source code (ExplicitCastExpr's derived
814/// classes).
815class CastExpr : public Expr {
816  Stmt *Op;
817protected:
818  CastExpr(StmtClass SC, QualType ty, Expr *op) :
819    Expr(SC, ty), Op(op) {}
820
821public:
822  Expr *getSubExpr() { return cast<Expr>(Op); }
823  const Expr *getSubExpr() const { return cast<Expr>(Op); }
824
825  static bool classof(const Stmt *T) {
826    StmtClass SC = T->getStmtClass();
827    if (SC >= CXXNamedCastExprClass && SC <= CXXFunctionalCastExprClass)
828      return true;
829
830    if (SC >= ImplicitCastExprClass && SC <= CStyleCastExprClass)
831      return true;
832
833    return false;
834  }
835  static bool classof(const CastExpr *) { return true; }
836
837  // Iterators
838  virtual child_iterator child_begin();
839  virtual child_iterator child_end();
840};
841
842/// ImplicitCastExpr - Allows us to explicitly represent implicit type
843/// conversions, which have no direct representation in the original
844/// source code. For example: converting T[]->T*, void f()->void
845/// (*f)(), float->double, short->int, etc.
846///
847/// In C, implicit casts always produce rvalues. However, in C++, an
848/// implicit cast whose result is being bound to a reference will be
849/// an lvalue. For example:
850///
851/// @code
852/// class Base { };
853/// class Derived : public Base { };
854/// void f(Derived d) {
855///   Base& b = d; // initializer is an ImplicitCastExpr to an lvalue of type Base
856/// }
857/// @endcode
858class ImplicitCastExpr : public CastExpr {
859  /// LvalueCast - Whether this cast produces an lvalue.
860  bool LvalueCast;
861
862public:
863  ImplicitCastExpr(QualType ty, Expr *op, bool Lvalue) :
864    CastExpr(ImplicitCastExprClass, ty, op), LvalueCast(Lvalue) {}
865
866  virtual SourceRange getSourceRange() const {
867    return getSubExpr()->getSourceRange();
868  }
869
870  /// isLvalueCast - Whether this cast produces an lvalue.
871  bool isLvalueCast() const { return LvalueCast; }
872
873  /// setLvalueCast - Set whether this cast produces an lvalue.
874  void setLvalueCast(bool Lvalue) { LvalueCast = Lvalue; }
875
876  static bool classof(const Stmt *T) {
877    return T->getStmtClass() == ImplicitCastExprClass;
878  }
879  static bool classof(const ImplicitCastExpr *) { return true; }
880
881  virtual void EmitImpl(llvm::Serializer& S) const;
882  static ImplicitCastExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
883};
884
885/// ExplicitCastExpr - An explicit cast written in the source
886/// code.
887///
888/// This class is effectively an abstract class, because it provides
889/// the basic representation of an explicitly-written cast without
890/// specifying which kind of cast (C cast, functional cast, static
891/// cast, etc.) was written; specific derived classes represent the
892/// particular style of cast and its location information.
893///
894/// Unlike implicit casts, explicit cast nodes have two different
895/// types: the type that was written into the source code, and the
896/// actual type of the expression as determined by semantic
897/// analysis. These types may differ slightly. For example, in C++ one
898/// can cast to a reference type, which indicates that the resulting
899/// expression will be an lvalue. The reference type, however, will
900/// not be used as the type of the expression.
901class ExplicitCastExpr : public CastExpr {
902  /// TypeAsWritten - The type that this expression is casting to, as
903  /// written in the source code.
904  QualType TypeAsWritten;
905
906protected:
907  ExplicitCastExpr(StmtClass SC, QualType exprTy, Expr *op, QualType writtenTy)
908    : CastExpr(SC, exprTy, op), TypeAsWritten(writtenTy) {}
909
910public:
911  /// getTypeAsWritten - Returns the type that this expression is
912  /// casting to, as written in the source code.
913  QualType getTypeAsWritten() const { return TypeAsWritten; }
914
915  static bool classof(const Stmt *T) {
916    StmtClass SC = T->getStmtClass();
917    if (SC >= ExplicitCastExprClass && SC <= CStyleCastExprClass)
918      return true;
919    if (SC >= CXXNamedCastExprClass && SC <= CXXFunctionalCastExprClass)
920      return true;
921
922    return false;
923  }
924  static bool classof(const ExplicitCastExpr *) { return true; }
925};
926
927/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
928/// cast in C++ (C++ [expr.cast]), which uses the syntax
929/// (Type)expr. For example: @c (int)f.
