Expr.h revision cb66cff8fdf641f57f85dedb515a5f3240e3a9bb
1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/Stmt.h"
19#include "clang/AST/Type.h"
20#include "clang/AST/DeclAccessPair.h"
21#include "clang/AST/OperationKinds.h"
22#include "clang/AST/ASTVector.h"
23#include "clang/AST/UsuallyTinyPtrVector.h"
24#include "clang/Basic/TypeTraits.h"
25#include "llvm/ADT/APSInt.h"
26#include "llvm/ADT/APFloat.h"
27#include "llvm/ADT/SmallVector.h"
28#include "llvm/ADT/StringRef.h"
29#include <cctype>
30
31namespace clang {
32  class ASTContext;
33  class APValue;
34  class Decl;
35  class IdentifierInfo;
36  class ParmVarDecl;
37  class NamedDecl;
38  class ValueDecl;
39  class BlockDecl;
40  class CXXBaseSpecifier;
41  class CXXOperatorCallExpr;
42  class CXXMemberCallExpr;
43  class ObjCPropertyRefExpr;
44  class TemplateArgumentLoc;
45  class TemplateArgumentListInfo;
46  class OpaqueValueExpr;
47
48/// \brief A simple array of base specifiers.
49typedef llvm::SmallVector<CXXBaseSpecifier*, 4> CXXCastPath;
50
51/// Expr - This represents one expression.  Note that Expr's are subclasses of
52/// Stmt.  This allows an expression to be transparently used any place a Stmt
53/// is required.
54///
55class Expr : public Stmt {
56  QualType TR;
57
58protected:
59  Expr(StmtClass SC, QualType T, ExprValueKind VK, ExprObjectKind OK,
60       bool TD, bool VD, bool ContainsUnexpandedParameterPack) : Stmt(SC) {
61    ExprBits.TypeDependent = TD;
62    ExprBits.ValueDependent = VD;
63    ExprBits.ValueKind = VK;
64    ExprBits.ObjectKind = OK;
65    ExprBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
66    setType(T);
67  }
68
69  /// \brief Construct an empty expression.
70  explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
71
72public:
73  QualType getType() const { return TR; }
74  void setType(QualType t) {
75    // In C++, the type of an expression is always adjusted so that it
76    // will not have reference type an expression will never have
77    // reference type (C++ [expr]p6). Use
78    // QualType::getNonReferenceType() to retrieve the non-reference
79    // type. Additionally, inspect Expr::isLvalue to determine whether
80    // an expression that is adjusted in this manner should be
81    // considered an lvalue.
82    assert((t.isNull() || !t->isReferenceType()) &&
83           "Expressions can't have reference type");
84
85    TR = t;
86  }
87
88  /// isValueDependent - Determines whether this expression is
89  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
90  /// array bound of "Chars" in the following example is
91  /// value-dependent.
92  /// @code
93  /// template<int Size, char (&Chars)[Size]> struct meta_string;
94  /// @endcode
95  bool isValueDependent() const { return ExprBits.ValueDependent; }
96
97  /// \brief Set whether this expression is value-dependent or not.
98  void setValueDependent(bool VD) { ExprBits.ValueDependent = VD; }
99
100  /// isTypeDependent - Determines whether this expression is
101  /// type-dependent (C++ [temp.dep.expr]), which means that its type
102  /// could change from one template instantiation to the next. For
103  /// example, the expressions "x" and "x + y" are type-dependent in
104  /// the following code, but "y" is not type-dependent:
105  /// @code
106  /// template<typename T>
107  /// void add(T x, int y) {
108  ///   x + y;
109  /// }
110  /// @endcode
111  bool isTypeDependent() const { return ExprBits.TypeDependent; }
112
113  /// \brief Set whether this expression is type-dependent or not.
114  void setTypeDependent(bool TD) { ExprBits.TypeDependent = TD; }
115
116  /// \brief Whether this expression contains an unexpanded parameter
117  /// pack (for C++0x variadic templates).
118  ///
119  /// Given the following function template:
120  ///
121  /// \code
122  /// template<typename F, typename ...Types>
123  /// void forward(const F &f, Types &&...args) {
124  ///   f(static_cast<Types&&>(args)...);
125  /// }
126  /// \endcode
127  ///
128  /// The expressions \c args and \c static_cast<Types&&>(args) both
129  /// contain parameter packs.
130  bool containsUnexpandedParameterPack() const {
131    return ExprBits.ContainsUnexpandedParameterPack;
132  }
133
134  /// \brief Set the bit that describes whether this expression
135  /// contains an unexpanded parameter pack.
136  void setContainsUnexpandedParameterPack(bool PP = true) {
137    ExprBits.ContainsUnexpandedParameterPack = PP;
138  }
139
140  /// getExprLoc - Return the preferred location for the arrow when diagnosing
141  /// a problem with a generic expression.
142  SourceLocation getExprLoc() const;
143
144  /// isUnusedResultAWarning - Return true if this immediate expression should
145  /// be warned about if the result is unused.  If so, fill in Loc and Ranges
146  /// with location to warn on and the source range[s] to report with the
147  /// warning.
148  bool isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
149                              SourceRange &R2, ASTContext &Ctx) const;
150
151  /// isLValue - True if this expression is an "l-value" according to
152  /// the rules of the current language.  C and C++ give somewhat
153  /// different rules for this concept, but in general, the result of
154  /// an l-value expression identifies a specific object whereas the
155  /// result of an r-value expression is a value detached from any
156  /// specific storage.
157  ///
158  /// C++0x divides the concept of "r-value" into pure r-values
159  /// ("pr-values") and so-called expiring values ("x-values"), which
160  /// identify specific objects that can be safely cannibalized for
161  /// their resources.  This is an unfortunate abuse of terminology on
162  /// the part of the C++ committee.  In Clang, when we say "r-value",
163  /// we generally mean a pr-value.
164  bool isLValue() const { return getValueKind() == VK_LValue; }
165  bool isRValue() const { return getValueKind() == VK_RValue; }
166  bool isXValue() const { return getValueKind() == VK_XValue; }
167  bool isGLValue() const { return getValueKind() != VK_RValue; }
168
169  enum LValueClassification {
170    LV_Valid,
171    LV_NotObjectType,
172    LV_IncompleteVoidType,
173    LV_DuplicateVectorComponents,
174    LV_InvalidExpression,
175    LV_InvalidMessageExpression,
176    LV_MemberFunction,
177    LV_SubObjCPropertySetting,
178    LV_ClassTemporary
179  };
180  /// Reasons why an expression might not be an l-value.
181  LValueClassification ClassifyLValue(ASTContext &Ctx) const;
182
183  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
184  /// does not have an incomplete type, does not have a const-qualified type,
185  /// and if it is a structure or union, does not have any member (including,
186  /// recursively, any member or element of all contained aggregates or unions)
187  /// with a const-qualified type.
188  ///
189  /// \param Loc [in] [out] - A source location which *may* be filled
190  /// in with the location of the expression making this a
191  /// non-modifiable lvalue, if specified.
192  enum isModifiableLvalueResult {
193    MLV_Valid,
194    MLV_NotObjectType,
195    MLV_IncompleteVoidType,
196    MLV_DuplicateVectorComponents,
197    MLV_InvalidExpression,
198    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
199    MLV_IncompleteType,
200    MLV_ConstQualified,
201    MLV_ArrayType,
202    MLV_NotBlockQualified,
203    MLV_ReadonlyProperty,
204    MLV_NoSetterProperty,
205    MLV_MemberFunction,
206    MLV_SubObjCPropertySetting,
207    MLV_InvalidMessageExpression,
208    MLV_ClassTemporary
209  };
210  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx,
211                                              SourceLocation *Loc = 0) const;
212
213  /// \brief The return type of classify(). Represents the C++0x expression
214  ///        taxonomy.
215  class Classification {
216  public:
217    /// \brief The various classification results. Most of these mean prvalue.
218    enum Kinds {
219      CL_LValue,
220      CL_XValue,
221      CL_Function, // Functions cannot be lvalues in C.
222      CL_Void, // Void cannot be an lvalue in C.
223      CL_AddressableVoid, // Void expression whose address can be taken in C.
224      CL_DuplicateVectorComponents, // A vector shuffle with dupes.
225      CL_MemberFunction, // An expression referring to a member function
226      CL_SubObjCPropertySetting,
227      CL_ClassTemporary, // A prvalue of class type
228      CL_ObjCMessageRValue, // ObjC message is an rvalue
229      CL_PRValue // A prvalue for any other reason, of any other type
230    };
231    /// \brief The results of modification testing.
232    enum ModifiableType {
233      CM_Untested, // testModifiable was false.
234      CM_Modifiable,
235      CM_RValue, // Not modifiable because it's an rvalue
236      CM_Function, // Not modifiable because it's a function; C++ only
237      CM_LValueCast, // Same as CM_RValue, but indicates GCC cast-as-lvalue ext
238      CM_NotBlockQualified, // Not captured in the closure
239      CM_NoSetterProperty,// Implicit assignment to ObjC property without setter
240      CM_ConstQualified,
241      CM_ArrayType,
242      CM_IncompleteType
243    };
244
245  private:
246    friend class Expr;
247
248    unsigned short Kind;
249    unsigned short Modifiable;
250
251    explicit Classification(Kinds k, ModifiableType m)
252      : Kind(k), Modifiable(m)
253    {}
254
255  public:
256    Classification() {}
257
258    Kinds getKind() const { return static_cast<Kinds>(Kind); }
259    ModifiableType getModifiable() const {
260      assert(Modifiable != CM_Untested && "Did not test for modifiability.");
261      return static_cast<ModifiableType>(Modifiable);
262    }
263    bool isLValue() const { return Kind == CL_LValue; }
264    bool isXValue() const { return Kind == CL_XValue; }
265    bool isGLValue() const { return Kind <= CL_XValue; }
266    bool isPRValue() const { return Kind >= CL_Function; }
267    bool isRValue() const { return Kind >= CL_XValue; }
268    bool isModifiable() const { return getModifiable() == CM_Modifiable; }
269
270    /// \brief Create a simple, modifiably lvalue
271    static Classification makeSimpleLValue() {
272      return Classification(CL_LValue, CM_Modifiable);
273    }
274
275  };
276  /// \brief Classify - Classify this expression according to the C++0x
277  ///        expression taxonomy.
278  ///
279  /// C++0x defines ([basic.lval]) a new taxonomy of expressions to replace the
280  /// old lvalue vs rvalue. This function determines the type of expression this
281  /// is. There are three expression types:
282  /// - lvalues are classical lvalues as in C++03.
283  /// - prvalues are equivalent to rvalues in C++03.
284  /// - xvalues are expressions yielding unnamed rvalue references, e.g. a
285  ///   function returning an rvalue reference.
286  /// lvalues and xvalues are collectively referred to as glvalues, while
287  /// prvalues and xvalues together form rvalues.
288  Classification Classify(ASTContext &Ctx) const {
289    return ClassifyImpl(Ctx, 0);
290  }
291
292  /// \brief ClassifyModifiable - Classify this expression according to the
293  ///        C++0x expression taxonomy, and see if it is valid on the left side
294  ///        of an assignment.
295  ///
296  /// This function extends classify in that it also tests whether the
297  /// expression is modifiable (C99 6.3.2.1p1).
298  /// \param Loc A source location that might be filled with a relevant location
299  ///            if the expression is not modifiable.
300  Classification ClassifyModifiable(ASTContext &Ctx, SourceLocation &Loc) const{
301    return ClassifyImpl(Ctx, &Loc);
302  }
303
304  /// getValueKindForType - Given a formal return or parameter type,
305  /// give its value kind.
306  static ExprValueKind getValueKindForType(QualType T) {
307    if (const ReferenceType *RT = T->getAs<ReferenceType>())
308      return (isa<LValueReferenceType>(RT)
309                ? VK_LValue
310                : (RT->getPointeeType()->isFunctionType()
311                     ? VK_LValue : VK_XValue));
312    return VK_RValue;
313  }
314
315  /// getValueKind - The value kind that this expression produces.
316  ExprValueKind getValueKind() const {
317    return static_cast<ExprValueKind>(ExprBits.ValueKind);
318  }
319
320  /// getObjectKind - The object kind that this expression produces.
321  /// Object kinds are meaningful only for expressions that yield an
322  /// l-value or x-value.
