Expr.h revision ba49817c5b9f502602672861cf369fd0e53966e8
1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/Stmt.h"
19#include "clang/AST/Type.h"
20#include "llvm/ADT/APSInt.h"
21#include "llvm/ADT/APFloat.h"
22#include "llvm/ADT/SmallVector.h"
23#include <vector>
24
25namespace clang {
26  class ASTContext;
27  class APValue;
28  class Decl;
29  class IdentifierInfo;
30  class ParmVarDecl;
31  class NamedDecl;
32  class ValueDecl;
33  class BlockDecl;
34  class CXXOperatorCallExpr;
35  class CXXMemberCallExpr;
36
37/// Expr - This represents one expression.  Note that Expr's are subclasses of
38/// Stmt.  This allows an expression to be transparently used any place a Stmt
39/// is required.
40///
41class Expr : public Stmt {
42  QualType TR;
43
44  /// TypeDependent - Whether this expression is type-dependent
45  /// (C++ [temp.dep.expr]).
46  bool TypeDependent : 1;
47
48  /// ValueDependent - Whether this expression is value-dependent
49  /// (C++ [temp.dep.constexpr]).
50  bool ValueDependent : 1;
51
52protected:
53  // FIXME: Eventually, this constructor should go away and we should
54  // require every subclass to provide type/value-dependence
55  // information.
56  Expr(StmtClass SC, QualType T)
57    : Stmt(SC), TypeDependent(false), ValueDependent(false) {
58    setType(T);
59  }
60
61  Expr(StmtClass SC, QualType T, bool TD, bool VD)
62    : Stmt(SC), TypeDependent(TD), ValueDependent(VD) {
63    setType(T);
64  }
65
66public:
67  QualType getType() const { return TR; }
68  void setType(QualType t) {
69    // In C++, the type of an expression is always adjusted so that it
70    // will not have reference type an expression will never have
71    // reference type (C++ [expr]p6). Use
72    // QualType::getNonReferenceType() to retrieve the non-reference
73    // type. Additionally, inspect Expr::isLvalue to determine whether
74    // an expression that is adjusted in this manner should be
75    // considered an lvalue.
76    assert((TR.isNull() || !TR->isReferenceType()) &&
77           "Expressions can't have reference type");
78
79    TR = t;
80  }
81
82  /// isValueDependent - Determines whether this expression is
83  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
84  /// array bound of "Chars" in the following example is
85  /// value-dependent.
86  /// @code
87  /// template<int Size, char (&Chars)[Size]> struct meta_string;
88  /// @endcode
89  bool isValueDependent() const { return ValueDependent; }
90
91  /// isTypeDependent - Determines whether this expression is
92  /// type-dependent (C++ [temp.dep.expr]), which means that its type
93  /// could change from one template instantiation to the next. For
94  /// example, the expressions "x" and "x + y" are type-dependent in
95  /// the following code, but "y" is not type-dependent:
96  /// @code
97  /// template<typename T>
98  /// void add(T x, int y) {
99  ///   x + y;
100  /// }
101  /// @endcode
102  bool isTypeDependent() const { return TypeDependent; }
103
104  /// SourceLocation tokens are not useful in isolation - they are low level
105  /// value objects created/interpreted by SourceManager. We assume AST
106  /// clients will have a pointer to the respective SourceManager.
107  virtual SourceRange getSourceRange() const = 0;
108
109  /// getExprLoc - Return the preferred location for the arrow when diagnosing
110  /// a problem with a generic expression.
111  virtual SourceLocation getExprLoc() const { return getLocStart(); }
112
113  /// isUnusedResultAWarning - Return true if this immediate expression should
114  /// be warned about if the result is unused.  If so, fill in Loc and Ranges
115  /// with location to warn on and the source range[s] to report with the
116  /// warning.
117  bool isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
118                              SourceRange &R2) const;
119
120  /// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or
121  /// incomplete type other than void. Nonarray expressions that can be lvalues:
122  ///  - name, where name must be a variable
123  ///  - e[i]
124  ///  - (e), where e must be an lvalue
125  ///  - e.name, where e must be an lvalue
126  ///  - e->name
127  ///  - *e, the type of e cannot be a function type
128  ///  - string-constant
129  ///  - reference type [C++ [expr]]
130  ///
131  enum isLvalueResult {
132    LV_Valid,
133    LV_NotObjectType,
134    LV_IncompleteVoidType,
135    LV_DuplicateVectorComponents,
136    LV_InvalidExpression,
137    LV_MemberFunction
138  };
139  isLvalueResult isLvalue(ASTContext &Ctx) const;
140
141  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
142  /// does not have an incomplete type, does not have a const-qualified type,
143  /// and if it is a structure or union, does not have any member (including,
144  /// recursively, any member or element of all contained aggregates or unions)
145  /// with a const-qualified type.
146  enum isModifiableLvalueResult {
147    MLV_Valid,
148    MLV_NotObjectType,
149    MLV_IncompleteVoidType,
150    MLV_DuplicateVectorComponents,
151    MLV_InvalidExpression,
152    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
153    MLV_IncompleteType,
154    MLV_ConstQualified,
155    MLV_ArrayType,
156    MLV_NotBlockQualified,
157    MLV_ReadonlyProperty,
158    MLV_NoSetterProperty,
159    MLV_MemberFunction
160  };
161  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx) const;
162
163  bool isBitField();
164
165  /// getIntegerConstantExprValue() - Return the value of an integer
166  /// constant expression. The expression must be a valid integer
167  /// constant expression as determined by isIntegerConstantExpr.
168  llvm::APSInt getIntegerConstantExprValue(ASTContext &Ctx) const {
169    llvm::APSInt X;
170    bool success = isIntegerConstantExpr(X, Ctx);
171    success = success;
172    assert(success && "Illegal argument to getIntegerConstantExpr");
173    return X;
174  }
175
176  /// isIntegerConstantExpr - Return true if this expression is a valid integer
177  /// constant expression, and, if so, return its value in Result.  If not a
178  /// valid i-c-e, return false and fill in Loc (if specified) with the location
179  /// of the invalid expression.
180  bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
181                             SourceLocation *Loc = 0,
182                             bool isEvaluated = true) const;
183  bool isIntegerConstantExprInternal(llvm::APSInt &Result, ASTContext &Ctx,
184                             SourceLocation *Loc = 0,
185                             bool isEvaluated = true) const;
186  bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const {
187    llvm::APSInt X;
188    return isIntegerConstantExpr(X, Ctx, Loc);
189  }
190  /// isConstantInitializer - Returns true if this expression is a constant
191  /// initializer, which can be emitted at compile-time.
192  bool isConstantInitializer(ASTContext &Ctx) const;
193
194  /// EvalResult is a struct with detailed info about an evaluated expression.
195  struct EvalResult {
196    /// Val - This is the value the expression can be folded to.
197    APValue Val;
198
199    /// HasSideEffects - Whether the evaluated expression has side effects.
200    /// For example, (f() && 0) can be folded, but it still has side effects.
201    bool HasSideEffects;
202
203    /// Diag - If the expression is unfoldable, then Diag contains a note
204    /// diagnostic indicating why it's not foldable. DiagLoc indicates a caret
205    /// position for the error, and DiagExpr is the expression that caused
206    /// the error.
207    /// If the expression is foldable, but not an integer constant expression,
208    /// Diag contains a note diagnostic that describes why it isn't an integer
209    /// constant expression. If the expression *is* an integer constant
210    /// expression, then Diag will be zero.
211    unsigned Diag;
212    const Expr *DiagExpr;
213    SourceLocation DiagLoc;
214
215    EvalResult() : HasSideEffects(false), Diag(0), DiagExpr(0) {}
216  };
217
218  /// Evaluate - Return true if this is a constant which we can fold using
219  /// any crazy technique (that has nothing to do with language standards) that
220  /// we want to.  If this function returns true, it returns the folded constant
221  /// in Result.
222  bool Evaluate(EvalResult &Result, ASTContext &Ctx) const;
223
224  /// isEvaluatable - Call Evaluate to see if this expression can be constant
225  /// folded, but discard the result.
226  bool isEvaluatable(ASTContext &Ctx) const;
227
228  /// EvaluateAsInt - Call Evaluate and return the folded integer. This
229  /// must be called on an expression that constant folds to an integer.
230  llvm::APSInt EvaluateAsInt(ASTContext &Ctx) const;
231
232  /// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
233  /// integer constant expression with the value zero, or if this is one that is
234  /// cast to void*.
235  bool isNullPointerConstant(ASTContext &Ctx) const;
236
237  /// hasGlobalStorage - Return true if this expression has static storage
238  /// duration.  This means that the address of this expression is a link-time
239  /// constant.
240  bool hasGlobalStorage() const;
241
242  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
243  /// write barrier.
244  bool isOBJCGCCandidate() const;
245
246  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
247  ///  its subexpression.  If that subexpression is also a ParenExpr,
248  ///  then this method recursively returns its subexpression, and so forth.
249  ///  Otherwise, the method returns the current Expr.
250  Expr* IgnoreParens();
251
252  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
253  /// or CastExprs, returning their operand.
254  Expr *IgnoreParenCasts();
255
256  /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
257  /// value (including ptr->int casts of the same size).  Strip off any
258  /// ParenExpr or CastExprs, returning their operand.
259  Expr *IgnoreParenNoopCasts(ASTContext &Ctx);
260
261  const Expr* IgnoreParens() const {
262    return const_cast<Expr*>(this)->IgnoreParens();
263  }
264  const Expr *IgnoreParenCasts() const {
265    return const_cast<Expr*>(this)->IgnoreParenCasts();
266  }
267  const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const {
268    return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
269  }
270
271  static bool hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs);
272  static bool hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs);
273
274  static bool classof(const Stmt *T) {
275    return T->getStmtClass() >= firstExprConstant &&
276           T->getStmtClass() <= lastExprConstant;
277  }
278  static bool classof(const Expr *) { return true; }
279
280  static inline Expr* Create(llvm::Deserializer& D, ASTContext& C) {
281    return cast<Expr>(Stmt::Create(D, C));
282  }
283};
284
285
286//===----------------------------------------------------------------------===//
287// Primary Expressions.
288//===----------------------------------------------------------------------===//
289
290/// DeclRefExpr - [C99 6.5.1p2] - A reference to a declared variable, function,
291/// enum, etc.
292class DeclRefExpr : public Expr {
293  NamedDecl *D;
294  SourceLocation Loc;
295
296protected:
297  // FIXME: Eventually, this constructor will go away and all subclasses
298  // will have to provide the type- and value-dependent flags.
