Expr.h revision b83d287bc7f47d36fb0751a481e2ef9308b37252
1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/Stmt.h"
19#include "clang/AST/Type.h"
20#include "llvm/ADT/APSInt.h"
21#include "llvm/ADT/APFloat.h"
22#include "llvm/ADT/SmallVector.h"
23#include <vector>
24
25namespace clang {
26  class ASTContext;
27  class APValue;
28  class Decl;
29  class IdentifierInfo;
30  class ParmVarDecl;
31  class NamedDecl;
32  class ValueDecl;
33  class BlockDecl;
34  class CXXOperatorCallExpr;
35  class CXXMemberCallExpr;
36
37/// Expr - This represents one expression.  Note that Expr's are subclasses of
38/// Stmt.  This allows an expression to be transparently used any place a Stmt
39/// is required.
40///
41class Expr : public Stmt {
42  QualType TR;
43
44  /// TypeDependent - Whether this expression is type-dependent
45  /// (C++ [temp.dep.expr]).
46  bool TypeDependent : 1;
47
48  /// ValueDependent - Whether this expression is value-dependent
49  /// (C++ [temp.dep.constexpr]).
50  bool ValueDependent : 1;
51
52protected:
53  // FIXME: Eventually, this constructor should go away and we should
54  // require every subclass to provide type/value-dependence
55  // information.
56  Expr(StmtClass SC, QualType T)
57    : Stmt(SC), TypeDependent(false), ValueDependent(false) {
58    setType(T);
59  }
60
61  Expr(StmtClass SC, QualType T, bool TD, bool VD)
62    : Stmt(SC), TypeDependent(TD), ValueDependent(VD) {
63    setType(T);
64  }
65
66public:
67  QualType getType() const { return TR; }
68  void setType(QualType t) {
69    // In C++, the type of an expression is always adjusted so that it
70    // will not have reference type an expression will never have
71    // reference type (C++ [expr]p6). Use
72    // QualType::getNonReferenceType() to retrieve the non-reference
73    // type. Additionally, inspect Expr::isLvalue to determine whether
74    // an expression that is adjusted in this manner should be
75    // considered an lvalue.
76    assert((TR.isNull() || !TR->isReferenceType()) &&
77           "Expressions can't have reference type");
78
79    TR = t;
80  }
81
82  /// isValueDependent - Determines whether this expression is
83  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
84  /// array bound of "Chars" in the following example is
85  /// value-dependent.
86  /// @code
87  /// template<int Size, char (&Chars)[Size]> struct meta_string;
88  /// @endcode
89  bool isValueDependent() const { return ValueDependent; }
90
91  /// isTypeDependent - Determines whether this expression is
92  /// type-dependent (C++ [temp.dep.expr]), which means that its type
93  /// could change from one template instantiation to the next. For
94  /// example, the expressions "x" and "x + y" are type-dependent in
95  /// the following code, but "y" is not type-dependent:
96  /// @code
97  /// template<typename T>
98  /// void add(T x, int y) {
99  ///   x + y;
100  /// }
101  /// @endcode
102  bool isTypeDependent() const { return TypeDependent; }
103
104  /// SourceLocation tokens are not useful in isolation - they are low level
105  /// value objects created/interpreted by SourceManager. We assume AST
106  /// clients will have a pointer to the respective SourceManager.
107  virtual SourceRange getSourceRange() const = 0;
108
109  /// getExprLoc - Return the preferred location for the arrow when diagnosing
110  /// a problem with a generic expression.
111  virtual SourceLocation getExprLoc() const { return getLocStart(); }
112
113  /// isUnusedResultAWarning - Return true if this immediate expression should
114  /// be warned about if the result is unused.  If so, fill in Loc and Ranges
115  /// with location to warn on and the source range[s] to report with the
116  /// warning.
117  bool isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
118                              SourceRange &R2) const;
119
120  /// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or
121  /// incomplete type other than void. Nonarray expressions that can be lvalues:
122  ///  - name, where name must be a variable
123  ///  - e[i]
124  ///  - (e), where e must be an lvalue
125  ///  - e.name, where e must be an lvalue
126  ///  - e->name
127  ///  - *e, the type of e cannot be a function type
128  ///  - string-constant
129  ///  - reference type [C++ [expr]]
130  ///
131  enum isLvalueResult {
132    LV_Valid,
133    LV_NotObjectType,
134    LV_IncompleteVoidType,
135    LV_DuplicateVectorComponents,
136    LV_InvalidExpression,
137    LV_MemberFunction
138  };
139  isLvalueResult isLvalue(ASTContext &Ctx) const;
140
141  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
142  /// does not have an incomplete type, does not have a const-qualified type,
143  /// and if it is a structure or union, does not have any member (including,
144  /// recursively, any member or element of all contained aggregates or unions)
145  /// with a const-qualified type.
146  enum isModifiableLvalueResult {
147    MLV_Valid,
148    MLV_NotObjectType,
149    MLV_IncompleteVoidType,
150    MLV_DuplicateVectorComponents,
151    MLV_InvalidExpression,
152    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
153    MLV_IncompleteType,
154    MLV_ConstQualified,
155    MLV_ArrayType,
156    MLV_NotBlockQualified,
157    MLV_ReadonlyProperty,
158    MLV_NoSetterProperty,
159    MLV_MemberFunction
160  };
161  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx) const;
162
163  bool isBitField();
164
165  /// getIntegerConstantExprValue() - Return the value of an integer
166  /// constant expression. The expression must be a valid integer
167  /// constant expression as determined by isIntegerConstantExpr.
168  llvm::APSInt getIntegerConstantExprValue(ASTContext &Ctx) const {
169    llvm::APSInt X;
170    bool success = isIntegerConstantExpr(X, Ctx);
171    success = success;
172    assert(success && "Illegal argument to getIntegerConstantExpr");
173    return X;
174  }
175
176  /// isIntegerConstantExpr - Return true if this expression is a valid integer
177  /// constant expression, and, if so, return its value in Result.  If not a
178  /// valid i-c-e, return false and fill in Loc (if specified) with the location
179  /// of the invalid expression.
180  bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
181                             SourceLocation *Loc = 0,
182                             bool isEvaluated = true) const;
183  bool isIntegerConstantExprInternal(llvm::APSInt &Result, ASTContext &Ctx,
184                             SourceLocation *Loc = 0,
185                             bool isEvaluated = true) const;
186  bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const {
187    llvm::APSInt X;
188    return isIntegerConstantExpr(X, Ctx, Loc);
189  }
190  /// isConstantInitializer - Returns true if this expression is a constant
191  /// initializer, which can be emitted at compile-time.
192  bool isConstantInitializer(ASTContext &Ctx) const;
193
194  /// EvalResult is a struct with detailed info about an evaluated expression.
195  struct EvalResult {
196    /// Val - This is the value the expression can be folded to.
197    APValue Val;
198
199    /// HasSideEffects - Whether the evaluated expression has side effects.
200    /// For example, (f() && 0) can be folded, but it still has side effects.
201    bool HasSideEffects;
202
203    /// Diag - If the expression is unfoldable, then Diag contains a note
204    /// diagnostic indicating why it's not foldable. DiagLoc indicates a caret
205    /// position for the error, and DiagExpr is the expression that caused
206    /// the error.
207    /// If the expression is foldable, but not an integer constant expression,
208    /// Diag contains a note diagnostic that describes why it isn't an integer
209    /// constant expression. If the expression *is* an integer constant
210    /// expression, then Diag will be zero.
211    unsigned Diag;
212    const Expr *DiagExpr;
213    SourceLocation DiagLoc;
214
215    EvalResult() : HasSideEffects(false), Diag(0), DiagExpr(0) {}
216  };
217
218  /// Evaluate - Return true if this is a constant which we can fold using
219  /// any crazy technique (that has nothing to do with language standards) that
220  /// we want to.  If this function returns true, it returns the folded constant
221  /// in Result.
222  bool Evaluate(EvalResult &Result, ASTContext &Ctx) const;
223
224  /// isEvaluatable - Call Evaluate to see if this expression can be constant
225  /// folded, but discard the result.
226  bool isEvaluatable(ASTContext &Ctx) const;
227
228  /// EvaluateAsInt - Call Evaluate and return the folded integer. This
229  /// must be called on an expression that constant folds to an integer.
230  llvm::APSInt EvaluateAsInt(ASTContext &Ctx) const;
231
232  /// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
233  /// integer constant expression with the value zero, or if this is one that is
234  /// cast to void*.
235  bool isNullPointerConstant(ASTContext &Ctx) const;
236
237  /// hasGlobalStorage - Return true if this expression has static storage
238  /// duration.  This means that the address of this expression is a link-time
239  /// constant.
240  bool hasGlobalStorage() const;
241
242  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
243  ///  its subexpression.  If that subexpression is also a ParenExpr,
244  ///  then this method recursively returns its subexpression, and so forth.
245  ///  Otherwise, the method returns the current Expr.
246  Expr* IgnoreParens();
247
248  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
249  /// or CastExprs, returning their operand.
250  Expr *IgnoreParenCasts();
251
252  const Expr* IgnoreParens() const {
253    return const_cast<Expr*>(this)->IgnoreParens();
254  }
255  const Expr *IgnoreParenCasts() const {
256    return const_cast<Expr*>(this)->IgnoreParenCasts();
257  }
258
259  static bool hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs);
260  static bool hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs);
261
262  static bool classof(const Stmt *T) {
263    return T->getStmtClass() >= firstExprConstant &&
264           T->getStmtClass() <= lastExprConstant;
265  }
266  static bool classof(const Expr *) { return true; }
267
268  static inline Expr* Create(llvm::Deserializer& D, ASTContext& C) {
269    return cast<Expr>(Stmt::Create(D, C));
270  }
271};
272
273
274//===----------------------------------------------------------------------===//
275// Primary Expressions.
276//===----------------------------------------------------------------------===//
277
278/// DeclRefExpr - [C99 6.5.1p2] - A reference to a declared variable, function,
279/// enum, etc.
280class DeclRefExpr : public Expr {
281  NamedDecl *D;
282  SourceLocation Loc;
283
284protected:
285  // FIXME: Eventually, this constructor will go away and all subclasses
286  // will have to provide the type- and value-dependent flags.
