Expr.h revision bebbe0d9b7568ce43a464286bee49429489ef483
1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/Stmt.h"
19#include "clang/AST/Type.h"
20#include "clang/AST/DeclAccessPair.h"
21#include "clang/AST/OperationKinds.h"
22#include "clang/AST/ASTVector.h"
23#include "clang/AST/UsuallyTinyPtrVector.h"
24#include "llvm/ADT/APSInt.h"
25#include "llvm/ADT/APFloat.h"
26#include "llvm/ADT/SmallVector.h"
27#include "llvm/ADT/StringRef.h"
28#include <vector>
29
30namespace clang {
31  class ASTContext;
32  class APValue;
33  class Decl;
34  class IdentifierInfo;
35  class ParmVarDecl;
36  class NamedDecl;
37  class ValueDecl;
38  class BlockDecl;
39  class CXXBaseSpecifier;
40  class CXXOperatorCallExpr;
41  class CXXMemberCallExpr;
42  class ObjCPropertyRefExpr;
43  class TemplateArgumentLoc;
44  class TemplateArgumentListInfo;
45
46/// \brief A simple array of base specifiers.
47typedef llvm::SmallVector<CXXBaseSpecifier*, 4> CXXCastPath;
48
49/// Expr - This represents one expression.  Note that Expr's are subclasses of
50/// Stmt.  This allows an expression to be transparently used any place a Stmt
51/// is required.
52///
53class Expr : public Stmt {
54  QualType TR;
55
56  virtual void ANCHOR(); // key function.
57
58protected:
59  Expr(StmtClass SC, QualType T, ExprValueKind VK, ExprObjectKind OK,
60       bool TD, bool VD, bool ContainsUnexpandedParameterPack) : Stmt(SC) {
61    ExprBits.TypeDependent = TD;
62    ExprBits.ValueDependent = VD;
63    ExprBits.ValueKind = VK;
64    ExprBits.ObjectKind = OK;
65    ExprBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
66    setType(T);
67  }
68
69  /// \brief Construct an empty expression.
70  explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
71
72public:
73  QualType getType() const { return TR; }
74  void setType(QualType t) {
75    // In C++, the type of an expression is always adjusted so that it
76    // will not have reference type an expression will never have
77    // reference type (C++ [expr]p6). Use
78    // QualType::getNonReferenceType() to retrieve the non-reference
79    // type. Additionally, inspect Expr::isLvalue to determine whether
80    // an expression that is adjusted in this manner should be
81    // considered an lvalue.
82    assert((t.isNull() || !t->isReferenceType()) &&
83           "Expressions can't have reference type");
84
85    TR = t;
86  }
87
88  /// isValueDependent - Determines whether this expression is
89  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
90  /// array bound of "Chars" in the following example is
91  /// value-dependent.
92  /// @code
93  /// template<int Size, char (&Chars)[Size]> struct meta_string;
94  /// @endcode
95  bool isValueDependent() const { return ExprBits.ValueDependent; }
96
97  /// \brief Set whether this expression is value-dependent or not.
98  void setValueDependent(bool VD) { ExprBits.ValueDependent = VD; }
99
100  /// isTypeDependent - Determines whether this expression is
101  /// type-dependent (C++ [temp.dep.expr]), which means that its type
102  /// could change from one template instantiation to the next. For
103  /// example, the expressions "x" and "x + y" are type-dependent in
104  /// the following code, but "y" is not type-dependent:
105  /// @code
106  /// template<typename T>
107  /// void add(T x, int y) {
108  ///   x + y;
109  /// }
110  /// @endcode
111  bool isTypeDependent() const { return ExprBits.TypeDependent; }
112
113  /// \brief Set whether this expression is type-dependent or not.
114  void setTypeDependent(bool TD) { ExprBits.TypeDependent = TD; }
115
116  /// \brief Whether this expression contains an unexpanded parameter
117  /// pack (for C++0x variadic templates).
118  ///
119  /// Given the following function template:
120  ///
121  /// \code
122  /// template<typename F, typename ...Types>
123  /// void forward(const F &f, Types &&...args) {
124  ///   f(static_cast<Types&&>(args)...);
125  /// }
126  /// \endcode
127  ///
128  /// The expressions \c args and \c static_cast<Types&&>(args) both
129  /// contain parameter packs.
130  bool containsUnexpandedParameterPack() const {
131    return ExprBits.ContainsUnexpandedParameterPack;
132  }
133
134  /// \brief Set the bit that describes whether this expression
135  /// contains an unexpanded parameter pack.
136  void setContainsUnexpandedParameterPack(bool PP = true) {
137    ExprBits.ContainsUnexpandedParameterPack = PP;
138  }
139
140  /// SourceLocation tokens are not useful in isolation - they are low level
141  /// value objects created/interpreted by SourceManager. We assume AST
142  /// clients will have a pointer to the respective SourceManager.
143  virtual SourceRange getSourceRange() const = 0;
144
145  /// getExprLoc - Return the preferred location for the arrow when diagnosing
146  /// a problem with a generic expression.
147  virtual SourceLocation getExprLoc() const { return getLocStart(); }
148
149  /// isUnusedResultAWarning - Return true if this immediate expression should
150  /// be warned about if the result is unused.  If so, fill in Loc and Ranges
151  /// with location to warn on and the source range[s] to report with the
152  /// warning.
153  bool isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
154                              SourceRange &R2, ASTContext &Ctx) const;
155
156  /// isLValue - True if this expression is an "l-value" according to
157  /// the rules of the current language.  C and C++ give somewhat
158  /// different rules for this concept, but in general, the result of
159  /// an l-value expression identifies a specific object whereas the
160  /// result of an r-value expression is a value detached from any
161  /// specific storage.
162  ///
163  /// C++0x divides the concept of "r-value" into pure r-values
164  /// ("pr-values") and so-called expiring values ("x-values"), which
165  /// identify specific objects that can be safely cannibalized for
166  /// their resources.  This is an unfortunate abuse of terminology on
167  /// the part of the C++ committee.  In Clang, when we say "r-value",
168  /// we generally mean a pr-value.
169  bool isLValue() const { return getValueKind() == VK_LValue; }
170  bool isRValue() const { return getValueKind() == VK_RValue; }
171  bool isXValue() const { return getValueKind() == VK_XValue; }
172  bool isGLValue() const { return getValueKind() != VK_RValue; }
173
174  enum LValueClassification {
175    LV_Valid,
176    LV_NotObjectType,
177    LV_IncompleteVoidType,
178    LV_DuplicateVectorComponents,
179    LV_InvalidExpression,
180    LV_MemberFunction,
181    LV_SubObjCPropertySetting,
182    LV_ClassTemporary
183  };
184  /// Reasons why an expression might not be an l-value.
185  LValueClassification ClassifyLValue(ASTContext &Ctx) const;
186
187  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
188  /// does not have an incomplete type, does not have a const-qualified type,
189  /// and if it is a structure or union, does not have any member (including,
190  /// recursively, any member or element of all contained aggregates or unions)
191  /// with a const-qualified type.
192  ///
193  /// \param Loc [in] [out] - A source location which *may* be filled
194  /// in with the location of the expression making this a
195  /// non-modifiable lvalue, if specified.
196  enum isModifiableLvalueResult {
197    MLV_Valid,
198    MLV_NotObjectType,
199    MLV_IncompleteVoidType,
200    MLV_DuplicateVectorComponents,
201    MLV_InvalidExpression,
202    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
203    MLV_IncompleteType,
204    MLV_ConstQualified,
205    MLV_ArrayType,
206    MLV_NotBlockQualified,
207    MLV_ReadonlyProperty,
208    MLV_NoSetterProperty,
209    MLV_MemberFunction,
210    MLV_SubObjCPropertySetting,
211    MLV_ClassTemporary
212  };
213  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx,
214                                              SourceLocation *Loc = 0) const;
215
216  /// \brief The return type of classify(). Represents the C++0x expression
217  ///        taxonomy.
218  class Classification {
219  public:
220    /// \brief The various classification results. Most of these mean prvalue.
221    enum Kinds {
222      CL_LValue,
223      CL_XValue,
224      CL_Function, // Functions cannot be lvalues in C.
225      CL_Void, // Void cannot be an lvalue in C.
226      CL_DuplicateVectorComponents, // A vector shuffle with dupes.
227      CL_MemberFunction, // An expression referring to a member function
228      CL_SubObjCPropertySetting,
229      CL_ClassTemporary, // A prvalue of class type
230      CL_PRValue // A prvalue for any other reason, of any other type
231    };
232    /// \brief The results of modification testing.
233    enum ModifiableType {
234      CM_Untested, // testModifiable was false.
235      CM_Modifiable,
236      CM_RValue, // Not modifiable because it's an rvalue
237      CM_Function, // Not modifiable because it's a function; C++ only
238      CM_LValueCast, // Same as CM_RValue, but indicates GCC cast-as-lvalue ext
239      CM_NotBlockQualified, // Not captured in the closure
240      CM_NoSetterProperty,// Implicit assignment to ObjC property without setter
241      CM_ConstQualified,
242      CM_ArrayType,
243      CM_IncompleteType
244    };
245
246  private:
247    friend class Expr;
248
249    unsigned short Kind;
250    unsigned short Modifiable;
251
252    explicit Classification(Kinds k, ModifiableType m)
253      : Kind(k), Modifiable(m)
254    {}
255
256  public:
257    Classification() {}
258
259    Kinds getKind() const { return static_cast<Kinds>(Kind); }
260    ModifiableType getModifiable() const {
261      assert(Modifiable != CM_Untested && "Did not test for modifiability.");
262      return static_cast<ModifiableType>(Modifiable);
263    }
264    bool isLValue() const { return Kind == CL_LValue; }
265    bool isXValue() const { return Kind == CL_XValue; }
266    bool isGLValue() const { return Kind <= CL_XValue; }
267    bool isPRValue() const { return Kind >= CL_Function; }
268    bool isRValue() const { return Kind >= CL_XValue; }
269    bool isModifiable() const { return getModifiable() == CM_Modifiable; }
270  };
271  /// \brief Classify - Classify this expression according to the C++0x
272  ///        expression taxonomy.
273  ///
274  /// C++0x defines ([basic.lval]) a new taxonomy of expressions to replace the
275  /// old lvalue vs rvalue. This function determines the type of expression this
276  /// is. There are three expression types:
277  /// - lvalues are classical lvalues as in C++03.
278  /// - prvalues are equivalent to rvalues in C++03.
279  /// - xvalues are expressions yielding unnamed rvalue references, e.g. a
280  ///   function returning an rvalue reference.
281  /// lvalues and xvalues are collectively referred to as glvalues, while
282  /// prvalues and xvalues together form rvalues.
283  Classification Classify(ASTContext &Ctx) const {
284    return ClassifyImpl(Ctx, 0);
285  }
286
287  /// \brief ClassifyModifiable - Classify this expression according to the
288  ///        C++0x expression taxonomy, and see if it is valid on the left side
289  ///        of an assignment.
290  ///
291  /// This function extends classify in that it also tests whether the
292  /// expression is modifiable (C99 6.3.2.1p1).
293  /// \param Loc A source location that might be filled with a relevant location
294  ///            if the expression is not modifiable.
295  Classification ClassifyModifiable(ASTContext &Ctx, SourceLocation &Loc) const{
296    return ClassifyImpl(Ctx, &Loc);
297  }
298
299  /// getValueKindForType - Given a formal return or parameter type,
300  /// give its value kind.
301  static ExprValueKind getValueKindForType(QualType T) {
302    if (const ReferenceType *RT = T->getAs<ReferenceType>())
303      return (isa<LValueReferenceType>(RT)
304                ? VK_LValue
305                : (RT->getPointeeType()->isFunctionType()
306                     ? VK_LValue : VK_XValue));
307    return VK_RValue;
308  }
309
310  /// getValueKind - The value kind that this expression produces.
311  ExprValueKind getValueKind() const {
312    return static_cast<ExprValueKind>(ExprBits.ValueKind);
313  }
314
315  /// getObjectKind - The object kind that this expression produces.
316  /// Object kinds are meaningful only for expressions that yield an
317  /// l-value or x-value.
318  ExprObjectKind getObjectKind() const {
319    return static_cast<ExprObjectKind>(ExprBits.ObjectKind);
320  }
321
322  /// setValueKind - Set the value kind produced by this expression.
323  void setValueKind(ExprValueKind Cat) { ExprBits.ValueKind = Cat; }
324
325  /// setObjectKind - Set the object kind produced by this expression.
326  void setObjectKind(ExprObjectKind Cat) { ExprBits.ObjectKind = Cat; }
327
328private:
329  Classification ClassifyImpl(ASTContext &Ctx, SourceLocation *Loc) const;
330
331public:
332
333  /// \brief If this expression refers to a bit-field, retrieve the
334  /// declaration of that bit-field.
335  FieldDecl *getBitField();
336
337  const FieldDecl *getBitField() const {
338    return const_cast<Expr*>(this)->getBitField();
339  }
340
341  /// \brief If this expression is an l-value for an Objective C
342  /// property, find the underlying property reference expression.
343  const ObjCPropertyRefExpr *getObjCProperty() const;
344
345  /// \brief Returns whether this expression refers to a vector element.
346  bool refersToVectorElement() const;
347
348  /// isKnownToHaveBooleanValue - Return true if this is an integer expression
349  /// that is known to return 0 or 1.  This happens for _Bool/bool expressions
350  /// but also int expressions which are produced by things like comparisons in
351  /// C.
352  bool isKnownToHaveBooleanValue() const;
353
354  /// isIntegerConstantExpr - Return true if this expression is a valid integer
355  /// constant expression, and, if so, return its value in Result.  If not a
356  /// valid i-c-e, return false and fill in Loc (if specified) with the location
357  /// of the invalid expression.
358  bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
359                             SourceLocation *Loc = 0,
360                             bool isEvaluated = true) const;
361  bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const {
362    llvm::APSInt X;
363    return isIntegerConstantExpr(X, Ctx, Loc);
364  }
365  /// isConstantInitializer - Returns true if this expression is a constant
366  /// initializer, which can be emitted at compile-time.
367  bool isConstantInitializer(ASTContext &Ctx, bool ForRef) const;
368
369  /// EvalResult is a struct with detailed info about an evaluated expression.
370  struct EvalResult {
371    /// Val - This is the value the expression can be folded to.
372    APValue Val;
373
374    /// HasSideEffects - Whether the evaluated expression has side effects.
375    /// For example, (f() && 0) can be folded, but it still has side effects.
376    bool HasSideEffects;
377
378    /// Diag - If the expression is unfoldable, then Diag contains a note
379    /// diagnostic indicating why it's not foldable. DiagLoc indicates a caret
380    /// position for the error, and DiagExpr is the expression that caused
381    /// the error.
382    /// If the expression is foldable, but not an integer constant expression,
383    /// Diag contains a note diagnostic that describes why it isn't an integer
384    /// constant expression. If the expression *is* an integer constant
385    /// expression, then Diag will be zero.
386    unsigned Diag;
387    const Expr *DiagExpr;
388    SourceLocation DiagLoc;
389
390    EvalResult() : HasSideEffects(false), Diag(0), DiagExpr(0) {}
391
392    // isGlobalLValue - Return true if the evaluated lvalue expression
393    // is global.
394    bool isGlobalLValue() const;
395    // hasSideEffects - Return true if the evaluated expression has
396    // side effects.
397    bool hasSideEffects() const {
398      return HasSideEffects;
399    }
400  };
401
402  /// Evaluate - Return true if this is a constant which we can fold using
403  /// any crazy technique (that has nothing to do with language standards) that
404  /// we want to.  If this function returns true, it returns the folded constant
405  /// in Result.
406  bool Evaluate(EvalResult &Result, ASTContext &Ctx) const;
407
408  /// EvaluateAsBooleanCondition - Return true if this is a constant
409  /// which we we can fold and convert to a boolean condition using
410  /// any crazy technique that we want to.
411  bool EvaluateAsBooleanCondition(bool &Result, ASTContext &Ctx) const;
412
413  /// isEvaluatable - Call Evaluate to see if this expression can be constant
414  /// folded, but discard the result.
415  bool isEvaluatable(ASTContext &Ctx) const;
416
417  /// HasSideEffects - This routine returns true for all those expressions
418  /// which must be evaluated each time and must not be optimized away
419  /// or evaluated at compile time. Example is a function call, volatile
420  /// variable read.
421  bool HasSideEffects(ASTContext &Ctx) const;
422
423  /// EvaluateAsInt - Call Evaluate and return the folded integer. This
424  /// must be called on an expression that constant folds to an integer.
425  llvm::APSInt EvaluateAsInt(ASTContext &Ctx) const;
426
427  /// EvaluateAsLValue - Evaluate an expression to see if it's a lvalue
428  /// with link time known address.
429  bool EvaluateAsLValue(EvalResult &Result, ASTContext &Ctx) const;
430
431  /// EvaluateAsLValue - Evaluate an expression to see if it's a lvalue.
432  bool EvaluateAsAnyLValue(EvalResult &Result, ASTContext &Ctx) const;
433
434  /// \brief Enumeration used to describe how \c isNullPointerConstant()
435  /// should cope with value-dependent expressions.
436  enum NullPointerConstantValueDependence {
437    /// \brief Specifies that the expression should never be value-dependent.
438    NPC_NeverValueDependent = 0,
439
440    /// \brief Specifies that a value-dependent expression of integral or
441    /// dependent type should be considered a null pointer constant.
442    NPC_ValueDependentIsNull,
443
444    /// \brief Specifies that a value-dependent expression should be considered
445    /// to never be a null pointer constant.
446    NPC_ValueDependentIsNotNull
447  };
448
449  /// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
450  /// integer constant expression with the value zero, or if this is one that is
451  /// cast to void*.
452  bool isNullPointerConstant(ASTContext &Ctx,
453                             NullPointerConstantValueDependence NPC) const;
454
455  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
456  /// write barrier.
457  bool isOBJCGCCandidate(ASTContext &Ctx) const;
458
459  /// \brief Returns true if this expression is a bound member function.