299  DeclRefExpr(StmtClass SC, NamedDecl *d, QualType t, SourceLocation l) :
300    Expr(SC, t), D(d), Loc(l) {}
301
302  DeclRefExpr(StmtClass SC, NamedDecl *d, QualType t, SourceLocation l, bool TD,
303              bool VD) :
304    Expr(SC, t, TD, VD), D(d), Loc(l) {}
305
306public:
307  // FIXME: Eventually, this constructor will go away and all clients
308  // will have to provide the type- and value-dependent flags.
309  DeclRefExpr(NamedDecl *d, QualType t, SourceLocation l) :
310    Expr(DeclRefExprClass, t), D(d), Loc(l) {}
311
312  DeclRefExpr(NamedDecl *d, QualType t, SourceLocation l, bool TD, bool VD) :
313    Expr(DeclRefExprClass, t, TD, VD), D(d), Loc(l) {}
314
315  NamedDecl *getDecl() { return D; }
316  const NamedDecl *getDecl() const { return D; }
317  void setDecl(NamedDecl *NewD) { D = NewD; }
318
319  SourceLocation getLocation() const { return Loc; }
320  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
321
322  static bool classof(const Stmt *T) {
323    return T->getStmtClass() == DeclRefExprClass ||
324           T->getStmtClass() == CXXConditionDeclExprClass ||
325           T->getStmtClass() == QualifiedDeclRefExprClass;
326  }
327  static bool classof(const DeclRefExpr *) { return true; }
328
329  // Iterators
330  virtual child_iterator child_begin();
331  virtual child_iterator child_end();
332
333  virtual void EmitImpl(llvm::Serializer& S) const;
334  static DeclRefExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
335};
336
337/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
338class PredefinedExpr : public Expr {
339public:
340  enum IdentType {
341    Func,
342    Function,
343    PrettyFunction
344  };
345
346private:
347  SourceLocation Loc;
348  IdentType Type;
349public:
350  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
351    : Expr(PredefinedExprClass, type), Loc(l), Type(IT) {}
352
353  IdentType getIdentType() const { return Type; }
354
355  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
356
357  static bool classof(const Stmt *T) {
358    return T->getStmtClass() == PredefinedExprClass;
359  }
360  static bool classof(const PredefinedExpr *) { return true; }
361
362  // Iterators
363  virtual child_iterator child_begin();
364  virtual child_iterator child_end();
365
366  virtual void EmitImpl(llvm::Serializer& S) const;
367  static PredefinedExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
368};
369
370class IntegerLiteral : public Expr {
371  llvm::APInt Value;
372  SourceLocation Loc;
373public:
374  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
375  // or UnsignedLongLongTy
376  IntegerLiteral(const llvm::APInt &V, QualType type, SourceLocation l)
377    : Expr(IntegerLiteralClass, type), Value(V), Loc(l) {
378    assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
379  }
380  const llvm::APInt &getValue() const { return Value; }
381  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
382
383  /// \brief Retrieve the location of the literal.
384  SourceLocation getLocation() const { return Loc; }
385
386  static bool classof(const Stmt *T) {
387    return T->getStmtClass() == IntegerLiteralClass;
388  }
389  static bool classof(const IntegerLiteral *) { return true; }
390
391  // Iterators
392  virtual child_iterator child_begin();
393  virtual child_iterator child_end();
394
395  virtual void EmitImpl(llvm::Serializer& S) const;
396  static IntegerLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
397};
398
399class CharacterLiteral : public Expr {
400  unsigned Value;
401  SourceLocation Loc;
402  bool IsWide;
403public:
404  // type should be IntTy
405  CharacterLiteral(unsigned value, bool iswide, QualType type, SourceLocation l)
406    : Expr(CharacterLiteralClass, type), Value(value), Loc(l), IsWide(iswide) {
407  }
408  SourceLocation getLoc() const { return Loc; }
409  bool isWide() const { return IsWide; }
410
411  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
412
413  unsigned getValue() const { return Value; }
414
415  static bool classof(const Stmt *T) {
416    return T->getStmtClass() == CharacterLiteralClass;
417  }
418  static bool classof(const CharacterLiteral *) { return true; }
419
420  // Iterators
421  virtual child_iterator child_begin();
422  virtual child_iterator child_end();
423
424  virtual void EmitImpl(llvm::Serializer& S) const;
425  static CharacterLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
426};
427
428class FloatingLiteral : public Expr {
429  llvm::APFloat Value;
430  bool IsExact : 1;
431  SourceLocation Loc;
432public:
433  FloatingLiteral(const llvm::APFloat &V, bool* isexact,
434                  QualType Type, SourceLocation L)
435    : Expr(FloatingLiteralClass, Type), Value(V), IsExact(*isexact), Loc(L) {}
436
437  const llvm::APFloat &getValue() const { return Value; }
438
439  bool isExact() const { return IsExact; }
440
441  /// getValueAsApproximateDouble - This returns the value as an inaccurate
442  /// double.  Note that this may cause loss of precision, but is useful for
443  /// debugging dumps, etc.
444  double getValueAsApproximateDouble() const;
445
446  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
447
448  static bool classof(const Stmt *T) {
449    return T->getStmtClass() == FloatingLiteralClass;
450  }
451  static bool classof(const FloatingLiteral *) { return true; }
452
453  // Iterators
454  virtual child_iterator child_begin();
455  virtual child_iterator child_end();
456
457  virtual void EmitImpl(llvm::Serializer& S) const;
458  static FloatingLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
459};
460
461/// ImaginaryLiteral - We support imaginary integer and floating point literals,
462/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
463/// IntegerLiteral classes.  Instances of this class always have a Complex type
464/// whose element type matches the subexpression.
465///
466class ImaginaryLiteral : public Expr {
467  Stmt *Val;
468public:
469  ImaginaryLiteral(Expr *val, QualType Ty)
470    : Expr(ImaginaryLiteralClass, Ty), Val(val) {}
471
472  const Expr *getSubExpr() const { return cast<Expr>(Val); }
473  Expr *getSubExpr() { return cast<Expr>(Val); }
474
475  virtual SourceRange getSourceRange() const { return Val->getSourceRange(); }
476  static bool classof(const Stmt *T) {
477    return T->getStmtClass() == ImaginaryLiteralClass;
478  }
479  static bool classof(const ImaginaryLiteral *) { return true; }
480
481  // Iterators
482  virtual child_iterator child_begin();
483  virtual child_iterator child_end();
484
485  virtual void EmitImpl(llvm::Serializer& S) const;
486  static ImaginaryLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
487};
488
489/// StringLiteral - This represents a string literal expression, e.g. "foo"
490/// or L"bar" (wide strings).  The actual string is returned by getStrData()
491/// is NOT null-terminated, and the length of the string is determined by
492/// calling getByteLength().  The C type for a string is always a
493/// ConstantArrayType.  In C++, the char type is const qualified, in C it is
494/// not.
495///
496/// Note that strings in C can be formed by concatenation of multiple string
497/// literal pptokens in translation phase #6.  This keeps track of the locations
498/// of each of these pieces.
499///
500/// Strings in C can also be truncated and extended by assigning into arrays,
501/// e.g. with constructs like:
502///   char X[2] = "foobar";
503/// In this case, getByteLength() will return 6, but the string literal will
504/// have type "char[2]".
505class StringLiteral : public Expr {
506  const char *StrData;
507  unsigned ByteLength;
508  bool IsWide;
509  unsigned NumConcatenated;
510  SourceLocation TokLocs[1];
511
512  StringLiteral(QualType Ty) : Expr(StringLiteralClass, Ty) {}
513public:
514  /// This is the "fully general" constructor that allows representation of
515  /// strings formed from multiple concatenated tokens.
516  static StringLiteral *Create(ASTContext &C, const char *StrData,
517                               unsigned ByteLength, bool Wide, QualType Ty,
518                               SourceLocation *Loc, unsigned NumStrs);
519
520  /// Simple constructor for string literals made from one token.
521  static StringLiteral *Create(ASTContext &C, const char *StrData,
522                               unsigned ByteLength,
523                               bool Wide, QualType Ty, SourceLocation Loc) {
524    return Create(C, StrData, ByteLength, Wide, Ty, &Loc, 1);
525  }
526
527  void Destroy(ASTContext &C);
528
529  const char *getStrData() const { return StrData; }
530  unsigned getByteLength() const { return ByteLength; }
531  bool isWide() const { return IsWide; }
532
533  /// getNumConcatenated - Get the number of string literal tokens that were
534  /// concatenated in translation phase #6 to form this string literal.
535  unsigned getNumConcatenated() const { return NumConcatenated; }
536
537  SourceLocation getStrTokenLoc(unsigned TokNum) const {
538    assert(TokNum < NumConcatenated && "Invalid tok number");
539    return TokLocs[TokNum];
540  }
541
542  typedef const SourceLocation *tokloc_iterator;
543  tokloc_iterator tokloc_begin() const { return TokLocs; }
544  tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; }
545
546  virtual SourceRange getSourceRange() const {
547    return SourceRange(TokLocs[0], TokLocs[NumConcatenated-1]);
548  }
549  static bool classof(const Stmt *T) {
550    return T->getStmtClass() == StringLiteralClass;
551  }
552  static bool classof(const StringLiteral *) { return true; }
553
554  // Iterators
555  virtual child_iterator child_begin();
556  virtual child_iterator child_end();
557
558  virtual void EmitImpl(llvm::Serializer& S) const;
559  static StringLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
560};
561
562/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
563/// AST node is only formed if full location information is requested.
564class ParenExpr : public Expr {
565  SourceLocation L, R;
566  Stmt *Val;
567public:
568  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
569    : Expr(ParenExprClass, val->getType(),
570           val->isTypeDependent(), val->isValueDependent()),
571      L(l), R(r), Val(val) {}
572
573  const Expr *getSubExpr() const { return cast<Expr>(Val); }
574  Expr *getSubExpr() { return cast<Expr>(Val); }
575  virtual SourceRange getSourceRange() const { return SourceRange(L, R); }
576
577  /// \brief Get the location of the left parentheses '('.
578  SourceLocation getLParen() const { return L; }
579
580  /// \brief Get the location of the right parentheses ')'.
581  SourceLocation getRParen() const { return R; }
582
583  static bool classof(const Stmt *T) {
584    return T->getStmtClass() == ParenExprClass;
585  }
586  static bool classof(const ParenExpr *) { return true; }
587
588  // Iterators
589  virtual child_iterator child_begin();
590  virtual child_iterator child_end();
591
592  virtual void EmitImpl(llvm::Serializer& S) const;
593  static ParenExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
594};
595
596
597/// UnaryOperator - This represents the unary-expression's (except sizeof and
598/// alignof), the postinc/postdec operators from postfix-expression, and various
599/// extensions.
