Expr.h revision caae7b099a0324b7c15dc89a9b70969d5d7ce996
1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/Stmt.h"
19#include "clang/AST/Type.h"
20#include "llvm/ADT/APSInt.h"
21#include "llvm/ADT/APFloat.h"
22#include "llvm/ADT/SmallVector.h"
23#include <vector>
24
25namespace clang {
26  class ASTContext;
27  class APValue;
28  class Decl;
29  class IdentifierInfo;
30  class ParmVarDecl;
31  class NamedDecl;
32  class ValueDecl;
33  class BlockDecl;
34  class CXXOperatorCallExpr;
35  class CXXMemberCallExpr;
36
37/// Expr - This represents one expression.  Note that Expr's are subclasses of
38/// Stmt.  This allows an expression to be transparently used any place a Stmt
39/// is required.
40///
41class Expr : public Stmt {
42  QualType TR;
43
44  /// TypeDependent - Whether this expression is type-dependent
45  /// (C++ [temp.dep.expr]).
46  bool TypeDependent : 1;
47
48  /// ValueDependent - Whether this expression is value-dependent
49  /// (C++ [temp.dep.constexpr]).
50  bool ValueDependent : 1;
51
52protected:
53  // FIXME: Eventually, this constructor should go away and we should
54  // require every subclass to provide type/value-dependence
55  // information.
56  Expr(StmtClass SC, QualType T)
57    : Stmt(SC), TypeDependent(false), ValueDependent(false) {
58    setType(T);
59  }
60
61  Expr(StmtClass SC, QualType T, bool TD, bool VD)
62    : Stmt(SC), TypeDependent(TD), ValueDependent(VD) {
63    setType(T);
64  }
65
66public:
67  QualType getType() const { return TR; }
68  void setType(QualType t) {
69    // In C++, the type of an expression is always adjusted so that it
70    // will not have reference type an expression will never have
71    // reference type (C++ [expr]p6). Use
72    // QualType::getNonReferenceType() to retrieve the non-reference
73    // type. Additionally, inspect Expr::isLvalue to determine whether
74    // an expression that is adjusted in this manner should be
75    // considered an lvalue.
76    assert((TR.isNull() || !TR->isReferenceType()) &&
77           "Expressions can't have reference type");
78
79    TR = t;
80  }
81
82  /// isValueDependent - Determines whether this expression is
83  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
84  /// array bound of "Chars" in the following example is
85  /// value-dependent.
86  /// @code
87  /// template<int Size, char (&Chars)[Size]> struct meta_string;
88  /// @endcode
89  bool isValueDependent() const { return ValueDependent; }
90
91  /// isTypeDependent - Determines whether this expression is
92  /// type-dependent (C++ [temp.dep.expr]), which means that its type
93  /// could change from one template instantiation to the next. For
94  /// example, the expressions "x" and "x + y" are type-dependent in
95  /// the following code, but "y" is not type-dependent:
96  /// @code
97  /// template<typename T>
98  /// void add(T x, int y) {
99  ///   x + y;
100  /// }
101  /// @endcode
102  bool isTypeDependent() const { return TypeDependent; }
103
104  /// SourceLocation tokens are not useful in isolation - they are low level
105  /// value objects created/interpreted by SourceManager. We assume AST
106  /// clients will have a pointer to the respective SourceManager.
107  virtual SourceRange getSourceRange() const = 0;
108
109  /// getExprLoc - Return the preferred location for the arrow when diagnosing
110  /// a problem with a generic expression.
111  virtual SourceLocation getExprLoc() const { return getLocStart(); }
112
113  /// hasLocalSideEffect - Return true if this immediate expression has side
114  /// effects, not counting any sub-expressions.
115  bool hasLocalSideEffect() const;
116
117  /// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or
118  /// incomplete type other than void. Nonarray expressions that can be lvalues:
119  ///  - name, where name must be a variable
120  ///  - e[i]
121  ///  - (e), where e must be an lvalue
122  ///  - e.name, where e must be an lvalue
123  ///  - e->name
124  ///  - *e, the type of e cannot be a function type
125  ///  - string-constant
126  ///  - reference type [C++ [expr]]
127  ///
128  enum isLvalueResult {
129    LV_Valid,
130    LV_NotObjectType,
131    LV_IncompleteVoidType,
132    LV_DuplicateVectorComponents,
133    LV_InvalidExpression,
134    LV_MemberFunction
135  };
136  isLvalueResult isLvalue(ASTContext &Ctx) const;
137
138  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
139  /// does not have an incomplete type, does not have a const-qualified type,
140  /// and if it is a structure or union, does not have any member (including,
141  /// recursively, any member or element of all contained aggregates or unions)
142  /// with a const-qualified type.
143  enum isModifiableLvalueResult {
144    MLV_Valid,
145    MLV_NotObjectType,
146    MLV_IncompleteVoidType,
147    MLV_DuplicateVectorComponents,
148    MLV_InvalidExpression,
149    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
150    MLV_IncompleteType,
151    MLV_ConstQualified,
152    MLV_ArrayType,
153    MLV_NotBlockQualified,
154    MLV_ReadonlyProperty,
155    MLV_NoSetterProperty,
156    MLV_MemberFunction
157  };
158  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx) const;
159
160  bool isBitField();
161
162  /// getIntegerConstantExprValue() - Return the value of an integer
163  /// constant expression. The expression must be a valid integer
164  /// constant expression as determined by isIntegerConstantExpr.
165  llvm::APSInt getIntegerConstantExprValue(ASTContext &Ctx) const {
166    llvm::APSInt X;
167    bool success = isIntegerConstantExpr(X, Ctx);
168    success = success;
169    assert(success && "Illegal argument to getIntegerConstantExpr");
170    return X;
171  }
172
173  /// isIntegerConstantExpr - Return true if this expression is a valid integer
174  /// constant expression, and, if so, return its value in Result.  If not a
175  /// valid i-c-e, return false and fill in Loc (if specified) with the location
176  /// of the invalid expression.
177  bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
178                             SourceLocation *Loc = 0,
179                             bool isEvaluated = true) const;
180  bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const {
181    llvm::APSInt X;
182    return isIntegerConstantExpr(X, Ctx, Loc);
183  }
184  /// isConstantExpr - Return true if this expression is a valid constant expr.
185  bool isConstantExpr(ASTContext &Ctx, SourceLocation *Loc) const;
186
187  /// EvalResult is a struct with detailed info about an evaluated expression.
188  struct EvalResult {
189    /// Val - This is the scalar value the expression can be folded to.
190    APValue Val;
191
192    /// HasSideEffects - Whether the evaluated expression has side effects.
193    /// For example, (f() && 0) can be folded, but it still has side effects.
194    bool HasSideEffects;
195
196    /// Diag - If the expression is unfoldable, then Diag contains a note
197    /// diagnostic indicating why it's not foldable. DiagLoc indicates a caret
198    /// position for the error, and DiagExpr is the expression that caused
199    /// the error.
200    /// If the expression is foldable, but not an integer constant expression,
201    /// Diag contains a note diagnostic that describes why it isn't an integer
202    /// constant expression. If the expression *is* an integer constant
203    /// expression, then Diag will be zero.
204    unsigned Diag;
205    const Expr *DiagExpr;
206    SourceLocation DiagLoc;
207
208    EvalResult() : HasSideEffects(false), Diag(0), DiagExpr(0) {}
209  };
210
211  /// Evaluate - Return true if this is a constant which we can fold using
212  /// any crazy technique (that has nothing to do with language standards) that
213  /// we want to.  If this function returns true, it returns the folded constant
214  /// in Result.
215  bool Evaluate(EvalResult &Result, ASTContext &Ctx) const;
216
217  /// isEvaluatable - Call Evaluate to see if this expression can be constant
218  /// folded, but discard the result.
219  bool isEvaluatable(ASTContext &Ctx) const;
220
221  /// EvaluateAsInt - Call Evaluate and return the folded integer. This
222  /// must be called on an expression that constant folds to an integer.
223  llvm::APSInt EvaluateAsInt(ASTContext &Ctx) const;
224
225  /// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
226  /// integer constant expression with the value zero, or if this is one that is
227  /// cast to void*.
228  bool isNullPointerConstant(ASTContext &Ctx) const;
229
230  /// hasGlobalStorage - Return true if this expression has static storage
231  /// duration.  This means that the address of this expression is a link-time
232  /// constant.
233  bool hasGlobalStorage() const;
234
235  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
236  ///  its subexpression.  If that subexpression is also a ParenExpr,
237  ///  then this method recursively returns its subexpression, and so forth.
238  ///  Otherwise, the method returns the current Expr.
239  Expr* IgnoreParens();
240
241  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
242  /// or CastExprs, returning their operand.
243  Expr *IgnoreParenCasts();
244
245  const Expr* IgnoreParens() const {
246    return const_cast<Expr*>(this)->IgnoreParens();
247  }
248  const Expr *IgnoreParenCasts() const {
249    return const_cast<Expr*>(this)->IgnoreParenCasts();
250  }
251
252  static bool hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs);
253  static bool hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs);
254
255  static bool classof(const Stmt *T) {
256    return T->getStmtClass() >= firstExprConstant &&
257           T->getStmtClass() <= lastExprConstant;
258  }
259  static bool classof(const Expr *) { return true; }
260
261  static inline Expr* Create(llvm::Deserializer& D, ASTContext& C) {
262    return cast<Expr>(Stmt::Create(D, C));
263  }
264};
265
266
267//===----------------------------------------------------------------------===//
268// Primary Expressions.
269//===----------------------------------------------------------------------===//
270
271/// DeclRefExpr - [C99 6.5.1p2] - A reference to a declared variable, function,
272/// enum, etc.
273class DeclRefExpr : public Expr {
274  NamedDecl *D;
275  SourceLocation Loc;
276
277protected:
278  // FIXME: Eventually, this constructor will go away and all subclasses
279  // will have to provide the type- and value-dependent flags.