930class CStyleCastExpr : public ExplicitCastExpr {
931  SourceLocation LPLoc; // the location of the left paren
932  SourceLocation RPLoc; // the location of the right paren
933public:
934  CStyleCastExpr(QualType exprTy, Expr *op, QualType writtenTy,
935                    SourceLocation l, SourceLocation r) :
936    ExplicitCastExpr(CStyleCastExprClass, exprTy, op, writtenTy),
937    LPLoc(l), RPLoc(r) {}
938
939  SourceLocation getLParenLoc() const { return LPLoc; }
940  SourceLocation getRParenLoc() const { return RPLoc; }
941
942  virtual SourceRange getSourceRange() const {
943    return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd());
944  }
945  static bool classof(const Stmt *T) {
946    return T->getStmtClass() == CStyleCastExprClass;
947  }
948  static bool classof(const CStyleCastExpr *) { return true; }
949
950  virtual void EmitImpl(llvm::Serializer& S) const;
951  static CStyleCastExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
952};
953
954class BinaryOperator : public Expr {
955public:
956  enum Opcode {
957    // Operators listed in order of precedence.
958    // Note that additions to this should also update the StmtVisitor class.
959    Mul, Div, Rem,    // [C99 6.5.5] Multiplicative operators.
960    Add, Sub,         // [C99 6.5.6] Additive operators.
961    Shl, Shr,         // [C99 6.5.7] Bitwise shift operators.
962    LT, GT, LE, GE,   // [C99 6.5.8] Relational operators.
963    EQ, NE,           // [C99 6.5.9] Equality operators.
964    And,              // [C99 6.5.10] Bitwise AND operator.
965    Xor,              // [C99 6.5.11] Bitwise XOR operator.
966    Or,               // [C99 6.5.12] Bitwise OR operator.
967    LAnd,             // [C99 6.5.13] Logical AND operator.
968    LOr,              // [C99 6.5.14] Logical OR operator.
969    Assign, MulAssign,// [C99 6.5.16] Assignment operators.
970    DivAssign, RemAssign,
971    AddAssign, SubAssign,
972    ShlAssign, ShrAssign,
973    AndAssign, XorAssign,
974    OrAssign,
975    Comma             // [C99 6.5.17] Comma operator.
976  };
977private:
978  enum { LHS, RHS, END_EXPR };
979  Stmt* SubExprs[END_EXPR];
980  Opcode Opc;
981  SourceLocation OpLoc;
982public:
983
984  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
985                 SourceLocation opLoc)
986    : Expr(BinaryOperatorClass, ResTy), Opc(opc), OpLoc(opLoc) {
987    SubExprs[LHS] = lhs;
988    SubExprs[RHS] = rhs;
989    assert(!isCompoundAssignmentOp() &&
990           "Use ArithAssignBinaryOperator for compound assignments");
991  }
992
993  SourceLocation getOperatorLoc() const { return OpLoc; }
994  Opcode getOpcode() const { return Opc; }
995  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
996  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
997  virtual SourceRange getSourceRange() const {
998    return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
999  }
1000
1001  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1002  /// corresponds to, e.g. "<<=".
1003  static const char *getOpcodeStr(Opcode Op);
1004
1005  /// predicates to categorize the respective opcodes.