600///
601/// Notes on various nodes:
602///
603/// Real/Imag - These return the real/imag part of a complex operand.  If
604///   applied to a non-complex value, the former returns its operand and the
605///   later returns zero in the type of the operand.
606///
607/// __builtin_offsetof(type, a.b[10]) is represented as a unary operator whose
608///   subexpression is a compound literal with the various MemberExpr and
609///   ArraySubscriptExpr's applied to it.
610///
611class UnaryOperator : public Expr {
612public:
613  // Note that additions to this should also update the StmtVisitor class.
614  enum Opcode {
615    PostInc, PostDec, // [C99 6.5.2.4] Postfix increment and decrement operators
616    PreInc, PreDec,   // [C99 6.5.3.1] Prefix increment and decrement operators.
617    AddrOf, Deref,    // [C99 6.5.3.2] Address and indirection operators.
618    Plus, Minus,      // [C99 6.5.3.3] Unary arithmetic operators.
619    Not, LNot,        // [C99 6.5.3.3] Unary arithmetic operators.
620    Real, Imag,       // "__real expr"/"__imag expr" Extension.
621    Extension,        // __extension__ marker.
622    OffsetOf          // __builtin_offsetof
623  };
624private:
625  Stmt *Val;
626  Opcode Opc;
627  SourceLocation Loc;
628public:
629
630  UnaryOperator(Expr *input, Opcode opc, QualType type, SourceLocation l)
631    : Expr(UnaryOperatorClass, type,
632           input->isTypeDependent() && opc != OffsetOf,
633           input->isValueDependent()),
634      Val(input), Opc(opc), Loc(l) {}
635
636  Opcode getOpcode() const { return Opc; }
637  Expr *getSubExpr() const { return cast<Expr>(Val); }
638
639  /// getOperatorLoc - Return the location of the operator.
640  SourceLocation getOperatorLoc() const { return Loc; }
641
642  /// isPostfix - Return true if this is a postfix operation, like x++.
643  static bool isPostfix(Opcode Op) {
644    return Op == PostInc || Op == PostDec;
645  }
646
647  /// isPostfix - Return true if this is a prefix operation, like --x.
648  static bool isPrefix(Opcode Op) {
649    return Op == PreInc || Op == PreDec;
650  }
651
652  bool isPrefix() const { return isPrefix(Opc); }
653  bool isPostfix() const { return isPostfix(Opc); }
654  bool isIncrementOp() const {return Opc==PreInc || Opc==PostInc; }
655  bool isIncrementDecrementOp() const { return Opc>=PostInc && Opc<=PreDec; }
656  bool isOffsetOfOp() const { return Opc == OffsetOf; }
657  static bool isArithmeticOp(Opcode Op) { return Op >= Plus && Op <= LNot; }
658
659  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
660  /// corresponds to, e.g. "sizeof" or "[pre]++"
661  static const char *getOpcodeStr(Opcode Op);
662
663  virtual SourceRange getSourceRange() const {
664    if (isPostfix())
665      return SourceRange(Val->getLocStart(), Loc);
666    else
667      return SourceRange(Loc, Val->getLocEnd());
668  }
669  virtual SourceLocation getExprLoc() const { return Loc; }
670
671  static bool classof(const Stmt *T) {
672    return T->getStmtClass() == UnaryOperatorClass;
673  }
674  static bool classof(const UnaryOperator *) { return true; }
675
676  // Iterators
677  virtual child_iterator child_begin();
678  virtual child_iterator child_end();
679
680  virtual void EmitImpl(llvm::Serializer& S) const;
681  static UnaryOperator* CreateImpl(llvm::Deserializer& D, ASTContext& C);
682};
683
684/// SizeOfAlignOfExpr - [C99 6.5.3.4] - This is for sizeof/alignof, both of
685/// types and expressions.
686class SizeOfAlignOfExpr : public Expr {
687  bool isSizeof : 1;  // true if sizeof, false if alignof.
688  bool isType : 1;    // true if operand is a type, false if an expression
689  union {
690    void *Ty;
691    Stmt *Ex;
692  } Argument;
693  SourceLocation OpLoc, RParenLoc;
694public:
695  SizeOfAlignOfExpr(bool issizeof, QualType T,
696                    QualType resultType, SourceLocation op,
697                    SourceLocation rp) :
698      Expr(SizeOfAlignOfExprClass, resultType,
699           false, // Never type-dependent (C++ [temp.dep.expr]p3).
700           // Value-dependent if the argument is type-dependent.
701           T->isDependentType()),
702      isSizeof(issizeof), isType(true), OpLoc(op), RParenLoc(rp) {
703    Argument.Ty = T.getAsOpaquePtr();
704  }
705
706  SizeOfAlignOfExpr(bool issizeof, Expr *E,
707                    QualType resultType, SourceLocation op,
708                    SourceLocation rp) :
709      Expr(SizeOfAlignOfExprClass, resultType,
710           false, // Never type-dependent (C++ [temp.dep.expr]p3).
711           // Value-dependent if the argument is type-dependent.
712           E->isTypeDependent()),
713      isSizeof(issizeof), isType(false), OpLoc(op), RParenLoc(rp) {
714    Argument.Ex = E;
715  }
716
717  virtual void Destroy(ASTContext& C);
718
719  bool isSizeOf() const { return isSizeof; }
720  bool isArgumentType() const { return isType; }
721  QualType getArgumentType() const {
722    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
723    return QualType::getFromOpaquePtr(Argument.Ty);
724  }
725  Expr *getArgumentExpr() {
726    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
727    return static_cast<Expr*>(Argument.Ex);
728  }
729  const Expr *getArgumentExpr() const {
730    return const_cast<SizeOfAlignOfExpr*>(this)->getArgumentExpr();
731  }
732
733  /// Gets the argument type, or the type of the argument expression, whichever
734  /// is appropriate.
735  QualType getTypeOfArgument() const {
736    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
737  }
738
739  SourceLocation getOperatorLoc() const { return OpLoc; }
740
741  virtual SourceRange getSourceRange() const {
742    return SourceRange(OpLoc, RParenLoc);
743  }
744
745  static bool classof(const Stmt *T) {
746    return T->getStmtClass() == SizeOfAlignOfExprClass;
747  }
748  static bool classof(const SizeOfAlignOfExpr *) { return true; }
749
750  // Iterators
751  virtual child_iterator child_begin();
752  virtual child_iterator child_end();
753
754  virtual void EmitImpl(llvm::Serializer& S) const;
755  static SizeOfAlignOfExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
756};
757
758//===----------------------------------------------------------------------===//
759// Postfix Operators.
760//===----------------------------------------------------------------------===//
761
762/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
763class ArraySubscriptExpr : public Expr {
764  enum { LHS, RHS, END_EXPR=2 };
765  Stmt* SubExprs[END_EXPR];
766  SourceLocation RBracketLoc;
767public:
768  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
769                     SourceLocation rbracketloc)
770  : Expr(ArraySubscriptExprClass, t,
771         lhs->isTypeDependent() || rhs->isTypeDependent(),
772         lhs->isValueDependent() || rhs->isValueDependent()),
773    RBracketLoc(rbracketloc) {
774    SubExprs[LHS] = lhs;
775    SubExprs[RHS] = rhs;
776  }
777
778  /// An array access can be written A[4] or 4[A] (both are equivalent).
779  /// - getBase() and getIdx() always present the normalized view: A[4].
780  ///    In this case getBase() returns "A" and getIdx() returns "4".
781  /// - getLHS() and getRHS() present the syntactic view. e.g. for
782  ///    4[A] getLHS() returns "4".
783  /// Note: Because vector element access is also written A[4] we must
784  /// predicate the format conversion in getBase and getIdx only on the
785  /// the type of the RHS, as it is possible for the LHS to be a vector of
786  /// integer type
787  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
788  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
789
790  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
791  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
792
793  Expr *getBase() {
794    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
795  }
796
797  const Expr *getBase() const {
798    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
799  }
800
801  Expr *getIdx() {
802    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
803  }
804
805  const Expr *getIdx() const {
806    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
807  }
808
809  virtual SourceRange getSourceRange() const {
810    return SourceRange(getLHS()->getLocStart(), RBracketLoc);
811  }
812
813  SourceLocation getRBracketLoc() const { return RBracketLoc; }
814  virtual SourceLocation getExprLoc() const { return getBase()->getExprLoc(); }
815
816  static bool classof(const Stmt *T) {
817    return T->getStmtClass() == ArraySubscriptExprClass;
818  }
819  static bool classof(const ArraySubscriptExpr *) { return true; }
820
821  // Iterators
822  virtual child_iterator child_begin();
823  virtual child_iterator child_end();
824
825  virtual void EmitImpl(llvm::Serializer& S) const;
826  static ArraySubscriptExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
827};
828
829
830/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
831/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
832/// while its subclasses may represent alternative syntax that (semantically)
833/// results in a function call. For example, CXXOperatorCallExpr is
834/// a subclass for overloaded operator calls that use operator syntax, e.g.,
835/// "str1 + str2" to resolve to a function call.
836class CallExpr : public Expr {
837  enum { FN=0, ARGS_START=1 };
838  Stmt **SubExprs;
839  unsigned NumArgs;
840  SourceLocation RParenLoc;
841
842  // This version of the ctor is for deserialization.
843  CallExpr(StmtClass SC, Stmt** subexprs, unsigned numargs, QualType t,
844           SourceLocation rparenloc)
845  : Expr(SC,t), SubExprs(subexprs),
846    NumArgs(numargs), RParenLoc(rparenloc) {}
847
848protected:
849  // This version of the constructor is for derived classes.
850  CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args, unsigned numargs,
851           QualType t, SourceLocation rparenloc);
852
853public:
854  CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, QualType t,
855           SourceLocation rparenloc);
856
857  ~CallExpr() {}
858
859  void Destroy(ASTContext& C);
860
861  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
862  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
863  void setCallee(Expr *F) { SubExprs[FN] = F; }
864
865  /// getNumArgs - Return the number of actual arguments to this call.
866  ///
867  unsigned getNumArgs() const { return NumArgs; }
868
869  /// getArg - Return the specified argument.
870  Expr *getArg(unsigned Arg) {
871    assert(Arg < NumArgs && "Arg access out of range!");
872    return cast<Expr>(SubExprs[Arg+ARGS_START]);
873  }
874  const Expr *getArg(unsigned Arg) const {
875    assert(Arg < NumArgs && "Arg access out of range!");
876    return cast<Expr>(SubExprs[Arg+ARGS_START]);
877  }
878
879  // FIXME: Why is this needed?  Why not just create the CallExpr with the
880  // corect number of arguments?  It makes the ASTs less brittle.
