Expr.h revision bc736fceca6f0bca31d16003a7587857190408fb
1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/Stmt.h"
19#include "clang/AST/Type.h"
20#include "llvm/ADT/APSInt.h"
21#include "llvm/ADT/APFloat.h"
22#include "llvm/ADT/SmallVector.h"
23#include <vector>
24
25namespace clang {
26  class ASTContext;
27  class APValue;
28  class Decl;
29  class IdentifierInfo;
30  class ParmVarDecl;
31  class NamedDecl;
32  class ValueDecl;
33  class BlockDecl;
34  class CXXOperatorCallExpr;
35  class CXXMemberCallExpr;
36
37/// Expr - This represents one expression.  Note that Expr's are subclasses of
38/// Stmt.  This allows an expression to be transparently used any place a Stmt
39/// is required.
40///
41class Expr : public Stmt {
42  QualType TR;
43
44  /// TypeDependent - Whether this expression is type-dependent
45  /// (C++ [temp.dep.expr]).
46  bool TypeDependent : 1;
47
48  /// ValueDependent - Whether this expression is value-dependent
49  /// (C++ [temp.dep.constexpr]).
50  bool ValueDependent : 1;
51
52protected:
53  // FIXME: Eventually, this constructor should go away and we should
54  // require every subclass to provide type/value-dependence
55  // information.
56  Expr(StmtClass SC, QualType T)
57    : Stmt(SC), TypeDependent(false), ValueDependent(false) {
58    setType(T);
59  }
60
61  Expr(StmtClass SC, QualType T, bool TD, bool VD)
62    : Stmt(SC), TypeDependent(TD), ValueDependent(VD) {
63    setType(T);
64  }
65
66public:
67  QualType getType() const { return TR; }
68  void setType(QualType t) {
69    // In C++, the type of an expression is always adjusted so that it
70    // will not have reference type an expression will never have
71    // reference type (C++ [expr]p6). Use
72    // QualType::getNonReferenceType() to retrieve the non-reference
73    // type. Additionally, inspect Expr::isLvalue to determine whether
74    // an expression that is adjusted in this manner should be
75    // considered an lvalue.
76    assert((TR.isNull() || !TR->isReferenceType()) &&
77           "Expressions can't have reference type");
78
79    TR = t;
80  }
81
82  /// isValueDependent - Determines whether this expression is
83  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
84  /// array bound of "Chars" in the following example is
85  /// value-dependent.
86  /// @code
87  /// template<int Size, char (&Chars)[Size]> struct meta_string;
88  /// @endcode
89  bool isValueDependent() const { return ValueDependent; }
90
91  /// isTypeDependent - Determines whether this expression is
92  /// type-dependent (C++ [temp.dep.expr]), which means that its type
93  /// could change from one template instantiation to the next. For
94  /// example, the expressions "x" and "x + y" are type-dependent in
95  /// the following code, but "y" is not type-dependent:
96  /// @code
97  /// template<typename T>
98  /// void add(T x, int y) {
99  ///   x + y;
100  /// }
101  /// @endcode
102  bool isTypeDependent() const { return TypeDependent; }
103
104  /// SourceLocation tokens are not useful in isolation - they are low level
105  /// value objects created/interpreted by SourceManager. We assume AST
106  /// clients will have a pointer to the respective SourceManager.
107  virtual SourceRange getSourceRange() const = 0;
108
109  /// getExprLoc - Return the preferred location for the arrow when diagnosing
110  /// a problem with a generic expression.
111  virtual SourceLocation getExprLoc() const { return getLocStart(); }
112
113  /// isUnusedResultAWarning - Return true if this immediate expression should
114  /// be warned about if the result is unused.  If so, fill in Loc and Ranges
115  /// with location to warn on and the source range[s] to report with the
116  /// warning.
117  bool isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
118                              SourceRange &R2) const;
119
120  /// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or
121  /// incomplete type other than void. Nonarray expressions that can be lvalues:
122  ///  - name, where name must be a variable
123  ///  - e[i]
124  ///  - (e), where e must be an lvalue
125  ///  - e.name, where e must be an lvalue
126  ///  - e->name
127  ///  - *e, the type of e cannot be a function type
128  ///  - string-constant
129  ///  - reference type [C++ [expr]]
130  ///
131  enum isLvalueResult {
132    LV_Valid,
133    LV_NotObjectType,
134    LV_IncompleteVoidType,
135    LV_DuplicateVectorComponents,
136    LV_InvalidExpression,
137    LV_MemberFunction
138  };
139  isLvalueResult isLvalue(ASTContext &Ctx) const;
140
141  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
142  /// does not have an incomplete type, does not have a const-qualified type,
143  /// and if it is a structure or union, does not have any member (including,
144  /// recursively, any member or element of all contained aggregates or unions)
145  /// with a const-qualified type.
146  enum isModifiableLvalueResult {
147    MLV_Valid,
148    MLV_NotObjectType,
149    MLV_IncompleteVoidType,
150    MLV_DuplicateVectorComponents,
151    MLV_InvalidExpression,
152    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
153    MLV_IncompleteType,
154    MLV_ConstQualified,
155    MLV_ArrayType,
156    MLV_NotBlockQualified,
157    MLV_ReadonlyProperty,
158    MLV_NoSetterProperty,
159    MLV_MemberFunction
160  };
161  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx) const;
162
163  bool isBitField();
164
165  /// getIntegerConstantExprValue() - Return the value of an integer
166  /// constant expression. The expression must be a valid integer
167  /// constant expression as determined by isIntegerConstantExpr.
168  llvm::APSInt getIntegerConstantExprValue(ASTContext &Ctx) const {
169    llvm::APSInt X;
170    bool success = isIntegerConstantExpr(X, Ctx);
171    success = success;
172    assert(success && "Illegal argument to getIntegerConstantExpr");
173    return X;
174  }
175
176  /// isIntegerConstantExpr - Return true if this expression is a valid integer
177  /// constant expression, and, if so, return its value in Result.  If not a
178  /// valid i-c-e, return false and fill in Loc (if specified) with the location
179  /// of the invalid expression.
180  bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
181                             SourceLocation *Loc = 0,
182                             bool isEvaluated = true) const;
183  bool isIntegerConstantExprInternal(llvm::APSInt &Result, ASTContext &Ctx,
184                             SourceLocation *Loc = 0,
185                             bool isEvaluated = true) const;
186  bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const {
187    llvm::APSInt X;
188    return isIntegerConstantExpr(X, Ctx, Loc);
189  }
190  /// isConstantInitializer - Returns true if this expression is a constant
191  /// initializer, which can be emitted at compile-time.
192  bool isConstantInitializer(ASTContext &Ctx) const;
193
194  /// EvalResult is a struct with detailed info about an evaluated expression.
195  struct EvalResult {
196    /// Val - This is the value the expression can be folded to.
197    APValue Val;
198
199    /// HasSideEffects - Whether the evaluated expression has side effects.
200    /// For example, (f() && 0) can be folded, but it still has side effects.
201    bool HasSideEffects;
202
203    /// Diag - If the expression is unfoldable, then Diag contains a note
204    /// diagnostic indicating why it's not foldable. DiagLoc indicates a caret
205    /// position for the error, and DiagExpr is the expression that caused
206    /// the error.
207    /// If the expression is foldable, but not an integer constant expression,
208    /// Diag contains a note diagnostic that describes why it isn't an integer
209    /// constant expression. If the expression *is* an integer constant
210    /// expression, then Diag will be zero.
211    unsigned Diag;
212    const Expr *DiagExpr;
213    SourceLocation DiagLoc;
214
215    EvalResult() : HasSideEffects(false), Diag(0), DiagExpr(0) {}
216  };
217
218  /// Evaluate - Return true if this is a constant which we can fold using
219  /// any crazy technique (that has nothing to do with language standards) that
220  /// we want to.  If this function returns true, it returns the folded constant
221  /// in Result.
222  bool Evaluate(EvalResult &Result, ASTContext &Ctx) const;
223
224  /// isEvaluatable - Call Evaluate to see if this expression can be constant
225  /// folded, but discard the result.
226  bool isEvaluatable(ASTContext &Ctx) const;
227
228  /// EvaluateAsInt - Call Evaluate and return the folded integer. This
229  /// must be called on an expression that constant folds to an integer.
230  llvm::APSInt EvaluateAsInt(ASTContext &Ctx) const;
231
232  /// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
233  /// integer constant expression with the value zero, or if this is one that is
234  /// cast to void*.
235  bool isNullPointerConstant(ASTContext &Ctx) const;
236
237  /// hasGlobalStorage - Return true if this expression has static storage
238  /// duration.  This means that the address of this expression is a link-time
239  /// constant.
240  bool hasGlobalStorage() const;
241
242  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
243  /// write barrier.
244  bool isOBJCGCCandidate() const;
245
246  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
247  ///  its subexpression.  If that subexpression is also a ParenExpr,
248  ///  then this method recursively returns its subexpression, and so forth.
249  ///  Otherwise, the method returns the current Expr.
250  Expr* IgnoreParens();
251
252  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
253  /// or CastExprs, returning their operand.
254  Expr *IgnoreParenCasts();
255
256  /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
257  /// value (including ptr->int casts of the same size).  Strip off any
258  /// ParenExpr or CastExprs, returning their operand.
259  Expr *IgnoreParenNoopCasts(ASTContext &Ctx);
260
261  const Expr* IgnoreParens() const {
262    return const_cast<Expr*>(this)->IgnoreParens();
263  }
264  const Expr *IgnoreParenCasts() const {
265    return const_cast<Expr*>(this)->IgnoreParenCasts();
266  }
267  const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const {
268    return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
269  }
270
271  static bool hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs);
272  static bool hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs);
273
274  static bool classof(const Stmt *T) {
275    return T->getStmtClass() >= firstExprConstant &&
276           T->getStmtClass() <= lastExprConstant;
277  }
278  static bool classof(const Expr *) { return true; }
279
280  static inline Expr* Create(llvm::Deserializer& D, ASTContext& C) {
281    return cast<Expr>(Stmt::Create(D, C));
282  }
283};
284
285
286//===----------------------------------------------------------------------===//
287// Primary Expressions.
288//===----------------------------------------------------------------------===//
289
290/// DeclRefExpr - [C99 6.5.1p2] - A reference to a declared variable, function,
291/// enum, etc.
292class DeclRefExpr : public Expr {
293  NamedDecl *D;
294  SourceLocation Loc;
295
296protected:
297  // FIXME: Eventually, this constructor will go away and all subclasses
298  // will have to provide the type- and value-dependent flags.