287  DeclRefExpr(StmtClass SC, NamedDecl *d, QualType t, SourceLocation l) :
288    Expr(SC, t), D(d), Loc(l) {}
289
290  DeclRefExpr(StmtClass SC, NamedDecl *d, QualType t, SourceLocation l, bool TD,
291              bool VD) :
292    Expr(SC, t, TD, VD), D(d), Loc(l) {}
293
294public:
295  // FIXME: Eventually, this constructor will go away and all clients
296  // will have to provide the type- and value-dependent flags.
297  DeclRefExpr(NamedDecl *d, QualType t, SourceLocation l) :
298    Expr(DeclRefExprClass, t), D(d), Loc(l) {}
299
300  DeclRefExpr(NamedDecl *d, QualType t, SourceLocation l, bool TD, bool VD) :
301    Expr(DeclRefExprClass, t, TD, VD), D(d), Loc(l) {}
302
303  NamedDecl *getDecl() { return D; }
304  const NamedDecl *getDecl() const { return D; }
305  void setDecl(NamedDecl *NewD) { D = NewD; }
306
307  SourceLocation getLocation() const { return Loc; }
308  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
309
310  static bool classof(const Stmt *T) {
311    return T->getStmtClass() == DeclRefExprClass ||
312           T->getStmtClass() == CXXConditionDeclExprClass ||
313           T->getStmtClass() == QualifiedDeclRefExprClass;
314  }
315  static bool classof(const DeclRefExpr *) { return true; }
316
317  // Iterators
318  virtual child_iterator child_begin();
319  virtual child_iterator child_end();
320
321  virtual void EmitImpl(llvm::Serializer& S) const;
322  static DeclRefExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
323};
324
325/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
326class PredefinedExpr : public Expr {
327public:
328  enum IdentType {
329    Func,
330    Function,
331    PrettyFunction
332  };
333
334private:
335  SourceLocation Loc;
336  IdentType Type;
337public:
338  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
339    : Expr(PredefinedExprClass, type), Loc(l), Type(IT) {}
340
341  IdentType getIdentType() const { return Type; }
342
343  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
344
345  static bool classof(const Stmt *T) {
346    return T->getStmtClass() == PredefinedExprClass;
347  }
348  static bool classof(const PredefinedExpr *) { return true; }
349
350  // Iterators
351  virtual child_iterator child_begin();
352  virtual child_iterator child_end();
353
354  virtual void EmitImpl(llvm::Serializer& S) const;
355  static PredefinedExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
356};
357
358class IntegerLiteral : public Expr {
359  llvm::APInt Value;
360  SourceLocation Loc;
361public:
362  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
363  // or UnsignedLongLongTy
364  IntegerLiteral(const llvm::APInt &V, QualType type, SourceLocation l)
365    : Expr(IntegerLiteralClass, type), Value(V), Loc(l) {
366    assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
367  }
368  const llvm::APInt &getValue() const { return Value; }
369  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
370
371  static bool classof(const Stmt *T) {
372    return T->getStmtClass() == IntegerLiteralClass;
373  }
374  static bool classof(const IntegerLiteral *) { return true; }
375
376  // Iterators
377  virtual child_iterator child_begin();
378  virtual child_iterator child_end();
379
380  virtual void EmitImpl(llvm::Serializer& S) const;
381  static IntegerLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
382};
383
384class CharacterLiteral : public Expr {
385  unsigned Value;
386  SourceLocation Loc;
387  bool IsWide;
388public:
389  // type should be IntTy
390  CharacterLiteral(unsigned value, bool iswide, QualType type, SourceLocation l)
391    : Expr(CharacterLiteralClass, type), Value(value), Loc(l), IsWide(iswide) {
392  }
393  SourceLocation getLoc() const { return Loc; }
394  bool isWide() const { return IsWide; }
395
396  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
397
398  unsigned getValue() const { return Value; }
399
400  static bool classof(const Stmt *T) {
401    return T->getStmtClass() == CharacterLiteralClass;
402  }
403  static bool classof(const CharacterLiteral *) { return true; }
404
405  // Iterators
406  virtual child_iterator child_begin();
407  virtual child_iterator child_end();
408
409  virtual void EmitImpl(llvm::Serializer& S) const;
410  static CharacterLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
411};
412
413class FloatingLiteral : public Expr {
414  llvm::APFloat Value;
415  bool IsExact : 1;
416  SourceLocation Loc;
417public:
418  FloatingLiteral(const llvm::APFloat &V, bool* isexact,
419                  QualType Type, SourceLocation L)
420    : Expr(FloatingLiteralClass, Type), Value(V), IsExact(*isexact), Loc(L) {}
421
422  const llvm::APFloat &getValue() const { return Value; }
423
424  bool isExact() const { return IsExact; }
425
426  /// getValueAsApproximateDouble - This returns the value as an inaccurate
427  /// double.  Note that this may cause loss of precision, but is useful for
428  /// debugging dumps, etc.
429  double getValueAsApproximateDouble() const;
430
431  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
432
433  static bool classof(const Stmt *T) {
434    return T->getStmtClass() == FloatingLiteralClass;
435  }
436  static bool classof(const FloatingLiteral *) { return true; }
437
438  // Iterators
439  virtual child_iterator child_begin();
440  virtual child_iterator child_end();
441
442  virtual void EmitImpl(llvm::Serializer& S) const;
443  static FloatingLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
444};
445
446/// ImaginaryLiteral - We support imaginary integer and floating point literals,
447/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
448/// IntegerLiteral classes.  Instances of this class always have a Complex type
449/// whose element type matches the subexpression.
450///
451class ImaginaryLiteral : public Expr {
452  Stmt *Val;
453public:
454  ImaginaryLiteral(Expr *val, QualType Ty)
455    : Expr(ImaginaryLiteralClass, Ty), Val(val) {}
456
457  const Expr *getSubExpr() const { return cast<Expr>(Val); }
458  Expr *getSubExpr() { return cast<Expr>(Val); }
459
460  virtual SourceRange getSourceRange() const { return Val->getSourceRange(); }
461  static bool classof(const Stmt *T) {
462    return T->getStmtClass() == ImaginaryLiteralClass;
463  }
464  static bool classof(const ImaginaryLiteral *) { return true; }
465
466  // Iterators
467  virtual child_iterator child_begin();
468  virtual child_iterator child_end();
469
470  virtual void EmitImpl(llvm::Serializer& S) const;
471  static ImaginaryLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
472};
473
474/// StringLiteral - This represents a string literal expression, e.g. "foo"
475/// or L"bar" (wide strings).  The actual string is returned by getStrData()
476/// is NOT null-terminated, and the length of the string is determined by
477/// calling getByteLength().  The C type for a string is always a
478/// ConstantArrayType.
479///
480/// Note that strings in C can be formed by concatenation of multiple string
481/// literal pptokens in translation phase #6.  This keeps track of the locations
482/// of each of these pieces.
483class StringLiteral : public Expr {
484  const char *StrData;
485  unsigned ByteLength;
486  bool IsWide;
487  unsigned NumConcatenated;
488  SourceLocation TokLocs[1];
489
490  StringLiteral(QualType Ty) : Expr(StringLiteralClass, Ty) {}
491public:
492  /// This is the "fully general" constructor that allows representation of
493  /// strings formed from multiple concatenated tokens.
494  static StringLiteral *Create(ASTContext &C, const char *StrData,
495                               unsigned ByteLength, bool Wide, QualType Ty,
496                               SourceLocation *Loc, unsigned NumStrs);
497
498  /// Simple constructor for string literals made from one token.
499  static StringLiteral *Create(ASTContext &C, const char *StrData,
500                               unsigned ByteLength,
501                               bool Wide, QualType Ty, SourceLocation Loc) {
502    return Create(C, StrData, ByteLength, Wide, Ty, &Loc, 1);
503  }
504
505  void Destroy(ASTContext &C);
506
507  const char *getStrData() const { return StrData; }
508  unsigned getByteLength() const { return ByteLength; }
509  bool isWide() const { return IsWide; }
510
511  /// getNumConcatenated - Get the number of string literal tokens that were
512  /// concatenated in translation phase #6 to form this string literal.
513  unsigned getNumConcatenated() const { return NumConcatenated; }
514
515  SourceLocation getStrTokenLoc(unsigned TokNum) const {
516    assert(TokNum < NumConcatenated && "Invalid tok number");
517    return TokLocs[TokNum];
518  }
519
520  typedef const SourceLocation *tokloc_iterator;
521  tokloc_iterator tokloc_begin() const { return TokLocs; }
522  tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; }
523
524  virtual SourceRange getSourceRange() const {
525    return SourceRange(TokLocs[0], TokLocs[NumConcatenated-1]);
526  }
527  static bool classof(const Stmt *T) {
528    return T->getStmtClass() == StringLiteralClass;
529  }
530  static bool classof(const StringLiteral *) { return true; }
531
532  // Iterators
533  virtual child_iterator child_begin();
534  virtual child_iterator child_end();
535
536  virtual void EmitImpl(llvm::Serializer& S) const;
537  static StringLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
538};
539
540/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
541/// AST node is only formed if full location information is requested.
542class ParenExpr : public Expr {
543  SourceLocation L, R;
544  Stmt *Val;
545public:
546  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
547    : Expr(ParenExprClass, val->getType(),
548           val->isTypeDependent(), val->isValueDependent()),
549      L(l), R(r), Val(val) {}
550
551  const Expr *getSubExpr() const { return cast<Expr>(Val); }
552  Expr *getSubExpr() { return cast<Expr>(Val); }
553  virtual SourceRange getSourceRange() const { return SourceRange(L, R); }
554
555  static bool classof(const Stmt *T) {
556    return T->getStmtClass() == ParenExprClass;
557  }
558  static bool classof(const ParenExpr *) { return true; }
559
560  // Iterators
561  virtual child_iterator child_begin();
562  virtual child_iterator child_end();
563
564  virtual void EmitImpl(llvm::Serializer& S) const;
565  static ParenExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
566};
567
568
569/// UnaryOperator - This represents the unary-expression's (except sizeof and
570/// alignof), the postinc/postdec operators from postfix-expression, and various
571/// extensions.