460  bool isBoundMemberFunction(ASTContext &Ctx) const;
461
462  /// \brief Result type of CanThrow().
463  enum CanThrowResult {
464    CT_Cannot,
465    CT_Dependent,
466    CT_Can
467  };
468  /// \brief Test if this expression, if evaluated, might throw, according to
469  ///        the rules of C++ [expr.unary.noexcept].
470  CanThrowResult CanThrow(ASTContext &C) const;
471
472  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
473  ///  its subexpression.  If that subexpression is also a ParenExpr,
474  ///  then this method recursively returns its subexpression, and so forth.
475  ///  Otherwise, the method returns the current Expr.
476  Expr *IgnoreParens();
477
478  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
479  /// or CastExprs, returning their operand.
480  Expr *IgnoreParenCasts();
481
482  /// IgnoreParenImpCasts - Ignore parentheses and implicit casts.  Strip off any
483  /// ParenExpr or ImplicitCastExprs, returning their operand.
484  Expr *IgnoreParenImpCasts();
485
486  const Expr *IgnoreParenImpCasts() const {
487    return const_cast<Expr*>(this)->IgnoreParenImpCasts();
488  }
489
490  /// Ignore parentheses and lvalue casts.  Strip off any ParenExpr and
491  /// CastExprs that represent lvalue casts, returning their operand.
492  Expr *IgnoreParenLValueCasts();
493
494  const Expr *IgnoreParenLValueCasts() const {
495    return const_cast<Expr*>(this)->IgnoreParenLValueCasts();
496  }
497
498  /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
499  /// value (including ptr->int casts of the same size).  Strip off any
500  /// ParenExpr or CastExprs, returning their operand.
501  Expr *IgnoreParenNoopCasts(ASTContext &Ctx);
502
503  /// \brief Determine whether this expression is a default function argument.
504  ///
505  /// Default arguments are implicitly generated in the abstract syntax tree
506  /// by semantic analysis for function calls, object constructions, etc. in
507  /// C++. Default arguments are represented by \c CXXDefaultArgExpr nodes;
508  /// this routine also looks through any implicit casts to determine whether
509  /// the expression is a default argument.
510  bool isDefaultArgument() const;
511
512  /// \brief Determine whether the result of this expression is a
513  /// temporary object of the given class type.
514  bool isTemporaryObject(ASTContext &Ctx, const CXXRecordDecl *TempTy) const;
515
516  const Expr *IgnoreParens() const {
517    return const_cast<Expr*>(this)->IgnoreParens();
518  }
519  const Expr *IgnoreParenCasts() const {
520    return const_cast<Expr*>(this)->IgnoreParenCasts();
521  }
522  const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const {
523    return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
524  }
525
526  static bool hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs);
527  static bool hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs);
528
529  static bool classof(const Stmt *T) {
530    return T->getStmtClass() >= firstExprConstant &&
531           T->getStmtClass() <= lastExprConstant;
532  }
533  static bool classof(const Expr *) { return true; }
534};
535
536
537//===----------------------------------------------------------------------===//
538// Primary Expressions.
539//===----------------------------------------------------------------------===//
540
541/// \brief Represents the qualifier that may precede a C++ name, e.g., the
542/// "std::" in "std::sort".
543struct NameQualifier {
544  /// \brief The nested name specifier.
545  NestedNameSpecifier *NNS;
546
547  /// \brief The source range covered by the nested name specifier.
548  SourceRange Range;
549};
550
551/// \brief Represents an explicit template argument list in C++, e.g.,
552/// the "<int>" in "sort<int>".
553struct ExplicitTemplateArgumentList {
554  /// \brief The source location of the left angle bracket ('<');
555  SourceLocation LAngleLoc;
556
557  /// \brief The source location of the right angle bracket ('>');
558  SourceLocation RAngleLoc;
559
560  /// \brief The number of template arguments in TemplateArgs.
561  /// The actual template arguments (if any) are stored after the
562  /// ExplicitTemplateArgumentList structure.
563  unsigned NumTemplateArgs;
564
565  /// \brief Retrieve the template arguments
566  TemplateArgumentLoc *getTemplateArgs() {
567    return reinterpret_cast<TemplateArgumentLoc *> (this + 1);
568  }
569
570  /// \brief Retrieve the template arguments
571  const TemplateArgumentLoc *getTemplateArgs() const {
572    return reinterpret_cast<const TemplateArgumentLoc *> (this + 1);
573  }
574
575  void initializeFrom(const TemplateArgumentListInfo &List);
576  void initializeFrom(const TemplateArgumentListInfo &List,
577                      bool &Dependent, bool &ContainsUnexpandedParameterPack);
578  void copyInto(TemplateArgumentListInfo &List) const;
579  static std::size_t sizeFor(unsigned NumTemplateArgs);
580  static std::size_t sizeFor(const TemplateArgumentListInfo &List);
581};
582
583/// DeclRefExpr - [C99 6.5.1p2] - A reference to a declared variable, function,
584/// enum, etc.
585class DeclRefExpr : public Expr {
586  enum {
587    // Flag on DecoratedD that specifies when this declaration reference
588    // expression has a C++ nested-name-specifier.
589    HasQualifierFlag = 0x01,
590    // Flag on DecoratedD that specifies when this declaration reference
591    // expression has an explicit C++ template argument list.
592    HasExplicitTemplateArgumentListFlag = 0x02
593  };
594
595  // DecoratedD - The declaration that we are referencing, plus two bits to
596  // indicate whether (1) the declaration's name was explicitly qualified and
597  // (2) the declaration's name was followed by an explicit template
598  // argument list.
599  llvm::PointerIntPair<ValueDecl *, 2> DecoratedD;
600
601  // Loc - The location of the declaration name itself.
602  SourceLocation Loc;
603
604  /// DNLoc - Provides source/type location info for the
605  /// declaration name embedded in DecoratedD.
606  DeclarationNameLoc DNLoc;
607
608  /// \brief Retrieve the qualifier that preceded the declaration name, if any.
609  NameQualifier *getNameQualifier() {
610    if ((DecoratedD.getInt() & HasQualifierFlag) == 0)
611      return 0;
612
613    return reinterpret_cast<NameQualifier *> (this + 1);
614  }
615
616  /// \brief Retrieve the qualifier that preceded the member name, if any.
617  const NameQualifier *getNameQualifier() const {
618    return const_cast<DeclRefExpr *>(this)->getNameQualifier();
619  }
620
621  DeclRefExpr(NestedNameSpecifier *Qualifier, SourceRange QualifierRange,
622              ValueDecl *D, SourceLocation NameLoc,
623              const TemplateArgumentListInfo *TemplateArgs,
624              QualType T, ExprValueKind VK);
625
626  DeclRefExpr(NestedNameSpecifier *Qualifier, SourceRange QualifierRange,
627              ValueDecl *D, const DeclarationNameInfo &NameInfo,
628              const TemplateArgumentListInfo *TemplateArgs,
629              QualType T, ExprValueKind VK);
630
631  /// \brief Construct an empty declaration reference expression.
632  explicit DeclRefExpr(EmptyShell Empty)
633    : Expr(DeclRefExprClass, Empty) { }
634
635  /// \brief Computes the type- and value-dependence flags for this
636  /// declaration reference expression.
637  void computeDependence();
638
639public:
640  DeclRefExpr(ValueDecl *d, QualType t, ExprValueKind VK, SourceLocation l) :
641    Expr(DeclRefExprClass, t, VK, OK_Ordinary, false, false, false),
642    DecoratedD(d, 0), Loc(l) {
643    computeDependence();
644  }
645
646  static DeclRefExpr *Create(ASTContext &Context,
647                             NestedNameSpecifier *Qualifier,
648                             SourceRange QualifierRange,
649                             ValueDecl *D,
650                             SourceLocation NameLoc,
651                             QualType T, ExprValueKind VK,
652                             const TemplateArgumentListInfo *TemplateArgs = 0);
653
654  static DeclRefExpr *Create(ASTContext &Context,
655                             NestedNameSpecifier *Qualifier,
656                             SourceRange QualifierRange,
657                             ValueDecl *D,
658                             const DeclarationNameInfo &NameInfo,
659                             QualType T, ExprValueKind VK,
660                             const TemplateArgumentListInfo *TemplateArgs = 0);
661
662  /// \brief Construct an empty declaration reference expression.
663  static DeclRefExpr *CreateEmpty(ASTContext &Context,
664                                  bool HasQualifier, unsigned NumTemplateArgs);
665
666  ValueDecl *getDecl() { return DecoratedD.getPointer(); }
667  const ValueDecl *getDecl() const { return DecoratedD.getPointer(); }
668  void setDecl(ValueDecl *NewD) { DecoratedD.setPointer(NewD); }
669
670  DeclarationNameInfo getNameInfo() const {
671    return DeclarationNameInfo(getDecl()->getDeclName(), Loc, DNLoc);
672  }
673
674  SourceLocation getLocation() const { return Loc; }
675  void setLocation(SourceLocation L) { Loc = L; }
676  virtual SourceRange getSourceRange() const;
677
678  /// \brief Determine whether this declaration reference was preceded by a
679  /// C++ nested-name-specifier, e.g., \c N::foo.
680  bool hasQualifier() const { return DecoratedD.getInt() & HasQualifierFlag; }
681
682  /// \brief If the name was qualified, retrieves the source range of
683  /// the nested-name-specifier that precedes the name. Otherwise,
684  /// returns an empty source range.
685  SourceRange getQualifierRange() const {
686    if (!hasQualifier())
687      return SourceRange();
688
689    return getNameQualifier()->Range;
690  }
691
692  /// \brief If the name was qualified, retrieves the nested-name-specifier
693  /// that precedes the name. Otherwise, returns NULL.
694  NestedNameSpecifier *getQualifier() const {
695    if (!hasQualifier())
696      return 0;
697
698    return getNameQualifier()->NNS;
699  }
700
701  bool hasExplicitTemplateArgs() const {
702    return (DecoratedD.getInt() & HasExplicitTemplateArgumentListFlag);
703  }
704
705  /// \brief Retrieve the explicit template argument list that followed the
706  /// member template name.
707  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
708    assert(hasExplicitTemplateArgs());
709
710    if ((DecoratedD.getInt() & HasQualifierFlag) == 0)
711      return *reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
712
713    return *reinterpret_cast<ExplicitTemplateArgumentList *>(
714                                                      getNameQualifier() + 1);
715  }
716
717  /// \brief Retrieve the explicit template argument list that followed the
718  /// member template name.
719  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
720    return const_cast<DeclRefExpr *>(this)->getExplicitTemplateArgs();
721  }
722
723  /// \brief Retrieves the optional explicit template arguments.
724  /// This points to the same data as getExplicitTemplateArgs(), but
725  /// returns null if there are no explicit template arguments.
726  const ExplicitTemplateArgumentList *getExplicitTemplateArgsOpt() const {
727    if (!hasExplicitTemplateArgs()) return 0;
728    return &getExplicitTemplateArgs();
729  }
730
731  /// \brief Copies the template arguments (if present) into the given
732  /// structure.
733  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
734    if (hasExplicitTemplateArgs())
735      getExplicitTemplateArgs().copyInto(List);
736  }
737
738  /// \brief Retrieve the location of the left angle bracket following the
739  /// member name ('<'), if any.
740  SourceLocation getLAngleLoc() const {
741    if (!hasExplicitTemplateArgs())
742      return SourceLocation();
743
744    return getExplicitTemplateArgs().LAngleLoc;
745  }
746
747  /// \brief Retrieve the template arguments provided as part of this
748  /// template-id.
749  const TemplateArgumentLoc *getTemplateArgs() const {
750    if (!hasExplicitTemplateArgs())
751      return 0;
752
753    return getExplicitTemplateArgs().getTemplateArgs();
754  }
755
756  /// \brief Retrieve the number of template arguments provided as part of this
757  /// template-id.
758  unsigned getNumTemplateArgs() const {
759    if (!hasExplicitTemplateArgs())
760      return 0;
761
762    return getExplicitTemplateArgs().NumTemplateArgs;
763  }
764
765  /// \brief Retrieve the location of the right angle bracket following the
766  /// template arguments ('>').
767  SourceLocation getRAngleLoc() const {
768    if (!hasExplicitTemplateArgs())
769      return SourceLocation();
770
771    return getExplicitTemplateArgs().RAngleLoc;
772  }
773
774  static bool classof(const Stmt *T) {
775    return T->getStmtClass() == DeclRefExprClass;
776  }
777  static bool classof(const DeclRefExpr *) { return true; }
778
779  // Iterators
780  virtual child_iterator child_begin();
781  virtual child_iterator child_end();
782
783  friend class ASTStmtReader;
784  friend class ASTStmtWriter;
785};
786
787/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
788class PredefinedExpr : public Expr {
789public:
790  enum IdentType {
791    Func,
792    Function,
793    PrettyFunction,
794    /// PrettyFunctionNoVirtual - The same as PrettyFunction, except that the
795    /// 'virtual' keyword is omitted for virtual member functions.
796    PrettyFunctionNoVirtual
797  };
798
799private:
800  SourceLocation Loc;
801  IdentType Type;
802public:
803  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
804    : Expr(PredefinedExprClass, type, VK_LValue, OK_Ordinary,
805           type->isDependentType(), type->isDependentType(),
806           /*ContainsUnexpandedParameterPack=*/false),
807      Loc(l), Type(IT) {}
808
809  /// \brief Construct an empty predefined expression.
810  explicit PredefinedExpr(EmptyShell Empty)
811    : Expr(PredefinedExprClass, Empty) { }
812
813  IdentType getIdentType() const { return Type; }
814  void setIdentType(IdentType IT) { Type = IT; }
815
816  SourceLocation getLocation() const { return Loc; }
817  void setLocation(SourceLocation L) { Loc = L; }
818
819  static std::string ComputeName(IdentType IT, const Decl *CurrentDecl);
820
821  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
822
823  static bool classof(const Stmt *T) {
824    return T->getStmtClass() == PredefinedExprClass;
825  }
826  static bool classof(const PredefinedExpr *) { return true; }
827
828  // Iterators
829  virtual child_iterator child_begin();
830  virtual child_iterator child_end();
831};
832
833/// \brief Used by IntegerLiteral/FloatingLiteral to store the numeric without
834/// leaking memory.
835///
836/// For large floats/integers, APFloat/APInt will allocate memory from the heap
837/// to represent these numbers.  Unfortunately, when we use a BumpPtrAllocator
838/// to allocate IntegerLiteral/FloatingLiteral nodes the memory associated with
839/// the APFloat/APInt values will never get freed. APNumericStorage uses
840/// ASTContext's allocator for memory allocation.
841class APNumericStorage {
842  unsigned BitWidth;
843  union {
844    uint64_t VAL;    ///< Used to store the <= 64 bits integer value.
845    uint64_t *pVal;  ///< Used to store the >64 bits integer value.
846  };
847
848  bool hasAllocation() const { return llvm::APInt::getNumWords(BitWidth) > 1; }
849
850  APNumericStorage(const APNumericStorage&); // do not implement
851  APNumericStorage& operator=(const APNumericStorage&); // do not implement
852
853protected:
854  APNumericStorage() : BitWidth(0), VAL(0) { }
855
856  llvm::APInt getIntValue() const {
857    unsigned NumWords = llvm::APInt::getNumWords(BitWidth);
858    if (NumWords > 1)
859      return llvm::APInt(BitWidth, NumWords, pVal);
860    else
861      return llvm::APInt(BitWidth, VAL);
862  }
863  void setIntValue(ASTContext &C, const llvm::APInt &Val);
864};
865
866class APIntStorage : public APNumericStorage {
867public:
868  llvm::APInt getValue() const { return getIntValue(); }
869  void setValue(ASTContext &C, const llvm::APInt &Val) { setIntValue(C, Val); }
870};
871
872class APFloatStorage : public APNumericStorage {
873public:
874  llvm::APFloat getValue() const { return llvm::APFloat(getIntValue()); }
875  void setValue(ASTContext &C, const llvm::APFloat &Val) {
876    setIntValue(C, Val.bitcastToAPInt());
877  }
878};
879
880class IntegerLiteral : public Expr {
881  APIntStorage Num;
882  SourceLocation Loc;
883
884  /// \brief Construct an empty integer literal.
885  explicit IntegerLiteral(EmptyShell Empty)
886    : Expr(IntegerLiteralClass, Empty) { }
887
888public:
889  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
890  // or UnsignedLongLongTy
891  IntegerLiteral(ASTContext &C, const llvm::APInt &V,
892                 QualType type, SourceLocation l)
893    : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
894           false),
895      Loc(l) {
896    assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
897    setValue(C, V);
898  }
899
900  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
901  // or UnsignedLongLongTy
902  static IntegerLiteral *Create(ASTContext &C, const llvm::APInt &V,
903                                QualType type, SourceLocation l);
904  static IntegerLiteral *Create(ASTContext &C, EmptyShell Empty);
905
906  llvm::APInt getValue() const { return Num.getValue(); }
907  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
908
909  /// \brief Retrieve the location of the literal.
910  SourceLocation getLocation() const { return Loc; }
911
912  void setValue(ASTContext &C, const llvm::APInt &Val) { Num.setValue(C, Val); }
913  void setLocation(SourceLocation Location) { Loc = Location; }
914
915  static bool classof(const Stmt *T) {
916    return T->getStmtClass() == IntegerLiteralClass;
917  }
918  static bool classof(const IntegerLiteral *) { return true; }
919
920  // Iterators
921  virtual child_iterator child_begin();
922  virtual child_iterator child_end();
923};
924
925class CharacterLiteral : public Expr {
926  unsigned Value;
927  SourceLocation Loc;
928  bool IsWide;
929public:
930  // type should be IntTy
931  CharacterLiteral(unsigned value, bool iswide, QualType type, SourceLocation l)
932    : Expr(CharacterLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
933           false),
934      Value(value), Loc(l), IsWide(iswide) {
935  }
936
937  /// \brief Construct an empty character literal.