1006  bool isMultiplicativeOp() const { return Opc >= Mul && Opc <= Rem; }
1007  bool isAdditiveOp() const { return Opc == Add || Opc == Sub; }
1008  bool isShiftOp() const { return Opc == Shl || Opc == Shr; }
1009  bool isBitwiseOp() const { return Opc >= And && Opc <= Or; }
1010
1011  static bool isRelationalOp(Opcode Opc) { return Opc >= LT && Opc <= GE; }
1012  bool isRelationalOp() const { return isRelationalOp(Opc); }
1013
1014  static bool isEqualityOp(Opcode Opc) { return Opc == EQ || Opc == NE; }
1015  bool isEqualityOp() const { return isEqualityOp(Opc); }
1016
1017  static bool isLogicalOp(Opcode Opc) { return Opc == LAnd || Opc == LOr; }
1018  bool isLogicalOp() const { return isLogicalOp(Opc); }
1019
1020  bool isAssignmentOp() const { return Opc >= Assign && Opc <= OrAssign; }
1021  bool isCompoundAssignmentOp() const { return Opc > Assign && Opc <= OrAssign;}
1022  bool isShiftAssignOp() const { return Opc == ShlAssign || Opc == ShrAssign; }
1023
1024  static bool classof(const Stmt *S) {
1025    return S->getStmtClass() == BinaryOperatorClass ||
1026           S->getStmtClass() == CompoundAssignOperatorClass;
1027  }
1028  static bool classof(const BinaryOperator *) { return true; }
1029
1030  // Iterators
1031  virtual child_iterator child_begin();
1032  virtual child_iterator child_end();
1033
1034  virtual void EmitImpl(llvm::Serializer& S) const;
1035  static BinaryOperator* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1036
1037protected:
1038  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
1039                 SourceLocation oploc, bool dead)
1040    : Expr(CompoundAssignOperatorClass, ResTy), Opc(opc), OpLoc(oploc) {
1041    SubExprs[LHS] = lhs;
1042    SubExprs[RHS] = rhs;
1043  }
1044};
1045
1046/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
1047/// track of the type the operation is performed in.  Due to the semantics of
1048/// these operators, the operands are promoted, the aritmetic performed, an
1049/// implicit conversion back to the result type done, then the assignment takes
1050/// place.  This captures the intermediate type which the computation is done
1051/// in.
1052class CompoundAssignOperator : public BinaryOperator {
1053  QualType ComputationType;
1054public:
1055  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc,
1056                         QualType ResType, QualType CompType,
1057                         SourceLocation OpLoc)
1058    : BinaryOperator(lhs, rhs, opc, ResType, OpLoc, true),
1059      ComputationType(CompType) {
1060    assert(isCompoundAssignmentOp() &&
1061           "Only should be used for compound assignments");
1062  }
1063
1064  QualType getComputationType() const { return ComputationType; }
1065
1066  static bool classof(const CompoundAssignOperator *) { return true; }
1067  static bool classof(const Stmt *S) {
1068    return S->getStmtClass() == CompoundAssignOperatorClass;
1069  }
1070
1071  virtual void EmitImpl(llvm::Serializer& S) const;
1072  static CompoundAssignOperator* CreateImpl(llvm::Deserializer& D,
1073                                            ASTContext& C);
1074};
1075
1076/// ConditionalOperator - The ?: operator.  Note that LHS may be null when the
1077/// GNU "missing LHS" extension is in use.
1078///
1079class ConditionalOperator : public Expr {
1080  enum { COND, LHS, RHS, END_EXPR };
1081  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
1082public:
1083  ConditionalOperator(Expr *cond, Expr *lhs, Expr *rhs, QualType t)
1084    : Expr(ConditionalOperatorClass, t) {
1085    SubExprs[COND] = cond;
1086    SubExprs[LHS] = lhs;
1087    SubExprs[RHS] = rhs;
1088  }
1089
1090  // getCond - Return the expression representing the condition for
1091  //  the ?: operator.
1092  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
1093
1094  // getTrueExpr - Return the subexpression representing the value of the ?:
1095  //  expression if the condition evaluates to true.  In most cases this value
1096  //  will be the same as getLHS() except a GCC extension allows the left
1097  //  subexpression to be omitted, and instead of the condition be returned.
1098  //  e.g: x ?: y is shorthand for x ? x : y, except that the expression "x"
1099  //  is only evaluated once.
1100  Expr *getTrueExpr() const {
1101    return cast<Expr>(SubExprs[LHS] ? SubExprs[LHS] : SubExprs[COND]);
1102  }
1103
1104  // getTrueExpr - Return the subexpression representing the value of the ?:
1105  // expression if the condition evaluates to false. This is the same as getRHS.
1106  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
1107
1108  Expr *getLHS() const { return cast_or_null<Expr>(SubExprs[LHS]); }
1109  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1110
1111  virtual SourceRange getSourceRange() const {
1112    return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
1113  }
1114  static bool classof(const Stmt *T) {
1115    return T->getStmtClass() == ConditionalOperatorClass;
1116  }
1117  static bool classof(const ConditionalOperator *) { return true; }
1118
1119  // Iterators
1120  virtual child_iterator child_begin();
1121  virtual child_iterator child_end();
1122
1123  virtual void EmitImpl(llvm::Serializer& S) const;
1124  static ConditionalOperator* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1125};
1126
1127/// AddrLabelExpr - The GNU address of label extension, representing &&label.
