Expr.h revision bafa74f360cb3ec82fa8c688845330f491d167fd
1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/ASTVector.h"
19#include "clang/AST/Decl.h"
20#include "clang/AST/DeclAccessPair.h"
21#include "clang/AST/OperationKinds.h"
22#include "clang/AST/Stmt.h"
23#include "clang/AST/TemplateBase.h"
24#include "clang/AST/Type.h"
25#include "clang/Basic/CharInfo.h"
26#include "clang/Basic/TypeTraits.h"
27#include "llvm/ADT/APFloat.h"
28#include "llvm/ADT/APSInt.h"
29#include "llvm/ADT/SmallVector.h"
30#include "llvm/ADT/StringRef.h"
31#include "llvm/Support/Compiler.h"
32
33namespace clang {
34  class APValue;
35  class ASTContext;
36  class BlockDecl;
37  class CXXBaseSpecifier;
38  class CXXMemberCallExpr;
39  class CXXOperatorCallExpr;
40  class CastExpr;
41  class Decl;
42  class IdentifierInfo;
43  class MaterializeTemporaryExpr;
44  class NamedDecl;
45  class ObjCPropertyRefExpr;
46  class OpaqueValueExpr;
47  class ParmVarDecl;
48  class TargetInfo;
49  class ValueDecl;
50
51/// \brief A simple array of base specifiers.
52typedef SmallVector<CXXBaseSpecifier*, 4> CXXCastPath;
53
54/// \brief An adjustment to be made to the temporary created when emitting a
55/// reference binding, which accesses a particular subobject of that temporary.
56struct SubobjectAdjustment {
57  enum {
58    DerivedToBaseAdjustment,
59    FieldAdjustment,
60    MemberPointerAdjustment
61  } Kind;
62
63
64  struct DTB {
65    const CastExpr *BasePath;
66    const CXXRecordDecl *DerivedClass;
67  };
68
69  struct P {
70    const MemberPointerType *MPT;
71    Expr *RHS;
72  };
73
74  union {
75    struct DTB DerivedToBase;
76    FieldDecl *Field;
77    struct P Ptr;
78  };
79
80  SubobjectAdjustment(const CastExpr *BasePath,
81                      const CXXRecordDecl *DerivedClass)
82    : Kind(DerivedToBaseAdjustment) {
83    DerivedToBase.BasePath = BasePath;
84    DerivedToBase.DerivedClass = DerivedClass;
85  }
86
87  SubobjectAdjustment(FieldDecl *Field)
88    : Kind(FieldAdjustment) {
89    this->Field = Field;
90  }
91
92  SubobjectAdjustment(const MemberPointerType *MPT, Expr *RHS)
93    : Kind(MemberPointerAdjustment) {
94    this->Ptr.MPT = MPT;
95    this->Ptr.RHS = RHS;
96  }
97};
98
99/// Expr - This represents one expression.  Note that Expr's are subclasses of
100/// Stmt.  This allows an expression to be transparently used any place a Stmt
101/// is required.
102///
103class Expr : public Stmt {
104  QualType TR;
105
106protected:
107  Expr(StmtClass SC, QualType T, ExprValueKind VK, ExprObjectKind OK,
108       bool TD, bool VD, bool ID, bool ContainsUnexpandedParameterPack)
109    : Stmt(SC)
110  {
111    ExprBits.TypeDependent = TD;
112    ExprBits.ValueDependent = VD;
113    ExprBits.InstantiationDependent = ID;
114    ExprBits.ValueKind = VK;
115    ExprBits.ObjectKind = OK;
116    ExprBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
117    setType(T);
118  }
119
120  /// \brief Construct an empty expression.
121  explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
122
123public:
124  QualType getType() const { return TR; }
125  void setType(QualType t) {
126    // In C++, the type of an expression is always adjusted so that it
127    // will not have reference type an expression will never have
128    // reference type (C++ [expr]p6). Use
129    // QualType::getNonReferenceType() to retrieve the non-reference
130    // type. Additionally, inspect Expr::isLvalue to determine whether
131    // an expression that is adjusted in this manner should be
132    // considered an lvalue.
133    assert((t.isNull() || !t->isReferenceType()) &&
134           "Expressions can't have reference type");
135
136    TR = t;
137  }
138
139  /// isValueDependent - Determines whether this expression is
140  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
141  /// array bound of "Chars" in the following example is
142  /// value-dependent.
143  /// @code
144  /// template<int Size, char (&Chars)[Size]> struct meta_string;
145  /// @endcode
146  bool isValueDependent() const { return ExprBits.ValueDependent; }
147
148  /// \brief Set whether this expression is value-dependent or not.
149  void setValueDependent(bool VD) {
150    ExprBits.ValueDependent = VD;
151    if (VD)
152      ExprBits.InstantiationDependent = true;
153  }
154
155  /// isTypeDependent - Determines whether this expression is
156  /// type-dependent (C++ [temp.dep.expr]), which means that its type
157  /// could change from one template instantiation to the next. For
158  /// example, the expressions "x" and "x + y" are type-dependent in
159  /// the following code, but "y" is not type-dependent:
160  /// @code
161  /// template<typename T>
162  /// void add(T x, int y) {
163  ///   x + y;
164  /// }
165  /// @endcode
166  bool isTypeDependent() const { return ExprBits.TypeDependent; }
167
168  /// \brief Set whether this expression is type-dependent or not.
169  void setTypeDependent(bool TD) {
170    ExprBits.TypeDependent = TD;
171    if (TD)
172      ExprBits.InstantiationDependent = true;
173  }
174
175  /// \brief Whether this expression is instantiation-dependent, meaning that
176  /// it depends in some way on a template parameter, even if neither its type
177  /// nor (constant) value can change due to the template instantiation.
178  ///
179  /// In the following example, the expression \c sizeof(sizeof(T() + T())) is
180  /// instantiation-dependent (since it involves a template parameter \c T), but
181  /// is neither type- nor value-dependent, since the type of the inner
182  /// \c sizeof is known (\c std::size_t) and therefore the size of the outer
183  /// \c sizeof is known.
184  ///
185  /// \code
186  /// template<typename T>
187  /// void f(T x, T y) {
188  ///   sizeof(sizeof(T() + T());
189  /// }
190  /// \endcode
191  ///
192  bool isInstantiationDependent() const {
193    return ExprBits.InstantiationDependent;
194  }
195
196  /// \brief Set whether this expression is instantiation-dependent or not.
197  void setInstantiationDependent(bool ID) {
198    ExprBits.InstantiationDependent = ID;
199  }
200
201  /// \brief Whether this expression contains an unexpanded parameter
202  /// pack (for C++11 variadic templates).
203  ///
204  /// Given the following function template:
205  ///
206  /// \code
207  /// template<typename F, typename ...Types>
208  /// void forward(const F &f, Types &&...args) {
209  ///   f(static_cast<Types&&>(args)...);
210  /// }
211  /// \endcode
212  ///
213  /// The expressions \c args and \c static_cast<Types&&>(args) both
214  /// contain parameter packs.
215  bool containsUnexpandedParameterPack() const {
216    return ExprBits.ContainsUnexpandedParameterPack;
217  }
218
219  /// \brief Set the bit that describes whether this expression
220  /// contains an unexpanded parameter pack.
221  void setContainsUnexpandedParameterPack(bool PP = true) {
222    ExprBits.ContainsUnexpandedParameterPack = PP;
223  }
224
225  /// getExprLoc - Return the preferred location for the arrow when diagnosing
226  /// a problem with a generic expression.
227  SourceLocation getExprLoc() const LLVM_READONLY;
228
229  /// isUnusedResultAWarning - Return true if this immediate expression should
230  /// be warned about if the result is unused.  If so, fill in expr, location,
231  /// and ranges with expr to warn on and source locations/ranges appropriate
232  /// for a warning.
233  bool isUnusedResultAWarning(const Expr *&WarnExpr, SourceLocation &Loc,
234                              SourceRange &R1, SourceRange &R2,
235                              ASTContext &Ctx) const;
236
237  /// isLValue - True if this expression is an "l-value" according to
238  /// the rules of the current language.  C and C++ give somewhat
239  /// different rules for this concept, but in general, the result of
240  /// an l-value expression identifies a specific object whereas the
241  /// result of an r-value expression is a value detached from any
242  /// specific storage.
243  ///
244  /// C++11 divides the concept of "r-value" into pure r-values
245  /// ("pr-values") and so-called expiring values ("x-values"), which
246  /// identify specific objects that can be safely cannibalized for
247  /// their resources.  This is an unfortunate abuse of terminology on
248  /// the part of the C++ committee.  In Clang, when we say "r-value",
249  /// we generally mean a pr-value.
250  bool isLValue() const { return getValueKind() == VK_LValue; }
251  bool isRValue() const { return getValueKind() == VK_RValue; }
252  bool isXValue() const { return getValueKind() == VK_XValue; }
253  bool isGLValue() const { return getValueKind() != VK_RValue; }
254
255  enum LValueClassification {
256    LV_Valid,
257    LV_NotObjectType,
258    LV_IncompleteVoidType,
259    LV_DuplicateVectorComponents,
260    LV_InvalidExpression,
261    LV_InvalidMessageExpression,
262    LV_MemberFunction,
263    LV_SubObjCPropertySetting,
264    LV_ClassTemporary,
265    LV_ArrayTemporary
266  };
267  /// Reasons why an expression might not be an l-value.
268  LValueClassification ClassifyLValue(ASTContext &Ctx) const;
269
270  enum isModifiableLvalueResult {
271    MLV_Valid,
272    MLV_NotObjectType,
273    MLV_IncompleteVoidType,
274    MLV_DuplicateVectorComponents,
275    MLV_InvalidExpression,
276    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
277    MLV_IncompleteType,
278    MLV_ConstQualified,
279    MLV_ArrayType,
280    MLV_NoSetterProperty,
281    MLV_MemberFunction,
282    MLV_SubObjCPropertySetting,
283    MLV_InvalidMessageExpression,
284    MLV_ClassTemporary,
285    MLV_ArrayTemporary
286  };
287  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
288  /// does not have an incomplete type, does not have a const-qualified type,
289  /// and if it is a structure or union, does not have any member (including,
290  /// recursively, any member or element of all contained aggregates or unions)
291  /// with a const-qualified type.
292  ///
293  /// \param Loc [in,out] - A source location which *may* be filled
294  /// in with the location of the expression making this a
295  /// non-modifiable lvalue, if specified.
296  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx,
297                                              SourceLocation *Loc = 0) const;
298
299  /// \brief The return type of classify(). Represents the C++11 expression
300  ///        taxonomy.
301  class Classification {
302  public:
303    /// \brief The various classification results. Most of these mean prvalue.
304    enum Kinds {
305      CL_LValue,
306      CL_XValue,
307      CL_Function, // Functions cannot be lvalues in C.
308      CL_Void, // Void cannot be an lvalue in C.
309      CL_AddressableVoid, // Void expression whose address can be taken in C.
310      CL_DuplicateVectorComponents, // A vector shuffle with dupes.
311      CL_MemberFunction, // An expression referring to a member function
312      CL_SubObjCPropertySetting,
313      CL_ClassTemporary, // A temporary of class type, or subobject thereof.
314      CL_ArrayTemporary, // A temporary of array type.
315      CL_ObjCMessageRValue, // ObjC message is an rvalue
316      CL_PRValue // A prvalue for any other reason, of any other type
317    };
318    /// \brief The results of modification testing.
319    enum ModifiableType {
320      CM_Untested, // testModifiable was false.
321      CM_Modifiable,
322      CM_RValue, // Not modifiable because it's an rvalue
323      CM_Function, // Not modifiable because it's a function; C++ only
324      CM_LValueCast, // Same as CM_RValue, but indicates GCC cast-as-lvalue ext
325      CM_NoSetterProperty,// Implicit assignment to ObjC property without setter
326      CM_ConstQualified,
327      CM_ArrayType,
328      CM_IncompleteType
329    };
330
331  private:
332    friend class Expr;
333
334    unsigned short Kind;
335    unsigned short Modifiable;
336
337    explicit Classification(Kinds k, ModifiableType m)
338      : Kind(k), Modifiable(m)
339    {}
340
341  public:
342    Classification() {}
343
344    Kinds getKind() const { return static_cast<Kinds>(Kind); }
345    ModifiableType getModifiable() const {
346      assert(Modifiable != CM_Untested && "Did not test for modifiability.");
347      return static_cast<ModifiableType>(Modifiable);
348    }
349    bool isLValue() const { return Kind == CL_LValue; }
350    bool isXValue() const { return Kind == CL_XValue; }
351    bool isGLValue() const { return Kind <= CL_XValue; }
352    bool isPRValue() const { return Kind >= CL_Function; }
353    bool isRValue() const { return Kind >= CL_XValue; }
354    bool isModifiable() const { return getModifiable() == CM_Modifiable; }
355
356    /// \brief Create a simple, modifiably lvalue
357    static Classification makeSimpleLValue() {
358      return Classification(CL_LValue, CM_Modifiable);
359    }
360
361  };
362  /// \brief Classify - Classify this expression according to the C++11
363  ///        expression taxonomy.
364  ///
365  /// C++11 defines ([basic.lval]) a new taxonomy of expressions to replace the
366  /// old lvalue vs rvalue. This function determines the type of expression this
367  /// is. There are three expression types:
368  /// - lvalues are classical lvalues as in C++03.
369  /// - prvalues are equivalent to rvalues in C++03.
370  /// - xvalues are expressions yielding unnamed rvalue references, e.g. a
371  ///   function returning an rvalue reference.
372  /// lvalues and xvalues are collectively referred to as glvalues, while
373  /// prvalues and xvalues together form rvalues.
374  Classification Classify(ASTContext &Ctx) const {
375    return ClassifyImpl(Ctx, 0);
376  }
377
378  /// \brief ClassifyModifiable - Classify this expression according to the
379  ///        C++11 expression taxonomy, and see if it is valid on the left side
380  ///        of an assignment.
381  ///
382  /// This function extends classify in that it also tests whether the
383  /// expression is modifiable (C99 6.3.2.1p1).
384  /// \param Loc A source location that might be filled with a relevant location
385  ///            if the expression is not modifiable.
386  Classification ClassifyModifiable(ASTContext &Ctx, SourceLocation &Loc) const{
387    return ClassifyImpl(Ctx, &Loc);
388  }
389
390  /// getValueKindForType - Given a formal return or parameter type,
391  /// give its value kind.
392  static ExprValueKind getValueKindForType(QualType T) {
393    if (const ReferenceType *RT = T->getAs<ReferenceType>())
394      return (isa<LValueReferenceType>(RT)
395                ? VK_LValue
396                : (RT->getPointeeType()->isFunctionType()
397                     ? VK_LValue : VK_XValue));
398    return VK_RValue;
399  }
400
401  /// getValueKind - The value kind that this expression produces.
402  ExprValueKind getValueKind() const {
403    return static_cast<ExprValueKind>(ExprBits.ValueKind);
404  }
405
406  /// getObjectKind - The object kind that this expression produces.
407  /// Object kinds are meaningful only for expressions that yield an
408  /// l-value or x-value.
409  ExprObjectKind getObjectKind() const {
410    return static_cast<ExprObjectKind>(ExprBits.ObjectKind);
411  }
412
413  bool isOrdinaryOrBitFieldObject() const {
414    ExprObjectKind OK = getObjectKind();
415    return (OK == OK_Ordinary || OK == OK_BitField);
416  }
417
418  /// setValueKind - Set the value kind produced by this expression.
419  void setValueKind(ExprValueKind Cat) { ExprBits.ValueKind = Cat; }
420
421  /// setObjectKind - Set the object kind produced by this expression.
422  void setObjectKind(ExprObjectKind Cat) { ExprBits.ObjectKind = Cat; }
423
424private:
425  Classification ClassifyImpl(ASTContext &Ctx, SourceLocation *Loc) const;
426
427public:
428
429  /// \brief Returns true if this expression is a gl-value that
430  /// potentially refers to a bit-field.
431  ///
432  /// In C++, whether a gl-value refers to a bitfield is essentially
433  /// an aspect of the value-kind type system.
434  bool refersToBitField() const { return getObjectKind() == OK_BitField; }
435
436  /// \brief If this expression refers to a bit-field, retrieve the
437  /// declaration of that bit-field.
438  ///
439  /// Note that this returns a non-null pointer in subtly different
440  /// places than refersToBitField returns true.  In particular, this can
441  /// return a non-null pointer even for r-values loaded from
442  /// bit-fields, but it will return null for a conditional bit-field.
443  FieldDecl *getSourceBitField();
444
445  const FieldDecl *getSourceBitField() const {
446    return const_cast<Expr*>(this)->getSourceBitField();
447  }
448
449  /// \brief If this expression is an l-value for an Objective C
450  /// property, find the underlying property reference expression.
451  const ObjCPropertyRefExpr *getObjCProperty() const;
452
453  /// \brief Check if this expression is the ObjC 'self' implicit parameter.
454  bool isObjCSelfExpr() const;
455
456  /// \brief Returns whether this expression refers to a vector element.
457  bool refersToVectorElement() const;
458
459  /// \brief Returns whether this expression has a placeholder type.
460  bool hasPlaceholderType() const {
461    return getType()->isPlaceholderType();
462  }
463
464  /// \brief Returns whether this expression has a specific placeholder type.
465  bool hasPlaceholderType(BuiltinType::Kind K) const {
466    assert(BuiltinType::isPlaceholderTypeKind(K));
467    if (const BuiltinType *BT = dyn_cast<BuiltinType>(getType()))
468      return BT->getKind() == K;
469    return false;
470  }
471
472  /// isKnownToHaveBooleanValue - Return true if this is an integer expression
473  /// that is known to return 0 or 1.  This happens for _Bool/bool expressions
474  /// but also int expressions which are produced by things like comparisons in
475  /// C.
476  bool isKnownToHaveBooleanValue() const;
477
478  /// isIntegerConstantExpr - Return true if this expression is a valid integer
479  /// constant expression, and, if so, return its value in Result.  If not a
480  /// valid i-c-e, return false and fill in Loc (if specified) with the location
481  /// of the invalid expression.
482  ///
483  /// Note: This does not perform the implicit conversions required by C++11
484  /// [expr.const]p5.
485  bool isIntegerConstantExpr(llvm::APSInt &Result, const ASTContext &Ctx,
486                             SourceLocation *Loc = 0,
487                             bool isEvaluated = true) const;
488  bool isIntegerConstantExpr(const ASTContext &Ctx,
489                             SourceLocation *Loc = 0) const;
490
491  /// isCXX98IntegralConstantExpr - Return true if this expression is an
492  /// integral constant expression in C++98. Can only be used in C++.
493  bool isCXX98IntegralConstantExpr(const ASTContext &Ctx) const;
494
495  /// isCXX11ConstantExpr - Return true if this expression is a constant
496  /// expression in C++11. Can only be used in C++.
497  ///
498  /// Note: This does not perform the implicit conversions required by C++11
499  /// [expr.const]p5.
500  bool isCXX11ConstantExpr(const ASTContext &Ctx, APValue *Result = 0,
501                           SourceLocation *Loc = 0) const;
502
503  /// isPotentialConstantExpr - Return true if this function's definition
504  /// might be usable in a constant expression in C++11, if it were marked
505  /// constexpr. Return false if the function can never produce a constant
506  /// expression, along with diagnostics describing why not.
507  static bool isPotentialConstantExpr(const FunctionDecl *FD,
508                                      SmallVectorImpl<
509                                        PartialDiagnosticAt> &Diags);
510
511  /// isConstantInitializer - Returns true if this expression can be emitted to
512  /// IR as a constant, and thus can be used as a constant initializer in C.
513  bool isConstantInitializer(ASTContext &Ctx, bool ForRef) const;
514
515  /// EvalStatus is a struct with detailed info about an evaluation in progress.
516  struct EvalStatus {
517    /// HasSideEffects - Whether the evaluated expression has side effects.
518    /// For example, (f() && 0) can be folded, but it still has side effects.
519    bool HasSideEffects;
520
521    /// Diag - If this is non-null, it will be filled in with a stack of notes
522    /// indicating why evaluation failed (or why it failed to produce a constant
523    /// expression).
524    /// If the expression is unfoldable, the notes will indicate why it's not
525    /// foldable. If the expression is foldable, but not a constant expression,
526    /// the notes will describes why it isn't a constant expression. If the
527    /// expression *is* a constant expression, no notes will be produced.
528    SmallVectorImpl<PartialDiagnosticAt> *Diag;
529
530    EvalStatus() : HasSideEffects(false), Diag(0) {}
531
532    // hasSideEffects - Return true if the evaluated expression has
533    // side effects.
534    bool hasSideEffects() const {
535      return HasSideEffects;
536    }
537  };
538
539  /// EvalResult is a struct with detailed info about an evaluated expression.
540  struct EvalResult : EvalStatus {
541    /// Val - This is the value the expression can be folded to.
542    APValue Val;
543
544    // isGlobalLValue - Return true if the evaluated lvalue expression
545    // is global.
546    bool isGlobalLValue() const;
547  };
548
549  /// EvaluateAsRValue - Return true if this is a constant which we can fold to
550  /// an rvalue using any crazy technique (that has nothing to do with language
551  /// standards) that we want to, even if the expression has side-effects. If
552  /// this function returns true, it returns the folded constant in Result. If
553  /// the expression is a glvalue, an lvalue-to-rvalue conversion will be
554  /// applied.
555  bool EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx) const;
556
557  /// EvaluateAsBooleanCondition - Return true if this is a constant
558  /// which we we can fold and convert to a boolean condition using
559  /// any crazy technique that we want to, even if the expression has
560  /// side-effects.
561  bool EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx) const;
562
563  enum SideEffectsKind { SE_NoSideEffects, SE_AllowSideEffects };
564
565  /// EvaluateAsInt - Return true if this is a constant which we can fold and
566  /// convert to an integer, using any crazy technique that we want to.
567  bool EvaluateAsInt(llvm::APSInt &Result, const ASTContext &Ctx,
568                     SideEffectsKind AllowSideEffects = SE_NoSideEffects) const;
569
570  /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
571  /// constant folded without side-effects, but discard the result.
572  bool isEvaluatable(const ASTContext &Ctx) const;
573
574  /// HasSideEffects - This routine returns true for all those expressions
575  /// which have any effect other than producing a value. Example is a function
576  /// call, volatile variable read, or throwing an exception.
577  bool HasSideEffects(const ASTContext &Ctx) const;
578
579  /// \brief Determine whether this expression involves a call to any function
580  /// that is not trivial.
581  bool hasNonTrivialCall(ASTContext &Ctx);
582
583  /// EvaluateKnownConstInt - Call EvaluateAsRValue and return the folded
584  /// integer. This must be called on an expression that constant folds to an
585  /// integer.
586  llvm::APSInt EvaluateKnownConstInt(const ASTContext &Ctx,
587                          SmallVectorImpl<PartialDiagnosticAt> *Diag=0) const;
588
589  void EvaluateForOverflow(const ASTContext &Ctx) const;
590
591  /// EvaluateAsLValue - Evaluate an expression to see if we can fold it to an
592  /// lvalue with link time known address, with no side-effects.
593  bool EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const;
594
595  /// EvaluateAsInitializer - Evaluate an expression as if it were the
596  /// initializer of the given declaration. Returns true if the initializer
597  /// can be folded to a constant, and produces any relevant notes. In C++11,
598  /// notes will be produced if the expression is not a constant expression.
599  bool EvaluateAsInitializer(APValue &Result, const ASTContext &Ctx,
600                             const VarDecl *VD,
601                             SmallVectorImpl<PartialDiagnosticAt> &Notes) const;
602
603  /// \brief Enumeration used to describe the kind of Null pointer constant
604  /// returned from \c isNullPointerConstant().
605  enum NullPointerConstantKind {
606    /// \brief Expression is not a Null pointer constant.
607    NPCK_NotNull = 0,
608
609    /// \brief Expression is a Null pointer constant built from a zero integer
610    /// expression that is not a simple, possibly parenthesized, zero literal.
611    /// C++ Core Issue 903 will classify these expressions as "not pointers"
612    /// once it is adopted.