572///
573/// Notes on various nodes:
574///
575/// Real/Imag - These return the real/imag part of a complex operand.  If
576///   applied to a non-complex value, the former returns its operand and the
577///   later returns zero in the type of the operand.
578///
579/// __builtin_offsetof(type, a.b[10]) is represented as a unary operator whose
580///   subexpression is a compound literal with the various MemberExpr and
581///   ArraySubscriptExpr's applied to it.
582///
583class UnaryOperator : public Expr {
584public:
585  // Note that additions to this should also update the StmtVisitor class.
586  enum Opcode {
587    PostInc, PostDec, // [C99 6.5.2.4] Postfix increment and decrement operators
588    PreInc, PreDec,   // [C99 6.5.3.1] Prefix increment and decrement operators.
589    AddrOf, Deref,    // [C99 6.5.3.2] Address and indirection operators.
590    Plus, Minus,      // [C99 6.5.3.3] Unary arithmetic operators.
591    Not, LNot,        // [C99 6.5.3.3] Unary arithmetic operators.
592    Real, Imag,       // "__real expr"/"__imag expr" Extension.
593    Extension,        // __extension__ marker.
594    OffsetOf          // __builtin_offsetof
595  };
596private:
597  Stmt *Val;
598  Opcode Opc;
599  SourceLocation Loc;
600public:
601
602  UnaryOperator(Expr *input, Opcode opc, QualType type, SourceLocation l)
603    : Expr(UnaryOperatorClass, type,
604           input->isTypeDependent() && opc != OffsetOf,
605           input->isValueDependent()),
606      Val(input), Opc(opc), Loc(l) {}
607
608  Opcode getOpcode() const { return Opc; }
609  Expr *getSubExpr() const { return cast<Expr>(Val); }
610
611  /// getOperatorLoc - Return the location of the operator.
612  SourceLocation getOperatorLoc() const { return Loc; }
613
614  /// isPostfix - Return true if this is a postfix operation, like x++.
615  static bool isPostfix(Opcode Op) {
616    return Op == PostInc || Op == PostDec;
617  }
618
619  /// isPostfix - Return true if this is a prefix operation, like --x.
620  static bool isPrefix(Opcode Op) {
621    return Op == PreInc || Op == PreDec;
622  }
623
624  bool isPrefix() const { return isPrefix(Opc); }
625  bool isPostfix() const { return isPostfix(Opc); }
626  bool isIncrementOp() const {return Opc==PreInc || Opc==PostInc; }
627  bool isIncrementDecrementOp() const { return Opc>=PostInc && Opc<=PreDec; }
628  bool isOffsetOfOp() const { return Opc == OffsetOf; }
629  static bool isArithmeticOp(Opcode Op) { return Op >= Plus && Op <= LNot; }
630
631  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
632  /// corresponds to, e.g. "sizeof" or "[pre]++"
633  static const char *getOpcodeStr(Opcode Op);
634
635  virtual SourceRange getSourceRange() const {
636    if (isPostfix())
637      return SourceRange(Val->getLocStart(), Loc);
638    else
639      return SourceRange(Loc, Val->getLocEnd());
640  }
641  virtual SourceLocation getExprLoc() const { return Loc; }
642
643  static bool classof(const Stmt *T) {
644    return T->getStmtClass() == UnaryOperatorClass;
645  }
646  static bool classof(const UnaryOperator *) { return true; }
647
648  int64_t evaluateOffsetOf(ASTContext& C) const;
649
650  // Iterators
651  virtual child_iterator child_begin();
652  virtual child_iterator child_end();
653
654  virtual void EmitImpl(llvm::Serializer& S) const;
655  static UnaryOperator* CreateImpl(llvm::Deserializer& D, ASTContext& C);
656};
657
658/// SizeOfAlignOfExpr - [C99 6.5.3.4] - This is for sizeof/alignof, both of
659/// types and expressions.
660class SizeOfAlignOfExpr : public Expr {
661  bool isSizeof : 1;  // true if sizeof, false if alignof.
662  bool isType : 1;    // true if operand is a type, false if an expression
663  union {
664    void *Ty;
665    Stmt *Ex;
666  } Argument;
667  SourceLocation OpLoc, RParenLoc;
668public:
669  SizeOfAlignOfExpr(bool issizeof, bool istype, void *argument,
670                    QualType resultType, SourceLocation op,
671                    SourceLocation rp) :
672      Expr(SizeOfAlignOfExprClass, resultType), isSizeof(issizeof),
673      isType(istype), OpLoc(op), RParenLoc(rp) {
674    if (isType)
675      Argument.Ty = argument;
676    else
677      // argument was an Expr*, so cast it back to that to be safe
678      Argument.Ex = static_cast<Expr*>(argument);
679  }
680
681  virtual void Destroy(ASTContext& C);
682
683  bool isSizeOf() const { return isSizeof; }
684  bool isArgumentType() const { return isType; }
685  QualType getArgumentType() const {
686    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
687    return QualType::getFromOpaquePtr(Argument.Ty);
688  }
689  Expr *getArgumentExpr() {
690    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
691    return static_cast<Expr*>(Argument.Ex);
692  }
693  const Expr *getArgumentExpr() const {
694    return const_cast<SizeOfAlignOfExpr*>(this)->getArgumentExpr();
695  }
696
697  /// Gets the argument type, or the type of the argument expression, whichever
698  /// is appropriate.
699  QualType getTypeOfArgument() const {
700    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
701  }
702
703  SourceLocation getOperatorLoc() const { return OpLoc; }
704
705  virtual SourceRange getSourceRange() const {
706    return SourceRange(OpLoc, RParenLoc);
707  }
708
709  static bool classof(const Stmt *T) {
710    return T->getStmtClass() == SizeOfAlignOfExprClass;
711  }
712  static bool classof(const SizeOfAlignOfExpr *) { return true; }
713
714  // Iterators
715  virtual child_iterator child_begin();
716  virtual child_iterator child_end();
717
718  virtual void EmitImpl(llvm::Serializer& S) const;
719  static SizeOfAlignOfExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
720};
721
722//===----------------------------------------------------------------------===//
723// Postfix Operators.
724//===----------------------------------------------------------------------===//
725
726/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
727class ArraySubscriptExpr : public Expr {
728  enum { LHS, RHS, END_EXPR=2 };
729  Stmt* SubExprs[END_EXPR];
730  SourceLocation RBracketLoc;
731public:
732  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
733                     SourceLocation rbracketloc)
734  : Expr(ArraySubscriptExprClass, t), RBracketLoc(rbracketloc) {
735    SubExprs[LHS] = lhs;
736    SubExprs[RHS] = rhs;
737  }
738
739  /// An array access can be written A[4] or 4[A] (both are equivalent).
740  /// - getBase() and getIdx() always present the normalized view: A[4].
741  ///    In this case getBase() returns "A" and getIdx() returns "4".
742  /// - getLHS() and getRHS() present the syntactic view. e.g. for
743  ///    4[A] getLHS() returns "4".
744  /// Note: Because vector element access is also written A[4] we must
745  /// predicate the format conversion in getBase and getIdx only on the
746  /// the type of the RHS, as it is possible for the LHS to be a vector of
747  /// integer type
748  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
749  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
750
751  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
752  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
753
754  Expr *getBase() {
755    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
756  }
757
758  const Expr *getBase() const {
759    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
760  }
761
762  Expr *getIdx() {
763    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
764  }
765
766  const Expr *getIdx() const {
767    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
768  }
769
770  virtual SourceRange getSourceRange() const {
771    return SourceRange(getLHS()->getLocStart(), RBracketLoc);
772  }
773
774  SourceLocation getRBracketLoc() const { return RBracketLoc; }
775  virtual SourceLocation getExprLoc() const { return getBase()->getExprLoc(); }
776
777  static bool classof(const Stmt *T) {
778    return T->getStmtClass() == ArraySubscriptExprClass;
779  }
780  static bool classof(const ArraySubscriptExpr *) { return true; }
781
782  // Iterators
783  virtual child_iterator child_begin();
784  virtual child_iterator child_end();
785
786  virtual void EmitImpl(llvm::Serializer& S) const;
787  static ArraySubscriptExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
788};
789
790
791/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
792/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
793/// while its subclasses may represent alternative syntax that (semantically)
794/// results in a function call. For example, CXXOperatorCallExpr is
795/// a subclass for overloaded operator calls that use operator syntax, e.g.,
796/// "str1 + str2" to resolve to a function call.
797class CallExpr : public Expr {
798  enum { FN=0, ARGS_START=1 };
799  Stmt **SubExprs;
800  unsigned NumArgs;
801  SourceLocation RParenLoc;
802
803  // This version of the ctor is for deserialization.
804  CallExpr(StmtClass SC, Stmt** subexprs, unsigned numargs, QualType t,
805           SourceLocation rparenloc)
806  : Expr(SC,t), SubExprs(subexprs),
807    NumArgs(numargs), RParenLoc(rparenloc) {}
808
809protected:
810  // This version of the constructor is for derived classes.
811  CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args, unsigned numargs,
812           QualType t, SourceLocation rparenloc);
813
814public:
815  CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, QualType t,
816           SourceLocation rparenloc);
817
818  ~CallExpr() {}
819
820  void Destroy(ASTContext& C);
821
822  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
823  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
824  void setCallee(Expr *F) { SubExprs[FN] = F; }
825
826  /// getNumArgs - Return the number of actual arguments to this call.
827  ///
828  unsigned getNumArgs() const { return NumArgs; }
829
830  /// getArg - Return the specified argument.
831  Expr *getArg(unsigned Arg) {
832    assert(Arg < NumArgs && "Arg access out of range!");
833    return cast<Expr>(SubExprs[Arg+ARGS_START]);
834  }
835  const Expr *getArg(unsigned Arg) const {
836    assert(Arg < NumArgs && "Arg access out of range!");
837    return cast<Expr>(SubExprs[Arg+ARGS_START]);
838  }
839
840  // FIXME: Why is this needed?  Why not just create the CallExpr with the
841  // corect number of arguments?  It makes the ASTs less brittle.