1128class AddrLabelExpr : public Expr {
1129  SourceLocation AmpAmpLoc, LabelLoc;
1130  LabelStmt *Label;
1131public:
1132  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelStmt *L,
1133                QualType t)
1134    : Expr(AddrLabelExprClass, t), AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
1135
1136  virtual SourceRange getSourceRange() const {
1137    return SourceRange(AmpAmpLoc, LabelLoc);
1138  }
1139
1140  LabelStmt *getLabel() const { return Label; }
1141
1142  static bool classof(const Stmt *T) {
1143    return T->getStmtClass() == AddrLabelExprClass;
1144  }
1145  static bool classof(const AddrLabelExpr *) { return true; }
1146
1147  // Iterators
1148  virtual child_iterator child_begin();
1149  virtual child_iterator child_end();
1150
1151  virtual void EmitImpl(llvm::Serializer& S) const;
1152  static AddrLabelExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1153};
1154
1155/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
1156/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
1157/// takes the value of the last subexpression.
1158class StmtExpr : public Expr {
1159  Stmt *SubStmt;
1160  SourceLocation LParenLoc, RParenLoc;
1161public:
1162  StmtExpr(CompoundStmt *substmt, QualType T,
1163           SourceLocation lp, SourceLocation rp) :
1164    Expr(StmtExprClass, T), SubStmt(substmt),  LParenLoc(lp), RParenLoc(rp) { }
1165
1166  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
1167  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
1168
1169  virtual SourceRange getSourceRange() const {
1170    return SourceRange(LParenLoc, RParenLoc);
1171  }
1172
1173  static bool classof(const Stmt *T) {
1174    return T->getStmtClass() == StmtExprClass;
1175  }
1176  static bool classof(const StmtExpr *) { return true; }
1177
1178  // Iterators
1179  virtual child_iterator child_begin();
1180  virtual child_iterator child_end();
1181
1182  virtual void EmitImpl(llvm::Serializer& S) const;
1183  static StmtExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1184};
1185
1186/// TypesCompatibleExpr - GNU builtin-in function __builtin_type_compatible_p.
1187/// This AST node represents a function that returns 1 if two *types* (not
1188/// expressions) are compatible. The result of this built-in function can be
1189/// used in integer constant expressions.
1190class TypesCompatibleExpr : public Expr {
1191  QualType Type1;
1192  QualType Type2;
1193  SourceLocation BuiltinLoc, RParenLoc;
1194public:
1195  TypesCompatibleExpr(QualType ReturnType, SourceLocation BLoc,
1196                      QualType t1, QualType t2, SourceLocation RP) :
1197    Expr(TypesCompatibleExprClass, ReturnType), Type1(t1), Type2(t2),
1198    BuiltinLoc(BLoc), RParenLoc(RP) {}
1199
1200  QualType getArgType1() const { return Type1; }
1201  QualType getArgType2() const { return Type2; }
1202
1203  virtual SourceRange getSourceRange() const {
1204    return SourceRange(BuiltinLoc, RParenLoc);
1205  }
1206  static bool classof(const Stmt *T) {
1207    return T->getStmtClass() == TypesCompatibleExprClass;
1208  }
1209  static bool classof(const TypesCompatibleExpr *) { return true; }
1210
1211  // Iterators
1212  virtual child_iterator child_begin();
1213  virtual child_iterator child_end();
1214
1215  virtual void EmitImpl(llvm::Serializer& S) const;
1216  static TypesCompatibleExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1217};
1218
1219/// ShuffleVectorExpr - clang-specific builtin-in function
1220/// __builtin_shufflevector.
1221/// This AST node represents a operator that does a constant
1222/// shuffle, similar to LLVM's shufflevector instruction. It takes
1223/// two vectors and a variable number of constant indices,
1224/// and returns the appropriately shuffled vector.
1225class ShuffleVectorExpr : public Expr {
1226  SourceLocation BuiltinLoc, RParenLoc;
1227
1228  // SubExprs - the list of values passed to the __builtin_shufflevector
1229  // function. The first two are vectors, and the rest are constant
1230  // indices.  The number of values in this list is always
1231  // 2+the number of indices in the vector type.