938  CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
939
940  SourceLocation getLocation() const { return Loc; }
941  bool isWide() const { return IsWide; }
942
943  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
944
945  unsigned getValue() const { return Value; }
946
947  void setLocation(SourceLocation Location) { Loc = Location; }
948  void setWide(bool W) { IsWide = W; }
949  void setValue(unsigned Val) { Value = Val; }
950
951  static bool classof(const Stmt *T) {
952    return T->getStmtClass() == CharacterLiteralClass;
953  }
954  static bool classof(const CharacterLiteral *) { return true; }
955
956  // Iterators
957  virtual child_iterator child_begin();
958  virtual child_iterator child_end();
959};
960
961class FloatingLiteral : public Expr {
962  APFloatStorage Num;
963  bool IsExact : 1;
964  SourceLocation Loc;
965
966  FloatingLiteral(ASTContext &C, const llvm::APFloat &V, bool isexact,
967                  QualType Type, SourceLocation L)
968    : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false,
969           false),
970      IsExact(isexact), Loc(L) {
971    setValue(C, V);
972  }
973
974  /// \brief Construct an empty floating-point literal.
975  explicit FloatingLiteral(EmptyShell Empty)
976    : Expr(FloatingLiteralClass, Empty), IsExact(false) { }
977
978public:
979  static FloatingLiteral *Create(ASTContext &C, const llvm::APFloat &V,
980                                 bool isexact, QualType Type, SourceLocation L);
981  static FloatingLiteral *Create(ASTContext &C, EmptyShell Empty);
982
983  llvm::APFloat getValue() const { return Num.getValue(); }
984  void setValue(ASTContext &C, const llvm::APFloat &Val) {
985    Num.setValue(C, Val);
986  }
987
988  bool isExact() const { return IsExact; }
989  void setExact(bool E) { IsExact = E; }
990
991  /// getValueAsApproximateDouble - This returns the value as an inaccurate
992  /// double.  Note that this may cause loss of precision, but is useful for
993  /// debugging dumps, etc.
994  double getValueAsApproximateDouble() const;
995
996  SourceLocation getLocation() const { return Loc; }
997  void setLocation(SourceLocation L) { Loc = L; }
998
999  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
1000
1001  static bool classof(const Stmt *T) {
1002    return T->getStmtClass() == FloatingLiteralClass;
1003  }
1004  static bool classof(const FloatingLiteral *) { return true; }
1005
1006  // Iterators
1007  virtual child_iterator child_begin();
1008  virtual child_iterator child_end();
1009};
1010
1011/// ImaginaryLiteral - We support imaginary integer and floating point literals,
1012/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
1013/// IntegerLiteral classes.  Instances of this class always have a Complex type
1014/// whose element type matches the subexpression.
1015///
1016class ImaginaryLiteral : public Expr {
1017  Stmt *Val;
1018public:
1019  ImaginaryLiteral(Expr *val, QualType Ty)
1020    : Expr(ImaginaryLiteralClass, Ty, VK_RValue, OK_Ordinary, false, false,
1021           false),
1022      Val(val) {}
1023
1024  /// \brief Build an empty imaginary literal.
1025  explicit ImaginaryLiteral(EmptyShell Empty)
1026    : Expr(ImaginaryLiteralClass, Empty) { }
1027
1028  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1029  Expr *getSubExpr() { return cast<Expr>(Val); }
1030  void setSubExpr(Expr *E) { Val = E; }
1031
1032  virtual SourceRange getSourceRange() const { return Val->getSourceRange(); }
1033  static bool classof(const Stmt *T) {
1034    return T->getStmtClass() == ImaginaryLiteralClass;
1035  }
1036  static bool classof(const ImaginaryLiteral *) { return true; }
1037
1038  // Iterators
1039  virtual child_iterator child_begin();
1040  virtual child_iterator child_end();
1041};
1042
1043/// StringLiteral - This represents a string literal expression, e.g. "foo"
1044/// or L"bar" (wide strings).  The actual string is returned by getStrData()
1045/// is NOT null-terminated, and the length of the string is determined by
1046/// calling getByteLength().  The C type for a string is always a
1047/// ConstantArrayType.  In C++, the char type is const qualified, in C it is
1048/// not.
1049///
1050/// Note that strings in C can be formed by concatenation of multiple string
1051/// literal pptokens in translation phase #6.  This keeps track of the locations
1052/// of each of these pieces.
1053///
1054/// Strings in C can also be truncated and extended by assigning into arrays,
1055/// e.g. with constructs like:
1056///   char X[2] = "foobar";
1057/// In this case, getByteLength() will return 6, but the string literal will
1058/// have type "char[2]".
1059class StringLiteral : public Expr {
1060  const char *StrData;
1061  unsigned ByteLength;
1062  bool IsWide;
1063  unsigned NumConcatenated;
1064  SourceLocation TokLocs[1];
1065
1066  StringLiteral(QualType Ty) :
1067    Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary, false, false, false) {}
1068
1069public:
1070  /// This is the "fully general" constructor that allows representation of
1071  /// strings formed from multiple concatenated tokens.
1072  static StringLiteral *Create(ASTContext &C, const char *StrData,
1073                               unsigned ByteLength, bool Wide, QualType Ty,
1074                               const SourceLocation *Loc, unsigned NumStrs);
1075
1076  /// Simple constructor for string literals made from one token.
1077  static StringLiteral *Create(ASTContext &C, const char *StrData,
1078                               unsigned ByteLength,
1079                               bool Wide, QualType Ty, SourceLocation Loc) {
1080    return Create(C, StrData, ByteLength, Wide, Ty, &Loc, 1);
1081  }
1082
1083  /// \brief Construct an empty string literal.
1084  static StringLiteral *CreateEmpty(ASTContext &C, unsigned NumStrs);
1085
1086  llvm::StringRef getString() const {
1087    return llvm::StringRef(StrData, ByteLength);
1088  }
1089
1090  unsigned getByteLength() const { return ByteLength; }
1091
1092  /// \brief Sets the string data to the given string data.
1093  void setString(ASTContext &C, llvm::StringRef Str);
1094
1095  bool isWide() const { return IsWide; }
1096  void setWide(bool W) { IsWide = W; }
1097
1098  bool containsNonAsciiOrNull() const {
1099    llvm::StringRef Str = getString();
1100    for (unsigned i = 0, e = Str.size(); i != e; ++i)
1101      if (!isascii(Str[i]) || !Str[i])
1102        return true;
1103    return false;
1104  }
1105  /// getNumConcatenated - Get the number of string literal tokens that were
1106  /// concatenated in translation phase #6 to form this string literal.
1107  unsigned getNumConcatenated() const { return NumConcatenated; }
1108
1109  SourceLocation getStrTokenLoc(unsigned TokNum) const {
1110    assert(TokNum < NumConcatenated && "Invalid tok number");
1111    return TokLocs[TokNum];
1112  }
1113  void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
1114    assert(TokNum < NumConcatenated && "Invalid tok number");
1115    TokLocs[TokNum] = L;
1116  }
1117
1118  /// getLocationOfByte - Return a source location that points to the specified
1119  /// byte of this string literal.
1120  ///
1121  /// Strings are amazingly complex.  They can be formed from multiple tokens
1122  /// and can have escape sequences in them in addition to the usual trigraph
1123  /// and escaped newline business.  This routine handles this complexity.
1124  ///
1125  SourceLocation getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
1126                                   const LangOptions &Features,
1127                                   const TargetInfo &Target) const;
1128
1129  typedef const SourceLocation *tokloc_iterator;
1130  tokloc_iterator tokloc_begin() const { return TokLocs; }
1131  tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; }
1132
1133  virtual SourceRange getSourceRange() const {
1134    return SourceRange(TokLocs[0], TokLocs[NumConcatenated-1]);
1135  }
1136  static bool classof(const Stmt *T) {
1137    return T->getStmtClass() == StringLiteralClass;
1138  }
1139  static bool classof(const StringLiteral *) { return true; }
1140
1141  // Iterators
1142  virtual child_iterator child_begin();
1143  virtual child_iterator child_end();
1144};
1145
1146/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
1147/// AST node is only formed if full location information is requested.
1148class ParenExpr : public Expr {
1149  SourceLocation L, R;
1150  Stmt *Val;
1151public:
1152  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
1153    : Expr(ParenExprClass, val->getType(),
1154           val->getValueKind(), val->getObjectKind(),
1155           val->isTypeDependent(), val->isValueDependent(),
1156           val->containsUnexpandedParameterPack()),
1157      L(l), R(r), Val(val) {}
1158
1159  /// \brief Construct an empty parenthesized expression.
1160  explicit ParenExpr(EmptyShell Empty)
1161    : Expr(ParenExprClass, Empty) { }
1162
1163  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1164  Expr *getSubExpr() { return cast<Expr>(Val); }
1165  void setSubExpr(Expr *E) { Val = E; }
1166
1167  virtual SourceRange getSourceRange() const { return SourceRange(L, R); }
1168
1169  /// \brief Get the location of the left parentheses '('.
1170  SourceLocation getLParen() const { return L; }
1171  void setLParen(SourceLocation Loc) { L = Loc; }
1172
1173  /// \brief Get the location of the right parentheses ')'.
1174  SourceLocation getRParen() const { return R; }
1175  void setRParen(SourceLocation Loc) { R = Loc; }
1176
1177  static bool classof(const Stmt *T) {
1178    return T->getStmtClass() == ParenExprClass;
1179  }
1180  static bool classof(const ParenExpr *) { return true; }
1181
1182  // Iterators
1183  virtual child_iterator child_begin();
1184  virtual child_iterator child_end();
1185};
1186
1187
1188/// UnaryOperator - This represents the unary-expression's (except sizeof and
1189/// alignof), the postinc/postdec operators from postfix-expression, and various
1190/// extensions.
1191///
1192/// Notes on various nodes:
1193///
1194/// Real/Imag - These return the real/imag part of a complex operand.  If
1195///   applied to a non-complex value, the former returns its operand and the
1196///   later returns zero in the type of the operand.
1197///
1198class UnaryOperator : public Expr {
1199public:
1200  typedef UnaryOperatorKind Opcode;
1201
1202private:
1203  unsigned Opc : 5;
1204  SourceLocation Loc;
1205  Stmt *Val;
1206public:
1207
1208  UnaryOperator(Expr *input, Opcode opc, QualType type,
1209                ExprValueKind VK, ExprObjectKind OK, SourceLocation l)
1210    : Expr(UnaryOperatorClass, type, VK, OK,
1211           input->isTypeDependent() || type->isDependentType(),
1212           input->isValueDependent(),
1213           input->containsUnexpandedParameterPack()),
1214      Opc(opc), Loc(l), Val(input) {}
1215
1216  /// \brief Build an empty unary operator.
1217  explicit UnaryOperator(EmptyShell Empty)
1218    : Expr(UnaryOperatorClass, Empty), Opc(UO_AddrOf) { }
1219
1220  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
1221  void setOpcode(Opcode O) { Opc = O; }
1222
1223  Expr *getSubExpr() const { return cast<Expr>(Val); }
1224  void setSubExpr(Expr *E) { Val = E; }
1225
1226  /// getOperatorLoc - Return the location of the operator.
1227  SourceLocation getOperatorLoc() const { return Loc; }
1228  void setOperatorLoc(SourceLocation L) { Loc = L; }
1229
1230  /// isPostfix - Return true if this is a postfix operation, like x++.
1231  static bool isPostfix(Opcode Op) {
1232    return Op == UO_PostInc || Op == UO_PostDec;
1233  }
1234
1235  /// isPrefix - Return true if this is a prefix operation, like --x.
1236  static bool isPrefix(Opcode Op) {
1237    return Op == UO_PreInc || Op == UO_PreDec;
1238  }
1239
1240  bool isPrefix() const { return isPrefix(getOpcode()); }
1241  bool isPostfix() const { return isPostfix(getOpcode()); }
1242  bool isIncrementOp() const {
1243    return Opc == UO_PreInc || Opc == UO_PostInc;
1244  }
1245  bool isIncrementDecrementOp() const {
1246    return Opc <= UO_PreDec;
1247  }
1248  static bool isArithmeticOp(Opcode Op) {
1249    return Op >= UO_Plus && Op <= UO_LNot;
1250  }
1251  bool isArithmeticOp() const { return isArithmeticOp(getOpcode()); }
1252
1253  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1254  /// corresponds to, e.g. "sizeof" or "[pre]++"
1255  static const char *getOpcodeStr(Opcode Op);
1256
1257  /// \brief Retrieve the unary opcode that corresponds to the given
1258  /// overloaded operator.
1259  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
1260
1261  /// \brief Retrieve the overloaded operator kind that corresponds to
1262  /// the given unary opcode.
1263  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
1264
1265  virtual SourceRange getSourceRange() const {
1266    if (isPostfix())
1267      return SourceRange(Val->getLocStart(), Loc);
1268    else
1269      return SourceRange(Loc, Val->getLocEnd());
1270  }
1271  virtual SourceLocation getExprLoc() const { return Loc; }
1272
1273  static bool classof(const Stmt *T) {
1274    return T->getStmtClass() == UnaryOperatorClass;
1275  }
1276  static bool classof(const UnaryOperator *) { return true; }
1277
1278  // Iterators
1279  virtual child_iterator child_begin();
1280  virtual child_iterator child_end();
1281};
1282
1283/// OffsetOfExpr - [C99 7.17] - This represents an expression of the form
1284/// offsetof(record-type, member-designator). For example, given:
1285/// @code
1286/// struct S {
1287///   float f;
1288///   double d;
1289/// };
1290/// struct T {
1291///   int i;
1292///   struct S s[10];
1293/// };
1294/// @endcode
1295/// we can represent and evaluate the expression @c offsetof(struct T, s[2].d).
1296
1297class OffsetOfExpr : public Expr {
1298public:
1299  // __builtin_offsetof(type, identifier(.identifier|[expr])*)
1300  class OffsetOfNode {
1301  public:
1302    /// \brief The kind of offsetof node we have.
1303    enum Kind {
1304      /// \brief An index into an array.
1305      Array = 0x00,
1306      /// \brief A field.
1307      Field = 0x01,
1308      /// \brief A field in a dependent type, known only by its name.
1309      Identifier = 0x02,
1310      /// \brief An implicit indirection through a C++ base class, when the
1311      /// field found is in a base class.
1312      Base = 0x03
1313    };
1314
1315  private:
1316    enum { MaskBits = 2, Mask = 0x03 };
1317
1318    /// \brief The source range that covers this part of the designator.
1319    SourceRange Range;
1320
1321    /// \brief The data describing the designator, which comes in three
1322    /// different forms, depending on the lower two bits.
1323    ///   - An unsigned index into the array of Expr*'s stored after this node
1324    ///     in memory, for [constant-expression] designators.
1325    ///   - A FieldDecl*, for references to a known field.
1326    ///   - An IdentifierInfo*, for references to a field with a given name
1327    ///     when the class type is dependent.
1328    ///   - A CXXBaseSpecifier*, for references that look at a field in a
1329    ///     base class.
1330    uintptr_t Data;
1331
1332  public:
1333    /// \brief Create an offsetof node that refers to an array element.
1334    OffsetOfNode(SourceLocation LBracketLoc, unsigned Index,
1335                 SourceLocation RBracketLoc)
1336      : Range(LBracketLoc, RBracketLoc), Data((Index << 2) | Array) { }
1337
1338    /// \brief Create an offsetof node that refers to a field.
1339    OffsetOfNode(SourceLocation DotLoc, FieldDecl *Field,
1340                 SourceLocation NameLoc)
1341      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1342        Data(reinterpret_cast<uintptr_t>(Field) | OffsetOfNode::Field) { }
1343
1344    /// \brief Create an offsetof node that refers to an identifier.
1345    OffsetOfNode(SourceLocation DotLoc, IdentifierInfo *Name,
1346                 SourceLocation NameLoc)
1347      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1348        Data(reinterpret_cast<uintptr_t>(Name) | Identifier) { }
1349
1350    /// \brief Create an offsetof node that refers into a C++ base class.
1351    explicit OffsetOfNode(const CXXBaseSpecifier *Base)
1352      : Range(), Data(reinterpret_cast<uintptr_t>(Base) | OffsetOfNode::Base) {}
1353
1354    /// \brief Determine what kind of offsetof node this is.
1355    Kind getKind() const {
1356      return static_cast<Kind>(Data & Mask);
1357    }
1358
1359    /// \brief For an array element node, returns the index into the array
1360    /// of expressions.
1361    unsigned getArrayExprIndex() const {
1362      assert(getKind() == Array);
1363      return Data >> 2;
1364    }
1365
1366    /// \brief For a field offsetof node, returns the field.
1367    FieldDecl *getField() const {
1368      assert(getKind() == Field);
1369      return reinterpret_cast<FieldDecl *>(Data & ~(uintptr_t)Mask);
1370    }
1371
1372    /// \brief For a field or identifier offsetof node, returns the name of
1373    /// the field.
1374    IdentifierInfo *getFieldName() const;
1375
1376    /// \brief For a base class node, returns the base specifier.
1377    CXXBaseSpecifier *getBase() const {
1378      assert(getKind() == Base);
1379      return reinterpret_cast<CXXBaseSpecifier *>(Data & ~(uintptr_t)Mask);
1380    }
1381
1382    /// \brief Retrieve the source range that covers this offsetof node.
1383    ///
1384    /// For an array element node, the source range contains the locations of
1385    /// the square brackets. For a field or identifier node, the source range
1386    /// contains the location of the period (if there is one) and the
1387    /// identifier.
1388    SourceRange getRange() const { return Range; }
1389  };
1390
1391private:
1392
1393  SourceLocation OperatorLoc, RParenLoc;
1394  // Base type;
1395  TypeSourceInfo *TSInfo;
1396  // Number of sub-components (i.e. instances of OffsetOfNode).
1397  unsigned NumComps;
1398  // Number of sub-expressions (i.e. array subscript expressions).