842  /// setArg - Set the specified argument.
843  void setArg(unsigned Arg, Expr *ArgExpr) {
844    assert(Arg < NumArgs && "Arg access out of range!");
845    SubExprs[Arg+ARGS_START] = ArgExpr;
846  }
847
848  // FIXME: It would be great to just get rid of this.  There is only one
849  // callee of this method, and it probably could be refactored to not use
850  // this method and instead just create a CallExpr with the right number of
851  // arguments.
852  /// setNumArgs - This changes the number of arguments present in this call.
853  /// Any orphaned expressions are deleted by this, and any new operands are set
854  /// to null.
855  void setNumArgs(ASTContext& C, unsigned NumArgs);
856
857  typedef ExprIterator arg_iterator;
858  typedef ConstExprIterator const_arg_iterator;
859
860  arg_iterator arg_begin() { return SubExprs+ARGS_START; }
861  arg_iterator arg_end() { return SubExprs+ARGS_START+getNumArgs(); }
862  const_arg_iterator arg_begin() const { return SubExprs+ARGS_START; }
863  const_arg_iterator arg_end() const { return SubExprs+ARGS_START+getNumArgs();}
864
865  /// getNumCommas - Return the number of commas that must have been present in
866  /// this function call.
867  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
868
869  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
870  /// not, return 0.
871  unsigned isBuiltinCall(ASTContext &Context) const;
872
873  SourceLocation getRParenLoc() const { return RParenLoc; }
874
875  virtual SourceRange getSourceRange() const {
876    return SourceRange(getCallee()->getLocStart(), RParenLoc);
877  }
878
879  static bool classof(const Stmt *T) {
880    return T->getStmtClass() == CallExprClass ||
881           T->getStmtClass() == CXXOperatorCallExprClass ||
882           T->getStmtClass() == CXXMemberCallExprClass;
883  }
884  static bool classof(const CallExpr *) { return true; }
885  static bool classof(const CXXOperatorCallExpr *) { return true; }
886  static bool classof(const CXXMemberCallExpr *) { return true; }
887
888  // Iterators
889  virtual child_iterator child_begin();
890  virtual child_iterator child_end();
891
892  virtual void EmitImpl(llvm::Serializer& S) const;
893  static CallExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C,
894                              StmtClass SC);
895};
896
897/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.
898///
899class MemberExpr : public Expr {
900  Stmt *Base;
901  NamedDecl *MemberDecl;
902  SourceLocation MemberLoc;
903  bool IsArrow;      // True if this is "X->F", false if this is "X.F".
904public:
905  MemberExpr(Expr *base, bool isarrow, NamedDecl *memberdecl, SourceLocation l,
906             QualType ty)
907    : Expr(MemberExprClass, ty),
908      Base(base), MemberDecl(memberdecl), MemberLoc(l), IsArrow(isarrow) {}
909
910  void setBase(Expr *E) { Base = E; }
911  Expr *getBase() const { return cast<Expr>(Base); }
912  NamedDecl *getMemberDecl() const { return MemberDecl; }
913  void setMemberDecl(NamedDecl *D) { MemberDecl = D; }
914  bool isArrow() const { return IsArrow; }
915  SourceLocation getMemberLoc() const { return MemberLoc; }
916
917  virtual SourceRange getSourceRange() const {
918    return SourceRange(getBase()->getLocStart(), MemberLoc);
919  }
920
921  virtual SourceLocation getExprLoc() const { return MemberLoc; }
922
923  static bool classof(const Stmt *T) {
924    return T->getStmtClass() == MemberExprClass;
925  }
926  static bool classof(const MemberExpr *) { return true; }
927
928  // Iterators
929  virtual child_iterator child_begin();
930  virtual child_iterator child_end();
931
932  virtual void EmitImpl(llvm::Serializer& S) const;
933  static MemberExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
934};
935
936/// CompoundLiteralExpr - [C99 6.5.2.5]
937///
938class CompoundLiteralExpr : public Expr {
939  /// LParenLoc - If non-null, this is the location of the left paren in a
940  /// compound literal like "(int){4}".  This can be null if this is a
941  /// synthesized compound expression.
942  SourceLocation LParenLoc;
943  Stmt *Init;
944  bool FileScope;
945public:
946  CompoundLiteralExpr(SourceLocation lparenloc, QualType ty, Expr *init,
947                      bool fileScope)
948    : Expr(CompoundLiteralExprClass, ty), LParenLoc(lparenloc), Init(init),
949      FileScope(fileScope) {}
950
951  const Expr *getInitializer() const { return cast<Expr>(Init); }
952  Expr *getInitializer() { return cast<Expr>(Init); }
953
954  bool isFileScope() const { return FileScope; }
955
956  SourceLocation getLParenLoc() const { return LParenLoc; }
957
958  virtual SourceRange getSourceRange() const {
959    // FIXME: Init should never be null.
960    if (!Init)
961      return SourceRange();
962    if (LParenLoc.isInvalid())
963      return Init->getSourceRange();
964    return SourceRange(LParenLoc, Init->getLocEnd());
965  }
966
967  static bool classof(const Stmt *T) {
968    return T->getStmtClass() == CompoundLiteralExprClass;
969  }
970  static bool classof(const CompoundLiteralExpr *) { return true; }
971
972  // Iterators
973  virtual child_iterator child_begin();
974  virtual child_iterator child_end();
975
976  virtual void EmitImpl(llvm::Serializer& S) const;
977  static CompoundLiteralExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
978};
979
980/// CastExpr - Base class for type casts, including both implicit
981/// casts (ImplicitCastExpr) and explicit casts that have some
982/// representation in the source code (ExplicitCastExpr's derived
983/// classes).
984class CastExpr : public Expr {
985  Stmt *Op;
986protected:
987  CastExpr(StmtClass SC, QualType ty, Expr *op) :
988    Expr(SC, ty,
989         // Cast expressions are type-dependent if the type is
990         // dependent (C++ [temp.dep.expr]p3).
991         ty->isDependentType(),
992         // Cast expressions are value-dependent if the type is
993         // dependent or if the subexpression is value-dependent.
994         ty->isDependentType() || (op && op->isValueDependent())),
995    Op(op) {}
996
997public:
998  Expr *getSubExpr() { return cast<Expr>(Op); }
999  const Expr *getSubExpr() const { return cast<Expr>(Op); }
1000
1001  static bool classof(const Stmt *T) {
1002    StmtClass SC = T->getStmtClass();
1003    if (SC >= CXXNamedCastExprClass && SC <= CXXFunctionalCastExprClass)
1004      return true;
1005
1006    if (SC >= ImplicitCastExprClass && SC <= CStyleCastExprClass)
1007      return true;
1008
1009    return false;
1010  }
1011  static bool classof(const CastExpr *) { return true; }
1012
1013  // Iterators
1014  virtual child_iterator child_begin();
1015  virtual child_iterator child_end();
1016};
1017
1018/// ImplicitCastExpr - Allows us to explicitly represent implicit type
1019/// conversions, which have no direct representation in the original
1020/// source code. For example: converting T[]->T*, void f()->void
1021/// (*f)(), float->double, short->int, etc.
1022///
1023/// In C, implicit casts always produce rvalues. However, in C++, an
1024/// implicit cast whose result is being bound to a reference will be
1025/// an lvalue. For example:
1026///
1027/// @code
1028/// class Base { };
1029/// class Derived : public Base { };
1030/// void f(Derived d) {
1031///   Base& b = d; // initializer is an ImplicitCastExpr to an lvalue of type Base
1032/// }
1033/// @endcode
1034class ImplicitCastExpr : public CastExpr {
1035  /// LvalueCast - Whether this cast produces an lvalue.
1036  bool LvalueCast;
1037
1038public:
1039  ImplicitCastExpr(QualType ty, Expr *op, bool Lvalue) :
1040    CastExpr(ImplicitCastExprClass, ty, op), LvalueCast(Lvalue) { }
1041
1042  virtual SourceRange getSourceRange() const {
1043    return getSubExpr()->getSourceRange();
1044  }
1045
1046  /// isLvalueCast - Whether this cast produces an lvalue.
1047  bool isLvalueCast() const { return LvalueCast; }
1048
1049  /// setLvalueCast - Set whether this cast produces an lvalue.
1050  void setLvalueCast(bool Lvalue) { LvalueCast = Lvalue; }
1051
1052  static bool classof(const Stmt *T) {
1053    return T->getStmtClass() == ImplicitCastExprClass;
1054  }
1055  static bool classof(const ImplicitCastExpr *) { return true; }
1056
1057  virtual void EmitImpl(llvm::Serializer& S) const;
1058  static ImplicitCastExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1059};
1060
1061/// ExplicitCastExpr - An explicit cast written in the source
1062/// code.
1063///
1064/// This class is effectively an abstract class, because it provides
1065/// the basic representation of an explicitly-written cast without
1066/// specifying which kind of cast (C cast, functional cast, static
1067/// cast, etc.) was written; specific derived classes represent the
1068/// particular style of cast and its location information.
1069///
1070/// Unlike implicit casts, explicit cast nodes have two different
1071/// types: the type that was written into the source code, and the
1072/// actual type of the expression as determined by semantic
1073/// analysis. These types may differ slightly. For example, in C++ one
1074/// can cast to a reference type, which indicates that the resulting
1075/// expression will be an lvalue. The reference type, however, will
1076/// not be used as the type of the expression.
1077class ExplicitCastExpr : public CastExpr {
1078  /// TypeAsWritten - The type that this expression is casting to, as
1079  /// written in the source code.
1080  QualType TypeAsWritten;
1081
1082protected:
1083  ExplicitCastExpr(StmtClass SC, QualType exprTy, Expr *op, QualType writtenTy)
1084    : CastExpr(SC, exprTy, op), TypeAsWritten(writtenTy) {}
1085
1086public:
1087  /// getTypeAsWritten - Returns the type that this expression is
1088  /// casting to, as written in the source code.