299  DeclRefExpr(StmtClass SC, NamedDecl *d, QualType t, SourceLocation l) :
300    Expr(SC, t), D(d), Loc(l) {}
301
302  DeclRefExpr(StmtClass SC, NamedDecl *d, QualType t, SourceLocation l, bool TD,
303              bool VD) :
304    Expr(SC, t, TD, VD), D(d), Loc(l) {}
305
306public:
307  // FIXME: Eventually, this constructor will go away and all clients
308  // will have to provide the type- and value-dependent flags.
309  DeclRefExpr(NamedDecl *d, QualType t, SourceLocation l) :
310    Expr(DeclRefExprClass, t), D(d), Loc(l) {}
311
312  DeclRefExpr(NamedDecl *d, QualType t, SourceLocation l, bool TD, bool VD) :
313    Expr(DeclRefExprClass, t, TD, VD), D(d), Loc(l) {}
314
315  NamedDecl *getDecl() { return D; }
316  const NamedDecl *getDecl() const { return D; }
317  void setDecl(NamedDecl *NewD) { D = NewD; }
318
319  SourceLocation getLocation() const { return Loc; }
320  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
321
322  static bool classof(const Stmt *T) {
323    return T->getStmtClass() == DeclRefExprClass ||
324           T->getStmtClass() == CXXConditionDeclExprClass ||
325           T->getStmtClass() == QualifiedDeclRefExprClass;
326  }
327  static bool classof(const DeclRefExpr *) { return true; }
328
329  // Iterators
330  virtual child_iterator child_begin();
331  virtual child_iterator child_end();
332
333  virtual void EmitImpl(llvm::Serializer& S) const;
334  static DeclRefExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
335};
336
337/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
338class PredefinedExpr : public Expr {
339public:
340  enum IdentType {
341    Func,
342    Function,
343    PrettyFunction
344  };
345
346private:
347  SourceLocation Loc;
348  IdentType Type;
349public:
350  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
351    : Expr(PredefinedExprClass, type), Loc(l), Type(IT) {}
352
353  IdentType getIdentType() const { return Type; }
354
355  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
356
357  static bool classof(const Stmt *T) {
358    return T->getStmtClass() == PredefinedExprClass;
359  }
360  static bool classof(const PredefinedExpr *) { return true; }
361
362  // Iterators
363  virtual child_iterator child_begin();
364  virtual child_iterator child_end();
365
366  virtual void EmitImpl(llvm::Serializer& S) const;
367  static PredefinedExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
368};
369
370class IntegerLiteral : public Expr {
371  llvm::APInt Value;
372  SourceLocation Loc;
373public:
374  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
375  // or UnsignedLongLongTy
376  IntegerLiteral(const llvm::APInt &V, QualType type, SourceLocation l)
377    : Expr(IntegerLiteralClass, type), Value(V), Loc(l) {
378    assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
379  }
380  const llvm::APInt &getValue() const { return Value; }
381  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
382
383  /// \brief Retrieve the location of the literal.
384  SourceLocation getLocation() const { return Loc; }
385
386  static bool classof(const Stmt *T) {
387    return T->getStmtClass() == IntegerLiteralClass;
388  }
389  static bool classof(const IntegerLiteral *) { return true; }
390
391  // Iterators
392  virtual child_iterator child_begin();
393  virtual child_iterator child_end();
394
395  virtual void EmitImpl(llvm::Serializer& S) const;
396  static IntegerLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
397};
398
399class CharacterLiteral : public Expr {
400  unsigned Value;
401  SourceLocation Loc;
402  bool IsWide;
403public:
404  // type should be IntTy
405  CharacterLiteral(unsigned value, bool iswide, QualType type, SourceLocation l)
406    : Expr(CharacterLiteralClass, type), Value(value), Loc(l), IsWide(iswide) {
407  }
408  SourceLocation getLoc() const { return Loc; }
409  bool isWide() const { return IsWide; }
410
411  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
412
413  unsigned getValue() const { return Value; }
414
415  static bool classof(const Stmt *T) {
416    return T->getStmtClass() == CharacterLiteralClass;
417  }
418  static bool classof(const CharacterLiteral *) { return true; }
419
420  // Iterators
421  virtual child_iterator child_begin();
422  virtual child_iterator child_end();
423
424  virtual void EmitImpl(llvm::Serializer& S) const;
425  static CharacterLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
426};
427
428class FloatingLiteral : public Expr {
429  llvm::APFloat Value;
430  bool IsExact : 1;
431  SourceLocation Loc;
432public:
433  FloatingLiteral(const llvm::APFloat &V, bool* isexact,
434                  QualType Type, SourceLocation L)
435    : Expr(FloatingLiteralClass, Type), Value(V), IsExact(*isexact), Loc(L) {}
436
437  const llvm::APFloat &getValue() const { return Value; }
438
439  bool isExact() const { return IsExact; }
440
441  /// getValueAsApproximateDouble - This returns the value as an inaccurate
442  /// double.  Note that this may cause loss of precision, but is useful for
443  /// debugging dumps, etc.
444  double getValueAsApproximateDouble() const;
445
446  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
447
448  static bool classof(const Stmt *T) {
449    return T->getStmtClass() == FloatingLiteralClass;
450  }
451  static bool classof(const FloatingLiteral *) { return true; }
452
453  // Iterators
454  virtual child_iterator child_begin();
455  virtual child_iterator child_end();
456
457  virtual void EmitImpl(llvm::Serializer& S) const;
458  static FloatingLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
459};
460
461/// ImaginaryLiteral - We support imaginary integer and floating point literals,
462/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
463/// IntegerLiteral classes.  Instances of this class always have a Complex type
464/// whose element type matches the subexpression.
465///
466class ImaginaryLiteral : public Expr {
467  Stmt *Val;
468public:
469  ImaginaryLiteral(Expr *val, QualType Ty)
470    : Expr(ImaginaryLiteralClass, Ty), Val(val) {}
471
472  const Expr *getSubExpr() const { return cast<Expr>(Val); }
473  Expr *getSubExpr() { return cast<Expr>(Val); }
474
475  virtual SourceRange getSourceRange() const { return Val->getSourceRange(); }
476  static bool classof(const Stmt *T) {
477    return T->getStmtClass() == ImaginaryLiteralClass;
478  }
479  static bool classof(const ImaginaryLiteral *) { return true; }
480
481  // Iterators
482  virtual child_iterator child_begin();
483  virtual child_iterator child_end();
484
485  virtual void EmitImpl(llvm::Serializer& S) const;
486  static ImaginaryLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
487};
488
489/// StringLiteral - This represents a string literal expression, e.g. "foo"
490/// or L"bar" (wide strings).  The actual string is returned by getStrData()
491/// is NOT null-terminated, and the length of the string is determined by
492/// calling getByteLength().  The C type for a string is always a
493/// ConstantArrayType.  In C++, the char type is const qualified, in C it is
494/// not.
495///
496/// Note that strings in C can be formed by concatenation of multiple string
497/// literal pptokens in translation phase #6.  This keeps track of the locations
498/// of each of these pieces.
499///
500/// Strings in C can also be truncated and extended by assigning into arrays,
501/// e.g. with constructs like:
502///   char X[2] = "foobar";
503/// In this case, getByteLength() will return 6, but the string literal will
504/// have type "char[2]".
505class StringLiteral : public Expr {
506  const char *StrData;
507  unsigned ByteLength;
508  bool IsWide;
509  unsigned NumConcatenated;
510  SourceLocation TokLocs[1];
511
512  StringLiteral(QualType Ty) : Expr(StringLiteralClass, Ty) {}
513public:
514  /// This is the "fully general" constructor that allows representation of
515  /// strings formed from multiple concatenated tokens.
516  static StringLiteral *Create(ASTContext &C, const char *StrData,
517                               unsigned ByteLength, bool Wide, QualType Ty,
518                               SourceLocation *Loc, unsigned NumStrs);
519
520  /// Simple constructor for string literals made from one token.
521  static StringLiteral *Create(ASTContext &C, const char *StrData,
522                               unsigned ByteLength,
523                               bool Wide, QualType Ty, SourceLocation Loc) {
524    return Create(C, StrData, ByteLength, Wide, Ty, &Loc, 1);
525  }
526
527  void Destroy(ASTContext &C);
528
529  const char *getStrData() const { return StrData; }
530  unsigned getByteLength() const { return ByteLength; }
531  bool isWide() const { return IsWide; }
532
533  /// getNumConcatenated - Get the number of string literal tokens that were
534  /// concatenated in translation phase #6 to form this string literal.
535  unsigned getNumConcatenated() const { return NumConcatenated; }
536
537  SourceLocation getStrTokenLoc(unsigned TokNum) const {
538    assert(TokNum < NumConcatenated && "Invalid tok number");
539    return TokLocs[TokNum];
540  }
541
542  typedef const SourceLocation *tokloc_iterator;
543  tokloc_iterator tokloc_begin() const { return TokLocs; }
544  tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; }
545
546  virtual SourceRange getSourceRange() const {
547    return SourceRange(TokLocs[0], TokLocs[NumConcatenated-1]);
548  }
549  static bool classof(const Stmt *T) {
550    return T->getStmtClass() == StringLiteralClass;
551  }
552  static bool classof(const StringLiteral *) { return true; }
553
554  // Iterators
555  virtual child_iterator child_begin();
556  virtual child_iterator child_end();
557
558  virtual void EmitImpl(llvm::Serializer& S) const;
559  static StringLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
560};
561
562/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
563/// AST node is only formed if full location information is requested.
564class ParenExpr : public Expr {
565  SourceLocation L, R;
566  Stmt *Val;
567public:
568  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
569    : Expr(ParenExprClass, val->getType(),
570           val->isTypeDependent(), val->isValueDependent()),
571      L(l), R(r), Val(val) {}
572
573  const Expr *getSubExpr() const { return cast<Expr>(Val); }
574  Expr *getSubExpr() { return cast<Expr>(Val); }
575  virtual SourceRange getSourceRange() const { return SourceRange(L, R); }
576
577  /// \brief Get the location of the left parentheses '('.
578  SourceLocation getLParen() const { return L; }
579
580  /// \brief Get the location of the right parentheses ')'.
581  SourceLocation getRParen() const { return R; }
582
583  static bool classof(const Stmt *T) {
584    return T->getStmtClass() == ParenExprClass;
585  }
586  static bool classof(const ParenExpr *) { return true; }
587
588  // Iterators
589  virtual child_iterator child_begin();
590  virtual child_iterator child_end();
591
592  virtual void EmitImpl(llvm::Serializer& S) const;
593  static ParenExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
594};
595
596
597/// UnaryOperator - This represents the unary-expression's (except sizeof and
598/// alignof), the postinc/postdec operators from postfix-expression, and various
599/// extensions.