613    /// http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
614    NPCK_ZeroExpression,
615
616    /// \brief Expression is a Null pointer constant built from a literal zero.
617    NPCK_ZeroLiteral,
618
619    /// \brief Expression is a C++11 nullptr.
620    NPCK_CXX11_nullptr,
621
622    /// \brief Expression is a GNU-style __null constant.
623    NPCK_GNUNull
624  };
625
626  /// \brief Enumeration used to describe how \c isNullPointerConstant()
627  /// should cope with value-dependent expressions.
628  enum NullPointerConstantValueDependence {
629    /// \brief Specifies that the expression should never be value-dependent.
630    NPC_NeverValueDependent = 0,
631
632    /// \brief Specifies that a value-dependent expression of integral or
633    /// dependent type should be considered a null pointer constant.
634    NPC_ValueDependentIsNull,
635
636    /// \brief Specifies that a value-dependent expression should be considered
637    /// to never be a null pointer constant.
638    NPC_ValueDependentIsNotNull
639  };
640
641  /// isNullPointerConstant - C99 6.3.2.3p3 - Test if this reduces down to
642  /// a Null pointer constant. The return value can further distinguish the
643  /// kind of NULL pointer constant that was detected.
644  NullPointerConstantKind isNullPointerConstant(
645      ASTContext &Ctx,
646      NullPointerConstantValueDependence NPC) const;
647
648  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
649  /// write barrier.
650  bool isOBJCGCCandidate(ASTContext &Ctx) const;
651
652  /// \brief Returns true if this expression is a bound member function.
653  bool isBoundMemberFunction(ASTContext &Ctx) const;
654
655  /// \brief Given an expression of bound-member type, find the type
656  /// of the member.  Returns null if this is an *overloaded* bound
657  /// member expression.
658  static QualType findBoundMemberType(const Expr *expr);
659
660  /// IgnoreImpCasts - Skip past any implicit casts which might
661  /// surround this expression.  Only skips ImplicitCastExprs.
662  Expr *IgnoreImpCasts() LLVM_READONLY;
663
664  /// IgnoreImplicit - Skip past any implicit AST nodes which might
665  /// surround this expression.
666  Expr *IgnoreImplicit() LLVM_READONLY {
667    return cast<Expr>(Stmt::IgnoreImplicit());
668  }
669
670  const Expr *IgnoreImplicit() const LLVM_READONLY {
671    return const_cast<Expr*>(this)->IgnoreImplicit();
672  }
673
674  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
675  ///  its subexpression.  If that subexpression is also a ParenExpr,
676  ///  then this method recursively returns its subexpression, and so forth.
677  ///  Otherwise, the method returns the current Expr.
678  Expr *IgnoreParens() LLVM_READONLY;
679
680  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
681  /// or CastExprs, returning their operand.
682  Expr *IgnoreParenCasts() LLVM_READONLY;
683
684  /// IgnoreParenImpCasts - Ignore parentheses and implicit casts.  Strip off
685  /// any ParenExpr or ImplicitCastExprs, returning their operand.
686  Expr *IgnoreParenImpCasts() LLVM_READONLY;
687
688  /// IgnoreConversionOperator - Ignore conversion operator. If this Expr is a
689  /// call to a conversion operator, return the argument.
690  Expr *IgnoreConversionOperator() LLVM_READONLY;
691
692  const Expr *IgnoreConversionOperator() const LLVM_READONLY {
693    return const_cast<Expr*>(this)->IgnoreConversionOperator();
694  }
695
696  const Expr *IgnoreParenImpCasts() const LLVM_READONLY {
697    return const_cast<Expr*>(this)->IgnoreParenImpCasts();
698  }
699
700  /// Ignore parentheses and lvalue casts.  Strip off any ParenExpr and
701  /// CastExprs that represent lvalue casts, returning their operand.
702  Expr *IgnoreParenLValueCasts() LLVM_READONLY;
703
704  const Expr *IgnoreParenLValueCasts() const LLVM_READONLY {
705    return const_cast<Expr*>(this)->IgnoreParenLValueCasts();
706  }
707
708  /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
709  /// value (including ptr->int casts of the same size).  Strip off any
710  /// ParenExpr or CastExprs, returning their operand.
711  Expr *IgnoreParenNoopCasts(ASTContext &Ctx) LLVM_READONLY;
712
713  /// Ignore parentheses and derived-to-base casts.
714  Expr *ignoreParenBaseCasts() LLVM_READONLY;
715
716  const Expr *ignoreParenBaseCasts() const LLVM_READONLY {
717    return const_cast<Expr*>(this)->ignoreParenBaseCasts();
718  }
719
720  /// \brief Determine whether this expression is a default function argument.
721  ///
722  /// Default arguments are implicitly generated in the abstract syntax tree
723  /// by semantic analysis for function calls, object constructions, etc. in
724  /// C++. Default arguments are represented by \c CXXDefaultArgExpr nodes;
725  /// this routine also looks through any implicit casts to determine whether
726  /// the expression is a default argument.
727  bool isDefaultArgument() const;
728
729  /// \brief Determine whether the result of this expression is a
730  /// temporary object of the given class type.
731  bool isTemporaryObject(ASTContext &Ctx, const CXXRecordDecl *TempTy) const;
732
733  /// \brief Whether this expression is an implicit reference to 'this' in C++.
734  bool isImplicitCXXThis() const;
735
736  const Expr *IgnoreImpCasts() const LLVM_READONLY {
737    return const_cast<Expr*>(this)->IgnoreImpCasts();
738  }
739  const Expr *IgnoreParens() const LLVM_READONLY {
740    return const_cast<Expr*>(this)->IgnoreParens();
741  }
742  const Expr *IgnoreParenCasts() const LLVM_READONLY {
743    return const_cast<Expr*>(this)->IgnoreParenCasts();
744  }
745  const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const LLVM_READONLY {
746    return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
747  }
748
749  static bool hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs);
750
751  /// \brief For an expression of class type or pointer to class type,
752  /// return the most derived class decl the expression is known to refer to.
753  ///
754  /// If this expression is a cast, this method looks through it to find the
755  /// most derived decl that can be inferred from the expression.
756  /// This is valid because derived-to-base conversions have undefined
757  /// behavior if the object isn't dynamically of the derived type.
758  const CXXRecordDecl *getBestDynamicClassType() const;
759
760  /// Walk outwards from an expression we want to bind a reference to and
761  /// find the expression whose lifetime needs to be extended. Record
762  /// the LHSs of comma expressions and adjustments needed along the path.
763  const Expr *skipRValueSubobjectAdjustments(
764      SmallVectorImpl<const Expr *> &CommaLHS,
765      SmallVectorImpl<SubobjectAdjustment> &Adjustments) const;
766
767  /// Skip irrelevant expressions to find what should be materialize for
768  /// binding with a reference.
769  const Expr *
770  findMaterializedTemporary(const MaterializeTemporaryExpr *&MTE) const;
771
772  static bool classof(const Stmt *T) {
773    return T->getStmtClass() >= firstExprConstant &&
774           T->getStmtClass() <= lastExprConstant;
775  }
776};
777
778
779//===----------------------------------------------------------------------===//
780// Primary Expressions.
781//===----------------------------------------------------------------------===//
782
783/// OpaqueValueExpr - An expression referring to an opaque object of a
784/// fixed type and value class.  These don't correspond to concrete
785/// syntax; instead they're used to express operations (usually copy
786/// operations) on values whose source is generally obvious from
787/// context.
788class OpaqueValueExpr : public Expr {
789  friend class ASTStmtReader;
790  Expr *SourceExpr;
791  SourceLocation Loc;
792
793public:
794  OpaqueValueExpr(SourceLocation Loc, QualType T, ExprValueKind VK,
795                  ExprObjectKind OK = OK_Ordinary,
796                  Expr *SourceExpr = 0)
797    : Expr(OpaqueValueExprClass, T, VK, OK,
798           T->isDependentType(),
799           T->isDependentType() ||
800           (SourceExpr && SourceExpr->isValueDependent()),
801           T->isInstantiationDependentType(),
802           false),
803      SourceExpr(SourceExpr), Loc(Loc) {
804  }
805
806  /// Given an expression which invokes a copy constructor --- i.e.  a
807  /// CXXConstructExpr, possibly wrapped in an ExprWithCleanups ---
808  /// find the OpaqueValueExpr that's the source of the construction.
809  static const OpaqueValueExpr *findInCopyConstruct(const Expr *expr);
810
811  explicit OpaqueValueExpr(EmptyShell Empty)
812    : Expr(OpaqueValueExprClass, Empty) { }
813
814  /// \brief Retrieve the location of this expression.
815  SourceLocation getLocation() const { return Loc; }
816
817  SourceLocation getLocStart() const LLVM_READONLY {
818    return SourceExpr ? SourceExpr->getLocStart() : Loc;
819  }
820  SourceLocation getLocEnd() const LLVM_READONLY {
821    return SourceExpr ? SourceExpr->getLocEnd() : Loc;
822  }
823  SourceLocation getExprLoc() const LLVM_READONLY {
824    if (SourceExpr) return SourceExpr->getExprLoc();
825    return Loc;
826  }
827
828  child_range children() { return child_range(); }
829
830  /// The source expression of an opaque value expression is the
831  /// expression which originally generated the value.  This is
832  /// provided as a convenience for analyses that don't wish to
833  /// precisely model the execution behavior of the program.
834  ///
835  /// The source expression is typically set when building the
836  /// expression which binds the opaque value expression in the first
837  /// place.
838  Expr *getSourceExpr() const { return SourceExpr; }
839
840  static bool classof(const Stmt *T) {
841    return T->getStmtClass() == OpaqueValueExprClass;
842  }
843};
844
845/// \brief A reference to a declared variable, function, enum, etc.
846/// [C99 6.5.1p2]
847///
848/// This encodes all the information about how a declaration is referenced
849/// within an expression.
850///
851/// There are several optional constructs attached to DeclRefExprs only when
852/// they apply in order to conserve memory. These are laid out past the end of
853/// the object, and flags in the DeclRefExprBitfield track whether they exist:
854///
855///   DeclRefExprBits.HasQualifier:
856///       Specifies when this declaration reference expression has a C++
857///       nested-name-specifier.
858///   DeclRefExprBits.HasFoundDecl:
859///       Specifies when this declaration reference expression has a record of
860///       a NamedDecl (different from the referenced ValueDecl) which was found
861///       during name lookup and/or overload resolution.
862///   DeclRefExprBits.HasTemplateKWAndArgsInfo:
863///       Specifies when this declaration reference expression has an explicit
864///       C++ template keyword and/or template argument list.
865///   DeclRefExprBits.RefersToEnclosingLocal
866///       Specifies when this declaration reference expression (validly)
867///       refers to a local variable from a different function.
868class DeclRefExpr : public Expr {
869  /// \brief The declaration that we are referencing.
870  ValueDecl *D;
871
872  /// \brief The location of the declaration name itself.
873  SourceLocation Loc;
874
875  /// \brief Provides source/type location info for the declaration name
876  /// embedded in D.
877  DeclarationNameLoc DNLoc;
878
879  /// \brief Helper to retrieve the optional NestedNameSpecifierLoc.
880  NestedNameSpecifierLoc &getInternalQualifierLoc() {
881    assert(hasQualifier());
882    return *reinterpret_cast<NestedNameSpecifierLoc *>(this + 1);
883  }
884
885  /// \brief Helper to retrieve the optional NestedNameSpecifierLoc.
886  const NestedNameSpecifierLoc &getInternalQualifierLoc() const {
887    return const_cast<DeclRefExpr *>(this)->getInternalQualifierLoc();
888  }
889
890  /// \brief Test whether there is a distinct FoundDecl attached to the end of
891  /// this DRE.
892  bool hasFoundDecl() const { return DeclRefExprBits.HasFoundDecl; }
893
894  /// \brief Helper to retrieve the optional NamedDecl through which this
895  /// reference occurred.
896  NamedDecl *&getInternalFoundDecl() {
897    assert(hasFoundDecl());
898    if (hasQualifier())
899      return *reinterpret_cast<NamedDecl **>(&getInternalQualifierLoc() + 1);
900    return *reinterpret_cast<NamedDecl **>(this + 1);
901  }
902
903  /// \brief Helper to retrieve the optional NamedDecl through which this
904  /// reference occurred.
905  NamedDecl *getInternalFoundDecl() const {
906    return const_cast<DeclRefExpr *>(this)->getInternalFoundDecl();
907  }
908
909  DeclRefExpr(const ASTContext &Ctx,
910              NestedNameSpecifierLoc QualifierLoc,
911              SourceLocation TemplateKWLoc,
912              ValueDecl *D, bool refersToEnclosingLocal,
913              const DeclarationNameInfo &NameInfo,
914              NamedDecl *FoundD,
915              const TemplateArgumentListInfo *TemplateArgs,
916              QualType T, ExprValueKind VK);
917
918  /// \brief Construct an empty declaration reference expression.
919  explicit DeclRefExpr(EmptyShell Empty)
920    : Expr(DeclRefExprClass, Empty) { }
921
922  /// \brief Computes the type- and value-dependence flags for this
923  /// declaration reference expression.
924  void computeDependence(const ASTContext &C);
925
926public:
927  DeclRefExpr(ValueDecl *D, bool refersToEnclosingLocal, QualType T,
928              ExprValueKind VK, SourceLocation L,
929              const DeclarationNameLoc &LocInfo = DeclarationNameLoc())
930    : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
931      D(D), Loc(L), DNLoc(LocInfo) {
932    DeclRefExprBits.HasQualifier = 0;
933    DeclRefExprBits.HasTemplateKWAndArgsInfo = 0;
934    DeclRefExprBits.HasFoundDecl = 0;
935    DeclRefExprBits.HadMultipleCandidates = 0;
936    DeclRefExprBits.RefersToEnclosingLocal = refersToEnclosingLocal;
937    computeDependence(D->getASTContext());
938  }
939
940  static DeclRefExpr *Create(const ASTContext &Context,
941                             NestedNameSpecifierLoc QualifierLoc,
942                             SourceLocation TemplateKWLoc,
943                             ValueDecl *D,
944                             bool isEnclosingLocal,
945                             SourceLocation NameLoc,
946                             QualType T, ExprValueKind VK,
947                             NamedDecl *FoundD = 0,
948                             const TemplateArgumentListInfo *TemplateArgs = 0);
949
950  static DeclRefExpr *Create(const ASTContext &Context,
951                             NestedNameSpecifierLoc QualifierLoc,
952                             SourceLocation TemplateKWLoc,
953                             ValueDecl *D,
954                             bool isEnclosingLocal,
955                             const DeclarationNameInfo &NameInfo,
956                             QualType T, ExprValueKind VK,
957                             NamedDecl *FoundD = 0,
958                             const TemplateArgumentListInfo *TemplateArgs = 0);
959
960  /// \brief Construct an empty declaration reference expression.
961  static DeclRefExpr *CreateEmpty(const ASTContext &Context,
962                                  bool HasQualifier,
963                                  bool HasFoundDecl,
964                                  bool HasTemplateKWAndArgsInfo,
965                                  unsigned NumTemplateArgs);
966
967  ValueDecl *getDecl() { return D; }
968  const ValueDecl *getDecl() const { return D; }
969  void setDecl(ValueDecl *NewD) { D = NewD; }
970
971  DeclarationNameInfo getNameInfo() const {
972    return DeclarationNameInfo(getDecl()->getDeclName(), Loc, DNLoc);
973  }
974
975  SourceLocation getLocation() const { return Loc; }
976  void setLocation(SourceLocation L) { Loc = L; }
977  SourceLocation getLocStart() const LLVM_READONLY;
978  SourceLocation getLocEnd() const LLVM_READONLY;
979
980  /// \brief Determine whether this declaration reference was preceded by a
981  /// C++ nested-name-specifier, e.g., \c N::foo.
982  bool hasQualifier() const { return DeclRefExprBits.HasQualifier; }
983
984  /// \brief If the name was qualified, retrieves the nested-name-specifier
985  /// that precedes the name. Otherwise, returns NULL.
986  NestedNameSpecifier *getQualifier() const {
987    if (!hasQualifier())
988      return 0;
989
990    return getInternalQualifierLoc().getNestedNameSpecifier();
991  }
992
993  /// \brief If the name was qualified, retrieves the nested-name-specifier
994  /// that precedes the name, with source-location information.
995  NestedNameSpecifierLoc getQualifierLoc() const {
996    if (!hasQualifier())
997      return NestedNameSpecifierLoc();
998
999    return getInternalQualifierLoc();
1000  }
1001
1002  /// \brief Get the NamedDecl through which this reference occurred.
1003  ///
1004  /// This Decl may be different from the ValueDecl actually referred to in the
1005  /// presence of using declarations, etc. It always returns non-NULL, and may
1006  /// simple return the ValueDecl when appropriate.
1007  NamedDecl *getFoundDecl() {
1008    return hasFoundDecl() ? getInternalFoundDecl() : D;
1009  }
1010
1011  /// \brief Get the NamedDecl through which this reference occurred.
1012  /// See non-const variant.
1013  const NamedDecl *getFoundDecl() const {
1014    return hasFoundDecl() ? getInternalFoundDecl() : D;
1015  }
1016
1017  bool hasTemplateKWAndArgsInfo() const {
1018    return DeclRefExprBits.HasTemplateKWAndArgsInfo;
1019  }
1020
1021  /// \brief Return the optional template keyword and arguments info.
1022  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
1023    if (!hasTemplateKWAndArgsInfo())
1024      return 0;
1025
1026    if (hasFoundDecl())
1027      return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(
1028        &getInternalFoundDecl() + 1);
1029
1030    if (hasQualifier())
1031      return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(
1032        &getInternalQualifierLoc() + 1);
1033
1034    return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(this + 1);
1035  }
1036
1037  /// \brief Return the optional template keyword and arguments info.
1038  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
1039    return const_cast<DeclRefExpr*>(this)->getTemplateKWAndArgsInfo();
1040  }
1041
1042  /// \brief Retrieve the location of the template keyword preceding
1043  /// this name, if any.
1044  SourceLocation getTemplateKeywordLoc() const {
1045    if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
1046    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
1047  }
1048
1049  /// \brief Retrieve the location of the left angle bracket starting the
1050  /// explicit template argument list following the name, if any.
1051  SourceLocation getLAngleLoc() const {
1052    if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
1053    return getTemplateKWAndArgsInfo()->LAngleLoc;
1054  }
1055
1056  /// \brief Retrieve the location of the right angle bracket ending the
1057  /// explicit template argument list following the name, if any.
1058  SourceLocation getRAngleLoc() const {
1059    if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
1060    return getTemplateKWAndArgsInfo()->RAngleLoc;
1061  }
1062
1063  /// \brief Determines whether the name in this declaration reference
1064  /// was preceded by the template keyword.
1065  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
1066
1067  /// \brief Determines whether this declaration reference was followed by an
1068  /// explicit template argument list.
1069  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
1070
1071  /// \brief Retrieve the explicit template argument list that followed the
1072  /// member template name.
1073  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
1074    assert(hasExplicitTemplateArgs());
1075    return *getTemplateKWAndArgsInfo();
1076  }
1077
1078  /// \brief Retrieve the explicit template argument list that followed the
1079  /// member template name.
1080  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
1081    return const_cast<DeclRefExpr *>(this)->getExplicitTemplateArgs();
1082  }
1083
1084  /// \brief Retrieves the optional explicit template arguments.
1085  /// This points to the same data as getExplicitTemplateArgs(), but
1086  /// returns null if there are no explicit template arguments.
1087  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() const {
1088    if (!hasExplicitTemplateArgs()) return 0;
1089    return &getExplicitTemplateArgs();
1090  }
1091
1092  /// \brief Copies the template arguments (if present) into the given
1093  /// structure.
1094  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1095    if (hasExplicitTemplateArgs())
1096      getExplicitTemplateArgs().copyInto(List);
1097  }
1098
1099  /// \brief Retrieve the template arguments provided as part of this
1100  /// template-id.
1101  const TemplateArgumentLoc *getTemplateArgs() const {
1102    if (!hasExplicitTemplateArgs())
1103      return 0;
1104
1105    return getExplicitTemplateArgs().getTemplateArgs();
1106  }
1107
1108  /// \brief Retrieve the number of template arguments provided as part of this
1109  /// template-id.
1110  unsigned getNumTemplateArgs() const {
1111    if (!hasExplicitTemplateArgs())
1112      return 0;
1113
1114    return getExplicitTemplateArgs().NumTemplateArgs;
1115  }
1116
1117  /// \brief Returns true if this expression refers to a function that
1118  /// was resolved from an overloaded set having size greater than 1.
1119  bool hadMultipleCandidates() const {
1120    return DeclRefExprBits.HadMultipleCandidates;
1121  }
1122  /// \brief Sets the flag telling whether this expression refers to
1123  /// a function that was resolved from an overloaded set having size
1124  /// greater than 1.
1125  void setHadMultipleCandidates(bool V = true) {
1126    DeclRefExprBits.HadMultipleCandidates = V;
1127  }
1128
1129  /// Does this DeclRefExpr refer to a local declaration from an
1130  /// enclosing function scope?
1131  bool refersToEnclosingLocal() const {
1132    return DeclRefExprBits.RefersToEnclosingLocal;
1133  }
1134
1135  static bool classof(const Stmt *T) {
1136    return T->getStmtClass() == DeclRefExprClass;
1137  }
1138
1139  // Iterators
1140  child_range children() { return child_range(); }
1141
1142  friend class ASTStmtReader;
1143  friend class ASTStmtWriter;
1144};
1145
1146/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
1147class PredefinedExpr : public Expr {
1148public:
1149  enum IdentType {
1150    Func,
1151    Function,
1152    LFunction,  // Same as Function, but as wide string.
1153    FuncDName,
1154    PrettyFunction,
1155    /// PrettyFunctionNoVirtual - The same as PrettyFunction, except that the
1156    /// 'virtual' keyword is omitted for virtual member functions.
1157    PrettyFunctionNoVirtual
1158  };
1159
1160private:
1161  SourceLocation Loc;
1162  IdentType Type;
1163public:
1164  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
1165    : Expr(PredefinedExprClass, type, VK_LValue, OK_Ordinary,
1166           type->isDependentType(), type->isDependentType(),
1167           type->isInstantiationDependentType(),
1168           /*ContainsUnexpandedParameterPack=*/false),
1169      Loc(l), Type(IT) {}
1170
1171  /// \brief Construct an empty predefined expression.
1172  explicit PredefinedExpr(EmptyShell Empty)
1173    : Expr(PredefinedExprClass, Empty) { }
1174
1175  IdentType getIdentType() const { return Type; }
1176  void setIdentType(IdentType IT) { Type = IT; }
1177
1178  SourceLocation getLocation() const { return Loc; }
1179  void setLocation(SourceLocation L) { Loc = L; }
1180
1181  static std::string ComputeName(IdentType IT, const Decl *CurrentDecl);
1182
1183  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
1184  SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
1185
1186  static bool classof(const Stmt *T) {
1187    return T->getStmtClass() == PredefinedExprClass;
1188  }
1189
1190  // Iterators
1191  child_range children() { return child_range(); }
1192};
1193
1194/// \brief Used by IntegerLiteral/FloatingLiteral to store the numeric without
1195/// leaking memory.
1196///
1197/// For large floats/integers, APFloat/APInt will allocate memory from the heap
1198/// to represent these numbers.  Unfortunately, when we use a BumpPtrAllocator
1199/// to allocate IntegerLiteral/FloatingLiteral nodes the memory associated with
1200/// the APFloat/APInt values will never get freed. APNumericStorage uses
1201/// ASTContext's allocator for memory allocation.
1202class APNumericStorage {
1203  union {
1204    uint64_t VAL;    ///< Used to store the <= 64 bits integer value.
1205    uint64_t *pVal;  ///< Used to store the >64 bits integer value.