881  /// setArg - Set the specified argument.
882  void setArg(unsigned Arg, Expr *ArgExpr) {
883    assert(Arg < NumArgs && "Arg access out of range!");
884    SubExprs[Arg+ARGS_START] = ArgExpr;
885  }
886
887  // FIXME: It would be great to just get rid of this.  There is only one
888  // callee of this method, and it probably could be refactored to not use
889  // this method and instead just create a CallExpr with the right number of
890  // arguments.
891  /// setNumArgs - This changes the number of arguments present in this call.
892  /// Any orphaned expressions are deleted by this, and any new operands are set
893  /// to null.
894  void setNumArgs(ASTContext& C, unsigned NumArgs);
895
896  typedef ExprIterator arg_iterator;
897  typedef ConstExprIterator const_arg_iterator;
898
899  arg_iterator arg_begin() { return SubExprs+ARGS_START; }
900  arg_iterator arg_end() { return SubExprs+ARGS_START+getNumArgs(); }
901  const_arg_iterator arg_begin() const { return SubExprs+ARGS_START; }
902  const_arg_iterator arg_end() const { return SubExprs+ARGS_START+getNumArgs();}
903
904  /// getNumCommas - Return the number of commas that must have been present in
905  /// this function call.
906  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
907
908  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
909  /// not, return 0.
910  unsigned isBuiltinCall(ASTContext &Context) const;
911
912  SourceLocation getRParenLoc() const { return RParenLoc; }
913
914  virtual SourceRange getSourceRange() const {
915    return SourceRange(getCallee()->getLocStart(), RParenLoc);
916  }
917
918  static bool classof(const Stmt *T) {
919    return T->getStmtClass() == CallExprClass ||
920           T->getStmtClass() == CXXOperatorCallExprClass ||
921           T->getStmtClass() == CXXMemberCallExprClass;
922  }
923  static bool classof(const CallExpr *) { return true; }
924  static bool classof(const CXXOperatorCallExpr *) { return true; }
925  static bool classof(const CXXMemberCallExpr *) { return true; }
926
927  // Iterators
928  virtual child_iterator child_begin();
929  virtual child_iterator child_end();
930
931  virtual void EmitImpl(llvm::Serializer& S) const;
932  static CallExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C,
933                              StmtClass SC);
934};
935
936/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.  X->F and X.F.
937///
938class MemberExpr : public Expr {
939  /// Base - the expression for the base pointer or structure references.  In
940  /// X.F, this is "X".
941  Stmt *Base;
942
943  /// MemberDecl - This is the decl being referenced by the field/member name.
944  /// In X.F, this is the decl referenced by F.
945  NamedDecl *MemberDecl;
946
947  /// MemberLoc - This is the location of the member name.
948  SourceLocation MemberLoc;
949
950  /// IsArrow - True if this is "X->F", false if this is "X.F".
951  bool IsArrow;
952public:
953  MemberExpr(Expr *base, bool isarrow, NamedDecl *memberdecl, SourceLocation l,
954             QualType ty)
955    : Expr(MemberExprClass, ty),
956      Base(base), MemberDecl(memberdecl), MemberLoc(l), IsArrow(isarrow) {}
957
958  void setBase(Expr *E) { Base = E; }
959  Expr *getBase() const { return cast<Expr>(Base); }
960  NamedDecl *getMemberDecl() const { return MemberDecl; }
961  void setMemberDecl(NamedDecl *D) { MemberDecl = D; }
962  bool isArrow() const { return IsArrow; }
963
964  /// getMemberLoc - Return the location of the "member", in X->F, it is the
965  /// location of 'F'.
966  SourceLocation getMemberLoc() const { return MemberLoc; }
967
968  virtual SourceRange getSourceRange() const {
969    return SourceRange(getBase()->getLocStart(), MemberLoc);
970  }
971
972  virtual SourceLocation getExprLoc() const { return MemberLoc; }
973
974  static bool classof(const Stmt *T) {
975    return T->getStmtClass() == MemberExprClass;
976  }
977  static bool classof(const MemberExpr *) { return true; }
978
979  // Iterators
980  virtual child_iterator child_begin();
981  virtual child_iterator child_end();
982
983  virtual void EmitImpl(llvm::Serializer& S) const;
984  static MemberExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
985};
986
987/// CompoundLiteralExpr - [C99 6.5.2.5]
988///
989class CompoundLiteralExpr : public Expr {
990  /// LParenLoc - If non-null, this is the location of the left paren in a
991  /// compound literal like "(int){4}".  This can be null if this is a
992  /// synthesized compound expression.
993  SourceLocation LParenLoc;
994  Stmt *Init;
995  bool FileScope;
996public:
997  CompoundLiteralExpr(SourceLocation lparenloc, QualType ty, Expr *init,
998                      bool fileScope)
999    : Expr(CompoundLiteralExprClass, ty), LParenLoc(lparenloc), Init(init),
1000      FileScope(fileScope) {}
1001
1002  const Expr *getInitializer() const { return cast<Expr>(Init); }
1003  Expr *getInitializer() { return cast<Expr>(Init); }
1004
1005  bool isFileScope() const { return FileScope; }
1006
1007  SourceLocation getLParenLoc() const { return LParenLoc; }
1008
1009  virtual SourceRange getSourceRange() const {
1010    // FIXME: Init should never be null.
1011    if (!Init)
1012      return SourceRange();
1013    if (LParenLoc.isInvalid())
1014      return Init->getSourceRange();
1015    return SourceRange(LParenLoc, Init->getLocEnd());
1016  }
1017
1018  static bool classof(const Stmt *T) {
1019    return T->getStmtClass() == CompoundLiteralExprClass;
1020  }
1021  static bool classof(const CompoundLiteralExpr *) { return true; }
1022
1023  // Iterators
1024  virtual child_iterator child_begin();
1025  virtual child_iterator child_end();
1026
1027  virtual void EmitImpl(llvm::Serializer& S) const;
1028  static CompoundLiteralExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1029};
1030
1031/// CastExpr - Base class for type casts, including both implicit
1032/// casts (ImplicitCastExpr) and explicit casts that have some
1033/// representation in the source code (ExplicitCastExpr's derived
1034/// classes).
1035class CastExpr : public Expr {
1036  Stmt *Op;
1037protected:
1038  CastExpr(StmtClass SC, QualType ty, Expr *op) :
1039    Expr(SC, ty,
1040         // Cast expressions are type-dependent if the type is
1041         // dependent (C++ [temp.dep.expr]p3).
1042         ty->isDependentType(),
1043         // Cast expressions are value-dependent if the type is
1044         // dependent or if the subexpression is value-dependent.
1045         ty->isDependentType() || (op && op->isValueDependent())),
1046    Op(op) {}
1047
1048public:
1049  Expr *getSubExpr() { return cast<Expr>(Op); }
1050  const Expr *getSubExpr() const { return cast<Expr>(Op); }
1051
1052  static bool classof(const Stmt *T) {
1053    StmtClass SC = T->getStmtClass();
1054    if (SC >= CXXNamedCastExprClass && SC <= CXXFunctionalCastExprClass)
1055      return true;
1056
1057    if (SC >= ImplicitCastExprClass && SC <= CStyleCastExprClass)
1058      return true;
1059
1060    return false;
1061  }
1062  static bool classof(const CastExpr *) { return true; }
1063
1064  // Iterators
1065  virtual child_iterator child_begin();
1066  virtual child_iterator child_end();
1067};
1068
1069/// ImplicitCastExpr - Allows us to explicitly represent implicit type
1070/// conversions, which have no direct representation in the original
1071/// source code. For example: converting T[]->T*, void f()->void
1072/// (*f)(), float->double, short->int, etc.
1073///
1074/// In C, implicit casts always produce rvalues. However, in C++, an
1075/// implicit cast whose result is being bound to a reference will be
1076/// an lvalue. For example:
1077///
1078/// @code
1079/// class Base { };
1080/// class Derived : public Base { };
1081/// void f(Derived d) {
1082///   Base& b = d; // initializer is an ImplicitCastExpr to an lvalue of type Base
1083/// }
1084/// @endcode
1085class ImplicitCastExpr : public CastExpr {
1086  /// LvalueCast - Whether this cast produces an lvalue.
1087  bool LvalueCast;
1088
1089public:
1090  ImplicitCastExpr(QualType ty, Expr *op, bool Lvalue) :
1091    CastExpr(ImplicitCastExprClass, ty, op), LvalueCast(Lvalue) { }
1092
1093  virtual SourceRange getSourceRange() const {
1094    return getSubExpr()->getSourceRange();
1095  }
1096
1097  /// isLvalueCast - Whether this cast produces an lvalue.
1098  bool isLvalueCast() const { return LvalueCast; }
1099
1100  /// setLvalueCast - Set whether this cast produces an lvalue.
1101  void setLvalueCast(bool Lvalue) { LvalueCast = Lvalue; }
1102
1103  static bool classof(const Stmt *T) {
1104    return T->getStmtClass() == ImplicitCastExprClass;
1105  }
1106  static bool classof(const ImplicitCastExpr *) { return true; }
1107
1108  virtual void EmitImpl(llvm::Serializer& S) const;
1109  static ImplicitCastExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1110};
1111
1112/// ExplicitCastExpr - An explicit cast written in the source
1113/// code.
1114///
1115/// This class is effectively an abstract class, because it provides
1116/// the basic representation of an explicitly-written cast without
1117/// specifying which kind of cast (C cast, functional cast, static
1118/// cast, etc.) was written; specific derived classes represent the
1119/// particular style of cast and its location information.
1120///
1121/// Unlike implicit casts, explicit cast nodes have two different
1122/// types: the type that was written into the source code, and the
1123/// actual type of the expression as determined by semantic
1124/// analysis. These types may differ slightly. For example, in C++ one
1125/// can cast to a reference type, which indicates that the resulting
1126/// expression will be an lvalue. The reference type, however, will
1127/// not be used as the type of the expression.
1128class ExplicitCastExpr : public CastExpr {
1129  /// TypeAsWritten - The type that this expression is casting to, as
1130  /// written in the source code.
1131  QualType TypeAsWritten;
1132
1133protected:
1134  ExplicitCastExpr(StmtClass SC, QualType exprTy, Expr *op, QualType writtenTy)
1135    : CastExpr(SC, exprTy, op), TypeAsWritten(writtenTy) {}
1136
1137public:
1138  /// getTypeAsWritten - Returns the type that this expression is
1139  /// casting to, as written in the source code.