600///
601/// Notes on various nodes:
602///
603/// Real/Imag - These return the real/imag part of a complex operand.  If
604///   applied to a non-complex value, the former returns its operand and the
605///   later returns zero in the type of the operand.
606///
607/// __builtin_offsetof(type, a.b[10]) is represented as a unary operator whose
608///   subexpression is a compound literal with the various MemberExpr and
609///   ArraySubscriptExpr's applied to it.
610///
611class UnaryOperator : public Expr {
612public:
613  // Note that additions to this should also update the StmtVisitor class.
614  enum Opcode {
615    PostInc, PostDec, // [C99 6.5.2.4] Postfix increment and decrement operators
616    PreInc, PreDec,   // [C99 6.5.3.1] Prefix increment and decrement operators.
617    AddrOf, Deref,    // [C99 6.5.3.2] Address and indirection operators.
618    Plus, Minus,      // [C99 6.5.3.3] Unary arithmetic operators.
619    Not, LNot,        // [C99 6.5.3.3] Unary arithmetic operators.
620    Real, Imag,       // "__real expr"/"__imag expr" Extension.
621    Extension,        // __extension__ marker.
622    OffsetOf          // __builtin_offsetof
623  };
624private:
625  Stmt *Val;
626  Opcode Opc;
627  SourceLocation Loc;
628public:
629
630  UnaryOperator(Expr *input, Opcode opc, QualType type, SourceLocation l)
631    : Expr(UnaryOperatorClass, type,
632           input->isTypeDependent() && opc != OffsetOf,
633           input->isValueDependent()),
634      Val(input), Opc(opc), Loc(l) {}
635
636  Opcode getOpcode() const { return Opc; }
637  Expr *getSubExpr() const { return cast<Expr>(Val); }
638
639  /// getOperatorLoc - Return the location of the operator.
640  SourceLocation getOperatorLoc() const { return Loc; }
641
642  /// isPostfix - Return true if this is a postfix operation, like x++.
643  static bool isPostfix(Opcode Op) {
644    return Op == PostInc || Op == PostDec;
645  }
646
647  /// isPostfix - Return true if this is a prefix operation, like --x.
648  static bool isPrefix(Opcode Op) {
649    return Op == PreInc || Op == PreDec;
650  }
651
652  bool isPrefix() const { return isPrefix(Opc); }
653  bool isPostfix() const { return isPostfix(Opc); }
654  bool isIncrementOp() const {return Opc==PreInc || Opc==PostInc; }
655  bool isIncrementDecrementOp() const { return Opc>=PostInc && Opc<=PreDec; }
656  bool isOffsetOfOp() const { return Opc == OffsetOf; }
657  static bool isArithmeticOp(Opcode Op) { return Op >= Plus && Op <= LNot; }
658
659  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
660  /// corresponds to, e.g. "sizeof" or "[pre]++"
661  static const char *getOpcodeStr(Opcode Op);
662
663  /// \brief Retrieve the unary opcode that corresponds to the given
664  /// overloaded operator.
665  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
666
667  /// \brief Retrieve the overloaded operator kind that corresponds to
668  /// the given unary opcode.
669  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
670
671  virtual SourceRange getSourceRange() const {
672    if (isPostfix())
673      return SourceRange(Val->getLocStart(), Loc);
674    else
675      return SourceRange(Loc, Val->getLocEnd());
676  }
677  virtual SourceLocation getExprLoc() const { return Loc; }
678
679  static bool classof(const Stmt *T) {
680    return T->getStmtClass() == UnaryOperatorClass;
681  }
682  static bool classof(const UnaryOperator *) { return true; }
683
684  // Iterators
685  virtual child_iterator child_begin();
686  virtual child_iterator child_end();
687
688  virtual void EmitImpl(llvm::Serializer& S) const;
689  static UnaryOperator* CreateImpl(llvm::Deserializer& D, ASTContext& C);
690};
691
692/// SizeOfAlignOfExpr - [C99 6.5.3.4] - This is for sizeof/alignof, both of
693/// types and expressions.
694class SizeOfAlignOfExpr : public Expr {
695  bool isSizeof : 1;  // true if sizeof, false if alignof.
696  bool isType : 1;    // true if operand is a type, false if an expression
697  union {
698    void *Ty;
699    Stmt *Ex;
700  } Argument;
701  SourceLocation OpLoc, RParenLoc;
702public:
703  SizeOfAlignOfExpr(bool issizeof, QualType T,
704                    QualType resultType, SourceLocation op,
705                    SourceLocation rp) :
706      Expr(SizeOfAlignOfExprClass, resultType,
707           false, // Never type-dependent (C++ [temp.dep.expr]p3).
708           // Value-dependent if the argument is type-dependent.
709           T->isDependentType()),
710      isSizeof(issizeof), isType(true), OpLoc(op), RParenLoc(rp) {
711    Argument.Ty = T.getAsOpaquePtr();
712  }
713
714  SizeOfAlignOfExpr(bool issizeof, Expr *E,
715                    QualType resultType, SourceLocation op,
716                    SourceLocation rp) :
717      Expr(SizeOfAlignOfExprClass, resultType,
718           false, // Never type-dependent (C++ [temp.dep.expr]p3).
719           // Value-dependent if the argument is type-dependent.
720           E->isTypeDependent()),
721      isSizeof(issizeof), isType(false), OpLoc(op), RParenLoc(rp) {
722    Argument.Ex = E;
723  }
724
725  virtual void Destroy(ASTContext& C);
726
727  bool isSizeOf() const { return isSizeof; }
728  bool isArgumentType() const { return isType; }
729  QualType getArgumentType() const {
730    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
731    return QualType::getFromOpaquePtr(Argument.Ty);
732  }
733  Expr *getArgumentExpr() {
734    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
735    return static_cast<Expr*>(Argument.Ex);
736  }
737  const Expr *getArgumentExpr() const {
738    return const_cast<SizeOfAlignOfExpr*>(this)->getArgumentExpr();
739  }
740
741  /// Gets the argument type, or the type of the argument expression, whichever
742  /// is appropriate.
743  QualType getTypeOfArgument() const {
744    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
745  }
746
747  SourceLocation getOperatorLoc() const { return OpLoc; }
748
749  virtual SourceRange getSourceRange() const {
750    return SourceRange(OpLoc, RParenLoc);
751  }
752
753  static bool classof(const Stmt *T) {
754    return T->getStmtClass() == SizeOfAlignOfExprClass;
755  }
756  static bool classof(const SizeOfAlignOfExpr *) { return true; }
757
758  // Iterators
759  virtual child_iterator child_begin();
760  virtual child_iterator child_end();
761
762  virtual void EmitImpl(llvm::Serializer& S) const;
763  static SizeOfAlignOfExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
764};
765
766//===----------------------------------------------------------------------===//
767// Postfix Operators.
768//===----------------------------------------------------------------------===//
769
770/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
771class ArraySubscriptExpr : public Expr {
772  enum { LHS, RHS, END_EXPR=2 };
773  Stmt* SubExprs[END_EXPR];
774  SourceLocation RBracketLoc;
775public:
776  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
777                     SourceLocation rbracketloc)
778  : Expr(ArraySubscriptExprClass, t,
779         lhs->isTypeDependent() || rhs->isTypeDependent(),
780         lhs->isValueDependent() || rhs->isValueDependent()),
781    RBracketLoc(rbracketloc) {
782    SubExprs[LHS] = lhs;
783    SubExprs[RHS] = rhs;
784  }
785
786  /// An array access can be written A[4] or 4[A] (both are equivalent).
787  /// - getBase() and getIdx() always present the normalized view: A[4].
788  ///    In this case getBase() returns "A" and getIdx() returns "4".
789  /// - getLHS() and getRHS() present the syntactic view. e.g. for
790  ///    4[A] getLHS() returns "4".
791  /// Note: Because vector element access is also written A[4] we must
792  /// predicate the format conversion in getBase and getIdx only on the
793  /// the type of the RHS, as it is possible for the LHS to be a vector of
794  /// integer type
795  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
796  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
797
798  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
799  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
800
801  Expr *getBase() {
802    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
803  }
804
805  const Expr *getBase() const {
806    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
807  }
808
809  Expr *getIdx() {
810    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
811  }
812
813  const Expr *getIdx() const {
814    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
815  }
816
817  virtual SourceRange getSourceRange() const {
818    return SourceRange(getLHS()->getLocStart(), RBracketLoc);
819  }
820
821  SourceLocation getRBracketLoc() const { return RBracketLoc; }
822  virtual SourceLocation getExprLoc() const { return getBase()->getExprLoc(); }
823
824  static bool classof(const Stmt *T) {
825    return T->getStmtClass() == ArraySubscriptExprClass;
826  }
827  static bool classof(const ArraySubscriptExpr *) { return true; }
828
829  // Iterators
830  virtual child_iterator child_begin();
831  virtual child_iterator child_end();
832
833  virtual void EmitImpl(llvm::Serializer& S) const;
834  static ArraySubscriptExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
835};
836
837
838/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
839/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
840/// while its subclasses may represent alternative syntax that (semantically)
841/// results in a function call. For example, CXXOperatorCallExpr is
842/// a subclass for overloaded operator calls that use operator syntax, e.g.,
843/// "str1 + str2" to resolve to a function call.
844class CallExpr : public Expr {
845  enum { FN=0, ARGS_START=1 };
846  Stmt **SubExprs;
847  unsigned NumArgs;
848  SourceLocation RParenLoc;
849
850  // This version of the ctor is for deserialization.
851  CallExpr(StmtClass SC, Stmt** subexprs, unsigned numargs, QualType t,
852           SourceLocation rparenloc)
853  : Expr(SC,t), SubExprs(subexprs),
854    NumArgs(numargs), RParenLoc(rparenloc) {}
855
856protected:
857  // This version of the constructor is for derived classes.
858  CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args, unsigned numargs,
859           QualType t, SourceLocation rparenloc);
860
861public:
862  CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, QualType t,
863           SourceLocation rparenloc);
864
865  ~CallExpr() {}
866
867  void Destroy(ASTContext& C);
868
869  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
870  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
871  void setCallee(Expr *F) { SubExprs[FN] = F; }
872
873  /// getNumArgs - Return the number of actual arguments to this call.
874  ///
875  unsigned getNumArgs() const { return NumArgs; }
876
877  /// getArg - Return the specified argument.