280  DeclRefExpr(StmtClass SC, NamedDecl *d, QualType t, SourceLocation l) :
281    Expr(SC, t), D(d), Loc(l) {}
282
283  DeclRefExpr(StmtClass SC, NamedDecl *d, QualType t, SourceLocation l, bool TD,
284              bool VD) :
285    Expr(SC, t, TD, VD), D(d), Loc(l) {}
286
287public:
288  // FIXME: Eventually, this constructor will go away and all clients
289  // will have to provide the type- and value-dependent flags.
290  DeclRefExpr(NamedDecl *d, QualType t, SourceLocation l) :
291    Expr(DeclRefExprClass, t), D(d), Loc(l) {}
292
293  DeclRefExpr(NamedDecl *d, QualType t, SourceLocation l, bool TD, bool VD) :
294    Expr(DeclRefExprClass, t, TD, VD), D(d), Loc(l) {}
295
296  NamedDecl *getDecl() { return D; }
297  const NamedDecl *getDecl() const { return D; }
298  void setDecl(NamedDecl *NewD) { D = NewD; }
299
300  SourceLocation getLocation() const { return Loc; }
301  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
302
303  static bool classof(const Stmt *T) {
304    return T->getStmtClass() == DeclRefExprClass ||
305           T->getStmtClass() == CXXConditionDeclExprClass ||
306           T->getStmtClass() == QualifiedDeclRefExprClass;
307  }
308  static bool classof(const DeclRefExpr *) { return true; }
309
310  // Iterators
311  virtual child_iterator child_begin();
312  virtual child_iterator child_end();
313
314  virtual void EmitImpl(llvm::Serializer& S) const;
315  static DeclRefExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
316};
317
318/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
319class PredefinedExpr : public Expr {
320public:
321  enum IdentType {
322    Func,
323    Function,
324    PrettyFunction
325  };
326
327private:
328  SourceLocation Loc;
329  IdentType Type;
330public:
331  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
332    : Expr(PredefinedExprClass, type), Loc(l), Type(IT) {}
333
334  IdentType getIdentType() const { return Type; }
335
336  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
337
338  static bool classof(const Stmt *T) {
339    return T->getStmtClass() == PredefinedExprClass;
340  }
341  static bool classof(const PredefinedExpr *) { return true; }
342
343  // Iterators
344  virtual child_iterator child_begin();
345  virtual child_iterator child_end();
346
347  virtual void EmitImpl(llvm::Serializer& S) const;
348  static PredefinedExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
349};
350
351class IntegerLiteral : public Expr {
352  llvm::APInt Value;
353  SourceLocation Loc;
354public:
355  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
356  // or UnsignedLongLongTy
357  IntegerLiteral(const llvm::APInt &V, QualType type, SourceLocation l)
358    : Expr(IntegerLiteralClass, type), Value(V), Loc(l) {
359    assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
360  }
361  const llvm::APInt &getValue() const { return Value; }
362  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
363
364  static bool classof(const Stmt *T) {
365    return T->getStmtClass() == IntegerLiteralClass;
366  }
367  static bool classof(const IntegerLiteral *) { return true; }
368
369  // Iterators
370  virtual child_iterator child_begin();
371  virtual child_iterator child_end();
372
373  virtual void EmitImpl(llvm::Serializer& S) const;
374  static IntegerLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
375};
376
377class CharacterLiteral : public Expr {
378  unsigned Value;
379  SourceLocation Loc;
380  bool IsWide;
381public:
382  // type should be IntTy
383  CharacterLiteral(unsigned value, bool iswide, QualType type, SourceLocation l)
384    : Expr(CharacterLiteralClass, type), Value(value), Loc(l), IsWide(iswide) {
385  }
386  SourceLocation getLoc() const { return Loc; }
387  bool isWide() const { return IsWide; }
388
389  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
390
391  unsigned getValue() const { return Value; }
392
393  static bool classof(const Stmt *T) {
394    return T->getStmtClass() == CharacterLiteralClass;
395  }
396  static bool classof(const CharacterLiteral *) { return true; }
397
398  // Iterators
399  virtual child_iterator child_begin();
400  virtual child_iterator child_end();
401
402  virtual void EmitImpl(llvm::Serializer& S) const;
403  static CharacterLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
404};
405
406class FloatingLiteral : public Expr {
407  llvm::APFloat Value;
408  bool IsExact : 1;
409  SourceLocation Loc;
410public:
411  FloatingLiteral(const llvm::APFloat &V, bool* isexact,
412                  QualType Type, SourceLocation L)
413    : Expr(FloatingLiteralClass, Type), Value(V), IsExact(*isexact), Loc(L) {}
414
415  const llvm::APFloat &getValue() const { return Value; }
416
417  bool isExact() const { return IsExact; }
418
419  /// getValueAsApproximateDouble - This returns the value as an inaccurate
420  /// double.  Note that this may cause loss of precision, but is useful for
421  /// debugging dumps, etc.
422  double getValueAsApproximateDouble() const;
423
424  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
425
426  static bool classof(const Stmt *T) {
427    return T->getStmtClass() == FloatingLiteralClass;
428  }
429  static bool classof(const FloatingLiteral *) { return true; }
430
431  // Iterators
432  virtual child_iterator child_begin();
433  virtual child_iterator child_end();
434
435  virtual void EmitImpl(llvm::Serializer& S) const;
436  static FloatingLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
437};
438
439/// ImaginaryLiteral - We support imaginary integer and floating point literals,
440/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
441/// IntegerLiteral classes.  Instances of this class always have a Complex type
442/// whose element type matches the subexpression.
443///
444class ImaginaryLiteral : public Expr {
445  Stmt *Val;
446public:
447  ImaginaryLiteral(Expr *val, QualType Ty)
448    : Expr(ImaginaryLiteralClass, Ty), Val(val) {}
449
450  const Expr *getSubExpr() const { return cast<Expr>(Val); }
451  Expr *getSubExpr() { return cast<Expr>(Val); }
452
453  virtual SourceRange getSourceRange() const { return Val->getSourceRange(); }
454  static bool classof(const Stmt *T) {
455    return T->getStmtClass() == ImaginaryLiteralClass;
456  }
457  static bool classof(const ImaginaryLiteral *) { return true; }
458
459  // Iterators
460  virtual child_iterator child_begin();
461  virtual child_iterator child_end();
462
463  virtual void EmitImpl(llvm::Serializer& S) const;
464  static ImaginaryLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
465};
466
467/// StringLiteral - This represents a string literal expression, e.g. "foo"
468/// or L"bar" (wide strings).  The actual string is returned by getStrData()
469/// is NOT null-terminated, and the length of the string is determined by
470/// calling getByteLength().  The C type for a string is always a
471/// ConstantArrayType.
472class StringLiteral : public Expr {
473  const char *StrData;
474  unsigned ByteLength;
475  bool IsWide;
476  // if the StringLiteral was composed using token pasting, both locations
477  // are needed. If not (the common case), firstTokLoc == lastTokLoc.
478  // FIXME: if space becomes an issue, we should create a sub-class.
479  SourceLocation firstTokLoc, lastTokLoc;
480public:
481  StringLiteral(const char *strData, unsigned byteLength, bool Wide,
482                QualType t, SourceLocation b, SourceLocation e);
483  virtual ~StringLiteral();
484
485  const char *getStrData() const { return StrData; }
486  unsigned getByteLength() const { return ByteLength; }
487  bool isWide() const { return IsWide; }
488
489  virtual SourceRange getSourceRange() const {
490    return SourceRange(firstTokLoc,lastTokLoc);
491  }
492  static bool classof(const Stmt *T) {
493    return T->getStmtClass() == StringLiteralClass;
494  }
495  static bool classof(const StringLiteral *) { return true; }
496
497  // Iterators
498  virtual child_iterator child_begin();
499  virtual child_iterator child_end();
500
501  virtual void EmitImpl(llvm::Serializer& S) const;
502  static StringLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
503};
504
505/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
506/// AST node is only formed if full location information is requested.
507class ParenExpr : public Expr {
508  SourceLocation L, R;
509  Stmt *Val;
510public:
511  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
512    : Expr(ParenExprClass, val->getType(),
513           val->isTypeDependent(), val->isValueDependent()),
514      L(l), R(r), Val(val) {}
515
516  const Expr *getSubExpr() const { return cast<Expr>(Val); }
517  Expr *getSubExpr() { return cast<Expr>(Val); }
518  virtual SourceRange getSourceRange() const { return SourceRange(L, R); }
519
520  static bool classof(const Stmt *T) {
521    return T->getStmtClass() == ParenExprClass;
522  }
523  static bool classof(const ParenExpr *) { return true; }
524
525  // Iterators
526  virtual child_iterator child_begin();
527  virtual child_iterator child_end();
528
529  virtual void EmitImpl(llvm::Serializer& S) const;
530  static ParenExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
531};
532
533
534/// UnaryOperator - This represents the unary-expression's (except sizeof and
535/// alignof), the postinc/postdec operators from postfix-expression, and various
536/// extensions.
537///
538/// Notes on various nodes:
539///
540/// Real/Imag - These return the real/imag part of a complex operand.  If
541///   applied to a non-complex value, the former returns its operand and the
542///   later returns zero in the type of the operand.
543///
544/// __builtin_offsetof(type, a.b[10]) is represented as a unary operator whose
545///   subexpression is a compound literal with the various MemberExpr and
546///   ArraySubscriptExpr's applied to it.
547///
548class UnaryOperator : public Expr {
549public:
550  // Note that additions to this should also update the StmtVisitor class.