1206  };
1207  unsigned BitWidth;
1208
1209  bool hasAllocation() const { return llvm::APInt::getNumWords(BitWidth) > 1; }
1210
1211  APNumericStorage(const APNumericStorage &) LLVM_DELETED_FUNCTION;
1212  void operator=(const APNumericStorage &) LLVM_DELETED_FUNCTION;
1213
1214protected:
1215  APNumericStorage() : VAL(0), BitWidth(0) { }
1216
1217  llvm::APInt getIntValue() const {
1218    unsigned NumWords = llvm::APInt::getNumWords(BitWidth);
1219    if (NumWords > 1)
1220      return llvm::APInt(BitWidth, NumWords, pVal);
1221    else
1222      return llvm::APInt(BitWidth, VAL);
1223  }
1224  void setIntValue(const ASTContext &C, const llvm::APInt &Val);
1225};
1226
1227class APIntStorage : private APNumericStorage {
1228public:
1229  llvm::APInt getValue() const { return getIntValue(); }
1230  void setValue(const ASTContext &C, const llvm::APInt &Val) {
1231    setIntValue(C, Val);
1232  }
1233};
1234
1235class APFloatStorage : private APNumericStorage {
1236public:
1237  llvm::APFloat getValue(const llvm::fltSemantics &Semantics) const {
1238    return llvm::APFloat(Semantics, getIntValue());
1239  }
1240  void setValue(const ASTContext &C, const llvm::APFloat &Val) {
1241    setIntValue(C, Val.bitcastToAPInt());
1242  }
1243};
1244
1245class IntegerLiteral : public Expr, public APIntStorage {
1246  SourceLocation Loc;
1247
1248  /// \brief Construct an empty integer literal.
1249  explicit IntegerLiteral(EmptyShell Empty)
1250    : Expr(IntegerLiteralClass, Empty) { }
1251
1252public:
1253  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
1254  // or UnsignedLongLongTy
1255  IntegerLiteral(const ASTContext &C, const llvm::APInt &V, QualType type,
1256                 SourceLocation l);
1257
1258  /// \brief Returns a new integer literal with value 'V' and type 'type'.
1259  /// \param type - either IntTy, LongTy, LongLongTy, UnsignedIntTy,
1260  /// UnsignedLongTy, or UnsignedLongLongTy which should match the size of V
1261  /// \param V - the value that the returned integer literal contains.
1262  static IntegerLiteral *Create(const ASTContext &C, const llvm::APInt &V,
1263                                QualType type, SourceLocation l);
1264  /// \brief Returns a new empty integer literal.
1265  static IntegerLiteral *Create(const ASTContext &C, EmptyShell Empty);
1266
1267  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
1268  SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
1269
1270  /// \brief Retrieve the location of the literal.
1271  SourceLocation getLocation() const { return Loc; }
1272
1273  void setLocation(SourceLocation Location) { Loc = Location; }
1274
1275  static bool classof(const Stmt *T) {
1276    return T->getStmtClass() == IntegerLiteralClass;
1277  }
1278
1279  // Iterators
1280  child_range children() { return child_range(); }
1281};
1282
1283class CharacterLiteral : public Expr {
1284public:
1285  enum CharacterKind {
1286    Ascii,
1287    Wide,
1288    UTF16,
1289    UTF32
1290  };
1291
1292private:
1293  unsigned Value;
1294  SourceLocation Loc;
1295public:
1296  // type should be IntTy
1297  CharacterLiteral(unsigned value, CharacterKind kind, QualType type,
1298                   SourceLocation l)
1299    : Expr(CharacterLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
1300           false, false),
1301      Value(value), Loc(l) {
1302    CharacterLiteralBits.Kind = kind;
1303  }
1304
1305  /// \brief Construct an empty character literal.
1306  CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
1307
1308  SourceLocation getLocation() const { return Loc; }
1309  CharacterKind getKind() const {
1310    return static_cast<CharacterKind>(CharacterLiteralBits.Kind);
1311  }
1312
1313  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
1314  SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
1315
1316  unsigned getValue() const { return Value; }
1317
1318  void setLocation(SourceLocation Location) { Loc = Location; }
1319  void setKind(CharacterKind kind) { CharacterLiteralBits.Kind = kind; }
1320  void setValue(unsigned Val) { Value = Val; }
1321
1322  static bool classof(const Stmt *T) {
1323    return T->getStmtClass() == CharacterLiteralClass;
1324  }
1325
1326  // Iterators
1327  child_range children() { return child_range(); }
1328};
1329
1330class FloatingLiteral : public Expr, private APFloatStorage {
1331  SourceLocation Loc;
1332
1333  FloatingLiteral(const ASTContext &C, const llvm::APFloat &V, bool isexact,
1334                  QualType Type, SourceLocation L);
1335
1336  /// \brief Construct an empty floating-point literal.
1337  explicit FloatingLiteral(const ASTContext &C, EmptyShell Empty);
1338
1339public:
1340  static FloatingLiteral *Create(const ASTContext &C, const llvm::APFloat &V,
1341                                 bool isexact, QualType Type, SourceLocation L);
1342  static FloatingLiteral *Create(const ASTContext &C, EmptyShell Empty);
1343
1344  llvm::APFloat getValue() const {
1345    return APFloatStorage::getValue(getSemantics());
1346  }
1347  void setValue(const ASTContext &C, const llvm::APFloat &Val) {
1348    assert(&getSemantics() == &Val.getSemantics() && "Inconsistent semantics");
1349    APFloatStorage::setValue(C, Val);
1350  }
1351
1352  /// Get a raw enumeration value representing the floating-point semantics of
1353  /// this literal (32-bit IEEE, x87, ...), suitable for serialisation.
1354  APFloatSemantics getRawSemantics() const {
1355    return static_cast<APFloatSemantics>(FloatingLiteralBits.Semantics);
1356  }
1357
1358  /// Set the raw enumeration value representing the floating-point semantics of
1359  /// this literal (32-bit IEEE, x87, ...), suitable for serialisation.
1360  void setRawSemantics(APFloatSemantics Sem) {
1361    FloatingLiteralBits.Semantics = Sem;
1362  }
1363
1364  /// Return the APFloat semantics this literal uses.
1365  const llvm::fltSemantics &getSemantics() const;
1366
1367  /// Set the APFloat semantics this literal uses.
1368  void setSemantics(const llvm::fltSemantics &Sem);
1369
1370  bool isExact() const { return FloatingLiteralBits.IsExact; }
1371  void setExact(bool E) { FloatingLiteralBits.IsExact = E; }
1372
1373  /// getValueAsApproximateDouble - This returns the value as an inaccurate
1374  /// double.  Note that this may cause loss of precision, but is useful for
1375  /// debugging dumps, etc.
1376  double getValueAsApproximateDouble() const;
1377
1378  SourceLocation getLocation() const { return Loc; }
1379  void setLocation(SourceLocation L) { Loc = L; }
1380
1381  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
1382  SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
1383
1384  static bool classof(const Stmt *T) {
1385    return T->getStmtClass() == FloatingLiteralClass;
1386  }
1387
1388  // Iterators
1389  child_range children() { return child_range(); }
1390};
1391
1392/// ImaginaryLiteral - We support imaginary integer and floating point literals,
1393/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
1394/// IntegerLiteral classes.  Instances of this class always have a Complex type
1395/// whose element type matches the subexpression.
1396///
1397class ImaginaryLiteral : public Expr {
1398  Stmt *Val;
1399public:
1400  ImaginaryLiteral(Expr *val, QualType Ty)
1401    : Expr(ImaginaryLiteralClass, Ty, VK_RValue, OK_Ordinary, false, false,
1402           false, false),
1403      Val(val) {}
1404
1405  /// \brief Build an empty imaginary literal.
1406  explicit ImaginaryLiteral(EmptyShell Empty)
1407    : Expr(ImaginaryLiteralClass, Empty) { }
1408
1409  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1410  Expr *getSubExpr() { return cast<Expr>(Val); }
1411  void setSubExpr(Expr *E) { Val = E; }
1412
1413  SourceLocation getLocStart() const LLVM_READONLY { return Val->getLocStart(); }
1414  SourceLocation getLocEnd() const LLVM_READONLY { return Val->getLocEnd(); }
1415
1416  static bool classof(const Stmt *T) {
1417    return T->getStmtClass() == ImaginaryLiteralClass;
1418  }
1419
1420  // Iterators
1421  child_range children() { return child_range(&Val, &Val+1); }
1422};
1423
1424/// StringLiteral - This represents a string literal expression, e.g. "foo"
1425/// or L"bar" (wide strings).  The actual string is returned by getBytes()
1426/// is NOT null-terminated, and the length of the string is determined by
1427/// calling getByteLength().  The C type for a string is always a
1428/// ConstantArrayType.  In C++, the char type is const qualified, in C it is
1429/// not.
1430///
1431/// Note that strings in C can be formed by concatenation of multiple string
1432/// literal pptokens in translation phase #6.  This keeps track of the locations
1433/// of each of these pieces.
1434///
1435/// Strings in C can also be truncated and extended by assigning into arrays,
1436/// e.g. with constructs like:
1437///   char X[2] = "foobar";
1438/// In this case, getByteLength() will return 6, but the string literal will
1439/// have type "char[2]".
1440class StringLiteral : public Expr {
1441public:
1442  enum StringKind {
1443    Ascii,
1444    Wide,
1445    UTF8,
1446    UTF16,
1447    UTF32
1448  };
1449
1450private:
1451  friend class ASTStmtReader;
1452
1453  union {
1454    const char *asChar;
1455    const uint16_t *asUInt16;
1456    const uint32_t *asUInt32;
1457  } StrData;
1458  unsigned Length;
1459  unsigned CharByteWidth : 4;
1460  unsigned Kind : 3;
1461  unsigned IsPascal : 1;
1462  unsigned NumConcatenated;
1463  SourceLocation TokLocs[1];
1464
1465  StringLiteral(QualType Ty) :
1466    Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary, false, false, false,
1467         false) {}
1468
1469  static int mapCharByteWidth(TargetInfo const &target,StringKind k);
1470
1471public:
1472  /// This is the "fully general" constructor that allows representation of
1473  /// strings formed from multiple concatenated tokens.
1474  static StringLiteral *Create(const ASTContext &C, StringRef Str,
1475                               StringKind Kind, bool Pascal, QualType Ty,
1476                               const SourceLocation *Loc, unsigned NumStrs);
1477
1478  /// Simple constructor for string literals made from one token.
1479  static StringLiteral *Create(const ASTContext &C, StringRef Str,
1480                               StringKind Kind, bool Pascal, QualType Ty,
1481                               SourceLocation Loc) {
1482    return Create(C, Str, Kind, Pascal, Ty, &Loc, 1);
1483  }
1484
1485  /// \brief Construct an empty string literal.
1486  static StringLiteral *CreateEmpty(const ASTContext &C, unsigned NumStrs);
1487
1488  StringRef getString() const {
1489    assert(CharByteWidth==1
1490           && "This function is used in places that assume strings use char");
1491    return StringRef(StrData.asChar, getByteLength());
1492  }
1493
1494  /// Allow access to clients that need the byte representation, such as
1495  /// ASTWriterStmt::VisitStringLiteral().
1496  StringRef getBytes() const {
1497    // FIXME: StringRef may not be the right type to use as a result for this.
1498    if (CharByteWidth == 1)
1499      return StringRef(StrData.asChar, getByteLength());
1500    if (CharByteWidth == 4)
1501      return StringRef(reinterpret_cast<const char*>(StrData.asUInt32),
1502                       getByteLength());
1503    assert(CharByteWidth == 2 && "unsupported CharByteWidth");
1504    return StringRef(reinterpret_cast<const char*>(StrData.asUInt16),
1505                     getByteLength());
1506  }
1507
1508  void outputString(raw_ostream &OS) const;
1509
1510  uint32_t getCodeUnit(size_t i) const {
1511    assert(i < Length && "out of bounds access");
1512    if (CharByteWidth == 1)
1513      return static_cast<unsigned char>(StrData.asChar[i]);
1514    if (CharByteWidth == 4)
1515      return StrData.asUInt32[i];
1516    assert(CharByteWidth == 2 && "unsupported CharByteWidth");
1517    return StrData.asUInt16[i];
1518  }
1519
1520  unsigned getByteLength() const { return CharByteWidth*Length; }
1521  unsigned getLength() const { return Length; }
1522  unsigned getCharByteWidth() const { return CharByteWidth; }
1523
1524  /// \brief Sets the string data to the given string data.
1525  void setString(const ASTContext &C, StringRef Str,
1526                 StringKind Kind, bool IsPascal);
1527
1528  StringKind getKind() const { return static_cast<StringKind>(Kind); }
1529
1530
1531  bool isAscii() const { return Kind == Ascii; }
1532  bool isWide() const { return Kind == Wide; }
1533  bool isUTF8() const { return Kind == UTF8; }
1534  bool isUTF16() const { return Kind == UTF16; }
1535  bool isUTF32() const { return Kind == UTF32; }
1536  bool isPascal() const { return IsPascal; }
1537
1538  bool containsNonAsciiOrNull() const {
1539    StringRef Str = getString();
1540    for (unsigned i = 0, e = Str.size(); i != e; ++i)
1541      if (!isASCII(Str[i]) || !Str[i])
1542        return true;
1543    return false;
1544  }
1545
1546  /// getNumConcatenated - Get the number of string literal tokens that were
1547  /// concatenated in translation phase #6 to form this string literal.
1548  unsigned getNumConcatenated() const { return NumConcatenated; }
1549
1550  SourceLocation getStrTokenLoc(unsigned TokNum) const {
1551    assert(TokNum < NumConcatenated && "Invalid tok number");
1552    return TokLocs[TokNum];
1553  }
1554  void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
1555    assert(TokNum < NumConcatenated && "Invalid tok number");
1556    TokLocs[TokNum] = L;
1557  }
1558
1559  /// getLocationOfByte - Return a source location that points to the specified
1560  /// byte of this string literal.
1561  ///
1562  /// Strings are amazingly complex.  They can be formed from multiple tokens
1563  /// and can have escape sequences in them in addition to the usual trigraph
1564  /// and escaped newline business.  This routine handles this complexity.
1565  ///
1566  SourceLocation getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
1567                                   const LangOptions &Features,
1568                                   const TargetInfo &Target) const;
1569
1570  typedef const SourceLocation *tokloc_iterator;
1571  tokloc_iterator tokloc_begin() const { return TokLocs; }
1572  tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; }
1573
1574  SourceLocation getLocStart() const LLVM_READONLY { return TokLocs[0]; }
1575  SourceLocation getLocEnd() const LLVM_READONLY {
1576    return TokLocs[NumConcatenated - 1];
1577  }
1578
1579  static bool classof(const Stmt *T) {
1580    return T->getStmtClass() == StringLiteralClass;
1581  }
1582
1583  // Iterators
1584  child_range children() { return child_range(); }
1585};
1586
1587/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
1588/// AST node is only formed if full location information is requested.
1589class ParenExpr : public Expr {
1590  SourceLocation L, R;
1591  Stmt *Val;
1592public:
1593  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
1594    : Expr(ParenExprClass, val->getType(),
1595           val->getValueKind(), val->getObjectKind(),
1596           val->isTypeDependent(), val->isValueDependent(),
1597           val->isInstantiationDependent(),
1598           val->containsUnexpandedParameterPack()),
1599      L(l), R(r), Val(val) {}
1600
1601  /// \brief Construct an empty parenthesized expression.
1602  explicit ParenExpr(EmptyShell Empty)
1603    : Expr(ParenExprClass, Empty) { }
1604
1605  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1606  Expr *getSubExpr() { return cast<Expr>(Val); }
1607  void setSubExpr(Expr *E) { Val = E; }
1608
1609  SourceLocation getLocStart() const LLVM_READONLY { return L; }
1610  SourceLocation getLocEnd() const LLVM_READONLY { return R; }
1611
1612  /// \brief Get the location of the left parentheses '('.
1613  SourceLocation getLParen() const { return L; }
1614  void setLParen(SourceLocation Loc) { L = Loc; }
1615
1616  /// \brief Get the location of the right parentheses ')'.
1617  SourceLocation getRParen() const { return R; }
1618  void setRParen(SourceLocation Loc) { R = Loc; }
1619
1620  static bool classof(const Stmt *T) {
1621    return T->getStmtClass() == ParenExprClass;
1622  }
1623
1624  // Iterators
1625  child_range children() { return child_range(&Val, &Val+1); }
1626};
1627
1628
1629/// UnaryOperator - This represents the unary-expression's (except sizeof and
1630/// alignof), the postinc/postdec operators from postfix-expression, and various
1631/// extensions.
1632///
1633/// Notes on various nodes:
1634///
1635/// Real/Imag - These return the real/imag part of a complex operand.  If
1636///   applied to a non-complex value, the former returns its operand and the
1637///   later returns zero in the type of the operand.
1638///
1639class UnaryOperator : public Expr {
1640public:
1641  typedef UnaryOperatorKind Opcode;
1642
1643private:
1644  unsigned Opc : 5;
1645  SourceLocation Loc;
1646  Stmt *Val;
1647public:
1648
1649  UnaryOperator(Expr *input, Opcode opc, QualType type,
1650                ExprValueKind VK, ExprObjectKind OK, SourceLocation l)
1651    : Expr(UnaryOperatorClass, type, VK, OK,
1652           input->isTypeDependent() || type->isDependentType(),
1653           input->isValueDependent(),
1654           (input->isInstantiationDependent() ||
1655            type->isInstantiationDependentType()),
1656           input->containsUnexpandedParameterPack()),
1657      Opc(opc), Loc(l), Val(input) {}
1658
1659  /// \brief Build an empty unary operator.
1660  explicit UnaryOperator(EmptyShell Empty)
1661    : Expr(UnaryOperatorClass, Empty), Opc(UO_AddrOf) { }
1662
1663  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
1664  void setOpcode(Opcode O) { Opc = O; }
1665
1666  Expr *getSubExpr() const { return cast<Expr>(Val); }
1667  void setSubExpr(Expr *E) { Val = E; }
1668
1669  /// getOperatorLoc - Return the location of the operator.
1670  SourceLocation getOperatorLoc() const { return Loc; }
1671  void setOperatorLoc(SourceLocation L) { Loc = L; }
1672
1673  /// isPostfix - Return true if this is a postfix operation, like x++.
1674  static bool isPostfix(Opcode Op) {
1675    return Op == UO_PostInc || Op == UO_PostDec;
1676  }
1677
1678  /// isPrefix - Return true if this is a prefix operation, like --x.
1679  static bool isPrefix(Opcode Op) {
1680    return Op == UO_PreInc || Op == UO_PreDec;
1681  }
1682
1683  bool isPrefix() const { return isPrefix(getOpcode()); }
1684  bool isPostfix() const { return isPostfix(getOpcode()); }
1685
1686  static bool isIncrementOp(Opcode Op) {
1687    return Op == UO_PreInc || Op == UO_PostInc;
1688  }
1689  bool isIncrementOp() const {
1690    return isIncrementOp(getOpcode());
1691  }
1692
1693  static bool isDecrementOp(Opcode Op) {
1694    return Op == UO_PreDec || Op == UO_PostDec;
1695  }
1696  bool isDecrementOp() const {
1697    return isDecrementOp(getOpcode());
1698  }
1699
1700  static bool isIncrementDecrementOp(Opcode Op) { return Op <= UO_PreDec; }
1701  bool isIncrementDecrementOp() const {
1702    return isIncrementDecrementOp(getOpcode());
1703  }
1704
1705  static bool isArithmeticOp(Opcode Op) {
1706    return Op >= UO_Plus && Op <= UO_LNot;
1707  }
1708  bool isArithmeticOp() const { return isArithmeticOp(getOpcode()); }
1709
1710  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1711  /// corresponds to, e.g. "sizeof" or "[pre]++"
1712  static StringRef getOpcodeStr(Opcode Op);
1713
1714  /// \brief Retrieve the unary opcode that corresponds to the given
1715  /// overloaded operator.
1716  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
1717
1718  /// \brief Retrieve the overloaded operator kind that corresponds to
1719  /// the given unary opcode.
1720  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
1721
1722  SourceLocation getLocStart() const LLVM_READONLY {
1723    return isPostfix() ? Val->getLocStart() : Loc;
1724  }
1725  SourceLocation getLocEnd() const LLVM_READONLY {
1726    return isPostfix() ? Loc : Val->getLocEnd();
1727  }
1728  SourceLocation getExprLoc() const LLVM_READONLY { return Loc; }
1729
1730  static bool classof(const Stmt *T) {
1731    return T->getStmtClass() == UnaryOperatorClass;
1732  }
1733
1734  // Iterators
1735  child_range children() { return child_range(&Val, &Val+1); }
1736};
1737
1738/// OffsetOfExpr - [C99 7.17] - This represents an expression of the form
1739/// offsetof(record-type, member-designator). For example, given:
1740/// @code
1741/// struct S {
1742///   float f;
1743///   double d;
1744/// };
1745/// struct T {
1746///   int i;
1747///   struct S s[10];
1748/// };
1749/// @endcode
1750/// we can represent and evaluate the expression @c offsetof(struct T, s[2].d).
1751
1752class OffsetOfExpr : public Expr {
1753public:
1754  // __builtin_offsetof(type, identifier(.identifier|[expr])*)
1755  class OffsetOfNode {
1756  public:
1757    /// \brief The kind of offsetof node we have.
1758    enum Kind {
1759      /// \brief An index into an array.
1760      Array = 0x00,
1761      /// \brief A field.
1762      Field = 0x01,
1763      /// \brief A field in a dependent type, known only by its name.
1764      Identifier = 0x02,
1765      /// \brief An implicit indirection through a C++ base class, when the
1766      /// field found is in a base class.
1767      Base = 0x03
1768    };
1769
1770  private:
1771    enum { MaskBits = 2, Mask = 0x03 };
1772
1773    /// \brief The source range that covers this part of the designator.
1774    SourceRange Range;
1775
1776    /// \brief The data describing the designator, which comes in three
1777    /// different forms, depending on the lower two bits.
1778    ///   - An unsigned index into the array of Expr*'s stored after this node
1779    ///     in memory, for [constant-expression] designators.
1780    ///   - A FieldDecl*, for references to a known field.
1781    ///   - An IdentifierInfo*, for references to a field with a given name
1782    ///     when the class type is dependent.
1783    ///   - A CXXBaseSpecifier*, for references that look at a field in a
1784    ///     base class.
1785    uintptr_t Data;
1786
1787  public:
1788    /// \brief Create an offsetof node that refers to an array element.
1789    OffsetOfNode(SourceLocation LBracketLoc, unsigned Index,
1790                 SourceLocation RBracketLoc)
1791      : Range(LBracketLoc, RBracketLoc), Data((Index << 2) | Array) { }
1792
1793    /// \brief Create an offsetof node that refers to a field.
1794    OffsetOfNode(SourceLocation DotLoc, FieldDecl *Field,
1795                 SourceLocation NameLoc)
1796      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1797        Data(reinterpret_cast<uintptr_t>(Field) | OffsetOfNode::Field) { }
1798
1799    /// \brief Create an offsetof node that refers to an identifier.
1800    OffsetOfNode(SourceLocation DotLoc, IdentifierInfo *Name,
1801                 SourceLocation NameLoc)
1802      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1803        Data(reinterpret_cast<uintptr_t>(Name) | Identifier) { }
1804
1805    /// \brief Create an offsetof node that refers into a C++ base class.
1806    explicit OffsetOfNode(const CXXBaseSpecifier *Base)
1807      : Range(), Data(reinterpret_cast<uintptr_t>(Base) | OffsetOfNode::Base) {}
1808
1809    /// \brief Determine what kind of offsetof node this is.
1810    Kind getKind() const {
1811      return static_cast<Kind>(Data & Mask);
1812    }
1813
1814    /// \brief For an array element node, returns the index into the array
1815    /// of expressions.
1816    unsigned getArrayExprIndex() const {
1817      assert(getKind() == Array);
1818      return Data >> 2;
1819    }
1820
1821    /// \brief For a field offsetof node, returns the field.
1822    FieldDecl *getField() const {
1823      assert(getKind() == Field);
1824      return reinterpret_cast<FieldDecl *>(Data & ~(uintptr_t)Mask);
1825    }
1826
1827    /// \brief For a field or identifier offsetof node, returns the name of
1828    /// the field.
1829    IdentifierInfo *getFieldName() const;
1830
1831    /// \brief For a base class node, returns the base specifier.