878  Expr *getArg(unsigned Arg) {
879    assert(Arg < NumArgs && "Arg access out of range!");
880    return cast<Expr>(SubExprs[Arg+ARGS_START]);
881  }
882  const Expr *getArg(unsigned Arg) const {
883    assert(Arg < NumArgs && "Arg access out of range!");
884    return cast<Expr>(SubExprs[Arg+ARGS_START]);
885  }
886
887  // FIXME: Why is this needed?  Why not just create the CallExpr with the
888  // corect number of arguments?  It makes the ASTs less brittle.
889  /// setArg - Set the specified argument.
890  void setArg(unsigned Arg, Expr *ArgExpr) {
891    assert(Arg < NumArgs && "Arg access out of range!");
892    SubExprs[Arg+ARGS_START] = ArgExpr;
893  }
894
895  // FIXME: It would be great to just get rid of this.  There is only one
896  // callee of this method, and it probably could be refactored to not use
897  // this method and instead just create a CallExpr with the right number of
898  // arguments.
899  /// setNumArgs - This changes the number of arguments present in this call.
900  /// Any orphaned expressions are deleted by this, and any new operands are set
901  /// to null.
902  void setNumArgs(ASTContext& C, unsigned NumArgs);
903
904  typedef ExprIterator arg_iterator;
905  typedef ConstExprIterator const_arg_iterator;
906
907  arg_iterator arg_begin() { return SubExprs+ARGS_START; }
908  arg_iterator arg_end() { return SubExprs+ARGS_START+getNumArgs(); }
909  const_arg_iterator arg_begin() const { return SubExprs+ARGS_START; }
910  const_arg_iterator arg_end() const { return SubExprs+ARGS_START+getNumArgs();}
911
912  /// getNumCommas - Return the number of commas that must have been present in
913  /// this function call.
914  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
915
916  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
917  /// not, return 0.
918  unsigned isBuiltinCall(ASTContext &Context) const;
919
920  SourceLocation getRParenLoc() const { return RParenLoc; }
921
922  virtual SourceRange getSourceRange() const {
923    return SourceRange(getCallee()->getLocStart(), RParenLoc);
924  }
925
926  static bool classof(const Stmt *T) {
927    return T->getStmtClass() == CallExprClass ||
928           T->getStmtClass() == CXXOperatorCallExprClass ||
929           T->getStmtClass() == CXXMemberCallExprClass;
930  }
931  static bool classof(const CallExpr *) { return true; }
932  static bool classof(const CXXOperatorCallExpr *) { return true; }
933  static bool classof(const CXXMemberCallExpr *) { return true; }
934
935  // Iterators
936  virtual child_iterator child_begin();
937  virtual child_iterator child_end();
938
939  virtual void EmitImpl(llvm::Serializer& S) const;
940  static CallExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C,
941                              StmtClass SC);
942};
943
944/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.  X->F and X.F.
945///
946class MemberExpr : public Expr {
947  /// Base - the expression for the base pointer or structure references.  In
948  /// X.F, this is "X".
949  Stmt *Base;
950
951  /// MemberDecl - This is the decl being referenced by the field/member name.
952  /// In X.F, this is the decl referenced by F.
953  NamedDecl *MemberDecl;
954
955  /// MemberLoc - This is the location of the member name.
956  SourceLocation MemberLoc;
957
958  /// IsArrow - True if this is "X->F", false if this is "X.F".
959  bool IsArrow;
960public:
961  MemberExpr(Expr *base, bool isarrow, NamedDecl *memberdecl, SourceLocation l,
962             QualType ty)
963    : Expr(MemberExprClass, ty),
964      Base(base), MemberDecl(memberdecl), MemberLoc(l), IsArrow(isarrow) {}
965
966  void setBase(Expr *E) { Base = E; }
967  Expr *getBase() const { return cast<Expr>(Base); }
968  NamedDecl *getMemberDecl() const { return MemberDecl; }
969  void setMemberDecl(NamedDecl *D) { MemberDecl = D; }
970  bool isArrow() const { return IsArrow; }
971
972  /// getMemberLoc - Return the location of the "member", in X->F, it is the
973  /// location of 'F'.
974  SourceLocation getMemberLoc() const { return MemberLoc; }
975
976  virtual SourceRange getSourceRange() const {
977    return SourceRange(getBase()->getLocStart(), MemberLoc);
978  }
979
980  virtual SourceLocation getExprLoc() const { return MemberLoc; }
981
982  static bool classof(const Stmt *T) {
983    return T->getStmtClass() == MemberExprClass;
984  }
985  static bool classof(const MemberExpr *) { return true; }
986
987  // Iterators
988  virtual child_iterator child_begin();
989  virtual child_iterator child_end();
990
991  virtual void EmitImpl(llvm::Serializer& S) const;
992  static MemberExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
993};
994
995/// CompoundLiteralExpr - [C99 6.5.2.5]
996///
997class CompoundLiteralExpr : public Expr {
998  /// LParenLoc - If non-null, this is the location of the left paren in a
999  /// compound literal like "(int){4}".  This can be null if this is a
1000  /// synthesized compound expression.
1001  SourceLocation LParenLoc;
1002  Stmt *Init;
1003  bool FileScope;
1004public:
1005  CompoundLiteralExpr(SourceLocation lparenloc, QualType ty, Expr *init,
1006                      bool fileScope)
1007    : Expr(CompoundLiteralExprClass, ty), LParenLoc(lparenloc), Init(init),
1008      FileScope(fileScope) {}
1009
1010  const Expr *getInitializer() const { return cast<Expr>(Init); }
1011  Expr *getInitializer() { return cast<Expr>(Init); }
1012
1013  bool isFileScope() const { return FileScope; }
1014
1015  SourceLocation getLParenLoc() const { return LParenLoc; }
1016
1017  virtual SourceRange getSourceRange() const {
1018    // FIXME: Init should never be null.
1019    if (!Init)
1020      return SourceRange();
1021    if (LParenLoc.isInvalid())
1022      return Init->getSourceRange();
1023    return SourceRange(LParenLoc, Init->getLocEnd());
1024  }
1025
1026  static bool classof(const Stmt *T) {
1027    return T->getStmtClass() == CompoundLiteralExprClass;
1028  }
1029  static bool classof(const CompoundLiteralExpr *) { return true; }
1030
1031  // Iterators
1032  virtual child_iterator child_begin();
1033  virtual child_iterator child_end();
1034
1035  virtual void EmitImpl(llvm::Serializer& S) const;
1036  static CompoundLiteralExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1037};
1038
1039/// CastExpr - Base class for type casts, including both implicit
1040/// casts (ImplicitCastExpr) and explicit casts that have some
1041/// representation in the source code (ExplicitCastExpr's derived
1042/// classes).
1043class CastExpr : public Expr {
1044  Stmt *Op;
1045protected:
1046  CastExpr(StmtClass SC, QualType ty, Expr *op) :
1047    Expr(SC, ty,
1048         // Cast expressions are type-dependent if the type is
1049         // dependent (C++ [temp.dep.expr]p3).
1050         ty->isDependentType(),
1051         // Cast expressions are value-dependent if the type is
1052         // dependent or if the subexpression is value-dependent.
1053         ty->isDependentType() || (op && op->isValueDependent())),
1054    Op(op) {}
1055
1056public:
1057  Expr *getSubExpr() { return cast<Expr>(Op); }
1058  const Expr *getSubExpr() const { return cast<Expr>(Op); }
1059
1060  static bool classof(const Stmt *T) {
1061    StmtClass SC = T->getStmtClass();
1062    if (SC >= CXXNamedCastExprClass && SC <= CXXFunctionalCastExprClass)
1063      return true;
1064
1065    if (SC >= ImplicitCastExprClass && SC <= CStyleCastExprClass)
1066      return true;
1067
1068    return false;
1069  }
1070  static bool classof(const CastExpr *) { return true; }
1071
1072  // Iterators
1073  virtual child_iterator child_begin();
1074  virtual child_iterator child_end();
1075};
1076
1077/// ImplicitCastExpr - Allows us to explicitly represent implicit type
1078/// conversions, which have no direct representation in the original
1079/// source code. For example: converting T[]->T*, void f()->void
1080/// (*f)(), float->double, short->int, etc.
1081///
1082/// In C, implicit casts always produce rvalues. However, in C++, an
1083/// implicit cast whose result is being bound to a reference will be
1084/// an lvalue. For example:
1085///
1086/// @code
1087/// class Base { };
1088/// class Derived : public Base { };
1089/// void f(Derived d) {
1090///   Base& b = d; // initializer is an ImplicitCastExpr to an lvalue of type Base
1091/// }
1092/// @endcode
1093class ImplicitCastExpr : public CastExpr {
1094  /// LvalueCast - Whether this cast produces an lvalue.
1095  bool LvalueCast;
1096
1097public:
1098  ImplicitCastExpr(QualType ty, Expr *op, bool Lvalue) :
1099    CastExpr(ImplicitCastExprClass, ty, op), LvalueCast(Lvalue) { }
1100
1101  virtual SourceRange getSourceRange() const {
1102    return getSubExpr()->getSourceRange();
1103  }
1104
1105  /// isLvalueCast - Whether this cast produces an lvalue.
1106  bool isLvalueCast() const { return LvalueCast; }
1107
1108  /// setLvalueCast - Set whether this cast produces an lvalue.
1109  void setLvalueCast(bool Lvalue) { LvalueCast = Lvalue; }
1110
1111  static bool classof(const Stmt *T) {
1112    return T->getStmtClass() == ImplicitCastExprClass;
1113  }
1114  static bool classof(const ImplicitCastExpr *) { return true; }
1115
1116  virtual void EmitImpl(llvm::Serializer& S) const;
1117  static ImplicitCastExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1118};
1119
1120/// ExplicitCastExpr - An explicit cast written in the source
1121/// code.
1122///
1123/// This class is effectively an abstract class, because it provides
1124/// the basic representation of an explicitly-written cast without
1125/// specifying which kind of cast (C cast, functional cast, static
1126/// cast, etc.) was written; specific derived classes represent the
1127/// particular style of cast and its location information.
1128///
1129/// Unlike implicit casts, explicit cast nodes have two different
1130/// types: the type that was written into the source code, and the
1131/// actual type of the expression as determined by semantic
1132/// analysis. These types may differ slightly. For example, in C++ one
1133/// can cast to a reference type, which indicates that the resulting
1134/// expression will be an lvalue. The reference type, however, will
1135/// not be used as the type of the expression.
1136class ExplicitCastExpr : public CastExpr {
1137  /// TypeAsWritten - The type that this expression is casting to, as
1138  /// written in the source code.