323  ExprObjectKind getObjectKind() const {
324    return static_cast<ExprObjectKind>(ExprBits.ObjectKind);
325  }
326
327  bool isOrdinaryOrBitFieldObject() const {
328    ExprObjectKind OK = getObjectKind();
329    return (OK == OK_Ordinary || OK == OK_BitField);
330  }
331
332  /// setValueKind - Set the value kind produced by this expression.
333  void setValueKind(ExprValueKind Cat) { ExprBits.ValueKind = Cat; }
334
335  /// setObjectKind - Set the object kind produced by this expression.
336  void setObjectKind(ExprObjectKind Cat) { ExprBits.ObjectKind = Cat; }
337
338private:
339  Classification ClassifyImpl(ASTContext &Ctx, SourceLocation *Loc) const;
340
341public:
342
343  /// \brief If this expression refers to a bit-field, retrieve the
344  /// declaration of that bit-field.
345  FieldDecl *getBitField();
346
347  const FieldDecl *getBitField() const {
348    return const_cast<Expr*>(this)->getBitField();
349  }
350
351  /// \brief If this expression is an l-value for an Objective C
352  /// property, find the underlying property reference expression.
353  const ObjCPropertyRefExpr *getObjCProperty() const;
354
355  /// \brief Returns whether this expression refers to a vector element.
356  bool refersToVectorElement() const;
357
358  /// isKnownToHaveBooleanValue - Return true if this is an integer expression
359  /// that is known to return 0 or 1.  This happens for _Bool/bool expressions
360  /// but also int expressions which are produced by things like comparisons in
361  /// C.
362  bool isKnownToHaveBooleanValue() const;
363
364  /// isIntegerConstantExpr - Return true if this expression is a valid integer
365  /// constant expression, and, if so, return its value in Result.  If not a
366  /// valid i-c-e, return false and fill in Loc (if specified) with the location
367  /// of the invalid expression.
368  bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
369                             SourceLocation *Loc = 0,
370                             bool isEvaluated = true) const;
371  bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const {
372    llvm::APSInt X;
373    return isIntegerConstantExpr(X, Ctx, Loc);
374  }
375  /// isConstantInitializer - Returns true if this expression is a constant
376  /// initializer, which can be emitted at compile-time.
377  bool isConstantInitializer(ASTContext &Ctx, bool ForRef) const;
378
379  /// EvalResult is a struct with detailed info about an evaluated expression.
380  struct EvalResult {
381    /// Val - This is the value the expression can be folded to.
382    APValue Val;
383
384    /// HasSideEffects - Whether the evaluated expression has side effects.
385    /// For example, (f() && 0) can be folded, but it still has side effects.
386    bool HasSideEffects;
387
388    /// Diag - If the expression is unfoldable, then Diag contains a note
389    /// diagnostic indicating why it's not foldable. DiagLoc indicates a caret
390    /// position for the error, and DiagExpr is the expression that caused
391    /// the error.
392    /// If the expression is foldable, but not an integer constant expression,
393    /// Diag contains a note diagnostic that describes why it isn't an integer
394    /// constant expression. If the expression *is* an integer constant
395    /// expression, then Diag will be zero.
396    unsigned Diag;
397    const Expr *DiagExpr;
398    SourceLocation DiagLoc;
399
400    EvalResult() : HasSideEffects(false), Diag(0), DiagExpr(0) {}
401
402    // isGlobalLValue - Return true if the evaluated lvalue expression
403    // is global.
404    bool isGlobalLValue() const;
405    // hasSideEffects - Return true if the evaluated expression has
406    // side effects.
407    bool hasSideEffects() const {
408      return HasSideEffects;
409    }
410  };
411
412  /// Evaluate - Return true if this is a constant which we can fold using
413  /// any crazy technique (that has nothing to do with language standards) that
414  /// we want to.  If this function returns true, it returns the folded constant
415  /// in Result.
416  bool Evaluate(EvalResult &Result, const ASTContext &Ctx) const;
417
418  /// EvaluateAsBooleanCondition - Return true if this is a constant
419  /// which we we can fold and convert to a boolean condition using
420  /// any crazy technique that we want to.
421  bool EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx) const;
422
423  /// isEvaluatable - Call Evaluate to see if this expression can be constant
424  /// folded, but discard the result.
425  bool isEvaluatable(const ASTContext &Ctx) const;
426
427  /// HasSideEffects - This routine returns true for all those expressions
428  /// which must be evaluated each time and must not be optimized away
429  /// or evaluated at compile time. Example is a function call, volatile
430  /// variable read.
431  bool HasSideEffects(const ASTContext &Ctx) const;
432
433  /// EvaluateAsInt - Call Evaluate and return the folded integer. This
434  /// must be called on an expression that constant folds to an integer.
435  llvm::APSInt EvaluateAsInt(const ASTContext &Ctx) const;
436
437  /// EvaluateAsLValue - Evaluate an expression to see if it's a lvalue
438  /// with link time known address.
439  bool EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const;
440
441  /// EvaluateAsLValue - Evaluate an expression to see if it's a lvalue.
442  bool EvaluateAsAnyLValue(EvalResult &Result, const ASTContext &Ctx) const;
443
444  /// \brief Enumeration used to describe the kind of Null pointer constant
445  /// returned from \c isNullPointerConstant().
446  enum NullPointerConstantKind {
447    /// \brief Expression is not a Null pointer constant.
448    NPCK_NotNull = 0,
449
450    /// \brief Expression is a Null pointer constant built from a zero integer.
451    NPCK_ZeroInteger,
452
453    /// \brief Expression is a C++0X nullptr.
454    NPCK_CXX0X_nullptr,
455
456    /// \brief Expression is a GNU-style __null constant.
457    NPCK_GNUNull
458  };
459
460  /// \brief Enumeration used to describe how \c isNullPointerConstant()
461  /// should cope with value-dependent expressions.
462  enum NullPointerConstantValueDependence {
463    /// \brief Specifies that the expression should never be value-dependent.
464    NPC_NeverValueDependent = 0,
465
466    /// \brief Specifies that a value-dependent expression of integral or
467    /// dependent type should be considered a null pointer constant.
468    NPC_ValueDependentIsNull,
469
470    /// \brief Specifies that a value-dependent expression should be considered
471    /// to never be a null pointer constant.
472    NPC_ValueDependentIsNotNull
473  };
474
475  /// isNullPointerConstant - C99 6.3.2.3p3 - Test if this reduces down to
476  /// a Null pointer constant. The return value can further distinguish the
477  /// kind of NULL pointer constant that was detected.
478  NullPointerConstantKind isNullPointerConstant(
479      ASTContext &Ctx,
480      NullPointerConstantValueDependence NPC) const;
481
482  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
483  /// write barrier.
484  bool isOBJCGCCandidate(ASTContext &Ctx) const;
485
486  /// \brief Returns true if this expression is a bound member function.
487  bool isBoundMemberFunction(ASTContext &Ctx) const;
488
489  /// \brief Given an expression of bound-member type, find the type
490  /// of the member.  Returns null if this is an *overloaded* bound
491  /// member expression.
492  static QualType findBoundMemberType(const Expr *expr);
493
494  /// \brief Result type of CanThrow().
495  enum CanThrowResult {
496    CT_Cannot,
497    CT_Dependent,
498    CT_Can
499  };
500  /// \brief Test if this expression, if evaluated, might throw, according to
501  ///        the rules of C++ [expr.unary.noexcept].
502  CanThrowResult CanThrow(ASTContext &C) const;
503
504  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
505  ///  its subexpression.  If that subexpression is also a ParenExpr,
506  ///  then this method recursively returns its subexpression, and so forth.
507  ///  Otherwise, the method returns the current Expr.
508  Expr *IgnoreParens();
509
510  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
511  /// or CastExprs, returning their operand.
512  Expr *IgnoreParenCasts();
513
514  /// IgnoreParenImpCasts - Ignore parentheses and implicit casts.  Strip off any
515  /// ParenExpr or ImplicitCastExprs, returning their operand.
516  Expr *IgnoreParenImpCasts();
517
518  const Expr *IgnoreParenImpCasts() const {
519    return const_cast<Expr*>(this)->IgnoreParenImpCasts();
520  }
521
522  /// Ignore parentheses and lvalue casts.  Strip off any ParenExpr and
523  /// CastExprs that represent lvalue casts, returning their operand.
524  Expr *IgnoreParenLValueCasts();
525
526  const Expr *IgnoreParenLValueCasts() const {
527    return const_cast<Expr*>(this)->IgnoreParenLValueCasts();
528  }
529
530  /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
531  /// value (including ptr->int casts of the same size).  Strip off any
532  /// ParenExpr or CastExprs, returning their operand.
533  Expr *IgnoreParenNoopCasts(ASTContext &Ctx);
534
535  /// \brief Determine whether this expression is a default function argument.
536  ///
537  /// Default arguments are implicitly generated in the abstract syntax tree
538  /// by semantic analysis for function calls, object constructions, etc. in
539  /// C++. Default arguments are represented by \c CXXDefaultArgExpr nodes;
540  /// this routine also looks through any implicit casts to determine whether
541  /// the expression is a default argument.
542  bool isDefaultArgument() const;
543
544  /// \brief Determine whether the result of this expression is a
545  /// temporary object of the given class type.
546  bool isTemporaryObject(ASTContext &Ctx, const CXXRecordDecl *TempTy) const;
547
548  /// \brief Whether this expression is an implicit reference to 'this' in C++.
549  bool isImplicitCXXThis() const;
550
551  const Expr *IgnoreParens() const {
552    return const_cast<Expr*>(this)->IgnoreParens();
553  }
554  const Expr *IgnoreParenCasts() const {
555    return const_cast<Expr*>(this)->IgnoreParenCasts();
556  }
557  const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const {
558    return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
559  }
560
561  static bool hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs);
562  static bool hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs);
563
564  static bool classof(const Stmt *T) {
565    return T->getStmtClass() >= firstExprConstant &&
566           T->getStmtClass() <= lastExprConstant;
567  }
568  static bool classof(const Expr *) { return true; }
569};
570
571
572//===----------------------------------------------------------------------===//
573// Primary Expressions.
574//===----------------------------------------------------------------------===//
575
576/// OpaqueValueExpr - An expression referring to an opaque object of a
577/// fixed type and value class.  These don't correspond to concrete
578/// syntax; instead they're used to express operations (usually copy
579/// operations) on values whose source is generally obvious from
580/// context.
581class OpaqueValueExpr : public Expr {
582  friend class ASTStmtReader;
583  Expr *SourceExpr;
584  SourceLocation Loc;
585
586public:
587  OpaqueValueExpr(SourceLocation Loc, QualType T, ExprValueKind VK,
588                  ExprObjectKind OK = OK_Ordinary)
589    : Expr(OpaqueValueExprClass, T, VK, OK,
590           T->isDependentType(), T->isDependentType(), false),
591      SourceExpr(0), Loc(Loc) {
592  }
593
594  /// Given an expression which invokes a copy constructor --- i.e.  a
595  /// CXXConstructExpr, possibly wrapped in an ExprWithCleanups ---
596  /// find the OpaqueValueExpr that's the source of the construction.
597  static const OpaqueValueExpr *findInCopyConstruct(const Expr *expr);
598
599  explicit OpaqueValueExpr(EmptyShell Empty)
600    : Expr(OpaqueValueExprClass, Empty) { }
601
602  /// \brief Retrieve the location of this expression.
603  SourceLocation getLocation() const { return Loc; }
604
605  SourceRange getSourceRange() const {
606    if (SourceExpr) return SourceExpr->getSourceRange();
607    return Loc;
608  }
609  SourceLocation getExprLoc() const {
610    if (SourceExpr) return SourceExpr->getExprLoc();
611    return Loc;
612  }
613
614  child_range children() { return child_range(); }
615
616  /// The source expression of an opaque value expression is the
617  /// expression which originally generated the value.  This is
618  /// provided as a convenience for analyses that don't wish to
619  /// precisely model the execution behavior of the program.
620  ///
621  /// The source expression is typically set when building the
622  /// expression which binds the opaque value expression in the first
623  /// place.
624  Expr *getSourceExpr() const { return SourceExpr; }
625  void setSourceExpr(Expr *e) { SourceExpr = e; }
626
627  static bool classof(const Stmt *T) {
628    return T->getStmtClass() == OpaqueValueExprClass;
629  }
630  static bool classof(const OpaqueValueExpr *) { return true; }
631};
632
633/// \brief Represents the qualifier that may precede a C++ name, e.g., the
634/// "std::" in "std::sort".