1089  QualType getTypeAsWritten() const { return TypeAsWritten; }
1090
1091  static bool classof(const Stmt *T) {
1092    StmtClass SC = T->getStmtClass();
1093    if (SC >= ExplicitCastExprClass && SC <= CStyleCastExprClass)
1094      return true;
1095    if (SC >= CXXNamedCastExprClass && SC <= CXXFunctionalCastExprClass)
1096      return true;
1097
1098    return false;
1099  }
1100  static bool classof(const ExplicitCastExpr *) { return true; }
1101};
1102
1103/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
1104/// cast in C++ (C++ [expr.cast]), which uses the syntax
1105/// (Type)expr. For example: @c (int)f.
1106class CStyleCastExpr : public ExplicitCastExpr {
1107  SourceLocation LPLoc; // the location of the left paren
1108  SourceLocation RPLoc; // the location of the right paren
1109public:
1110  CStyleCastExpr(QualType exprTy, Expr *op, QualType writtenTy,
1111                    SourceLocation l, SourceLocation r) :
1112    ExplicitCastExpr(CStyleCastExprClass, exprTy, op, writtenTy),
1113    LPLoc(l), RPLoc(r) {}
1114
1115  SourceLocation getLParenLoc() const { return LPLoc; }
1116  SourceLocation getRParenLoc() const { return RPLoc; }
1117
1118  virtual SourceRange getSourceRange() const {
1119    return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd());
1120  }
1121  static bool classof(const Stmt *T) {
1122    return T->getStmtClass() == CStyleCastExprClass;
1123  }
1124  static bool classof(const CStyleCastExpr *) { return true; }
1125
1126  virtual void EmitImpl(llvm::Serializer& S) const;
1127  static CStyleCastExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1128};
1129
1130class BinaryOperator : public Expr {
1131public:
1132  enum Opcode {
1133    // Operators listed in order of precedence.
1134    // Note that additions to this should also update the StmtVisitor class.
1135    PtrMemD, PtrMemI, // [C++ 5.5] Pointer-to-member operators.
1136    Mul, Div, Rem,    // [C99 6.5.5] Multiplicative operators.
1137    Add, Sub,         // [C99 6.5.6] Additive operators.
1138    Shl, Shr,         // [C99 6.5.7] Bitwise shift operators.
1139    LT, GT, LE, GE,   // [C99 6.5.8] Relational operators.
1140    EQ, NE,           // [C99 6.5.9] Equality operators.
1141    And,              // [C99 6.5.10] Bitwise AND operator.
1142    Xor,              // [C99 6.5.11] Bitwise XOR operator.
1143    Or,               // [C99 6.5.12] Bitwise OR operator.
1144    LAnd,             // [C99 6.5.13] Logical AND operator.
1145    LOr,              // [C99 6.5.14] Logical OR operator.
1146    Assign, MulAssign,// [C99 6.5.16] Assignment operators.
1147    DivAssign, RemAssign,
1148    AddAssign, SubAssign,
1149    ShlAssign, ShrAssign,
1150    AndAssign, XorAssign,
1151    OrAssign,
1152    Comma             // [C99 6.5.17] Comma operator.
1153  };
1154private:
1155  enum { LHS, RHS, END_EXPR };
1156  Stmt* SubExprs[END_EXPR];
1157  Opcode Opc;
1158  SourceLocation OpLoc;
1159public:
1160
1161  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
1162                 SourceLocation opLoc)
1163    : Expr(BinaryOperatorClass, ResTy,
1164           lhs->isTypeDependent() || rhs->isTypeDependent(),
1165           lhs->isValueDependent() || rhs->isValueDependent()),
1166      Opc(opc), OpLoc(opLoc) {
1167    SubExprs[LHS] = lhs;
1168    SubExprs[RHS] = rhs;
1169    assert(!isCompoundAssignmentOp() &&
1170           "Use ArithAssignBinaryOperator for compound assignments");
1171  }
1172
1173  SourceLocation getOperatorLoc() const { return OpLoc; }
1174  Opcode getOpcode() const { return Opc; }
1175  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1176  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1177  virtual SourceRange getSourceRange() const {
1178    return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
1179  }
1180
1181  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1182  /// corresponds to, e.g. "<<=".
1183  static const char *getOpcodeStr(Opcode Op);
1184
1185  /// predicates to categorize the respective opcodes.
1186  bool isMultiplicativeOp() const { return Opc >= Mul && Opc <= Rem; }
1187  bool isAdditiveOp() const { return Opc == Add || Opc == Sub; }
1188  bool isShiftOp() const { return Opc == Shl || Opc == Shr; }
1189  bool isBitwiseOp() const { return Opc >= And && Opc <= Or; }
1190
1191  static bool isRelationalOp(Opcode Opc) { return Opc >= LT && Opc <= GE; }
1192  bool isRelationalOp() const { return isRelationalOp(Opc); }
1193
1194  static bool isEqualityOp(Opcode Opc) { return Opc == EQ || Opc == NE; }
1195  bool isEqualityOp() const { return isEqualityOp(Opc); }
1196
1197  static bool isLogicalOp(Opcode Opc) { return Opc == LAnd || Opc == LOr; }
1198  bool isLogicalOp() const { return isLogicalOp(Opc); }
1199
1200  bool isAssignmentOp() const { return Opc >= Assign && Opc <= OrAssign; }
1201  bool isCompoundAssignmentOp() const { return Opc > Assign && Opc <= OrAssign;}
1202  bool isShiftAssignOp() const { return Opc == ShlAssign || Opc == ShrAssign; }
1203
1204  static bool classof(const Stmt *S) {
1205    return S->getStmtClass() == BinaryOperatorClass ||
1206           S->getStmtClass() == CompoundAssignOperatorClass;
1207  }
1208  static bool classof(const BinaryOperator *) { return true; }
1209
1210  // Iterators
1211  virtual child_iterator child_begin();
1212  virtual child_iterator child_end();
1213
1214  virtual void EmitImpl(llvm::Serializer& S) const;
1215  static BinaryOperator* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1216
1217protected:
1218  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
1219                 SourceLocation oploc, bool dead)
1220    : Expr(CompoundAssignOperatorClass, ResTy), Opc(opc), OpLoc(oploc) {
1221    SubExprs[LHS] = lhs;
1222    SubExprs[RHS] = rhs;
1223  }
1224};
1225
1226/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
1227/// track of the type the operation is performed in.  Due to the semantics of
1228/// these operators, the operands are promoted, the aritmetic performed, an
1229/// implicit conversion back to the result type done, then the assignment takes
1230/// place.  This captures the intermediate type which the computation is done
1231/// in.
1232class CompoundAssignOperator : public BinaryOperator {
1233  QualType ComputationType;
1234public:
1235  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc,
1236                         QualType ResType, QualType CompType,
1237                         SourceLocation OpLoc)
1238    : BinaryOperator(lhs, rhs, opc, ResType, OpLoc, true),
1239      ComputationType(CompType) {
1240    assert(isCompoundAssignmentOp() &&
1241           "Only should be used for compound assignments");
1242  }
1243
1244  QualType getComputationType() const { return ComputationType; }
1245
1246  static bool classof(const CompoundAssignOperator *) { return true; }
1247  static bool classof(const Stmt *S) {
1248    return S->getStmtClass() == CompoundAssignOperatorClass;
1249  }
1250
1251  virtual void EmitImpl(llvm::Serializer& S) const;
1252  static CompoundAssignOperator* CreateImpl(llvm::Deserializer& D,
1253                                            ASTContext& C);
1254};
1255
1256/// ConditionalOperator - The ?: operator.  Note that LHS may be null when the
1257/// GNU "missing LHS" extension is in use.
1258///
1259class ConditionalOperator : public Expr {
1260  enum { COND, LHS, RHS, END_EXPR };
1261  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
1262public:
1263  ConditionalOperator(Expr *cond, Expr *lhs, Expr *rhs, QualType t)
1264    : Expr(ConditionalOperatorClass, t,
1265           // FIXME: the type of the conditional operator doesn't
1266           // depend on the type of the conditional, but the standard
1267           // seems to imply that it could. File a bug!
1268           ((lhs && lhs->isTypeDependent()) || (rhs && rhs->isTypeDependent())),
1269           (cond->isValueDependent() ||
1270            (lhs && lhs->isValueDependent()) ||
1271            (rhs && rhs->isValueDependent()))) {
1272    SubExprs[COND] = cond;
1273    SubExprs[LHS] = lhs;
1274    SubExprs[RHS] = rhs;
1275  }
1276
1277  // getCond - Return the expression representing the condition for
1278  //  the ?: operator.
1279  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
1280
1281  // getTrueExpr - Return the subexpression representing the value of the ?:
1282  //  expression if the condition evaluates to true.  In most cases this value
1283  //  will be the same as getLHS() except a GCC extension allows the left
1284  //  subexpression to be omitted, and instead of the condition be returned.
1285  //  e.g: x ?: y is shorthand for x ? x : y, except that the expression "x"
1286  //  is only evaluated once.
1287  Expr *getTrueExpr() const {
1288    return cast<Expr>(SubExprs[LHS] ? SubExprs[LHS] : SubExprs[COND]);
1289  }
1290
1291  // getTrueExpr - Return the subexpression representing the value of the ?:
1292  // expression if the condition evaluates to false. This is the same as getRHS.
1293  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
1294
1295  Expr *getLHS() const { return cast_or_null<Expr>(SubExprs[LHS]); }
1296  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1297
1298  virtual SourceRange getSourceRange() const {
1299    return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
1300  }
1301  static bool classof(const Stmt *T) {
1302    return T->getStmtClass() == ConditionalOperatorClass;
1303  }
1304  static bool classof(const ConditionalOperator *) { return true; }
1305
1306  // Iterators
1307  virtual child_iterator child_begin();
1308  virtual child_iterator child_end();
1309
1310  virtual void EmitImpl(llvm::Serializer& S) const;
1311  static ConditionalOperator* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1312};
1313
1314/// AddrLabelExpr - The GNU address of label extension, representing &&label.