1832    CXXBaseSpecifier *getBase() const {
1833      assert(getKind() == Base);
1834      return reinterpret_cast<CXXBaseSpecifier *>(Data & ~(uintptr_t)Mask);
1835    }
1836
1837    /// \brief Retrieve the source range that covers this offsetof node.
1838    ///
1839    /// For an array element node, the source range contains the locations of
1840    /// the square brackets. For a field or identifier node, the source range
1841    /// contains the location of the period (if there is one) and the
1842    /// identifier.
1843    SourceRange getSourceRange() const LLVM_READONLY { return Range; }
1844    SourceLocation getLocStart() const LLVM_READONLY { return Range.getBegin(); }
1845    SourceLocation getLocEnd() const LLVM_READONLY { return Range.getEnd(); }
1846  };
1847
1848private:
1849
1850  SourceLocation OperatorLoc, RParenLoc;
1851  // Base type;
1852  TypeSourceInfo *TSInfo;
1853  // Number of sub-components (i.e. instances of OffsetOfNode).
1854  unsigned NumComps;
1855  // Number of sub-expressions (i.e. array subscript expressions).
1856  unsigned NumExprs;
1857
1858  OffsetOfExpr(const ASTContext &C, QualType type,
1859               SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1860               ArrayRef<OffsetOfNode> comps, ArrayRef<Expr*> exprs,
1861               SourceLocation RParenLoc);
1862
1863  explicit OffsetOfExpr(unsigned numComps, unsigned numExprs)
1864    : Expr(OffsetOfExprClass, EmptyShell()),
1865      TSInfo(0), NumComps(numComps), NumExprs(numExprs) {}
1866
1867public:
1868
1869  static OffsetOfExpr *Create(const ASTContext &C, QualType type,
1870                              SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1871                              ArrayRef<OffsetOfNode> comps,
1872                              ArrayRef<Expr*> exprs, SourceLocation RParenLoc);
1873
1874  static OffsetOfExpr *CreateEmpty(const ASTContext &C,
1875                                   unsigned NumComps, unsigned NumExprs);
1876
1877  /// getOperatorLoc - Return the location of the operator.
1878  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1879  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
1880
1881  /// \brief Return the location of the right parentheses.
1882  SourceLocation getRParenLoc() const { return RParenLoc; }
1883  void setRParenLoc(SourceLocation R) { RParenLoc = R; }
1884
1885  TypeSourceInfo *getTypeSourceInfo() const {
1886    return TSInfo;
1887  }
1888  void setTypeSourceInfo(TypeSourceInfo *tsi) {
1889    TSInfo = tsi;
1890  }
1891
1892  const OffsetOfNode &getComponent(unsigned Idx) const {
1893    assert(Idx < NumComps && "Subscript out of range");
1894    return reinterpret_cast<const OffsetOfNode *> (this + 1)[Idx];
1895  }
1896
1897  void setComponent(unsigned Idx, OffsetOfNode ON) {
1898    assert(Idx < NumComps && "Subscript out of range");
1899    reinterpret_cast<OffsetOfNode *> (this + 1)[Idx] = ON;
1900  }
1901
1902  unsigned getNumComponents() const {
1903    return NumComps;
1904  }
1905
1906  Expr* getIndexExpr(unsigned Idx) {
1907    assert(Idx < NumExprs && "Subscript out of range");
1908    return reinterpret_cast<Expr **>(
1909                    reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx];
1910  }
1911  const Expr *getIndexExpr(unsigned Idx) const {
1912    return const_cast<OffsetOfExpr*>(this)->getIndexExpr(Idx);
1913  }
1914
1915  void setIndexExpr(unsigned Idx, Expr* E) {
1916    assert(Idx < NumComps && "Subscript out of range");
1917    reinterpret_cast<Expr **>(
1918                reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx] = E;
1919  }
1920
1921  unsigned getNumExpressions() const {
1922    return NumExprs;
1923  }
1924
1925  SourceLocation getLocStart() const LLVM_READONLY { return OperatorLoc; }
1926  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
1927
1928  static bool classof(const Stmt *T) {
1929    return T->getStmtClass() == OffsetOfExprClass;
1930  }
1931
1932  // Iterators
1933  child_range children() {
1934    Stmt **begin =
1935      reinterpret_cast<Stmt**>(reinterpret_cast<OffsetOfNode*>(this + 1)
1936                               + NumComps);
1937    return child_range(begin, begin + NumExprs);
1938  }
1939};
1940
1941/// UnaryExprOrTypeTraitExpr - expression with either a type or (unevaluated)
1942/// expression operand.  Used for sizeof/alignof (C99 6.5.3.4) and
1943/// vec_step (OpenCL 1.1 6.11.12).
1944class UnaryExprOrTypeTraitExpr : public Expr {
1945  union {
1946    TypeSourceInfo *Ty;
1947    Stmt *Ex;
1948  } Argument;
1949  SourceLocation OpLoc, RParenLoc;
1950
1951public:
1952  UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, TypeSourceInfo *TInfo,
1953                           QualType resultType, SourceLocation op,
1954                           SourceLocation rp) :
1955      Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
1956           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1957           // Value-dependent if the argument is type-dependent.
1958           TInfo->getType()->isDependentType(),
1959           TInfo->getType()->isInstantiationDependentType(),
1960           TInfo->getType()->containsUnexpandedParameterPack()),
1961      OpLoc(op), RParenLoc(rp) {
1962    UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
1963    UnaryExprOrTypeTraitExprBits.IsType = true;
1964    Argument.Ty = TInfo;
1965  }
1966
1967  UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, Expr *E,
1968                           QualType resultType, SourceLocation op,
1969                           SourceLocation rp) :
1970      Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
1971           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1972           // Value-dependent if the argument is type-dependent.
1973           E->isTypeDependent(),
1974           E->isInstantiationDependent(),
1975           E->containsUnexpandedParameterPack()),
1976      OpLoc(op), RParenLoc(rp) {
1977    UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
1978    UnaryExprOrTypeTraitExprBits.IsType = false;
1979    Argument.Ex = E;
1980  }
1981
1982  /// \brief Construct an empty sizeof/alignof expression.
1983  explicit UnaryExprOrTypeTraitExpr(EmptyShell Empty)
1984    : Expr(UnaryExprOrTypeTraitExprClass, Empty) { }
1985
1986  UnaryExprOrTypeTrait getKind() const {
1987    return static_cast<UnaryExprOrTypeTrait>(UnaryExprOrTypeTraitExprBits.Kind);
1988  }
1989  void setKind(UnaryExprOrTypeTrait K) { UnaryExprOrTypeTraitExprBits.Kind = K;}
1990
1991  bool isArgumentType() const { return UnaryExprOrTypeTraitExprBits.IsType; }
1992  QualType getArgumentType() const {
1993    return getArgumentTypeInfo()->getType();
1994  }
1995  TypeSourceInfo *getArgumentTypeInfo() const {
1996    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
1997    return Argument.Ty;
1998  }
1999  Expr *getArgumentExpr() {
2000    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
2001    return static_cast<Expr*>(Argument.Ex);
2002  }
2003  const Expr *getArgumentExpr() const {
2004    return const_cast<UnaryExprOrTypeTraitExpr*>(this)->getArgumentExpr();
2005  }
2006
2007  void setArgument(Expr *E) {
2008    Argument.Ex = E;
2009    UnaryExprOrTypeTraitExprBits.IsType = false;
2010  }
2011  void setArgument(TypeSourceInfo *TInfo) {
2012    Argument.Ty = TInfo;
2013    UnaryExprOrTypeTraitExprBits.IsType = true;
2014  }
2015
2016  /// Gets the argument type, or the type of the argument expression, whichever
2017  /// is appropriate.
2018  QualType getTypeOfArgument() const {
2019    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
2020  }
2021
2022  SourceLocation getOperatorLoc() const { return OpLoc; }
2023  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
2024
2025  SourceLocation getRParenLoc() const { return RParenLoc; }
2026  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2027
2028  SourceLocation getLocStart() const LLVM_READONLY { return OpLoc; }
2029  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
2030
2031  static bool classof(const Stmt *T) {
2032    return T->getStmtClass() == UnaryExprOrTypeTraitExprClass;
2033  }
2034
2035  // Iterators
2036  child_range children();
2037};
2038
2039//===----------------------------------------------------------------------===//
2040// Postfix Operators.
2041//===----------------------------------------------------------------------===//
2042
2043/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
2044class ArraySubscriptExpr : public Expr {
2045  enum { LHS, RHS, END_EXPR=2 };
2046  Stmt* SubExprs[END_EXPR];
2047  SourceLocation RBracketLoc;
2048public:
2049  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
2050                     ExprValueKind VK, ExprObjectKind OK,
2051                     SourceLocation rbracketloc)
2052  : Expr(ArraySubscriptExprClass, t, VK, OK,
2053         lhs->isTypeDependent() || rhs->isTypeDependent(),
2054         lhs->isValueDependent() || rhs->isValueDependent(),
2055         (lhs->isInstantiationDependent() ||
2056          rhs->isInstantiationDependent()),
2057         (lhs->containsUnexpandedParameterPack() ||
2058          rhs->containsUnexpandedParameterPack())),
2059    RBracketLoc(rbracketloc) {
2060    SubExprs[LHS] = lhs;
2061    SubExprs[RHS] = rhs;
2062  }
2063
2064  /// \brief Create an empty array subscript expression.
2065  explicit ArraySubscriptExpr(EmptyShell Shell)
2066    : Expr(ArraySubscriptExprClass, Shell) { }
2067
2068  /// An array access can be written A[4] or 4[A] (both are equivalent).
2069  /// - getBase() and getIdx() always present the normalized view: A[4].
2070  ///    In this case getBase() returns "A" and getIdx() returns "4".
2071  /// - getLHS() and getRHS() present the syntactic view. e.g. for
2072  ///    4[A] getLHS() returns "4".
2073  /// Note: Because vector element access is also written A[4] we must
2074  /// predicate the format conversion in getBase and getIdx only on the
2075  /// the type of the RHS, as it is possible for the LHS to be a vector of
2076  /// integer type
2077  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
2078  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2079  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2080
2081  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
2082  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2083  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2084
2085  Expr *getBase() {
2086    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
2087  }
2088
2089  const Expr *getBase() const {
2090    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
2091  }
2092
2093  Expr *getIdx() {
2094    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
2095  }
2096
2097  const Expr *getIdx() const {
2098    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
2099  }
2100
2101  SourceLocation getLocStart() const LLVM_READONLY {
2102    return getLHS()->getLocStart();
2103  }
2104  SourceLocation getLocEnd() const LLVM_READONLY { return RBracketLoc; }
2105
2106  SourceLocation getRBracketLoc() const { return RBracketLoc; }
2107  void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
2108
2109  SourceLocation getExprLoc() const LLVM_READONLY {
2110    return getBase()->getExprLoc();
2111  }
2112
2113  static bool classof(const Stmt *T) {
2114    return T->getStmtClass() == ArraySubscriptExprClass;
2115  }
2116
2117  // Iterators
2118  child_range children() {
2119    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
2120  }
2121};
2122
2123
2124/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
2125/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
2126/// while its subclasses may represent alternative syntax that (semantically)
2127/// results in a function call. For example, CXXOperatorCallExpr is
2128/// a subclass for overloaded operator calls that use operator syntax, e.g.,
2129/// "str1 + str2" to resolve to a function call.
2130class CallExpr : public Expr {
2131  enum { FN=0, PREARGS_START=1 };
2132  Stmt **SubExprs;
2133  unsigned NumArgs;
2134  SourceLocation RParenLoc;
2135
2136protected:
2137  // These versions of the constructor are for derived classes.
2138  CallExpr(const ASTContext& C, StmtClass SC, Expr *fn, unsigned NumPreArgs,
2139           ArrayRef<Expr*> args, QualType t, ExprValueKind VK,
2140           SourceLocation rparenloc);
2141  CallExpr(const ASTContext &C, StmtClass SC, unsigned NumPreArgs,
2142           EmptyShell Empty);
2143
2144  Stmt *getPreArg(unsigned i) {
2145    assert(i < getNumPreArgs() && "Prearg access out of range!");
2146    return SubExprs[PREARGS_START+i];
2147  }
2148  const Stmt *getPreArg(unsigned i) const {
2149    assert(i < getNumPreArgs() && "Prearg access out of range!");
2150    return SubExprs[PREARGS_START+i];
2151  }
2152  void setPreArg(unsigned i, Stmt *PreArg) {
2153    assert(i < getNumPreArgs() && "Prearg access out of range!");
2154    SubExprs[PREARGS_START+i] = PreArg;
2155  }
2156
2157  unsigned getNumPreArgs() const { return CallExprBits.NumPreArgs; }
2158
2159public:
2160  CallExpr(const ASTContext& C, Expr *fn, ArrayRef<Expr*> args, QualType t,
2161           ExprValueKind VK, SourceLocation rparenloc);
2162
2163  /// \brief Build an empty call expression.
2164  CallExpr(const ASTContext &C, StmtClass SC, EmptyShell Empty);
2165
2166  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
2167  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
2168  void setCallee(Expr *F) { SubExprs[FN] = F; }
2169
2170  Decl *getCalleeDecl();
2171  const Decl *getCalleeDecl() const {
2172    return const_cast<CallExpr*>(this)->getCalleeDecl();
2173  }
2174
2175  /// \brief If the callee is a FunctionDecl, return it. Otherwise return 0.
2176  FunctionDecl *getDirectCallee();
2177  const FunctionDecl *getDirectCallee() const {
2178    return const_cast<CallExpr*>(this)->getDirectCallee();
2179  }
2180
2181  /// getNumArgs - Return the number of actual arguments to this call.
2182  ///
2183  unsigned getNumArgs() const { return NumArgs; }
2184
2185  /// \brief Retrieve the call arguments.
2186  Expr **getArgs() {
2187    return reinterpret_cast<Expr **>(SubExprs+getNumPreArgs()+PREARGS_START);
2188  }
2189  const Expr *const *getArgs() const {
2190    return const_cast<CallExpr*>(this)->getArgs();
2191  }
2192
2193  /// getArg - Return the specified argument.
2194  Expr *getArg(unsigned Arg) {
2195    assert(Arg < NumArgs && "Arg access out of range!");
2196    return cast<Expr>(SubExprs[Arg+getNumPreArgs()+PREARGS_START]);
2197  }
2198  const Expr *getArg(unsigned Arg) const {
2199    assert(Arg < NumArgs && "Arg access out of range!");
2200    return cast<Expr>(SubExprs[Arg+getNumPreArgs()+PREARGS_START]);
2201  }
2202
2203  /// setArg - Set the specified argument.
2204  void setArg(unsigned Arg, Expr *ArgExpr) {
2205    assert(Arg < NumArgs && "Arg access out of range!");
2206    SubExprs[Arg+getNumPreArgs()+PREARGS_START] = ArgExpr;
2207  }
2208
2209  /// setNumArgs - This changes the number of arguments present in this call.
2210  /// Any orphaned expressions are deleted by this, and any new operands are set
2211  /// to null.
2212  void setNumArgs(const ASTContext& C, unsigned NumArgs);
2213
2214  typedef ExprIterator arg_iterator;
2215  typedef ConstExprIterator const_arg_iterator;
2216
2217  arg_iterator arg_begin() { return SubExprs+PREARGS_START+getNumPreArgs(); }
2218  arg_iterator arg_end() {
2219    return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
2220  }
2221  const_arg_iterator arg_begin() const {
2222    return SubExprs+PREARGS_START+getNumPreArgs();
2223  }
2224  const_arg_iterator arg_end() const {
2225    return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
2226  }
2227
2228  /// This method provides fast access to all the subexpressions of
2229  /// a CallExpr without going through the slower virtual child_iterator
2230  /// interface.  This provides efficient reverse iteration of the
2231  /// subexpressions.  This is currently used for CFG construction.
2232  ArrayRef<Stmt*> getRawSubExprs() {
2233    return ArrayRef<Stmt*>(SubExprs,
2234                           getNumPreArgs() + PREARGS_START + getNumArgs());
2235  }
2236
2237  /// getNumCommas - Return the number of commas that must have been present in
2238  /// this function call.
2239  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
2240
2241  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
2242  /// not, return 0.
2243  unsigned isBuiltinCall() const;
2244
2245  /// \brief Returns \c true if this is a call to a builtin which does not
2246  /// evaluate side-effects within its arguments.
2247  bool isUnevaluatedBuiltinCall(ASTContext &Ctx) const;
2248
2249  /// getCallReturnType - Get the return type of the call expr. This is not
2250  /// always the type of the expr itself, if the return type is a reference
2251  /// type.
2252  QualType getCallReturnType() const;
2253
2254  SourceLocation getRParenLoc() const { return RParenLoc; }
2255  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2256
2257  SourceLocation getLocStart() const LLVM_READONLY;
2258  SourceLocation getLocEnd() const LLVM_READONLY;
2259
2260  static bool classof(const Stmt *T) {
2261    return T->getStmtClass() >= firstCallExprConstant &&
2262           T->getStmtClass() <= lastCallExprConstant;
2263  }
2264
2265  // Iterators
2266  child_range children() {
2267    return child_range(&SubExprs[0],
2268                       &SubExprs[0]+NumArgs+getNumPreArgs()+PREARGS_START);
2269  }
2270};
2271
2272/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.  X->F and X.F.
2273///
2274class MemberExpr : public Expr {
2275  /// Extra data stored in some member expressions.
2276  struct MemberNameQualifier {
2277    /// \brief The nested-name-specifier that qualifies the name, including
2278    /// source-location information.
2279    NestedNameSpecifierLoc QualifierLoc;
2280
2281    /// \brief The DeclAccessPair through which the MemberDecl was found due to
2282    /// name qualifiers.
2283    DeclAccessPair FoundDecl;
2284  };
2285
2286  /// Base - the expression for the base pointer or structure references.  In
2287  /// X.F, this is "X".
2288  Stmt *Base;
2289
2290  /// MemberDecl - This is the decl being referenced by the field/member name.
2291  /// In X.F, this is the decl referenced by F.
2292  ValueDecl *MemberDecl;
2293
2294  /// MemberDNLoc - Provides source/type location info for the
2295  /// declaration name embedded in MemberDecl.
2296  DeclarationNameLoc MemberDNLoc;
2297
2298  /// MemberLoc - This is the location of the member name.
2299  SourceLocation MemberLoc;
2300
2301  /// IsArrow - True if this is "X->F", false if this is "X.F".
2302  bool IsArrow : 1;
2303
2304  /// \brief True if this member expression used a nested-name-specifier to
2305  /// refer to the member, e.g., "x->Base::f", or found its member via a using
2306  /// declaration.  When true, a MemberNameQualifier
2307  /// structure is allocated immediately after the MemberExpr.
2308  bool HasQualifierOrFoundDecl : 1;
2309
2310  /// \brief True if this member expression specified a template keyword
2311  /// and/or a template argument list explicitly, e.g., x->f<int>,
2312  /// x->template f, x->template f<int>.
2313  /// When true, an ASTTemplateKWAndArgsInfo structure and its
2314  /// TemplateArguments (if any) are allocated immediately after
2315  /// the MemberExpr or, if the member expression also has a qualifier,
2316  /// after the MemberNameQualifier structure.
2317  bool HasTemplateKWAndArgsInfo : 1;
2318
2319  /// \brief True if this member expression refers to a method that
2320  /// was resolved from an overloaded set having size greater than 1.
2321  bool HadMultipleCandidates : 1;
2322
2323  /// \brief Retrieve the qualifier that preceded the member name, if any.
2324  MemberNameQualifier *getMemberQualifier() {
2325    assert(HasQualifierOrFoundDecl);
2326    return reinterpret_cast<MemberNameQualifier *> (this + 1);
2327  }
2328
2329  /// \brief Retrieve the qualifier that preceded the member name, if any.
2330  const MemberNameQualifier *getMemberQualifier() const {
2331    return const_cast<MemberExpr *>(this)->getMemberQualifier();
2332  }
2333
2334public:
2335  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
2336             const DeclarationNameInfo &NameInfo, QualType ty,
2337             ExprValueKind VK, ExprObjectKind OK)
2338    : Expr(MemberExprClass, ty, VK, OK,
2339           base->isTypeDependent(),
2340           base->isValueDependent(),
2341           base->isInstantiationDependent(),
2342           base->containsUnexpandedParameterPack()),
2343      Base(base), MemberDecl(memberdecl), MemberDNLoc(NameInfo.getInfo()),
2344      MemberLoc(NameInfo.getLoc()), IsArrow(isarrow),
2345      HasQualifierOrFoundDecl(false), HasTemplateKWAndArgsInfo(false),
2346      HadMultipleCandidates(false) {
2347    assert(memberdecl->getDeclName() == NameInfo.getName());
2348  }
2349
2350  // NOTE: this constructor should be used only when it is known that
2351  // the member name can not provide additional syntactic info
2352  // (i.e., source locations for C++ operator names or type source info
2353  // for constructors, destructors and conversion operators).
2354  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
2355             SourceLocation l, QualType ty,
2356             ExprValueKind VK, ExprObjectKind OK)
2357    : Expr(MemberExprClass, ty, VK, OK,
2358           base->isTypeDependent(), base->isValueDependent(),
2359           base->isInstantiationDependent(),
2360           base->containsUnexpandedParameterPack()),
2361      Base(base), MemberDecl(memberdecl), MemberDNLoc(), MemberLoc(l),
2362      IsArrow(isarrow),
2363      HasQualifierOrFoundDecl(false), HasTemplateKWAndArgsInfo(false),
2364      HadMultipleCandidates(false) {}
2365
2366  static MemberExpr *Create(const ASTContext &C, Expr *base, bool isarrow,
2367                            NestedNameSpecifierLoc QualifierLoc,
2368                            SourceLocation TemplateKWLoc,
2369                            ValueDecl *memberdecl, DeclAccessPair founddecl,
2370                            DeclarationNameInfo MemberNameInfo,
2371                            const TemplateArgumentListInfo *targs,
2372                            QualType ty, ExprValueKind VK, ExprObjectKind OK);
2373
2374  void setBase(Expr *E) { Base = E; }
2375  Expr *getBase() const { return cast<Expr>(Base); }
2376
2377  /// \brief Retrieve the member declaration to which this expression refers.
2378  ///
2379  /// The returned declaration will either be a FieldDecl or (in C++)
2380  /// a CXXMethodDecl.
2381  ValueDecl *getMemberDecl() const { return MemberDecl; }
2382  void setMemberDecl(ValueDecl *D) { MemberDecl = D; }
2383
2384  /// \brief Retrieves the declaration found by lookup.
2385  DeclAccessPair getFoundDecl() const {
2386    if (!HasQualifierOrFoundDecl)
2387      return DeclAccessPair::make(getMemberDecl(),
2388                                  getMemberDecl()->getAccess());
2389    return getMemberQualifier()->FoundDecl;
2390  }
2391
2392  /// \brief Determines whether this member expression actually had
2393  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
2394  /// x->Base::foo.
2395  bool hasQualifier() const { return getQualifier() != 0; }
2396
2397  /// \brief If the member name was qualified, retrieves the
2398  /// nested-name-specifier that precedes the member name. Otherwise, returns
2399  /// NULL.
2400  NestedNameSpecifier *getQualifier() const {
2401    if (!HasQualifierOrFoundDecl)
2402      return 0;
2403
2404    return getMemberQualifier()->QualifierLoc.getNestedNameSpecifier();
2405  }
2406
2407  /// \brief If the member name was qualified, retrieves the
2408  /// nested-name-specifier that precedes the member name, with source-location
2409  /// information.
2410  NestedNameSpecifierLoc getQualifierLoc() const {
2411    if (!hasQualifier())
2412      return NestedNameSpecifierLoc();
2413
2414    return getMemberQualifier()->QualifierLoc;
2415  }
2416
2417  /// \brief Return the optional template keyword and arguments info.
2418  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
2419    if (!HasTemplateKWAndArgsInfo)
2420      return 0;
2421
2422    if (!HasQualifierOrFoundDecl)
2423      return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(this + 1);
2424
2425    return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(
2426                                                      getMemberQualifier() + 1);
2427  }
2428
2429  /// \brief Return the optional template keyword and arguments info.