1399  unsigned NumExprs;
1400
1401  OffsetOfExpr(ASTContext &C, QualType type,
1402               SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1403               OffsetOfNode* compsPtr, unsigned numComps,
1404               Expr** exprsPtr, unsigned numExprs,
1405               SourceLocation RParenLoc);
1406
1407  explicit OffsetOfExpr(unsigned numComps, unsigned numExprs)
1408    : Expr(OffsetOfExprClass, EmptyShell()),
1409      TSInfo(0), NumComps(numComps), NumExprs(numExprs) {}
1410
1411public:
1412
1413  static OffsetOfExpr *Create(ASTContext &C, QualType type,
1414                              SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1415                              OffsetOfNode* compsPtr, unsigned numComps,
1416                              Expr** exprsPtr, unsigned numExprs,
1417                              SourceLocation RParenLoc);
1418
1419  static OffsetOfExpr *CreateEmpty(ASTContext &C,
1420                                   unsigned NumComps, unsigned NumExprs);
1421
1422  /// getOperatorLoc - Return the location of the operator.
1423  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1424  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
1425
1426  /// \brief Return the location of the right parentheses.
1427  SourceLocation getRParenLoc() const { return RParenLoc; }
1428  void setRParenLoc(SourceLocation R) { RParenLoc = R; }
1429
1430  TypeSourceInfo *getTypeSourceInfo() const {
1431    return TSInfo;
1432  }
1433  void setTypeSourceInfo(TypeSourceInfo *tsi) {
1434    TSInfo = tsi;
1435  }
1436
1437  const OffsetOfNode &getComponent(unsigned Idx) {
1438    assert(Idx < NumComps && "Subscript out of range");
1439    return reinterpret_cast<OffsetOfNode *> (this + 1)[Idx];
1440  }
1441
1442  void setComponent(unsigned Idx, OffsetOfNode ON) {
1443    assert(Idx < NumComps && "Subscript out of range");
1444    reinterpret_cast<OffsetOfNode *> (this + 1)[Idx] = ON;
1445  }
1446
1447  unsigned getNumComponents() const {
1448    return NumComps;
1449  }
1450
1451  Expr* getIndexExpr(unsigned Idx) {
1452    assert(Idx < NumExprs && "Subscript out of range");
1453    return reinterpret_cast<Expr **>(
1454                    reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx];
1455  }
1456
1457  void setIndexExpr(unsigned Idx, Expr* E) {
1458    assert(Idx < NumComps && "Subscript out of range");
1459    reinterpret_cast<Expr **>(
1460                reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx] = E;
1461  }
1462
1463  unsigned getNumExpressions() const {
1464    return NumExprs;
1465  }
1466
1467  virtual SourceRange getSourceRange() const {
1468    return SourceRange(OperatorLoc, RParenLoc);
1469  }
1470
1471  static bool classof(const Stmt *T) {
1472    return T->getStmtClass() == OffsetOfExprClass;
1473  }
1474
1475  static bool classof(const OffsetOfExpr *) { return true; }
1476
1477  // Iterators
1478  virtual child_iterator child_begin();
1479  virtual child_iterator child_end();
1480};
1481
1482/// SizeOfAlignOfExpr - [C99 6.5.3.4] - This is for sizeof/alignof, both of
1483/// types and expressions.
1484class SizeOfAlignOfExpr : public Expr {
1485  bool isSizeof : 1;  // true if sizeof, false if alignof.
1486  bool isType : 1;    // true if operand is a type, false if an expression
1487  union {
1488    TypeSourceInfo *Ty;
1489    Stmt *Ex;
1490  } Argument;
1491  SourceLocation OpLoc, RParenLoc;
1492
1493public:
1494  SizeOfAlignOfExpr(bool issizeof, TypeSourceInfo *TInfo,
1495                    QualType resultType, SourceLocation op,
1496                    SourceLocation rp) :
1497      Expr(SizeOfAlignOfExprClass, resultType, VK_RValue, OK_Ordinary,
1498           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1499           // Value-dependent if the argument is type-dependent.
1500           TInfo->getType()->isDependentType(),
1501           TInfo->getType()->containsUnexpandedParameterPack()),
1502      isSizeof(issizeof), isType(true), OpLoc(op), RParenLoc(rp) {
1503    Argument.Ty = TInfo;
1504  }
1505
1506  SizeOfAlignOfExpr(bool issizeof, Expr *E,
1507                    QualType resultType, SourceLocation op,
1508                    SourceLocation rp) :
1509      Expr(SizeOfAlignOfExprClass, resultType, VK_RValue, OK_Ordinary,
1510           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1511           // Value-dependent if the argument is type-dependent.
1512           E->isTypeDependent(),
1513           E->containsUnexpandedParameterPack()),
1514      isSizeof(issizeof), isType(false), OpLoc(op), RParenLoc(rp) {
1515    Argument.Ex = E;
1516  }
1517
1518  /// \brief Construct an empty sizeof/alignof expression.
1519  explicit SizeOfAlignOfExpr(EmptyShell Empty)
1520    : Expr(SizeOfAlignOfExprClass, Empty) { }
1521
1522  bool isSizeOf() const { return isSizeof; }
1523  void setSizeof(bool S) { isSizeof = S; }
1524
1525  bool isArgumentType() const { return isType; }
1526  QualType getArgumentType() const {
1527    return getArgumentTypeInfo()->getType();
1528  }
1529  TypeSourceInfo *getArgumentTypeInfo() const {
1530    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
1531    return Argument.Ty;
1532  }
1533  Expr *getArgumentExpr() {
1534    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
1535    return static_cast<Expr*>(Argument.Ex);
1536  }
1537  const Expr *getArgumentExpr() const {
1538    return const_cast<SizeOfAlignOfExpr*>(this)->getArgumentExpr();
1539  }
1540
1541  void setArgument(Expr *E) { Argument.Ex = E; isType = false; }
1542  void setArgument(TypeSourceInfo *TInfo) {
1543    Argument.Ty = TInfo;
1544    isType = true;
1545  }
1546
1547  /// Gets the argument type, or the type of the argument expression, whichever
1548  /// is appropriate.
1549  QualType getTypeOfArgument() const {
1550    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
1551  }
1552
1553  SourceLocation getOperatorLoc() const { return OpLoc; }
1554  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
1555
1556  SourceLocation getRParenLoc() const { return RParenLoc; }
1557  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1558
1559  virtual SourceRange getSourceRange() const {
1560    return SourceRange(OpLoc, RParenLoc);
1561  }
1562
1563  static bool classof(const Stmt *T) {
1564    return T->getStmtClass() == SizeOfAlignOfExprClass;
1565  }
1566  static bool classof(const SizeOfAlignOfExpr *) { return true; }
1567
1568  // Iterators
1569  virtual child_iterator child_begin();
1570  virtual child_iterator child_end();
1571};
1572
1573//===----------------------------------------------------------------------===//
1574// Postfix Operators.
1575//===----------------------------------------------------------------------===//
1576
1577/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
1578class ArraySubscriptExpr : public Expr {
1579  enum { LHS, RHS, END_EXPR=2 };
1580  Stmt* SubExprs[END_EXPR];
1581  SourceLocation RBracketLoc;
1582public:
1583  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
1584                     ExprValueKind VK, ExprObjectKind OK,
1585                     SourceLocation rbracketloc)
1586  : Expr(ArraySubscriptExprClass, t, VK, OK,
1587         lhs->isTypeDependent() || rhs->isTypeDependent(),
1588         lhs->isValueDependent() || rhs->isValueDependent(),
1589         (lhs->containsUnexpandedParameterPack() ||
1590          rhs->containsUnexpandedParameterPack())),
1591    RBracketLoc(rbracketloc) {
1592    SubExprs[LHS] = lhs;
1593    SubExprs[RHS] = rhs;
1594  }
1595
1596  /// \brief Create an empty array subscript expression.
1597  explicit ArraySubscriptExpr(EmptyShell Shell)
1598    : Expr(ArraySubscriptExprClass, Shell) { }
1599
1600  /// An array access can be written A[4] or 4[A] (both are equivalent).
1601  /// - getBase() and getIdx() always present the normalized view: A[4].
1602  ///    In this case getBase() returns "A" and getIdx() returns "4".
1603  /// - getLHS() and getRHS() present the syntactic view. e.g. for
1604  ///    4[A] getLHS() returns "4".
1605  /// Note: Because vector element access is also written A[4] we must
1606  /// predicate the format conversion in getBase and getIdx only on the
1607  /// the type of the RHS, as it is possible for the LHS to be a vector of
1608  /// integer type
1609  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
1610  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1611  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1612
1613  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
1614  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1615  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1616
1617  Expr *getBase() {
1618    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1619  }
1620
1621  const Expr *getBase() const {
1622    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1623  }
1624
1625  Expr *getIdx() {
1626    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1627  }
1628
1629  const Expr *getIdx() const {
1630    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1631  }
1632
1633  virtual SourceRange getSourceRange() const {
1634    return SourceRange(getLHS()->getLocStart(), RBracketLoc);
1635  }
1636
1637  SourceLocation getRBracketLoc() const { return RBracketLoc; }
1638  void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
1639
1640  virtual SourceLocation getExprLoc() const { return getBase()->getExprLoc(); }
1641
1642  static bool classof(const Stmt *T) {
1643    return T->getStmtClass() == ArraySubscriptExprClass;
1644  }
1645  static bool classof(const ArraySubscriptExpr *) { return true; }
1646
1647  // Iterators
1648  virtual child_iterator child_begin();
1649  virtual child_iterator child_end();
1650};
1651
1652
1653/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
1654/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
1655/// while its subclasses may represent alternative syntax that (semantically)
1656/// results in a function call. For example, CXXOperatorCallExpr is
1657/// a subclass for overloaded operator calls that use operator syntax, e.g.,
1658/// "str1 + str2" to resolve to a function call.
1659class CallExpr : public Expr {
1660  enum { FN=0, ARGS_START=1 };
1661  Stmt **SubExprs;
1662  unsigned NumArgs;
1663  SourceLocation RParenLoc;
1664
1665protected:
1666  // This version of the constructor is for derived classes.
1667  CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args, unsigned numargs,
1668           QualType t, ExprValueKind VK, SourceLocation rparenloc);
1669
1670public:
1671  CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, QualType t,
1672           ExprValueKind VK, SourceLocation rparenloc);
1673
1674  /// \brief Build an empty call expression.
1675  CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty);
1676
1677  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
1678  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
1679  void setCallee(Expr *F) { SubExprs[FN] = F; }
1680
1681  Decl *getCalleeDecl();
1682  const Decl *getCalleeDecl() const {
1683    return const_cast<CallExpr*>(this)->getCalleeDecl();
1684  }
1685
1686  /// \brief If the callee is a FunctionDecl, return it. Otherwise return 0.
1687  FunctionDecl *getDirectCallee();
1688  const FunctionDecl *getDirectCallee() const {
1689    return const_cast<CallExpr*>(this)->getDirectCallee();
1690  }
1691
1692  /// getNumArgs - Return the number of actual arguments to this call.
1693  ///
1694  unsigned getNumArgs() const { return NumArgs; }
1695
1696  /// getArg - Return the specified argument.
1697  Expr *getArg(unsigned Arg) {
1698    assert(Arg < NumArgs && "Arg access out of range!");
1699    return cast<Expr>(SubExprs[Arg+ARGS_START]);
1700  }
1701  const Expr *getArg(unsigned Arg) const {
1702    assert(Arg < NumArgs && "Arg access out of range!");
1703    return cast<Expr>(SubExprs[Arg+ARGS_START]);
1704  }
1705
1706  /// setArg - Set the specified argument.
1707  void setArg(unsigned Arg, Expr *ArgExpr) {
1708    assert(Arg < NumArgs && "Arg access out of range!");
1709    SubExprs[Arg+ARGS_START] = ArgExpr;
1710  }
1711
1712  /// setNumArgs - This changes the number of arguments present in this call.
1713  /// Any orphaned expressions are deleted by this, and any new operands are set
1714  /// to null.
1715  void setNumArgs(ASTContext& C, unsigned NumArgs);
1716
1717  typedef ExprIterator arg_iterator;
1718  typedef ConstExprIterator const_arg_iterator;
1719
1720  arg_iterator arg_begin() { return SubExprs+ARGS_START; }
1721  arg_iterator arg_end() { return SubExprs+ARGS_START+getNumArgs(); }
1722  const_arg_iterator arg_begin() const { return SubExprs+ARGS_START; }
1723  const_arg_iterator arg_end() const { return SubExprs+ARGS_START+getNumArgs();}
1724
1725  /// getNumCommas - Return the number of commas that must have been present in
1726  /// this function call.
1727  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
1728
1729  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
1730  /// not, return 0.
1731  unsigned isBuiltinCall(ASTContext &Context) const;
1732
1733  /// getCallReturnType - Get the return type of the call expr. This is not
1734  /// always the type of the expr itself, if the return type is a reference
1735  /// type.
1736  QualType getCallReturnType() const;
1737
1738  SourceLocation getRParenLoc() const { return RParenLoc; }
1739  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1740
1741  virtual SourceRange getSourceRange() const {
1742    return SourceRange(getCallee()->getLocStart(), RParenLoc);
1743  }
1744
1745  static bool classof(const Stmt *T) {
1746    return T->getStmtClass() >= firstCallExprConstant &&
1747           T->getStmtClass() <= lastCallExprConstant;
1748  }
1749  static bool classof(const CallExpr *) { return true; }
1750
1751  // Iterators
1752  virtual child_iterator child_begin();
1753  virtual child_iterator child_end();
1754};
1755
1756/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.  X->F and X.F.
1757///
1758class MemberExpr : public Expr {
1759  /// Extra data stored in some member expressions.
1760  struct MemberNameQualifier : public NameQualifier {
1761    DeclAccessPair FoundDecl;
1762  };
1763
1764  /// Base - the expression for the base pointer or structure references.  In
1765  /// X.F, this is "X".
1766  Stmt *Base;
1767
1768  /// MemberDecl - This is the decl being referenced by the field/member name.
1769  /// In X.F, this is the decl referenced by F.
1770  ValueDecl *MemberDecl;
1771
1772  /// MemberLoc - This is the location of the member name.
1773  SourceLocation MemberLoc;
1774
1775  /// MemberDNLoc - Provides source/type location info for the
1776  /// declaration name embedded in MemberDecl.
1777  DeclarationNameLoc MemberDNLoc;
1778
1779  /// IsArrow - True if this is "X->F", false if this is "X.F".
1780  bool IsArrow : 1;
1781
1782  /// \brief True if this member expression used a nested-name-specifier to
1783  /// refer to the member, e.g., "x->Base::f", or found its member via a using
1784  /// declaration.  When true, a MemberNameQualifier
1785  /// structure is allocated immediately after the MemberExpr.
1786  bool HasQualifierOrFoundDecl : 1;
1787
1788  /// \brief True if this member expression specified a template argument list
1789  /// explicitly, e.g., x->f<int>. When true, an ExplicitTemplateArgumentList
1790  /// structure (and its TemplateArguments) are allocated immediately after
1791  /// the MemberExpr or, if the member expression also has a qualifier, after
1792  /// the MemberNameQualifier structure.
1793  bool HasExplicitTemplateArgumentList : 1;
1794
1795  /// \brief Retrieve the qualifier that preceded the member name, if any.
1796  MemberNameQualifier *getMemberQualifier() {
1797    assert(HasQualifierOrFoundDecl);
1798    return reinterpret_cast<MemberNameQualifier *> (this + 1);
1799  }
1800
1801  /// \brief Retrieve the qualifier that preceded the member name, if any.
1802  const MemberNameQualifier *getMemberQualifier() const {
1803    return const_cast<MemberExpr *>(this)->getMemberQualifier();
1804  }
1805
1806public:
1807  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
1808             const DeclarationNameInfo &NameInfo, QualType ty,
1809             ExprValueKind VK, ExprObjectKind OK)
1810    : Expr(MemberExprClass, ty, VK, OK,
1811           base->isTypeDependent(), base->isValueDependent(),
1812           base->containsUnexpandedParameterPack()),
1813      Base(base), MemberDecl(memberdecl), MemberLoc(NameInfo.getLoc()),
1814      MemberDNLoc(NameInfo.getInfo()), IsArrow(isarrow),
1815      HasQualifierOrFoundDecl(false), HasExplicitTemplateArgumentList(false) {
1816    assert(memberdecl->getDeclName() == NameInfo.getName());
1817  }
1818
1819  // NOTE: this constructor should be used only when it is known that
1820  // the member name can not provide additional syntactic info
1821  // (i.e., source locations for C++ operator names or type source info
1822  // for constructors, destructors and conversion oeprators).
1823  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
1824             SourceLocation l, QualType ty,
1825             ExprValueKind VK, ExprObjectKind OK)
1826    : Expr(MemberExprClass, ty, VK, OK,
1827           base->isTypeDependent(), base->isValueDependent(),
1828           base->containsUnexpandedParameterPack()),
1829      Base(base), MemberDecl(memberdecl), MemberLoc(l), MemberDNLoc(),
1830      IsArrow(isarrow),
1831      HasQualifierOrFoundDecl(false), HasExplicitTemplateArgumentList(false) {}
1832
1833  static MemberExpr *Create(ASTContext &C, Expr *base, bool isarrow,
1834                            NestedNameSpecifier *qual, SourceRange qualrange,
1835                            ValueDecl *memberdecl, DeclAccessPair founddecl,
1836                            DeclarationNameInfo MemberNameInfo,
1837                            const TemplateArgumentListInfo *targs,
1838                            QualType ty, ExprValueKind VK, ExprObjectKind OK);
1839
1840  void setBase(Expr *E) { Base = E; }
1841  Expr *getBase() const { return cast<Expr>(Base); }
1842
1843  /// \brief Retrieve the member declaration to which this expression refers.
1844  ///
1845  /// The returned declaration will either be a FieldDecl or (in C++)
1846  /// a CXXMethodDecl.
1847  ValueDecl *getMemberDecl() const { return MemberDecl; }
1848  void setMemberDecl(ValueDecl *D) { MemberDecl = D; }
1849
1850  /// \brief Retrieves the declaration found by lookup.