1140  QualType getTypeAsWritten() const { return TypeAsWritten; }
1141
1142  static bool classof(const Stmt *T) {
1143    StmtClass SC = T->getStmtClass();
1144    if (SC >= ExplicitCastExprClass && SC <= CStyleCastExprClass)
1145      return true;
1146    if (SC >= CXXNamedCastExprClass && SC <= CXXFunctionalCastExprClass)
1147      return true;
1148
1149    return false;
1150  }
1151  static bool classof(const ExplicitCastExpr *) { return true; }
1152};
1153
1154/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
1155/// cast in C++ (C++ [expr.cast]), which uses the syntax
1156/// (Type)expr. For example: @c (int)f.
1157class CStyleCastExpr : public ExplicitCastExpr {
1158  SourceLocation LPLoc; // the location of the left paren
1159  SourceLocation RPLoc; // the location of the right paren
1160public:
1161  CStyleCastExpr(QualType exprTy, Expr *op, QualType writtenTy,
1162                    SourceLocation l, SourceLocation r) :
1163    ExplicitCastExpr(CStyleCastExprClass, exprTy, op, writtenTy),
1164    LPLoc(l), RPLoc(r) {}
1165
1166  SourceLocation getLParenLoc() const { return LPLoc; }
1167  SourceLocation getRParenLoc() const { return RPLoc; }
1168
1169  virtual SourceRange getSourceRange() const {
1170    return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd());
1171  }
1172  static bool classof(const Stmt *T) {
1173    return T->getStmtClass() == CStyleCastExprClass;
1174  }
1175  static bool classof(const CStyleCastExpr *) { return true; }
1176
1177  virtual void EmitImpl(llvm::Serializer& S) const;
1178  static CStyleCastExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1179};
1180
1181/// \brief A builtin binary operation expression such as "x + y" or "x <= y".
1182///
1183/// This expression node kind describes a builtin binary operation,
1184/// such as "x + y" for integer values "x" and "y". The operands will
1185/// already have been converted to appropriate types (e.g., by
1186/// performing promotions or conversions).
1187///
1188/// In C++, where operators may be overloaded, a different kind of
1189/// expression node (CXXOperatorCallExpr) is used to express the
1190/// invocation of an overloaded operator with operator syntax. Within
1191/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
1192/// used to store an expression "x + y" depends on the subexpressions
1193/// for x and y. If neither x or y is type-dependent, and the "+"
1194/// operator resolves to a built-in operation, BinaryOperator will be
1195/// used to express the computation (x and y may still be
1196/// value-dependent). If either x or y is type-dependent, or if the
1197/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
1198/// be used to express the computation.
1199class BinaryOperator : public Expr {
1200public:
1201  enum Opcode {
1202    // Operators listed in order of precedence.
1203    // Note that additions to this should also update the StmtVisitor class.
1204    PtrMemD, PtrMemI, // [C++ 5.5] Pointer-to-member operators.
1205    Mul, Div, Rem,    // [C99 6.5.5] Multiplicative operators.
1206    Add, Sub,         // [C99 6.5.6] Additive operators.
1207    Shl, Shr,         // [C99 6.5.7] Bitwise shift operators.
1208    LT, GT, LE, GE,   // [C99 6.5.8] Relational operators.
1209    EQ, NE,           // [C99 6.5.9] Equality operators.
1210    And,              // [C99 6.5.10] Bitwise AND operator.
1211    Xor,              // [C99 6.5.11] Bitwise XOR operator.
1212    Or,               // [C99 6.5.12] Bitwise OR operator.
1213    LAnd,             // [C99 6.5.13] Logical AND operator.
1214    LOr,              // [C99 6.5.14] Logical OR operator.
1215    Assign, MulAssign,// [C99 6.5.16] Assignment operators.
1216    DivAssign, RemAssign,
1217    AddAssign, SubAssign,
1218    ShlAssign, ShrAssign,
1219    AndAssign, XorAssign,
1220    OrAssign,
1221    Comma             // [C99 6.5.17] Comma operator.
1222  };
1223private:
1224  enum { LHS, RHS, END_EXPR };
1225  Stmt* SubExprs[END_EXPR];
1226  Opcode Opc;
1227  SourceLocation OpLoc;
1228public:
1229
1230  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
1231                 SourceLocation opLoc)
1232    : Expr(BinaryOperatorClass, ResTy,
1233           lhs->isTypeDependent() || rhs->isTypeDependent(),
1234           lhs->isValueDependent() || rhs->isValueDependent()),
1235      Opc(opc), OpLoc(opLoc) {
1236    SubExprs[LHS] = lhs;
1237    SubExprs[RHS] = rhs;
1238    assert(!isCompoundAssignmentOp() &&
1239           "Use ArithAssignBinaryOperator for compound assignments");
1240  }
1241
1242  SourceLocation getOperatorLoc() const { return OpLoc; }
1243  Opcode getOpcode() const { return Opc; }
1244  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1245  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1246  virtual SourceRange getSourceRange() const {
1247    return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
1248  }
1249
1250  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1251  /// corresponds to, e.g. "<<=".
1252  static const char *getOpcodeStr(Opcode Op);
1253
1254  /// \brief Retrieve the binary opcode that corresponds to the given
1255  /// overloaded operator.
1256  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
1257
1258  /// \brief Retrieve the overloaded operator kind that corresponds to
1259  /// the given binary opcode.
1260  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
1261
1262  /// predicates to categorize the respective opcodes.
1263  bool isMultiplicativeOp() const { return Opc >= Mul && Opc <= Rem; }
1264  bool isAdditiveOp() const { return Opc == Add || Opc == Sub; }
1265  bool isShiftOp() const { return Opc == Shl || Opc == Shr; }
1266  bool isBitwiseOp() const { return Opc >= And && Opc <= Or; }
1267
1268  static bool isRelationalOp(Opcode Opc) { return Opc >= LT && Opc <= GE; }
1269  bool isRelationalOp() const { return isRelationalOp(Opc); }
1270
1271  static bool isEqualityOp(Opcode Opc) { return Opc == EQ || Opc == NE; }
1272  bool isEqualityOp() const { return isEqualityOp(Opc); }
1273
1274  static bool isLogicalOp(Opcode Opc) { return Opc == LAnd || Opc == LOr; }
1275  bool isLogicalOp() const { return isLogicalOp(Opc); }
1276
1277  bool isAssignmentOp() const { return Opc >= Assign && Opc <= OrAssign; }
1278  bool isCompoundAssignmentOp() const { return Opc > Assign && Opc <= OrAssign;}
1279  bool isShiftAssignOp() const { return Opc == ShlAssign || Opc == ShrAssign; }
1280
1281  static bool classof(const Stmt *S) {
1282    return S->getStmtClass() == BinaryOperatorClass ||
1283           S->getStmtClass() == CompoundAssignOperatorClass;
1284  }
1285  static bool classof(const BinaryOperator *) { return true; }
1286
1287  // Iterators
1288  virtual child_iterator child_begin();
1289  virtual child_iterator child_end();
1290
1291  virtual void EmitImpl(llvm::Serializer& S) const;
1292  static BinaryOperator* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1293
1294protected:
1295  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
1296                 SourceLocation oploc, bool dead)
1297    : Expr(CompoundAssignOperatorClass, ResTy), Opc(opc), OpLoc(oploc) {
1298    SubExprs[LHS] = lhs;
1299    SubExprs[RHS] = rhs;
1300  }
1301};
1302
1303/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
1304/// track of the type the operation is performed in.  Due to the semantics of
1305/// these operators, the operands are promoted, the aritmetic performed, an
1306/// implicit conversion back to the result type done, then the assignment takes
1307/// place.  This captures the intermediate type which the computation is done
1308/// in.
1309class CompoundAssignOperator : public BinaryOperator {
1310  QualType ComputationType;
1311public:
1312  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc,
1313                         QualType ResType, QualType CompType,
1314                         SourceLocation OpLoc)
1315    : BinaryOperator(lhs, rhs, opc, ResType, OpLoc, true),
1316      ComputationType(CompType) {
1317    assert(isCompoundAssignmentOp() &&
1318           "Only should be used for compound assignments");
1319  }
1320
1321  QualType getComputationType() const { return ComputationType; }
1322
1323  static bool classof(const CompoundAssignOperator *) { return true; }
1324  static bool classof(const Stmt *S) {
1325    return S->getStmtClass() == CompoundAssignOperatorClass;
1326  }
1327
1328  virtual void EmitImpl(llvm::Serializer& S) const;
1329  static CompoundAssignOperator* CreateImpl(llvm::Deserializer& D,
1330                                            ASTContext& C);
1331};
1332
1333/// ConditionalOperator - The ?: operator.  Note that LHS may be null when the
1334/// GNU "missing LHS" extension is in use.
1335///
1336class ConditionalOperator : public Expr {
1337  enum { COND, LHS, RHS, END_EXPR };
1338  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
1339public:
1340  ConditionalOperator(Expr *cond, Expr *lhs, Expr *rhs, QualType t)
1341    : Expr(ConditionalOperatorClass, t,
1342           // FIXME: the type of the conditional operator doesn't
1343           // depend on the type of the conditional, but the standard
1344           // seems to imply that it could. File a bug!
1345           ((lhs && lhs->isTypeDependent()) || (rhs && rhs->isTypeDependent())),
1346           (cond->isValueDependent() ||
1347            (lhs && lhs->isValueDependent()) ||
1348            (rhs && rhs->isValueDependent()))) {
1349    SubExprs[COND] = cond;
1350    SubExprs[LHS] = lhs;
1351    SubExprs[RHS] = rhs;
1352  }
1353
1354  // getCond - Return the expression representing the condition for
1355  //  the ?: operator.
1356  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
1357
1358  // getTrueExpr - Return the subexpression representing the value of the ?:
1359  //  expression if the condition evaluates to true.  In most cases this value
1360  //  will be the same as getLHS() except a GCC extension allows the left
1361  //  subexpression to be omitted, and instead of the condition be returned.
1362  //  e.g: x ?: y is shorthand for x ? x : y, except that the expression "x"
1363  //  is only evaluated once.
1364  Expr *getTrueExpr() const {
1365    return cast<Expr>(SubExprs[LHS] ? SubExprs[LHS] : SubExprs[COND]);
1366  }
1367
1368  // getTrueExpr - Return the subexpression representing the value of the ?:
1369  // expression if the condition evaluates to false. This is the same as getRHS.