2430  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
2431    return const_cast<MemberExpr*>(this)->getTemplateKWAndArgsInfo();
2432  }
2433
2434  /// \brief Retrieve the location of the template keyword preceding
2435  /// the member name, if any.
2436  SourceLocation getTemplateKeywordLoc() const {
2437    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2438    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
2439  }
2440
2441  /// \brief Retrieve the location of the left angle bracket starting the
2442  /// explicit template argument list following the member name, if any.
2443  SourceLocation getLAngleLoc() const {
2444    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2445    return getTemplateKWAndArgsInfo()->LAngleLoc;
2446  }
2447
2448  /// \brief Retrieve the location of the right angle bracket ending the
2449  /// explicit template argument list following the member name, if any.
2450  SourceLocation getRAngleLoc() const {
2451    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2452    return getTemplateKWAndArgsInfo()->RAngleLoc;
2453  }
2454
2455  /// Determines whether the member name was preceded by the template keyword.
2456  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
2457
2458  /// \brief Determines whether the member name was followed by an
2459  /// explicit template argument list.
2460  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
2461
2462  /// \brief Copies the template arguments (if present) into the given
2463  /// structure.
2464  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2465    if (hasExplicitTemplateArgs())
2466      getExplicitTemplateArgs().copyInto(List);
2467  }
2468
2469  /// \brief Retrieve the explicit template argument list that
2470  /// follow the member template name.  This must only be called on an
2471  /// expression with explicit template arguments.
2472  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
2473    assert(hasExplicitTemplateArgs());
2474    return *getTemplateKWAndArgsInfo();
2475  }
2476
2477  /// \brief Retrieve the explicit template argument list that
2478  /// followed the member template name.  This must only be called on
2479  /// an expression with explicit template arguments.
2480  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2481    return const_cast<MemberExpr *>(this)->getExplicitTemplateArgs();
2482  }
2483
2484  /// \brief Retrieves the optional explicit template arguments.
2485  /// This points to the same data as getExplicitTemplateArgs(), but
2486  /// returns null if there are no explicit template arguments.
2487  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() const {
2488    if (!hasExplicitTemplateArgs()) return 0;
2489    return &getExplicitTemplateArgs();
2490  }
2491
2492  /// \brief Retrieve the template arguments provided as part of this
2493  /// template-id.
2494  const TemplateArgumentLoc *getTemplateArgs() const {
2495    if (!hasExplicitTemplateArgs())
2496      return 0;
2497
2498    return getExplicitTemplateArgs().getTemplateArgs();
2499  }
2500
2501  /// \brief Retrieve the number of template arguments provided as part of this
2502  /// template-id.
2503  unsigned getNumTemplateArgs() const {
2504    if (!hasExplicitTemplateArgs())
2505      return 0;
2506
2507    return getExplicitTemplateArgs().NumTemplateArgs;
2508  }
2509
2510  /// \brief Retrieve the member declaration name info.
2511  DeclarationNameInfo getMemberNameInfo() const {
2512    return DeclarationNameInfo(MemberDecl->getDeclName(),
2513                               MemberLoc, MemberDNLoc);
2514  }
2515
2516  bool isArrow() const { return IsArrow; }
2517  void setArrow(bool A) { IsArrow = A; }
2518
2519  /// getMemberLoc - Return the location of the "member", in X->F, it is the
2520  /// location of 'F'.
2521  SourceLocation getMemberLoc() const { return MemberLoc; }
2522  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
2523
2524  SourceLocation getLocStart() const LLVM_READONLY;
2525  SourceLocation getLocEnd() const LLVM_READONLY;
2526
2527  SourceLocation getExprLoc() const LLVM_READONLY { return MemberLoc; }
2528
2529  /// \brief Determine whether the base of this explicit is implicit.
2530  bool isImplicitAccess() const {
2531    return getBase() && getBase()->isImplicitCXXThis();
2532  }
2533
2534  /// \brief Returns true if this member expression refers to a method that
2535  /// was resolved from an overloaded set having size greater than 1.
2536  bool hadMultipleCandidates() const {
2537    return HadMultipleCandidates;
2538  }
2539  /// \brief Sets the flag telling whether this expression refers to
2540  /// a method that was resolved from an overloaded set having size
2541  /// greater than 1.
2542  void setHadMultipleCandidates(bool V = true) {
2543    HadMultipleCandidates = V;
2544  }
2545
2546  static bool classof(const Stmt *T) {
2547    return T->getStmtClass() == MemberExprClass;
2548  }
2549
2550  // Iterators
2551  child_range children() { return child_range(&Base, &Base+1); }
2552
2553  friend class ASTReader;
2554  friend class ASTStmtWriter;
2555};
2556
2557/// CompoundLiteralExpr - [C99 6.5.2.5]
2558///
2559class CompoundLiteralExpr : public Expr {
2560  /// LParenLoc - If non-null, this is the location of the left paren in a
2561  /// compound literal like "(int){4}".  This can be null if this is a
2562  /// synthesized compound expression.
2563  SourceLocation LParenLoc;
2564
2565  /// The type as written.  This can be an incomplete array type, in
2566  /// which case the actual expression type will be different.
2567  /// The int part of the pair stores whether this expr is file scope.
2568  llvm::PointerIntPair<TypeSourceInfo *, 1, bool> TInfoAndScope;
2569  Stmt *Init;
2570public:
2571  CompoundLiteralExpr(SourceLocation lparenloc, TypeSourceInfo *tinfo,
2572                      QualType T, ExprValueKind VK, Expr *init, bool fileScope)
2573    : Expr(CompoundLiteralExprClass, T, VK, OK_Ordinary,
2574           tinfo->getType()->isDependentType(),
2575           init->isValueDependent(),
2576           (init->isInstantiationDependent() ||
2577            tinfo->getType()->isInstantiationDependentType()),
2578           init->containsUnexpandedParameterPack()),
2579      LParenLoc(lparenloc), TInfoAndScope(tinfo, fileScope), Init(init) {}
2580
2581  /// \brief Construct an empty compound literal.
2582  explicit CompoundLiteralExpr(EmptyShell Empty)
2583    : Expr(CompoundLiteralExprClass, Empty) { }
2584
2585  const Expr *getInitializer() const { return cast<Expr>(Init); }
2586  Expr *getInitializer() { return cast<Expr>(Init); }
2587  void setInitializer(Expr *E) { Init = E; }
2588
2589  bool isFileScope() const { return TInfoAndScope.getInt(); }
2590  void setFileScope(bool FS) { TInfoAndScope.setInt(FS); }
2591
2592  SourceLocation getLParenLoc() const { return LParenLoc; }
2593  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2594
2595  TypeSourceInfo *getTypeSourceInfo() const {
2596    return TInfoAndScope.getPointer();
2597  }
2598  void setTypeSourceInfo(TypeSourceInfo *tinfo) {
2599    TInfoAndScope.setPointer(tinfo);
2600  }
2601
2602  SourceLocation getLocStart() const LLVM_READONLY {
2603    // FIXME: Init should never be null.
2604    if (!Init)
2605      return SourceLocation();
2606    if (LParenLoc.isInvalid())
2607      return Init->getLocStart();
2608    return LParenLoc;
2609  }
2610  SourceLocation getLocEnd() const LLVM_READONLY {
2611    // FIXME: Init should never be null.
2612    if (!Init)
2613      return SourceLocation();
2614    return Init->getLocEnd();
2615  }
2616
2617  static bool classof(const Stmt *T) {
2618    return T->getStmtClass() == CompoundLiteralExprClass;
2619  }
2620
2621  // Iterators
2622  child_range children() { return child_range(&Init, &Init+1); }
2623};
2624
2625/// CastExpr - Base class for type casts, including both implicit
2626/// casts (ImplicitCastExpr) and explicit casts that have some
2627/// representation in the source code (ExplicitCastExpr's derived
2628/// classes).
2629class CastExpr : public Expr {
2630public:
2631  typedef clang::CastKind CastKind;
2632
2633private:
2634  Stmt *Op;
2635
2636  void CheckCastConsistency() const;
2637
2638  const CXXBaseSpecifier * const *path_buffer() const {
2639    return const_cast<CastExpr*>(this)->path_buffer();
2640  }
2641  CXXBaseSpecifier **path_buffer();
2642
2643  void setBasePathSize(unsigned basePathSize) {
2644    CastExprBits.BasePathSize = basePathSize;
2645    assert(CastExprBits.BasePathSize == basePathSize &&
2646           "basePathSize doesn't fit in bits of CastExprBits.BasePathSize!");
2647  }
2648
2649protected:
2650  CastExpr(StmtClass SC, QualType ty, ExprValueKind VK,
2651           const CastKind kind, Expr *op, unsigned BasePathSize) :
2652    Expr(SC, ty, VK, OK_Ordinary,
2653         // Cast expressions are type-dependent if the type is
2654         // dependent (C++ [temp.dep.expr]p3).
2655         ty->isDependentType(),
2656         // Cast expressions are value-dependent if the type is
2657         // dependent or if the subexpression is value-dependent.
2658         ty->isDependentType() || (op && op->isValueDependent()),
2659         (ty->isInstantiationDependentType() ||
2660          (op && op->isInstantiationDependent())),
2661         (ty->containsUnexpandedParameterPack() ||
2662          (op && op->containsUnexpandedParameterPack()))),
2663    Op(op) {
2664    assert(kind != CK_Invalid && "creating cast with invalid cast kind");
2665    CastExprBits.Kind = kind;
2666    setBasePathSize(BasePathSize);
2667#ifndef NDEBUG
2668    CheckCastConsistency();
2669#endif
2670  }
2671
2672  /// \brief Construct an empty cast.
2673  CastExpr(StmtClass SC, EmptyShell Empty, unsigned BasePathSize)
2674    : Expr(SC, Empty) {
2675    setBasePathSize(BasePathSize);
2676  }
2677
2678public:
2679  CastKind getCastKind() const { return (CastKind) CastExprBits.Kind; }
2680  void setCastKind(CastKind K) { CastExprBits.Kind = K; }
2681  const char *getCastKindName() const;
2682
2683  Expr *getSubExpr() { return cast<Expr>(Op); }
2684  const Expr *getSubExpr() const { return cast<Expr>(Op); }
2685  void setSubExpr(Expr *E) { Op = E; }
2686
2687  /// \brief Retrieve the cast subexpression as it was written in the source
2688  /// code, looking through any implicit casts or other intermediate nodes
2689  /// introduced by semantic analysis.
2690  Expr *getSubExprAsWritten();
2691  const Expr *getSubExprAsWritten() const {
2692    return const_cast<CastExpr *>(this)->getSubExprAsWritten();
2693  }
2694
2695  typedef CXXBaseSpecifier **path_iterator;
2696  typedef const CXXBaseSpecifier * const *path_const_iterator;
2697  bool path_empty() const { return CastExprBits.BasePathSize == 0; }
2698  unsigned path_size() const { return CastExprBits.BasePathSize; }
2699  path_iterator path_begin() { return path_buffer(); }
2700  path_iterator path_end() { return path_buffer() + path_size(); }
2701  path_const_iterator path_begin() const { return path_buffer(); }
2702  path_const_iterator path_end() const { return path_buffer() + path_size(); }
2703
2704  void setCastPath(const CXXCastPath &Path);
2705
2706  static bool classof(const Stmt *T) {
2707    return T->getStmtClass() >= firstCastExprConstant &&
2708           T->getStmtClass() <= lastCastExprConstant;
2709  }
2710
2711  // Iterators
2712  child_range children() { return child_range(&Op, &Op+1); }
2713};
2714
2715/// ImplicitCastExpr - Allows us to explicitly represent implicit type
2716/// conversions, which have no direct representation in the original
2717/// source code. For example: converting T[]->T*, void f()->void
2718/// (*f)(), float->double, short->int, etc.
2719///
2720/// In C, implicit casts always produce rvalues. However, in C++, an
2721/// implicit cast whose result is being bound to a reference will be
2722/// an lvalue or xvalue. For example:
2723///
2724/// @code
2725/// class Base { };
2726/// class Derived : public Base { };
2727/// Derived &&ref();
2728/// void f(Derived d) {
2729///   Base& b = d; // initializer is an ImplicitCastExpr
2730///                // to an lvalue of type Base
2731///   Base&& r = ref(); // initializer is an ImplicitCastExpr
2732///                     // to an xvalue of type Base
2733/// }
2734/// @endcode
2735class ImplicitCastExpr : public CastExpr {
2736private:
2737  ImplicitCastExpr(QualType ty, CastKind kind, Expr *op,
2738                   unsigned BasePathLength, ExprValueKind VK)
2739    : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, BasePathLength) {
2740  }
2741
2742  /// \brief Construct an empty implicit cast.
2743  explicit ImplicitCastExpr(EmptyShell Shell, unsigned PathSize)
2744    : CastExpr(ImplicitCastExprClass, Shell, PathSize) { }
2745
2746public:
2747  enum OnStack_t { OnStack };
2748  ImplicitCastExpr(OnStack_t _, QualType ty, CastKind kind, Expr *op,
2749                   ExprValueKind VK)
2750    : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, 0) {
2751  }
2752
2753  static ImplicitCastExpr *Create(const ASTContext &Context, QualType T,
2754                                  CastKind Kind, Expr *Operand,
2755                                  const CXXCastPath *BasePath,
2756                                  ExprValueKind Cat);
2757
2758  static ImplicitCastExpr *CreateEmpty(const ASTContext &Context,
2759                                       unsigned PathSize);
2760
2761  SourceLocation getLocStart() const LLVM_READONLY {
2762    return getSubExpr()->getLocStart();
2763  }
2764  SourceLocation getLocEnd() const LLVM_READONLY {
2765    return getSubExpr()->getLocEnd();
2766  }
2767
2768  static bool classof(const Stmt *T) {
2769    return T->getStmtClass() == ImplicitCastExprClass;
2770  }
2771};
2772
2773inline Expr *Expr::IgnoreImpCasts() {
2774  Expr *e = this;
2775  while (ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
2776    e = ice->getSubExpr();
2777  return e;
2778}
2779
2780/// ExplicitCastExpr - An explicit cast written in the source
2781/// code.
2782///
2783/// This class is effectively an abstract class, because it provides
2784/// the basic representation of an explicitly-written cast without
2785/// specifying which kind of cast (C cast, functional cast, static
2786/// cast, etc.) was written; specific derived classes represent the
2787/// particular style of cast and its location information.
2788///
2789/// Unlike implicit casts, explicit cast nodes have two different
2790/// types: the type that was written into the source code, and the
2791/// actual type of the expression as determined by semantic
2792/// analysis. These types may differ slightly. For example, in C++ one
2793/// can cast to a reference type, which indicates that the resulting
2794/// expression will be an lvalue or xvalue. The reference type, however,
2795/// will not be used as the type of the expression.
2796class ExplicitCastExpr : public CastExpr {
2797  /// TInfo - Source type info for the (written) type
2798  /// this expression is casting to.
2799  TypeSourceInfo *TInfo;
2800
2801protected:
2802  ExplicitCastExpr(StmtClass SC, QualType exprTy, ExprValueKind VK,
2803                   CastKind kind, Expr *op, unsigned PathSize,
2804                   TypeSourceInfo *writtenTy)
2805    : CastExpr(SC, exprTy, VK, kind, op, PathSize), TInfo(writtenTy) {}
2806
2807  /// \brief Construct an empty explicit cast.
2808  ExplicitCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
2809    : CastExpr(SC, Shell, PathSize) { }
2810
2811public:
2812  /// getTypeInfoAsWritten - Returns the type source info for the type
2813  /// that this expression is casting to.
2814  TypeSourceInfo *getTypeInfoAsWritten() const { return TInfo; }
2815  void setTypeInfoAsWritten(TypeSourceInfo *writtenTy) { TInfo = writtenTy; }
2816
2817  /// getTypeAsWritten - Returns the type that this expression is
2818  /// casting to, as written in the source code.
2819  QualType getTypeAsWritten() const { return TInfo->getType(); }
2820
2821  static bool classof(const Stmt *T) {
2822     return T->getStmtClass() >= firstExplicitCastExprConstant &&
2823            T->getStmtClass() <= lastExplicitCastExprConstant;
2824  }
2825};
2826
2827/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
2828/// cast in C++ (C++ [expr.cast]), which uses the syntax
2829/// (Type)expr. For example: @c (int)f.
2830class CStyleCastExpr : public ExplicitCastExpr {
2831  SourceLocation LPLoc; // the location of the left paren
2832  SourceLocation RPLoc; // the location of the right paren
2833
2834  CStyleCastExpr(QualType exprTy, ExprValueKind vk, CastKind kind, Expr *op,
2835                 unsigned PathSize, TypeSourceInfo *writtenTy,
2836                 SourceLocation l, SourceLocation r)
2837    : ExplicitCastExpr(CStyleCastExprClass, exprTy, vk, kind, op, PathSize,
2838                       writtenTy), LPLoc(l), RPLoc(r) {}
2839
2840  /// \brief Construct an empty C-style explicit cast.
2841  explicit CStyleCastExpr(EmptyShell Shell, unsigned PathSize)
2842    : ExplicitCastExpr(CStyleCastExprClass, Shell, PathSize) { }
2843
2844public:
2845  static CStyleCastExpr *Create(const ASTContext &Context, QualType T,
2846                                ExprValueKind VK, CastKind K,
2847                                Expr *Op, const CXXCastPath *BasePath,
2848                                TypeSourceInfo *WrittenTy, SourceLocation L,
2849                                SourceLocation R);
2850
2851  static CStyleCastExpr *CreateEmpty(const ASTContext &Context,
2852                                     unsigned PathSize);
2853
2854  SourceLocation getLParenLoc() const { return LPLoc; }
2855  void setLParenLoc(SourceLocation L) { LPLoc = L; }
2856
2857  SourceLocation getRParenLoc() const { return RPLoc; }
2858  void setRParenLoc(SourceLocation L) { RPLoc = L; }
2859
2860  SourceLocation getLocStart() const LLVM_READONLY { return LPLoc; }
2861  SourceLocation getLocEnd() const LLVM_READONLY {
2862    return getSubExpr()->getLocEnd();
2863  }
2864
2865  static bool classof(const Stmt *T) {
2866    return T->getStmtClass() == CStyleCastExprClass;
2867  }
2868};
2869
2870/// \brief A builtin binary operation expression such as "x + y" or "x <= y".
2871///
2872/// This expression node kind describes a builtin binary operation,
2873/// such as "x + y" for integer values "x" and "y". The operands will
2874/// already have been converted to appropriate types (e.g., by
2875/// performing promotions or conversions).
2876///
2877/// In C++, where operators may be overloaded, a different kind of
2878/// expression node (CXXOperatorCallExpr) is used to express the
2879/// invocation of an overloaded operator with operator syntax. Within
2880/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
2881/// used to store an expression "x + y" depends on the subexpressions
2882/// for x and y. If neither x or y is type-dependent, and the "+"
2883/// operator resolves to a built-in operation, BinaryOperator will be
2884/// used to express the computation (x and y may still be
2885/// value-dependent). If either x or y is type-dependent, or if the
2886/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
2887/// be used to express the computation.
2888class BinaryOperator : public Expr {
2889public:
2890  typedef BinaryOperatorKind Opcode;
2891
2892private:
2893  unsigned Opc : 6;
2894
2895  // Records the FP_CONTRACT pragma status at the point that this binary
2896  // operator was parsed. This bit is only meaningful for operations on
2897  // floating point types. For all other types it should default to
2898  // false.
2899  unsigned FPContractable : 1;
2900  SourceLocation OpLoc;
2901
2902  enum { LHS, RHS, END_EXPR };
2903  Stmt* SubExprs[END_EXPR];
2904public:
2905
2906  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2907                 ExprValueKind VK, ExprObjectKind OK,
2908                 SourceLocation opLoc, bool fpContractable)
2909    : Expr(BinaryOperatorClass, ResTy, VK, OK,
2910           lhs->isTypeDependent() || rhs->isTypeDependent(),
2911           lhs->isValueDependent() || rhs->isValueDependent(),
2912           (lhs->isInstantiationDependent() ||
2913            rhs->isInstantiationDependent()),
2914           (lhs->containsUnexpandedParameterPack() ||
2915            rhs->containsUnexpandedParameterPack())),
2916      Opc(opc), FPContractable(fpContractable), OpLoc(opLoc) {
2917    SubExprs[LHS] = lhs;
2918    SubExprs[RHS] = rhs;
2919    assert(!isCompoundAssignmentOp() &&
2920           "Use CompoundAssignOperator for compound assignments");
2921  }
2922
2923  /// \brief Construct an empty binary operator.
2924  explicit BinaryOperator(EmptyShell Empty)
2925    : Expr(BinaryOperatorClass, Empty), Opc(BO_Comma) { }
2926
2927  SourceLocation getExprLoc() const LLVM_READONLY { return OpLoc; }
2928  SourceLocation getOperatorLoc() const { return OpLoc; }
2929  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
2930
2931  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
2932  void setOpcode(Opcode O) { Opc = O; }
2933
2934  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2935  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2936  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2937  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2938
2939  SourceLocation getLocStart() const LLVM_READONLY {
2940    return getLHS()->getLocStart();
2941  }
2942  SourceLocation getLocEnd() const LLVM_READONLY {
2943    return getRHS()->getLocEnd();
2944  }
2945
2946  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
2947  /// corresponds to, e.g. "<<=".
2948  static StringRef getOpcodeStr(Opcode Op);
2949
2950  StringRef getOpcodeStr() const { return getOpcodeStr(getOpcode()); }
2951
2952  /// \brief Retrieve the binary opcode that corresponds to the given
2953  /// overloaded operator.
2954  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
2955
2956  /// \brief Retrieve the overloaded operator kind that corresponds to
2957  /// the given binary opcode.
2958  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
2959
2960  /// predicates to categorize the respective opcodes.
2961  bool isPtrMemOp() const { return Opc == BO_PtrMemD || Opc == BO_PtrMemI; }
2962  bool isMultiplicativeOp() const { return Opc >= BO_Mul && Opc <= BO_Rem; }
2963  static bool isAdditiveOp(Opcode Opc) { return Opc == BO_Add || Opc==BO_Sub; }
2964  bool isAdditiveOp() const { return isAdditiveOp(getOpcode()); }
2965  static bool isShiftOp(Opcode Opc) { return Opc == BO_Shl || Opc == BO_Shr; }
2966  bool isShiftOp() const { return isShiftOp(getOpcode()); }
2967
2968  static bool isBitwiseOp(Opcode Opc) { return Opc >= BO_And && Opc <= BO_Or; }
2969  bool isBitwiseOp() const { return isBitwiseOp(getOpcode()); }
2970
2971  static bool isRelationalOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_GE; }
2972  bool isRelationalOp() const { return isRelationalOp(getOpcode()); }
2973
2974  static bool isEqualityOp(Opcode Opc) { return Opc == BO_EQ || Opc == BO_NE; }
2975  bool isEqualityOp() const { return isEqualityOp(getOpcode()); }
2976
2977  static bool isComparisonOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_NE; }
2978  bool isComparisonOp() const { return isComparisonOp(getOpcode()); }
2979
2980  static Opcode negateComparisonOp(Opcode Opc) {
2981    switch (Opc) {
2982    default:
2983      llvm_unreachable("Not a comparsion operator.");
2984    case BO_LT: return BO_GE;
2985    case BO_GT: return BO_LE;
2986    case BO_LE: return BO_GT;
2987    case BO_GE: return BO_LT;
2988    case BO_EQ: return BO_NE;
2989    case BO_NE: return BO_EQ;
2990    }
2991  }
2992
2993  static Opcode reverseComparisonOp(Opcode Opc) {
2994    switch (Opc) {
2995    default:
2996      llvm_unreachable("Not a comparsion operator.");
2997    case BO_LT: return BO_GT;
2998    case BO_GT: return BO_LT;
2999    case BO_LE: return BO_GE;
3000    case BO_GE: return BO_LE;
3001    case BO_EQ:
3002    case BO_NE:
3003      return Opc;
3004    }
3005  }
3006
3007  static bool isLogicalOp(Opcode Opc) { return Opc == BO_LAnd || Opc==BO_LOr; }
3008  bool isLogicalOp() const { return isLogicalOp(getOpcode()); }
3009
3010  static bool isAssignmentOp(Opcode Opc) {
3011    return Opc >= BO_Assign && Opc <= BO_OrAssign;
3012  }
3013  bool isAssignmentOp() const { return isAssignmentOp(getOpcode()); }
3014
3015  static bool isCompoundAssignmentOp(Opcode Opc) {
3016    return Opc > BO_Assign && Opc <= BO_OrAssign;
3017  }
3018  bool isCompoundAssignmentOp() const {
3019    return isCompoundAssignmentOp(getOpcode());
3020  }
3021  static Opcode getOpForCompoundAssignment(Opcode Opc) {
3022    assert(isCompoundAssignmentOp(Opc));
3023    if (Opc >= BO_AndAssign)
3024      return Opcode(unsigned(Opc) - BO_AndAssign + BO_And);
3025    else
3026      return Opcode(unsigned(Opc) - BO_MulAssign + BO_Mul);
3027  }
3028
3029  static bool isShiftAssignOp(Opcode Opc) {
3030    return Opc == BO_ShlAssign || Opc == BO_ShrAssign;
3031  }
3032  bool isShiftAssignOp() const {
3033    return isShiftAssignOp(getOpcode());
3034  }
3035
3036  static bool classof(const Stmt *S) {
3037    return S->getStmtClass() >= firstBinaryOperatorConstant &&
3038           S->getStmtClass() <= lastBinaryOperatorConstant;
3039  }
3040
3041  // Iterators
3042  child_range children() {
3043    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
3044  }
3045
3046  // Set the FP contractability status of this operator. Only meaningful for
3047  // operations on floating point types.