551  enum Opcode {
552    PostInc, PostDec, // [C99 6.5.2.4] Postfix increment and decrement operators
553    PreInc, PreDec,   // [C99 6.5.3.1] Prefix increment and decrement operators.
554    AddrOf, Deref,    // [C99 6.5.3.2] Address and indirection operators.
555    Plus, Minus,      // [C99 6.5.3.3] Unary arithmetic operators.
556    Not, LNot,        // [C99 6.5.3.3] Unary arithmetic operators.
557    Real, Imag,       // "__real expr"/"__imag expr" Extension.
558    Extension,        // __extension__ marker.
559    OffsetOf          // __builtin_offsetof
560  };
561private:
562  Stmt *Val;
563  Opcode Opc;
564  SourceLocation Loc;
565public:
566
567  UnaryOperator(Expr *input, Opcode opc, QualType type, SourceLocation l)
568    : Expr(UnaryOperatorClass, type,
569           input->isTypeDependent() && opc != OffsetOf,
570           input->isValueDependent()),
571      Val(input), Opc(opc), Loc(l) {}
572
573  Opcode getOpcode() const { return Opc; }
574  Expr *getSubExpr() const { return cast<Expr>(Val); }
575
576  /// getOperatorLoc - Return the location of the operator.
577  SourceLocation getOperatorLoc() const { return Loc; }
578
579  /// isPostfix - Return true if this is a postfix operation, like x++.
580  static bool isPostfix(Opcode Op);
581
582  /// isPostfix - Return true if this is a prefix operation, like --x.
583  static bool isPrefix(Opcode Op);
584
585  bool isPrefix() const { return isPrefix(Opc); }
586  bool isPostfix() const { return isPostfix(Opc); }
587  bool isIncrementOp() const {return Opc==PreInc || Opc==PostInc; }
588  bool isIncrementDecrementOp() const { return Opc>=PostInc && Opc<=PreDec; }
589  bool isOffsetOfOp() const { return Opc == OffsetOf; }
590  static bool isArithmeticOp(Opcode Op) { return Op >= Plus && Op <= LNot; }
591
592  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
593  /// corresponds to, e.g. "sizeof" or "[pre]++"
594  static const char *getOpcodeStr(Opcode Op);
595
596  virtual SourceRange getSourceRange() const {
597    if (isPostfix())
598      return SourceRange(Val->getLocStart(), Loc);
599    else
600      return SourceRange(Loc, Val->getLocEnd());
601  }
602  virtual SourceLocation getExprLoc() const { return Loc; }
603
604  static bool classof(const Stmt *T) {
605    return T->getStmtClass() == UnaryOperatorClass;
606  }
607  static bool classof(const UnaryOperator *) { return true; }
608
609  int64_t evaluateOffsetOf(ASTContext& C) const;
610
611  // Iterators
612  virtual child_iterator child_begin();
613  virtual child_iterator child_end();
614
615  virtual void EmitImpl(llvm::Serializer& S) const;
616  static UnaryOperator* CreateImpl(llvm::Deserializer& D, ASTContext& C);
617};
618
619/// SizeOfAlignOfExpr - [C99 6.5.3.4] - This is for sizeof/alignof, both of
620/// types and expressions.
621class SizeOfAlignOfExpr : public Expr {
622  bool isSizeof : 1;  // true if sizeof, false if alignof.
623  bool isType : 1;    // true if operand is a type, false if an expression
624  union {
625    void *Ty;
626    Stmt *Ex;
627  } Argument;
628  SourceLocation OpLoc, RParenLoc;
629public:
630  SizeOfAlignOfExpr(bool issizeof, bool istype, void *argument,
631                    QualType resultType, SourceLocation op,
632                    SourceLocation rp) :
633      Expr(SizeOfAlignOfExprClass, resultType), isSizeof(issizeof),
634      isType(istype), OpLoc(op), RParenLoc(rp) {
635    if (isType)
636      Argument.Ty = argument;
637    else
638      // argument was an Expr*, so cast it back to that to be safe
639      Argument.Ex = static_cast<Expr*>(argument);
640  }
641
642  virtual void Destroy(ASTContext& C);
643
644  bool isSizeOf() const { return isSizeof; }
645  bool isArgumentType() const { return isType; }
646  QualType getArgumentType() const {
647    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
648    return QualType::getFromOpaquePtr(Argument.Ty);
649  }
650  Expr *getArgumentExpr() {
651    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
652    return static_cast<Expr*>(Argument.Ex);
653  }
654  const Expr *getArgumentExpr() const {
655    return const_cast<SizeOfAlignOfExpr*>(this)->getArgumentExpr();
656  }
657
658  /// Gets the argument type, or the type of the argument expression, whichever
659  /// is appropriate.
660  QualType getTypeOfArgument() const {
661    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
662  }
663
664  SourceLocation getOperatorLoc() const { return OpLoc; }
665
666  virtual SourceRange getSourceRange() const {
667    return SourceRange(OpLoc, RParenLoc);
668  }
669
670  static bool classof(const Stmt *T) {
671    return T->getStmtClass() == SizeOfAlignOfExprClass;
672  }
673  static bool classof(const SizeOfAlignOfExpr *) { return true; }
674
675  // Iterators
676  virtual child_iterator child_begin();
677  virtual child_iterator child_end();
678
679  virtual void EmitImpl(llvm::Serializer& S) const;
680  static SizeOfAlignOfExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
681};
682
683//===----------------------------------------------------------------------===//
684// Postfix Operators.
685//===----------------------------------------------------------------------===//
686
687/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
688class ArraySubscriptExpr : public Expr {
689  enum { LHS, RHS, END_EXPR=2 };
690  Stmt* SubExprs[END_EXPR];
691  SourceLocation RBracketLoc;
692public:
693  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
694                     SourceLocation rbracketloc)
695  : Expr(ArraySubscriptExprClass, t), RBracketLoc(rbracketloc) {
696    SubExprs[LHS] = lhs;
697    SubExprs[RHS] = rhs;
698  }
699
700  /// An array access can be written A[4] or 4[A] (both are equivalent).
701  /// - getBase() and getIdx() always present the normalized view: A[4].
702  ///    In this case getBase() returns "A" and getIdx() returns "4".
703  /// - getLHS() and getRHS() present the syntactic view. e.g. for
704  ///    4[A] getLHS() returns "4".
705  /// Note: Because vector element access is also written A[4] we must
706  /// predicate the format conversion in getBase and getIdx only on the
707  /// the type of the RHS, as it is possible for the LHS to be a vector of
708  /// integer type
709  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
710  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
711
712  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
713  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
714
715  Expr *getBase() {
716    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
717  }
718
719  const Expr *getBase() const {
720    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
721  }
722
723  Expr *getIdx() {
724    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
725  }
726
727  const Expr *getIdx() const {
728    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
729  }
730
731  virtual SourceRange getSourceRange() const {
732    return SourceRange(getLHS()->getLocStart(), RBracketLoc);
733  }
734
735  virtual SourceLocation getExprLoc() const { return getBase()->getExprLoc(); }
736
737  static bool classof(const Stmt *T) {
738    return T->getStmtClass() == ArraySubscriptExprClass;
739  }
740  static bool classof(const ArraySubscriptExpr *) { return true; }
741
742  // Iterators
743  virtual child_iterator child_begin();
744  virtual child_iterator child_end();
745
746  virtual void EmitImpl(llvm::Serializer& S) const;
747  static ArraySubscriptExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
748};
749
750
751/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
752/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
753/// while its subclasses may represent alternative syntax that (semantically)
754/// results in a function call. For example, CXXOperatorCallExpr is
755/// a subclass for overloaded operator calls that use operator syntax, e.g.,
756/// "str1 + str2" to resolve to a function call.
757class CallExpr : public Expr {
758  enum { FN=0, ARGS_START=1 };
759  Stmt **SubExprs;
760  unsigned NumArgs;
761  SourceLocation RParenLoc;
762
763  // This version of the ctor is for deserialization.
764  CallExpr(StmtClass SC, Stmt** subexprs, unsigned numargs, QualType t,
765           SourceLocation rparenloc)
766  : Expr(SC,t), SubExprs(subexprs),
767    NumArgs(numargs), RParenLoc(rparenloc) {}
768
769protected:
770  // This version of the constructor is for derived classes.
771  CallExpr(StmtClass SC, Expr *fn, Expr **args, unsigned numargs, QualType t,
772           SourceLocation rparenloc);
773
774public:
775  CallExpr(Expr *fn, Expr **args, unsigned numargs, QualType t,
776           SourceLocation rparenloc);
777  ~CallExpr() {
778    delete [] SubExprs;
779  }
780
781  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
782  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
783  void setCallee(Expr *F) { SubExprs[FN] = F; }
784
785  /// getNumArgs - Return the number of actual arguments to this call.
786  ///
787  unsigned getNumArgs() const { return NumArgs; }
788
789  /// getArg - Return the specified argument.
790  Expr *getArg(unsigned Arg) {
791    assert(Arg < NumArgs && "Arg access out of range!");
792    return cast<Expr>(SubExprs[Arg+ARGS_START]);
793  }
794  const Expr *getArg(unsigned Arg) const {
795    assert(Arg < NumArgs && "Arg access out of range!");
796    return cast<Expr>(SubExprs[Arg+ARGS_START]);
797  }
798  /// setArg - Set the specified argument.
799  void setArg(unsigned Arg, Expr *ArgExpr) {
800    assert(Arg < NumArgs && "Arg access out of range!");
801    SubExprs[Arg+ARGS_START] = ArgExpr;
802  }
803
804  /// setNumArgs - This changes the number of arguments present in this call.
805  /// Any orphaned expressions are deleted by this, and any new operands are set
806  /// to null.