1232  Stmt **SubExprs;
1233  unsigned NumExprs;
1234
1235public:
1236  ShuffleVectorExpr(Expr **args, unsigned nexpr,
1237                    QualType Type, SourceLocation BLoc,
1238                    SourceLocation RP) :
1239    Expr(ShuffleVectorExprClass, Type), BuiltinLoc(BLoc),
1240    RParenLoc(RP), NumExprs(nexpr) {
1241
1242    SubExprs = new Stmt*[nexpr];
1243    for (unsigned i = 0; i < nexpr; i++)
1244      SubExprs[i] = args[i];
1245  }
1246
1247  virtual SourceRange getSourceRange() const {
1248    return SourceRange(BuiltinLoc, RParenLoc);
1249  }
1250  static bool classof(const Stmt *T) {
1251    return T->getStmtClass() == ShuffleVectorExprClass;
1252  }
1253  static bool classof(const ShuffleVectorExpr *) { return true; }
1254
1255  ~ShuffleVectorExpr() {
1256    delete [] SubExprs;
1257  }
1258
1259  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
1260  /// constant expression, the actual arguments passed in, and the function
1261  /// pointers.
1262  unsigned getNumSubExprs() const { return NumExprs; }
1263
1264  /// getExpr - Return the Expr at the specified index.
1265  Expr *getExpr(unsigned Index) {
1266    assert((Index < NumExprs) && "Arg access out of range!");
1267    return cast<Expr>(SubExprs[Index]);
1268  }
1269  const Expr *getExpr(unsigned Index) const {
1270    assert((Index < NumExprs) && "Arg access out of range!");
1271    return cast<Expr>(SubExprs[Index]);
1272  }
1273
1274  unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) {
1275    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
1276    return getExpr(N+2)->getIntegerConstantExprValue(Ctx).getZExtValue();
1277  }
1278
1279  // Iterators
1280  virtual child_iterator child_begin();
1281  virtual child_iterator child_end();
1282
1283  virtual void EmitImpl(llvm::Serializer& S) const;
1284  static ShuffleVectorExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1285};
1286
1287/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
1288/// This AST node is similar to the conditional operator (?:) in C, with
1289/// the following exceptions:
1290/// - the test expression much be a constant expression.
1291/// - the expression returned has it's type unaltered by promotion rules.
1292/// - does not evaluate the expression that was not chosen.
1293class ChooseExpr : public Expr {
1294  enum { COND, LHS, RHS, END_EXPR };
1295  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
1296  SourceLocation BuiltinLoc, RParenLoc;
1297public:
1298  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs, QualType t,
1299             SourceLocation RP)
1300    : Expr(ChooseExprClass, t),
1301      BuiltinLoc(BLoc), RParenLoc(RP) {
1302      SubExprs[COND] = cond;
1303      SubExprs[LHS] = lhs;
1304      SubExprs[RHS] = rhs;
1305    }
1306
1307  /// isConditionTrue - Return true if the condition is true.  This is always
1308  /// statically knowable for a well-formed choosexpr.
1309  bool isConditionTrue(ASTContext &C) const;
1310
1311  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
1312  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1313  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1314
1315  virtual SourceRange getSourceRange() const {
1316    return SourceRange(BuiltinLoc, RParenLoc);
1317  }
1318  static bool classof(const Stmt *T) {
1319    return T->getStmtClass() == ChooseExprClass;
1320  }
1321  static bool classof(const ChooseExpr *) { return true; }
1322
1323  // Iterators
1324  virtual child_iterator child_begin();
1325  virtual child_iterator child_end();
1326
1327  virtual void EmitImpl(llvm::Serializer& S) const;
1328  static ChooseExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1329};
1330
1331/// OverloadExpr - Clang builtin function __builtin_overload.
1332/// This AST node provides a way to overload functions in C.
1333///
1334/// The first argument is required to be a constant expression, for the number
1335/// of arguments passed to each candidate function.
1336///
1337/// The next N arguments, where N is the value of the constant expression,
1338/// are the values to be passed as arguments.
1339///
1340/// The rest of the arguments are values of pointer to function type, which
1341/// are the candidate functions for overloading.
1342///
1343/// The result is a equivalent to a CallExpr taking N arguments to the
1344/// candidate function whose parameter types match the types of the N arguments.