3048  void setFPContractable(bool FPC) { FPContractable = FPC; }
3049
3050  // Get the FP contractability status of this operator. Only meaningful for
3051  // operations on floating point types.
3052  bool isFPContractable() const { return FPContractable; }
3053
3054protected:
3055  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
3056                 ExprValueKind VK, ExprObjectKind OK,
3057                 SourceLocation opLoc, bool fpContractable, bool dead2)
3058    : Expr(CompoundAssignOperatorClass, ResTy, VK, OK,
3059           lhs->isTypeDependent() || rhs->isTypeDependent(),
3060           lhs->isValueDependent() || rhs->isValueDependent(),
3061           (lhs->isInstantiationDependent() ||
3062            rhs->isInstantiationDependent()),
3063           (lhs->containsUnexpandedParameterPack() ||
3064            rhs->containsUnexpandedParameterPack())),
3065      Opc(opc), FPContractable(fpContractable), OpLoc(opLoc) {
3066    SubExprs[LHS] = lhs;
3067    SubExprs[RHS] = rhs;
3068  }
3069
3070  BinaryOperator(StmtClass SC, EmptyShell Empty)
3071    : Expr(SC, Empty), Opc(BO_MulAssign) { }
3072};
3073
3074/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
3075/// track of the type the operation is performed in.  Due to the semantics of
3076/// these operators, the operands are promoted, the arithmetic performed, an
3077/// implicit conversion back to the result type done, then the assignment takes
3078/// place.  This captures the intermediate type which the computation is done
3079/// in.
3080class CompoundAssignOperator : public BinaryOperator {
3081  QualType ComputationLHSType;
3082  QualType ComputationResultType;
3083public:
3084  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResType,
3085                         ExprValueKind VK, ExprObjectKind OK,
3086                         QualType CompLHSType, QualType CompResultType,
3087                         SourceLocation OpLoc, bool fpContractable)
3088    : BinaryOperator(lhs, rhs, opc, ResType, VK, OK, OpLoc, fpContractable,
3089                     true),
3090      ComputationLHSType(CompLHSType),
3091      ComputationResultType(CompResultType) {
3092    assert(isCompoundAssignmentOp() &&
3093           "Only should be used for compound assignments");
3094  }
3095
3096  /// \brief Build an empty compound assignment operator expression.
3097  explicit CompoundAssignOperator(EmptyShell Empty)
3098    : BinaryOperator(CompoundAssignOperatorClass, Empty) { }
3099
3100  // The two computation types are the type the LHS is converted
3101  // to for the computation and the type of the result; the two are
3102  // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
3103  QualType getComputationLHSType() const { return ComputationLHSType; }
3104  void setComputationLHSType(QualType T) { ComputationLHSType = T; }
3105
3106  QualType getComputationResultType() const { return ComputationResultType; }
3107  void setComputationResultType(QualType T) { ComputationResultType = T; }
3108
3109  static bool classof(const Stmt *S) {
3110    return S->getStmtClass() == CompoundAssignOperatorClass;
3111  }
3112};
3113
3114/// AbstractConditionalOperator - An abstract base class for
3115/// ConditionalOperator and BinaryConditionalOperator.
3116class AbstractConditionalOperator : public Expr {
3117  SourceLocation QuestionLoc, ColonLoc;
3118  friend class ASTStmtReader;
3119
3120protected:
3121  AbstractConditionalOperator(StmtClass SC, QualType T,
3122                              ExprValueKind VK, ExprObjectKind OK,
3123                              bool TD, bool VD, bool ID,
3124                              bool ContainsUnexpandedParameterPack,
3125                              SourceLocation qloc,
3126                              SourceLocation cloc)
3127    : Expr(SC, T, VK, OK, TD, VD, ID, ContainsUnexpandedParameterPack),
3128      QuestionLoc(qloc), ColonLoc(cloc) {}
3129
3130  AbstractConditionalOperator(StmtClass SC, EmptyShell Empty)
3131    : Expr(SC, Empty) { }
3132
3133public:
3134  // getCond - Return the expression representing the condition for
3135  //   the ?: operator.
3136  Expr *getCond() const;
3137
3138  // getTrueExpr - Return the subexpression representing the value of
3139  //   the expression if the condition evaluates to true.
3140  Expr *getTrueExpr() const;
3141
3142  // getFalseExpr - Return the subexpression representing the value of
3143  //   the expression if the condition evaluates to false.  This is
3144  //   the same as getRHS.
3145  Expr *getFalseExpr() const;
3146
3147  SourceLocation getQuestionLoc() const { return QuestionLoc; }
3148  SourceLocation getColonLoc() const { return ColonLoc; }
3149
3150  static bool classof(const Stmt *T) {
3151    return T->getStmtClass() == ConditionalOperatorClass ||
3152           T->getStmtClass() == BinaryConditionalOperatorClass;
3153  }
3154};
3155
3156/// ConditionalOperator - The ?: ternary operator.  The GNU "missing
3157/// middle" extension is a BinaryConditionalOperator.
3158class ConditionalOperator : public AbstractConditionalOperator {
3159  enum { COND, LHS, RHS, END_EXPR };
3160  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
3161
3162  friend class ASTStmtReader;
3163public:
3164  ConditionalOperator(Expr *cond, SourceLocation QLoc, Expr *lhs,
3165                      SourceLocation CLoc, Expr *rhs,
3166                      QualType t, ExprValueKind VK, ExprObjectKind OK)
3167    : AbstractConditionalOperator(ConditionalOperatorClass, t, VK, OK,
3168           // FIXME: the type of the conditional operator doesn't
3169           // depend on the type of the conditional, but the standard
3170           // seems to imply that it could. File a bug!
3171           (lhs->isTypeDependent() || rhs->isTypeDependent()),
3172           (cond->isValueDependent() || lhs->isValueDependent() ||
3173            rhs->isValueDependent()),
3174           (cond->isInstantiationDependent() ||
3175            lhs->isInstantiationDependent() ||
3176            rhs->isInstantiationDependent()),
3177           (cond->containsUnexpandedParameterPack() ||
3178            lhs->containsUnexpandedParameterPack() ||
3179            rhs->containsUnexpandedParameterPack()),
3180                                  QLoc, CLoc) {
3181    SubExprs[COND] = cond;
3182    SubExprs[LHS] = lhs;
3183    SubExprs[RHS] = rhs;
3184  }
3185
3186  /// \brief Build an empty conditional operator.
3187  explicit ConditionalOperator(EmptyShell Empty)
3188    : AbstractConditionalOperator(ConditionalOperatorClass, Empty) { }
3189
3190  // getCond - Return the expression representing the condition for
3191  //   the ?: operator.
3192  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3193
3194  // getTrueExpr - Return the subexpression representing the value of
3195  //   the expression if the condition evaluates to true.
3196  Expr *getTrueExpr() const { return cast<Expr>(SubExprs[LHS]); }
3197
3198  // getFalseExpr - Return the subexpression representing the value of
3199  //   the expression if the condition evaluates to false.  This is
3200  //   the same as getRHS.
3201  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
3202
3203  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
3204  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
3205
3206  SourceLocation getLocStart() const LLVM_READONLY {
3207    return getCond()->getLocStart();
3208  }
3209  SourceLocation getLocEnd() const LLVM_READONLY {
3210    return getRHS()->getLocEnd();
3211  }
3212
3213  static bool classof(const Stmt *T) {
3214    return T->getStmtClass() == ConditionalOperatorClass;
3215  }
3216
3217  // Iterators
3218  child_range children() {
3219    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
3220  }
3221};
3222
3223/// BinaryConditionalOperator - The GNU extension to the conditional
3224/// operator which allows the middle operand to be omitted.
3225///
3226/// This is a different expression kind on the assumption that almost
3227/// every client ends up needing to know that these are different.
3228class BinaryConditionalOperator : public AbstractConditionalOperator {
3229  enum { COMMON, COND, LHS, RHS, NUM_SUBEXPRS };
3230
3231  /// - the common condition/left-hand-side expression, which will be
3232  ///   evaluated as the opaque value
3233  /// - the condition, expressed in terms of the opaque value
3234  /// - the left-hand-side, expressed in terms of the opaque value
3235  /// - the right-hand-side
3236  Stmt *SubExprs[NUM_SUBEXPRS];
3237  OpaqueValueExpr *OpaqueValue;
3238
3239  friend class ASTStmtReader;
3240public:
3241  BinaryConditionalOperator(Expr *common, OpaqueValueExpr *opaqueValue,
3242                            Expr *cond, Expr *lhs, Expr *rhs,
3243                            SourceLocation qloc, SourceLocation cloc,
3244                            QualType t, ExprValueKind VK, ExprObjectKind OK)
3245    : AbstractConditionalOperator(BinaryConditionalOperatorClass, t, VK, OK,
3246           (common->isTypeDependent() || rhs->isTypeDependent()),
3247           (common->isValueDependent() || rhs->isValueDependent()),
3248           (common->isInstantiationDependent() ||
3249            rhs->isInstantiationDependent()),
3250           (common->containsUnexpandedParameterPack() ||
3251            rhs->containsUnexpandedParameterPack()),
3252                                  qloc, cloc),
3253      OpaqueValue(opaqueValue) {
3254    SubExprs[COMMON] = common;
3255    SubExprs[COND] = cond;
3256    SubExprs[LHS] = lhs;
3257    SubExprs[RHS] = rhs;
3258    assert(OpaqueValue->getSourceExpr() == common && "Wrong opaque value");
3259  }
3260
3261  /// \brief Build an empty conditional operator.
3262  explicit BinaryConditionalOperator(EmptyShell Empty)
3263    : AbstractConditionalOperator(BinaryConditionalOperatorClass, Empty) { }
3264
3265  /// \brief getCommon - Return the common expression, written to the
3266  ///   left of the condition.  The opaque value will be bound to the
3267  ///   result of this expression.
3268  Expr *getCommon() const { return cast<Expr>(SubExprs[COMMON]); }
3269
3270  /// \brief getOpaqueValue - Return the opaque value placeholder.
3271  OpaqueValueExpr *getOpaqueValue() const { return OpaqueValue; }
3272
3273  /// \brief getCond - Return the condition expression; this is defined
3274  ///   in terms of the opaque value.
3275  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3276
3277  /// \brief getTrueExpr - Return the subexpression which will be
3278  ///   evaluated if the condition evaluates to true;  this is defined
3279  ///   in terms of the opaque value.
3280  Expr *getTrueExpr() const {
3281    return cast<Expr>(SubExprs[LHS]);
3282  }
3283
3284  /// \brief getFalseExpr - Return the subexpression which will be
3285  ///   evaluated if the condnition evaluates to false; this is
3286  ///   defined in terms of the opaque value.
3287  Expr *getFalseExpr() const {
3288    return cast<Expr>(SubExprs[RHS]);
3289  }
3290
3291  SourceLocation getLocStart() const LLVM_READONLY {
3292    return getCommon()->getLocStart();
3293  }
3294  SourceLocation getLocEnd() const LLVM_READONLY {
3295    return getFalseExpr()->getLocEnd();
3296  }
3297
3298  static bool classof(const Stmt *T) {
3299    return T->getStmtClass() == BinaryConditionalOperatorClass;
3300  }
3301
3302  // Iterators
3303  child_range children() {
3304    return child_range(SubExprs, SubExprs + NUM_SUBEXPRS);
3305  }
3306};
3307
3308inline Expr *AbstractConditionalOperator::getCond() const {
3309  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3310    return co->getCond();
3311  return cast<BinaryConditionalOperator>(this)->getCond();
3312}
3313
3314inline Expr *AbstractConditionalOperator::getTrueExpr() const {
3315  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3316    return co->getTrueExpr();
3317  return cast<BinaryConditionalOperator>(this)->getTrueExpr();
3318}
3319
3320inline Expr *AbstractConditionalOperator::getFalseExpr() const {
3321  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3322    return co->getFalseExpr();
3323  return cast<BinaryConditionalOperator>(this)->getFalseExpr();
3324}
3325
3326/// AddrLabelExpr - The GNU address of label extension, representing &&label.
3327class AddrLabelExpr : public Expr {
3328  SourceLocation AmpAmpLoc, LabelLoc;
3329  LabelDecl *Label;
3330public:
3331  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelDecl *L,
3332                QualType t)
3333    : Expr(AddrLabelExprClass, t, VK_RValue, OK_Ordinary, false, false, false,
3334           false),
3335      AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
3336
3337  /// \brief Build an empty address of a label expression.
3338  explicit AddrLabelExpr(EmptyShell Empty)
3339    : Expr(AddrLabelExprClass, Empty) { }
3340
3341  SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
3342  void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
3343  SourceLocation getLabelLoc() const { return LabelLoc; }
3344  void setLabelLoc(SourceLocation L) { LabelLoc = L; }
3345
3346  SourceLocation getLocStart() const LLVM_READONLY { return AmpAmpLoc; }
3347  SourceLocation getLocEnd() const LLVM_READONLY { return LabelLoc; }
3348
3349  LabelDecl *getLabel() const { return Label; }
3350  void setLabel(LabelDecl *L) { Label = L; }
3351
3352  static bool classof(const Stmt *T) {
3353    return T->getStmtClass() == AddrLabelExprClass;
3354  }
3355
3356  // Iterators
3357  child_range children() { return child_range(); }
3358};
3359
3360/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
3361/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
3362/// takes the value of the last subexpression.
3363///
3364/// A StmtExpr is always an r-value; values "returned" out of a
3365/// StmtExpr will be copied.
3366class StmtExpr : public Expr {
3367  Stmt *SubStmt;
3368  SourceLocation LParenLoc, RParenLoc;
3369public:
3370  // FIXME: Does type-dependence need to be computed differently?
3371  // FIXME: Do we need to compute instantiation instantiation-dependence for
3372  // statements? (ugh!)
3373  StmtExpr(CompoundStmt *substmt, QualType T,
3374           SourceLocation lp, SourceLocation rp) :
3375    Expr(StmtExprClass, T, VK_RValue, OK_Ordinary,
3376         T->isDependentType(), false, false, false),
3377    SubStmt(substmt), LParenLoc(lp), RParenLoc(rp) { }
3378
3379  /// \brief Build an empty statement expression.
3380  explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
3381
3382  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
3383  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
3384  void setSubStmt(CompoundStmt *S) { SubStmt = S; }
3385
3386  SourceLocation getLocStart() const LLVM_READONLY { return LParenLoc; }
3387  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
3388
3389  SourceLocation getLParenLoc() const { return LParenLoc; }
3390  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
3391  SourceLocation getRParenLoc() const { return RParenLoc; }
3392  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3393
3394  static bool classof(const Stmt *T) {
3395    return T->getStmtClass() == StmtExprClass;
3396  }
3397
3398  // Iterators
3399  child_range children() { return child_range(&SubStmt, &SubStmt+1); }
3400};
3401
3402
3403/// ShuffleVectorExpr - clang-specific builtin-in function
3404/// __builtin_shufflevector.
3405/// This AST node represents a operator that does a constant
3406/// shuffle, similar to LLVM's shufflevector instruction. It takes
3407/// two vectors and a variable number of constant indices,
3408/// and returns the appropriately shuffled vector.
3409class ShuffleVectorExpr : public Expr {
3410  SourceLocation BuiltinLoc, RParenLoc;
3411
3412  // SubExprs - the list of values passed to the __builtin_shufflevector
3413  // function. The first two are vectors, and the rest are constant
3414  // indices.  The number of values in this list is always
3415  // 2+the number of indices in the vector type.
3416  Stmt **SubExprs;
3417  unsigned NumExprs;
3418
3419public:
3420  ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr*> args, QualType Type,
3421                    SourceLocation BLoc, SourceLocation RP);
3422
3423  /// \brief Build an empty vector-shuffle expression.
3424  explicit ShuffleVectorExpr(EmptyShell Empty)
3425    : Expr(ShuffleVectorExprClass, Empty), SubExprs(0) { }
3426
3427  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3428  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3429
3430  SourceLocation getRParenLoc() const { return RParenLoc; }
3431  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3432
3433  SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
3434  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
3435
3436  static bool classof(const Stmt *T) {
3437    return T->getStmtClass() == ShuffleVectorExprClass;
3438  }
3439
3440  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
3441  /// constant expression, the actual arguments passed in, and the function
3442  /// pointers.
3443  unsigned getNumSubExprs() const { return NumExprs; }
3444
3445  /// \brief Retrieve the array of expressions.
3446  Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
3447
3448  /// getExpr - Return the Expr at the specified index.
3449  Expr *getExpr(unsigned Index) {
3450    assert((Index < NumExprs) && "Arg access out of range!");
3451    return cast<Expr>(SubExprs[Index]);
3452  }
3453  const Expr *getExpr(unsigned Index) const {
3454    assert((Index < NumExprs) && "Arg access out of range!");
3455    return cast<Expr>(SubExprs[Index]);
3456  }
3457
3458  void setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs);
3459
3460  llvm::APSInt getShuffleMaskIdx(const ASTContext &Ctx, unsigned N) const {
3461    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
3462    return getExpr(N+2)->EvaluateKnownConstInt(Ctx);
3463  }
3464
3465  // Iterators
3466  child_range children() {
3467    return child_range(&SubExprs[0], &SubExprs[0]+NumExprs);
3468  }
3469};
3470
3471/// ConvertVectorExpr - Clang builtin function __builtin_convertvector
3472/// This AST node provides support for converting a vector type to another
3473/// vector type of the same arity.
3474class ConvertVectorExpr : public Expr {
3475private:
3476  Stmt *SrcExpr;
3477  TypeSourceInfo *TInfo;
3478  SourceLocation BuiltinLoc, RParenLoc;
3479
3480  friend class ASTReader;
3481  friend class ASTStmtReader;
3482  explicit ConvertVectorExpr(EmptyShell Empty) : Expr(ConvertVectorExprClass, Empty) {}
3483
3484public:
3485  ConvertVectorExpr(Expr* SrcExpr, TypeSourceInfo *TI, QualType DstType,
3486             ExprValueKind VK, ExprObjectKind OK,
3487             SourceLocation BuiltinLoc, SourceLocation RParenLoc)
3488    : Expr(ConvertVectorExprClass, DstType, VK, OK,
3489           DstType->isDependentType(),
3490           DstType->isDependentType() || SrcExpr->isValueDependent(),
3491           (DstType->isInstantiationDependentType() ||
3492            SrcExpr->isInstantiationDependent()),
3493           (DstType->containsUnexpandedParameterPack() ||
3494            SrcExpr->containsUnexpandedParameterPack())),
3495  SrcExpr(SrcExpr), TInfo(TI), BuiltinLoc(BuiltinLoc), RParenLoc(RParenLoc) {}
3496
3497  /// getSrcExpr - Return the Expr to be converted.
3498  Expr *getSrcExpr() const { return cast<Expr>(SrcExpr); }
3499
3500  /// getTypeSourceInfo - Return the destination type.
3501  TypeSourceInfo *getTypeSourceInfo() const {
3502    return TInfo;
3503  }
3504  void setTypeSourceInfo(TypeSourceInfo *ti) {
3505    TInfo = ti;
3506  }
3507
3508  /// getBuiltinLoc - Return the location of the __builtin_convertvector token.
3509  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3510
3511  /// getRParenLoc - Return the location of final right parenthesis.
3512  SourceLocation getRParenLoc() const { return RParenLoc; }
3513
3514  SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
3515  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
3516
3517  static bool classof(const Stmt *T) {
3518    return T->getStmtClass() == ConvertVectorExprClass;
3519  }
3520
3521  // Iterators
3522  child_range children() { return child_range(&SrcExpr, &SrcExpr+1); }
3523};
3524
3525/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
3526/// This AST node is similar to the conditional operator (?:) in C, with
3527/// the following exceptions:
3528/// - the test expression must be a integer constant expression.
3529/// - the expression returned acts like the chosen subexpression in every
3530///   visible way: the type is the same as that of the chosen subexpression,
3531///   and all predicates (whether it's an l-value, whether it's an integer
3532///   constant expression, etc.) return the same result as for the chosen
3533///   sub-expression.
3534class ChooseExpr : public Expr {
3535  enum { COND, LHS, RHS, END_EXPR };
3536  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
3537  SourceLocation BuiltinLoc, RParenLoc;
3538  bool CondIsTrue;
3539public:
3540  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs,
3541             QualType t, ExprValueKind VK, ExprObjectKind OK,
3542             SourceLocation RP, bool condIsTrue,
3543             bool TypeDependent, bool ValueDependent)
3544    : Expr(ChooseExprClass, t, VK, OK, TypeDependent, ValueDependent,
3545           (cond->isInstantiationDependent() ||
3546            lhs->isInstantiationDependent() ||
3547            rhs->isInstantiationDependent()),
3548           (cond->containsUnexpandedParameterPack() ||
3549            lhs->containsUnexpandedParameterPack() ||
3550            rhs->containsUnexpandedParameterPack())),
3551      BuiltinLoc(BLoc), RParenLoc(RP), CondIsTrue(condIsTrue) {
3552      SubExprs[COND] = cond;
3553      SubExprs[LHS] = lhs;
3554      SubExprs[RHS] = rhs;
3555    }
3556
3557  /// \brief Build an empty __builtin_choose_expr.
3558  explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
3559
3560  /// isConditionTrue - Return whether the condition is true (i.e. not
3561  /// equal to zero).
3562  bool isConditionTrue() const {
3563    assert(!isConditionDependent() &&
3564           "Dependent condition isn't true or false");
3565    return CondIsTrue;
3566  }
3567  void setIsConditionTrue(bool isTrue) { CondIsTrue = isTrue; }
3568
3569  bool isConditionDependent() const {
3570    return getCond()->isTypeDependent() || getCond()->isValueDependent();
3571  }
3572
3573  /// getChosenSubExpr - Return the subexpression chosen according to the
3574  /// condition.
3575  Expr *getChosenSubExpr() const {
3576    return isConditionTrue() ? getLHS() : getRHS();
3577  }
3578
3579  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3580  void setCond(Expr *E) { SubExprs[COND] = E; }
3581  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
3582  void setLHS(Expr *E) { SubExprs[LHS] = E; }
3583  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
3584  void setRHS(Expr *E) { SubExprs[RHS] = E; }
3585
3586  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3587  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3588
3589  SourceLocation getRParenLoc() const { return RParenLoc; }
3590  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3591
3592  SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
3593  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
3594
3595  static bool classof(const Stmt *T) {
3596    return T->getStmtClass() == ChooseExprClass;
3597  }
3598
3599  // Iterators
3600  child_range children() {
3601    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
3602  }
3603};
3604
3605/// GNUNullExpr - Implements the GNU __null extension, which is a name
3606/// for a null pointer constant that has integral type (e.g., int or
3607/// long) and is the same size and alignment as a pointer. The __null
3608/// extension is typically only used by system headers, which define
3609/// NULL as __null in C++ rather than using 0 (which is an integer
3610/// that may not match the size of a pointer).