807  void setNumArgs(unsigned NumArgs);
808
809  typedef ExprIterator arg_iterator;
810  typedef ConstExprIterator const_arg_iterator;
811
812  arg_iterator arg_begin() { return SubExprs+ARGS_START; }
813  arg_iterator arg_end() { return SubExprs+ARGS_START+getNumArgs(); }
814  const_arg_iterator arg_begin() const { return SubExprs+ARGS_START; }
815  const_arg_iterator arg_end() const { return SubExprs+ARGS_START+getNumArgs();}
816
817  /// getNumCommas - Return the number of commas that must have been present in
818  /// this function call.
819  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
820
821  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
822  /// not, return 0.
823  unsigned isBuiltinCall() const;
824
825  SourceLocation getRParenLoc() const { return RParenLoc; }
826
827  virtual SourceRange getSourceRange() const {
828    return SourceRange(getCallee()->getLocStart(), RParenLoc);
829  }
830
831  static bool classof(const Stmt *T) {
832    return T->getStmtClass() == CallExprClass ||
833           T->getStmtClass() == CXXOperatorCallExprClass ||
834           T->getStmtClass() == CXXMemberCallExprClass;
835  }
836  static bool classof(const CallExpr *) { return true; }
837  static bool classof(const CXXOperatorCallExpr *) { return true; }
838  static bool classof(const CXXMemberCallExpr *) { return true; }
839
840  // Iterators
841  virtual child_iterator child_begin();
842  virtual child_iterator child_end();
843
844  virtual void EmitImpl(llvm::Serializer& S) const;
845  static CallExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C,
846                              StmtClass SC);
847};
848
849/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.
850///
851class MemberExpr : public Expr {
852  Stmt *Base;
853  NamedDecl *MemberDecl;
854  SourceLocation MemberLoc;
855  bool IsArrow;      // True if this is "X->F", false if this is "X.F".
856public:
857  MemberExpr(Expr *base, bool isarrow, NamedDecl *memberdecl, SourceLocation l,
858             QualType ty)
859    : Expr(MemberExprClass, ty),
860      Base(base), MemberDecl(memberdecl), MemberLoc(l), IsArrow(isarrow) {}
861
862  void setBase(Expr *E) { Base = E; }
863  Expr *getBase() const { return cast<Expr>(Base); }
864  NamedDecl *getMemberDecl() const { return MemberDecl; }
865  void setMemberDecl(NamedDecl *D) { MemberDecl = D; }
866  bool isArrow() const { return IsArrow; }
867
868  virtual SourceRange getSourceRange() const {
869    return SourceRange(getBase()->getLocStart(), MemberLoc);
870  }
871
872  virtual SourceLocation getExprLoc() const { return MemberLoc; }
873
874  static bool classof(const Stmt *T) {
875    return T->getStmtClass() == MemberExprClass;
876  }
877  static bool classof(const MemberExpr *) { return true; }
878
879  // Iterators
880  virtual child_iterator child_begin();
881  virtual child_iterator child_end();
882
883  virtual void EmitImpl(llvm::Serializer& S) const;
884  static MemberExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
885};
886
887/// CompoundLiteralExpr - [C99 6.5.2.5]
888///
889class CompoundLiteralExpr : public Expr {
890  /// LParenLoc - If non-null, this is the location of the left paren in a
891  /// compound literal like "(int){4}".  This can be null if this is a
892  /// synthesized compound expression.
893  SourceLocation LParenLoc;
894  Stmt *Init;
895  bool FileScope;
896public:
897  CompoundLiteralExpr(SourceLocation lparenloc, QualType ty, Expr *init,
898                      bool fileScope)
899    : Expr(CompoundLiteralExprClass, ty), LParenLoc(lparenloc), Init(init),
900      FileScope(fileScope) {}
901
902  const Expr *getInitializer() const { return cast<Expr>(Init); }
903  Expr *getInitializer() { return cast<Expr>(Init); }
904
905  bool isFileScope() const { return FileScope; }
906
907  SourceLocation getLParenLoc() const { return LParenLoc; }
908
909  virtual SourceRange getSourceRange() const {
910    // FIXME: Init should never be null.
911    if (!Init)
912      return SourceRange();
913    if (LParenLoc.isInvalid())
914      return Init->getSourceRange();
915    return SourceRange(LParenLoc, Init->getLocEnd());
916  }
917
918  static bool classof(const Stmt *T) {
919    return T->getStmtClass() == CompoundLiteralExprClass;
920  }
921  static bool classof(const CompoundLiteralExpr *) { return true; }
922
923  // Iterators
924  virtual child_iterator child_begin();
925  virtual child_iterator child_end();
926
927  virtual void EmitImpl(llvm::Serializer& S) const;
928  static CompoundLiteralExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
929};
930
931/// CastExpr - Base class for type casts, including both implicit
932/// casts (ImplicitCastExpr) and explicit casts that have some
933/// representation in the source code (ExplicitCastExpr's derived
934/// classes).
935class CastExpr : public Expr {
936  Stmt *Op;
937protected:
938  CastExpr(StmtClass SC, QualType ty, Expr *op) :
939    Expr(SC, ty,
940         // Cast expressions are type-dependent if the type is
941         // dependent (C++ [temp.dep.expr]p3).
942         ty->isDependentType(),
943         // Cast expressions are value-dependent if the type is
944         // dependent or if the subexpression is value-dependent.
945         ty->isDependentType() || (op && op->isValueDependent())),
946    Op(op) {}
947
948public:
949  Expr *getSubExpr() { return cast<Expr>(Op); }
950  const Expr *getSubExpr() const { return cast<Expr>(Op); }
951
952  static bool classof(const Stmt *T) {
953    StmtClass SC = T->getStmtClass();
954    if (SC >= CXXNamedCastExprClass && SC <= CXXFunctionalCastExprClass)
955      return true;
956
957    if (SC >= ImplicitCastExprClass && SC <= CStyleCastExprClass)
958      return true;
959
960    return false;
961  }
962  static bool classof(const CastExpr *) { return true; }
963
964  // Iterators
965  virtual child_iterator child_begin();
966  virtual child_iterator child_end();
967};
968
969/// ImplicitCastExpr - Allows us to explicitly represent implicit type
970/// conversions, which have no direct representation in the original
971/// source code. For example: converting T[]->T*, void f()->void
972/// (*f)(), float->double, short->int, etc.
973///
974/// In C, implicit casts always produce rvalues. However, in C++, an
975/// implicit cast whose result is being bound to a reference will be
976/// an lvalue. For example:
977///
978/// @code
979/// class Base { };
980/// class Derived : public Base { };
981/// void f(Derived d) {
982///   Base& b = d; // initializer is an ImplicitCastExpr to an lvalue of type Base
983/// }
984/// @endcode
985class ImplicitCastExpr : public CastExpr {
986  /// LvalueCast - Whether this cast produces an lvalue.
987  bool LvalueCast;
988
989public:
990  ImplicitCastExpr(QualType ty, Expr *op, bool Lvalue) :
991    CastExpr(ImplicitCastExprClass, ty, op), LvalueCast(Lvalue) { }
992
993  virtual SourceRange getSourceRange() const {
994    return getSubExpr()->getSourceRange();
995  }
996
997  /// isLvalueCast - Whether this cast produces an lvalue.
998  bool isLvalueCast() const { return LvalueCast; }
999
1000  /// setLvalueCast - Set whether this cast produces an lvalue.
1001  void setLvalueCast(bool Lvalue) { LvalueCast = Lvalue; }
1002
1003  static bool classof(const Stmt *T) {
1004    return T->getStmtClass() == ImplicitCastExprClass;
1005  }
1006  static bool classof(const ImplicitCastExpr *) { return true; }
1007
1008  virtual void EmitImpl(llvm::Serializer& S) const;
1009  static ImplicitCastExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1010};
1011
1012/// ExplicitCastExpr - An explicit cast written in the source
1013/// code.
1014///
1015/// This class is effectively an abstract class, because it provides
1016/// the basic representation of an explicitly-written cast without
1017/// specifying which kind of cast (C cast, functional cast, static
1018/// cast, etc.) was written; specific derived classes represent the
1019/// particular style of cast and its location information.
1020///
1021/// Unlike implicit casts, explicit cast nodes have two different
1022/// types: the type that was written into the source code, and the
1023/// actual type of the expression as determined by semantic
1024/// analysis. These types may differ slightly. For example, in C++ one
1025/// can cast to a reference type, which indicates that the resulting
1026/// expression will be an lvalue. The reference type, however, will
1027/// not be used as the type of the expression.
1028class ExplicitCastExpr : public CastExpr {
1029  /// TypeAsWritten - The type that this expression is casting to, as
1030  /// written in the source code.
1031  QualType TypeAsWritten;
1032
1033protected:
1034  ExplicitCastExpr(StmtClass SC, QualType exprTy, Expr *op, QualType writtenTy)
1035    : CastExpr(SC, exprTy, op), TypeAsWritten(writtenTy) {}
1036
1037public:
1038  /// getTypeAsWritten - Returns the type that this expression is
1039  /// casting to, as written in the source code.
1040  QualType getTypeAsWritten() const { return TypeAsWritten; }
1041
1042  static bool classof(const Stmt *T) {
1043    StmtClass SC = T->getStmtClass();
1044    if (SC >= ExplicitCastExprClass && SC <= CStyleCastExprClass)
1045      return true;
1046    if (SC >= CXXNamedCastExprClass && SC <= CXXFunctionalCastExprClass)
1047      return true;
1048
1049    return false;
1050  }
1051  static bool classof(const ExplicitCastExpr *) { return true; }
1052};
1053
1054/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
1055/// cast in C++ (C++ [expr.cast]), which uses the syntax
1056/// (Type)expr. For example: @c (int)f.