1370  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
1371
1372  Expr *getLHS() const { return cast_or_null<Expr>(SubExprs[LHS]); }
1373  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1374
1375  virtual SourceRange getSourceRange() const {
1376    return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
1377  }
1378  static bool classof(const Stmt *T) {
1379    return T->getStmtClass() == ConditionalOperatorClass;
1380  }
1381  static bool classof(const ConditionalOperator *) { return true; }
1382
1383  // Iterators
1384  virtual child_iterator child_begin();
1385  virtual child_iterator child_end();
1386
1387  virtual void EmitImpl(llvm::Serializer& S) const;
1388  static ConditionalOperator* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1389};
1390
1391/// AddrLabelExpr - The GNU address of label extension, representing &&label.
1392class AddrLabelExpr : public Expr {
1393  SourceLocation AmpAmpLoc, LabelLoc;
1394  LabelStmt *Label;
1395public:
1396  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelStmt *L,
1397                QualType t)
1398    : Expr(AddrLabelExprClass, t), AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
1399
1400  virtual SourceRange getSourceRange() const {
1401    return SourceRange(AmpAmpLoc, LabelLoc);
1402  }
1403
1404  LabelStmt *getLabel() const { return Label; }
1405
1406  static bool classof(const Stmt *T) {
1407    return T->getStmtClass() == AddrLabelExprClass;
1408  }
1409  static bool classof(const AddrLabelExpr *) { return true; }
1410
1411  // Iterators
1412  virtual child_iterator child_begin();
1413  virtual child_iterator child_end();
1414
1415  virtual void EmitImpl(llvm::Serializer& S) const;
1416  static AddrLabelExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1417};
1418
1419/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
1420/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
1421/// takes the value of the last subexpression.
1422class StmtExpr : public Expr {
1423  Stmt *SubStmt;
1424  SourceLocation LParenLoc, RParenLoc;
1425public:
1426  StmtExpr(CompoundStmt *substmt, QualType T,
1427           SourceLocation lp, SourceLocation rp) :
1428    Expr(StmtExprClass, T), SubStmt(substmt),  LParenLoc(lp), RParenLoc(rp) { }
1429
1430  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
1431  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
1432
1433  virtual SourceRange getSourceRange() const {
1434    return SourceRange(LParenLoc, RParenLoc);
1435  }
1436
1437  SourceLocation getLParenLoc() const { return LParenLoc; }
1438  SourceLocation getRParenLoc() const { return RParenLoc; }
1439
1440  static bool classof(const Stmt *T) {
1441    return T->getStmtClass() == StmtExprClass;
1442  }
1443  static bool classof(const StmtExpr *) { return true; }
1444
1445  // Iterators
1446  virtual child_iterator child_begin();
1447  virtual child_iterator child_end();
1448
1449  virtual void EmitImpl(llvm::Serializer& S) const;
1450  static StmtExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1451};
1452
1453/// TypesCompatibleExpr - GNU builtin-in function __builtin_type_compatible_p.
1454/// This AST node represents a function that returns 1 if two *types* (not
1455/// expressions) are compatible. The result of this built-in function can be
1456/// used in integer constant expressions.
1457class TypesCompatibleExpr : public Expr {
1458  QualType Type1;
1459  QualType Type2;
1460  SourceLocation BuiltinLoc, RParenLoc;
1461public:
1462  TypesCompatibleExpr(QualType ReturnType, SourceLocation BLoc,
1463                      QualType t1, QualType t2, SourceLocation RP) :
1464    Expr(TypesCompatibleExprClass, ReturnType), Type1(t1), Type2(t2),
1465    BuiltinLoc(BLoc), RParenLoc(RP) {}
1466
1467  QualType getArgType1() const { return Type1; }
1468  QualType getArgType2() const { return Type2; }
1469
1470  virtual SourceRange getSourceRange() const {
1471    return SourceRange(BuiltinLoc, RParenLoc);
1472  }
1473  static bool classof(const Stmt *T) {
1474    return T->getStmtClass() == TypesCompatibleExprClass;
1475  }
1476  static bool classof(const TypesCompatibleExpr *) { return true; }
1477
1478  // Iterators
1479  virtual child_iterator child_begin();
1480  virtual child_iterator child_end();
1481
1482  virtual void EmitImpl(llvm::Serializer& S) const;
1483  static TypesCompatibleExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1484};
1485
1486/// ShuffleVectorExpr - clang-specific builtin-in function
1487/// __builtin_shufflevector.
1488/// This AST node represents a operator that does a constant
1489/// shuffle, similar to LLVM's shufflevector instruction. It takes
1490/// two vectors and a variable number of constant indices,
1491/// and returns the appropriately shuffled vector.
1492class ShuffleVectorExpr : public Expr {
1493  SourceLocation BuiltinLoc, RParenLoc;
1494
1495  // SubExprs - the list of values passed to the __builtin_shufflevector
1496  // function. The first two are vectors, and the rest are constant
1497  // indices.  The number of values in this list is always
1498  // 2+the number of indices in the vector type.
1499  Stmt **SubExprs;
1500  unsigned NumExprs;
1501
1502public:
1503  ShuffleVectorExpr(Expr **args, unsigned nexpr,
1504                    QualType Type, SourceLocation BLoc,
1505                    SourceLocation RP) :
1506    Expr(ShuffleVectorExprClass, Type), BuiltinLoc(BLoc),
1507    RParenLoc(RP), NumExprs(nexpr) {
1508
1509    SubExprs = new Stmt*[nexpr];
1510    for (unsigned i = 0; i < nexpr; i++)
1511      SubExprs[i] = args[i];
1512  }
1513
1514  virtual SourceRange getSourceRange() const {
1515    return SourceRange(BuiltinLoc, RParenLoc);
1516  }
1517  static bool classof(const Stmt *T) {
1518    return T->getStmtClass() == ShuffleVectorExprClass;
1519  }
1520  static bool classof(const ShuffleVectorExpr *) { return true; }
1521
1522  ~ShuffleVectorExpr() {
1523    delete [] SubExprs;
1524  }
1525
1526  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
1527  /// constant expression, the actual arguments passed in, and the function
1528  /// pointers.
1529  unsigned getNumSubExprs() const { return NumExprs; }
1530
1531  /// getExpr - Return the Expr at the specified index.
1532  Expr *getExpr(unsigned Index) {
1533    assert((Index < NumExprs) && "Arg access out of range!");
1534    return cast<Expr>(SubExprs[Index]);
1535  }
1536  const Expr *getExpr(unsigned Index) const {
1537    assert((Index < NumExprs) && "Arg access out of range!");
1538    return cast<Expr>(SubExprs[Index]);
1539  }
1540
1541  unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) {
1542    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
1543    return getExpr(N+2)->getIntegerConstantExprValue(Ctx).getZExtValue();
1544  }
1545
1546  // Iterators
1547  virtual child_iterator child_begin();
1548  virtual child_iterator child_end();
1549
1550  virtual void EmitImpl(llvm::Serializer& S) const;
1551  static ShuffleVectorExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1552};
1553
1554/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
1555/// This AST node is similar to the conditional operator (?:) in C, with
1556/// the following exceptions:
1557/// - the test expression must be a integer constant expression.
1558/// - the expression returned acts like the chosen subexpression in every
1559///   visible way: the type is the same as that of the chosen subexpression,
1560///   and all predicates (whether it's an l-value, whether it's an integer
1561///   constant expression, etc.) return the same result as for the chosen
1562///   sub-expression.
1563class ChooseExpr : public Expr {
1564  enum { COND, LHS, RHS, END_EXPR };
1565  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
1566  SourceLocation BuiltinLoc, RParenLoc;
1567public:
1568  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs, QualType t,
1569             SourceLocation RP)
1570    : Expr(ChooseExprClass, t),
1571      BuiltinLoc(BLoc), RParenLoc(RP) {
1572      SubExprs[COND] = cond;
1573      SubExprs[LHS] = lhs;
1574      SubExprs[RHS] = rhs;
1575    }
1576
1577  /// isConditionTrue - Return whether the condition is true (i.e. not
1578  /// equal to zero).
1579  bool isConditionTrue(ASTContext &C) const;
1580
1581  /// getChosenSubExpr - Return the subexpression chosen according to the
1582  /// condition.
1583  Expr *getChosenSubExpr(ASTContext &C) const {
1584    return isConditionTrue(C) ? getLHS() : getRHS();
1585  }
1586
1587  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
1588  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1589  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1590
1591  virtual SourceRange getSourceRange() const {
1592    return SourceRange(BuiltinLoc, RParenLoc);
1593  }
1594  static bool classof(const Stmt *T) {
1595    return T->getStmtClass() == ChooseExprClass;
1596  }
1597  static bool classof(const ChooseExpr *) { return true; }
1598
1599  // Iterators
1600  virtual child_iterator child_begin();
1601  virtual child_iterator child_end();
1602
1603  virtual void EmitImpl(llvm::Serializer& S) const;
1604  static ChooseExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1605};
1606
1607/// GNUNullExpr - Implements the GNU __null extension, which is a name
1608/// for a null pointer constant that has integral type (e.g., int or
1609/// long) and is the same size and alignment as a pointer. The __null
1610/// extension is typically only used by system headers, which define
1611/// NULL as __null in C++ rather than using 0 (which is an integer
1612/// that may not match the size of a pointer).
1613class GNUNullExpr : public Expr {
1614  /// TokenLoc - The location of the __null keyword.
1615  SourceLocation TokenLoc;
1616
1617public:
1618  GNUNullExpr(QualType Ty, SourceLocation Loc)
1619    : Expr(GNUNullExprClass, Ty), TokenLoc(Loc) { }
1620
1621  /// getTokenLocation - The location of the __null token.
1622  SourceLocation getTokenLocation() const { return TokenLoc; }
1623
1624  virtual SourceRange getSourceRange() const {
1625    return SourceRange(TokenLoc);
1626  }
1627  static bool classof(const Stmt *T) {
1628    return T->getStmtClass() == GNUNullExprClass;
1629  }
1630  static bool classof(const GNUNullExpr *) { return true; }
1631
1632  // Iterators
1633  virtual child_iterator child_begin();
1634  virtual child_iterator child_end();
1635
1636  virtual void EmitImpl(llvm::Serializer& S) const;
1637  static GNUNullExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1638};
1639
1640/// VAArgExpr, used for the builtin function __builtin_va_start.