3611class GNUNullExpr : public Expr {
3612  /// TokenLoc - The location of the __null keyword.
3613  SourceLocation TokenLoc;
3614
3615public:
3616  GNUNullExpr(QualType Ty, SourceLocation Loc)
3617    : Expr(GNUNullExprClass, Ty, VK_RValue, OK_Ordinary, false, false, false,
3618           false),
3619      TokenLoc(Loc) { }
3620
3621  /// \brief Build an empty GNU __null expression.
3622  explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
3623
3624  /// getTokenLocation - The location of the __null token.
3625  SourceLocation getTokenLocation() const { return TokenLoc; }
3626  void setTokenLocation(SourceLocation L) { TokenLoc = L; }
3627
3628  SourceLocation getLocStart() const LLVM_READONLY { return TokenLoc; }
3629  SourceLocation getLocEnd() const LLVM_READONLY { return TokenLoc; }
3630
3631  static bool classof(const Stmt *T) {
3632    return T->getStmtClass() == GNUNullExprClass;
3633  }
3634
3635  // Iterators
3636  child_range children() { return child_range(); }
3637};
3638
3639/// VAArgExpr, used for the builtin function __builtin_va_arg.
3640class VAArgExpr : public Expr {
3641  Stmt *Val;
3642  TypeSourceInfo *TInfo;
3643  SourceLocation BuiltinLoc, RParenLoc;
3644public:
3645  VAArgExpr(SourceLocation BLoc, Expr* e, TypeSourceInfo *TInfo,
3646            SourceLocation RPLoc, QualType t)
3647    : Expr(VAArgExprClass, t, VK_RValue, OK_Ordinary,
3648           t->isDependentType(), false,
3649           (TInfo->getType()->isInstantiationDependentType() ||
3650            e->isInstantiationDependent()),
3651           (TInfo->getType()->containsUnexpandedParameterPack() ||
3652            e->containsUnexpandedParameterPack())),
3653      Val(e), TInfo(TInfo),
3654      BuiltinLoc(BLoc),
3655      RParenLoc(RPLoc) { }
3656
3657  /// \brief Create an empty __builtin_va_arg expression.
3658  explicit VAArgExpr(EmptyShell Empty) : Expr(VAArgExprClass, Empty) { }
3659
3660  const Expr *getSubExpr() const { return cast<Expr>(Val); }
3661  Expr *getSubExpr() { return cast<Expr>(Val); }
3662  void setSubExpr(Expr *E) { Val = E; }
3663
3664  TypeSourceInfo *getWrittenTypeInfo() const { return TInfo; }
3665  void setWrittenTypeInfo(TypeSourceInfo *TI) { TInfo = TI; }
3666
3667  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3668  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3669
3670  SourceLocation getRParenLoc() const { return RParenLoc; }
3671  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3672
3673  SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
3674  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
3675
3676  static bool classof(const Stmt *T) {
3677    return T->getStmtClass() == VAArgExprClass;
3678  }
3679
3680  // Iterators
3681  child_range children() { return child_range(&Val, &Val+1); }
3682};
3683
3684/// @brief Describes an C or C++ initializer list.
3685///
3686/// InitListExpr describes an initializer list, which can be used to
3687/// initialize objects of different types, including
3688/// struct/class/union types, arrays, and vectors. For example:
3689///
3690/// @code
3691/// struct foo x = { 1, { 2, 3 } };
3692/// @endcode
3693///
3694/// Prior to semantic analysis, an initializer list will represent the
3695/// initializer list as written by the user, but will have the
3696/// placeholder type "void". This initializer list is called the
3697/// syntactic form of the initializer, and may contain C99 designated
3698/// initializers (represented as DesignatedInitExprs), initializations
3699/// of subobject members without explicit braces, and so on. Clients
3700/// interested in the original syntax of the initializer list should
3701/// use the syntactic form of the initializer list.
3702///
3703/// After semantic analysis, the initializer list will represent the
3704/// semantic form of the initializer, where the initializations of all
3705/// subobjects are made explicit with nested InitListExpr nodes and
3706/// C99 designators have been eliminated by placing the designated
3707/// initializations into the subobject they initialize. Additionally,
3708/// any "holes" in the initialization, where no initializer has been
3709/// specified for a particular subobject, will be replaced with
3710/// implicitly-generated ImplicitValueInitExpr expressions that
3711/// value-initialize the subobjects. Note, however, that the
3712/// initializer lists may still have fewer initializers than there are
3713/// elements to initialize within the object.
3714///
3715/// After semantic analysis has completed, given an initializer list,
3716/// method isSemanticForm() returns true if and only if this is the
3717/// semantic form of the initializer list (note: the same AST node
3718/// may at the same time be the syntactic form).
3719/// Given the semantic form of the initializer list, one can retrieve
3720/// the syntactic form of that initializer list (when different)
3721/// using method getSyntacticForm(); the method returns null if applied
3722/// to a initializer list which is already in syntactic form.
3723/// Similarly, given the syntactic form (i.e., an initializer list such
3724/// that isSemanticForm() returns false), one can retrieve the semantic
3725/// form using method getSemanticForm().
3726/// Since many initializer lists have the same syntactic and semantic forms,
3727/// getSyntacticForm() may return NULL, indicating that the current
3728/// semantic initializer list also serves as its syntactic form.
3729class InitListExpr : public Expr {
3730  // FIXME: Eliminate this vector in favor of ASTContext allocation
3731  typedef ASTVector<Stmt *> InitExprsTy;
3732  InitExprsTy InitExprs;
3733  SourceLocation LBraceLoc, RBraceLoc;
3734
3735  /// The alternative form of the initializer list (if it exists).
3736  /// The int part of the pair stores whether this initializer list is
3737  /// in semantic form. If not null, the pointer points to:
3738  ///   - the syntactic form, if this is in semantic form;
3739  ///   - the semantic form, if this is in syntactic form.
3740  llvm::PointerIntPair<InitListExpr *, 1, bool> AltForm;
3741
3742  /// \brief Either:
3743  ///  If this initializer list initializes an array with more elements than
3744  ///  there are initializers in the list, specifies an expression to be used
3745  ///  for value initialization of the rest of the elements.
3746  /// Or
3747  ///  If this initializer list initializes a union, specifies which
3748  ///  field within the union will be initialized.
3749  llvm::PointerUnion<Expr *, FieldDecl *> ArrayFillerOrUnionFieldInit;
3750
3751public:
3752  InitListExpr(const ASTContext &C, SourceLocation lbraceloc,
3753               ArrayRef<Expr*> initExprs, SourceLocation rbraceloc);
3754
3755  /// \brief Build an empty initializer list.
3756  explicit InitListExpr(EmptyShell Empty)
3757    : Expr(InitListExprClass, Empty) { }
3758
3759  unsigned getNumInits() const { return InitExprs.size(); }
3760
3761  /// \brief Retrieve the set of initializers.
3762  Expr **getInits() { return reinterpret_cast<Expr **>(InitExprs.data()); }
3763
3764  const Expr *getInit(unsigned Init) const {
3765    assert(Init < getNumInits() && "Initializer access out of range!");
3766    return cast_or_null<Expr>(InitExprs[Init]);
3767  }
3768
3769  Expr *getInit(unsigned Init) {
3770    assert(Init < getNumInits() && "Initializer access out of range!");
3771    return cast_or_null<Expr>(InitExprs[Init]);
3772  }
3773
3774  void setInit(unsigned Init, Expr *expr) {
3775    assert(Init < getNumInits() && "Initializer access out of range!");
3776    InitExprs[Init] = expr;
3777  }
3778
3779  /// \brief Reserve space for some number of initializers.
3780  void reserveInits(const ASTContext &C, unsigned NumInits);
3781
3782  /// @brief Specify the number of initializers
3783  ///
3784  /// If there are more than @p NumInits initializers, the remaining
3785  /// initializers will be destroyed. If there are fewer than @p
3786  /// NumInits initializers, NULL expressions will be added for the
3787  /// unknown initializers.
3788  void resizeInits(const ASTContext &Context, unsigned NumInits);
3789
3790  /// @brief Updates the initializer at index @p Init with the new
3791  /// expression @p expr, and returns the old expression at that
3792  /// location.
3793  ///
3794  /// When @p Init is out of range for this initializer list, the
3795  /// initializer list will be extended with NULL expressions to
3796  /// accommodate the new entry.
3797  Expr *updateInit(const ASTContext &C, unsigned Init, Expr *expr);
3798
3799  /// \brief If this initializer list initializes an array with more elements
3800  /// than there are initializers in the list, specifies an expression to be
3801  /// used for value initialization of the rest of the elements.
3802  Expr *getArrayFiller() {
3803    return ArrayFillerOrUnionFieldInit.dyn_cast<Expr *>();
3804  }
3805  const Expr *getArrayFiller() const {
3806    return const_cast<InitListExpr *>(this)->getArrayFiller();
3807  }
3808  void setArrayFiller(Expr *filler);
3809
3810  /// \brief Return true if this is an array initializer and its array "filler"
3811  /// has been set.
3812  bool hasArrayFiller() const { return getArrayFiller(); }
3813
3814  /// \brief If this initializes a union, specifies which field in the
3815  /// union to initialize.
3816  ///
3817  /// Typically, this field is the first named field within the
3818  /// union. However, a designated initializer can specify the
3819  /// initialization of a different field within the union.
3820  FieldDecl *getInitializedFieldInUnion() {
3821    return ArrayFillerOrUnionFieldInit.dyn_cast<FieldDecl *>();
3822  }
3823  const FieldDecl *getInitializedFieldInUnion() const {
3824    return const_cast<InitListExpr *>(this)->getInitializedFieldInUnion();
3825  }
3826  void setInitializedFieldInUnion(FieldDecl *FD) {
3827    assert((FD == 0
3828            || getInitializedFieldInUnion() == 0
3829            || getInitializedFieldInUnion() == FD)
3830           && "Only one field of a union may be initialized at a time!");
3831    ArrayFillerOrUnionFieldInit = FD;
3832  }
3833
3834  // Explicit InitListExpr's originate from source code (and have valid source
3835  // locations). Implicit InitListExpr's are created by the semantic analyzer.
3836  bool isExplicit() {
3837    return LBraceLoc.isValid() && RBraceLoc.isValid();
3838  }
3839
3840  // Is this an initializer for an array of characters, initialized by a string
3841  // literal or an @encode?
3842  bool isStringLiteralInit() const;
3843
3844  SourceLocation getLBraceLoc() const { return LBraceLoc; }
3845  void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
3846  SourceLocation getRBraceLoc() const { return RBraceLoc; }
3847  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
3848
3849  bool isSemanticForm() const { return AltForm.getInt(); }
3850  InitListExpr *getSemanticForm() const {
3851    return isSemanticForm() ? 0 : AltForm.getPointer();
3852  }
3853  InitListExpr *getSyntacticForm() const {
3854    return isSemanticForm() ? AltForm.getPointer() : 0;
3855  }
3856
3857  void setSyntacticForm(InitListExpr *Init) {
3858    AltForm.setPointer(Init);
3859    AltForm.setInt(true);
3860    Init->AltForm.setPointer(this);
3861    Init->AltForm.setInt(false);
3862  }
3863
3864  bool hadArrayRangeDesignator() const {
3865    return InitListExprBits.HadArrayRangeDesignator != 0;
3866  }
3867  void sawArrayRangeDesignator(bool ARD = true) {
3868    InitListExprBits.HadArrayRangeDesignator = ARD;
3869  }
3870
3871  SourceLocation getLocStart() const LLVM_READONLY;
3872  SourceLocation getLocEnd() const LLVM_READONLY;
3873
3874  static bool classof(const Stmt *T) {
3875    return T->getStmtClass() == InitListExprClass;
3876  }
3877
3878  // Iterators
3879  child_range children() {
3880    if (InitExprs.empty()) return child_range();
3881    return child_range(&InitExprs[0], &InitExprs[0] + InitExprs.size());
3882  }
3883
3884  typedef InitExprsTy::iterator iterator;
3885  typedef InitExprsTy::const_iterator const_iterator;
3886  typedef InitExprsTy::reverse_iterator reverse_iterator;
3887  typedef InitExprsTy::const_reverse_iterator const_reverse_iterator;
3888
3889  iterator begin() { return InitExprs.begin(); }
3890  const_iterator begin() const { return InitExprs.begin(); }
3891  iterator end() { return InitExprs.end(); }
3892  const_iterator end() const { return InitExprs.end(); }
3893  reverse_iterator rbegin() { return InitExprs.rbegin(); }
3894  const_reverse_iterator rbegin() const { return InitExprs.rbegin(); }
3895  reverse_iterator rend() { return InitExprs.rend(); }
3896  const_reverse_iterator rend() const { return InitExprs.rend(); }
3897
3898  friend class ASTStmtReader;
3899  friend class ASTStmtWriter;
3900};
3901
3902/// @brief Represents a C99 designated initializer expression.
3903///
3904/// A designated initializer expression (C99 6.7.8) contains one or
3905/// more designators (which can be field designators, array
3906/// designators, or GNU array-range designators) followed by an
3907/// expression that initializes the field or element(s) that the
3908/// designators refer to. For example, given:
3909///
3910/// @code
3911/// struct point {
3912///   double x;
3913///   double y;
3914/// };
3915/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
3916/// @endcode
3917///
3918/// The InitListExpr contains three DesignatedInitExprs, the first of
3919/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
3920/// designators, one array designator for @c [2] followed by one field
3921/// designator for @c .y. The initialization expression will be 1.0.
3922class DesignatedInitExpr : public Expr {
3923public:
3924  /// \brief Forward declaration of the Designator class.
3925  class Designator;
3926
3927private:
3928  /// The location of the '=' or ':' prior to the actual initializer
3929  /// expression.
3930  SourceLocation EqualOrColonLoc;
3931
3932  /// Whether this designated initializer used the GNU deprecated
3933  /// syntax rather than the C99 '=' syntax.
3934  bool GNUSyntax : 1;
3935
3936  /// The number of designators in this initializer expression.
3937  unsigned NumDesignators : 15;
3938
3939  /// The number of subexpressions of this initializer expression,
3940  /// which contains both the initializer and any additional
3941  /// expressions used by array and array-range designators.
3942  unsigned NumSubExprs : 16;
3943
3944  /// \brief The designators in this designated initialization
3945  /// expression.
3946  Designator *Designators;
3947
3948
3949  DesignatedInitExpr(const ASTContext &C, QualType Ty, unsigned NumDesignators,
3950                     const Designator *Designators,
3951                     SourceLocation EqualOrColonLoc, bool GNUSyntax,
3952                     ArrayRef<Expr*> IndexExprs, Expr *Init);
3953
3954  explicit DesignatedInitExpr(unsigned NumSubExprs)
3955    : Expr(DesignatedInitExprClass, EmptyShell()),
3956      NumDesignators(0), NumSubExprs(NumSubExprs), Designators(0) { }
3957
3958public:
3959  /// A field designator, e.g., ".x".
3960  struct FieldDesignator {
3961    /// Refers to the field that is being initialized. The low bit
3962    /// of this field determines whether this is actually a pointer
3963    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
3964    /// initially constructed, a field designator will store an
3965    /// IdentifierInfo*. After semantic analysis has resolved that
3966    /// name, the field designator will instead store a FieldDecl*.
3967    uintptr_t NameOrField;
3968
3969    /// The location of the '.' in the designated initializer.
3970    unsigned DotLoc;
3971
3972    /// The location of the field name in the designated initializer.
3973    unsigned FieldLoc;
3974  };
3975
3976  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
3977  struct ArrayOrRangeDesignator {
3978    /// Location of the first index expression within the designated
3979    /// initializer expression's list of subexpressions.
3980    unsigned Index;
3981    /// The location of the '[' starting the array range designator.
3982    unsigned LBracketLoc;
3983    /// The location of the ellipsis separating the start and end
3984    /// indices. Only valid for GNU array-range designators.
3985    unsigned EllipsisLoc;
3986    /// The location of the ']' terminating the array range designator.
3987    unsigned RBracketLoc;
3988  };
3989
3990  /// @brief Represents a single C99 designator.
3991  ///
3992  /// @todo This class is infuriatingly similar to clang::Designator,
3993  /// but minor differences (storing indices vs. storing pointers)
3994  /// keep us from reusing it. Try harder, later, to rectify these
3995  /// differences.
3996  class Designator {
3997    /// @brief The kind of designator this describes.
3998    enum {
3999      FieldDesignator,
4000      ArrayDesignator,
4001      ArrayRangeDesignator
4002    } Kind;
4003
4004    union {
4005      /// A field designator, e.g., ".x".
4006      struct FieldDesignator Field;
4007      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
4008      struct ArrayOrRangeDesignator ArrayOrRange;
4009    };
4010    friend class DesignatedInitExpr;
4011
4012  public:
4013    Designator() {}
4014
4015    /// @brief Initializes a field designator.
4016    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
4017               SourceLocation FieldLoc)
4018      : Kind(FieldDesignator) {
4019      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
4020      Field.DotLoc = DotLoc.getRawEncoding();
4021      Field.FieldLoc = FieldLoc.getRawEncoding();
4022    }
4023
4024    /// @brief Initializes an array designator.
4025    Designator(unsigned Index, SourceLocation LBracketLoc,
4026               SourceLocation RBracketLoc)
4027      : Kind(ArrayDesignator) {
4028      ArrayOrRange.Index = Index;
4029      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
4030      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
4031      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
4032    }
4033
4034    /// @brief Initializes a GNU array-range designator.
4035    Designator(unsigned Index, SourceLocation LBracketLoc,
4036               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
4037      : Kind(ArrayRangeDesignator) {
4038      ArrayOrRange.Index = Index;
4039      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
4040      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
4041      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
4042    }
4043
4044    bool isFieldDesignator() const { return Kind == FieldDesignator; }
4045    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
4046    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
4047
4048    IdentifierInfo *getFieldName() const;
4049
4050    FieldDecl *getField() const {
4051      assert(Kind == FieldDesignator && "Only valid on a field designator");
4052      if (Field.NameOrField & 0x01)
4053        return 0;
4054      else
4055        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
4056    }
4057
4058    void setField(FieldDecl *FD) {
4059      assert(Kind == FieldDesignator && "Only valid on a field designator");
4060      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
4061    }
4062
4063    SourceLocation getDotLoc() const {
4064      assert(Kind == FieldDesignator && "Only valid on a field designator");
4065      return SourceLocation::getFromRawEncoding(Field.DotLoc);
4066    }
4067
4068    SourceLocation getFieldLoc() const {
4069      assert(Kind == FieldDesignator && "Only valid on a field designator");
4070      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
4071    }
4072
4073    SourceLocation getLBracketLoc() const {
4074      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
4075             "Only valid on an array or array-range designator");
4076      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
4077    }
4078
4079    SourceLocation getRBracketLoc() const {
4080      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
4081             "Only valid on an array or array-range designator");
4082      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
4083    }
4084
4085    SourceLocation getEllipsisLoc() const {
4086      assert(Kind == ArrayRangeDesignator &&
4087             "Only valid on an array-range designator");
4088      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
4089    }
4090
4091    unsigned getFirstExprIndex() const {
4092      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
4093             "Only valid on an array or array-range designator");
4094      return ArrayOrRange.Index;
4095    }
4096
4097    SourceLocation getLocStart() const LLVM_READONLY {
4098      if (Kind == FieldDesignator)
4099        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
4100      else
4101        return getLBracketLoc();
4102    }
4103    SourceLocation getLocEnd() const LLVM_READONLY {
4104      return Kind == FieldDesignator ? getFieldLoc() : getRBracketLoc();
4105    }
4106    SourceRange getSourceRange() const LLVM_READONLY {
4107      return SourceRange(getLocStart(), getLocEnd());
4108    }
4109  };
4110
4111  static DesignatedInitExpr *Create(const ASTContext &C,
4112                                    Designator *Designators,
4113                                    unsigned NumDesignators,
4114                                    ArrayRef<Expr*> IndexExprs,
4115                                    SourceLocation EqualOrColonLoc,
4116                                    bool GNUSyntax, Expr *Init);
4117
4118  static DesignatedInitExpr *CreateEmpty(const ASTContext &C,
4119                                         unsigned NumIndexExprs);
4120
4121  /// @brief Returns the number of designators in this initializer.
4122  unsigned size() const { return NumDesignators; }
4123
4124  // Iterator access to the designators.
4125  typedef Designator *designators_iterator;
4126  designators_iterator designators_begin() { return Designators; }
4127  designators_iterator designators_end() {
4128    return Designators + NumDesignators;
4129  }
4130
4131  typedef const Designator *const_designators_iterator;
4132  const_designators_iterator designators_begin() const { return Designators; }
4133  const_designators_iterator designators_end() const {
4134    return Designators + NumDesignators;
4135  }
4136
4137  typedef std::reverse_iterator<designators_iterator>
4138          reverse_designators_iterator;
4139  reverse_designators_iterator designators_rbegin() {
4140    return reverse_designators_iterator(designators_end());
4141  }
4142  reverse_designators_iterator designators_rend() {
4143    return reverse_designators_iterator(designators_begin());
4144  }
4145
4146  typedef std::reverse_iterator<const_designators_iterator>
4147          const_reverse_designators_iterator;
4148  const_reverse_designators_iterator designators_rbegin() const {
4149    return const_reverse_designators_iterator(designators_end());
4150  }
4151  const_reverse_designators_iterator designators_rend() const {
4152    return const_reverse_designators_iterator(designators_begin());
4153  }
4154
4155  Designator *getDesignator(unsigned Idx) { return &designators_begin()[Idx]; }
4156
4157  void setDesignators(const ASTContext &C, const Designator *Desigs,
4158                      unsigned NumDesigs);
4159
4160  Expr *getArrayIndex(const Designator &D) const;
4161  Expr *getArrayRangeStart(const Designator &D) const;
4162  Expr *getArrayRangeEnd(const Designator &D) const;
4163
4164  /// @brief Retrieve the location of the '=' that precedes the
4165  /// initializer value itself, if present.
4166  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
4167  void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
4168
4169  /// @brief Determines whether this designated initializer used the
4170  /// deprecated GNU syntax for designated initializers.
4171  bool usesGNUSyntax() const { return GNUSyntax; }
4172  void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
4173
4174  /// @brief Retrieve the initializer value.
4175  Expr *getInit() const {
4176    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
4177  }
4178
4179  void setInit(Expr *init) {
4180    *child_begin() = init;
4181  }
4182
4183  /// \brief Retrieve the total number of subexpressions in this
4184  /// designated initializer expression, including the actual
4185  /// initialized value and any expressions that occur within array
4186  /// and array-range designators.
4187  unsigned getNumSubExprs() const { return NumSubExprs; }
4188
4189  Expr *getSubExpr(unsigned Idx) {
4190    assert(Idx < NumSubExprs && "Subscript out of range");
4191    char* Ptr = static_cast<char*>(static_cast<void *>(this));
4192    Ptr += sizeof(DesignatedInitExpr);
4193    return reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx];
4194  }
4195
4196  void setSubExpr(unsigned Idx, Expr *E) {
4197    assert(Idx < NumSubExprs && "Subscript out of range");
4198    char* Ptr = static_cast<char*>(static_cast<void *>(this));
4199    Ptr += sizeof(DesignatedInitExpr);
4200    reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx] = E;
4201  }
4202
4203  /// \brief Replaces the designator at index @p Idx with the series
4204  /// of designators in [First, Last).
4205  void ExpandDesignator(const ASTContext &C, unsigned Idx,
4206                        const Designator *First, const Designator *Last);
4207
4208  SourceRange getDesignatorsSourceRange() const;
4209
4210  SourceLocation getLocStart() const LLVM_READONLY;
4211  SourceLocation getLocEnd() const LLVM_READONLY;
4212
4213  static bool classof(const Stmt *T) {
4214    return T->getStmtClass() == DesignatedInitExprClass;
4215  }
4216
4217  // Iterators
4218  child_range children() {
4219    Stmt **begin = reinterpret_cast<Stmt**>(this + 1);
4220    return child_range(begin, begin + NumSubExprs);
4221  }
4222};
4223
4224/// \brief Represents an implicitly-generated value initialization of
4225/// an object of a given type.