1057class CStyleCastExpr : public ExplicitCastExpr {
1058  SourceLocation LPLoc; // the location of the left paren
1059  SourceLocation RPLoc; // the location of the right paren
1060public:
1061  CStyleCastExpr(QualType exprTy, Expr *op, QualType writtenTy,
1062                    SourceLocation l, SourceLocation r) :
1063    ExplicitCastExpr(CStyleCastExprClass, exprTy, op, writtenTy),
1064    LPLoc(l), RPLoc(r) {}
1065
1066  SourceLocation getLParenLoc() const { return LPLoc; }
1067  SourceLocation getRParenLoc() const { return RPLoc; }
1068
1069  virtual SourceRange getSourceRange() const {
1070    return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd());
1071  }
1072  static bool classof(const Stmt *T) {
1073    return T->getStmtClass() == CStyleCastExprClass;
1074  }
1075  static bool classof(const CStyleCastExpr *) { return true; }
1076
1077  virtual void EmitImpl(llvm::Serializer& S) const;
1078  static CStyleCastExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1079};
1080
1081class BinaryOperator : public Expr {
1082public:
1083  enum Opcode {
1084    // Operators listed in order of precedence.
1085    // Note that additions to this should also update the StmtVisitor class.
1086    Mul, Div, Rem,    // [C99 6.5.5] Multiplicative operators.
1087    Add, Sub,         // [C99 6.5.6] Additive operators.
1088    Shl, Shr,         // [C99 6.5.7] Bitwise shift operators.
1089    LT, GT, LE, GE,   // [C99 6.5.8] Relational operators.
1090    EQ, NE,           // [C99 6.5.9] Equality operators.
1091    And,              // [C99 6.5.10] Bitwise AND operator.
1092    Xor,              // [C99 6.5.11] Bitwise XOR operator.
1093    Or,               // [C99 6.5.12] Bitwise OR operator.
1094    LAnd,             // [C99 6.5.13] Logical AND operator.
1095    LOr,              // [C99 6.5.14] Logical OR operator.
1096    Assign, MulAssign,// [C99 6.5.16] Assignment operators.
1097    DivAssign, RemAssign,
1098    AddAssign, SubAssign,
1099    ShlAssign, ShrAssign,
1100    AndAssign, XorAssign,
1101    OrAssign,
1102    Comma             // [C99 6.5.17] Comma operator.
1103  };
1104private:
1105  enum { LHS, RHS, END_EXPR };
1106  Stmt* SubExprs[END_EXPR];
1107  Opcode Opc;
1108  SourceLocation OpLoc;
1109public:
1110
1111  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
1112                 SourceLocation opLoc)
1113    : Expr(BinaryOperatorClass, ResTy,
1114           lhs->isTypeDependent() || rhs->isTypeDependent(),
1115           lhs->isValueDependent() || rhs->isValueDependent()),
1116      Opc(opc), OpLoc(opLoc) {
1117    SubExprs[LHS] = lhs;
1118    SubExprs[RHS] = rhs;
1119    assert(!isCompoundAssignmentOp() &&
1120           "Use ArithAssignBinaryOperator for compound assignments");
1121  }
1122
1123  SourceLocation getOperatorLoc() const { return OpLoc; }
1124  Opcode getOpcode() const { return Opc; }
1125  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1126  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1127  virtual SourceRange getSourceRange() const {
1128    return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
1129  }
1130
1131  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1132  /// corresponds to, e.g. "<<=".
1133  static const char *getOpcodeStr(Opcode Op);
1134
1135  /// predicates to categorize the respective opcodes.
1136  bool isMultiplicativeOp() const { return Opc >= Mul && Opc <= Rem; }
1137  bool isAdditiveOp() const { return Opc == Add || Opc == Sub; }
1138  bool isShiftOp() const { return Opc == Shl || Opc == Shr; }
1139  bool isBitwiseOp() const { return Opc >= And && Opc <= Or; }
1140
1141  static bool isRelationalOp(Opcode Opc) { return Opc >= LT && Opc <= GE; }
1142  bool isRelationalOp() const { return isRelationalOp(Opc); }
1143
1144  static bool isEqualityOp(Opcode Opc) { return Opc == EQ || Opc == NE; }
1145  bool isEqualityOp() const { return isEqualityOp(Opc); }
1146
1147  static bool isLogicalOp(Opcode Opc) { return Opc == LAnd || Opc == LOr; }
1148  bool isLogicalOp() const { return isLogicalOp(Opc); }
1149
1150  bool isAssignmentOp() const { return Opc >= Assign && Opc <= OrAssign; }
1151  bool isCompoundAssignmentOp() const { return Opc > Assign && Opc <= OrAssign;}
1152  bool isShiftAssignOp() const { return Opc == ShlAssign || Opc == ShrAssign; }
1153
1154  static bool classof(const Stmt *S) {
1155    return S->getStmtClass() == BinaryOperatorClass ||
1156           S->getStmtClass() == CompoundAssignOperatorClass;
1157  }
1158  static bool classof(const BinaryOperator *) { return true; }
1159
1160  // Iterators
1161  virtual child_iterator child_begin();
1162  virtual child_iterator child_end();
1163
1164  virtual void EmitImpl(llvm::Serializer& S) const;
1165  static BinaryOperator* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1166
1167protected:
1168  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
1169                 SourceLocation oploc, bool dead)
1170    : Expr(CompoundAssignOperatorClass, ResTy), Opc(opc), OpLoc(oploc) {
1171    SubExprs[LHS] = lhs;
1172    SubExprs[RHS] = rhs;
1173  }
1174};
1175
1176/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
1177/// track of the type the operation is performed in.  Due to the semantics of
1178/// these operators, the operands are promoted, the aritmetic performed, an
1179/// implicit conversion back to the result type done, then the assignment takes
1180/// place.  This captures the intermediate type which the computation is done
1181/// in.
1182class CompoundAssignOperator : public BinaryOperator {
1183  QualType ComputationType;
1184public:
1185  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc,
1186                         QualType ResType, QualType CompType,
1187                         SourceLocation OpLoc)
1188    : BinaryOperator(lhs, rhs, opc, ResType, OpLoc, true),
1189      ComputationType(CompType) {
1190    assert(isCompoundAssignmentOp() &&
1191           "Only should be used for compound assignments");
1192  }
1193
1194  QualType getComputationType() const { return ComputationType; }
1195
1196  static bool classof(const CompoundAssignOperator *) { return true; }
1197  static bool classof(const Stmt *S) {
1198    return S->getStmtClass() == CompoundAssignOperatorClass;
1199  }
1200
1201  virtual void EmitImpl(llvm::Serializer& S) const;
1202  static CompoundAssignOperator* CreateImpl(llvm::Deserializer& D,
1203                                            ASTContext& C);
1204};
1205
1206/// ConditionalOperator - The ?: operator.  Note that LHS may be null when the
1207/// GNU "missing LHS" extension is in use.
1208///
1209class ConditionalOperator : public Expr {
1210  enum { COND, LHS, RHS, END_EXPR };
1211  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
1212public:
1213  ConditionalOperator(Expr *cond, Expr *lhs, Expr *rhs, QualType t)
1214    : Expr(ConditionalOperatorClass, t,
1215           // FIXME: the type of the conditional operator doesn't
1216           // depend on the type of the conditional, but the standard
1217           // seems to imply that it could. File a bug!
1218           ((lhs && lhs->isTypeDependent()) || (rhs && rhs->isTypeDependent())),
1219           (cond->isValueDependent() ||
1220            (lhs && lhs->isValueDependent()) ||
1221            (rhs && rhs->isValueDependent()))) {
1222    SubExprs[COND] = cond;
1223    SubExprs[LHS] = lhs;
1224    SubExprs[RHS] = rhs;
1225  }
1226
1227  // getCond - Return the expression representing the condition for
1228  //  the ?: operator.
1229  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
1230
1231  // getTrueExpr - Return the subexpression representing the value of the ?:
1232  //  expression if the condition evaluates to true.  In most cases this value
1233  //  will be the same as getLHS() except a GCC extension allows the left
1234  //  subexpression to be omitted, and instead of the condition be returned.
1235  //  e.g: x ?: y is shorthand for x ? x : y, except that the expression "x"
1236  //  is only evaluated once.
1237  Expr *getTrueExpr() const {
1238    return cast<Expr>(SubExprs[LHS] ? SubExprs[LHS] : SubExprs[COND]);
1239  }
1240
1241  // getTrueExpr - Return the subexpression representing the value of the ?:
1242  // expression if the condition evaluates to false. This is the same as getRHS.
1243  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
1244
1245  Expr *getLHS() const { return cast_or_null<Expr>(SubExprs[LHS]); }
1246  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1247
1248  virtual SourceRange getSourceRange() const {
1249    return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
1250  }
1251  static bool classof(const Stmt *T) {
1252    return T->getStmtClass() == ConditionalOperatorClass;
1253  }
1254  static bool classof(const ConditionalOperator *) { return true; }
1255
1256  // Iterators
1257  virtual child_iterator child_begin();
1258  virtual child_iterator child_end();
1259
1260  virtual void EmitImpl(llvm::Serializer& S) const;
1261  static ConditionalOperator* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1262};
1263
1264/// AddrLabelExpr - The GNU address of label extension, representing &&label.
1265class AddrLabelExpr : public Expr {
1266  SourceLocation AmpAmpLoc, LabelLoc;
1267  LabelStmt *Label;
1268public:
1269  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelStmt *L,
1270                QualType t)
1271    : Expr(AddrLabelExprClass, t), AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
1272
1273  virtual SourceRange getSourceRange() const {
1274    return SourceRange(AmpAmpLoc, LabelLoc);
1275  }
1276
1277  LabelStmt *getLabel() const { return Label; }
1278
1279  static bool classof(const Stmt *T) {
1280    return T->getStmtClass() == AddrLabelExprClass;
1281  }
1282  static bool classof(const AddrLabelExpr *) { return true; }
1283
1284  // Iterators
1285  virtual child_iterator child_begin();
1286  virtual child_iterator child_end();
1287
1288  virtual void EmitImpl(llvm::Serializer& S) const;
1289  static AddrLabelExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1290};
1291
1292/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
1293/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
1294/// takes the value of the last subexpression.