1315class AddrLabelExpr : public Expr {
1316  SourceLocation AmpAmpLoc, LabelLoc;
1317  LabelStmt *Label;
1318public:
1319  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelStmt *L,
1320                QualType t)
1321    : Expr(AddrLabelExprClass, t), AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
1322
1323  virtual SourceRange getSourceRange() const {
1324    return SourceRange(AmpAmpLoc, LabelLoc);
1325  }
1326
1327  LabelStmt *getLabel() const { return Label; }
1328
1329  static bool classof(const Stmt *T) {
1330    return T->getStmtClass() == AddrLabelExprClass;
1331  }
1332  static bool classof(const AddrLabelExpr *) { return true; }
1333
1334  // Iterators
1335  virtual child_iterator child_begin();
1336  virtual child_iterator child_end();
1337
1338  virtual void EmitImpl(llvm::Serializer& S) const;
1339  static AddrLabelExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1340};
1341
1342/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
1343/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
1344/// takes the value of the last subexpression.
1345class StmtExpr : public Expr {
1346  Stmt *SubStmt;
1347  SourceLocation LParenLoc, RParenLoc;
1348public:
1349  StmtExpr(CompoundStmt *substmt, QualType T,
1350           SourceLocation lp, SourceLocation rp) :
1351    Expr(StmtExprClass, T), SubStmt(substmt),  LParenLoc(lp), RParenLoc(rp) { }
1352
1353  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
1354  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
1355
1356  virtual SourceRange getSourceRange() const {
1357    return SourceRange(LParenLoc, RParenLoc);
1358  }
1359
1360  SourceLocation getLParenLoc() const { return LParenLoc; }
1361  SourceLocation getRParenLoc() const { return RParenLoc; }
1362
1363  static bool classof(const Stmt *T) {
1364    return T->getStmtClass() == StmtExprClass;
1365  }
1366  static bool classof(const StmtExpr *) { return true; }
1367
1368  // Iterators
1369  virtual child_iterator child_begin();
1370  virtual child_iterator child_end();
1371
1372  virtual void EmitImpl(llvm::Serializer& S) const;
1373  static StmtExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1374};
1375
1376/// TypesCompatibleExpr - GNU builtin-in function __builtin_type_compatible_p.
1377/// This AST node represents a function that returns 1 if two *types* (not
1378/// expressions) are compatible. The result of this built-in function can be
1379/// used in integer constant expressions.
1380class TypesCompatibleExpr : public Expr {
1381  QualType Type1;
1382  QualType Type2;
1383  SourceLocation BuiltinLoc, RParenLoc;
1384public:
1385  TypesCompatibleExpr(QualType ReturnType, SourceLocation BLoc,
1386                      QualType t1, QualType t2, SourceLocation RP) :
1387    Expr(TypesCompatibleExprClass, ReturnType), Type1(t1), Type2(t2),
1388    BuiltinLoc(BLoc), RParenLoc(RP) {}
1389
1390  QualType getArgType1() const { return Type1; }
1391  QualType getArgType2() const { return Type2; }
1392
1393  virtual SourceRange getSourceRange() const {
1394    return SourceRange(BuiltinLoc, RParenLoc);
1395  }
1396  static bool classof(const Stmt *T) {
1397    return T->getStmtClass() == TypesCompatibleExprClass;
1398  }
1399  static bool classof(const TypesCompatibleExpr *) { return true; }
1400
1401  // Iterators
1402  virtual child_iterator child_begin();
1403  virtual child_iterator child_end();
1404
1405  virtual void EmitImpl(llvm::Serializer& S) const;
1406  static TypesCompatibleExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1407};
1408
1409/// ShuffleVectorExpr - clang-specific builtin-in function
1410/// __builtin_shufflevector.
1411/// This AST node represents a operator that does a constant
1412/// shuffle, similar to LLVM's shufflevector instruction. It takes
1413/// two vectors and a variable number of constant indices,
1414/// and returns the appropriately shuffled vector.
1415class ShuffleVectorExpr : public Expr {
1416  SourceLocation BuiltinLoc, RParenLoc;
1417
1418  // SubExprs - the list of values passed to the __builtin_shufflevector
1419  // function. The first two are vectors, and the rest are constant
1420  // indices.  The number of values in this list is always
1421  // 2+the number of indices in the vector type.
1422  Stmt **SubExprs;
1423  unsigned NumExprs;
1424
1425public:
1426  ShuffleVectorExpr(Expr **args, unsigned nexpr,
1427                    QualType Type, SourceLocation BLoc,
1428                    SourceLocation RP) :
1429    Expr(ShuffleVectorExprClass, Type), BuiltinLoc(BLoc),
1430    RParenLoc(RP), NumExprs(nexpr) {
1431
1432    SubExprs = new Stmt*[nexpr];
1433    for (unsigned i = 0; i < nexpr; i++)
1434      SubExprs[i] = args[i];
1435  }
1436
1437  virtual SourceRange getSourceRange() const {
1438    return SourceRange(BuiltinLoc, RParenLoc);
1439  }
1440  static bool classof(const Stmt *T) {
1441    return T->getStmtClass() == ShuffleVectorExprClass;
1442  }
1443  static bool classof(const ShuffleVectorExpr *) { return true; }
1444
1445  ~ShuffleVectorExpr() {
1446    delete [] SubExprs;
1447  }
1448
1449  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
1450  /// constant expression, the actual arguments passed in, and the function
1451  /// pointers.
1452  unsigned getNumSubExprs() const { return NumExprs; }
1453
1454  /// getExpr - Return the Expr at the specified index.
1455  Expr *getExpr(unsigned Index) {
1456    assert((Index < NumExprs) && "Arg access out of range!");
1457    return cast<Expr>(SubExprs[Index]);
1458  }
1459  const Expr *getExpr(unsigned Index) const {
1460    assert((Index < NumExprs) && "Arg access out of range!");
1461    return cast<Expr>(SubExprs[Index]);
1462  }
1463
1464  unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) {
1465    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
1466    return getExpr(N+2)->getIntegerConstantExprValue(Ctx).getZExtValue();
1467  }
1468
1469  // Iterators
1470  virtual child_iterator child_begin();
1471  virtual child_iterator child_end();
1472
1473  virtual void EmitImpl(llvm::Serializer& S) const;
1474  static ShuffleVectorExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1475};
1476
1477/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
1478/// This AST node is similar to the conditional operator (?:) in C, with
1479/// the following exceptions:
1480/// - the test expression must be a constant expression.
1481/// - the expression returned has it's type unaltered by promotion rules.
1482/// - does not evaluate the expression that was not chosen.
1483class ChooseExpr : public Expr {
1484  enum { COND, LHS, RHS, END_EXPR };
1485  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
1486  SourceLocation BuiltinLoc, RParenLoc;
1487public:
1488  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs, QualType t,
1489             SourceLocation RP)
1490    : Expr(ChooseExprClass, t),
1491      BuiltinLoc(BLoc), RParenLoc(RP) {
1492      SubExprs[COND] = cond;
1493      SubExprs[LHS] = lhs;
1494      SubExprs[RHS] = rhs;
1495    }
1496
1497  /// isConditionTrue - Return true if the condition is true.  This is always
1498  /// statically knowable for a well-formed choosexpr.
1499  bool isConditionTrue(ASTContext &C) const;
1500
1501  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
1502  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1503  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1504
1505  virtual SourceRange getSourceRange() const {
1506    return SourceRange(BuiltinLoc, RParenLoc);
1507  }
1508  static bool classof(const Stmt *T) {
1509    return T->getStmtClass() == ChooseExprClass;
1510  }
1511  static bool classof(const ChooseExpr *) { return true; }
1512
1513  // Iterators
1514  virtual child_iterator child_begin();
1515  virtual child_iterator child_end();
1516
1517  virtual void EmitImpl(llvm::Serializer& S) const;
1518  static ChooseExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1519};
1520
1521/// GNUNullExpr - Implements the GNU __null extension, which is a name
1522/// for a null pointer constant that has integral type (e.g., int or
1523/// long) and is the same size and alignment as a pointer. The __null
1524/// extension is typically only used by system headers, which define
1525/// NULL as __null in C++ rather than using 0 (which is an integer
1526/// that may not match the size of a pointer).
1527class GNUNullExpr : public Expr {
1528  /// TokenLoc - The location of the __null keyword.
1529  SourceLocation TokenLoc;
1530
1531public:
1532  GNUNullExpr(QualType Ty, SourceLocation Loc)
1533    : Expr(GNUNullExprClass, Ty), TokenLoc(Loc) { }
1534
1535  /// getTokenLocation - The location of the __null token.
1536  SourceLocation getTokenLocation() const { return TokenLoc; }
1537
1538  virtual SourceRange getSourceRange() const {
1539    return SourceRange(TokenLoc);
1540  }
1541  static bool classof(const Stmt *T) {
1542    return T->getStmtClass() == GNUNullExprClass;
1543  }
1544  static bool classof(const GNUNullExpr *) { return true; }
1545
1546  // Iterators
1547  virtual child_iterator child_begin();
1548  virtual child_iterator child_end();
1549
1550  virtual void EmitImpl(llvm::Serializer& S) const;
1551  static GNUNullExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1552};
1553
1554/// VAArgExpr, used for the builtin function __builtin_va_start.
1555class VAArgExpr : public Expr {
1556  Stmt *Val;
1557  SourceLocation BuiltinLoc, RParenLoc;
1558public:
1559  VAArgExpr(SourceLocation BLoc, Expr* e, QualType t, SourceLocation RPLoc)
1560    : Expr(VAArgExprClass, t),
1561      Val(e),
1562      BuiltinLoc(BLoc),
1563      RParenLoc(RPLoc) { }
1564
1565  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1566  Expr *getSubExpr() { return cast<Expr>(Val); }
1567  virtual SourceRange getSourceRange() const {
1568    return SourceRange(BuiltinLoc, RParenLoc);
1569  }
1570  static bool classof(const Stmt *T) {
1571    return T->getStmtClass() == VAArgExprClass;
1572  }
1573  static bool classof(const VAArgExpr *) { return true; }
1574
1575  // Iterators
1576  virtual child_iterator child_begin();
1577  virtual child_iterator child_end();
1578
1579  virtual void EmitImpl(llvm::Serializer& S) const;
1580  static VAArgExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1581};
1582
1583/// @brief Describes an C or C++ initializer list.