1641class VAArgExpr : public Expr {
1642  Stmt *Val;
1643  SourceLocation BuiltinLoc, RParenLoc;
1644public:
1645  VAArgExpr(SourceLocation BLoc, Expr* e, QualType t, SourceLocation RPLoc)
1646    : Expr(VAArgExprClass, t),
1647      Val(e),
1648      BuiltinLoc(BLoc),
1649      RParenLoc(RPLoc) { }
1650
1651  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1652  Expr *getSubExpr() { return cast<Expr>(Val); }
1653  virtual SourceRange getSourceRange() const {
1654    return SourceRange(BuiltinLoc, RParenLoc);
1655  }
1656  static bool classof(const Stmt *T) {
1657    return T->getStmtClass() == VAArgExprClass;
1658  }
1659  static bool classof(const VAArgExpr *) { return true; }
1660
1661  // Iterators
1662  virtual child_iterator child_begin();
1663  virtual child_iterator child_end();
1664
1665  virtual void EmitImpl(llvm::Serializer& S) const;
1666  static VAArgExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1667};
1668
1669/// @brief Describes an C or C++ initializer list.
1670///
1671/// InitListExpr describes an initializer list, which can be used to
1672/// initialize objects of different types, including
1673/// struct/class/union types, arrays, and vectors. For example:
1674///
1675/// @code
1676/// struct foo x = { 1, { 2, 3 } };
1677/// @endcode
1678///
1679/// Prior to semantic analysis, an initializer list will represent the
1680/// initializer list as written by the user, but will have the
1681/// placeholder type "void". This initializer list is called the
1682/// syntactic form of the initializer, and may contain C99 designated
1683/// initializers (represented as DesignatedInitExprs), initializations
1684/// of subobject members without explicit braces, and so on. Clients
1685/// interested in the original syntax of the initializer list should
1686/// use the syntactic form of the initializer list.
1687///
1688/// After semantic analysis, the initializer list will represent the
1689/// semantic form of the initializer, where the initializations of all
1690/// subobjects are made explicit with nested InitListExpr nodes and
1691/// C99 designators have been eliminated by placing the designated
1692/// initializations into the subobject they initialize. Additionally,
1693/// any "holes" in the initialization, where no initializer has been
1694/// specified for a particular subobject, will be replaced with
1695/// implicitly-generated ImplicitValueInitExpr expressions that
1696/// value-initialize the subobjects. Note, however, that the
1697/// initializer lists may still have fewer initializers than there are
1698/// elements to initialize within the object.
1699///
1700/// Given the semantic form of the initializer list, one can retrieve
1701/// the original syntactic form of that initializer list (if it
1702/// exists) using getSyntacticForm(). Since many initializer lists
1703/// have the same syntactic and semantic forms, getSyntacticForm() may
1704/// return NULL, indicating that the current initializer list also
1705/// serves as its syntactic form.
1706class InitListExpr : public Expr {
1707  std::vector<Stmt *> InitExprs;
1708  SourceLocation LBraceLoc, RBraceLoc;
1709
1710  /// Contains the initializer list that describes the syntactic form
1711  /// written in the source code.
1712  InitListExpr *SyntacticForm;
1713
1714  /// If this initializer list initializes a union, specifies which
1715  /// field within the union will be initialized.
1716  FieldDecl *UnionFieldInit;
1717
1718  /// Whether this initializer list originally had a GNU array-range
1719  /// designator in it. This is a temporary marker used by CodeGen.
1720  bool HadArrayRangeDesignator;
1721
1722public:
1723  InitListExpr(SourceLocation lbraceloc, Expr **initexprs, unsigned numinits,
1724               SourceLocation rbraceloc);
1725
1726  unsigned getNumInits() const { return InitExprs.size(); }
1727
1728  const Expr* getInit(unsigned Init) const {
1729    assert(Init < getNumInits() && "Initializer access out of range!");
1730    return cast_or_null<Expr>(InitExprs[Init]);
1731  }
1732
1733  Expr* getInit(unsigned Init) {
1734    assert(Init < getNumInits() && "Initializer access out of range!");
1735    return cast_or_null<Expr>(InitExprs[Init]);
1736  }
1737
1738  void setInit(unsigned Init, Expr *expr) {
1739    assert(Init < getNumInits() && "Initializer access out of range!");
1740    InitExprs[Init] = expr;
1741  }
1742
1743  /// @brief Specify the number of initializers
1744  ///
1745  /// If there are more than @p NumInits initializers, the remaining
1746  /// initializers will be destroyed. If there are fewer than @p
1747  /// NumInits initializers, NULL expressions will be added for the
1748  /// unknown initializers.
1749  void resizeInits(ASTContext &Context, unsigned NumInits);
1750
1751  /// @brief Updates the initializer at index @p Init with the new
1752  /// expression @p expr, and returns the old expression at that
1753  /// location.
1754  ///
1755  /// When @p Init is out of range for this initializer list, the
1756  /// initializer list will be extended with NULL expressions to
1757  /// accomodate the new entry.
1758  Expr *updateInit(unsigned Init, Expr *expr);
1759
1760  /// \brief If this initializes a union, specifies which field in the
1761  /// union to initialize.
1762  ///
1763  /// Typically, this field is the first named field within the
1764  /// union. However, a designated initializer can specify the
1765  /// initialization of a different field within the union.
1766  FieldDecl *getInitializedFieldInUnion() { return UnionFieldInit; }
1767  void setInitializedFieldInUnion(FieldDecl *FD) { UnionFieldInit = FD; }
1768
1769  // Explicit InitListExpr's originate from source code (and have valid source
1770  // locations). Implicit InitListExpr's are created by the semantic analyzer.
1771  bool isExplicit() {
1772    return LBraceLoc.isValid() && RBraceLoc.isValid();
1773  }
1774
1775  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
1776
1777  /// @brief Retrieve the initializer list that describes the
1778  /// syntactic form of the initializer.
1779  ///
1780  ///
1781  InitListExpr *getSyntacticForm() const { return SyntacticForm; }
1782  void setSyntacticForm(InitListExpr *Init) { SyntacticForm = Init; }
1783
1784  bool hadArrayRangeDesignator() const { return HadArrayRangeDesignator; }
1785  void sawArrayRangeDesignator() {
1786    HadArrayRangeDesignator = true;
1787  }
1788
1789  virtual SourceRange getSourceRange() const {
1790    return SourceRange(LBraceLoc, RBraceLoc);
1791  }
1792  static bool classof(const Stmt *T) {
1793    return T->getStmtClass() == InitListExprClass;
1794  }
1795  static bool classof(const InitListExpr *) { return true; }
1796
1797  // Iterators
1798  virtual child_iterator child_begin();
1799  virtual child_iterator child_end();
1800
1801  typedef std::vector<Stmt *>::iterator iterator;
1802  typedef std::vector<Stmt *>::reverse_iterator reverse_iterator;
1803
1804  iterator begin() { return InitExprs.begin(); }
1805  iterator end() { return InitExprs.end(); }
1806  reverse_iterator rbegin() { return InitExprs.rbegin(); }
1807  reverse_iterator rend() { return InitExprs.rend(); }
1808
1809  // Serailization.
1810  virtual void EmitImpl(llvm::Serializer& S) const;
1811  static InitListExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1812
1813private:
1814  // Used by serializer.
1815  InitListExpr() : Expr(InitListExprClass, QualType()) {}
1816};
1817
1818/// @brief Represents a C99 designated initializer expression.
1819///
1820/// A designated initializer expression (C99 6.7.8) contains one or
1821/// more designators (which can be field designators, array
1822/// designators, or GNU array-range designators) followed by an
1823/// expression that initializes the field or element(s) that the
1824/// designators refer to. For example, given:
1825///
1826/// @code
1827/// struct point {
1828///   double x;
1829///   double y;
1830/// };
1831/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
1832/// @endcode
1833///
1834/// The InitListExpr contains three DesignatedInitExprs, the first of
1835/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
1836/// designators, one array designator for @c [2] followed by one field
1837/// designator for @c .y. The initalization expression will be 1.0.
1838class DesignatedInitExpr : public Expr {
1839  /// The location of the '=' or ':' prior to the actual initializer
1840  /// expression.
1841  SourceLocation EqualOrColonLoc;
1842
1843  /// Whether this designated initializer used the GNU deprecated ':'
1844  /// syntax rather than the C99 '=' syntax.
1845  bool UsesColonSyntax : 1;
1846
1847  /// The number of designators in this initializer expression.
1848  unsigned NumDesignators : 15;
1849
1850  /// The number of subexpressions of this initializer expression,
1851  /// which contains both the initializer and any additional
1852  /// expressions used by array and array-range designators.
1853  unsigned NumSubExprs : 16;
1854
1855  DesignatedInitExpr(QualType Ty, unsigned NumDesignators,
1856                     SourceLocation EqualOrColonLoc, bool UsesColonSyntax,
1857                     unsigned NumSubExprs)
1858    : Expr(DesignatedInitExprClass, Ty),
1859      EqualOrColonLoc(EqualOrColonLoc), UsesColonSyntax(UsesColonSyntax),
1860      NumDesignators(NumDesignators), NumSubExprs(NumSubExprs) { }
1861
1862public:
1863  /// A field designator, e.g., ".x".
1864  struct FieldDesignator {
1865    /// Refers to the field that is being initialized. The low bit
1866    /// of this field determines whether this is actually a pointer
1867    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
1868    /// initially constructed, a field designator will store an
1869    /// IdentifierInfo*. After semantic analysis has resolved that
1870    /// name, the field designator will instead store a FieldDecl*.
1871    uintptr_t NameOrField;
1872
1873    /// The location of the '.' in the designated initializer.
1874    unsigned DotLoc;
1875
1876    /// The location of the field name in the designated initializer.
1877    unsigned FieldLoc;
1878  };
1879
1880  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
1881  struct ArrayOrRangeDesignator {
1882    /// Location of the first index expression within the designated
1883    /// initializer expression's list of subexpressions.
1884    unsigned Index;
1885    /// The location of the '[' starting the array range designator.
1886    unsigned LBracketLoc;
1887    /// The location of the ellipsis separating the start and end
1888    /// indices. Only valid for GNU array-range designators.
1889    unsigned EllipsisLoc;
1890    /// The location of the ']' terminating the array range designator.
1891    unsigned RBracketLoc;
1892  };
1893
1894  /// @brief Represents a single C99 designator.
1895  ///
1896  /// @todo This class is infuriatingly similar to clang::Designator,
1897  /// but minor differences (storing indices vs. storing pointers)
1898  /// keep us from reusing it. Try harder, later, to rectify these
1899  /// differences.
1900  class Designator {
1901    /// @brief The kind of designator this describes.
1902    enum {
1903      FieldDesignator,
1904      ArrayDesignator,
1905      ArrayRangeDesignator
1906    } Kind;
1907
1908    union {
1909      /// A field designator, e.g., ".x".