1295class StmtExpr : public Expr {
1296  Stmt *SubStmt;
1297  SourceLocation LParenLoc, RParenLoc;
1298public:
1299  StmtExpr(CompoundStmt *substmt, QualType T,
1300           SourceLocation lp, SourceLocation rp) :
1301    Expr(StmtExprClass, T), SubStmt(substmt),  LParenLoc(lp), RParenLoc(rp) { }
1302
1303  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
1304  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
1305
1306  virtual SourceRange getSourceRange() const {
1307    return SourceRange(LParenLoc, RParenLoc);
1308  }
1309
1310  static bool classof(const Stmt *T) {
1311    return T->getStmtClass() == StmtExprClass;
1312  }
1313  static bool classof(const StmtExpr *) { return true; }
1314
1315  // Iterators
1316  virtual child_iterator child_begin();
1317  virtual child_iterator child_end();
1318
1319  virtual void EmitImpl(llvm::Serializer& S) const;
1320  static StmtExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1321};
1322
1323/// TypesCompatibleExpr - GNU builtin-in function __builtin_type_compatible_p.
1324/// This AST node represents a function that returns 1 if two *types* (not
1325/// expressions) are compatible. The result of this built-in function can be
1326/// used in integer constant expressions.
1327class TypesCompatibleExpr : public Expr {
1328  QualType Type1;
1329  QualType Type2;
1330  SourceLocation BuiltinLoc, RParenLoc;
1331public:
1332  TypesCompatibleExpr(QualType ReturnType, SourceLocation BLoc,
1333                      QualType t1, QualType t2, SourceLocation RP) :
1334    Expr(TypesCompatibleExprClass, ReturnType), Type1(t1), Type2(t2),
1335    BuiltinLoc(BLoc), RParenLoc(RP) {}
1336
1337  QualType getArgType1() const { return Type1; }
1338  QualType getArgType2() const { return Type2; }
1339
1340  virtual SourceRange getSourceRange() const {
1341    return SourceRange(BuiltinLoc, RParenLoc);
1342  }
1343  static bool classof(const Stmt *T) {
1344    return T->getStmtClass() == TypesCompatibleExprClass;
1345  }
1346  static bool classof(const TypesCompatibleExpr *) { return true; }
1347
1348  // Iterators
1349  virtual child_iterator child_begin();
1350  virtual child_iterator child_end();
1351
1352  virtual void EmitImpl(llvm::Serializer& S) const;
1353  static TypesCompatibleExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1354};
1355
1356/// ShuffleVectorExpr - clang-specific builtin-in function
1357/// __builtin_shufflevector.
1358/// This AST node represents a operator that does a constant
1359/// shuffle, similar to LLVM's shufflevector instruction. It takes
1360/// two vectors and a variable number of constant indices,
1361/// and returns the appropriately shuffled vector.
1362class ShuffleVectorExpr : public Expr {
1363  SourceLocation BuiltinLoc, RParenLoc;
1364
1365  // SubExprs - the list of values passed to the __builtin_shufflevector
1366  // function. The first two are vectors, and the rest are constant
1367  // indices.  The number of values in this list is always
1368  // 2+the number of indices in the vector type.
1369  Stmt **SubExprs;
1370  unsigned NumExprs;
1371
1372public:
1373  ShuffleVectorExpr(Expr **args, unsigned nexpr,
1374                    QualType Type, SourceLocation BLoc,
1375                    SourceLocation RP) :
1376    Expr(ShuffleVectorExprClass, Type), BuiltinLoc(BLoc),
1377    RParenLoc(RP), NumExprs(nexpr) {
1378
1379    SubExprs = new Stmt*[nexpr];
1380    for (unsigned i = 0; i < nexpr; i++)
1381      SubExprs[i] = args[i];
1382  }
1383
1384  virtual SourceRange getSourceRange() const {
1385    return SourceRange(BuiltinLoc, RParenLoc);
1386  }
1387  static bool classof(const Stmt *T) {
1388    return T->getStmtClass() == ShuffleVectorExprClass;
1389  }
1390  static bool classof(const ShuffleVectorExpr *) { return true; }
1391
1392  ~ShuffleVectorExpr() {
1393    delete [] SubExprs;
1394  }
1395
1396  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
1397  /// constant expression, the actual arguments passed in, and the function
1398  /// pointers.
1399  unsigned getNumSubExprs() const { return NumExprs; }
1400
1401  /// getExpr - Return the Expr at the specified index.
1402  Expr *getExpr(unsigned Index) {
1403    assert((Index < NumExprs) && "Arg access out of range!");
1404    return cast<Expr>(SubExprs[Index]);
1405  }
1406  const Expr *getExpr(unsigned Index) const {
1407    assert((Index < NumExprs) && "Arg access out of range!");
1408    return cast<Expr>(SubExprs[Index]);
1409  }
1410
1411  unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) {
1412    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
1413    return getExpr(N+2)->getIntegerConstantExprValue(Ctx).getZExtValue();
1414  }
1415
1416  // Iterators
1417  virtual child_iterator child_begin();
1418  virtual child_iterator child_end();
1419
1420  virtual void EmitImpl(llvm::Serializer& S) const;
1421  static ShuffleVectorExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1422};
1423
1424/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
1425/// This AST node is similar to the conditional operator (?:) in C, with
1426/// the following exceptions:
1427/// - the test expression must be a constant expression.
1428/// - the expression returned has it's type unaltered by promotion rules.
1429/// - does not evaluate the expression that was not chosen.
1430class ChooseExpr : public Expr {
1431  enum { COND, LHS, RHS, END_EXPR };
1432  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
1433  SourceLocation BuiltinLoc, RParenLoc;
1434public:
1435  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs, QualType t,
1436             SourceLocation RP)
1437    : Expr(ChooseExprClass, t),
1438      BuiltinLoc(BLoc), RParenLoc(RP) {
1439      SubExprs[COND] = cond;
1440      SubExprs[LHS] = lhs;
1441      SubExprs[RHS] = rhs;
1442    }
1443
1444  /// isConditionTrue - Return true if the condition is true.  This is always
1445  /// statically knowable for a well-formed choosexpr.
1446  bool isConditionTrue(ASTContext &C) const;
1447
1448  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
1449  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1450  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1451
1452  virtual SourceRange getSourceRange() const {
1453    return SourceRange(BuiltinLoc, RParenLoc);
1454  }
1455  static bool classof(const Stmt *T) {
1456    return T->getStmtClass() == ChooseExprClass;
1457  }
1458  static bool classof(const ChooseExpr *) { return true; }
1459
1460  // Iterators
1461  virtual child_iterator child_begin();
1462  virtual child_iterator child_end();
1463
1464  virtual void EmitImpl(llvm::Serializer& S) const;
1465  static ChooseExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1466};
1467
1468/// GNUNullExpr - Implements the GNU __null extension, which is a name
1469/// for a null pointer constant that has integral type (e.g., int or
1470/// long) and is the same size and alignment as a pointer. The __null
1471/// extension is typically only used by system headers, which define
1472/// NULL as __null in C++ rather than using 0 (which is an integer
1473/// that may not match the size of a pointer).
1474class GNUNullExpr : public Expr {
1475  /// TokenLoc - The location of the __null keyword.
1476  SourceLocation TokenLoc;
1477
1478public:
1479  GNUNullExpr(QualType Ty, SourceLocation Loc)
1480    : Expr(GNUNullExprClass, Ty), TokenLoc(Loc) { }
1481
1482  /// getTokenLocation - The location of the __null token.
1483  SourceLocation getTokenLocation() const { return TokenLoc; }
1484
1485  virtual SourceRange getSourceRange() const {
1486    return SourceRange(TokenLoc);
1487  }
1488  static bool classof(const Stmt *T) {
1489    return T->getStmtClass() == GNUNullExprClass;
1490  }
1491  static bool classof(const GNUNullExpr *) { return true; }
1492
1493  // Iterators
1494  virtual child_iterator child_begin();
1495  virtual child_iterator child_end();
1496
1497  virtual void EmitImpl(llvm::Serializer& S) const;
1498  static GNUNullExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1499};
1500
1501/// OverloadExpr - Clang builtin function __builtin_overload.
1502/// This AST node provides a way to overload functions in C.
1503///
1504/// The first argument is required to be a constant expression, for the number
1505/// of arguments passed to each candidate function.
1506///
1507/// The next N arguments, where N is the value of the constant expression,
1508/// are the values to be passed as arguments.
1509///
1510/// The rest of the arguments are values of pointer to function type, which
1511/// are the candidate functions for overloading.
1512///
1513/// The result is a equivalent to a CallExpr taking N arguments to the
1514/// candidate function whose parameter types match the types of the N arguments.
1515///
1516/// example: float Z = __builtin_overload(2, X, Y, modf, mod, modl);
1517/// If X and Y are long doubles, Z will assigned the result of modl(X, Y);
1518/// If X and Y are floats, Z will be assigned the result of modf(X, Y);
1519class OverloadExpr : public Expr {
1520  // SubExprs - the list of values passed to the __builtin_overload function.
1521  // SubExpr[0] is a constant expression
1522  // SubExpr[1-N] are the parameters to pass to the matching function call
1523  // SubExpr[N-...] are the candidate functions, of type pointer to function.