1345///
1346/// example: float Z = __builtin_overload(2, X, Y, modf, mod, modl);
1347/// If X and Y are long doubles, Z will assigned the result of modl(X, Y);
1348/// If X and Y are floats, Z will be assigned the result of modf(X, Y);
1349class OverloadExpr : public Expr {
1350  // SubExprs - the list of values passed to the __builtin_overload function.
1351  // SubExpr[0] is a constant expression
1352  // SubExpr[1-N] are the parameters to pass to the matching function call
1353  // SubExpr[N-...] are the candidate functions, of type pointer to function.
1354  Stmt **SubExprs;
1355
1356  // NumExprs - the size of the SubExprs array
1357  unsigned NumExprs;
1358
1359  // The index of the matching candidate function
1360  unsigned FnIndex;
1361
1362  SourceLocation BuiltinLoc;
1363  SourceLocation RParenLoc;
1364public:
1365  OverloadExpr(Expr **args, unsigned nexprs, unsigned idx, QualType t,
1366               SourceLocation bloc, SourceLocation rploc)
1367    : Expr(OverloadExprClass, t), NumExprs(nexprs), FnIndex(idx),
1368      BuiltinLoc(bloc), RParenLoc(rploc) {
1369    SubExprs = new Stmt*[nexprs];
1370    for (unsigned i = 0; i != nexprs; ++i)
1371      SubExprs[i] = args[i];
1372  }
1373  ~OverloadExpr() {
1374    delete [] SubExprs;
1375  }
1376
1377  /// arg_begin - Return a pointer to the list of arguments that will be passed
1378  /// to the matching candidate function, skipping over the initial constant
1379  /// expression.
1380  typedef ConstExprIterator const_arg_iterator;
1381  const_arg_iterator arg_begin() const { return &SubExprs[0]+1; }
1382  const_arg_iterator arg_end(ASTContext& Ctx) const {
1383    return &SubExprs[0]+1+getNumArgs(Ctx);
1384  }
1385
1386  /// getNumArgs - Return the number of arguments to pass to the candidate
1387  /// functions.
1388  unsigned getNumArgs(ASTContext &Ctx) const {
1389    return getExpr(0)->getIntegerConstantExprValue(Ctx).getZExtValue();
1390  }
1391
1392  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
1393  /// constant expression, the actual arguments passed in, and the function
1394  /// pointers.
1395  unsigned getNumSubExprs() const { return NumExprs; }
1396
1397  /// getExpr - Return the Expr at the specified index.
1398  Expr *getExpr(unsigned Index) const {
1399    assert((Index < NumExprs) && "Arg access out of range!");
1400    return cast<Expr>(SubExprs[Index]);
1401  }
1402
1403  /// getFn - Return the matching candidate function for this OverloadExpr.
1404  Expr *getFn() const { return cast<Expr>(SubExprs[FnIndex]); }
1405
1406  virtual SourceRange getSourceRange() const {
1407    return SourceRange(BuiltinLoc, RParenLoc);
1408  }
1409  static bool classof(const Stmt *T) {
1410    return T->getStmtClass() == OverloadExprClass;
1411  }
1412  static bool classof(const OverloadExpr *) { return true; }
1413
1414  // Iterators
1415  virtual child_iterator child_begin();
1416  virtual child_iterator child_end();
1417
1418  virtual void EmitImpl(llvm::Serializer& S) const;
1419  static OverloadExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1420};
1421
1422/// VAArgExpr, used for the builtin function __builtin_va_start.
1423class VAArgExpr : public Expr {
1424  Stmt *Val;
1425  SourceLocation BuiltinLoc, RParenLoc;
1426public:
1427  VAArgExpr(SourceLocation BLoc, Expr* e, QualType t, SourceLocation RPLoc)
1428    : Expr(VAArgExprClass, t),
1429      Val(e),
1430      BuiltinLoc(BLoc),
1431      RParenLoc(RPLoc) { }
1432
1433  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1434  Expr *getSubExpr() { return cast<Expr>(Val); }
1435  virtual SourceRange getSourceRange() const {
1436    return SourceRange(BuiltinLoc, RParenLoc);
1437  }
1438  static bool classof(const Stmt *T) {
1439    return T->getStmtClass() == VAArgExprClass;
1440  }
1441  static bool classof(const VAArgExpr *) { return true; }
1442
1443  // Iterators
1444  virtual child_iterator child_begin();
1445  virtual child_iterator child_end();
1446
1447  virtual void EmitImpl(llvm::Serializer& S) const;
1448  static VAArgExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1449};
1450
1451/// InitListExpr - used for struct and array initializers, such as:
1452///    struct foo x = { 1, { 2, 3 } };
1453///
1454/// Because C is somewhat loose with braces, the AST does not necessarily
1455/// directly model the C source.  Instead, the semantic analyzer aims to make
1456/// the InitListExprs match up with the type of the decl being initialized.  We
1457/// have the following exceptions:
1458///
1459///  1. Elements at the end of the list may be dropped from the initializer.