1139  QualType TypeAsWritten;
1140
1141protected:
1142  ExplicitCastExpr(StmtClass SC, QualType exprTy, Expr *op, QualType writtenTy)
1143    : CastExpr(SC, exprTy, op), TypeAsWritten(writtenTy) {}
1144
1145public:
1146  /// getTypeAsWritten - Returns the type that this expression is
1147  /// casting to, as written in the source code.
1148  QualType getTypeAsWritten() const { return TypeAsWritten; }
1149
1150  static bool classof(const Stmt *T) {
1151    StmtClass SC = T->getStmtClass();
1152    if (SC >= ExplicitCastExprClass && SC <= CStyleCastExprClass)
1153      return true;
1154    if (SC >= CXXNamedCastExprClass && SC <= CXXFunctionalCastExprClass)
1155      return true;
1156
1157    return false;
1158  }
1159  static bool classof(const ExplicitCastExpr *) { return true; }
1160};
1161
1162/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
1163/// cast in C++ (C++ [expr.cast]), which uses the syntax
1164/// (Type)expr. For example: @c (int)f.
1165class CStyleCastExpr : public ExplicitCastExpr {
1166  SourceLocation LPLoc; // the location of the left paren
1167  SourceLocation RPLoc; // the location of the right paren
1168public:
1169  CStyleCastExpr(QualType exprTy, Expr *op, QualType writtenTy,
1170                    SourceLocation l, SourceLocation r) :
1171    ExplicitCastExpr(CStyleCastExprClass, exprTy, op, writtenTy),
1172    LPLoc(l), RPLoc(r) {}
1173
1174  SourceLocation getLParenLoc() const { return LPLoc; }
1175  SourceLocation getRParenLoc() const { return RPLoc; }
1176
1177  virtual SourceRange getSourceRange() const {
1178    return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd());
1179  }
1180  static bool classof(const Stmt *T) {
1181    return T->getStmtClass() == CStyleCastExprClass;
1182  }
1183  static bool classof(const CStyleCastExpr *) { return true; }
1184
1185  virtual void EmitImpl(llvm::Serializer& S) const;
1186  static CStyleCastExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1187};
1188
1189/// \brief A builtin binary operation expression such as "x + y" or "x <= y".
1190///
1191/// This expression node kind describes a builtin binary operation,
1192/// such as "x + y" for integer values "x" and "y". The operands will
1193/// already have been converted to appropriate types (e.g., by
1194/// performing promotions or conversions).
1195///
1196/// In C++, where operators may be overloaded, a different kind of
1197/// expression node (CXXOperatorCallExpr) is used to express the
1198/// invocation of an overloaded operator with operator syntax. Within
1199/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
1200/// used to store an expression "x + y" depends on the subexpressions
1201/// for x and y. If neither x or y is type-dependent, and the "+"
1202/// operator resolves to a built-in operation, BinaryOperator will be
1203/// used to express the computation (x and y may still be
1204/// value-dependent). If either x or y is type-dependent, or if the
1205/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
1206/// be used to express the computation.
1207class BinaryOperator : public Expr {
1208public:
1209  enum Opcode {
1210    // Operators listed in order of precedence.
1211    // Note that additions to this should also update the StmtVisitor class.
1212    PtrMemD, PtrMemI, // [C++ 5.5] Pointer-to-member operators.
1213    Mul, Div, Rem,    // [C99 6.5.5] Multiplicative operators.
1214    Add, Sub,         // [C99 6.5.6] Additive operators.
1215    Shl, Shr,         // [C99 6.5.7] Bitwise shift operators.
1216    LT, GT, LE, GE,   // [C99 6.5.8] Relational operators.
1217    EQ, NE,           // [C99 6.5.9] Equality operators.
1218    And,              // [C99 6.5.10] Bitwise AND operator.
1219    Xor,              // [C99 6.5.11] Bitwise XOR operator.
1220    Or,               // [C99 6.5.12] Bitwise OR operator.
1221    LAnd,             // [C99 6.5.13] Logical AND operator.
1222    LOr,              // [C99 6.5.14] Logical OR operator.
1223    Assign, MulAssign,// [C99 6.5.16] Assignment operators.
1224    DivAssign, RemAssign,
1225    AddAssign, SubAssign,
1226    ShlAssign, ShrAssign,
1227    AndAssign, XorAssign,
1228    OrAssign,
1229    Comma             // [C99 6.5.17] Comma operator.
1230  };
1231private:
1232  enum { LHS, RHS, END_EXPR };
1233  Stmt* SubExprs[END_EXPR];
1234  Opcode Opc;
1235  SourceLocation OpLoc;
1236public:
1237
1238  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
1239                 SourceLocation opLoc)
1240    : Expr(BinaryOperatorClass, ResTy,
1241           lhs->isTypeDependent() || rhs->isTypeDependent(),
1242           lhs->isValueDependent() || rhs->isValueDependent()),
1243      Opc(opc), OpLoc(opLoc) {
1244    SubExprs[LHS] = lhs;
1245    SubExprs[RHS] = rhs;
1246    assert(!isCompoundAssignmentOp() &&
1247           "Use ArithAssignBinaryOperator for compound assignments");
1248  }
1249
1250  SourceLocation getOperatorLoc() const { return OpLoc; }
1251  Opcode getOpcode() const { return Opc; }
1252  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1253  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1254  virtual SourceRange getSourceRange() const {
1255    return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
1256  }
1257
1258  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1259  /// corresponds to, e.g. "<<=".
1260  static const char *getOpcodeStr(Opcode Op);
1261
1262  /// \brief Retrieve the binary opcode that corresponds to the given
1263  /// overloaded operator.
1264  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
1265
1266  /// \brief Retrieve the overloaded operator kind that corresponds to
1267  /// the given binary opcode.
1268  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
1269
1270  /// predicates to categorize the respective opcodes.
1271  bool isMultiplicativeOp() const { return Opc >= Mul && Opc <= Rem; }
1272  bool isAdditiveOp() const { return Opc == Add || Opc == Sub; }
1273  bool isShiftOp() const { return Opc == Shl || Opc == Shr; }
1274  bool isBitwiseOp() const { return Opc >= And && Opc <= Or; }
1275
1276  static bool isRelationalOp(Opcode Opc) { return Opc >= LT && Opc <= GE; }
1277  bool isRelationalOp() const { return isRelationalOp(Opc); }
1278
1279  static bool isEqualityOp(Opcode Opc) { return Opc == EQ || Opc == NE; }
1280  bool isEqualityOp() const { return isEqualityOp(Opc); }
1281
1282  static bool isLogicalOp(Opcode Opc) { return Opc == LAnd || Opc == LOr; }
1283  bool isLogicalOp() const { return isLogicalOp(Opc); }
1284
1285  bool isAssignmentOp() const { return Opc >= Assign && Opc <= OrAssign; }
1286  bool isCompoundAssignmentOp() const { return Opc > Assign && Opc <= OrAssign;}
1287  bool isShiftAssignOp() const { return Opc == ShlAssign || Opc == ShrAssign; }
1288
1289  static bool classof(const Stmt *S) {
1290    return S->getStmtClass() == BinaryOperatorClass ||
1291           S->getStmtClass() == CompoundAssignOperatorClass;
1292  }
1293  static bool classof(const BinaryOperator *) { return true; }
1294
1295  // Iterators
1296  virtual child_iterator child_begin();
1297  virtual child_iterator child_end();
1298
1299  virtual void EmitImpl(llvm::Serializer& S) const;
1300  static BinaryOperator* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1301
1302protected:
1303  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
1304                 SourceLocation oploc, bool dead)
1305    : Expr(CompoundAssignOperatorClass, ResTy), Opc(opc), OpLoc(oploc) {
1306    SubExprs[LHS] = lhs;
1307    SubExprs[RHS] = rhs;
1308  }
1309};
1310
1311/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
1312/// track of the type the operation is performed in.  Due to the semantics of
1313/// these operators, the operands are promoted, the aritmetic performed, an
1314/// implicit conversion back to the result type done, then the assignment takes
1315/// place.  This captures the intermediate type which the computation is done
1316/// in.
1317class CompoundAssignOperator : public BinaryOperator {
1318  QualType ComputationType;
1319public:
1320  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc,
1321                         QualType ResType, QualType CompType,
1322                         SourceLocation OpLoc)
1323    : BinaryOperator(lhs, rhs, opc, ResType, OpLoc, true),
1324      ComputationType(CompType) {
1325    assert(isCompoundAssignmentOp() &&
1326           "Only should be used for compound assignments");
1327  }
1328
1329  QualType getComputationType() const { return ComputationType; }
1330
1331  static bool classof(const CompoundAssignOperator *) { return true; }
1332  static bool classof(const Stmt *S) {
1333    return S->getStmtClass() == CompoundAssignOperatorClass;
1334  }
1335
1336  virtual void EmitImpl(llvm::Serializer& S) const;
1337  static CompoundAssignOperator* CreateImpl(llvm::Deserializer& D,
1338                                            ASTContext& C);
1339};
1340
1341/// ConditionalOperator - The ?: operator.  Note that LHS may be null when the
1342/// GNU "missing LHS" extension is in use.
1343///
1344class ConditionalOperator : public Expr {
1345  enum { COND, LHS, RHS, END_EXPR };
1346  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
1347public:
1348  ConditionalOperator(Expr *cond, Expr *lhs, Expr *rhs, QualType t)
1349    : Expr(ConditionalOperatorClass, t,
1350           // FIXME: the type of the conditional operator doesn't
1351           // depend on the type of the conditional, but the standard
1352           // seems to imply that it could. File a bug!
1353           ((lhs && lhs->isTypeDependent()) || (rhs && rhs->isTypeDependent())),
1354           (cond->isValueDependent() ||
1355            (lhs && lhs->isValueDependent()) ||
1356            (rhs && rhs->isValueDependent()))) {
1357    SubExprs[COND] = cond;
1358    SubExprs[LHS] = lhs;
1359    SubExprs[RHS] = rhs;
1360  }
1361
1362  // getCond - Return the expression representing the condition for
1363  //  the ?: operator.
1364  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
1365
1366  // getTrueExpr - Return the subexpression representing the value of the ?:
1367  //  expression if the condition evaluates to true.  In most cases this value
1368  //  will be the same as getLHS() except a GCC extension allows the left
1369  //  subexpression to be omitted, and instead of the condition be returned.
1370  //  e.g: x ?: y is shorthand for x ? x : y, except that the expression "x"
1371  //  is only evaluated once.
1372  Expr *getTrueExpr() const {
1373    return cast<Expr>(SubExprs[LHS] ? SubExprs[LHS] : SubExprs[COND]);
1374  }
1375
1376  // getTrueExpr - Return the subexpression representing the value of the ?:
1377  // expression if the condition evaluates to false. This is the same as getRHS.