1524  Stmt **SubExprs;
1525
1526  // NumExprs - the size of the SubExprs array
1527  unsigned NumExprs;
1528
1529  // The index of the matching candidate function
1530  unsigned FnIndex;
1531
1532  SourceLocation BuiltinLoc;
1533  SourceLocation RParenLoc;
1534public:
1535  OverloadExpr(Expr **args, unsigned nexprs, unsigned idx, QualType t,
1536               SourceLocation bloc, SourceLocation rploc)
1537    : Expr(OverloadExprClass, t), NumExprs(nexprs), FnIndex(idx),
1538      BuiltinLoc(bloc), RParenLoc(rploc) {
1539    SubExprs = new Stmt*[nexprs];
1540    for (unsigned i = 0; i != nexprs; ++i)
1541      SubExprs[i] = args[i];
1542  }
1543  ~OverloadExpr() {
1544    delete [] SubExprs;
1545  }
1546
1547  /// arg_begin - Return a pointer to the list of arguments that will be passed
1548  /// to the matching candidate function, skipping over the initial constant
1549  /// expression.
1550  typedef ConstExprIterator const_arg_iterator;
1551  const_arg_iterator arg_begin() const { return &SubExprs[0]+1; }
1552  const_arg_iterator arg_end(ASTContext& Ctx) const {
1553    return &SubExprs[0]+1+getNumArgs(Ctx);
1554  }
1555
1556  /// getNumArgs - Return the number of arguments to pass to the candidate
1557  /// functions.
1558  unsigned getNumArgs(ASTContext &Ctx) const {
1559    return getExpr(0)->getIntegerConstantExprValue(Ctx).getZExtValue();
1560  }
1561
1562  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
1563  /// constant expression, the actual arguments passed in, and the function
1564  /// pointers.
1565  unsigned getNumSubExprs() const { return NumExprs; }
1566
1567  /// getExpr - Return the Expr at the specified index.
1568  Expr *getExpr(unsigned Index) const {
1569    assert((Index < NumExprs) && "Arg access out of range!");
1570    return cast<Expr>(SubExprs[Index]);
1571  }
1572
1573  /// getFn - Return the matching candidate function for this OverloadExpr.
1574  Expr *getFn() const { return cast<Expr>(SubExprs[FnIndex]); }
1575
1576  virtual SourceRange getSourceRange() const {
1577    return SourceRange(BuiltinLoc, RParenLoc);
1578  }
1579  static bool classof(const Stmt *T) {
1580    return T->getStmtClass() == OverloadExprClass;
1581  }
1582  static bool classof(const OverloadExpr *) { return true; }
1583
1584  // Iterators
1585  virtual child_iterator child_begin();
1586  virtual child_iterator child_end();
1587
1588  virtual void EmitImpl(llvm::Serializer& S) const;
1589  static OverloadExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1590};
1591
1592/// VAArgExpr, used for the builtin function __builtin_va_start.
1593class VAArgExpr : public Expr {
1594  Stmt *Val;
1595  SourceLocation BuiltinLoc, RParenLoc;
1596public:
1597  VAArgExpr(SourceLocation BLoc, Expr* e, QualType t, SourceLocation RPLoc)
1598    : Expr(VAArgExprClass, t),
1599      Val(e),
1600      BuiltinLoc(BLoc),
1601      RParenLoc(RPLoc) { }
1602
1603  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1604  Expr *getSubExpr() { return cast<Expr>(Val); }
1605  virtual SourceRange getSourceRange() const {
1606    return SourceRange(BuiltinLoc, RParenLoc);
1607  }
1608  static bool classof(const Stmt *T) {
1609    return T->getStmtClass() == VAArgExprClass;
1610  }
1611  static bool classof(const VAArgExpr *) { return true; }
1612
1613  // Iterators
1614  virtual child_iterator child_begin();
1615  virtual child_iterator child_end();
1616
1617  virtual void EmitImpl(llvm::Serializer& S) const;
1618  static VAArgExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1619};
1620
1621/// InitListExpr - used for struct and array initializers, such as:
1622///    struct foo x = { 1, { 2, 3 } };
1623///
1624/// Because C is somewhat loose with braces, the AST does not necessarily
1625/// directly model the C source.  Instead, the semantic analyzer aims to make
1626/// the InitListExprs match up with the type of the decl being initialized.  We
1627/// have the following exceptions:
1628///
1629///  1. Elements at the end of the list may be dropped from the initializer.
1630///     These elements are defined to be initialized to zero.  For example:
1631///         int x[20] = { 1 };
1632///  2. Initializers may have excess initializers which are to be ignored by the
1633///     compiler.  For example:
1634///         int x[1] = { 1, 2 };
1635///  3. Redundant InitListExprs may be present around scalar elements.  These
1636///     always have a single element whose type is the same as the InitListExpr.
1637///     this can only happen for Type::isScalarType() types.
1638///         int x = { 1 };  int y[2] = { {1}, {2} };
1639///
1640class InitListExpr : public Expr {
1641  std::vector<Stmt *> InitExprs;
1642  SourceLocation LBraceLoc, RBraceLoc;
1643
1644  /// HadDesignators - Return true if there were any designators in this
1645  /// init list expr.  FIXME: this should be replaced by storing the designators
1646  /// somehow and updating codegen.
1647  bool HadDesignators;
1648public:
1649  InitListExpr(SourceLocation lbraceloc, Expr **initexprs, unsigned numinits,
1650               SourceLocation rbraceloc, bool HadDesignators);
1651
1652  unsigned getNumInits() const { return InitExprs.size(); }
1653  bool hadDesignators() const { return HadDesignators; }
1654
1655  const Expr* getInit(unsigned Init) const {
1656    assert(Init < getNumInits() && "Initializer access out of range!");
1657    return cast<Expr>(InitExprs[Init]);
1658  }
1659
1660  Expr* getInit(unsigned Init) {
1661    assert(Init < getNumInits() && "Initializer access out of range!");
1662    return cast<Expr>(InitExprs[Init]);
1663  }
1664
1665  void setInit(unsigned Init, Expr *expr) {
1666    assert(Init < getNumInits() && "Initializer access out of range!");
1667    InitExprs[Init] = expr;
1668  }
1669
1670  // Dynamic removal/addition (for constructing implicit InitExpr's).
1671  void removeInit(unsigned Init) {
1672    InitExprs.erase(InitExprs.begin()+Init);
1673  }
1674  void addInit(unsigned Init, Expr *expr) {
1675    InitExprs.insert(InitExprs.begin()+Init, expr);
1676  }
1677
1678  // Explicit InitListExpr's originate from source code (and have valid source
1679  // locations). Implicit InitListExpr's are created by the semantic analyzer.
1680  bool isExplicit() {
1681    return LBraceLoc.isValid() && RBraceLoc.isValid();
1682  }
1683
1684  virtual SourceRange getSourceRange() const {
1685    return SourceRange(LBraceLoc, RBraceLoc);
1686  }
1687  static bool classof(const Stmt *T) {
1688    return T->getStmtClass() == InitListExprClass;
1689  }
1690  static bool classof(const InitListExpr *) { return true; }
1691
1692  // Iterators
1693  virtual child_iterator child_begin();
1694  virtual child_iterator child_end();
1695
1696  typedef std::vector<Stmt *>::iterator iterator;
1697  typedef std::vector<Stmt *>::reverse_iterator reverse_iterator;
1698
1699  iterator begin() { return InitExprs.begin(); }
1700  iterator end() { return InitExprs.end(); }
1701  reverse_iterator rbegin() { return InitExprs.rbegin(); }
1702  reverse_iterator rend() { return InitExprs.rend(); }
1703
1704  // Serailization.
1705  virtual void EmitImpl(llvm::Serializer& S) const;
1706  static InitListExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1707
1708private:
1709  // Used by serializer.
1710  InitListExpr() : Expr(InitListExprClass, QualType()) {}
1711};
1712
1713/// @brief Represents a C99 designated initializer expression.
1714///
1715/// A designated initializer expression (C99 6.7.8) contains one or
1716/// more designators (which can be field designators, array
1717/// designators, or GNU array-range designators) followed by an
1718/// expression that initializes the field or element(s) that the
1719/// designators refer to. For example, given:
1720///
1721/// @code
1722/// struct point {
1723///   double x;
1724///   double y;
1725/// };
1726/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
1727/// @endcode
1728///
1729/// The InitListExpr contains three DesignatedInitExprs, the first of
1730/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
1731/// designators, one array designator for @c [2] followed by one field
1732/// designator for @c .y. The initalization expression will be 1.0.
1733class DesignatedInitExpr : public Expr {
1734  /// The location of the '=' or ':' prior to the actual initializer
1735  /// expression.
1736  SourceLocation EqualOrColonLoc;
1737
1738  /// Whether this designated initializer used the GNU deprecated ':'
1739  /// syntax rather than the C99 '=' syntax.
1740  bool UsesColonSyntax : 1;
1741
1742  /// The number of designators in this initializer expression.
1743  unsigned NumDesignators : 15;
1744
1745  /// The number of subexpressions of this initializer expression,
1746  /// which contains both the initializer and any additional
1747  /// expressions used by array and array-range designators.
1748  unsigned NumSubExprs : 16;
1749
1750  DesignatedInitExpr(QualType Ty, unsigned NumDesignators,
1751                     SourceLocation EqualOrColonLoc, bool UsesColonSyntax,
1752                     unsigned NumSubExprs)
1753    : Expr(DesignatedInitExprClass, Ty),
1754      EqualOrColonLoc(EqualOrColonLoc), UsesColonSyntax(UsesColonSyntax),
1755      NumDesignators(NumDesignators), NumSubExprs(NumSubExprs) { }
1756
1757public:
1758  /// A field designator, e.g., ".x".
1759  struct FieldDesignator {
1760    /// Refers to the field that is being initialized. The low bit
1761    /// of this field determines whether this is actually a pointer
1762    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
1763    /// initially constructed, a field designator will store an
1764    /// IdentifierInfo*. After semantic analysis has resolved that
1765    /// name, the field designator will instead store a FieldDecl*.
1766    uintptr_t NameOrField;
1767
1768    /// The location of the '.' in the designated initializer.
1769    unsigned DotLoc;
1770
1771    /// The location of the field name in the designated initializer.