635struct NameQualifier {
636  /// \brief The nested-name-specifier that qualifies the name, including
637  /// source-location information.
638  NestedNameSpecifierLoc QualifierLoc;
639};
640
641/// \brief Represents an explicit template argument list in C++, e.g.,
642/// the "<int>" in "sort<int>".
643struct ExplicitTemplateArgumentList {
644  /// \brief The source location of the left angle bracket ('<');
645  SourceLocation LAngleLoc;
646
647  /// \brief The source location of the right angle bracket ('>');
648  SourceLocation RAngleLoc;
649
650  /// \brief The number of template arguments in TemplateArgs.
651  /// The actual template arguments (if any) are stored after the
652  /// ExplicitTemplateArgumentList structure.
653  unsigned NumTemplateArgs;
654
655  /// \brief Retrieve the template arguments
656  TemplateArgumentLoc *getTemplateArgs() {
657    return reinterpret_cast<TemplateArgumentLoc *> (this + 1);
658  }
659
660  /// \brief Retrieve the template arguments
661  const TemplateArgumentLoc *getTemplateArgs() const {
662    return reinterpret_cast<const TemplateArgumentLoc *> (this + 1);
663  }
664
665  void initializeFrom(const TemplateArgumentListInfo &List);
666  void initializeFrom(const TemplateArgumentListInfo &List,
667                      bool &Dependent, bool &ContainsUnexpandedParameterPack);
668  void copyInto(TemplateArgumentListInfo &List) const;
669  static std::size_t sizeFor(unsigned NumTemplateArgs);
670  static std::size_t sizeFor(const TemplateArgumentListInfo &List);
671};
672
673/// \brief A reference to a declared variable, function, enum, etc.
674/// [C99 6.5.1p2]
675///
676/// This encodes all the information about how a declaration is referenced
677/// within an expression.
678///
679/// There are several optional constructs attached to DeclRefExprs only when
680/// they apply in order to conserve memory. These are laid out past the end of
681/// the object, and flags in the DeclRefExprBitfield track whether they exist:
682///
683///   DeclRefExprBits.HasQualifier:
684///       Specifies when this declaration reference expression has a C++
685///       nested-name-specifier.
686///   DeclRefExprBits.HasExplicitTemplateArgs:
687///       Specifies when this declaration reference expression has an explicit
688///       C++ template argument list.
689class DeclRefExpr : public Expr {
690  /// \brief The declaration that we are referencing.
691  ValueDecl *D;
692
693  /// \brief The location of the declaration name itself.
694  SourceLocation Loc;
695
696  /// \brief Provides source/type location info for the declaration name
697  /// embedded in D.
698  DeclarationNameLoc DNLoc;
699
700  /// \brief Retrieve the qualifier that preceded the declaration name, if any.
701  NameQualifier *getNameQualifier() {
702    if (!hasQualifier())
703      return 0;
704
705    return reinterpret_cast<NameQualifier *> (this + 1);
706  }
707
708  /// \brief Retrieve the qualifier that preceded the declaration name, if any.
709  const NameQualifier *getNameQualifier() const {
710    return const_cast<DeclRefExpr *>(this)->getNameQualifier();
711  }
712
713  DeclRefExpr(NestedNameSpecifierLoc QualifierLoc,
714              ValueDecl *D, SourceLocation NameLoc,
715              const TemplateArgumentListInfo *TemplateArgs,
716              QualType T, ExprValueKind VK);
717
718  DeclRefExpr(NestedNameSpecifierLoc QualifierLoc,
719              ValueDecl *D, const DeclarationNameInfo &NameInfo,
720              const TemplateArgumentListInfo *TemplateArgs,
721              QualType T, ExprValueKind VK);
722
723  /// \brief Construct an empty declaration reference expression.
724  explicit DeclRefExpr(EmptyShell Empty)
725    : Expr(DeclRefExprClass, Empty) { }
726
727  /// \brief Computes the type- and value-dependence flags for this
728  /// declaration reference expression.
729  void computeDependence();
730
731public:
732  DeclRefExpr(ValueDecl *D, QualType T, ExprValueKind VK, SourceLocation L)
733    : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false),
734      D(D), Loc(L) {
735    DeclRefExprBits.HasQualifier = 0;
736    DeclRefExprBits.HasExplicitTemplateArgs = 0;
737    computeDependence();
738  }
739
740  static DeclRefExpr *Create(ASTContext &Context,
741                             NestedNameSpecifierLoc QualifierLoc,
742                             ValueDecl *D,
743                             SourceLocation NameLoc,
744                             QualType T, ExprValueKind VK,
745                             const TemplateArgumentListInfo *TemplateArgs = 0);
746
747  static DeclRefExpr *Create(ASTContext &Context,
748                             NestedNameSpecifierLoc QualifierLoc,
749                             ValueDecl *D,
750                             const DeclarationNameInfo &NameInfo,
751                             QualType T, ExprValueKind VK,
752                             const TemplateArgumentListInfo *TemplateArgs = 0);
753
754  /// \brief Construct an empty declaration reference expression.
755  static DeclRefExpr *CreateEmpty(ASTContext &Context,
756                                  bool HasQualifier,
757                                  bool HasExplicitTemplateArgs,
758                                  unsigned NumTemplateArgs);
759
760  ValueDecl *getDecl() { return D; }
761  const ValueDecl *getDecl() const { return D; }
762  void setDecl(ValueDecl *NewD) { D = NewD; }
763
764  DeclarationNameInfo getNameInfo() const {
765    return DeclarationNameInfo(getDecl()->getDeclName(), Loc, DNLoc);
766  }
767
768  SourceLocation getLocation() const { return Loc; }
769  void setLocation(SourceLocation L) { Loc = L; }
770  SourceRange getSourceRange() const;
771
772  /// \brief Determine whether this declaration reference was preceded by a
773  /// C++ nested-name-specifier, e.g., \c N::foo.
774  bool hasQualifier() const { return DeclRefExprBits.HasQualifier; }
775
776  /// \brief If the name was qualified, retrieves the nested-name-specifier
777  /// that precedes the name. Otherwise, returns NULL.
778  NestedNameSpecifier *getQualifier() const {
779    if (!hasQualifier())
780      return 0;
781
782    return getNameQualifier()->QualifierLoc.getNestedNameSpecifier();
783  }
784
785  /// \brief If the name was qualified, retrieves the nested-name-specifier
786  /// that precedes the name, with source-location information.
787  NestedNameSpecifierLoc getQualifierLoc() const {
788    if (!hasQualifier())
789      return NestedNameSpecifierLoc();
790
791    return getNameQualifier()->QualifierLoc;
792  }
793
794  bool hasExplicitTemplateArgs() const {
795    return DeclRefExprBits.HasExplicitTemplateArgs;
796  }
797
798  /// \brief Retrieve the explicit template argument list that followed the
799  /// member template name.
800  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
801    assert(hasExplicitTemplateArgs());
802
803    if (!hasQualifier())
804      return *reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
805
806    return *reinterpret_cast<ExplicitTemplateArgumentList *>(
807                                                      getNameQualifier() + 1);
808  }
809
810  /// \brief Retrieve the explicit template argument list that followed the
811  /// member template name.
812  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
813    return const_cast<DeclRefExpr *>(this)->getExplicitTemplateArgs();
814  }
815
816  /// \brief Retrieves the optional explicit template arguments.
817  /// This points to the same data as getExplicitTemplateArgs(), but
818  /// returns null if there are no explicit template arguments.
819  const ExplicitTemplateArgumentList *getExplicitTemplateArgsOpt() const {
820    if (!hasExplicitTemplateArgs()) return 0;
821    return &getExplicitTemplateArgs();
822  }
823
824  /// \brief Copies the template arguments (if present) into the given
825  /// structure.
826  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
827    if (hasExplicitTemplateArgs())
828      getExplicitTemplateArgs().copyInto(List);
829  }
830
831  /// \brief Retrieve the location of the left angle bracket following the
832  /// member name ('<'), if any.
833  SourceLocation getLAngleLoc() const {
834    if (!hasExplicitTemplateArgs())
835      return SourceLocation();
836
837    return getExplicitTemplateArgs().LAngleLoc;
838  }
839
840  /// \brief Retrieve the template arguments provided as part of this
841  /// template-id.
842  const TemplateArgumentLoc *getTemplateArgs() const {
843    if (!hasExplicitTemplateArgs())
844      return 0;
845
846    return getExplicitTemplateArgs().getTemplateArgs();
847  }
848
849  /// \brief Retrieve the number of template arguments provided as part of this
850  /// template-id.
851  unsigned getNumTemplateArgs() const {
852    if (!hasExplicitTemplateArgs())
853      return 0;
854
855    return getExplicitTemplateArgs().NumTemplateArgs;
856  }
857
858  /// \brief Retrieve the location of the right angle bracket following the
859  /// template arguments ('>').
860  SourceLocation getRAngleLoc() const {
861    if (!hasExplicitTemplateArgs())
862      return SourceLocation();
863
864    return getExplicitTemplateArgs().RAngleLoc;
865  }
866
867  static bool classof(const Stmt *T) {
868    return T->getStmtClass() == DeclRefExprClass;
869  }
870  static bool classof(const DeclRefExpr *) { return true; }
871
872  // Iterators
873  child_range children() { return child_range(); }
874
875  friend class ASTStmtReader;
876  friend class ASTStmtWriter;
877};
878
879/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
880class PredefinedExpr : public Expr {
881public:
882  enum IdentType {
883    Func,
884    Function,
885    PrettyFunction,
886    /// PrettyFunctionNoVirtual - The same as PrettyFunction, except that the
887    /// 'virtual' keyword is omitted for virtual member functions.
888    PrettyFunctionNoVirtual
889  };
890
891private:
892  SourceLocation Loc;
893  IdentType Type;
894public:
895  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
896    : Expr(PredefinedExprClass, type, VK_LValue, OK_Ordinary,
897           type->isDependentType(), type->isDependentType(),
898           /*ContainsUnexpandedParameterPack=*/false),
899      Loc(l), Type(IT) {}
900
901  /// \brief Construct an empty predefined expression.
902  explicit PredefinedExpr(EmptyShell Empty)
903    : Expr(PredefinedExprClass, Empty) { }
904
905  IdentType getIdentType() const { return Type; }
906  void setIdentType(IdentType IT) { Type = IT; }
907
908  SourceLocation getLocation() const { return Loc; }
909  void setLocation(SourceLocation L) { Loc = L; }
910
911  static std::string ComputeName(IdentType IT, const Decl *CurrentDecl);
912
913  SourceRange getSourceRange() const { return SourceRange(Loc); }
914
915  static bool classof(const Stmt *T) {
916    return T->getStmtClass() == PredefinedExprClass;
917  }
918  static bool classof(const PredefinedExpr *) { return true; }
919
920  // Iterators
921  child_range children() { return child_range(); }
922};
923
924/// \brief Used by IntegerLiteral/FloatingLiteral to store the numeric without
925/// leaking memory.
926///
927/// For large floats/integers, APFloat/APInt will allocate memory from the heap
928/// to represent these numbers.  Unfortunately, when we use a BumpPtrAllocator
929/// to allocate IntegerLiteral/FloatingLiteral nodes the memory associated with
930/// the APFloat/APInt values will never get freed. APNumericStorage uses
931/// ASTContext's allocator for memory allocation.
932class APNumericStorage {
933  unsigned BitWidth;
934  union {
935    uint64_t VAL;    ///< Used to store the <= 64 bits integer value.
936    uint64_t *pVal;  ///< Used to store the >64 bits integer value.
937  };
938
939  bool hasAllocation() const { return llvm::APInt::getNumWords(BitWidth) > 1; }
940
941  APNumericStorage(const APNumericStorage&); // do not implement
942  APNumericStorage& operator=(const APNumericStorage&); // do not implement
943
944protected:
945  APNumericStorage() : BitWidth(0), VAL(0) { }
946
947  llvm::APInt getIntValue() const {
948    unsigned NumWords = llvm::APInt::getNumWords(BitWidth);
949    if (NumWords > 1)
950      return llvm::APInt(BitWidth, NumWords, pVal);
951    else
952      return llvm::APInt(BitWidth, VAL);
953  }
954  void setIntValue(ASTContext &C, const llvm::APInt &Val);
955};
956
957class APIntStorage : public APNumericStorage {
958public:
959  llvm::APInt getValue() const { return getIntValue(); }
960  void setValue(ASTContext &C, const llvm::APInt &Val) { setIntValue(C, Val); }
961};
962
963class APFloatStorage : public APNumericStorage {
964public:
965  llvm::APFloat getValue() const { return llvm::APFloat(getIntValue()); }
966  void setValue(ASTContext &C, const llvm::APFloat &Val) {
967    setIntValue(C, Val.bitcastToAPInt());
968  }
969};
970
971class IntegerLiteral : public Expr {
972  APIntStorage Num;
973  SourceLocation Loc;
974
975  /// \brief Construct an empty integer literal.