1910      struct FieldDesignator Field;
1911      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
1912      struct ArrayOrRangeDesignator ArrayOrRange;
1913    };
1914    friend class DesignatedInitExpr;
1915
1916  public:
1917    /// @brief Initializes a field designator.
1918    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
1919               SourceLocation FieldLoc)
1920      : Kind(FieldDesignator) {
1921      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
1922      Field.DotLoc = DotLoc.getRawEncoding();
1923      Field.FieldLoc = FieldLoc.getRawEncoding();
1924    }
1925
1926    /// @brief Initializes an array designator.
1927    Designator(unsigned Index, SourceLocation LBracketLoc,
1928               SourceLocation RBracketLoc)
1929      : Kind(ArrayDesignator) {
1930      ArrayOrRange.Index = Index;
1931      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
1932      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
1933      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
1934    }
1935
1936    /// @brief Initializes a GNU array-range designator.
1937    Designator(unsigned Index, SourceLocation LBracketLoc,
1938               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
1939      : Kind(ArrayRangeDesignator) {
1940      ArrayOrRange.Index = Index;
1941      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
1942      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
1943      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
1944    }
1945
1946    bool isFieldDesignator() const { return Kind == FieldDesignator; }
1947    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
1948    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
1949
1950    IdentifierInfo * getFieldName();
1951
1952    FieldDecl *getField() {
1953      assert(Kind == FieldDesignator && "Only valid on a field designator");
1954      if (Field.NameOrField & 0x01)
1955        return 0;
1956      else
1957        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
1958    }
1959
1960    void setField(FieldDecl *FD) {
1961      assert(Kind == FieldDesignator && "Only valid on a field designator");
1962      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
1963    }
1964
1965    SourceLocation getDotLoc() const {
1966      assert(Kind == FieldDesignator && "Only valid on a field designator");
1967      return SourceLocation::getFromRawEncoding(Field.DotLoc);
1968    }
1969
1970    SourceLocation getFieldLoc() const {
1971      assert(Kind == FieldDesignator && "Only valid on a field designator");
1972      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
1973    }
1974
1975    SourceLocation getLBracketLoc() const {
1976      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
1977             "Only valid on an array or array-range designator");
1978      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
1979    }
1980
1981    SourceLocation getRBracketLoc() const {
1982      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
1983             "Only valid on an array or array-range designator");
1984      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
1985    }
1986
1987    SourceLocation getEllipsisLoc() const {
1988      assert(Kind == ArrayRangeDesignator &&
1989             "Only valid on an array-range designator");
1990      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
1991    }
1992
1993    SourceLocation getStartLocation() const {
1994      if (Kind == FieldDesignator)
1995        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
1996      else
1997        return getLBracketLoc();
1998    }
1999  };
2000
2001  static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators,
2002                                    unsigned NumDesignators,
2003                                    Expr **IndexExprs, unsigned NumIndexExprs,
2004                                    SourceLocation EqualOrColonLoc,
2005                                    bool UsesColonSyntax, Expr *Init);
2006
2007  /// @brief Returns the number of designators in this initializer.
2008  unsigned size() const { return NumDesignators; }
2009
2010  // Iterator access to the designators.
2011  typedef Designator* designators_iterator;
2012  designators_iterator designators_begin();
2013  designators_iterator designators_end();
2014
2015  Expr *getArrayIndex(const Designator& D);
2016  Expr *getArrayRangeStart(const Designator& D);
2017  Expr *getArrayRangeEnd(const Designator& D);
2018
2019  /// @brief Retrieve the location of the '=' that precedes the
2020  /// initializer value itself, if present.
2021  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
2022
2023  /// @brief Determines whether this designated initializer used the
2024  /// GNU 'fieldname:' syntax or the C99 '=' syntax.
2025  bool usesColonSyntax() const { return UsesColonSyntax; }
2026
2027  /// @brief Retrieve the initializer value.
2028  Expr *getInit() const {
2029    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
2030  }
2031
2032  void setInit(Expr *init) {
2033    *child_begin() = init;
2034  }
2035
2036  virtual SourceRange getSourceRange() const;
2037
2038  static bool classof(const Stmt *T) {
2039    return T->getStmtClass() == DesignatedInitExprClass;
2040  }
2041  static bool classof(const DesignatedInitExpr *) { return true; }
2042
2043  // Iterators
2044  virtual child_iterator child_begin();
2045  virtual child_iterator child_end();
2046};
2047
2048/// \brief Represents an implicitly-generated value initialization of
2049/// an object of a given type.
2050///
2051/// Implicit value initializations occur within semantic initializer
2052/// list expressions (InitListExpr) as placeholders for subobject
2053/// initializations not explicitly specified by the user.
2054///
2055/// \see InitListExpr
2056class ImplicitValueInitExpr : public Expr {
2057public:
2058  explicit ImplicitValueInitExpr(QualType ty)
2059    : Expr(ImplicitValueInitExprClass, ty) { }
2060
2061  static bool classof(const Stmt *T) {
2062    return T->getStmtClass() == ImplicitValueInitExprClass;
2063  }
2064  static bool classof(const ImplicitValueInitExpr *) { return true; }
2065
2066  virtual SourceRange getSourceRange() const {
2067    return SourceRange();
2068  }
2069
2070  // Iterators
2071  virtual child_iterator child_begin();
2072  virtual child_iterator child_end();
2073};
2074
2075//===----------------------------------------------------------------------===//
2076// Clang Extensions
2077//===----------------------------------------------------------------------===//
2078
2079
2080/// ExtVectorElementExpr - This represents access to specific elements of a
2081/// vector, and may occur on the left hand side or right hand side.  For example
2082/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
2083///
2084/// Note that the base may have either vector or pointer to vector type, just
2085/// like a struct field reference.
2086///
2087class ExtVectorElementExpr : public Expr {
2088  Stmt *Base;
2089  IdentifierInfo &Accessor;
2090  SourceLocation AccessorLoc;
2091public:
2092  ExtVectorElementExpr(QualType ty, Expr *base, IdentifierInfo &accessor,
2093                       SourceLocation loc)
2094    : Expr(ExtVectorElementExprClass, ty),
2095      Base(base), Accessor(accessor), AccessorLoc(loc) {}
2096
2097  const Expr *getBase() const { return cast<Expr>(Base); }
2098  Expr *getBase() { return cast<Expr>(Base); }
2099
2100  IdentifierInfo &getAccessor() const { return Accessor; }
2101
2102  /// getNumElements - Get the number of components being selected.
2103  unsigned getNumElements() const;
2104
2105  /// containsDuplicateElements - Return true if any element access is
2106  /// repeated.
2107  bool containsDuplicateElements() const;
2108
2109  /// getEncodedElementAccess - Encode the elements accessed into an llvm
2110  /// aggregate Constant of ConstantInt(s).
2111  void getEncodedElementAccess(llvm::SmallVectorImpl<unsigned> &Elts) const;
2112
2113  virtual SourceRange getSourceRange() const {
2114    return SourceRange(getBase()->getLocStart(), AccessorLoc);
2115  }
2116
2117  /// isArrow - Return true if the base expression is a pointer to vector,
2118  /// return false if the base expression is a vector.
2119  bool isArrow() const;
2120
2121  static bool classof(const Stmt *T) {
2122    return T->getStmtClass() == ExtVectorElementExprClass;
2123  }
2124  static bool classof(const ExtVectorElementExpr *) { return true; }
2125
2126  // Iterators
2127  virtual child_iterator child_begin();
2128  virtual child_iterator child_end();
2129
2130  virtual void EmitImpl(llvm::Serializer& S) const;
2131  static ExtVectorElementExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
2132};
2133
2134
2135/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
2136/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
2137class BlockExpr : public Expr {
2138protected:
2139  BlockDecl *TheBlock;
2140  bool HasBlockDeclRefExprs;
2141public:
2142  BlockExpr(BlockDecl *BD, QualType ty, bool hasBlockDeclRefExprs)
2143    : Expr(BlockExprClass, ty),
2144      TheBlock(BD), HasBlockDeclRefExprs(hasBlockDeclRefExprs) {}
2145
2146  const BlockDecl *getBlockDecl() const { return TheBlock; }
2147  BlockDecl *getBlockDecl() { return TheBlock; }
2148
2149  // Convenience functions for probing the underlying BlockDecl.
2150  SourceLocation getCaretLocation() const;
2151  const Stmt *getBody() const;
2152  Stmt *getBody();
2153
2154  virtual SourceRange getSourceRange() const {
2155    return SourceRange(getCaretLocation(), getBody()->getLocEnd());
2156  }
2157
2158  /// getFunctionType - Return the underlying function type for this block.
2159  const FunctionType *getFunctionType() const;
2160
2161  /// hasBlockDeclRefExprs - Return true iff the block has BlockDeclRefExpr
2162  /// contained inside.
2163  bool hasBlockDeclRefExprs() const { return HasBlockDeclRefExprs; }
2164
2165  static bool classof(const Stmt *T) {
2166    return T->getStmtClass() == BlockExprClass;
2167  }
2168  static bool classof(const BlockExpr *) { return true; }
2169
2170  // Iterators
2171  virtual child_iterator child_begin();
2172  virtual child_iterator child_end();
2173
2174  virtual void EmitImpl(llvm::Serializer& S) const;
2175  static BlockExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
2176};
2177
2178/// BlockDeclRefExpr - A reference to a declared variable, function,
2179/// enum, etc.
2180class BlockDeclRefExpr : public Expr {
2181  ValueDecl *D;
2182  SourceLocation Loc;
2183  bool IsByRef;
2184public:
2185  BlockDeclRefExpr(ValueDecl *d, QualType t, SourceLocation l, bool ByRef) :
2186       Expr(BlockDeclRefExprClass, t), D(d), Loc(l), IsByRef(ByRef) {}
2187
2188  ValueDecl *getDecl() { return D; }
2189  const ValueDecl *getDecl() const { return D; }
2190  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
2191
2192  bool isByRef() const { return IsByRef; }
2193
2194  static bool classof(const Stmt *T) {
2195    return T->getStmtClass() == BlockDeclRefExprClass;
2196  }
2197  static bool classof(const BlockDeclRefExpr *) { return true; }
2198
2199  // Iterators
2200  virtual child_iterator child_begin();
2201  virtual child_iterator child_end();
2202
2203  virtual void EmitImpl(llvm::Serializer& S) const;
2204  static BlockDeclRefExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
2205};
2206
2207}  // end namespace clang
2208
2209#endif
2210