1378  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
1379
1380  Expr *getLHS() const { return cast_or_null<Expr>(SubExprs[LHS]); }
1381  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1382
1383  virtual SourceRange getSourceRange() const {
1384    return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
1385  }
1386  static bool classof(const Stmt *T) {
1387    return T->getStmtClass() == ConditionalOperatorClass;
1388  }
1389  static bool classof(const ConditionalOperator *) { return true; }
1390
1391  // Iterators
1392  virtual child_iterator child_begin();
1393  virtual child_iterator child_end();
1394
1395  virtual void EmitImpl(llvm::Serializer& S) const;
1396  static ConditionalOperator* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1397};
1398
1399/// AddrLabelExpr - The GNU address of label extension, representing &&label.
1400class AddrLabelExpr : public Expr {
1401  SourceLocation AmpAmpLoc, LabelLoc;
1402  LabelStmt *Label;
1403public:
1404  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelStmt *L,
1405                QualType t)
1406    : Expr(AddrLabelExprClass, t), AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
1407
1408  virtual SourceRange getSourceRange() const {
1409    return SourceRange(AmpAmpLoc, LabelLoc);
1410  }
1411
1412  LabelStmt *getLabel() const { return Label; }
1413
1414  static bool classof(const Stmt *T) {
1415    return T->getStmtClass() == AddrLabelExprClass;
1416  }
1417  static bool classof(const AddrLabelExpr *) { return true; }
1418
1419  // Iterators
1420  virtual child_iterator child_begin();
1421  virtual child_iterator child_end();
1422
1423  virtual void EmitImpl(llvm::Serializer& S) const;
1424  static AddrLabelExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1425};
1426
1427/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
1428/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
1429/// takes the value of the last subexpression.
1430class StmtExpr : public Expr {
1431  Stmt *SubStmt;
1432  SourceLocation LParenLoc, RParenLoc;
1433public:
1434  StmtExpr(CompoundStmt *substmt, QualType T,
1435           SourceLocation lp, SourceLocation rp) :
1436    Expr(StmtExprClass, T), SubStmt(substmt),  LParenLoc(lp), RParenLoc(rp) { }
1437
1438  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
1439  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
1440
1441  virtual SourceRange getSourceRange() const {
1442    return SourceRange(LParenLoc, RParenLoc);
1443  }
1444
1445  SourceLocation getLParenLoc() const { return LParenLoc; }
1446  SourceLocation getRParenLoc() const { return RParenLoc; }
1447
1448  static bool classof(const Stmt *T) {
1449    return T->getStmtClass() == StmtExprClass;
1450  }
1451  static bool classof(const StmtExpr *) { return true; }
1452
1453  // Iterators
1454  virtual child_iterator child_begin();
1455  virtual child_iterator child_end();
1456
1457  virtual void EmitImpl(llvm::Serializer& S) const;
1458  static StmtExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1459};
1460
1461/// TypesCompatibleExpr - GNU builtin-in function __builtin_type_compatible_p.
1462/// This AST node represents a function that returns 1 if two *types* (not
1463/// expressions) are compatible. The result of this built-in function can be
1464/// used in integer constant expressions.
1465class TypesCompatibleExpr : public Expr {
1466  QualType Type1;
1467  QualType Type2;
1468  SourceLocation BuiltinLoc, RParenLoc;
1469public:
1470  TypesCompatibleExpr(QualType ReturnType, SourceLocation BLoc,
1471                      QualType t1, QualType t2, SourceLocation RP) :
1472    Expr(TypesCompatibleExprClass, ReturnType), Type1(t1), Type2(t2),
1473    BuiltinLoc(BLoc), RParenLoc(RP) {}
1474
1475  QualType getArgType1() const { return Type1; }
1476  QualType getArgType2() const { return Type2; }
1477
1478  virtual SourceRange getSourceRange() const {
1479    return SourceRange(BuiltinLoc, RParenLoc);
1480  }
1481  static bool classof(const Stmt *T) {
1482    return T->getStmtClass() == TypesCompatibleExprClass;
1483  }
1484  static bool classof(const TypesCompatibleExpr *) { return true; }
1485
1486  // Iterators
1487  virtual child_iterator child_begin();
1488  virtual child_iterator child_end();
1489
1490  virtual void EmitImpl(llvm::Serializer& S) const;
1491  static TypesCompatibleExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1492};
1493
1494/// ShuffleVectorExpr - clang-specific builtin-in function
1495/// __builtin_shufflevector.
1496/// This AST node represents a operator that does a constant
1497/// shuffle, similar to LLVM's shufflevector instruction. It takes
1498/// two vectors and a variable number of constant indices,
1499/// and returns the appropriately shuffled vector.
1500class ShuffleVectorExpr : public Expr {
1501  SourceLocation BuiltinLoc, RParenLoc;
1502
1503  // SubExprs - the list of values passed to the __builtin_shufflevector
1504  // function. The first two are vectors, and the rest are constant
1505  // indices.  The number of values in this list is always
1506  // 2+the number of indices in the vector type.
1507  Stmt **SubExprs;
1508  unsigned NumExprs;
1509
1510public:
1511  ShuffleVectorExpr(Expr **args, unsigned nexpr,
1512                    QualType Type, SourceLocation BLoc,
1513                    SourceLocation RP) :
1514    Expr(ShuffleVectorExprClass, Type), BuiltinLoc(BLoc),
1515    RParenLoc(RP), NumExprs(nexpr) {
1516
1517    SubExprs = new Stmt*[nexpr];
1518    for (unsigned i = 0; i < nexpr; i++)
1519      SubExprs[i] = args[i];
1520  }
1521
1522  virtual SourceRange getSourceRange() const {
1523    return SourceRange(BuiltinLoc, RParenLoc);
1524  }
1525  static bool classof(const Stmt *T) {
1526    return T->getStmtClass() == ShuffleVectorExprClass;
1527  }
1528  static bool classof(const ShuffleVectorExpr *) { return true; }
1529
1530  ~ShuffleVectorExpr() {
1531    delete [] SubExprs;
1532  }
1533
1534  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
1535  /// constant expression, the actual arguments passed in, and the function
1536  /// pointers.
1537  unsigned getNumSubExprs() const { return NumExprs; }
1538
1539  /// getExpr - Return the Expr at the specified index.
1540  Expr *getExpr(unsigned Index) {
1541    assert((Index < NumExprs) && "Arg access out of range!");
1542    return cast<Expr>(SubExprs[Index]);
1543  }
1544  const Expr *getExpr(unsigned Index) const {
1545    assert((Index < NumExprs) && "Arg access out of range!");
1546    return cast<Expr>(SubExprs[Index]);
1547  }
1548
1549  unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) {
1550    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
1551    return getExpr(N+2)->getIntegerConstantExprValue(Ctx).getZExtValue();
1552  }
1553
1554  // Iterators
1555  virtual child_iterator child_begin();
1556  virtual child_iterator child_end();
1557
1558  virtual void EmitImpl(llvm::Serializer& S) const;
1559  static ShuffleVectorExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1560};
1561
1562/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
1563/// This AST node is similar to the conditional operator (?:) in C, with
1564/// the following exceptions:
1565/// - the test expression must be a integer constant expression.
1566/// - the expression returned acts like the chosen subexpression in every
1567///   visible way: the type is the same as that of the chosen subexpression,
1568///   and all predicates (whether it's an l-value, whether it's an integer
1569///   constant expression, etc.) return the same result as for the chosen
1570///   sub-expression.
1571class ChooseExpr : public Expr {
1572  enum { COND, LHS, RHS, END_EXPR };
1573  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
1574  SourceLocation BuiltinLoc, RParenLoc;
1575public:
1576  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs, QualType t,
1577             SourceLocation RP)
1578    : Expr(ChooseExprClass, t),
1579      BuiltinLoc(BLoc), RParenLoc(RP) {
1580      SubExprs[COND] = cond;
1581      SubExprs[LHS] = lhs;
1582      SubExprs[RHS] = rhs;
1583    }
1584
1585  /// isConditionTrue - Return whether the condition is true (i.e. not
1586  /// equal to zero).
1587  bool isConditionTrue(ASTContext &C) const;
1588
1589  /// getChosenSubExpr - Return the subexpression chosen according to the
1590  /// condition.
1591  Expr *getChosenSubExpr(ASTContext &C) const {
1592    return isConditionTrue(C) ? getLHS() : getRHS();
1593  }
1594
1595  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
1596  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1597  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1598
1599  virtual SourceRange getSourceRange() const {
1600    return SourceRange(BuiltinLoc, RParenLoc);
1601  }
1602  static bool classof(const Stmt *T) {
1603    return T->getStmtClass() == ChooseExprClass;
1604  }
1605  static bool classof(const ChooseExpr *) { return true; }
1606
1607  // Iterators
1608  virtual child_iterator child_begin();
1609  virtual child_iterator child_end();
1610
1611  virtual void EmitImpl(llvm::Serializer& S) const;
1612  static ChooseExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1613};
1614
1615/// GNUNullExpr - Implements the GNU __null extension, which is a name
1616/// for a null pointer constant that has integral type (e.g., int or
1617/// long) and is the same size and alignment as a pointer. The __null
1618/// extension is typically only used by system headers, which define
1619/// NULL as __null in C++ rather than using 0 (which is an integer
1620/// that may not match the size of a pointer).
1621class GNUNullExpr : public Expr {
1622  /// TokenLoc - The location of the __null keyword.
1623  SourceLocation TokenLoc;
1624
1625public:
1626  GNUNullExpr(QualType Ty, SourceLocation Loc)
1627    : Expr(GNUNullExprClass, Ty), TokenLoc(Loc) { }
1628
1629  /// getTokenLocation - The location of the __null token.
1630  SourceLocation getTokenLocation() const { return TokenLoc; }
1631
1632  virtual SourceRange getSourceRange() const {
1633    return SourceRange(TokenLoc);
1634  }
1635  static bool classof(const Stmt *T) {
1636    return T->getStmtClass() == GNUNullExprClass;
1637  }
1638  static bool classof(const GNUNullExpr *) { return true; }
1639
1640  // Iterators
1641  virtual child_iterator child_begin();
1642  virtual child_iterator child_end();
1643
1644  virtual void EmitImpl(llvm::Serializer& S) const;
1645  static GNUNullExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1646};
1647
1648/// VAArgExpr, used for the builtin function __builtin_va_start.