976  explicit IntegerLiteral(EmptyShell Empty)
977    : Expr(IntegerLiteralClass, Empty) { }
978
979public:
980  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
981  // or UnsignedLongLongTy
982  IntegerLiteral(ASTContext &C, const llvm::APInt &V,
983                 QualType type, SourceLocation l)
984    : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
985           false),
986      Loc(l) {
987    assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
988    setValue(C, V);
989  }
990
991  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
992  // or UnsignedLongLongTy
993  static IntegerLiteral *Create(ASTContext &C, const llvm::APInt &V,
994                                QualType type, SourceLocation l);
995  static IntegerLiteral *Create(ASTContext &C, EmptyShell Empty);
996
997  llvm::APInt getValue() const { return Num.getValue(); }
998  SourceRange getSourceRange() const { return SourceRange(Loc); }
999
1000  /// \brief Retrieve the location of the literal.
1001  SourceLocation getLocation() const { return Loc; }
1002
1003  void setValue(ASTContext &C, const llvm::APInt &Val) { Num.setValue(C, Val); }
1004  void setLocation(SourceLocation Location) { Loc = Location; }
1005
1006  static bool classof(const Stmt *T) {
1007    return T->getStmtClass() == IntegerLiteralClass;
1008  }
1009  static bool classof(const IntegerLiteral *) { return true; }
1010
1011  // Iterators
1012  child_range children() { return child_range(); }
1013};
1014
1015class CharacterLiteral : public Expr {
1016  unsigned Value;
1017  SourceLocation Loc;
1018  bool IsWide;
1019public:
1020  // type should be IntTy
1021  CharacterLiteral(unsigned value, bool iswide, QualType type, SourceLocation l)
1022    : Expr(CharacterLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
1023           false),
1024      Value(value), Loc(l), IsWide(iswide) {
1025  }
1026
1027  /// \brief Construct an empty character literal.
1028  CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
1029
1030  SourceLocation getLocation() const { return Loc; }
1031  bool isWide() const { return IsWide; }
1032
1033  SourceRange getSourceRange() const { return SourceRange(Loc); }
1034
1035  unsigned getValue() const { return Value; }
1036
1037  void setLocation(SourceLocation Location) { Loc = Location; }
1038  void setWide(bool W) { IsWide = W; }
1039  void setValue(unsigned Val) { Value = Val; }
1040
1041  static bool classof(const Stmt *T) {
1042    return T->getStmtClass() == CharacterLiteralClass;
1043  }
1044  static bool classof(const CharacterLiteral *) { return true; }
1045
1046  // Iterators
1047  child_range children() { return child_range(); }
1048};
1049
1050class FloatingLiteral : public Expr {
1051  APFloatStorage Num;
1052  bool IsExact : 1;
1053  SourceLocation Loc;
1054
1055  FloatingLiteral(ASTContext &C, const llvm::APFloat &V, bool isexact,
1056                  QualType Type, SourceLocation L)
1057    : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false,
1058           false),
1059      IsExact(isexact), Loc(L) {
1060    setValue(C, V);
1061  }
1062
1063  /// \brief Construct an empty floating-point literal.
1064  explicit FloatingLiteral(EmptyShell Empty)
1065    : Expr(FloatingLiteralClass, Empty), IsExact(false) { }
1066
1067public:
1068  static FloatingLiteral *Create(ASTContext &C, const llvm::APFloat &V,
1069                                 bool isexact, QualType Type, SourceLocation L);
1070  static FloatingLiteral *Create(ASTContext &C, EmptyShell Empty);
1071
1072  llvm::APFloat getValue() const { return Num.getValue(); }
1073  void setValue(ASTContext &C, const llvm::APFloat &Val) {
1074    Num.setValue(C, Val);
1075  }
1076
1077  bool isExact() const { return IsExact; }
1078  void setExact(bool E) { IsExact = E; }
1079
1080  /// getValueAsApproximateDouble - This returns the value as an inaccurate
1081  /// double.  Note that this may cause loss of precision, but is useful for
1082  /// debugging dumps, etc.
1083  double getValueAsApproximateDouble() const;
1084
1085  SourceLocation getLocation() const { return Loc; }
1086  void setLocation(SourceLocation L) { Loc = L; }
1087
1088  SourceRange getSourceRange() const { return SourceRange(Loc); }
1089
1090  static bool classof(const Stmt *T) {
1091    return T->getStmtClass() == FloatingLiteralClass;
1092  }
1093  static bool classof(const FloatingLiteral *) { return true; }
1094
1095  // Iterators
1096  child_range children() { return child_range(); }
1097};
1098
1099/// ImaginaryLiteral - We support imaginary integer and floating point literals,
1100/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
1101/// IntegerLiteral classes.  Instances of this class always have a Complex type
1102/// whose element type matches the subexpression.
1103///
1104class ImaginaryLiteral : public Expr {
1105  Stmt *Val;
1106public:
1107  ImaginaryLiteral(Expr *val, QualType Ty)
1108    : Expr(ImaginaryLiteralClass, Ty, VK_RValue, OK_Ordinary, false, false,
1109           false),
1110      Val(val) {}
1111
1112  /// \brief Build an empty imaginary literal.
1113  explicit ImaginaryLiteral(EmptyShell Empty)
1114    : Expr(ImaginaryLiteralClass, Empty) { }
1115
1116  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1117  Expr *getSubExpr() { return cast<Expr>(Val); }
1118  void setSubExpr(Expr *E) { Val = E; }
1119
1120  SourceRange getSourceRange() const { return Val->getSourceRange(); }
1121  static bool classof(const Stmt *T) {
1122    return T->getStmtClass() == ImaginaryLiteralClass;
1123  }
1124  static bool classof(const ImaginaryLiteral *) { return true; }
1125
1126  // Iterators
1127  child_range children() { return child_range(&Val, &Val+1); }
1128};
1129
1130/// StringLiteral - This represents a string literal expression, e.g. "foo"
1131/// or L"bar" (wide strings).  The actual string is returned by getStrData()
1132/// is NOT null-terminated, and the length of the string is determined by
1133/// calling getByteLength().  The C type for a string is always a
1134/// ConstantArrayType.  In C++, the char type is const qualified, in C it is
1135/// not.
1136///
1137/// Note that strings in C can be formed by concatenation of multiple string
1138/// literal pptokens in translation phase #6.  This keeps track of the locations
1139/// of each of these pieces.
1140///
1141/// Strings in C can also be truncated and extended by assigning into arrays,
1142/// e.g. with constructs like:
1143///   char X[2] = "foobar";
1144/// In this case, getByteLength() will return 6, but the string literal will
1145/// have type "char[2]".
1146class StringLiteral : public Expr {
1147  friend class ASTStmtReader;
1148
1149  const char *StrData;
1150  unsigned ByteLength;
1151  bool IsWide;
1152  bool IsPascal;
1153  unsigned NumConcatenated;
1154  SourceLocation TokLocs[1];
1155
1156  StringLiteral(QualType Ty) :
1157    Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary, false, false, false) {}
1158
1159public:
1160  /// This is the "fully general" constructor that allows representation of
1161  /// strings formed from multiple concatenated tokens.
1162  static StringLiteral *Create(ASTContext &C, const char *StrData,
1163                               unsigned ByteLength, bool Wide, bool Pascal,
1164                               QualType Ty,
1165                               const SourceLocation *Loc, unsigned NumStrs);
1166
1167  /// Simple constructor for string literals made from one token.
1168  static StringLiteral *Create(ASTContext &C, const char *StrData,
1169                               unsigned ByteLength, bool Wide,
1170                               bool Pascal, QualType Ty, SourceLocation Loc) {
1171    return Create(C, StrData, ByteLength, Wide, Pascal, Ty, &Loc, 1);
1172  }
1173
1174  /// \brief Construct an empty string literal.
1175  static StringLiteral *CreateEmpty(ASTContext &C, unsigned NumStrs);
1176
1177  llvm::StringRef getString() const {
1178    return llvm::StringRef(StrData, ByteLength);
1179  }
1180
1181  unsigned getByteLength() const { return ByteLength; }
1182
1183  /// \brief Sets the string data to the given string data.
1184  void setString(ASTContext &C, llvm::StringRef Str);
1185
1186  bool isWide() const { return IsWide; }
1187  bool isPascal() const { return IsPascal; }
1188
1189  bool containsNonAsciiOrNull() const {
1190    llvm::StringRef Str = getString();
1191    for (unsigned i = 0, e = Str.size(); i != e; ++i)
1192      if (!isascii(Str[i]) || !Str[i])
1193        return true;
1194    return false;
1195  }
1196  /// getNumConcatenated - Get the number of string literal tokens that were
1197  /// concatenated in translation phase #6 to form this string literal.
1198  unsigned getNumConcatenated() const { return NumConcatenated; }
1199
1200  SourceLocation getStrTokenLoc(unsigned TokNum) const {
1201    assert(TokNum < NumConcatenated && "Invalid tok number");
1202    return TokLocs[TokNum];
1203  }
1204  void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
1205    assert(TokNum < NumConcatenated && "Invalid tok number");
1206    TokLocs[TokNum] = L;
1207  }
1208
1209  /// getLocationOfByte - Return a source location that points to the specified
1210  /// byte of this string literal.
1211  ///
1212  /// Strings are amazingly complex.  They can be formed from multiple tokens
1213  /// and can have escape sequences in them in addition to the usual trigraph
1214  /// and escaped newline business.  This routine handles this complexity.
1215  ///
1216  SourceLocation getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
1217                                   const LangOptions &Features,
1218                                   const TargetInfo &Target) const;
1219
1220  typedef const SourceLocation *tokloc_iterator;
1221  tokloc_iterator tokloc_begin() const { return TokLocs; }
1222  tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; }
1223
1224  SourceRange getSourceRange() const {
1225    return SourceRange(TokLocs[0], TokLocs[NumConcatenated-1]);
1226  }
1227  static bool classof(const Stmt *T) {
1228    return T->getStmtClass() == StringLiteralClass;
1229  }
1230  static bool classof(const StringLiteral *) { return true; }
1231
1232  // Iterators
1233  child_range children() { return child_range(); }
1234};
1235
1236/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
1237/// AST node is only formed if full location information is requested.
1238class ParenExpr : public Expr {
1239  SourceLocation L, R;
1240  Stmt *Val;
1241public:
1242  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
1243    : Expr(ParenExprClass, val->getType(),
1244           val->getValueKind(), val->getObjectKind(),
1245           val->isTypeDependent(), val->isValueDependent(),
1246           val->containsUnexpandedParameterPack()),
1247      L(l), R(r), Val(val) {}
1248
1249  /// \brief Construct an empty parenthesized expression.
1250  explicit ParenExpr(EmptyShell Empty)
1251    : Expr(ParenExprClass, Empty) { }
1252
1253  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1254  Expr *getSubExpr() { return cast<Expr>(Val); }
1255  void setSubExpr(Expr *E) { Val = E; }
1256
1257  SourceRange getSourceRange() const { return SourceRange(L, R); }
1258
1259  /// \brief Get the location of the left parentheses '('.
1260  SourceLocation getLParen() const { return L; }
1261  void setLParen(SourceLocation Loc) { L = Loc; }
1262
1263  /// \brief Get the location of the right parentheses ')'.
1264  SourceLocation getRParen() const { return R; }
1265  void setRParen(SourceLocation Loc) { R = Loc; }
1266
1267  static bool classof(const Stmt *T) {
1268    return T->getStmtClass() == ParenExprClass;
1269  }
1270  static bool classof(const ParenExpr *) { return true; }
1271
1272  // Iterators
1273  child_range children() { return child_range(&Val, &Val+1); }
1274};
1275
1276
1277/// UnaryOperator - This represents the unary-expression's (except sizeof and
1278/// alignof), the postinc/postdec operators from postfix-expression, and various
1279/// extensions.