4226///
4227/// Implicit value initializations occur within semantic initializer
4228/// list expressions (InitListExpr) as placeholders for subobject
4229/// initializations not explicitly specified by the user.
4230///
4231/// \see InitListExpr
4232class ImplicitValueInitExpr : public Expr {
4233public:
4234  explicit ImplicitValueInitExpr(QualType ty)
4235    : Expr(ImplicitValueInitExprClass, ty, VK_RValue, OK_Ordinary,
4236           false, false, ty->isInstantiationDependentType(), false) { }
4237
4238  /// \brief Construct an empty implicit value initialization.
4239  explicit ImplicitValueInitExpr(EmptyShell Empty)
4240    : Expr(ImplicitValueInitExprClass, Empty) { }
4241
4242  static bool classof(const Stmt *T) {
4243    return T->getStmtClass() == ImplicitValueInitExprClass;
4244  }
4245
4246  SourceLocation getLocStart() const LLVM_READONLY { return SourceLocation(); }
4247  SourceLocation getLocEnd() const LLVM_READONLY { return SourceLocation(); }
4248
4249  // Iterators
4250  child_range children() { return child_range(); }
4251};
4252
4253
4254class ParenListExpr : public Expr {
4255  Stmt **Exprs;
4256  unsigned NumExprs;
4257  SourceLocation LParenLoc, RParenLoc;
4258
4259public:
4260  ParenListExpr(const ASTContext& C, SourceLocation lparenloc,
4261                ArrayRef<Expr*> exprs, SourceLocation rparenloc);
4262
4263  /// \brief Build an empty paren list.
4264  explicit ParenListExpr(EmptyShell Empty) : Expr(ParenListExprClass, Empty) { }
4265
4266  unsigned getNumExprs() const { return NumExprs; }
4267
4268  const Expr* getExpr(unsigned Init) const {
4269    assert(Init < getNumExprs() && "Initializer access out of range!");
4270    return cast_or_null<Expr>(Exprs[Init]);
4271  }
4272
4273  Expr* getExpr(unsigned Init) {
4274    assert(Init < getNumExprs() && "Initializer access out of range!");
4275    return cast_or_null<Expr>(Exprs[Init]);
4276  }
4277
4278  Expr **getExprs() { return reinterpret_cast<Expr **>(Exprs); }
4279
4280  SourceLocation getLParenLoc() const { return LParenLoc; }
4281  SourceLocation getRParenLoc() const { return RParenLoc; }
4282
4283  SourceLocation getLocStart() const LLVM_READONLY { return LParenLoc; }
4284  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
4285
4286  static bool classof(const Stmt *T) {
4287    return T->getStmtClass() == ParenListExprClass;
4288  }
4289
4290  // Iterators
4291  child_range children() {
4292    return child_range(&Exprs[0], &Exprs[0]+NumExprs);
4293  }
4294
4295  friend class ASTStmtReader;
4296  friend class ASTStmtWriter;
4297};
4298
4299
4300/// \brief Represents a C11 generic selection.
4301///
4302/// A generic selection (C11 6.5.1.1) contains an unevaluated controlling
4303/// expression, followed by one or more generic associations.  Each generic
4304/// association specifies a type name and an expression, or "default" and an
4305/// expression (in which case it is known as a default generic association).
4306/// The type and value of the generic selection are identical to those of its
4307/// result expression, which is defined as the expression in the generic
4308/// association with a type name that is compatible with the type of the
4309/// controlling expression, or the expression in the default generic association
4310/// if no types are compatible.  For example:
4311///
4312/// @code
4313/// _Generic(X, double: 1, float: 2, default: 3)
4314/// @endcode
4315///
4316/// The above expression evaluates to 1 if 1.0 is substituted for X, 2 if 1.0f
4317/// or 3 if "hello".
4318///
4319/// As an extension, generic selections are allowed in C++, where the following
4320/// additional semantics apply:
4321///
4322/// Any generic selection whose controlling expression is type-dependent or
4323/// which names a dependent type in its association list is result-dependent,
4324/// which means that the choice of result expression is dependent.
4325/// Result-dependent generic associations are both type- and value-dependent.
4326class GenericSelectionExpr : public Expr {
4327  enum { CONTROLLING, END_EXPR };
4328  TypeSourceInfo **AssocTypes;
4329  Stmt **SubExprs;
4330  unsigned NumAssocs, ResultIndex;
4331  SourceLocation GenericLoc, DefaultLoc, RParenLoc;
4332
4333public:
4334  GenericSelectionExpr(const ASTContext &Context,
4335                       SourceLocation GenericLoc, Expr *ControllingExpr,
4336                       ArrayRef<TypeSourceInfo*> AssocTypes,
4337                       ArrayRef<Expr*> AssocExprs,
4338                       SourceLocation DefaultLoc, SourceLocation RParenLoc,
4339                       bool ContainsUnexpandedParameterPack,
4340                       unsigned ResultIndex);
4341
4342  /// This constructor is used in the result-dependent case.
4343  GenericSelectionExpr(const ASTContext &Context,
4344                       SourceLocation GenericLoc, Expr *ControllingExpr,
4345                       ArrayRef<TypeSourceInfo*> AssocTypes,
4346                       ArrayRef<Expr*> AssocExprs,
4347                       SourceLocation DefaultLoc, SourceLocation RParenLoc,
4348                       bool ContainsUnexpandedParameterPack);
4349
4350  explicit GenericSelectionExpr(EmptyShell Empty)
4351    : Expr(GenericSelectionExprClass, Empty) { }
4352
4353  unsigned getNumAssocs() const { return NumAssocs; }
4354
4355  SourceLocation getGenericLoc() const { return GenericLoc; }
4356  SourceLocation getDefaultLoc() const { return DefaultLoc; }
4357  SourceLocation getRParenLoc() const { return RParenLoc; }
4358
4359  const Expr *getAssocExpr(unsigned i) const {
4360    return cast<Expr>(SubExprs[END_EXPR+i]);
4361  }
4362  Expr *getAssocExpr(unsigned i) { return cast<Expr>(SubExprs[END_EXPR+i]); }
4363
4364  const TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) const {
4365    return AssocTypes[i];
4366  }
4367  TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) { return AssocTypes[i]; }
4368
4369  QualType getAssocType(unsigned i) const {
4370    if (const TypeSourceInfo *TS = getAssocTypeSourceInfo(i))
4371      return TS->getType();
4372    else
4373      return QualType();
4374  }
4375
4376  const Expr *getControllingExpr() const {
4377    return cast<Expr>(SubExprs[CONTROLLING]);
4378  }
4379  Expr *getControllingExpr() { return cast<Expr>(SubExprs[CONTROLLING]); }
4380
4381  /// Whether this generic selection is result-dependent.
4382  bool isResultDependent() const { return ResultIndex == -1U; }
4383
4384  /// The zero-based index of the result expression's generic association in
4385  /// the generic selection's association list.  Defined only if the
4386  /// generic selection is not result-dependent.
4387  unsigned getResultIndex() const {
4388    assert(!isResultDependent() && "Generic selection is result-dependent");
4389    return ResultIndex;
4390  }
4391
4392  /// The generic selection's result expression.  Defined only if the
4393  /// generic selection is not result-dependent.
4394  const Expr *getResultExpr() const { return getAssocExpr(getResultIndex()); }
4395  Expr *getResultExpr() { return getAssocExpr(getResultIndex()); }
4396
4397  SourceLocation getLocStart() const LLVM_READONLY { return GenericLoc; }
4398  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
4399
4400  static bool classof(const Stmt *T) {
4401    return T->getStmtClass() == GenericSelectionExprClass;
4402  }
4403
4404  child_range children() {
4405    return child_range(SubExprs, SubExprs+END_EXPR+NumAssocs);
4406  }
4407
4408  friend class ASTStmtReader;
4409};
4410
4411//===----------------------------------------------------------------------===//
4412// Clang Extensions
4413//===----------------------------------------------------------------------===//
4414
4415
4416/// ExtVectorElementExpr - This represents access to specific elements of a
4417/// vector, and may occur on the left hand side or right hand side.  For example
4418/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
4419///
4420/// Note that the base may have either vector or pointer to vector type, just
4421/// like a struct field reference.
4422///
4423class ExtVectorElementExpr : public Expr {
4424  Stmt *Base;
4425  IdentifierInfo *Accessor;
4426  SourceLocation AccessorLoc;
4427public:
4428  ExtVectorElementExpr(QualType ty, ExprValueKind VK, Expr *base,
4429                       IdentifierInfo &accessor, SourceLocation loc)
4430    : Expr(ExtVectorElementExprClass, ty, VK,
4431           (VK == VK_RValue ? OK_Ordinary : OK_VectorComponent),
4432           base->isTypeDependent(), base->isValueDependent(),
4433           base->isInstantiationDependent(),
4434           base->containsUnexpandedParameterPack()),
4435      Base(base), Accessor(&accessor), AccessorLoc(loc) {}
4436
4437  /// \brief Build an empty vector element expression.
4438  explicit ExtVectorElementExpr(EmptyShell Empty)
4439    : Expr(ExtVectorElementExprClass, Empty) { }
4440
4441  const Expr *getBase() const { return cast<Expr>(Base); }
4442  Expr *getBase() { return cast<Expr>(Base); }
4443  void setBase(Expr *E) { Base = E; }
4444
4445  IdentifierInfo &getAccessor() const { return *Accessor; }
4446  void setAccessor(IdentifierInfo *II) { Accessor = II; }
4447
4448  SourceLocation getAccessorLoc() const { return AccessorLoc; }
4449  void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
4450
4451  /// getNumElements - Get the number of components being selected.
4452  unsigned getNumElements() const;
4453
4454  /// containsDuplicateElements - Return true if any element access is
4455  /// repeated.
4456  bool containsDuplicateElements() const;
4457
4458  /// getEncodedElementAccess - Encode the elements accessed into an llvm
4459  /// aggregate Constant of ConstantInt(s).
4460  void getEncodedElementAccess(SmallVectorImpl<unsigned> &Elts) const;
4461
4462  SourceLocation getLocStart() const LLVM_READONLY {
4463    return getBase()->getLocStart();
4464  }
4465  SourceLocation getLocEnd() const LLVM_READONLY { return AccessorLoc; }
4466
4467  /// isArrow - Return true if the base expression is a pointer to vector,
4468  /// return false if the base expression is a vector.
4469  bool isArrow() const;
4470
4471  static bool classof(const Stmt *T) {
4472    return T->getStmtClass() == ExtVectorElementExprClass;
4473  }
4474
4475  // Iterators
4476  child_range children() { return child_range(&Base, &Base+1); }
4477};
4478
4479
4480/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
4481/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
4482class BlockExpr : public Expr {
4483protected:
4484  BlockDecl *TheBlock;
4485public:
4486  BlockExpr(BlockDecl *BD, QualType ty)
4487    : Expr(BlockExprClass, ty, VK_RValue, OK_Ordinary,
4488           ty->isDependentType(), ty->isDependentType(),
4489           ty->isInstantiationDependentType() || BD->isDependentContext(),
4490           false),
4491      TheBlock(BD) {}
4492
4493  /// \brief Build an empty block expression.
4494  explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { }
4495
4496  const BlockDecl *getBlockDecl() const { return TheBlock; }
4497  BlockDecl *getBlockDecl() { return TheBlock; }
4498  void setBlockDecl(BlockDecl *BD) { TheBlock = BD; }
4499
4500  // Convenience functions for probing the underlying BlockDecl.
4501  SourceLocation getCaretLocation() const;
4502  const Stmt *getBody() const;
4503  Stmt *getBody();
4504
4505  SourceLocation getLocStart() const LLVM_READONLY { return getCaretLocation(); }
4506  SourceLocation getLocEnd() const LLVM_READONLY { return getBody()->getLocEnd(); }
4507
4508  /// getFunctionType - Return the underlying function type for this block.
4509  const FunctionProtoType *getFunctionType() const;
4510
4511  static bool classof(const Stmt *T) {
4512    return T->getStmtClass() == BlockExprClass;
4513  }
4514
4515  // Iterators
4516  child_range children() { return child_range(); }
4517};
4518
4519/// AsTypeExpr - Clang builtin function __builtin_astype [OpenCL 6.2.4.2]
4520/// This AST node provides support for reinterpreting a type to another
4521/// type of the same size.
4522class AsTypeExpr : public Expr {
4523private:
4524  Stmt *SrcExpr;
4525  SourceLocation BuiltinLoc, RParenLoc;
4526
4527  friend class ASTReader;
4528  friend class ASTStmtReader;
4529  explicit AsTypeExpr(EmptyShell Empty) : Expr(AsTypeExprClass, Empty) {}
4530
4531public:
4532  AsTypeExpr(Expr* SrcExpr, QualType DstType,
4533             ExprValueKind VK, ExprObjectKind OK,
4534             SourceLocation BuiltinLoc, SourceLocation RParenLoc)
4535    : Expr(AsTypeExprClass, DstType, VK, OK,
4536           DstType->isDependentType(),
4537           DstType->isDependentType() || SrcExpr->isValueDependent(),
4538           (DstType->isInstantiationDependentType() ||
4539            SrcExpr->isInstantiationDependent()),
4540           (DstType->containsUnexpandedParameterPack() ||
4541            SrcExpr->containsUnexpandedParameterPack())),
4542  SrcExpr(SrcExpr), BuiltinLoc(BuiltinLoc), RParenLoc(RParenLoc) {}
4543
4544  /// getSrcExpr - Return the Expr to be converted.
4545  Expr *getSrcExpr() const { return cast<Expr>(SrcExpr); }
4546
4547  /// getBuiltinLoc - Return the location of the __builtin_astype token.
4548  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
4549
4550  /// getRParenLoc - Return the location of final right parenthesis.
4551  SourceLocation getRParenLoc() const { return RParenLoc; }
4552
4553  SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
4554  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
4555
4556  static bool classof(const Stmt *T) {
4557    return T->getStmtClass() == AsTypeExprClass;
4558  }
4559
4560  // Iterators
4561  child_range children() { return child_range(&SrcExpr, &SrcExpr+1); }
4562};
4563
4564/// PseudoObjectExpr - An expression which accesses a pseudo-object
4565/// l-value.  A pseudo-object is an abstract object, accesses to which
4566/// are translated to calls.  The pseudo-object expression has a
4567/// syntactic form, which shows how the expression was actually
4568/// written in the source code, and a semantic form, which is a series
4569/// of expressions to be executed in order which detail how the
4570/// operation is actually evaluated.  Optionally, one of the semantic
4571/// forms may also provide a result value for the expression.
4572///
4573/// If any of the semantic-form expressions is an OpaqueValueExpr,
4574/// that OVE is required to have a source expression, and it is bound
4575/// to the result of that source expression.  Such OVEs may appear
4576/// only in subsequent semantic-form expressions and as
4577/// sub-expressions of the syntactic form.
4578///
4579/// PseudoObjectExpr should be used only when an operation can be
4580/// usefully described in terms of fairly simple rewrite rules on
4581/// objects and functions that are meant to be used by end-developers.
4582/// For example, under the Itanium ABI, dynamic casts are implemented
4583/// as a call to a runtime function called __dynamic_cast; using this
4584/// class to describe that would be inappropriate because that call is
4585/// not really part of the user-visible semantics, and instead the
4586/// cast is properly reflected in the AST and IR-generation has been
4587/// taught to generate the call as necessary.  In contrast, an
4588/// Objective-C property access is semantically defined to be
4589/// equivalent to a particular message send, and this is very much
4590/// part of the user model.  The name of this class encourages this
4591/// modelling design.
4592class PseudoObjectExpr : public Expr {
4593  // PseudoObjectExprBits.NumSubExprs - The number of sub-expressions.
4594  // Always at least two, because the first sub-expression is the
4595  // syntactic form.
4596
4597  // PseudoObjectExprBits.ResultIndex - The index of the
4598  // sub-expression holding the result.  0 means the result is void,
4599  // which is unambiguous because it's the index of the syntactic
4600  // form.  Note that this is therefore 1 higher than the value passed
4601  // in to Create, which is an index within the semantic forms.
4602  // Note also that ASTStmtWriter assumes this encoding.
4603
4604  Expr **getSubExprsBuffer() { return reinterpret_cast<Expr**>(this + 1); }
4605  const Expr * const *getSubExprsBuffer() const {
4606    return reinterpret_cast<const Expr * const *>(this + 1);
4607  }
4608
4609  friend class ASTStmtReader;
4610
4611  PseudoObjectExpr(QualType type, ExprValueKind VK,
4612                   Expr *syntactic, ArrayRef<Expr*> semantic,
4613                   unsigned resultIndex);
4614
4615  PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs);
4616
4617  unsigned getNumSubExprs() const {
4618    return PseudoObjectExprBits.NumSubExprs;
4619  }
4620
4621public:
4622  /// NoResult - A value for the result index indicating that there is
4623  /// no semantic result.
4624  enum LLVM_ENUM_INT_TYPE(unsigned) { NoResult = ~0U };
4625
4626  static PseudoObjectExpr *Create(const ASTContext &Context, Expr *syntactic,
4627                                  ArrayRef<Expr*> semantic,
4628                                  unsigned resultIndex);
4629
4630  static PseudoObjectExpr *Create(const ASTContext &Context, EmptyShell shell,
4631                                  unsigned numSemanticExprs);
4632
4633  /// Return the syntactic form of this expression, i.e. the
4634  /// expression it actually looks like.  Likely to be expressed in
4635  /// terms of OpaqueValueExprs bound in the semantic form.
4636  Expr *getSyntacticForm() { return getSubExprsBuffer()[0]; }
4637  const Expr *getSyntacticForm() const { return getSubExprsBuffer()[0]; }
4638
4639  /// Return the index of the result-bearing expression into the semantics
4640  /// expressions, or PseudoObjectExpr::NoResult if there is none.
4641  unsigned getResultExprIndex() const {
4642    if (PseudoObjectExprBits.ResultIndex == 0) return NoResult;
4643    return PseudoObjectExprBits.ResultIndex - 1;
4644  }
4645
4646  /// Return the result-bearing expression, or null if there is none.
4647  Expr *getResultExpr() {
4648    if (PseudoObjectExprBits.ResultIndex == 0)
4649      return 0;
4650    return getSubExprsBuffer()[PseudoObjectExprBits.ResultIndex];
4651  }
4652  const Expr *getResultExpr() const {
4653    return const_cast<PseudoObjectExpr*>(this)->getResultExpr();
4654  }
4655
4656  unsigned getNumSemanticExprs() const { return getNumSubExprs() - 1; }
4657
4658  typedef Expr * const *semantics_iterator;
4659  typedef const Expr * const *const_semantics_iterator;
4660  semantics_iterator semantics_begin() {
4661    return getSubExprsBuffer() + 1;
4662  }
4663  const_semantics_iterator semantics_begin() const {
4664    return getSubExprsBuffer() + 1;
4665  }
4666  semantics_iterator semantics_end() {
4667    return getSubExprsBuffer() + getNumSubExprs();
4668  }
4669  const_semantics_iterator semantics_end() const {
4670    return getSubExprsBuffer() + getNumSubExprs();
4671  }
4672  Expr *getSemanticExpr(unsigned index) {
4673    assert(index + 1 < getNumSubExprs());
4674    return getSubExprsBuffer()[index + 1];
4675  }
4676  const Expr *getSemanticExpr(unsigned index) const {
4677    return const_cast<PseudoObjectExpr*>(this)->getSemanticExpr(index);
4678  }
4679
4680  SourceLocation getExprLoc() const LLVM_READONLY {
4681    return getSyntacticForm()->getExprLoc();
4682  }
4683
4684  SourceLocation getLocStart() const LLVM_READONLY {
4685    return getSyntacticForm()->getLocStart();
4686  }
4687  SourceLocation getLocEnd() const LLVM_READONLY {
4688    return getSyntacticForm()->getLocEnd();
4689  }
4690
4691  child_range children() {
4692    Stmt **cs = reinterpret_cast<Stmt**>(getSubExprsBuffer());
4693    return child_range(cs, cs + getNumSubExprs());
4694  }
4695
4696  static bool classof(const Stmt *T) {
4697    return T->getStmtClass() == PseudoObjectExprClass;
4698  }
4699};
4700
4701/// AtomicExpr - Variadic atomic builtins: __atomic_exchange, __atomic_fetch_*,
4702/// __atomic_load, __atomic_store, and __atomic_compare_exchange_*, for the
4703/// similarly-named C++11 instructions, and __c11 variants for <stdatomic.h>.
4704/// All of these instructions take one primary pointer and at least one memory
4705/// order.
4706class AtomicExpr : public Expr {
4707public:
4708  enum AtomicOp {
4709#define BUILTIN(ID, TYPE, ATTRS)
4710#define ATOMIC_BUILTIN(ID, TYPE, ATTRS) AO ## ID,
4711#include "clang/Basic/Builtins.def"
4712    // Avoid trailing comma
4713    BI_First = 0
4714  };
4715
4716private:
4717  enum { PTR, ORDER, VAL1, ORDER_FAIL, VAL2, WEAK, END_EXPR };
4718  Stmt* SubExprs[END_EXPR];
4719  unsigned NumSubExprs;
4720  SourceLocation BuiltinLoc, RParenLoc;
4721  AtomicOp Op;
4722
4723  friend class ASTStmtReader;
4724
4725public:
4726  AtomicExpr(SourceLocation BLoc, ArrayRef<Expr*> args, QualType t,
4727             AtomicOp op, SourceLocation RP);
4728
4729  /// \brief Determine the number of arguments the specified atomic builtin
4730  /// should have.
4731  static unsigned getNumSubExprs(AtomicOp Op);
4732
4733  /// \brief Build an empty AtomicExpr.
4734  explicit AtomicExpr(EmptyShell Empty) : Expr(AtomicExprClass, Empty) { }
4735
4736  Expr *getPtr() const {
4737    return cast<Expr>(SubExprs[PTR]);
4738  }
4739  Expr *getOrder() const {
4740    return cast<Expr>(SubExprs[ORDER]);
4741  }
4742  Expr *getVal1() const {
4743    if (Op == AO__c11_atomic_init)
4744      return cast<Expr>(SubExprs[ORDER]);
4745    assert(NumSubExprs > VAL1);
4746    return cast<Expr>(SubExprs[VAL1]);
4747  }
4748  Expr *getOrderFail() const {
4749    assert(NumSubExprs > ORDER_FAIL);
4750    return cast<Expr>(SubExprs[ORDER_FAIL]);
4751  }
4752  Expr *getVal2() const {
4753    if (Op == AO__atomic_exchange)
4754      return cast<Expr>(SubExprs[ORDER_FAIL]);
4755    assert(NumSubExprs > VAL2);
4756    return cast<Expr>(SubExprs[VAL2]);
4757  }
4758  Expr *getWeak() const {
4759    assert(NumSubExprs > WEAK);
4760    return cast<Expr>(SubExprs[WEAK]);
4761  }
4762
4763  AtomicOp getOp() const { return Op; }
4764  unsigned getNumSubExprs() { return NumSubExprs; }
4765
4766  Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
4767
4768  bool isVolatile() const {
4769    return getPtr()->getType()->getPointeeType().isVolatileQualified();
4770  }
4771
4772  bool isCmpXChg() const {
4773    return getOp() == AO__c11_atomic_compare_exchange_strong ||
4774           getOp() == AO__c11_atomic_compare_exchange_weak ||
4775           getOp() == AO__atomic_compare_exchange ||
4776           getOp() == AO__atomic_compare_exchange_n;
4777  }
4778
4779  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
4780  SourceLocation getRParenLoc() const { return RParenLoc; }
4781
4782  SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
4783  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
4784
4785  static bool classof(const Stmt *T) {
4786    return T->getStmtClass() == AtomicExprClass;
4787  }
4788
4789  // Iterators
4790  child_range children() {
4791    return child_range(SubExprs, SubExprs+NumSubExprs);
4792  }
4793};
4794}  // end namespace clang
4795
4796#endif
4797