1649class VAArgExpr : public Expr {
1650  Stmt *Val;
1651  SourceLocation BuiltinLoc, RParenLoc;
1652public:
1653  VAArgExpr(SourceLocation BLoc, Expr* e, QualType t, SourceLocation RPLoc)
1654    : Expr(VAArgExprClass, t),
1655      Val(e),
1656      BuiltinLoc(BLoc),
1657      RParenLoc(RPLoc) { }
1658
1659  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1660  Expr *getSubExpr() { return cast<Expr>(Val); }
1661  virtual SourceRange getSourceRange() const {
1662    return SourceRange(BuiltinLoc, RParenLoc);
1663  }
1664  static bool classof(const Stmt *T) {
1665    return T->getStmtClass() == VAArgExprClass;
1666  }
1667  static bool classof(const VAArgExpr *) { return true; }
1668
1669  // Iterators
1670  virtual child_iterator child_begin();
1671  virtual child_iterator child_end();
1672
1673  virtual void EmitImpl(llvm::Serializer& S) const;
1674  static VAArgExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1675};
1676
1677/// @brief Describes an C or C++ initializer list.
1678///
1679/// InitListExpr describes an initializer list, which can be used to
1680/// initialize objects of different types, including
1681/// struct/class/union types, arrays, and vectors. For example:
1682///
1683/// @code
1684/// struct foo x = { 1, { 2, 3 } };
1685/// @endcode
1686///
1687/// Prior to semantic analysis, an initializer list will represent the
1688/// initializer list as written by the user, but will have the
1689/// placeholder type "void". This initializer list is called the
1690/// syntactic form of the initializer, and may contain C99 designated
1691/// initializers (represented as DesignatedInitExprs), initializations
1692/// of subobject members without explicit braces, and so on. Clients
1693/// interested in the original syntax of the initializer list should
1694/// use the syntactic form of the initializer list.
1695///
1696/// After semantic analysis, the initializer list will represent the
1697/// semantic form of the initializer, where the initializations of all
1698/// subobjects are made explicit with nested InitListExpr nodes and
1699/// C99 designators have been eliminated by placing the designated
1700/// initializations into the subobject they initialize. Additionally,
1701/// any "holes" in the initialization, where no initializer has been
1702/// specified for a particular subobject, will be replaced with
1703/// implicitly-generated ImplicitValueInitExpr expressions that
1704/// value-initialize the subobjects. Note, however, that the
1705/// initializer lists may still have fewer initializers than there are
1706/// elements to initialize within the object.
1707///
1708/// Given the semantic form of the initializer list, one can retrieve
1709/// the original syntactic form of that initializer list (if it
1710/// exists) using getSyntacticForm(). Since many initializer lists
1711/// have the same syntactic and semantic forms, getSyntacticForm() may
1712/// return NULL, indicating that the current initializer list also
1713/// serves as its syntactic form.
1714class InitListExpr : public Expr {
1715  std::vector<Stmt *> InitExprs;
1716  SourceLocation LBraceLoc, RBraceLoc;
1717
1718  /// Contains the initializer list that describes the syntactic form
1719  /// written in the source code.
1720  InitListExpr *SyntacticForm;
1721
1722  /// If this initializer list initializes a union, specifies which
1723  /// field within the union will be initialized.
1724  FieldDecl *UnionFieldInit;
1725
1726  /// Whether this initializer list originally had a GNU array-range
1727  /// designator in it. This is a temporary marker used by CodeGen.
1728  bool HadArrayRangeDesignator;
1729
1730public:
1731  InitListExpr(SourceLocation lbraceloc, Expr **initexprs, unsigned numinits,
1732               SourceLocation rbraceloc);
1733
1734  unsigned getNumInits() const { return InitExprs.size(); }
1735
1736  const Expr* getInit(unsigned Init) const {
1737    assert(Init < getNumInits() && "Initializer access out of range!");
1738    return cast_or_null<Expr>(InitExprs[Init]);
1739  }
1740
1741  Expr* getInit(unsigned Init) {
1742    assert(Init < getNumInits() && "Initializer access out of range!");
1743    return cast_or_null<Expr>(InitExprs[Init]);
1744  }
1745
1746  void setInit(unsigned Init, Expr *expr) {
1747    assert(Init < getNumInits() && "Initializer access out of range!");
1748    InitExprs[Init] = expr;
1749  }
1750
1751  /// @brief Specify the number of initializers
1752  ///
1753  /// If there are more than @p NumInits initializers, the remaining
1754  /// initializers will be destroyed. If there are fewer than @p
1755  /// NumInits initializers, NULL expressions will be added for the
1756  /// unknown initializers.
1757  void resizeInits(ASTContext &Context, unsigned NumInits);
1758
1759  /// @brief Updates the initializer at index @p Init with the new
1760  /// expression @p expr, and returns the old expression at that
1761  /// location.
1762  ///
1763  /// When @p Init is out of range for this initializer list, the
1764  /// initializer list will be extended with NULL expressions to
1765  /// accomodate the new entry.
1766  Expr *updateInit(unsigned Init, Expr *expr);
1767
1768  /// \brief If this initializes a union, specifies which field in the
1769  /// union to initialize.
1770  ///
1771  /// Typically, this field is the first named field within the
1772  /// union. However, a designated initializer can specify the
1773  /// initialization of a different field within the union.
1774  FieldDecl *getInitializedFieldInUnion() { return UnionFieldInit; }
1775  void setInitializedFieldInUnion(FieldDecl *FD) { UnionFieldInit = FD; }
1776
1777  // Explicit InitListExpr's originate from source code (and have valid source
1778  // locations). Implicit InitListExpr's are created by the semantic analyzer.
1779  bool isExplicit() {
1780    return LBraceLoc.isValid() && RBraceLoc.isValid();
1781  }
1782
1783  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
1784
1785  /// @brief Retrieve the initializer list that describes the
1786  /// syntactic form of the initializer.
1787  ///
1788  ///
1789  InitListExpr *getSyntacticForm() const { return SyntacticForm; }
1790  void setSyntacticForm(InitListExpr *Init) { SyntacticForm = Init; }
1791
1792  bool hadArrayRangeDesignator() const { return HadArrayRangeDesignator; }
1793  void sawArrayRangeDesignator() {
1794    HadArrayRangeDesignator = true;
1795  }
1796
1797  virtual SourceRange getSourceRange() const {
1798    return SourceRange(LBraceLoc, RBraceLoc);
1799  }
1800  static bool classof(const Stmt *T) {
1801    return T->getStmtClass() == InitListExprClass;
1802  }
1803  static bool classof(const InitListExpr *) { return true; }
1804
1805  // Iterators
1806  virtual child_iterator child_begin();
1807  virtual child_iterator child_end();
1808
1809  typedef std::vector<Stmt *>::iterator iterator;
1810  typedef std::vector<Stmt *>::reverse_iterator reverse_iterator;
1811
1812  iterator begin() { return InitExprs.begin(); }
1813  iterator end() { return InitExprs.end(); }
1814  reverse_iterator rbegin() { return InitExprs.rbegin(); }
1815  reverse_iterator rend() { return InitExprs.rend(); }
1816
1817  // Serailization.
1818  virtual void EmitImpl(llvm::Serializer& S) const;
1819  static InitListExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1820
1821private:
1822  // Used by serializer.
1823  InitListExpr() : Expr(InitListExprClass, QualType()) {}
1824};
1825
1826/// @brief Represents a C99 designated initializer expression.
1827///
1828/// A designated initializer expression (C99 6.7.8) contains one or
1829/// more designators (which can be field designators, array
1830/// designators, or GNU array-range designators) followed by an
1831/// expression that initializes the field or element(s) that the
1832/// designators refer to. For example, given:
1833///
1834/// @code
1835/// struct point {
1836///   double x;
1837///   double y;
1838/// };
1839/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
1840/// @endcode
1841///
1842/// The InitListExpr contains three DesignatedInitExprs, the first of
1843/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
1844/// designators, one array designator for @c [2] followed by one field
1845/// designator for @c .y. The initalization expression will be 1.0.
1846class DesignatedInitExpr : public Expr {
1847  /// The location of the '=' or ':' prior to the actual initializer
1848  /// expression.
1849  SourceLocation EqualOrColonLoc;
1850
1851  /// Whether this designated initializer used the GNU deprecated ':'
1852  /// syntax rather than the C99 '=' syntax.
1853  bool UsesColonSyntax : 1;
1854
1855  /// The number of designators in this initializer expression.
1856  unsigned NumDesignators : 15;
1857
1858  /// The number of subexpressions of this initializer expression,
1859  /// which contains both the initializer and any additional
1860  /// expressions used by array and array-range designators.
1861  unsigned NumSubExprs : 16;
1862
1863  DesignatedInitExpr(QualType Ty, unsigned NumDesignators,
1864                     SourceLocation EqualOrColonLoc, bool UsesColonSyntax,
1865                     unsigned NumSubExprs)
1866    : Expr(DesignatedInitExprClass, Ty),
1867      EqualOrColonLoc(EqualOrColonLoc), UsesColonSyntax(UsesColonSyntax),
1868      NumDesignators(NumDesignators), NumSubExprs(NumSubExprs) { }
1869
1870public:
1871  /// A field designator, e.g., ".x".
1872  struct FieldDesignator {
1873    /// Refers to the field that is being initialized. The low bit
1874    /// of this field determines whether this is actually a pointer
1875    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
1876    /// initially constructed, a field designator will store an
1877    /// IdentifierInfo*. After semantic analysis has resolved that
1878    /// name, the field designator will instead store a FieldDecl*.
1879    uintptr_t NameOrField;
1880
1881    /// The location of the '.' in the designated initializer.
1882    unsigned DotLoc;
1883
1884    /// The location of the field name in the designated initializer.
1885    unsigned FieldLoc;
1886  };
1887
1888  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
1889  struct ArrayOrRangeDesignator {
1890    /// Location of the first index expression within the designated
1891    /// initializer expression's list of subexpressions.
1892    unsigned Index;
1893    /// The location of the '[' starting the array range designator.
1894    unsigned LBracketLoc;
1895    /// The location of the ellipsis separating the start and end
1896    /// indices. Only valid for GNU array-range designators.
1897    unsigned EllipsisLoc;
1898    /// The location of the ']' terminating the array range designator.
1899    unsigned RBracketLoc;
1900  };
1901
1902  /// @brief Represents a single C99 designator.
1903  ///
1904  /// @todo This class is infuriatingly similar to clang::Designator,
1905  /// but minor differences (storing indices vs. storing pointers)
1906  /// keep us from reusing it. Try harder, later, to rectify these
1907  /// differences.
1908  class Designator {
1909    /// @brief The kind of designator this describes.