1280///
1281/// Notes on various nodes:
1282///
1283/// Real/Imag - These return the real/imag part of a complex operand.  If
1284///   applied to a non-complex value, the former returns its operand and the
1285///   later returns zero in the type of the operand.
1286///
1287class UnaryOperator : public Expr {
1288public:
1289  typedef UnaryOperatorKind Opcode;
1290
1291private:
1292  unsigned Opc : 5;
1293  SourceLocation Loc;
1294  Stmt *Val;
1295public:
1296
1297  UnaryOperator(Expr *input, Opcode opc, QualType type,
1298                ExprValueKind VK, ExprObjectKind OK, SourceLocation l)
1299    : Expr(UnaryOperatorClass, type, VK, OK,
1300           input->isTypeDependent() || type->isDependentType(),
1301           input->isValueDependent(),
1302           input->containsUnexpandedParameterPack()),
1303      Opc(opc), Loc(l), Val(input) {}
1304
1305  /// \brief Build an empty unary operator.
1306  explicit UnaryOperator(EmptyShell Empty)
1307    : Expr(UnaryOperatorClass, Empty), Opc(UO_AddrOf) { }
1308
1309  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
1310  void setOpcode(Opcode O) { Opc = O; }
1311
1312  Expr *getSubExpr() const { return cast<Expr>(Val); }
1313  void setSubExpr(Expr *E) { Val = E; }
1314
1315  /// getOperatorLoc - Return the location of the operator.
1316  SourceLocation getOperatorLoc() const { return Loc; }
1317  void setOperatorLoc(SourceLocation L) { Loc = L; }
1318
1319  /// isPostfix - Return true if this is a postfix operation, like x++.
1320  static bool isPostfix(Opcode Op) {
1321    return Op == UO_PostInc || Op == UO_PostDec;
1322  }
1323
1324  /// isPrefix - Return true if this is a prefix operation, like --x.
1325  static bool isPrefix(Opcode Op) {
1326    return Op == UO_PreInc || Op == UO_PreDec;
1327  }
1328
1329  bool isPrefix() const { return isPrefix(getOpcode()); }
1330  bool isPostfix() const { return isPostfix(getOpcode()); }
1331  bool isIncrementOp() const {
1332    return Opc == UO_PreInc || Opc == UO_PostInc;
1333  }
1334  bool isIncrementDecrementOp() const {
1335    return Opc <= UO_PreDec;
1336  }
1337  static bool isArithmeticOp(Opcode Op) {
1338    return Op >= UO_Plus && Op <= UO_LNot;
1339  }
1340  bool isArithmeticOp() const { return isArithmeticOp(getOpcode()); }
1341
1342  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1343  /// corresponds to, e.g. "sizeof" or "[pre]++"
1344  static const char *getOpcodeStr(Opcode Op);
1345
1346  /// \brief Retrieve the unary opcode that corresponds to the given
1347  /// overloaded operator.
1348  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
1349
1350  /// \brief Retrieve the overloaded operator kind that corresponds to
1351  /// the given unary opcode.
1352  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
1353
1354  SourceRange getSourceRange() const {
1355    if (isPostfix())
1356      return SourceRange(Val->getLocStart(), Loc);
1357    else
1358      return SourceRange(Loc, Val->getLocEnd());
1359  }
1360  SourceLocation getExprLoc() const { return Loc; }
1361
1362  static bool classof(const Stmt *T) {
1363    return T->getStmtClass() == UnaryOperatorClass;
1364  }
1365  static bool classof(const UnaryOperator *) { return true; }
1366
1367  // Iterators
1368  child_range children() { return child_range(&Val, &Val+1); }
1369};
1370
1371/// OffsetOfExpr - [C99 7.17] - This represents an expression of the form
1372/// offsetof(record-type, member-designator). For example, given:
1373/// @code
1374/// struct S {
1375///   float f;
1376///   double d;
1377/// };
1378/// struct T {
1379///   int i;
1380///   struct S s[10];
1381/// };
1382/// @endcode
1383/// we can represent and evaluate the expression @c offsetof(struct T, s[2].d).
1384
1385class OffsetOfExpr : public Expr {
1386public:
1387  // __builtin_offsetof(type, identifier(.identifier|[expr])*)
1388  class OffsetOfNode {
1389  public:
1390    /// \brief The kind of offsetof node we have.
1391    enum Kind {
1392      /// \brief An index into an array.
1393      Array = 0x00,
1394      /// \brief A field.
1395      Field = 0x01,
1396      /// \brief A field in a dependent type, known only by its name.
1397      Identifier = 0x02,
1398      /// \brief An implicit indirection through a C++ base class, when the
1399      /// field found is in a base class.
1400      Base = 0x03
1401    };
1402
1403  private:
1404    enum { MaskBits = 2, Mask = 0x03 };
1405
1406    /// \brief The source range that covers this part of the designator.
1407    SourceRange Range;
1408
1409    /// \brief The data describing the designator, which comes in three
1410    /// different forms, depending on the lower two bits.
1411    ///   - An unsigned index into the array of Expr*'s stored after this node
1412    ///     in memory, for [constant-expression] designators.
1413    ///   - A FieldDecl*, for references to a known field.
1414    ///   - An IdentifierInfo*, for references to a field with a given name
1415    ///     when the class type is dependent.
1416    ///   - A CXXBaseSpecifier*, for references that look at a field in a
1417    ///     base class.
1418    uintptr_t Data;
1419
1420  public:
1421    /// \brief Create an offsetof node that refers to an array element.
1422    OffsetOfNode(SourceLocation LBracketLoc, unsigned Index,
1423                 SourceLocation RBracketLoc)
1424      : Range(LBracketLoc, RBracketLoc), Data((Index << 2) | Array) { }
1425
1426    /// \brief Create an offsetof node that refers to a field.
1427    OffsetOfNode(SourceLocation DotLoc, FieldDecl *Field,
1428                 SourceLocation NameLoc)
1429      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1430        Data(reinterpret_cast<uintptr_t>(Field) | OffsetOfNode::Field) { }
1431
1432    /// \brief Create an offsetof node that refers to an identifier.
1433    OffsetOfNode(SourceLocation DotLoc, IdentifierInfo *Name,
1434                 SourceLocation NameLoc)
1435      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1436        Data(reinterpret_cast<uintptr_t>(Name) | Identifier) { }
1437
1438    /// \brief Create an offsetof node that refers into a C++ base class.
1439    explicit OffsetOfNode(const CXXBaseSpecifier *Base)
1440      : Range(), Data(reinterpret_cast<uintptr_t>(Base) | OffsetOfNode::Base) {}
1441
1442    /// \brief Determine what kind of offsetof node this is.
1443    Kind getKind() const {
1444      return static_cast<Kind>(Data & Mask);
1445    }
1446
1447    /// \brief For an array element node, returns the index into the array
1448    /// of expressions.
1449    unsigned getArrayExprIndex() const {
1450      assert(getKind() == Array);
1451      return Data >> 2;
1452    }
1453
1454    /// \brief For a field offsetof node, returns the field.
1455    FieldDecl *getField() const {
1456      assert(getKind() == Field);
1457      return reinterpret_cast<FieldDecl *>(Data & ~(uintptr_t)Mask);
1458    }
1459
1460    /// \brief For a field or identifier offsetof node, returns the name of
1461    /// the field.
1462    IdentifierInfo *getFieldName() const;
1463
1464    /// \brief For a base class node, returns the base specifier.
1465    CXXBaseSpecifier *getBase() const {
1466      assert(getKind() == Base);
1467      return reinterpret_cast<CXXBaseSpecifier *>(Data & ~(uintptr_t)Mask);
1468    }
1469
1470    /// \brief Retrieve the source range that covers this offsetof node.
1471    ///
1472    /// For an array element node, the source range contains the locations of
1473    /// the square brackets. For a field or identifier node, the source range
1474    /// contains the location of the period (if there is one) and the
1475    /// identifier.
1476    SourceRange getSourceRange() const { return Range; }
1477  };
1478
1479private:
1480
1481  SourceLocation OperatorLoc, RParenLoc;
1482  // Base type;
1483  TypeSourceInfo *TSInfo;
1484  // Number of sub-components (i.e. instances of OffsetOfNode).
1485  unsigned NumComps;
1486  // Number of sub-expressions (i.e. array subscript expressions).
1487  unsigned NumExprs;
1488
1489  OffsetOfExpr(ASTContext &C, QualType type,
1490               SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1491               OffsetOfNode* compsPtr, unsigned numComps,
1492               Expr** exprsPtr, unsigned numExprs,
1493               SourceLocation RParenLoc);
1494
1495  explicit OffsetOfExpr(unsigned numComps, unsigned numExprs)
1496    : Expr(OffsetOfExprClass, EmptyShell()),
1497      TSInfo(0), NumComps(numComps), NumExprs(numExprs) {}
1498
1499public:
1500
1501  static OffsetOfExpr *Create(ASTContext &C, QualType type,
1502                              SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1503                              OffsetOfNode* compsPtr, unsigned numComps,
1504                              Expr** exprsPtr, unsigned numExprs,
1505                              SourceLocation RParenLoc);
1506
1507  static OffsetOfExpr *CreateEmpty(ASTContext &C,
1508                                   unsigned NumComps, unsigned NumExprs);
1509
1510  /// getOperatorLoc - Return the location of the operator.
1511  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1512  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
1513
1514  /// \brief Return the location of the right parentheses.
1515  SourceLocation getRParenLoc() const { return RParenLoc; }
1516  void setRParenLoc(SourceLocation R) { RParenLoc = R; }
1517
1518  TypeSourceInfo *getTypeSourceInfo() const {
1519    return TSInfo;
1520  }
1521  void setTypeSourceInfo(TypeSourceInfo *tsi) {
1522    TSInfo = tsi;
1523  }
1524
1525  const OffsetOfNode &getComponent(unsigned Idx) {
1526    assert(Idx < NumComps && "Subscript out of range");
1527    return reinterpret_cast<OffsetOfNode *> (this + 1)[Idx];
1528  }
1529
1530  void setComponent(unsigned Idx, OffsetOfNode ON) {
1531    assert(Idx < NumComps && "Subscript out of range");
1532    reinterpret_cast<OffsetOfNode *> (this + 1)[Idx] = ON;
1533  }
1534
1535  unsigned getNumComponents() const {
1536    return NumComps;
1537  }
1538
1539  Expr* getIndexExpr(unsigned Idx) {
1540    assert(Idx < NumExprs && "Subscript out of range");
1541    return reinterpret_cast<Expr **>(
1542                    reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx];
1543  }
1544
1545  void setIndexExpr(unsigned Idx, Expr* E) {
1546    assert(Idx < NumComps && "Subscript out of range");
1547    reinterpret_cast<Expr **>(
1548                reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx] = E;
1549  }
1550
1551  unsigned getNumExpressions() const {
1552    return NumExprs;
1553  }
1554
1555  SourceRange getSourceRange() const {
1556    return SourceRange(OperatorLoc, RParenLoc);
1557  }
1558
1559  static bool classof(const Stmt *T) {
1560    return T->getStmtClass() == OffsetOfExprClass;
1561  }
1562
1563  static bool classof(const OffsetOfExpr *) { return true; }
1564
1565  // Iterators
1566  child_range children() {
1567    Stmt **begin =
1568      reinterpret_cast<Stmt**>(reinterpret_cast<OffsetOfNode*>(this + 1)
1569                               + NumComps);
1570    return child_range(begin, begin + NumExprs);
1571  }
1572};
1573
1574/// UnaryExprOrTypeTraitExpr - expression with either a type or (unevaluated)
1575/// expression operand.  Used for sizeof/alignof (C99 6.5.3.4) and
1576/// vec_step (OpenCL 1.1 6.11.12).
1577class UnaryExprOrTypeTraitExpr : public Expr {
1578  unsigned Kind : 2;
1579  bool isType : 1;    // true if operand is a type, false if an expression
1580  union {
1581    TypeSourceInfo *Ty;
1582    Stmt *Ex;
1583  } Argument;
1584  SourceLocation OpLoc, RParenLoc;
1585
1586public:
1587  UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, TypeSourceInfo *TInfo,
1588                           QualType resultType, SourceLocation op,
1589                           SourceLocation rp) :
1590      Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
1591           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1592           // Value-dependent if the argument is type-dependent.