1851  DeclAccessPair getFoundDecl() const {
1852    if (!HasQualifierOrFoundDecl)
1853      return DeclAccessPair::make(getMemberDecl(),
1854                                  getMemberDecl()->getAccess());
1855    return getMemberQualifier()->FoundDecl;
1856  }
1857
1858  /// \brief Determines whether this member expression actually had
1859  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
1860  /// x->Base::foo.
1861  bool hasQualifier() const { return getQualifier() != 0; }
1862
1863  /// \brief If the member name was qualified, retrieves the source range of
1864  /// the nested-name-specifier that precedes the member name. Otherwise,
1865  /// returns an empty source range.
1866  SourceRange getQualifierRange() const {
1867    if (!HasQualifierOrFoundDecl)
1868      return SourceRange();
1869
1870    return getMemberQualifier()->Range;
1871  }
1872
1873  /// \brief If the member name was qualified, retrieves the
1874  /// nested-name-specifier that precedes the member name. Otherwise, returns
1875  /// NULL.
1876  NestedNameSpecifier *getQualifier() const {
1877    if (!HasQualifierOrFoundDecl)
1878      return 0;
1879
1880    return getMemberQualifier()->NNS;
1881  }
1882
1883  /// \brief Determines whether this member expression actually had a C++
1884  /// template argument list explicitly specified, e.g., x.f<int>.
1885  bool hasExplicitTemplateArgs() const {
1886    return HasExplicitTemplateArgumentList;
1887  }
1888
1889  /// \brief Copies the template arguments (if present) into the given
1890  /// structure.
1891  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1892    if (hasExplicitTemplateArgs())
1893      getExplicitTemplateArgs().copyInto(List);
1894  }
1895
1896  /// \brief Retrieve the explicit template argument list that
1897  /// follow the member template name.  This must only be called on an
1898  /// expression with explicit template arguments.
1899  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
1900    assert(HasExplicitTemplateArgumentList);
1901    if (!HasQualifierOrFoundDecl)
1902      return *reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
1903
1904    return *reinterpret_cast<ExplicitTemplateArgumentList *>(
1905                                                      getMemberQualifier() + 1);
1906  }
1907
1908  /// \brief Retrieve the explicit template argument list that
1909  /// followed the member template name.  This must only be called on
1910  /// an expression with explicit template arguments.
1911  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
1912    return const_cast<MemberExpr *>(this)->getExplicitTemplateArgs();
1913  }
1914
1915  /// \brief Retrieves the optional explicit template arguments.
1916  /// This points to the same data as getExplicitTemplateArgs(), but
1917  /// returns null if there are no explicit template arguments.
1918  const ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() const {
1919    if (!hasExplicitTemplateArgs()) return 0;
1920    return &getExplicitTemplateArgs();
1921  }
1922
1923  /// \brief Retrieve the location of the left angle bracket following the
1924  /// member name ('<'), if any.
1925  SourceLocation getLAngleLoc() const {
1926    if (!HasExplicitTemplateArgumentList)
1927      return SourceLocation();
1928
1929    return getExplicitTemplateArgs().LAngleLoc;
1930  }
1931
1932  /// \brief Retrieve the template arguments provided as part of this
1933  /// template-id.
1934  const TemplateArgumentLoc *getTemplateArgs() const {
1935    if (!HasExplicitTemplateArgumentList)
1936      return 0;
1937
1938    return getExplicitTemplateArgs().getTemplateArgs();
1939  }
1940
1941  /// \brief Retrieve the number of template arguments provided as part of this
1942  /// template-id.
1943  unsigned getNumTemplateArgs() const {
1944    if (!HasExplicitTemplateArgumentList)
1945      return 0;
1946
1947    return getExplicitTemplateArgs().NumTemplateArgs;
1948  }
1949
1950  /// \brief Retrieve the location of the right angle bracket following the
1951  /// template arguments ('>').
1952  SourceLocation getRAngleLoc() const {
1953    if (!HasExplicitTemplateArgumentList)
1954      return SourceLocation();
1955
1956    return getExplicitTemplateArgs().RAngleLoc;
1957  }
1958
1959  /// \brief Retrieve the member declaration name info.
1960  DeclarationNameInfo getMemberNameInfo() const {
1961    return DeclarationNameInfo(MemberDecl->getDeclName(),
1962                               MemberLoc, MemberDNLoc);
1963  }
1964
1965  bool isArrow() const { return IsArrow; }
1966  void setArrow(bool A) { IsArrow = A; }
1967
1968  /// getMemberLoc - Return the location of the "member", in X->F, it is the
1969  /// location of 'F'.
1970  SourceLocation getMemberLoc() const { return MemberLoc; }
1971  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
1972
1973  virtual SourceRange getSourceRange() const {
1974    // If we have an implicit base (like a C++ implicit this),
1975    // make sure not to return its location
1976    SourceLocation EndLoc = (HasExplicitTemplateArgumentList)
1977      ? getRAngleLoc() : getMemberNameInfo().getEndLoc();
1978
1979    SourceLocation BaseLoc = getBase()->getLocStart();
1980    if (BaseLoc.isInvalid())
1981      return SourceRange(MemberLoc, EndLoc);
1982    return SourceRange(BaseLoc, EndLoc);
1983  }
1984
1985  virtual SourceLocation getExprLoc() const { return MemberLoc; }
1986
1987  static bool classof(const Stmt *T) {
1988    return T->getStmtClass() == MemberExprClass;
1989  }
1990  static bool classof(const MemberExpr *) { return true; }
1991
1992  // Iterators
1993  virtual child_iterator child_begin();
1994  virtual child_iterator child_end();
1995
1996  friend class ASTReader;
1997  friend class ASTStmtWriter;
1998};
1999
2000/// CompoundLiteralExpr - [C99 6.5.2.5]
2001///
2002class CompoundLiteralExpr : public Expr {
2003  /// LParenLoc - If non-null, this is the location of the left paren in a
2004  /// compound literal like "(int){4}".  This can be null if this is a
2005  /// synthesized compound expression.
2006  SourceLocation LParenLoc;
2007
2008  /// The type as written.  This can be an incomplete array type, in
2009  /// which case the actual expression type will be different.
2010  TypeSourceInfo *TInfo;
2011  Stmt *Init;
2012  bool FileScope;
2013public:
2014  CompoundLiteralExpr(SourceLocation lparenloc, TypeSourceInfo *tinfo,
2015                      QualType T, ExprValueKind VK, Expr *init, bool fileScope)
2016    : Expr(CompoundLiteralExprClass, T, VK, OK_Ordinary,
2017           tinfo->getType()->isDependentType(),
2018           init->isValueDependent(),
2019           init->containsUnexpandedParameterPack()),
2020      LParenLoc(lparenloc), TInfo(tinfo), Init(init), FileScope(fileScope) {}
2021
2022  /// \brief Construct an empty compound literal.
2023  explicit CompoundLiteralExpr(EmptyShell Empty)
2024    : Expr(CompoundLiteralExprClass, Empty) { }
2025
2026  const Expr *getInitializer() const { return cast<Expr>(Init); }
2027  Expr *getInitializer() { return cast<Expr>(Init); }
2028  void setInitializer(Expr *E) { Init = E; }
2029
2030  bool isFileScope() const { return FileScope; }
2031  void setFileScope(bool FS) { FileScope = FS; }
2032
2033  SourceLocation getLParenLoc() const { return LParenLoc; }
2034  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2035
2036  TypeSourceInfo *getTypeSourceInfo() const { return TInfo; }
2037  void setTypeSourceInfo(TypeSourceInfo* tinfo) { TInfo = tinfo; }
2038
2039  virtual SourceRange getSourceRange() const {
2040    // FIXME: Init should never be null.
2041    if (!Init)
2042      return SourceRange();
2043    if (LParenLoc.isInvalid())
2044      return Init->getSourceRange();
2045    return SourceRange(LParenLoc, Init->getLocEnd());
2046  }
2047
2048  static bool classof(const Stmt *T) {
2049    return T->getStmtClass() == CompoundLiteralExprClass;
2050  }
2051  static bool classof(const CompoundLiteralExpr *) { return true; }
2052
2053  // Iterators
2054  virtual child_iterator child_begin();
2055  virtual child_iterator child_end();
2056};
2057
2058/// CastExpr - Base class for type casts, including both implicit
2059/// casts (ImplicitCastExpr) and explicit casts that have some
2060/// representation in the source code (ExplicitCastExpr's derived
2061/// classes).
2062class CastExpr : public Expr {
2063public:
2064  typedef clang::CastKind CastKind;
2065
2066private:
2067  Stmt *Op;
2068
2069  void CheckCastConsistency() const {
2070#ifndef NDEBUG
2071    switch (getCastKind()) {
2072    case CK_DerivedToBase:
2073    case CK_UncheckedDerivedToBase:
2074    case CK_DerivedToBaseMemberPointer:
2075    case CK_BaseToDerived:
2076    case CK_BaseToDerivedMemberPointer:
2077      assert(!path_empty() && "Cast kind should have a base path!");
2078      break;
2079
2080    // These should not have an inheritance path.
2081    case CK_BitCast:
2082    case CK_Dynamic:
2083    case CK_ToUnion:
2084    case CK_ArrayToPointerDecay:
2085    case CK_FunctionToPointerDecay:
2086    case CK_NullToMemberPointer:
2087    case CK_NullToPointer:
2088    case CK_ConstructorConversion:
2089    case CK_IntegralToPointer:
2090    case CK_PointerToIntegral:
2091    case CK_ToVoid:
2092    case CK_VectorSplat:
2093    case CK_IntegralCast:
2094    case CK_IntegralToFloating:
2095    case CK_FloatingToIntegral:
2096    case CK_FloatingCast:
2097    case CK_AnyPointerToObjCPointerCast:
2098    case CK_AnyPointerToBlockPointerCast:
2099    case CK_ObjCObjectLValueCast:
2100    case CK_FloatingRealToComplex:
2101    case CK_FloatingComplexToReal:
2102    case CK_FloatingComplexCast:
2103    case CK_FloatingComplexToIntegralComplex:
2104    case CK_IntegralRealToComplex:
2105    case CK_IntegralComplexToReal:
2106    case CK_IntegralComplexCast:
2107    case CK_IntegralComplexToFloatingComplex:
2108      assert(!getType()->isBooleanType() && "unheralded conversion to bool");
2109      // fallthrough to check for null base path
2110
2111    case CK_Dependent:
2112    case CK_LValueToRValue:
2113    case CK_GetObjCProperty:
2114    case CK_NoOp:
2115    case CK_PointerToBoolean:
2116    case CK_IntegralToBoolean:
2117    case CK_FloatingToBoolean:
2118    case CK_MemberPointerToBoolean:
2119    case CK_FloatingComplexToBoolean:
2120    case CK_IntegralComplexToBoolean:
2121    case CK_LValueBitCast:            // -> bool&
2122    case CK_UserDefinedConversion:    // operator bool()
2123      assert(path_empty() && "Cast kind should not have a base path!");
2124      break;
2125    }
2126#endif
2127  }
2128
2129  const CXXBaseSpecifier * const *path_buffer() const {
2130    return const_cast<CastExpr*>(this)->path_buffer();
2131  }
2132  CXXBaseSpecifier **path_buffer();
2133
2134protected:
2135  CastExpr(StmtClass SC, QualType ty, ExprValueKind VK,
2136           const CastKind kind, Expr *op, unsigned BasePathSize) :
2137    Expr(SC, ty, VK, OK_Ordinary,
2138         // Cast expressions are type-dependent if the type is
2139         // dependent (C++ [temp.dep.expr]p3).
2140         ty->isDependentType(),
2141         // Cast expressions are value-dependent if the type is
2142         // dependent or if the subexpression is value-dependent.
2143         ty->isDependentType() || (op && op->isValueDependent()),
2144         (ty->containsUnexpandedParameterPack() ||
2145          op->containsUnexpandedParameterPack())),
2146    Op(op) {
2147    assert(kind != CK_Invalid && "creating cast with invalid cast kind");
2148    CastExprBits.Kind = kind;
2149    CastExprBits.BasePathSize = BasePathSize;
2150    CheckCastConsistency();
2151  }
2152
2153  /// \brief Construct an empty cast.
2154  CastExpr(StmtClass SC, EmptyShell Empty, unsigned BasePathSize)
2155    : Expr(SC, Empty) {
2156    CastExprBits.BasePathSize = BasePathSize;
2157  }
2158
2159public:
2160  CastKind getCastKind() const { return (CastKind) CastExprBits.Kind; }
2161  void setCastKind(CastKind K) { CastExprBits.Kind = K; }
2162  const char *getCastKindName() const;
2163
2164  Expr *getSubExpr() { return cast<Expr>(Op); }
2165  const Expr *getSubExpr() const { return cast<Expr>(Op); }
2166  void setSubExpr(Expr *E) { Op = E; }
2167
2168  /// \brief Retrieve the cast subexpression as it was written in the source
2169  /// code, looking through any implicit casts or other intermediate nodes
2170  /// introduced by semantic analysis.
2171  Expr *getSubExprAsWritten();
2172  const Expr *getSubExprAsWritten() const {
2173    return const_cast<CastExpr *>(this)->getSubExprAsWritten();
2174  }
2175
2176  typedef CXXBaseSpecifier **path_iterator;
2177  typedef const CXXBaseSpecifier * const *path_const_iterator;
2178  bool path_empty() const { return CastExprBits.BasePathSize == 0; }
2179  unsigned path_size() const { return CastExprBits.BasePathSize; }
2180  path_iterator path_begin() { return path_buffer(); }
2181  path_iterator path_end() { return path_buffer() + path_size(); }
2182  path_const_iterator path_begin() const { return path_buffer(); }
2183  path_const_iterator path_end() const { return path_buffer() + path_size(); }
2184
2185  void setCastPath(const CXXCastPath &Path);
2186
2187  static bool classof(const Stmt *T) {
2188    return T->getStmtClass() >= firstCastExprConstant &&
2189           T->getStmtClass() <= lastCastExprConstant;
2190  }
2191  static bool classof(const CastExpr *) { return true; }
2192
2193  // Iterators
2194  virtual child_iterator child_begin();
2195  virtual child_iterator child_end();
2196};
2197
2198/// ImplicitCastExpr - Allows us to explicitly represent implicit type
2199/// conversions, which have no direct representation in the original
2200/// source code. For example: converting T[]->T*, void f()->void
2201/// (*f)(), float->double, short->int, etc.
2202///
2203/// In C, implicit casts always produce rvalues. However, in C++, an
2204/// implicit cast whose result is being bound to a reference will be
2205/// an lvalue or xvalue. For example:
2206///
2207/// @code
2208/// class Base { };
2209/// class Derived : public Base { };
2210/// Derived &&ref();
2211/// void f(Derived d) {
2212///   Base& b = d; // initializer is an ImplicitCastExpr
2213///                // to an lvalue of type Base
2214///   Base&& r = ref(); // initializer is an ImplicitCastExpr
2215///                     // to an xvalue of type Base
2216/// }
2217/// @endcode
2218class ImplicitCastExpr : public CastExpr {
2219private:
2220  ImplicitCastExpr(QualType ty, CastKind kind, Expr *op,
2221                   unsigned BasePathLength, ExprValueKind VK)
2222    : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, BasePathLength) {
2223  }
2224
2225  /// \brief Construct an empty implicit cast.
2226  explicit ImplicitCastExpr(EmptyShell Shell, unsigned PathSize)
2227    : CastExpr(ImplicitCastExprClass, Shell, PathSize) { }
2228
2229public:
2230  enum OnStack_t { OnStack };
2231  ImplicitCastExpr(OnStack_t _, QualType ty, CastKind kind, Expr *op,
2232                   ExprValueKind VK)
2233    : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, 0) {
2234  }
2235
2236  static ImplicitCastExpr *Create(ASTContext &Context, QualType T,
2237                                  CastKind Kind, Expr *Operand,
2238                                  const CXXCastPath *BasePath,
2239                                  ExprValueKind Cat);
2240
2241  static ImplicitCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize);
2242
2243  virtual SourceRange getSourceRange() const {
2244    return getSubExpr()->getSourceRange();
2245  }
2246
2247  static bool classof(const Stmt *T) {
2248    return T->getStmtClass() == ImplicitCastExprClass;
2249  }
2250  static bool classof(const ImplicitCastExpr *) { return true; }
2251};
2252
2253/// ExplicitCastExpr - An explicit cast written in the source
2254/// code.
2255///
2256/// This class is effectively an abstract class, because it provides
2257/// the basic representation of an explicitly-written cast without
2258/// specifying which kind of cast (C cast, functional cast, static
2259/// cast, etc.) was written; specific derived classes represent the
2260/// particular style of cast and its location information.
2261///
2262/// Unlike implicit casts, explicit cast nodes have two different
2263/// types: the type that was written into the source code, and the
2264/// actual type of the expression as determined by semantic
2265/// analysis. These types may differ slightly. For example, in C++ one
2266/// can cast to a reference type, which indicates that the resulting
2267/// expression will be an lvalue or xvalue. The reference type, however,
2268/// will not be used as the type of the expression.
2269class ExplicitCastExpr : public CastExpr {
2270  /// TInfo - Source type info for the (written) type
2271  /// this expression is casting to.
2272  TypeSourceInfo *TInfo;
2273
2274protected:
2275  ExplicitCastExpr(StmtClass SC, QualType exprTy, ExprValueKind VK,
2276                   CastKind kind, Expr *op, unsigned PathSize,
2277                   TypeSourceInfo *writtenTy)
2278    : CastExpr(SC, exprTy, VK, kind, op, PathSize), TInfo(writtenTy) {}
2279
2280  /// \brief Construct an empty explicit cast.
2281  ExplicitCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
2282    : CastExpr(SC, Shell, PathSize) { }
2283
2284public:
2285  /// getTypeInfoAsWritten - Returns the type source info for the type
2286  /// that this expression is casting to.
2287  TypeSourceInfo *getTypeInfoAsWritten() const { return TInfo; }
2288  void setTypeInfoAsWritten(TypeSourceInfo *writtenTy) { TInfo = writtenTy; }
2289
2290  /// getTypeAsWritten - Returns the type that this expression is
2291  /// casting to, as written in the source code.