1772    unsigned FieldLoc;
1773  };
1774
1775  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
1776  struct ArrayOrRangeDesignator {
1777    /// Location of the first index expression within the designated
1778    /// initializer expression's list of subexpressions.
1779    unsigned Index;
1780    /// The location of the '[' starting the array range designator.
1781    unsigned LBracketLoc;
1782    /// The location of the ellipsis separating the start and end
1783    /// indices. Only valid for GNU array-range designators.
1784    unsigned EllipsisLoc;
1785    /// The location of the ']' terminating the array range designator.
1786    unsigned RBracketLoc;
1787  };
1788
1789  /// @brief Represents a single C99 designator.
1790  ///
1791  /// @todo This class is infuriatingly similar to clang::Designator,
1792  /// but minor differences (storing indices vs. storing pointers)
1793  /// keep us from reusing it. Try harder, later, to rectify these
1794  /// differences.
1795  class Designator {
1796    /// @brief The kind of designator this describes.
1797    enum {
1798      FieldDesignator,
1799      ArrayDesignator,
1800      ArrayRangeDesignator
1801    } Kind;
1802
1803    union {
1804      /// A field designator, e.g., ".x".
1805      struct FieldDesignator Field;
1806      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
1807      struct ArrayOrRangeDesignator ArrayOrRange;
1808    };
1809    friend class DesignatedInitExpr;
1810
1811  public:
1812    /// @brief Initializes a field designator.
1813    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
1814               SourceLocation FieldLoc)
1815      : Kind(FieldDesignator) {
1816      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
1817      Field.DotLoc = DotLoc.getRawEncoding();
1818      Field.FieldLoc = FieldLoc.getRawEncoding();
1819    }
1820
1821    /// @brief Initializes an array designator.
1822    Designator(unsigned Index, SourceLocation LBracketLoc,
1823               SourceLocation RBracketLoc)
1824      : Kind(ArrayDesignator) {
1825      ArrayOrRange.Index = Index;
1826      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
1827      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
1828      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
1829    }
1830
1831    /// @brief Initializes a GNU array-range designator.
1832    Designator(unsigned Index, SourceLocation LBracketLoc,
1833               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
1834      : Kind(ArrayRangeDesignator) {
1835      ArrayOrRange.Index = Index;
1836      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
1837      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
1838      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
1839    }
1840
1841    bool isFieldDesignator() const { return Kind == FieldDesignator; }
1842    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
1843    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
1844
1845    IdentifierInfo * getFieldName();
1846
1847    FieldDecl *getField() {
1848      assert(Kind == FieldDesignator && "Only valid on a field designator");
1849      if (Field.NameOrField & 0x01)
1850        return 0;
1851      else
1852        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
1853    }
1854
1855    void setField(FieldDecl *FD) {
1856      assert(Kind == FieldDesignator && "Only valid on a field designator");
1857      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
1858    }
1859
1860    SourceLocation getDotLoc() const {
1861      assert(Kind == FieldDesignator && "Only valid on a field designator");
1862      return SourceLocation::getFromRawEncoding(Field.DotLoc);
1863    }
1864
1865    SourceLocation getFieldLoc() const {
1866      assert(Kind == FieldDesignator && "Only valid on a field designator");
1867      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
1868    }
1869
1870    SourceLocation getLBracketLoc() const {
1871      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
1872             "Only valid on an array or array-range designator");
1873      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
1874    }
1875
1876    SourceLocation getRBracketLoc() const {
1877      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
1878             "Only valid on an array or array-range designator");
1879      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
1880    }
1881
1882    SourceLocation getEllipsisLoc() const {
1883      assert(Kind == ArrayRangeDesignator &&
1884             "Only valid on an array-range designator");
1885      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
1886    }
1887  };
1888
1889  static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators,
1890                                    unsigned NumDesignators,
1891                                    Expr **IndexExprs, unsigned NumIndexExprs,
1892                                    SourceLocation EqualOrColonLoc,
1893                                    bool UsesColonSyntax, Expr *Init);
1894
1895  /// @brief Returns the number of designators in this initializer.
1896  unsigned size() const { return NumDesignators; }
1897
1898  // Iterator access to the designators.
1899  typedef Designator* designators_iterator;
1900  designators_iterator designators_begin();
1901  designators_iterator designators_end();
1902
1903  Expr *getArrayIndex(const Designator& D);
1904  Expr *getArrayRangeStart(const Designator& D);
1905  Expr *getArrayRangeEnd(const Designator& D);
1906
1907  /// @brief Retrieve the location of the '=' that precedes the
1908  /// initializer value itself, if present.
1909  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
1910
1911  /// @brief Determines whether this designated initializer used the
1912  /// GNU 'fieldname:' syntax or the C99 '=' syntax.
1913  bool usesColonSyntax() const { return UsesColonSyntax; }
1914
1915  /// @brief Retrieve the initializer value.
1916  Expr *getInit() const {
1917    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
1918  }
1919
1920  void setInit(Expr *init) {
1921    *child_begin() = init;
1922  }
1923
1924  virtual SourceRange getSourceRange() const;
1925
1926  static bool classof(const Stmt *T) {
1927    return T->getStmtClass() == DesignatedInitExprClass;
1928  }
1929  static bool classof(const DesignatedInitExpr *) { return true; }
1930
1931  // Iterators
1932  virtual child_iterator child_begin();
1933  virtual child_iterator child_end();
1934};
1935
1936//===----------------------------------------------------------------------===//
1937// Clang Extensions
1938//===----------------------------------------------------------------------===//
1939
1940
1941/// ExtVectorElementExpr - This represents access to specific elements of a
1942/// vector, and may occur on the left hand side or right hand side.  For example
1943/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
1944///
1945class ExtVectorElementExpr : public Expr {
1946  Stmt *Base;
1947  IdentifierInfo &Accessor;
1948  SourceLocation AccessorLoc;
1949public:
1950  ExtVectorElementExpr(QualType ty, Expr *base, IdentifierInfo &accessor,
1951                       SourceLocation loc)
1952    : Expr(ExtVectorElementExprClass, ty),
1953      Base(base), Accessor(accessor), AccessorLoc(loc) {}
1954
1955  const Expr *getBase() const { return cast<Expr>(Base); }
1956  Expr *getBase() { return cast<Expr>(Base); }
1957
1958  IdentifierInfo &getAccessor() const { return Accessor; }
1959
1960  /// getNumElements - Get the number of components being selected.
1961  unsigned getNumElements() const;
1962
1963  /// containsDuplicateElements - Return true if any element access is
1964  /// repeated.
1965  bool containsDuplicateElements() const;
1966
1967  /// getEncodedElementAccess - Encode the elements accessed into an llvm
1968  /// aggregate Constant of ConstantInt(s).
1969  void getEncodedElementAccess(llvm::SmallVectorImpl<unsigned> &Elts) const;
1970
1971  virtual SourceRange getSourceRange() const {
1972    return SourceRange(getBase()->getLocStart(), AccessorLoc);
1973  }
1974
1975  static bool classof(const Stmt *T) {
1976    return T->getStmtClass() == ExtVectorElementExprClass;
1977  }
1978  static bool classof(const ExtVectorElementExpr *) { return true; }
1979
1980  // Iterators
1981  virtual child_iterator child_begin();
1982  virtual child_iterator child_end();
1983
1984  virtual void EmitImpl(llvm::Serializer& S) const;
1985  static ExtVectorElementExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1986};
1987
1988
1989/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
1990/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
1991class BlockExpr : public Expr {
1992protected:
1993  BlockDecl *TheBlock;
1994public:
1995  BlockExpr(BlockDecl *BD, QualType ty) : Expr(BlockExprClass, ty),
1996            TheBlock(BD) {}
1997
1998  BlockDecl *getBlockDecl() { return TheBlock; }
1999
2000  // Convenience functions for probing the underlying BlockDecl.
2001  SourceLocation getCaretLocation() const;
2002  const Stmt *getBody() const;
2003  Stmt *getBody();
2004
2005  virtual SourceRange getSourceRange() const {
2006    return SourceRange(getCaretLocation(), getBody()->getLocEnd());
2007  }
2008
2009  /// getFunctionType - Return the underlying function type for this block.
2010  const FunctionType *getFunctionType() const;
2011
2012  static bool classof(const Stmt *T) {
2013    return T->getStmtClass() == BlockExprClass;
2014  }
2015  static bool classof(const BlockExpr *) { return true; }
2016
2017  // Iterators
2018  virtual child_iterator child_begin();
2019  virtual child_iterator child_end();
2020
2021  virtual void EmitImpl(llvm::Serializer& S) const;
2022  static BlockExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
2023};
2024
2025/// BlockDeclRefExpr - A reference to a declared variable, function,
2026/// enum, etc.
2027class BlockDeclRefExpr : public Expr {
2028  ValueDecl *D;
2029  SourceLocation Loc;
2030  bool IsByRef;
2031public:
2032  BlockDeclRefExpr(ValueDecl *d, QualType t, SourceLocation l, bool ByRef) :
2033       Expr(BlockDeclRefExprClass, t), D(d), Loc(l), IsByRef(ByRef) {}
2034
2035  ValueDecl *getDecl() { return D; }
2036  const ValueDecl *getDecl() const { return D; }
2037  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
2038
2039  bool isByRef() const { return IsByRef; }
2040
2041  static bool classof(const Stmt *T) {
2042    return T->getStmtClass() == BlockDeclRefExprClass;
2043  }
2044  static bool classof(const BlockDeclRefExpr *) { return true; }
2045
2046  // Iterators
2047  virtual child_iterator child_begin();
2048  virtual child_iterator child_end();
2049
2050  virtual void EmitImpl(llvm::Serializer& S) const;
2051  static BlockDeclRefExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
2052};
2053
2054}  // end namespace clang
2055
2056#endif
2057