1593           TInfo->getType()->isDependentType(),
1594           TInfo->getType()->containsUnexpandedParameterPack()),
1595      Kind(ExprKind), isType(true), OpLoc(op), RParenLoc(rp) {
1596    Argument.Ty = TInfo;
1597  }
1598
1599  UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, Expr *E,
1600                           QualType resultType, SourceLocation op,
1601                           SourceLocation rp) :
1602      Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
1603           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1604           // Value-dependent if the argument is type-dependent.
1605           E->isTypeDependent(),
1606           E->containsUnexpandedParameterPack()),
1607      Kind(ExprKind), isType(false), OpLoc(op), RParenLoc(rp) {
1608    Argument.Ex = E;
1609  }
1610
1611  /// \brief Construct an empty sizeof/alignof expression.
1612  explicit UnaryExprOrTypeTraitExpr(EmptyShell Empty)
1613    : Expr(UnaryExprOrTypeTraitExprClass, Empty) { }
1614
1615  UnaryExprOrTypeTrait getKind() const {
1616    return static_cast<UnaryExprOrTypeTrait>(Kind);
1617  }
1618  void setKind(UnaryExprOrTypeTrait K) { Kind = K; }
1619
1620  bool isArgumentType() const { return isType; }
1621  QualType getArgumentType() const {
1622    return getArgumentTypeInfo()->getType();
1623  }
1624  TypeSourceInfo *getArgumentTypeInfo() const {
1625    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
1626    return Argument.Ty;
1627  }
1628  Expr *getArgumentExpr() {
1629    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
1630    return static_cast<Expr*>(Argument.Ex);
1631  }
1632  const Expr *getArgumentExpr() const {
1633    return const_cast<UnaryExprOrTypeTraitExpr*>(this)->getArgumentExpr();
1634  }
1635
1636  void setArgument(Expr *E) { Argument.Ex = E; isType = false; }
1637  void setArgument(TypeSourceInfo *TInfo) {
1638    Argument.Ty = TInfo;
1639    isType = true;
1640  }
1641
1642  /// Gets the argument type, or the type of the argument expression, whichever
1643  /// is appropriate.
1644  QualType getTypeOfArgument() const {
1645    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
1646  }
1647
1648  SourceLocation getOperatorLoc() const { return OpLoc; }
1649  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
1650
1651  SourceLocation getRParenLoc() const { return RParenLoc; }
1652  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1653
1654  SourceRange getSourceRange() const {
1655    return SourceRange(OpLoc, RParenLoc);
1656  }
1657
1658  static bool classof(const Stmt *T) {
1659    return T->getStmtClass() == UnaryExprOrTypeTraitExprClass;
1660  }
1661  static bool classof(const UnaryExprOrTypeTraitExpr *) { return true; }
1662
1663  // Iterators
1664  child_range children();
1665};
1666
1667//===----------------------------------------------------------------------===//
1668// Postfix Operators.
1669//===----------------------------------------------------------------------===//
1670
1671/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
1672class ArraySubscriptExpr : public Expr {
1673  enum { LHS, RHS, END_EXPR=2 };
1674  Stmt* SubExprs[END_EXPR];
1675  SourceLocation RBracketLoc;
1676public:
1677  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
1678                     ExprValueKind VK, ExprObjectKind OK,
1679                     SourceLocation rbracketloc)
1680  : Expr(ArraySubscriptExprClass, t, VK, OK,
1681         lhs->isTypeDependent() || rhs->isTypeDependent(),
1682         lhs->isValueDependent() || rhs->isValueDependent(),
1683         (lhs->containsUnexpandedParameterPack() ||
1684          rhs->containsUnexpandedParameterPack())),
1685    RBracketLoc(rbracketloc) {
1686    SubExprs[LHS] = lhs;
1687    SubExprs[RHS] = rhs;
1688  }
1689
1690  /// \brief Create an empty array subscript expression.
1691  explicit ArraySubscriptExpr(EmptyShell Shell)
1692    : Expr(ArraySubscriptExprClass, Shell) { }
1693
1694  /// An array access can be written A[4] or 4[A] (both are equivalent).
1695  /// - getBase() and getIdx() always present the normalized view: A[4].
1696  ///    In this case getBase() returns "A" and getIdx() returns "4".
1697  /// - getLHS() and getRHS() present the syntactic view. e.g. for
1698  ///    4[A] getLHS() returns "4".
1699  /// Note: Because vector element access is also written A[4] we must
1700  /// predicate the format conversion in getBase and getIdx only on the
1701  /// the type of the RHS, as it is possible for the LHS to be a vector of
1702  /// integer type
1703  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
1704  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1705  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1706
1707  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
1708  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1709  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1710
1711  Expr *getBase() {
1712    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1713  }
1714
1715  const Expr *getBase() const {
1716    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1717  }
1718
1719  Expr *getIdx() {
1720    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1721  }
1722
1723  const Expr *getIdx() const {
1724    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1725  }
1726
1727  SourceRange getSourceRange() const {
1728    return SourceRange(getLHS()->getLocStart(), RBracketLoc);
1729  }
1730
1731  SourceLocation getRBracketLoc() const { return RBracketLoc; }
1732  void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
1733
1734  SourceLocation getExprLoc() const { return getBase()->getExprLoc(); }
1735
1736  static bool classof(const Stmt *T) {
1737    return T->getStmtClass() == ArraySubscriptExprClass;
1738  }
1739  static bool classof(const ArraySubscriptExpr *) { return true; }
1740
1741  // Iterators
1742  child_range children() {
1743    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
1744  }
1745};
1746
1747
1748/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
1749/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
1750/// while its subclasses may represent alternative syntax that (semantically)
1751/// results in a function call. For example, CXXOperatorCallExpr is
1752/// a subclass for overloaded operator calls that use operator syntax, e.g.,
1753/// "str1 + str2" to resolve to a function call.
1754class CallExpr : public Expr {
1755  enum { FN=0, PREARGS_START=1 };
1756  Stmt **SubExprs;
1757  unsigned NumArgs;
1758  SourceLocation RParenLoc;
1759
1760protected:
1761  // These versions of the constructor are for derived classes.
1762  CallExpr(ASTContext& C, StmtClass SC, Expr *fn, unsigned NumPreArgs,
1763           Expr **args, unsigned numargs, QualType t, ExprValueKind VK,
1764           SourceLocation rparenloc);
1765  CallExpr(ASTContext &C, StmtClass SC, unsigned NumPreArgs, EmptyShell Empty);
1766
1767  Stmt *getPreArg(unsigned i) {
1768    assert(i < getNumPreArgs() && "Prearg access out of range!");
1769    return SubExprs[PREARGS_START+i];
1770  }
1771  const Stmt *getPreArg(unsigned i) const {
1772    assert(i < getNumPreArgs() && "Prearg access out of range!");
1773    return SubExprs[PREARGS_START+i];
1774  }
1775  void setPreArg(unsigned i, Stmt *PreArg) {
1776    assert(i < getNumPreArgs() && "Prearg access out of range!");
1777    SubExprs[PREARGS_START+i] = PreArg;
1778  }
1779
1780  unsigned getNumPreArgs() const { return CallExprBits.NumPreArgs; }
1781
1782public:
1783  CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, QualType t,
1784           ExprValueKind VK, SourceLocation rparenloc);
1785
1786  /// \brief Build an empty call expression.
1787  CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty);
1788
1789  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
1790  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
1791  void setCallee(Expr *F) { SubExprs[FN] = F; }
1792
1793  Decl *getCalleeDecl();
1794  const Decl *getCalleeDecl() const {
1795    return const_cast<CallExpr*>(this)->getCalleeDecl();
1796  }
1797
1798  /// \brief If the callee is a FunctionDecl, return it. Otherwise return 0.
1799  FunctionDecl *getDirectCallee();
1800  const FunctionDecl *getDirectCallee() const {
1801    return const_cast<CallExpr*>(this)->getDirectCallee();
1802  }
1803
1804  /// getNumArgs - Return the number of actual arguments to this call.
1805  ///
1806  unsigned getNumArgs() const { return NumArgs; }
1807
1808  /// \brief Retrieve the call arguments.
1809  Expr **getArgs() {
1810    return reinterpret_cast<Expr **>(SubExprs+getNumPreArgs()+PREARGS_START);
1811  }
1812
1813  /// getArg - Return the specified argument.
1814  Expr *getArg(unsigned Arg) {
1815    assert(Arg < NumArgs && "Arg access out of range!");
1816    return cast<Expr>(SubExprs[Arg+getNumPreArgs()+PREARGS_START]);
1817  }
1818  const Expr *getArg(unsigned Arg) const {
1819    assert(Arg < NumArgs && "Arg access out of range!");
1820    return cast<Expr>(SubExprs[Arg+getNumPreArgs()+PREARGS_START]);
1821  }
1822
1823  /// setArg - Set the specified argument.
1824  void setArg(unsigned Arg, Expr *ArgExpr) {
1825    assert(Arg < NumArgs && "Arg access out of range!");
1826    SubExprs[Arg+getNumPreArgs()+PREARGS_START] = ArgExpr;
1827  }
1828
1829  /// setNumArgs - This changes the number of arguments present in this call.
1830  /// Any orphaned expressions are deleted by this, and any new operands are set
1831  /// to null.
1832  void setNumArgs(ASTContext& C, unsigned NumArgs);
1833
1834  typedef ExprIterator arg_iterator;
1835  typedef ConstExprIterator const_arg_iterator;
1836
1837  arg_iterator arg_begin() { return SubExprs+PREARGS_START+getNumPreArgs(); }
1838  arg_iterator arg_end() {
1839    return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
1840  }
1841  const_arg_iterator arg_begin() const {
1842    return SubExprs+PREARGS_START+getNumPreArgs();
1843  }
1844  const_arg_iterator arg_end() const {
1845    return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
1846  }
1847
1848  /// getNumCommas - Return the number of commas that must have been present in
1849  /// this function call.
1850  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
1851
1852  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
1853  /// not, return 0.
1854  unsigned isBuiltinCall(const ASTContext &Context) const;
1855
1856  /// getCallReturnType - Get the return type of the call expr. This is not
1857  /// always the type of the expr itself, if the return type is a reference
1858  /// type.
1859  QualType getCallReturnType() const;
1860
1861  SourceLocation getRParenLoc() const { return RParenLoc; }
1862  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1863
1864  SourceRange getSourceRange() const;
1865
1866  static bool classof(const Stmt *T) {
1867    return T->getStmtClass() >= firstCallExprConstant &&
1868           T->getStmtClass() <= lastCallExprConstant;
1869  }
1870  static bool classof(const CallExpr *) { return true; }
1871
1872  // Iterators
1873  child_range children() {
1874    return child_range(&SubExprs[0],
1875                       &SubExprs[0]+NumArgs+getNumPreArgs()+PREARGS_START);
1876  }
1877};
1878
1879/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.  X->F and X.F.
1880///
1881class MemberExpr : public Expr {
1882  /// Extra data stored in some member expressions.
1883  struct MemberNameQualifier : public NameQualifier {
1884    DeclAccessPair FoundDecl;
1885  };
1886
1887  /// Base - the expression for the base pointer or structure references.  In
1888  /// X.F, this is "X".
1889  Stmt *Base;
1890
1891  /// MemberDecl - This is the decl being referenced by the field/member name.
1892  /// In X.F, this is the decl referenced by F.
1893  ValueDecl *MemberDecl;
1894
1895  /// MemberLoc - This is the location of the member name.
1896  SourceLocation MemberLoc;
1897
1898  /// MemberDNLoc - Provides source/type location info for the
1899  /// declaration name embedded in MemberDecl.
1900  DeclarationNameLoc MemberDNLoc;
1901
1902  /// IsArrow - True if this is "X->F", false if this is "X.F".
1903  bool IsArrow : 1;
1904
1905  /// \brief True if this member expression used a nested-name-specifier to
1906  /// refer to the member, e.g., "x->Base::f", or found its member via a using
1907  /// declaration.  When true, a MemberNameQualifier
1908  /// structure is allocated immediately after the MemberExpr.
1909  bool HasQualifierOrFoundDecl : 1;
1910
1911  /// \brief True if this member expression specified a template argument list
1912  /// explicitly, e.g., x->f<int>. When true, an ExplicitTemplateArgumentList
1913  /// structure (and its TemplateArguments) are allocated immediately after
1914  /// the MemberExpr or, if the member expression also has a qualifier, after
1915  /// the MemberNameQualifier structure.
1916  bool HasExplicitTemplateArgumentList : 1;
1917
1918  /// \brief Retrieve the qualifier that preceded the member name, if any.