2292  QualType getTypeAsWritten() const { return TInfo->getType(); }
2293
2294  static bool classof(const Stmt *T) {
2295     return T->getStmtClass() >= firstExplicitCastExprConstant &&
2296            T->getStmtClass() <= lastExplicitCastExprConstant;
2297  }
2298  static bool classof(const ExplicitCastExpr *) { return true; }
2299};
2300
2301/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
2302/// cast in C++ (C++ [expr.cast]), which uses the syntax
2303/// (Type)expr. For example: @c (int)f.
2304class CStyleCastExpr : public ExplicitCastExpr {
2305  SourceLocation LPLoc; // the location of the left paren
2306  SourceLocation RPLoc; // the location of the right paren
2307
2308  CStyleCastExpr(QualType exprTy, ExprValueKind vk, CastKind kind, Expr *op,
2309                 unsigned PathSize, TypeSourceInfo *writtenTy,
2310                 SourceLocation l, SourceLocation r)
2311    : ExplicitCastExpr(CStyleCastExprClass, exprTy, vk, kind, op, PathSize,
2312                       writtenTy), LPLoc(l), RPLoc(r) {}
2313
2314  /// \brief Construct an empty C-style explicit cast.
2315  explicit CStyleCastExpr(EmptyShell Shell, unsigned PathSize)
2316    : ExplicitCastExpr(CStyleCastExprClass, Shell, PathSize) { }
2317
2318public:
2319  static CStyleCastExpr *Create(ASTContext &Context, QualType T,
2320                                ExprValueKind VK, CastKind K,
2321                                Expr *Op, const CXXCastPath *BasePath,
2322                                TypeSourceInfo *WrittenTy, SourceLocation L,
2323                                SourceLocation R);
2324
2325  static CStyleCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize);
2326
2327  SourceLocation getLParenLoc() const { return LPLoc; }
2328  void setLParenLoc(SourceLocation L) { LPLoc = L; }
2329
2330  SourceLocation getRParenLoc() const { return RPLoc; }
2331  void setRParenLoc(SourceLocation L) { RPLoc = L; }
2332
2333  virtual SourceRange getSourceRange() const {
2334    return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd());
2335  }
2336  static bool classof(const Stmt *T) {
2337    return T->getStmtClass() == CStyleCastExprClass;
2338  }
2339  static bool classof(const CStyleCastExpr *) { return true; }
2340};
2341
2342/// \brief A builtin binary operation expression such as "x + y" or "x <= y".
2343///
2344/// This expression node kind describes a builtin binary operation,
2345/// such as "x + y" for integer values "x" and "y". The operands will
2346/// already have been converted to appropriate types (e.g., by
2347/// performing promotions or conversions).
2348///
2349/// In C++, where operators may be overloaded, a different kind of
2350/// expression node (CXXOperatorCallExpr) is used to express the
2351/// invocation of an overloaded operator with operator syntax. Within
2352/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
2353/// used to store an expression "x + y" depends on the subexpressions
2354/// for x and y. If neither x or y is type-dependent, and the "+"
2355/// operator resolves to a built-in operation, BinaryOperator will be
2356/// used to express the computation (x and y may still be
2357/// value-dependent). If either x or y is type-dependent, or if the
2358/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
2359/// be used to express the computation.
2360class BinaryOperator : public Expr {
2361public:
2362  typedef BinaryOperatorKind Opcode;
2363
2364private:
2365  unsigned Opc : 6;
2366  SourceLocation OpLoc;
2367
2368  enum { LHS, RHS, END_EXPR };
2369  Stmt* SubExprs[END_EXPR];
2370public:
2371
2372  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2373                 ExprValueKind VK, ExprObjectKind OK,
2374                 SourceLocation opLoc)
2375    : Expr(BinaryOperatorClass, ResTy, VK, OK,
2376           lhs->isTypeDependent() || rhs->isTypeDependent(),
2377           lhs->isValueDependent() || rhs->isValueDependent(),
2378           (lhs->containsUnexpandedParameterPack() ||
2379            rhs->containsUnexpandedParameterPack())),
2380      Opc(opc), OpLoc(opLoc) {
2381    SubExprs[LHS] = lhs;
2382    SubExprs[RHS] = rhs;
2383    assert(!isCompoundAssignmentOp() &&
2384           "Use ArithAssignBinaryOperator for compound assignments");
2385  }
2386
2387  /// \brief Construct an empty binary operator.
2388  explicit BinaryOperator(EmptyShell Empty)
2389    : Expr(BinaryOperatorClass, Empty), Opc(BO_Comma) { }
2390
2391  SourceLocation getOperatorLoc() const { return OpLoc; }
2392  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
2393
2394  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
2395  void setOpcode(Opcode O) { Opc = O; }
2396
2397  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2398  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2399  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2400  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2401
2402  virtual SourceRange getSourceRange() const {
2403    return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
2404  }
2405
2406  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
2407  /// corresponds to, e.g. "<<=".
2408  static const char *getOpcodeStr(Opcode Op);
2409
2410  const char *getOpcodeStr() const { return getOpcodeStr(getOpcode()); }
2411
2412  /// \brief Retrieve the binary opcode that corresponds to the given
2413  /// overloaded operator.
2414  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
2415
2416  /// \brief Retrieve the overloaded operator kind that corresponds to
2417  /// the given binary opcode.
2418  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
2419
2420  /// predicates to categorize the respective opcodes.
2421  bool isPtrMemOp() const { return Opc == BO_PtrMemD || Opc == BO_PtrMemI; }
2422  bool isMultiplicativeOp() const { return Opc >= BO_Mul && Opc <= BO_Rem; }
2423  static bool isAdditiveOp(Opcode Opc) { return Opc == BO_Add || Opc==BO_Sub; }
2424  bool isAdditiveOp() const { return isAdditiveOp(getOpcode()); }
2425  static bool isShiftOp(Opcode Opc) { return Opc == BO_Shl || Opc == BO_Shr; }
2426  bool isShiftOp() const { return isShiftOp(getOpcode()); }
2427
2428  static bool isBitwiseOp(Opcode Opc) { return Opc >= BO_And && Opc <= BO_Or; }
2429  bool isBitwiseOp() const { return isBitwiseOp(getOpcode()); }
2430
2431  static bool isRelationalOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_GE; }
2432  bool isRelationalOp() const { return isRelationalOp(getOpcode()); }
2433
2434  static bool isEqualityOp(Opcode Opc) { return Opc == BO_EQ || Opc == BO_NE; }
2435  bool isEqualityOp() const { return isEqualityOp(getOpcode()); }
2436
2437  static bool isComparisonOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_NE; }
2438  bool isComparisonOp() const { return isComparisonOp(getOpcode()); }
2439
2440  static bool isLogicalOp(Opcode Opc) { return Opc == BO_LAnd || Opc==BO_LOr; }
2441  bool isLogicalOp() const { return isLogicalOp(getOpcode()); }
2442
2443  static bool isAssignmentOp(Opcode Opc) {
2444    return Opc >= BO_Assign && Opc <= BO_OrAssign;
2445  }
2446  bool isAssignmentOp() const { return isAssignmentOp(getOpcode()); }
2447
2448  static bool isCompoundAssignmentOp(Opcode Opc) {
2449    return Opc > BO_Assign && Opc <= BO_OrAssign;
2450  }
2451  bool isCompoundAssignmentOp() const {
2452    return isCompoundAssignmentOp(getOpcode());
2453  }
2454
2455  static bool isShiftAssignOp(Opcode Opc) {
2456    return Opc == BO_ShlAssign || Opc == BO_ShrAssign;
2457  }
2458  bool isShiftAssignOp() const {
2459    return isShiftAssignOp(getOpcode());
2460  }
2461
2462  static bool classof(const Stmt *S) {
2463    return S->getStmtClass() >= firstBinaryOperatorConstant &&
2464           S->getStmtClass() <= lastBinaryOperatorConstant;
2465  }
2466  static bool classof(const BinaryOperator *) { return true; }
2467
2468  // Iterators
2469  virtual child_iterator child_begin();
2470  virtual child_iterator child_end();
2471
2472protected:
2473  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2474                 ExprValueKind VK, ExprObjectKind OK,
2475                 SourceLocation opLoc, bool dead)
2476    : Expr(CompoundAssignOperatorClass, ResTy, VK, OK,
2477           lhs->isTypeDependent() || rhs->isTypeDependent(),
2478           lhs->isValueDependent() || rhs->isValueDependent(),
2479           (lhs->containsUnexpandedParameterPack() ||
2480            rhs->containsUnexpandedParameterPack())),
2481      Opc(opc), OpLoc(opLoc) {
2482    SubExprs[LHS] = lhs;
2483    SubExprs[RHS] = rhs;
2484  }
2485
2486  BinaryOperator(StmtClass SC, EmptyShell Empty)
2487    : Expr(SC, Empty), Opc(BO_MulAssign) { }
2488};
2489
2490/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
2491/// track of the type the operation is performed in.  Due to the semantics of
2492/// these operators, the operands are promoted, the aritmetic performed, an
2493/// implicit conversion back to the result type done, then the assignment takes
2494/// place.  This captures the intermediate type which the computation is done
2495/// in.
2496class CompoundAssignOperator : public BinaryOperator {
2497  QualType ComputationLHSType;
2498  QualType ComputationResultType;
2499public:
2500  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResType,
2501                         ExprValueKind VK, ExprObjectKind OK,
2502                         QualType CompLHSType, QualType CompResultType,
2503                         SourceLocation OpLoc)
2504    : BinaryOperator(lhs, rhs, opc, ResType, VK, OK, OpLoc, true),
2505      ComputationLHSType(CompLHSType),
2506      ComputationResultType(CompResultType) {
2507    assert(isCompoundAssignmentOp() &&
2508           "Only should be used for compound assignments");
2509  }
2510
2511  /// \brief Build an empty compound assignment operator expression.
2512  explicit CompoundAssignOperator(EmptyShell Empty)
2513    : BinaryOperator(CompoundAssignOperatorClass, Empty) { }
2514
2515  // The two computation types are the type the LHS is converted
2516  // to for the computation and the type of the result; the two are
2517  // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
2518  QualType getComputationLHSType() const { return ComputationLHSType; }
2519  void setComputationLHSType(QualType T) { ComputationLHSType = T; }
2520
2521  QualType getComputationResultType() const { return ComputationResultType; }
2522  void setComputationResultType(QualType T) { ComputationResultType = T; }
2523
2524  static bool classof(const CompoundAssignOperator *) { return true; }
2525  static bool classof(const Stmt *S) {
2526    return S->getStmtClass() == CompoundAssignOperatorClass;
2527  }
2528};
2529
2530/// ConditionalOperator - The ?: operator.  Note that LHS may be null when the
2531/// GNU "missing LHS" extension is in use.
2532///
2533class ConditionalOperator : public Expr {
2534  enum { COND, LHS, RHS, END_EXPR };
2535  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
2536  Stmt* Save;
2537  SourceLocation QuestionLoc, ColonLoc;
2538public:
2539  ConditionalOperator(Expr *cond, SourceLocation QLoc, Expr *lhs,
2540                      SourceLocation CLoc, Expr *rhs, Expr *save,
2541                      QualType t, ExprValueKind VK, ExprObjectKind OK)
2542    : Expr(ConditionalOperatorClass, t, VK, OK,
2543           // FIXME: the type of the conditional operator doesn't
2544           // depend on the type of the conditional, but the standard
2545           // seems to imply that it could. File a bug!
2546           ((lhs && lhs->isTypeDependent()) || (rhs && rhs->isTypeDependent())),
2547           (cond->isValueDependent() ||
2548            (lhs && lhs->isValueDependent()) ||
2549            (rhs && rhs->isValueDependent())),
2550           (cond->containsUnexpandedParameterPack() ||
2551            (lhs && lhs->containsUnexpandedParameterPack()) ||
2552            (rhs && rhs->containsUnexpandedParameterPack()))),
2553      QuestionLoc(QLoc),
2554      ColonLoc(CLoc) {
2555    SubExprs[COND] = cond;
2556    SubExprs[LHS] = lhs;
2557    SubExprs[RHS] = rhs;
2558    Save = save;
2559  }
2560
2561  /// \brief Build an empty conditional operator.
2562  explicit ConditionalOperator(EmptyShell Empty)
2563    : Expr(ConditionalOperatorClass, Empty) { }
2564
2565  // getCond - Return the expression representing the condition for
2566  //  the ?: operator.
2567  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
2568  void setCond(Expr *E) { SubExprs[COND] = E; }
2569
2570  // getTrueExpr - Return the subexpression representing the value of the ?:
2571  //  expression if the condition evaluates to true.
2572  Expr *getTrueExpr() const {
2573    return cast<Expr>(SubExprs[LHS]);
2574  }
2575
2576  // getFalseExpr - Return the subexpression representing the value of the ?:
2577  // expression if the condition evaluates to false. This is the same as getRHS.
2578  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
2579
2580  // getSaveExpr - In most cases this value will be null. Except a GCC extension
2581  // allows the left subexpression to be omitted, and instead of that condition
2582  // be returned. e.g: x ?: y is shorthand for x ? x : y, except that the
2583  // expression "x" is only evaluated once. Under this senario, this function
2584  // returns the original, non-converted condition expression for the ?:operator
2585  Expr *getSaveExpr() const { return Save? cast<Expr>(Save) : (Expr*)0; }
2586
2587  Expr *getLHS() const { return Save ? 0 : cast<Expr>(SubExprs[LHS]); }
2588  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2589
2590  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2591  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2592
2593  Expr *getSAVE() const { return Save? cast<Expr>(Save) : (Expr*)0; }
2594  void setSAVE(Expr *E) { Save = E; }
2595
2596  SourceLocation getQuestionLoc() const { return QuestionLoc; }
2597  void setQuestionLoc(SourceLocation L) { QuestionLoc = L; }
2598
2599  SourceLocation getColonLoc() const { return ColonLoc; }
2600  void setColonLoc(SourceLocation L) { ColonLoc = L; }
2601
2602  virtual SourceRange getSourceRange() const {
2603    return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
2604  }
2605  static bool classof(const Stmt *T) {
2606    return T->getStmtClass() == ConditionalOperatorClass;
2607  }
2608  static bool classof(const ConditionalOperator *) { return true; }
2609
2610  // Iterators
2611  virtual child_iterator child_begin();
2612  virtual child_iterator child_end();
2613};
2614
2615/// AddrLabelExpr - The GNU address of label extension, representing &&label.
2616class AddrLabelExpr : public Expr {
2617  SourceLocation AmpAmpLoc, LabelLoc;
2618  LabelStmt *Label;
2619public:
2620  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelStmt *L,
2621                QualType t)
2622    : Expr(AddrLabelExprClass, t, VK_RValue, OK_Ordinary, false, false, false),
2623      AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
2624
2625  /// \brief Build an empty address of a label expression.
2626  explicit AddrLabelExpr(EmptyShell Empty)
2627    : Expr(AddrLabelExprClass, Empty) { }
2628
2629  SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
2630  void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
2631  SourceLocation getLabelLoc() const { return LabelLoc; }
2632  void setLabelLoc(SourceLocation L) { LabelLoc = L; }
2633
2634  virtual SourceRange getSourceRange() const {
2635    return SourceRange(AmpAmpLoc, LabelLoc);
2636  }
2637
2638  LabelStmt *getLabel() const { return Label; }
2639  void setLabel(LabelStmt *S) { Label = S; }
2640
2641  static bool classof(const Stmt *T) {
2642    return T->getStmtClass() == AddrLabelExprClass;
2643  }
2644  static bool classof(const AddrLabelExpr *) { return true; }
2645
2646  // Iterators
2647  virtual child_iterator child_begin();
2648  virtual child_iterator child_end();
2649};
2650
2651/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
2652/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
2653/// takes the value of the last subexpression.
2654///
2655/// A StmtExpr is always an r-value; values "returned" out of a
2656/// StmtExpr will be copied.
2657class StmtExpr : public Expr {
2658  Stmt *SubStmt;
2659  SourceLocation LParenLoc, RParenLoc;
2660public:
2661  // FIXME: Does type-dependence need to be computed differently?
2662  StmtExpr(CompoundStmt *substmt, QualType T,
2663           SourceLocation lp, SourceLocation rp) :
2664    Expr(StmtExprClass, T, VK_RValue, OK_Ordinary,
2665         T->isDependentType(), false, false),
2666    SubStmt(substmt), LParenLoc(lp), RParenLoc(rp) { }
2667
2668  /// \brief Build an empty statement expression.
2669  explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
2670
2671  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
2672  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
2673  void setSubStmt(CompoundStmt *S) { SubStmt = S; }
2674
2675  virtual SourceRange getSourceRange() const {
2676    return SourceRange(LParenLoc, RParenLoc);
2677  }
2678
2679  SourceLocation getLParenLoc() const { return LParenLoc; }
2680  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2681  SourceLocation getRParenLoc() const { return RParenLoc; }
2682  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2683
2684  static bool classof(const Stmt *T) {
2685    return T->getStmtClass() == StmtExprClass;
2686  }
2687  static bool classof(const StmtExpr *) { return true; }
2688
2689  // Iterators
2690  virtual child_iterator child_begin();
2691  virtual child_iterator child_end();
2692};
2693
2694
2695/// ShuffleVectorExpr - clang-specific builtin-in function
2696/// __builtin_shufflevector.
2697/// This AST node represents a operator that does a constant
2698/// shuffle, similar to LLVM's shufflevector instruction. It takes
2699/// two vectors and a variable number of constant indices,
2700/// and returns the appropriately shuffled vector.
2701class ShuffleVectorExpr : public Expr {
2702  SourceLocation BuiltinLoc, RParenLoc;
2703
2704  // SubExprs - the list of values passed to the __builtin_shufflevector
2705  // function. The first two are vectors, and the rest are constant
2706  // indices.  The number of values in this list is always
2707  // 2+the number of indices in the vector type.