1460///     These elements are defined to be initialized to zero.  For example:
1461///         int x[20] = { 1 };
1462///  2. Initializers may have excess initializers which are to be ignored by the
1463///     compiler.  For example:
1464///         int x[1] = { 1, 2 };
1465///  3. Redundant InitListExprs may be present around scalar elements.  These
1466///     always have a single element whose type is the same as the InitListExpr.
1467///     this can only happen for Type::isScalarType() types.
1468///         int x = { 1 };  int y[2] = { {1}, {2} };
1469///
1470class InitListExpr : public Expr {
1471  std::vector<Stmt *> InitExprs;
1472  SourceLocation LBraceLoc, RBraceLoc;
1473
1474  /// HadDesignators - Return true if there were any designators in this
1475  /// init list expr.  FIXME: this should be replaced by storing the designators
1476  /// somehow and updating codegen.
1477  bool HadDesignators;
1478public:
1479  InitListExpr(SourceLocation lbraceloc, Expr **initexprs, unsigned numinits,
1480               SourceLocation rbraceloc, bool HadDesignators);
1481
1482  unsigned getNumInits() const { return InitExprs.size(); }
1483  bool hadDesignators() const { return HadDesignators; }
1484
1485  const Expr* getInit(unsigned Init) const {
1486    assert(Init < getNumInits() && "Initializer access out of range!");
1487    return cast<Expr>(InitExprs[Init]);
1488  }
1489
1490  Expr* getInit(unsigned Init) {
1491    assert(Init < getNumInits() && "Initializer access out of range!");
1492    return cast<Expr>(InitExprs[Init]);
1493  }
1494
1495  void setInit(unsigned Init, Expr *expr) {
1496    assert(Init < getNumInits() && "Initializer access out of range!");
1497    InitExprs[Init] = expr;
1498  }
1499
1500  // Dynamic removal/addition (for constructing implicit InitExpr's).
1501  void removeInit(unsigned Init) {
1502    InitExprs.erase(InitExprs.begin()+Init);
1503  }
1504  void addInit(unsigned Init, Expr *expr) {
1505    InitExprs.insert(InitExprs.begin()+Init, expr);
1506  }
1507
1508  // Explicit InitListExpr's originate from source code (and have valid source
1509  // locations). Implicit InitListExpr's are created by the semantic analyzer.
1510  bool isExplicit() {
1511    return LBraceLoc.isValid() && RBraceLoc.isValid();
1512  }
1513
1514  virtual SourceRange getSourceRange() const {
1515    return SourceRange(LBraceLoc, RBraceLoc);
1516  }
1517  static bool classof(const Stmt *T) {
1518    return T->getStmtClass() == InitListExprClass;
1519  }
1520  static bool classof(const InitListExpr *) { return true; }
1521
1522  // Iterators
1523  virtual child_iterator child_begin();
1524  virtual child_iterator child_end();
1525
1526  typedef std::vector<Stmt *>::iterator iterator;
1527  typedef std::vector<Stmt *>::reverse_iterator reverse_iterator;
1528
1529  iterator begin() { return InitExprs.begin(); }
1530  iterator end() { return InitExprs.end(); }
1531  reverse_iterator rbegin() { return InitExprs.rbegin(); }
1532  reverse_iterator rend() { return InitExprs.rend(); }
1533
1534  // Serailization.
1535  virtual void EmitImpl(llvm::Serializer& S) const;
1536  static InitListExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1537
1538private:
1539  // Used by serializer.