1910    enum {
1911      FieldDesignator,
1912      ArrayDesignator,
1913      ArrayRangeDesignator
1914    } Kind;
1915
1916    union {
1917      /// A field designator, e.g., ".x".
1918      struct FieldDesignator Field;
1919      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
1920      struct ArrayOrRangeDesignator ArrayOrRange;
1921    };
1922    friend class DesignatedInitExpr;
1923
1924  public:
1925    /// @brief Initializes a field designator.
1926    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
1927               SourceLocation FieldLoc)
1928      : Kind(FieldDesignator) {
1929      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
1930      Field.DotLoc = DotLoc.getRawEncoding();
1931      Field.FieldLoc = FieldLoc.getRawEncoding();
1932    }
1933
1934    /// @brief Initializes an array designator.
1935    Designator(unsigned Index, SourceLocation LBracketLoc,
1936               SourceLocation RBracketLoc)
1937      : Kind(ArrayDesignator) {
1938      ArrayOrRange.Index = Index;
1939      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
1940      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
1941      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
1942    }
1943
1944    /// @brief Initializes a GNU array-range designator.
1945    Designator(unsigned Index, SourceLocation LBracketLoc,
1946               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
1947      : Kind(ArrayRangeDesignator) {
1948      ArrayOrRange.Index = Index;
1949      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
1950      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
1951      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
1952    }
1953
1954    bool isFieldDesignator() const { return Kind == FieldDesignator; }
1955    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
1956    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
1957
1958    IdentifierInfo * getFieldName();
1959
1960    FieldDecl *getField() {
1961      assert(Kind == FieldDesignator && "Only valid on a field designator");
1962      if (Field.NameOrField & 0x01)
1963        return 0;
1964      else
1965        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
1966    }
1967
1968    void setField(FieldDecl *FD) {
1969      assert(Kind == FieldDesignator && "Only valid on a field designator");
1970      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
1971    }
1972
1973    SourceLocation getDotLoc() const {
1974      assert(Kind == FieldDesignator && "Only valid on a field designator");
1975      return SourceLocation::getFromRawEncoding(Field.DotLoc);
1976    }
1977
1978    SourceLocation getFieldLoc() const {
1979      assert(Kind == FieldDesignator && "Only valid on a field designator");
1980      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
1981    }
1982
1983    SourceLocation getLBracketLoc() const {
1984      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
1985             "Only valid on an array or array-range designator");
1986      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
1987    }
1988
1989    SourceLocation getRBracketLoc() const {
1990      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
1991             "Only valid on an array or array-range designator");
1992      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
1993    }
1994
1995    SourceLocation getEllipsisLoc() const {
1996      assert(Kind == ArrayRangeDesignator &&
1997             "Only valid on an array-range designator");
1998      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
1999    }
2000
2001    SourceLocation getStartLocation() const {
2002      if (Kind == FieldDesignator)
2003        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
2004      else
2005        return getLBracketLoc();
2006    }
2007  };
2008
2009  static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators,
2010                                    unsigned NumDesignators,
2011                                    Expr **IndexExprs, unsigned NumIndexExprs,
2012                                    SourceLocation EqualOrColonLoc,
2013                                    bool UsesColonSyntax, Expr *Init);
2014
2015  /// @brief Returns the number of designators in this initializer.
2016  unsigned size() const { return NumDesignators; }
2017
2018  // Iterator access to the designators.
2019  typedef Designator* designators_iterator;
2020  designators_iterator designators_begin();
2021  designators_iterator designators_end();
2022
2023  Expr *getArrayIndex(const Designator& D);
2024  Expr *getArrayRangeStart(const Designator& D);
2025  Expr *getArrayRangeEnd(const Designator& D);
2026
2027  /// @brief Retrieve the location of the '=' that precedes the
2028  /// initializer value itself, if present.
2029  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
2030
2031  /// @brief Determines whether this designated initializer used the
2032  /// GNU 'fieldname:' syntax or the C99 '=' syntax.
2033  bool usesColonSyntax() const { return UsesColonSyntax; }
2034
2035  /// @brief Retrieve the initializer value.
2036  Expr *getInit() const {
2037    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
2038  }
2039
2040  void setInit(Expr *init) {
2041    *child_begin() = init;
2042  }
2043
2044  virtual SourceRange getSourceRange() const;
2045
2046  static bool classof(const Stmt *T) {
2047    return T->getStmtClass() == DesignatedInitExprClass;
2048  }
2049  static bool classof(const DesignatedInitExpr *) { return true; }
2050
2051  // Iterators
2052  virtual child_iterator child_begin();
2053  virtual child_iterator child_end();
2054};
2055
2056/// \brief Represents an implicitly-generated value initialization of
2057/// an object of a given type.
2058///
2059/// Implicit value initializations occur within semantic initializer
2060/// list expressions (InitListExpr) as placeholders for subobject
2061/// initializations not explicitly specified by the user.
2062///
2063/// \see InitListExpr
2064class ImplicitValueInitExpr : public Expr {
2065public:
2066  explicit ImplicitValueInitExpr(QualType ty)
2067    : Expr(ImplicitValueInitExprClass, ty) { }
2068
2069  static bool classof(const Stmt *T) {
2070    return T->getStmtClass() == ImplicitValueInitExprClass;
2071  }
2072  static bool classof(const ImplicitValueInitExpr *) { return true; }
2073
2074  virtual SourceRange getSourceRange() const {
2075    return SourceRange();
2076  }
2077
2078  // Iterators
2079  virtual child_iterator child_begin();
2080  virtual child_iterator child_end();
2081};
2082
2083//===----------------------------------------------------------------------===//
2084// Clang Extensions
2085//===----------------------------------------------------------------------===//
2086
2087
2088/// ExtVectorElementExpr - This represents access to specific elements of a
2089/// vector, and may occur on the left hand side or right hand side.  For example
2090/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
2091///
2092/// Note that the base may have either vector or pointer to vector type, just
2093/// like a struct field reference.
2094///
2095class ExtVectorElementExpr : public Expr {
2096  Stmt *Base;
2097  IdentifierInfo &Accessor;
2098  SourceLocation AccessorLoc;
2099public:
2100  ExtVectorElementExpr(QualType ty, Expr *base, IdentifierInfo &accessor,
2101                       SourceLocation loc)
2102    : Expr(ExtVectorElementExprClass, ty),
2103      Base(base), Accessor(accessor), AccessorLoc(loc) {}
2104
2105  const Expr *getBase() const { return cast<Expr>(Base); }
2106  Expr *getBase() { return cast<Expr>(Base); }
2107
2108  IdentifierInfo &getAccessor() const { return Accessor; }
2109
2110  /// getNumElements - Get the number of components being selected.
2111  unsigned getNumElements() const;
2112
2113  /// containsDuplicateElements - Return true if any element access is
2114  /// repeated.
2115  bool containsDuplicateElements() const;
2116
2117  /// getEncodedElementAccess - Encode the elements accessed into an llvm
2118  /// aggregate Constant of ConstantInt(s).
2119  void getEncodedElementAccess(llvm::SmallVectorImpl<unsigned> &Elts) const;
2120
2121  virtual SourceRange getSourceRange() const {
2122    return SourceRange(getBase()->getLocStart(), AccessorLoc);
2123  }
2124
2125  /// isArrow - Return true if the base expression is a pointer to vector,
2126  /// return false if the base expression is a vector.
2127  bool isArrow() const;
2128
2129  static bool classof(const Stmt *T) {
2130    return T->getStmtClass() == ExtVectorElementExprClass;
2131  }
2132  static bool classof(const ExtVectorElementExpr *) { return true; }
2133
2134  // Iterators
2135  virtual child_iterator child_begin();
2136  virtual child_iterator child_end();
2137
2138  virtual void EmitImpl(llvm::Serializer& S) const;
2139  static ExtVectorElementExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
2140};
2141
2142
2143/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
2144/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
2145class BlockExpr : public Expr {
2146protected:
2147  BlockDecl *TheBlock;
2148  bool HasBlockDeclRefExprs;
2149public:
2150  BlockExpr(BlockDecl *BD, QualType ty, bool hasBlockDeclRefExprs)
2151    : Expr(BlockExprClass, ty),
2152      TheBlock(BD), HasBlockDeclRefExprs(hasBlockDeclRefExprs) {}
2153
2154  const BlockDecl *getBlockDecl() const { return TheBlock; }
2155  BlockDecl *getBlockDecl() { return TheBlock; }
2156
2157  // Convenience functions for probing the underlying BlockDecl.
2158  SourceLocation getCaretLocation() const;
2159  const Stmt *getBody() const;
2160  Stmt *getBody();
2161
2162  virtual SourceRange getSourceRange() const {
2163    return SourceRange(getCaretLocation(), getBody()->getLocEnd());
2164  }
2165
2166  /// getFunctionType - Return the underlying function type for this block.
2167  const FunctionType *getFunctionType() const;
2168
2169  /// hasBlockDeclRefExprs - Return true iff the block has BlockDeclRefExpr
2170  /// contained inside.
2171  bool hasBlockDeclRefExprs() const { return HasBlockDeclRefExprs; }
2172
2173  static bool classof(const Stmt *T) {
2174    return T->getStmtClass() == BlockExprClass;
2175  }
2176  static bool classof(const BlockExpr *) { return true; }
2177
2178  // Iterators
2179  virtual child_iterator child_begin();
2180  virtual child_iterator child_end();
2181
2182  virtual void EmitImpl(llvm::Serializer& S) const;
2183  static BlockExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
2184};
2185
2186/// BlockDeclRefExpr - A reference to a declared variable, function,
2187/// enum, etc.
2188class BlockDeclRefExpr : public Expr {
2189  ValueDecl *D;
2190  SourceLocation Loc;
2191  bool IsByRef;
2192public:
2193  BlockDeclRefExpr(ValueDecl *d, QualType t, SourceLocation l, bool ByRef) :
2194       Expr(BlockDeclRefExprClass, t), D(d), Loc(l), IsByRef(ByRef) {}
2195
2196  ValueDecl *getDecl() { return D; }
2197  const ValueDecl *getDecl() const { return D; }
2198  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
2199
2200  bool isByRef() const { return IsByRef; }
2201
2202  static bool classof(const Stmt *T) {
2203    return T->getStmtClass() == BlockDeclRefExprClass;
2204  }
2205  static bool classof(const BlockDeclRefExpr *) { return true; }
2206
2207  // Iterators
2208  virtual child_iterator child_begin();
2209  virtual child_iterator child_end();
2210
2211  virtual void EmitImpl(llvm::Serializer& S) const;
2212  static BlockDeclRefExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
2213};
2214
2215}  // end namespace clang
2216
2217#endif
2218