2708  Stmt **SubExprs;
2709  unsigned NumExprs;
2710
2711public:
2712  ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr,
2713                    QualType Type, SourceLocation BLoc,
2714                    SourceLocation RP);
2715
2716  /// \brief Build an empty vector-shuffle expression.
2717  explicit ShuffleVectorExpr(EmptyShell Empty)
2718    : Expr(ShuffleVectorExprClass, Empty), SubExprs(0) { }
2719
2720  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2721  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2722
2723  SourceLocation getRParenLoc() const { return RParenLoc; }
2724  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2725
2726  virtual SourceRange getSourceRange() const {
2727    return SourceRange(BuiltinLoc, RParenLoc);
2728  }
2729  static bool classof(const Stmt *T) {
2730    return T->getStmtClass() == ShuffleVectorExprClass;
2731  }
2732  static bool classof(const ShuffleVectorExpr *) { return true; }
2733
2734  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
2735  /// constant expression, the actual arguments passed in, and the function
2736  /// pointers.
2737  unsigned getNumSubExprs() const { return NumExprs; }
2738
2739  /// getExpr - Return the Expr at the specified index.
2740  Expr *getExpr(unsigned Index) {
2741    assert((Index < NumExprs) && "Arg access out of range!");
2742    return cast<Expr>(SubExprs[Index]);
2743  }
2744  const Expr *getExpr(unsigned Index) const {
2745    assert((Index < NumExprs) && "Arg access out of range!");
2746    return cast<Expr>(SubExprs[Index]);
2747  }
2748
2749  void setExprs(ASTContext &C, Expr ** Exprs, unsigned NumExprs);
2750
2751  unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) {
2752    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
2753    return getExpr(N+2)->EvaluateAsInt(Ctx).getZExtValue();
2754  }
2755
2756  // Iterators
2757  virtual child_iterator child_begin();
2758  virtual child_iterator child_end();
2759};
2760
2761/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
2762/// This AST node is similar to the conditional operator (?:) in C, with
2763/// the following exceptions:
2764/// - the test expression must be a integer constant expression.
2765/// - the expression returned acts like the chosen subexpression in every
2766///   visible way: the type is the same as that of the chosen subexpression,
2767///   and all predicates (whether it's an l-value, whether it's an integer
2768///   constant expression, etc.) return the same result as for the chosen
2769///   sub-expression.
2770class ChooseExpr : public Expr {
2771  enum { COND, LHS, RHS, END_EXPR };
2772  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
2773  SourceLocation BuiltinLoc, RParenLoc;
2774public:
2775  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs,
2776             QualType t, ExprValueKind VK, ExprObjectKind OK,
2777             SourceLocation RP, bool TypeDependent, bool ValueDependent)
2778    : Expr(ChooseExprClass, t, VK, OK, TypeDependent, ValueDependent,
2779           (cond->containsUnexpandedParameterPack() ||
2780            lhs->containsUnexpandedParameterPack() ||
2781            rhs->containsUnexpandedParameterPack())),
2782      BuiltinLoc(BLoc), RParenLoc(RP) {
2783      SubExprs[COND] = cond;
2784      SubExprs[LHS] = lhs;
2785      SubExprs[RHS] = rhs;
2786    }
2787
2788  /// \brief Build an empty __builtin_choose_expr.
2789  explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
2790
2791  /// isConditionTrue - Return whether the condition is true (i.e. not
2792  /// equal to zero).
2793  bool isConditionTrue(ASTContext &C) const;
2794
2795  /// getChosenSubExpr - Return the subexpression chosen according to the
2796  /// condition.
2797  Expr *getChosenSubExpr(ASTContext &C) const {
2798    return isConditionTrue(C) ? getLHS() : getRHS();
2799  }
2800
2801  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
2802  void setCond(Expr *E) { SubExprs[COND] = E; }
2803  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2804  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2805  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2806  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2807
2808  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2809  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2810
2811  SourceLocation getRParenLoc() const { return RParenLoc; }
2812  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2813
2814  virtual SourceRange getSourceRange() const {
2815    return SourceRange(BuiltinLoc, RParenLoc);
2816  }
2817  static bool classof(const Stmt *T) {
2818    return T->getStmtClass() == ChooseExprClass;
2819  }
2820  static bool classof(const ChooseExpr *) { return true; }
2821
2822  // Iterators
2823  virtual child_iterator child_begin();
2824  virtual child_iterator child_end();
2825};
2826
2827/// GNUNullExpr - Implements the GNU __null extension, which is a name
2828/// for a null pointer constant that has integral type (e.g., int or
2829/// long) and is the same size and alignment as a pointer. The __null
2830/// extension is typically only used by system headers, which define
2831/// NULL as __null in C++ rather than using 0 (which is an integer
2832/// that may not match the size of a pointer).
2833class GNUNullExpr : public Expr {
2834  /// TokenLoc - The location of the __null keyword.
2835  SourceLocation TokenLoc;
2836
2837public:
2838  GNUNullExpr(QualType Ty, SourceLocation Loc)
2839    : Expr(GNUNullExprClass, Ty, VK_RValue, OK_Ordinary, false, false, false),
2840      TokenLoc(Loc) { }
2841
2842  /// \brief Build an empty GNU __null expression.
2843  explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
2844
2845  /// getTokenLocation - The location of the __null token.
2846  SourceLocation getTokenLocation() const { return TokenLoc; }
2847  void setTokenLocation(SourceLocation L) { TokenLoc = L; }
2848
2849  virtual SourceRange getSourceRange() const {
2850    return SourceRange(TokenLoc);
2851  }
2852  static bool classof(const Stmt *T) {
2853    return T->getStmtClass() == GNUNullExprClass;
2854  }
2855  static bool classof(const GNUNullExpr *) { return true; }
2856
2857  // Iterators
2858  virtual child_iterator child_begin();
2859  virtual child_iterator child_end();
2860};
2861
2862/// VAArgExpr, used for the builtin function __builtin_va_arg.
2863class VAArgExpr : public Expr {
2864  Stmt *Val;
2865  TypeSourceInfo *TInfo;
2866  SourceLocation BuiltinLoc, RParenLoc;
2867public:
2868  VAArgExpr(SourceLocation BLoc, Expr* e, TypeSourceInfo *TInfo,
2869            SourceLocation RPLoc, QualType t)
2870    : Expr(VAArgExprClass, t, VK_RValue, OK_Ordinary,
2871           t->isDependentType(), false,
2872           (TInfo->getType()->containsUnexpandedParameterPack() ||
2873            e->containsUnexpandedParameterPack())),
2874      Val(e), TInfo(TInfo),
2875      BuiltinLoc(BLoc),
2876      RParenLoc(RPLoc) { }
2877
2878  /// \brief Create an empty __builtin_va_arg expression.
2879  explicit VAArgExpr(EmptyShell Empty) : Expr(VAArgExprClass, Empty) { }
2880
2881  const Expr *getSubExpr() const { return cast<Expr>(Val); }
2882  Expr *getSubExpr() { return cast<Expr>(Val); }
2883  void setSubExpr(Expr *E) { Val = E; }
2884
2885  TypeSourceInfo *getWrittenTypeInfo() const { return TInfo; }
2886  void setWrittenTypeInfo(TypeSourceInfo *TI) { TInfo = TI; }
2887
2888  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2889  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2890
2891  SourceLocation getRParenLoc() const { return RParenLoc; }
2892  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2893
2894  virtual SourceRange getSourceRange() const {
2895    return SourceRange(BuiltinLoc, RParenLoc);
2896  }
2897  static bool classof(const Stmt *T) {
2898    return T->getStmtClass() == VAArgExprClass;
2899  }
2900  static bool classof(const VAArgExpr *) { return true; }
2901
2902  // Iterators
2903  virtual child_iterator child_begin();
2904  virtual child_iterator child_end();
2905};
2906
2907/// @brief Describes an C or C++ initializer list.
2908///
2909/// InitListExpr describes an initializer list, which can be used to
2910/// initialize objects of different types, including
2911/// struct/class/union types, arrays, and vectors. For example:
2912///
2913/// @code
2914/// struct foo x = { 1, { 2, 3 } };
2915/// @endcode
2916///
2917/// Prior to semantic analysis, an initializer list will represent the
2918/// initializer list as written by the user, but will have the
2919/// placeholder type "void". This initializer list is called the
2920/// syntactic form of the initializer, and may contain C99 designated
2921/// initializers (represented as DesignatedInitExprs), initializations
2922/// of subobject members without explicit braces, and so on. Clients
2923/// interested in the original syntax of the initializer list should
2924/// use the syntactic form of the initializer list.
2925///
2926/// After semantic analysis, the initializer list will represent the
2927/// semantic form of the initializer, where the initializations of all
2928/// subobjects are made explicit with nested InitListExpr nodes and
2929/// C99 designators have been eliminated by placing the designated
2930/// initializations into the subobject they initialize. Additionally,
2931/// any "holes" in the initialization, where no initializer has been
2932/// specified for a particular subobject, will be replaced with
2933/// implicitly-generated ImplicitValueInitExpr expressions that
2934/// value-initialize the subobjects. Note, however, that the
2935/// initializer lists may still have fewer initializers than there are
2936/// elements to initialize within the object.
2937///
2938/// Given the semantic form of the initializer list, one can retrieve
2939/// the original syntactic form of that initializer list (if it
2940/// exists) using getSyntacticForm(). Since many initializer lists
2941/// have the same syntactic and semantic forms, getSyntacticForm() may
2942/// return NULL, indicating that the current initializer list also
2943/// serves as its syntactic form.
2944class InitListExpr : public Expr {
2945  // FIXME: Eliminate this vector in favor of ASTContext allocation
2946  typedef ASTVector<Stmt *> InitExprsTy;
2947  InitExprsTy InitExprs;
2948  SourceLocation LBraceLoc, RBraceLoc;
2949
2950  /// Contains the initializer list that describes the syntactic form
2951  /// written in the source code.
2952  InitListExpr *SyntacticForm;
2953
2954  /// If this initializer list initializes a union, specifies which
2955  /// field within the union will be initialized.
2956  FieldDecl *UnionFieldInit;
2957
2958  /// Whether this initializer list originally had a GNU array-range
2959  /// designator in it. This is a temporary marker used by CodeGen.
2960  bool HadArrayRangeDesignator;
2961
2962public:
2963  InitListExpr(ASTContext &C, SourceLocation lbraceloc,
2964               Expr **initexprs, unsigned numinits,
2965               SourceLocation rbraceloc);
2966
2967  /// \brief Build an empty initializer list.
2968  explicit InitListExpr(ASTContext &C, EmptyShell Empty)
2969    : Expr(InitListExprClass, Empty), InitExprs(C) { }
2970
2971  unsigned getNumInits() const { return InitExprs.size(); }
2972
2973  const Expr *getInit(unsigned Init) const {
2974    assert(Init < getNumInits() && "Initializer access out of range!");
2975    return cast_or_null<Expr>(InitExprs[Init]);
2976  }
2977
2978  Expr *getInit(unsigned Init) {
2979    assert(Init < getNumInits() && "Initializer access out of range!");
2980    return cast_or_null<Expr>(InitExprs[Init]);
2981  }
2982
2983  void setInit(unsigned Init, Expr *expr) {
2984    assert(Init < getNumInits() && "Initializer access out of range!");
2985    InitExprs[Init] = expr;
2986  }
2987
2988  /// \brief Reserve space for some number of initializers.
2989  void reserveInits(ASTContext &C, unsigned NumInits);
2990
2991  /// @brief Specify the number of initializers
2992  ///
2993  /// If there are more than @p NumInits initializers, the remaining
2994  /// initializers will be destroyed. If there are fewer than @p
2995  /// NumInits initializers, NULL expressions will be added for the
2996  /// unknown initializers.
2997  void resizeInits(ASTContext &Context, unsigned NumInits);
2998
2999  /// @brief Updates the initializer at index @p Init with the new
3000  /// expression @p expr, and returns the old expression at that
3001  /// location.
3002  ///
3003  /// When @p Init is out of range for this initializer list, the
3004  /// initializer list will be extended with NULL expressions to
3005  /// accomodate the new entry.
3006  Expr *updateInit(ASTContext &C, unsigned Init, Expr *expr);
3007
3008  /// \brief If this initializes a union, specifies which field in the
3009  /// union to initialize.
3010  ///
3011  /// Typically, this field is the first named field within the
3012  /// union. However, a designated initializer can specify the
3013  /// initialization of a different field within the union.
3014  FieldDecl *getInitializedFieldInUnion() { return UnionFieldInit; }
3015  void setInitializedFieldInUnion(FieldDecl *FD) { UnionFieldInit = FD; }
3016
3017  // Explicit InitListExpr's originate from source code (and have valid source
3018  // locations). Implicit InitListExpr's are created by the semantic analyzer.
3019  bool isExplicit() {
3020    return LBraceLoc.isValid() && RBraceLoc.isValid();
3021  }
3022
3023  SourceLocation getLBraceLoc() const { return LBraceLoc; }
3024  void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
3025  SourceLocation getRBraceLoc() const { return RBraceLoc; }
3026  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
3027
3028  /// @brief Retrieve the initializer list that describes the
3029  /// syntactic form of the initializer.
3030  ///
3031  ///
3032  InitListExpr *getSyntacticForm() const { return SyntacticForm; }
3033  void setSyntacticForm(InitListExpr *Init) { SyntacticForm = Init; }
3034
3035  bool hadArrayRangeDesignator() const { return HadArrayRangeDesignator; }
3036  void sawArrayRangeDesignator(bool ARD = true) {
3037    HadArrayRangeDesignator = ARD;
3038  }
3039
3040  virtual SourceRange getSourceRange() const;
3041
3042  static bool classof(const Stmt *T) {
3043    return T->getStmtClass() == InitListExprClass;
3044  }
3045  static bool classof(const InitListExpr *) { return true; }
3046
3047  // Iterators
3048  virtual child_iterator child_begin();
3049  virtual child_iterator child_end();
3050
3051  typedef InitExprsTy::iterator iterator;
3052  typedef InitExprsTy::const_iterator const_iterator;
3053  typedef InitExprsTy::reverse_iterator reverse_iterator;
3054  typedef InitExprsTy::const_reverse_iterator const_reverse_iterator;
3055
3056  iterator begin() { return InitExprs.begin(); }
3057  const_iterator begin() const { return InitExprs.begin(); }
3058  iterator end() { return InitExprs.end(); }
3059  const_iterator end() const { return InitExprs.end(); }
3060  reverse_iterator rbegin() { return InitExprs.rbegin(); }
3061  const_reverse_iterator rbegin() const { return InitExprs.rbegin(); }
3062  reverse_iterator rend() { return InitExprs.rend(); }
3063  const_reverse_iterator rend() const { return InitExprs.rend(); }
3064};
3065
3066/// @brief Represents a C99 designated initializer expression.
3067///
3068/// A designated initializer expression (C99 6.7.8) contains one or
3069/// more designators (which can be field designators, array
3070/// designators, or GNU array-range designators) followed by an
3071/// expression that initializes the field or element(s) that the
3072/// designators refer to. For example, given:
3073///
3074/// @code
3075/// struct point {
3076///   double x;
3077///   double y;
3078/// };
3079/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
3080/// @endcode
3081///
3082/// The InitListExpr contains three DesignatedInitExprs, the first of
3083/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
3084/// designators, one array designator for @c [2] followed by one field
3085/// designator for @c .y. The initalization expression will be 1.0.
3086class DesignatedInitExpr : public Expr {
3087public:
3088  /// \brief Forward declaration of the Designator class.
3089  class Designator;
3090
3091private:
3092  /// The location of the '=' or ':' prior to the actual initializer
3093  /// expression.
3094  SourceLocation EqualOrColonLoc;
3095
3096  /// Whether this designated initializer used the GNU deprecated
3097  /// syntax rather than the C99 '=' syntax.
3098  bool GNUSyntax : 1;
3099
3100  /// The number of designators in this initializer expression.
3101  unsigned NumDesignators : 15;
3102
3103  /// \brief The designators in this designated initialization
3104  /// expression.
3105  Designator *Designators;
3106
3107  /// The number of subexpressions of this initializer expression,
3108  /// which contains both the initializer and any additional
3109  /// expressions used by array and array-range designators.
3110  unsigned NumSubExprs : 16;
3111
3112
3113  DesignatedInitExpr(ASTContext &C, QualType Ty, unsigned NumDesignators,
3114                     const Designator *Designators,
3115                     SourceLocation EqualOrColonLoc, bool GNUSyntax,
3116                     Expr **IndexExprs, unsigned NumIndexExprs,
3117                     Expr *Init);
3118
3119  explicit DesignatedInitExpr(unsigned NumSubExprs)
3120    : Expr(DesignatedInitExprClass, EmptyShell()),
3121      NumDesignators(0), Designators(0), NumSubExprs(NumSubExprs) { }
3122
3123public:
3124  /// A field designator, e.g., ".x".
3125  struct FieldDesignator {
3126    /// Refers to the field that is being initialized. The low bit
3127    /// of this field determines whether this is actually a pointer
3128    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
3129    /// initially constructed, a field designator will store an
3130    /// IdentifierInfo*. After semantic analysis has resolved that
3131    /// name, the field designator will instead store a FieldDecl*.
3132    uintptr_t NameOrField;
3133
3134    /// The location of the '.' in the designated initializer.
3135    unsigned DotLoc;
3136
3137    /// The location of the field name in the designated initializer.
3138    unsigned FieldLoc;
3139  };
3140
3141  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
3142  struct ArrayOrRangeDesignator {
3143    /// Location of the first index expression within the designated
3144    /// initializer expression's list of subexpressions.
3145    unsigned Index;
3146    /// The location of the '[' starting the array range designator.
3147    unsigned LBracketLoc;
3148    /// The location of the ellipsis separating the start and end
3149    /// indices. Only valid for GNU array-range designators.
3150    unsigned EllipsisLoc;
3151    /// The location of the ']' terminating the array range designator.
3152    unsigned RBracketLoc;
3153  };
3154
3155  /// @brief Represents a single C99 designator.