1540  InitListExpr() : Expr(InitListExprClass, QualType()) {}
1541};
1542
1543//===----------------------------------------------------------------------===//
1544// Clang Extensions
1545//===----------------------------------------------------------------------===//
1546
1547
1548/// ExtVectorElementExpr - This represents access to specific elements of a
1549/// vector, and may occur on the left hand side or right hand side.  For example
1550/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
1551///
1552class ExtVectorElementExpr : public Expr {
1553  Stmt *Base;
1554  IdentifierInfo &Accessor;
1555  SourceLocation AccessorLoc;
1556public:
1557  ExtVectorElementExpr(QualType ty, Expr *base, IdentifierInfo &accessor,
1558                       SourceLocation loc)
1559    : Expr(ExtVectorElementExprClass, ty),
1560      Base(base), Accessor(accessor), AccessorLoc(loc) {}
1561
1562  const Expr *getBase() const { return cast<Expr>(Base); }
1563  Expr *getBase() { return cast<Expr>(Base); }
1564
1565  IdentifierInfo &getAccessor() const { return Accessor; }
1566
1567  /// getNumElements - Get the number of components being selected.
1568  unsigned getNumElements() const;
1569
1570  /// containsDuplicateElements - Return true if any element access is
1571  /// repeated.
1572  bool containsDuplicateElements() const;
1573
1574  /// getEncodedElementAccess - Encode the elements accessed into an llvm
1575  /// aggregate Constant of ConstantInt(s).
1576  void getEncodedElementAccess(llvm::SmallVectorImpl<unsigned> &Elts) const;
1577
1578  virtual SourceRange getSourceRange() const {
1579    return SourceRange(getBase()->getLocStart(), AccessorLoc);
1580  }
1581
1582  static bool classof(const Stmt *T) {
1583    return T->getStmtClass() == ExtVectorElementExprClass;
1584  }
1585  static bool classof(const ExtVectorElementExpr *) { return true; }
1586
1587  // Iterators
1588  virtual child_iterator child_begin();
1589  virtual child_iterator child_end();
1590
1591  virtual void EmitImpl(llvm::Serializer& S) const;
1592  static ExtVectorElementExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1593};
1594
1595
1596/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
1597/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
1598class BlockExpr : public Expr {
1599protected:
1600  BlockDecl *TheBlock;
1601public:
1602  BlockExpr(BlockDecl *BD, QualType ty) : Expr(BlockExprClass, ty),
1603            TheBlock(BD) {}
1604
1605  BlockDecl *getBlockDecl() { return TheBlock; }
1606
1607  // Convenience functions for probing the underlying BlockDecl.
1608  SourceLocation getCaretLocation() const;
1609  const Stmt *getBody() const;
1610  Stmt *getBody();
1611
1612  virtual SourceRange getSourceRange() const {
1613    return SourceRange(getCaretLocation(), getBody()->getLocEnd());
1614  }
1615
1616  /// getFunctionType - Return the underlying function type for this block.
1617  const FunctionType *getFunctionType() const;
1618
1619  static bool classof(const Stmt *T) {
1620    return T->getStmtClass() == BlockExprClass;
1621  }
1622  static bool classof(const BlockExpr *) { return true; }
1623
1624  // Iterators
1625  virtual child_iterator child_begin();
1626  virtual child_iterator child_end();
1627
1628  virtual void EmitImpl(llvm::Serializer& S) const;
1629  static BlockExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1630};
1631
1632/// BlockDeclRefExpr - A reference to a declared variable, function,
1633/// enum, etc.
1634class BlockDeclRefExpr : public Expr {
1635  ValueDecl *D;
1636  SourceLocation Loc;
1637  bool IsByRef;
1638public:
1639  BlockDeclRefExpr(ValueDecl *d, QualType t, SourceLocation l, bool ByRef) :
1640       Expr(BlockDeclRefExprClass, t), D(d), Loc(l), IsByRef(ByRef) {}
1641
1642  ValueDecl *getDecl() { return D; }
1643  const ValueDecl *getDecl() const { return D; }
1644  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
1645
1646  bool isByRef() const { return IsByRef; }
1647
1648  static bool classof(const Stmt *T) {
1649    return T->getStmtClass() == BlockDeclRefExprClass;
1650  }
1651  static bool classof(const BlockDeclRefExpr *) { return true; }
1652
1653  // Iterators
1654  virtual child_iterator child_begin();
1655  virtual child_iterator child_end();
1656
1657  virtual void EmitImpl(llvm::Serializer& S) const;
1658  static BlockDeclRefExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1659};
1660
1661}  // end namespace clang
1662
1663#endif
1664