1584///
1585/// InitListExpr describes an initializer list, which can be used to
1586/// initialize objects of different types, including
1587/// struct/class/union types, arrays, and vectors. For example:
1588///
1589/// @code
1590/// struct foo x = { 1, { 2, 3 } };
1591/// @endcode
1592///
1593/// Prior to semantic analysis, an initializer list will represent the
1594/// initializer list as written by the user, but will have the
1595/// placeholder type "void". This initializer list is called the
1596/// syntactic form of the initializer, and may contain C99 designated
1597/// initializers (represented as DesignatedInitExprs), initializations
1598/// of subobject members without explicit braces, and so on. Clients
1599/// interested in the original syntax of the initializer list should
1600/// use the syntactic form of the initializer list.
1601///
1602/// After semantic analysis, the initializer list will represent the
1603/// semantic form of the initializer, where the initializations of all
1604/// subobjects are made explicit with nested InitListExpr nodes and
1605/// C99 designators have been eliminated by placing the designated
1606/// initializations into the subobject they initialize. Additionally,
1607/// any "holes" in the initialization, where no initializer has been
1608/// specified for a particular subobject, will be replaced with
1609/// implicitly-generated ImplicitValueInitExpr expressions that
1610/// value-initialize the subobjects. Note, however, that the
1611/// initializer lists may still have fewer initializers than there are
1612/// elements to initialize within the object.
1613///
1614/// Given the semantic form of the initializer list, one can retrieve
1615/// the original syntactic form of that initializer list (if it
1616/// exists) using getSyntacticForm(). Since many initializer lists
1617/// have the same syntactic and semantic forms, getSyntacticForm() may
1618/// return NULL, indicating that the current initializer list also
1619/// serves as its syntactic form.
1620class InitListExpr : public Expr {
1621  std::vector<Stmt *> InitExprs;
1622  SourceLocation LBraceLoc, RBraceLoc;
1623
1624  /// Contains the initializer list that describes the syntactic form
1625  /// written in the source code.
1626  InitListExpr *SyntacticForm;
1627
1628  /// If this initializer list initializes a union, specifies which
1629  /// field within the union will be initialized.
1630  FieldDecl *UnionFieldInit;
1631
1632  /// Whether this initializer list originally had a GNU array-range
1633  /// designator in it. This is a temporary marker used by CodeGen.
1634  bool HadArrayRangeDesignator;
1635
1636public:
1637  InitListExpr(SourceLocation lbraceloc, Expr **initexprs, unsigned numinits,
1638               SourceLocation rbraceloc);
1639
1640  unsigned getNumInits() const { return InitExprs.size(); }
1641
1642  const Expr* getInit(unsigned Init) const {
1643    assert(Init < getNumInits() && "Initializer access out of range!");
1644    return cast_or_null<Expr>(InitExprs[Init]);
1645  }
1646
1647  Expr* getInit(unsigned Init) {
1648    assert(Init < getNumInits() && "Initializer access out of range!");
1649    return cast_or_null<Expr>(InitExprs[Init]);
1650  }
1651
1652  void setInit(unsigned Init, Expr *expr) {
1653    assert(Init < getNumInits() && "Initializer access out of range!");
1654    InitExprs[Init] = expr;
1655  }
1656
1657  /// @brief Specify the number of initializers
1658  ///
1659  /// If there are more than @p NumInits initializers, the remaining
1660  /// initializers will be destroyed. If there are fewer than @p
1661  /// NumInits initializers, NULL expressions will be added for the
1662  /// unknown initializers.
1663  void resizeInits(ASTContext &Context, unsigned NumInits);
1664
1665  /// @brief Updates the initializer at index @p Init with the new
1666  /// expression @p expr, and returns the old expression at that
1667  /// location.
1668  ///
1669  /// When @p Init is out of range for this initializer list, the
1670  /// initializer list will be extended with NULL expressions to
1671  /// accomodate the new entry.
1672  Expr *updateInit(unsigned Init, Expr *expr);
1673
1674  /// \brief If this initializes a union, specifies which field in the
1675  /// union to initialize.
1676  ///
1677  /// Typically, this field is the first named field within the
1678  /// union. However, a designated initializer can specify the
1679  /// initialization of a different field within the union.
1680  FieldDecl *getInitializedFieldInUnion() { return UnionFieldInit; }
1681  void setInitializedFieldInUnion(FieldDecl *FD) { UnionFieldInit = FD; }
1682
1683  // Explicit InitListExpr's originate from source code (and have valid source
1684  // locations). Implicit InitListExpr's are created by the semantic analyzer.
1685  bool isExplicit() {
1686    return LBraceLoc.isValid() && RBraceLoc.isValid();
1687  }
1688
1689  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
1690
1691  /// @brief Retrieve the initializer list that describes the
1692  /// syntactic form of the initializer.
1693  ///
1694  ///
1695  InitListExpr *getSyntacticForm() const { return SyntacticForm; }
1696  void setSyntacticForm(InitListExpr *Init) { SyntacticForm = Init; }
1697
1698  bool hadArrayRangeDesignator() const { return HadArrayRangeDesignator; }
1699  void sawArrayRangeDesignator() {
1700    HadArrayRangeDesignator = true;
1701  }
1702
1703  virtual SourceRange getSourceRange() const {
1704    return SourceRange(LBraceLoc, RBraceLoc);
1705  }
1706  static bool classof(const Stmt *T) {
1707    return T->getStmtClass() == InitListExprClass;
1708  }
1709  static bool classof(const InitListExpr *) { return true; }
1710
1711  // Iterators
1712  virtual child_iterator child_begin();
1713  virtual child_iterator child_end();
1714
1715  typedef std::vector<Stmt *>::iterator iterator;
1716  typedef std::vector<Stmt *>::reverse_iterator reverse_iterator;
1717
1718  iterator begin() { return InitExprs.begin(); }
1719  iterator end() { return InitExprs.end(); }
1720  reverse_iterator rbegin() { return InitExprs.rbegin(); }
1721  reverse_iterator rend() { return InitExprs.rend(); }
1722
1723  // Serailization.
1724  virtual void EmitImpl(llvm::Serializer& S) const;
1725  static InitListExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1726
1727private:
1728  // Used by serializer.
1729  InitListExpr() : Expr(InitListExprClass, QualType()) {}
1730};
1731
1732/// @brief Represents a C99 designated initializer expression.
1733///
1734/// A designated initializer expression (C99 6.7.8) contains one or
1735/// more designators (which can be field designators, array
1736/// designators, or GNU array-range designators) followed by an
1737/// expression that initializes the field or element(s) that the
1738/// designators refer to. For example, given:
1739///
1740/// @code
1741/// struct point {
1742///   double x;
1743///   double y;
1744/// };
1745/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
1746/// @endcode
1747///
1748/// The InitListExpr contains three DesignatedInitExprs, the first of
1749/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
1750/// designators, one array designator for @c [2] followed by one field
1751/// designator for @c .y. The initalization expression will be 1.0.
1752class DesignatedInitExpr : public Expr {
1753  /// The location of the '=' or ':' prior to the actual initializer
1754  /// expression.
1755  SourceLocation EqualOrColonLoc;
1756
1757  /// Whether this designated initializer used the GNU deprecated ':'
1758  /// syntax rather than the C99 '=' syntax.
1759  bool UsesColonSyntax : 1;
1760
1761  /// The number of designators in this initializer expression.
1762  unsigned NumDesignators : 15;
1763
1764  /// The number of subexpressions of this initializer expression,
1765  /// which contains both the initializer and any additional
1766  /// expressions used by array and array-range designators.
1767  unsigned NumSubExprs : 16;
1768
1769  DesignatedInitExpr(QualType Ty, unsigned NumDesignators,
1770                     SourceLocation EqualOrColonLoc, bool UsesColonSyntax,
1771                     unsigned NumSubExprs)
1772    : Expr(DesignatedInitExprClass, Ty),
1773      EqualOrColonLoc(EqualOrColonLoc), UsesColonSyntax(UsesColonSyntax),
1774      NumDesignators(NumDesignators), NumSubExprs(NumSubExprs) { }
1775
1776public:
1777  /// A field designator, e.g., ".x".
1778  struct FieldDesignator {
1779    /// Refers to the field that is being initialized. The low bit
1780    /// of this field determines whether this is actually a pointer
1781    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
1782    /// initially constructed, a field designator will store an
1783    /// IdentifierInfo*. After semantic analysis has resolved that
1784    /// name, the field designator will instead store a FieldDecl*.
1785    uintptr_t NameOrField;
1786
1787    /// The location of the '.' in the designated initializer.
1788    unsigned DotLoc;
1789
1790    /// The location of the field name in the designated initializer.
1791    unsigned FieldLoc;
1792  };
1793
1794  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
1795  struct ArrayOrRangeDesignator {
1796    /// Location of the first index expression within the designated
1797    /// initializer expression's list of subexpressions.
1798    unsigned Index;
1799    /// The location of the '[' starting the array range designator.
1800    unsigned LBracketLoc;
1801    /// The location of the ellipsis separating the start and end
1802    /// indices. Only valid for GNU array-range designators.
1803    unsigned EllipsisLoc;
1804    /// The location of the ']' terminating the array range designator.
1805    unsigned RBracketLoc;
1806  };
1807
1808  /// @brief Represents a single C99 designator.
1809  ///
1810  /// @todo This class is infuriatingly similar to clang::Designator,
1811  /// but minor differences (storing indices vs. storing pointers)
1812  /// keep us from reusing it. Try harder, later, to rectify these
1813  /// differences.
1814  class Designator {
1815    /// @brief The kind of designator this describes.
1816    enum {
1817      FieldDesignator,
1818      ArrayDesignator,
1819      ArrayRangeDesignator
1820    } Kind;
1821
1822    union {
1823      /// A field designator, e.g., ".x".
1824      struct FieldDesignator Field;
1825      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
1826      struct ArrayOrRangeDesignator ArrayOrRange;
1827    };
1828    friend class DesignatedInitExpr;
1829
1830  public:
1831    /// @brief Initializes a field designator.