1919  MemberNameQualifier *getMemberQualifier() {
1920    assert(HasQualifierOrFoundDecl);
1921    return reinterpret_cast<MemberNameQualifier *> (this + 1);
1922  }
1923
1924  /// \brief Retrieve the qualifier that preceded the member name, if any.
1925  const MemberNameQualifier *getMemberQualifier() const {
1926    return const_cast<MemberExpr *>(this)->getMemberQualifier();
1927  }
1928
1929public:
1930  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
1931             const DeclarationNameInfo &NameInfo, QualType ty,
1932             ExprValueKind VK, ExprObjectKind OK)
1933    : Expr(MemberExprClass, ty, VK, OK,
1934           base->isTypeDependent(), base->isValueDependent(),
1935           base->containsUnexpandedParameterPack()),
1936      Base(base), MemberDecl(memberdecl), MemberLoc(NameInfo.getLoc()),
1937      MemberDNLoc(NameInfo.getInfo()), IsArrow(isarrow),
1938      HasQualifierOrFoundDecl(false), HasExplicitTemplateArgumentList(false) {
1939    assert(memberdecl->getDeclName() == NameInfo.getName());
1940  }
1941
1942  // NOTE: this constructor should be used only when it is known that
1943  // the member name can not provide additional syntactic info
1944  // (i.e., source locations for C++ operator names or type source info
1945  // for constructors, destructors and conversion oeprators).
1946  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
1947             SourceLocation l, QualType ty,
1948             ExprValueKind VK, ExprObjectKind OK)
1949    : Expr(MemberExprClass, ty, VK, OK,
1950           base->isTypeDependent(), base->isValueDependent(),
1951           base->containsUnexpandedParameterPack()),
1952      Base(base), MemberDecl(memberdecl), MemberLoc(l), MemberDNLoc(),
1953      IsArrow(isarrow),
1954      HasQualifierOrFoundDecl(false), HasExplicitTemplateArgumentList(false) {}
1955
1956  static MemberExpr *Create(ASTContext &C, Expr *base, bool isarrow,
1957                            NestedNameSpecifierLoc QualifierLoc,
1958                            ValueDecl *memberdecl, DeclAccessPair founddecl,
1959                            DeclarationNameInfo MemberNameInfo,
1960                            const TemplateArgumentListInfo *targs,
1961                            QualType ty, ExprValueKind VK, ExprObjectKind OK);
1962
1963  void setBase(Expr *E) { Base = E; }
1964  Expr *getBase() const { return cast<Expr>(Base); }
1965
1966  /// \brief Retrieve the member declaration to which this expression refers.
1967  ///
1968  /// The returned declaration will either be a FieldDecl or (in C++)
1969  /// a CXXMethodDecl.
1970  ValueDecl *getMemberDecl() const { return MemberDecl; }
1971  void setMemberDecl(ValueDecl *D) { MemberDecl = D; }
1972
1973  /// \brief Retrieves the declaration found by lookup.
1974  DeclAccessPair getFoundDecl() const {
1975    if (!HasQualifierOrFoundDecl)
1976      return DeclAccessPair::make(getMemberDecl(),
1977                                  getMemberDecl()->getAccess());
1978    return getMemberQualifier()->FoundDecl;
1979  }
1980
1981  /// \brief Determines whether this member expression actually had
1982  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
1983  /// x->Base::foo.
1984  bool hasQualifier() const { return getQualifier() != 0; }
1985
1986  /// \brief If the member name was qualified, retrieves the
1987  /// nested-name-specifier that precedes the member name. Otherwise, returns
1988  /// NULL.
1989  NestedNameSpecifier *getQualifier() const {
1990    if (!HasQualifierOrFoundDecl)
1991      return 0;
1992
1993    return getMemberQualifier()->QualifierLoc.getNestedNameSpecifier();
1994  }
1995
1996  /// \brief If the member name was qualified, retrieves the
1997  /// nested-name-specifier that precedes the member name, with source-location
1998  /// information.
1999  NestedNameSpecifierLoc getQualifierLoc() const {
2000    if (!hasQualifier())
2001      return NestedNameSpecifierLoc();
2002
2003    return getMemberQualifier()->QualifierLoc;
2004  }
2005
2006  /// \brief Determines whether this member expression actually had a C++
2007  /// template argument list explicitly specified, e.g., x.f<int>.
2008  bool hasExplicitTemplateArgs() const {
2009    return HasExplicitTemplateArgumentList;
2010  }
2011
2012  /// \brief Copies the template arguments (if present) into the given
2013  /// structure.
2014  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2015    if (hasExplicitTemplateArgs())
2016      getExplicitTemplateArgs().copyInto(List);
2017  }
2018
2019  /// \brief Retrieve the explicit template argument list that
2020  /// follow the member template name.  This must only be called on an
2021  /// expression with explicit template arguments.
2022  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
2023    assert(HasExplicitTemplateArgumentList);
2024    if (!HasQualifierOrFoundDecl)
2025      return *reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
2026
2027    return *reinterpret_cast<ExplicitTemplateArgumentList *>(
2028                                                      getMemberQualifier() + 1);
2029  }
2030
2031  /// \brief Retrieve the explicit template argument list that
2032  /// followed the member template name.  This must only be called on
2033  /// an expression with explicit template arguments.
2034  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
2035    return const_cast<MemberExpr *>(this)->getExplicitTemplateArgs();
2036  }
2037
2038  /// \brief Retrieves the optional explicit template arguments.
2039  /// This points to the same data as getExplicitTemplateArgs(), but
2040  /// returns null if there are no explicit template arguments.
2041  const ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() const {
2042    if (!hasExplicitTemplateArgs()) return 0;
2043    return &getExplicitTemplateArgs();
2044  }
2045
2046  /// \brief Retrieve the location of the left angle bracket following the
2047  /// member name ('<'), if any.
2048  SourceLocation getLAngleLoc() const {
2049    if (!HasExplicitTemplateArgumentList)
2050      return SourceLocation();
2051
2052    return getExplicitTemplateArgs().LAngleLoc;
2053  }
2054
2055  /// \brief Retrieve the template arguments provided as part of this
2056  /// template-id.
2057  const TemplateArgumentLoc *getTemplateArgs() const {
2058    if (!HasExplicitTemplateArgumentList)
2059      return 0;
2060
2061    return getExplicitTemplateArgs().getTemplateArgs();
2062  }
2063
2064  /// \brief Retrieve the number of template arguments provided as part of this
2065  /// template-id.
2066  unsigned getNumTemplateArgs() const {
2067    if (!HasExplicitTemplateArgumentList)
2068      return 0;
2069
2070    return getExplicitTemplateArgs().NumTemplateArgs;
2071  }
2072
2073  /// \brief Retrieve the location of the right angle bracket following the
2074  /// template arguments ('>').
2075  SourceLocation getRAngleLoc() const {
2076    if (!HasExplicitTemplateArgumentList)
2077      return SourceLocation();
2078
2079    return getExplicitTemplateArgs().RAngleLoc;
2080  }
2081
2082  /// \brief Retrieve the member declaration name info.
2083  DeclarationNameInfo getMemberNameInfo() const {
2084    return DeclarationNameInfo(MemberDecl->getDeclName(),
2085                               MemberLoc, MemberDNLoc);
2086  }
2087
2088  bool isArrow() const { return IsArrow; }
2089  void setArrow(bool A) { IsArrow = A; }
2090
2091  /// getMemberLoc - Return the location of the "member", in X->F, it is the
2092  /// location of 'F'.
2093  SourceLocation getMemberLoc() const { return MemberLoc; }
2094  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
2095
2096  SourceRange getSourceRange() const;
2097
2098  SourceLocation getExprLoc() const { return MemberLoc; }
2099
2100  /// \brief Determine whether the base of this explicit is implicit.
2101  bool isImplicitAccess() const {
2102    return getBase() && getBase()->isImplicitCXXThis();
2103  }
2104
2105  static bool classof(const Stmt *T) {
2106    return T->getStmtClass() == MemberExprClass;
2107  }
2108  static bool classof(const MemberExpr *) { return true; }
2109
2110  // Iterators
2111  child_range children() { return child_range(&Base, &Base+1); }
2112
2113  friend class ASTReader;
2114  friend class ASTStmtWriter;
2115};
2116
2117/// CompoundLiteralExpr - [C99 6.5.2.5]
2118///
2119class CompoundLiteralExpr : public Expr {
2120  /// LParenLoc - If non-null, this is the location of the left paren in a
2121  /// compound literal like "(int){4}".  This can be null if this is a
2122  /// synthesized compound expression.
2123  SourceLocation LParenLoc;
2124
2125  /// The type as written.  This can be an incomplete array type, in
2126  /// which case the actual expression type will be different.
2127  TypeSourceInfo *TInfo;
2128  Stmt *Init;
2129  bool FileScope;
2130public:
2131  CompoundLiteralExpr(SourceLocation lparenloc, TypeSourceInfo *tinfo,
2132                      QualType T, ExprValueKind VK, Expr *init, bool fileScope)
2133    : Expr(CompoundLiteralExprClass, T, VK, OK_Ordinary,
2134           tinfo->getType()->isDependentType(),
2135           init->isValueDependent(),
2136           init->containsUnexpandedParameterPack()),
2137      LParenLoc(lparenloc), TInfo(tinfo), Init(init), FileScope(fileScope) {}
2138
2139  /// \brief Construct an empty compound literal.
2140  explicit CompoundLiteralExpr(EmptyShell Empty)
2141    : Expr(CompoundLiteralExprClass, Empty) { }
2142
2143  const Expr *getInitializer() const { return cast<Expr>(Init); }
2144  Expr *getInitializer() { return cast<Expr>(Init); }
2145  void setInitializer(Expr *E) { Init = E; }
2146
2147  bool isFileScope() const { return FileScope; }
2148  void setFileScope(bool FS) { FileScope = FS; }
2149
2150  SourceLocation getLParenLoc() const { return LParenLoc; }
2151  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2152
2153  TypeSourceInfo *getTypeSourceInfo() const { return TInfo; }
2154  void setTypeSourceInfo(TypeSourceInfo* tinfo) { TInfo = tinfo; }
2155
2156  SourceRange getSourceRange() const {
2157    // FIXME: Init should never be null.
2158    if (!Init)
2159      return SourceRange();
2160    if (LParenLoc.isInvalid())
2161      return Init->getSourceRange();
2162    return SourceRange(LParenLoc, Init->getLocEnd());
2163  }
2164
2165  static bool classof(const Stmt *T) {
2166    return T->getStmtClass() == CompoundLiteralExprClass;
2167  }
2168  static bool classof(const CompoundLiteralExpr *) { return true; }
2169
2170  // Iterators
2171  child_range children() { return child_range(&Init, &Init+1); }
2172};
2173
2174/// CastExpr - Base class for type casts, including both implicit
2175/// casts (ImplicitCastExpr) and explicit casts that have some
2176/// representation in the source code (ExplicitCastExpr's derived
2177/// classes).
2178class CastExpr : public Expr {
2179public:
2180  typedef clang::CastKind CastKind;
2181
2182private:
2183  Stmt *Op;
2184
2185  void CheckCastConsistency() const {
2186#ifndef NDEBUG
2187    switch (getCastKind()) {
2188    case CK_DerivedToBase:
2189    case CK_UncheckedDerivedToBase:
2190    case CK_DerivedToBaseMemberPointer:
2191    case CK_BaseToDerived:
2192    case CK_BaseToDerivedMemberPointer:
2193      assert(!path_empty() && "Cast kind should have a base path!");
2194      break;
2195
2196    // These should not have an inheritance path.