3156  ///
3157  /// @todo This class is infuriatingly similar to clang::Designator,
3158  /// but minor differences (storing indices vs. storing pointers)
3159  /// keep us from reusing it. Try harder, later, to rectify these
3160  /// differences.
3161  class Designator {
3162    /// @brief The kind of designator this describes.
3163    enum {
3164      FieldDesignator,
3165      ArrayDesignator,
3166      ArrayRangeDesignator
3167    } Kind;
3168
3169    union {
3170      /// A field designator, e.g., ".x".
3171      struct FieldDesignator Field;
3172      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
3173      struct ArrayOrRangeDesignator ArrayOrRange;
3174    };
3175    friend class DesignatedInitExpr;
3176
3177  public:
3178    Designator() {}
3179
3180    /// @brief Initializes a field designator.
3181    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
3182               SourceLocation FieldLoc)
3183      : Kind(FieldDesignator) {
3184      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
3185      Field.DotLoc = DotLoc.getRawEncoding();
3186      Field.FieldLoc = FieldLoc.getRawEncoding();
3187    }
3188
3189    /// @brief Initializes an array designator.
3190    Designator(unsigned Index, SourceLocation LBracketLoc,
3191               SourceLocation RBracketLoc)
3192      : Kind(ArrayDesignator) {
3193      ArrayOrRange.Index = Index;
3194      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3195      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
3196      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3197    }
3198
3199    /// @brief Initializes a GNU array-range designator.
3200    Designator(unsigned Index, SourceLocation LBracketLoc,
3201               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
3202      : Kind(ArrayRangeDesignator) {
3203      ArrayOrRange.Index = Index;
3204      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3205      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
3206      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3207    }
3208
3209    bool isFieldDesignator() const { return Kind == FieldDesignator; }
3210    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
3211    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
3212
3213    IdentifierInfo * getFieldName();
3214
3215    FieldDecl *getField() {
3216      assert(Kind == FieldDesignator && "Only valid on a field designator");
3217      if (Field.NameOrField & 0x01)
3218        return 0;
3219      else
3220        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
3221    }
3222
3223    void setField(FieldDecl *FD) {
3224      assert(Kind == FieldDesignator && "Only valid on a field designator");
3225      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
3226    }
3227
3228    SourceLocation getDotLoc() const {
3229      assert(Kind == FieldDesignator && "Only valid on a field designator");
3230      return SourceLocation::getFromRawEncoding(Field.DotLoc);
3231    }
3232
3233    SourceLocation getFieldLoc() const {
3234      assert(Kind == FieldDesignator && "Only valid on a field designator");
3235      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
3236    }
3237
3238    SourceLocation getLBracketLoc() const {
3239      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3240             "Only valid on an array or array-range designator");
3241      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
3242    }
3243
3244    SourceLocation getRBracketLoc() const {
3245      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3246             "Only valid on an array or array-range designator");
3247      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
3248    }
3249
3250    SourceLocation getEllipsisLoc() const {
3251      assert(Kind == ArrayRangeDesignator &&
3252             "Only valid on an array-range designator");
3253      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
3254    }
3255
3256    unsigned getFirstExprIndex() const {
3257      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3258             "Only valid on an array or array-range designator");
3259      return ArrayOrRange.Index;
3260    }
3261
3262    SourceLocation getStartLocation() const {
3263      if (Kind == FieldDesignator)
3264        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
3265      else
3266        return getLBracketLoc();
3267    }
3268  };
3269
3270  static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators,
3271                                    unsigned NumDesignators,
3272                                    Expr **IndexExprs, unsigned NumIndexExprs,
3273                                    SourceLocation EqualOrColonLoc,
3274                                    bool GNUSyntax, Expr *Init);
3275
3276  static DesignatedInitExpr *CreateEmpty(ASTContext &C, unsigned NumIndexExprs);
3277
3278  /// @brief Returns the number of designators in this initializer.
3279  unsigned size() const { return NumDesignators; }
3280
3281  // Iterator access to the designators.
3282  typedef Designator* designators_iterator;
3283  designators_iterator designators_begin() { return Designators; }
3284  designators_iterator designators_end() {
3285    return Designators + NumDesignators;
3286  }
3287
3288  typedef std::reverse_iterator<designators_iterator>
3289          reverse_designators_iterator;
3290  reverse_designators_iterator designators_rbegin() {
3291    return reverse_designators_iterator(designators_end());
3292  }
3293  reverse_designators_iterator designators_rend() {
3294    return reverse_designators_iterator(designators_begin());
3295  }
3296
3297  Designator *getDesignator(unsigned Idx) { return &designators_begin()[Idx]; }
3298
3299  void setDesignators(ASTContext &C, const Designator *Desigs,
3300                      unsigned NumDesigs);
3301
3302  Expr *getArrayIndex(const Designator& D);
3303  Expr *getArrayRangeStart(const Designator& D);
3304  Expr *getArrayRangeEnd(const Designator& D);
3305
3306  /// @brief Retrieve the location of the '=' that precedes the
3307  /// initializer value itself, if present.
3308  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
3309  void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
3310
3311  /// @brief Determines whether this designated initializer used the
3312  /// deprecated GNU syntax for designated initializers.
3313  bool usesGNUSyntax() const { return GNUSyntax; }
3314  void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
3315
3316  /// @brief Retrieve the initializer value.
3317  Expr *getInit() const {
3318    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
3319  }
3320
3321  void setInit(Expr *init) {
3322    *child_begin() = init;
3323  }
3324
3325  /// \brief Retrieve the total number of subexpressions in this
3326  /// designated initializer expression, including the actual
3327  /// initialized value and any expressions that occur within array
3328  /// and array-range designators.
3329  unsigned getNumSubExprs() const { return NumSubExprs; }
3330
3331  Expr *getSubExpr(unsigned Idx) {
3332    assert(Idx < NumSubExprs && "Subscript out of range");
3333    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3334    Ptr += sizeof(DesignatedInitExpr);
3335    return reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx];
3336  }
3337
3338  void setSubExpr(unsigned Idx, Expr *E) {
3339    assert(Idx < NumSubExprs && "Subscript out of range");
3340    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3341    Ptr += sizeof(DesignatedInitExpr);
3342    reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx] = E;
3343  }
3344
3345  /// \brief Replaces the designator at index @p Idx with the series
3346  /// of designators in [First, Last).
3347  void ExpandDesignator(ASTContext &C, unsigned Idx, const Designator *First,
3348                        const Designator *Last);
3349
3350  virtual SourceRange getSourceRange() const;
3351
3352  static bool classof(const Stmt *T) {
3353    return T->getStmtClass() == DesignatedInitExprClass;
3354  }
3355  static bool classof(const DesignatedInitExpr *) { return true; }
3356
3357  // Iterators
3358  virtual child_iterator child_begin();
3359  virtual child_iterator child_end();
3360};
3361
3362/// \brief Represents an implicitly-generated value initialization of
3363/// an object of a given type.
3364///
3365/// Implicit value initializations occur within semantic initializer
3366/// list expressions (InitListExpr) as placeholders for subobject
3367/// initializations not explicitly specified by the user.
3368///
3369/// \see InitListExpr
3370class ImplicitValueInitExpr : public Expr {
3371public:
3372  explicit ImplicitValueInitExpr(QualType ty)
3373    : Expr(ImplicitValueInitExprClass, ty, VK_RValue, OK_Ordinary,
3374           false, false, false) { }
3375
3376  /// \brief Construct an empty implicit value initialization.
3377  explicit ImplicitValueInitExpr(EmptyShell Empty)
3378    : Expr(ImplicitValueInitExprClass, Empty) { }
3379
3380  static bool classof(const Stmt *T) {
3381    return T->getStmtClass() == ImplicitValueInitExprClass;
3382  }
3383  static bool classof(const ImplicitValueInitExpr *) { return true; }
3384
3385  virtual SourceRange getSourceRange() const {
3386    return SourceRange();
3387  }
3388
3389  // Iterators
3390  virtual child_iterator child_begin();
3391  virtual child_iterator child_end();
3392};
3393
3394
3395class ParenListExpr : public Expr {
3396  Stmt **Exprs;
3397  unsigned NumExprs;
3398  SourceLocation LParenLoc, RParenLoc;
3399
3400public:
3401  ParenListExpr(ASTContext& C, SourceLocation lparenloc, Expr **exprs,
3402                unsigned numexprs, SourceLocation rparenloc);
3403
3404  /// \brief Build an empty paren list.
3405  explicit ParenListExpr(EmptyShell Empty) : Expr(ParenListExprClass, Empty) { }
3406
3407  unsigned getNumExprs() const { return NumExprs; }
3408
3409  const Expr* getExpr(unsigned Init) const {
3410    assert(Init < getNumExprs() && "Initializer access out of range!");
3411    return cast_or_null<Expr>(Exprs[Init]);
3412  }
3413
3414  Expr* getExpr(unsigned Init) {
3415    assert(Init < getNumExprs() && "Initializer access out of range!");
3416    return cast_or_null<Expr>(Exprs[Init]);
3417  }
3418
3419  Expr **getExprs() { return reinterpret_cast<Expr **>(Exprs); }
3420
3421  SourceLocation getLParenLoc() const { return LParenLoc; }
3422  SourceLocation getRParenLoc() const { return RParenLoc; }
3423
3424  virtual SourceRange getSourceRange() const {
3425    return SourceRange(LParenLoc, RParenLoc);
3426  }
3427  static bool classof(const Stmt *T) {
3428    return T->getStmtClass() == ParenListExprClass;
3429  }
3430  static bool classof(const ParenListExpr *) { return true; }
3431
3432  // Iterators
3433  virtual child_iterator child_begin();
3434  virtual child_iterator child_end();
3435
3436  friend class ASTStmtReader;
3437  friend class ASTStmtWriter;
3438};
3439
3440
3441//===----------------------------------------------------------------------===//
3442// Clang Extensions
3443//===----------------------------------------------------------------------===//
3444
3445
3446/// ExtVectorElementExpr - This represents access to specific elements of a
3447/// vector, and may occur on the left hand side or right hand side.  For example
3448/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
3449///
3450/// Note that the base may have either vector or pointer to vector type, just
3451/// like a struct field reference.
3452///
3453class ExtVectorElementExpr : public Expr {
3454  Stmt *Base;
3455  IdentifierInfo *Accessor;
3456  SourceLocation AccessorLoc;
3457public:
3458  ExtVectorElementExpr(QualType ty, ExprValueKind VK, Expr *base,
3459                       IdentifierInfo &accessor, SourceLocation loc)
3460    : Expr(ExtVectorElementExprClass, ty, VK,
3461           (VK == VK_RValue ? OK_Ordinary : OK_VectorComponent),
3462           base->isTypeDependent(), base->isValueDependent(),
3463           base->containsUnexpandedParameterPack()),
3464      Base(base), Accessor(&accessor), AccessorLoc(loc) {}
3465
3466  /// \brief Build an empty vector element expression.
3467  explicit ExtVectorElementExpr(EmptyShell Empty)
3468    : Expr(ExtVectorElementExprClass, Empty) { }
3469
3470  const Expr *getBase() const { return cast<Expr>(Base); }
3471  Expr *getBase() { return cast<Expr>(Base); }
3472  void setBase(Expr *E) { Base = E; }
3473
3474  IdentifierInfo &getAccessor() const { return *Accessor; }
3475  void setAccessor(IdentifierInfo *II) { Accessor = II; }
3476
3477  SourceLocation getAccessorLoc() const { return AccessorLoc; }
3478  void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
3479
3480  /// getNumElements - Get the number of components being selected.
3481  unsigned getNumElements() const;
3482
3483  /// containsDuplicateElements - Return true if any element access is
3484  /// repeated.
3485  bool containsDuplicateElements() const;
3486
3487  /// getEncodedElementAccess - Encode the elements accessed into an llvm
3488  /// aggregate Constant of ConstantInt(s).
3489  void getEncodedElementAccess(llvm::SmallVectorImpl<unsigned> &Elts) const;
3490
3491  virtual SourceRange getSourceRange() const {
3492    return SourceRange(getBase()->getLocStart(), AccessorLoc);
3493  }
3494
3495  /// isArrow - Return true if the base expression is a pointer to vector,
3496  /// return false if the base expression is a vector.
3497  bool isArrow() const;
3498
3499  static bool classof(const Stmt *T) {
3500    return T->getStmtClass() == ExtVectorElementExprClass;
3501  }
3502  static bool classof(const ExtVectorElementExpr *) { return true; }
3503
3504  // Iterators
3505  virtual child_iterator child_begin();
3506  virtual child_iterator child_end();
3507};
3508
3509
3510/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
3511/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
3512class BlockExpr : public Expr {
3513protected:
3514  BlockDecl *TheBlock;
3515  bool HasBlockDeclRefExprs;
3516public:
3517  BlockExpr(BlockDecl *BD, QualType ty, bool hasBlockDeclRefExprs)
3518    : Expr(BlockExprClass, ty, VK_RValue, OK_Ordinary,
3519           ty->isDependentType(), false, false),
3520      TheBlock(BD), HasBlockDeclRefExprs(hasBlockDeclRefExprs) {}
3521
3522  /// \brief Build an empty block expression.
3523  explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { }
3524
3525  const BlockDecl *getBlockDecl() const { return TheBlock; }
3526  BlockDecl *getBlockDecl() { return TheBlock; }
3527  void setBlockDecl(BlockDecl *BD) { TheBlock = BD; }
3528
3529  // Convenience functions for probing the underlying BlockDecl.
3530  SourceLocation getCaretLocation() const;
3531  const Stmt *getBody() const;
3532  Stmt *getBody();
3533
3534  virtual SourceRange getSourceRange() const {
3535    return SourceRange(getCaretLocation(), getBody()->getLocEnd());
3536  }
3537
3538  /// getFunctionType - Return the underlying function type for this block.
3539  const FunctionType *getFunctionType() const;
3540
3541  /// hasBlockDeclRefExprs - Return true iff the block has BlockDeclRefExpr
3542  /// inside of the block that reference values outside the block.
3543  bool hasBlockDeclRefExprs() const { return HasBlockDeclRefExprs; }
3544  void setHasBlockDeclRefExprs(bool BDRE) { HasBlockDeclRefExprs = BDRE; }
3545
3546  static bool classof(const Stmt *T) {
3547    return T->getStmtClass() == BlockExprClass;
3548  }
3549  static bool classof(const BlockExpr *) { return true; }
3550
3551  // Iterators
3552  virtual child_iterator child_begin();
3553  virtual child_iterator child_end();
3554};
3555
3556/// BlockDeclRefExpr - A reference to a declared variable, function,
3557/// enum, etc.
3558class BlockDeclRefExpr : public Expr {
3559  ValueDecl *D;
3560  SourceLocation Loc;
3561  bool IsByRef : 1;
3562  bool ConstQualAdded : 1;
3563  Stmt *CopyConstructorVal;
3564public:
3565  // FIXME: Fix type/value dependence!
3566  BlockDeclRefExpr(ValueDecl *d, QualType t, ExprValueKind VK,
3567                   SourceLocation l, bool ByRef, bool constAdded = false,
3568                   Stmt *copyConstructorVal = 0)
3569    : Expr(BlockDeclRefExprClass, t, VK, OK_Ordinary,
3570           (!t.isNull() && t->isDependentType()), false, false),
3571    D(d), Loc(l), IsByRef(ByRef),
3572    ConstQualAdded(constAdded),  CopyConstructorVal(copyConstructorVal) {}
3573
3574  // \brief Build an empty reference to a declared variable in a
3575  // block.
3576  explicit BlockDeclRefExpr(EmptyShell Empty)
3577    : Expr(BlockDeclRefExprClass, Empty) { }
3578
3579  ValueDecl *getDecl() { return D; }
3580  const ValueDecl *getDecl() const { return D; }
3581  void setDecl(ValueDecl *VD) { D = VD; }
3582
3583  SourceLocation getLocation() const { return Loc; }
3584  void setLocation(SourceLocation L) { Loc = L; }
3585
3586  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
3587
3588  bool isByRef() const { return IsByRef; }
3589  void setByRef(bool BR) { IsByRef = BR; }
3590
3591  bool isConstQualAdded() const { return ConstQualAdded; }
3592  void setConstQualAdded(bool C) { ConstQualAdded = C; }
3593
3594  const Expr *getCopyConstructorExpr() const
3595    { return cast_or_null<Expr>(CopyConstructorVal); }
3596  Expr *getCopyConstructorExpr()
3597    { return cast_or_null<Expr>(CopyConstructorVal); }
3598  void setCopyConstructorExpr(Expr *E) { CopyConstructorVal = E; }
3599
3600  static bool classof(const Stmt *T) {
3601    return T->getStmtClass() == BlockDeclRefExprClass;
3602  }
3603  static bool classof(const BlockDeclRefExpr *) { return true; }
3604
3605  // Iterators
3606  virtual child_iterator child_begin();
3607  virtual child_iterator child_end();
3608};
3609
3610/// OpaqueValueExpr - An expression referring to an opaque object of a
3611/// fixed type and value class.  These don't correspond to concrete
3612/// syntax; instead they're used to express operations (usually copy
3613/// operations) on values whose source is generally obvious from
3614/// context.
3615class OpaqueValueExpr : public Expr {
3616  friend class ASTStmtReader;
3617public:
3618  OpaqueValueExpr(QualType T, ExprValueKind VK, ExprObjectKind OK = OK_Ordinary)
3619    : Expr(OpaqueValueExprClass, T, VK, OK,
3620           T->isDependentType(), T->isDependentType(), false) {
3621  }
3622
3623  explicit OpaqueValueExpr(EmptyShell Empty)
3624    : Expr(OpaqueValueExprClass, Empty) { }
3625
3626  virtual SourceRange getSourceRange() const;
3627  virtual child_iterator child_begin();
3628  virtual child_iterator child_end();
3629
3630  static bool classof(const Stmt *T) {
3631    return T->getStmtClass() == OpaqueValueExprClass;
3632  }
3633  static bool classof(const OpaqueValueExpr *) { return true; }
3634};
3635
3636}  // end namespace clang
3637
3638#endif
3639