1832    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
1833               SourceLocation FieldLoc)
1834      : Kind(FieldDesignator) {
1835      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
1836      Field.DotLoc = DotLoc.getRawEncoding();
1837      Field.FieldLoc = FieldLoc.getRawEncoding();
1838    }
1839
1840    /// @brief Initializes an array designator.
1841    Designator(unsigned Index, SourceLocation LBracketLoc,
1842               SourceLocation RBracketLoc)
1843      : Kind(ArrayDesignator) {
1844      ArrayOrRange.Index = Index;
1845      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
1846      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
1847      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
1848    }
1849
1850    /// @brief Initializes a GNU array-range designator.
1851    Designator(unsigned Index, SourceLocation LBracketLoc,
1852               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
1853      : Kind(ArrayRangeDesignator) {
1854      ArrayOrRange.Index = Index;
1855      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
1856      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
1857      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
1858    }
1859
1860    bool isFieldDesignator() const { return Kind == FieldDesignator; }
1861    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
1862    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
1863
1864    IdentifierInfo * getFieldName();
1865
1866    FieldDecl *getField() {
1867      assert(Kind == FieldDesignator && "Only valid on a field designator");
1868      if (Field.NameOrField & 0x01)
1869        return 0;
1870      else
1871        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
1872    }
1873
1874    void setField(FieldDecl *FD) {
1875      assert(Kind == FieldDesignator && "Only valid on a field designator");
1876      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
1877    }
1878
1879    SourceLocation getDotLoc() const {
1880      assert(Kind == FieldDesignator && "Only valid on a field designator");
1881      return SourceLocation::getFromRawEncoding(Field.DotLoc);
1882    }
1883
1884    SourceLocation getFieldLoc() const {
1885      assert(Kind == FieldDesignator && "Only valid on a field designator");
1886      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
1887    }
1888
1889    SourceLocation getLBracketLoc() const {
1890      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
1891             "Only valid on an array or array-range designator");
1892      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
1893    }
1894
1895    SourceLocation getRBracketLoc() const {
1896      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
1897             "Only valid on an array or array-range designator");
1898      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
1899    }
1900
1901    SourceLocation getEllipsisLoc() const {
1902      assert(Kind == ArrayRangeDesignator &&
1903             "Only valid on an array-range designator");
1904      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
1905    }
1906
1907    SourceLocation getStartLocation() const {
1908      if (Kind == FieldDesignator)
1909        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
1910      else
1911        return getLBracketLoc();
1912    }
1913  };
1914
1915  static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators,
1916                                    unsigned NumDesignators,
1917                                    Expr **IndexExprs, unsigned NumIndexExprs,
1918                                    SourceLocation EqualOrColonLoc,
1919                                    bool UsesColonSyntax, Expr *Init);
1920
1921  /// @brief Returns the number of designators in this initializer.
1922  unsigned size() const { return NumDesignators; }
1923
1924  // Iterator access to the designators.
1925  typedef Designator* designators_iterator;
1926  designators_iterator designators_begin();
1927  designators_iterator designators_end();
1928
1929  Expr *getArrayIndex(const Designator& D);
1930  Expr *getArrayRangeStart(const Designator& D);
1931  Expr *getArrayRangeEnd(const Designator& D);
1932
1933  /// @brief Retrieve the location of the '=' that precedes the
1934  /// initializer value itself, if present.
1935  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
1936
1937  /// @brief Determines whether this designated initializer used the
1938  /// GNU 'fieldname:' syntax or the C99 '=' syntax.
1939  bool usesColonSyntax() const { return UsesColonSyntax; }
1940
1941  /// @brief Retrieve the initializer value.
1942  Expr *getInit() const {
1943    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
1944  }
1945
1946  void setInit(Expr *init) {
1947    *child_begin() = init;
1948  }
1949
1950  virtual SourceRange getSourceRange() const;
1951
1952  static bool classof(const Stmt *T) {
1953    return T->getStmtClass() == DesignatedInitExprClass;
1954  }
1955  static bool classof(const DesignatedInitExpr *) { return true; }
1956
1957  // Iterators
1958  virtual child_iterator child_begin();
1959  virtual child_iterator child_end();
1960};
1961
1962/// \brief Represents an implicitly-generated value initialization of
1963/// an object of a given type.
1964///
1965/// Implicit value initializations occur within semantic initializer
1966/// list expressions (InitListExpr) as placeholders for subobject
1967/// initializations not explicitly specified by the user.
1968///
1969/// \see InitListExpr
1970class ImplicitValueInitExpr : public Expr {
1971public:
1972  explicit ImplicitValueInitExpr(QualType ty)
1973    : Expr(ImplicitValueInitExprClass, ty) { }
1974
1975  static bool classof(const Stmt *T) {
1976    return T->getStmtClass() == ImplicitValueInitExprClass;
1977  }
1978  static bool classof(const ImplicitValueInitExpr *) { return true; }
1979
1980  virtual SourceRange getSourceRange() const {
1981    return SourceRange();
1982  }
1983
1984  // Iterators
1985  virtual child_iterator child_begin();
1986  virtual child_iterator child_end();
1987};
1988
1989//===----------------------------------------------------------------------===//
1990// Clang Extensions
1991//===----------------------------------------------------------------------===//
1992
1993
1994/// ExtVectorElementExpr - This represents access to specific elements of a
1995/// vector, and may occur on the left hand side or right hand side.  For example
1996/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
1997///
1998/// Note that the base may have either vector or pointer to vector type, just
1999/// like a struct field reference.
2000///
2001class ExtVectorElementExpr : public Expr {
2002  Stmt *Base;
2003  IdentifierInfo &Accessor;
2004  SourceLocation AccessorLoc;
2005public:
2006  ExtVectorElementExpr(QualType ty, Expr *base, IdentifierInfo &accessor,
2007                       SourceLocation loc)
2008    : Expr(ExtVectorElementExprClass, ty),
2009      Base(base), Accessor(accessor), AccessorLoc(loc) {}
2010
2011  const Expr *getBase() const { return cast<Expr>(Base); }
2012  Expr *getBase() { return cast<Expr>(Base); }
2013
2014  IdentifierInfo &getAccessor() const { return Accessor; }
2015
2016  /// getNumElements - Get the number of components being selected.
2017  unsigned getNumElements() const;
2018
2019  /// containsDuplicateElements - Return true if any element access is
2020  /// repeated.
2021  bool containsDuplicateElements() const;
2022
2023  /// getEncodedElementAccess - Encode the elements accessed into an llvm
2024  /// aggregate Constant of ConstantInt(s).
2025  void getEncodedElementAccess(llvm::SmallVectorImpl<unsigned> &Elts) const;
2026
2027  virtual SourceRange getSourceRange() const {
2028    return SourceRange(getBase()->getLocStart(), AccessorLoc);
2029  }
2030
2031  /// isArrow - Return true if the base expression is a pointer to vector,
2032  /// return false if the base expression is a vector.
2033  bool isArrow() const;
2034
2035  static bool classof(const Stmt *T) {
2036    return T->getStmtClass() == ExtVectorElementExprClass;
2037  }
2038  static bool classof(const ExtVectorElementExpr *) { return true; }
2039
2040  // Iterators
2041  virtual child_iterator child_begin();
2042  virtual child_iterator child_end();
2043
2044  virtual void EmitImpl(llvm::Serializer& S) const;
2045  static ExtVectorElementExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
2046};
2047
2048
2049/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
2050/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
2051class BlockExpr : public Expr {
2052protected:
2053  BlockDecl *TheBlock;
2054  bool HasBlockDeclRefExprs;
2055public:
2056  BlockExpr(BlockDecl *BD, QualType ty, bool hasBlockDeclRefExprs)
2057    : Expr(BlockExprClass, ty),
2058      TheBlock(BD), HasBlockDeclRefExprs(hasBlockDeclRefExprs) {}
2059
2060  const BlockDecl *getBlockDecl() const { return TheBlock; }
2061  BlockDecl *getBlockDecl() { return TheBlock; }
2062
2063  // Convenience functions for probing the underlying BlockDecl.
2064  SourceLocation getCaretLocation() const;
2065  const Stmt *getBody() const;
2066  Stmt *getBody();
2067
2068  virtual SourceRange getSourceRange() const {
2069    return SourceRange(getCaretLocation(), getBody()->getLocEnd());
2070  }
2071
2072  /// getFunctionType - Return the underlying function type for this block.
2073  const FunctionType *getFunctionType() const;
2074
2075  /// hasBlockDeclRefExprs - Return true iff the block has BlockDeclRefExpr
2076  /// contained inside.
2077  bool hasBlockDeclRefExprs() const { return HasBlockDeclRefExprs; }
2078
2079  static bool classof(const Stmt *T) {
2080    return T->getStmtClass() == BlockExprClass;
2081  }
2082  static bool classof(const BlockExpr *) { return true; }
2083
2084  // Iterators
2085  virtual child_iterator child_begin();
2086  virtual child_iterator child_end();
2087
2088  virtual void EmitImpl(llvm::Serializer& S) const;
2089  static BlockExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
2090};
2091
2092/// BlockDeclRefExpr - A reference to a declared variable, function,
2093/// enum, etc.
2094class BlockDeclRefExpr : public Expr {
2095  ValueDecl *D;
2096  SourceLocation Loc;
2097  bool IsByRef;
2098public:
2099  BlockDeclRefExpr(ValueDecl *d, QualType t, SourceLocation l, bool ByRef) :
2100       Expr(BlockDeclRefExprClass, t), D(d), Loc(l), IsByRef(ByRef) {}
2101
2102  ValueDecl *getDecl() { return D; }
2103  const ValueDecl *getDecl() const { return D; }
2104  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
2105
2106  bool isByRef() const { return IsByRef; }
2107
2108  static bool classof(const Stmt *T) {
2109    return T->getStmtClass() == BlockDeclRefExprClass;
2110  }
2111  static bool classof(const BlockDeclRefExpr *) { return true; }
2112
2113  // Iterators
2114  virtual child_iterator child_begin();
2115  virtual child_iterator child_end();
2116
2117  virtual void EmitImpl(llvm::Serializer& S) const;
2118  static BlockDeclRefExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
2119};
2120
2121}  // end namespace clang
2122
2123#endif
2124