2197    case CK_BitCast:
2198    case CK_Dynamic:
2199    case CK_ToUnion:
2200    case CK_ArrayToPointerDecay:
2201    case CK_FunctionToPointerDecay:
2202    case CK_NullToMemberPointer:
2203    case CK_NullToPointer:
2204    case CK_ConstructorConversion:
2205    case CK_IntegralToPointer:
2206    case CK_PointerToIntegral:
2207    case CK_ToVoid:
2208    case CK_VectorSplat:
2209    case CK_IntegralCast:
2210    case CK_IntegralToFloating:
2211    case CK_FloatingToIntegral:
2212    case CK_FloatingCast:
2213    case CK_AnyPointerToObjCPointerCast:
2214    case CK_AnyPointerToBlockPointerCast:
2215    case CK_ObjCObjectLValueCast:
2216    case CK_FloatingRealToComplex:
2217    case CK_FloatingComplexToReal:
2218    case CK_FloatingComplexCast:
2219    case CK_FloatingComplexToIntegralComplex:
2220    case CK_IntegralRealToComplex:
2221    case CK_IntegralComplexToReal:
2222    case CK_IntegralComplexCast:
2223    case CK_IntegralComplexToFloatingComplex:
2224      assert(!getType()->isBooleanType() && "unheralded conversion to bool");
2225      // fallthrough to check for null base path
2226
2227    case CK_Dependent:
2228    case CK_LValueToRValue:
2229    case CK_GetObjCProperty:
2230    case CK_NoOp:
2231    case CK_PointerToBoolean:
2232    case CK_IntegralToBoolean:
2233    case CK_FloatingToBoolean:
2234    case CK_MemberPointerToBoolean:
2235    case CK_FloatingComplexToBoolean:
2236    case CK_IntegralComplexToBoolean:
2237    case CK_LValueBitCast:            // -> bool&
2238    case CK_UserDefinedConversion:    // operator bool()
2239      assert(path_empty() && "Cast kind should not have a base path!");
2240      break;
2241    }
2242#endif
2243  }
2244
2245  const CXXBaseSpecifier * const *path_buffer() const {
2246    return const_cast<CastExpr*>(this)->path_buffer();
2247  }
2248  CXXBaseSpecifier **path_buffer();
2249
2250  void setBasePathSize(unsigned basePathSize) {
2251    CastExprBits.BasePathSize = basePathSize;
2252    assert(CastExprBits.BasePathSize == basePathSize &&
2253           "basePathSize doesn't fit in bits of CastExprBits.BasePathSize!");
2254  }
2255
2256protected:
2257  CastExpr(StmtClass SC, QualType ty, ExprValueKind VK,
2258           const CastKind kind, Expr *op, unsigned BasePathSize) :
2259    Expr(SC, ty, VK, OK_Ordinary,
2260         // Cast expressions are type-dependent if the type is
2261         // dependent (C++ [temp.dep.expr]p3).
2262         ty->isDependentType(),
2263         // Cast expressions are value-dependent if the type is
2264         // dependent or if the subexpression is value-dependent.
2265         ty->isDependentType() || (op && op->isValueDependent()),
2266         (ty->containsUnexpandedParameterPack() ||
2267          op->containsUnexpandedParameterPack())),
2268    Op(op) {
2269    assert(kind != CK_Invalid && "creating cast with invalid cast kind");
2270    CastExprBits.Kind = kind;
2271    setBasePathSize(BasePathSize);
2272    CheckCastConsistency();
2273  }
2274
2275  /// \brief Construct an empty cast.
2276  CastExpr(StmtClass SC, EmptyShell Empty, unsigned BasePathSize)
2277    : Expr(SC, Empty) {
2278    setBasePathSize(BasePathSize);
2279  }
2280
2281public:
2282  CastKind getCastKind() const { return (CastKind) CastExprBits.Kind; }
2283  void setCastKind(CastKind K) { CastExprBits.Kind = K; }
2284  const char *getCastKindName() const;
2285
2286  Expr *getSubExpr() { return cast<Expr>(Op); }
2287  const Expr *getSubExpr() const { return cast<Expr>(Op); }
2288  void setSubExpr(Expr *E) { Op = E; }
2289
2290  /// \brief Retrieve the cast subexpression as it was written in the source
2291  /// code, looking through any implicit casts or other intermediate nodes
2292  /// introduced by semantic analysis.
2293  Expr *getSubExprAsWritten();
2294  const Expr *getSubExprAsWritten() const {
2295    return const_cast<CastExpr *>(this)->getSubExprAsWritten();
2296  }
2297
2298  typedef CXXBaseSpecifier **path_iterator;
2299  typedef const CXXBaseSpecifier * const *path_const_iterator;
2300  bool path_empty() const { return CastExprBits.BasePathSize == 0; }
2301  unsigned path_size() const { return CastExprBits.BasePathSize; }
2302  path_iterator path_begin() { return path_buffer(); }
2303  path_iterator path_end() { return path_buffer() + path_size(); }
2304  path_const_iterator path_begin() const { return path_buffer(); }
2305  path_const_iterator path_end() const { return path_buffer() + path_size(); }
2306
2307  void setCastPath(const CXXCastPath &Path);
2308
2309  static bool classof(const Stmt *T) {
2310    return T->getStmtClass() >= firstCastExprConstant &&
2311           T->getStmtClass() <= lastCastExprConstant;
2312  }
2313  static bool classof(const CastExpr *) { return true; }
2314
2315  // Iterators
2316  child_range children() { return child_range(&Op, &Op+1); }
2317};
2318
2319/// ImplicitCastExpr - Allows us to explicitly represent implicit type
2320/// conversions, which have no direct representation in the original
2321/// source code. For example: converting T[]->T*, void f()->void
2322/// (*f)(), float->double, short->int, etc.
2323///
2324/// In C, implicit casts always produce rvalues. However, in C++, an
2325/// implicit cast whose result is being bound to a reference will be
2326/// an lvalue or xvalue. For example:
2327///
2328/// @code
2329/// class Base { };
2330/// class Derived : public Base { };
2331/// Derived &&ref();
2332/// void f(Derived d) {
2333///   Base& b = d; // initializer is an ImplicitCastExpr
2334///                // to an lvalue of type Base
2335///   Base&& r = ref(); // initializer is an ImplicitCastExpr
2336///                     // to an xvalue of type Base
2337/// }
2338/// @endcode
2339class ImplicitCastExpr : public CastExpr {
2340private:
2341  ImplicitCastExpr(QualType ty, CastKind kind, Expr *op,
2342                   unsigned BasePathLength, ExprValueKind VK)
2343    : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, BasePathLength) {
2344  }
2345
2346  /// \brief Construct an empty implicit cast.
2347  explicit ImplicitCastExpr(EmptyShell Shell, unsigned PathSize)
2348    : CastExpr(ImplicitCastExprClass, Shell, PathSize) { }
2349
2350public:
2351  enum OnStack_t { OnStack };
2352  ImplicitCastExpr(OnStack_t _, QualType ty, CastKind kind, Expr *op,
2353                   ExprValueKind VK)
2354    : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, 0) {
2355  }
2356
2357  static ImplicitCastExpr *Create(ASTContext &Context, QualType T,
2358                                  CastKind Kind, Expr *Operand,
2359                                  const CXXCastPath *BasePath,
2360                                  ExprValueKind Cat);
2361
2362  static ImplicitCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize);
2363
2364  SourceRange getSourceRange() const {
2365    return getSubExpr()->getSourceRange();
2366  }
2367
2368  static bool classof(const Stmt *T) {
2369    return T->getStmtClass() == ImplicitCastExprClass;
2370  }
2371  static bool classof(const ImplicitCastExpr *) { return true; }
2372};
2373
2374/// ExplicitCastExpr - An explicit cast written in the source
2375/// code.
2376///
2377/// This class is effectively an abstract class, because it provides
2378/// the basic representation of an explicitly-written cast without
2379/// specifying which kind of cast (C cast, functional cast, static
2380/// cast, etc.) was written; specific derived classes represent the
2381/// particular style of cast and its location information.
2382///
2383/// Unlike implicit casts, explicit cast nodes have two different
2384/// types: the type that was written into the source code, and the
2385/// actual type of the expression as determined by semantic
2386/// analysis. These types may differ slightly. For example, in C++ one
2387/// can cast to a reference type, which indicates that the resulting
2388/// expression will be an lvalue or xvalue. The reference type, however,
2389/// will not be used as the type of the expression.
2390class ExplicitCastExpr : public CastExpr {
2391  /// TInfo - Source type info for the (written) type
2392  /// this expression is casting to.
2393  TypeSourceInfo *TInfo;
2394
2395protected:
2396  ExplicitCastExpr(StmtClass SC, QualType exprTy, ExprValueKind VK,
2397                   CastKind kind, Expr *op, unsigned PathSize,
2398                   TypeSourceInfo *writtenTy)
2399    : CastExpr(SC, exprTy, VK, kind, op, PathSize), TInfo(writtenTy) {}
2400
2401  /// \brief Construct an empty explicit cast.
2402  ExplicitCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
2403    : CastExpr(SC, Shell, PathSize) { }
2404
2405public:
2406  /// getTypeInfoAsWritten - Returns the type source info for the type
2407  /// that this expression is casting to.
2408  TypeSourceInfo *getTypeInfoAsWritten() const { return TInfo; }
2409  void setTypeInfoAsWritten(TypeSourceInfo *writtenTy) { TInfo = writtenTy; }
2410
2411  /// getTypeAsWritten - Returns the type that this expression is
2412  /// casting to, as written in the source code.
2413  QualType getTypeAsWritten() const { return TInfo->getType(); }
2414
2415  static bool classof(const Stmt *T) {
2416     return T->getStmtClass() >= firstExplicitCastExprConstant &&
2417            T->getStmtClass() <= lastExplicitCastExprConstant;
2418  }
2419  static bool classof(const ExplicitCastExpr *) { return true; }
2420};
2421
2422/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
2423/// cast in C++ (C++ [expr.cast]), which uses the syntax
2424/// (Type)expr. For example: @c (int)f.
2425class CStyleCastExpr : public ExplicitCastExpr {
2426  SourceLocation LPLoc; // the location of the left paren
2427  SourceLocation RPLoc; // the location of the right paren
2428
2429  CStyleCastExpr(QualType exprTy, ExprValueKind vk, CastKind kind, Expr *op,
2430                 unsigned PathSize, TypeSourceInfo *writtenTy,
2431                 SourceLocation l, SourceLocation r)
2432    : ExplicitCastExpr(CStyleCastExprClass, exprTy, vk, kind, op, PathSize,
2433                       writtenTy), LPLoc(l), RPLoc(r) {}
2434
2435  /// \brief Construct an empty C-style explicit cast.
2436  explicit CStyleCastExpr(EmptyShell Shell, unsigned PathSize)
2437    : ExplicitCastExpr(CStyleCastExprClass, Shell, PathSize) { }
2438
2439public:
2440  static CStyleCastExpr *Create(ASTContext &Context, QualType T,
2441                                ExprValueKind VK, CastKind K,
2442                                Expr *Op, const CXXCastPath *BasePath,
2443                                TypeSourceInfo *WrittenTy, SourceLocation L,
2444                                SourceLocation R);
2445
2446  static CStyleCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize);
2447
2448  SourceLocation getLParenLoc() const { return LPLoc; }
2449  void setLParenLoc(SourceLocation L) { LPLoc = L; }
2450
2451  SourceLocation getRParenLoc() const { return RPLoc; }
2452  void setRParenLoc(SourceLocation L) { RPLoc = L; }
2453
2454  SourceRange getSourceRange() const {
2455    return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd());
2456  }
2457  static bool classof(const Stmt *T) {
2458    return T->getStmtClass() == CStyleCastExprClass;
2459  }
2460  static bool classof(const CStyleCastExpr *) { return true; }
2461};
2462
2463/// \brief A builtin binary operation expression such as "x + y" or "x <= y".
2464///
2465/// This expression node kind describes a builtin binary operation,
2466/// such as "x + y" for integer values "x" and "y". The operands will
2467/// already have been converted to appropriate types (e.g., by
2468/// performing promotions or conversions).
2469///
2470/// In C++, where operators may be overloaded, a different kind of
2471/// expression node (CXXOperatorCallExpr) is used to express the
2472/// invocation of an overloaded operator with operator syntax. Within
2473/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
2474/// used to store an expression "x + y" depends on the subexpressions
2475/// for x and y. If neither x or y is type-dependent, and the "+"
2476/// operator resolves to a built-in operation, BinaryOperator will be
2477/// used to express the computation (x and y may still be
2478/// value-dependent). If either x or y is type-dependent, or if the
2479/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
2480/// be used to express the computation.
2481class BinaryOperator : public Expr {
2482public:
2483  typedef BinaryOperatorKind Opcode;
2484
2485private:
2486  unsigned Opc : 6;
2487  SourceLocation OpLoc;
2488
2489  enum { LHS, RHS, END_EXPR };
2490  Stmt* SubExprs[END_EXPR];
2491public:
2492
2493  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2494                 ExprValueKind VK, ExprObjectKind OK,
2495                 SourceLocation opLoc)
2496    : Expr(BinaryOperatorClass, ResTy, VK, OK,
2497           lhs->isTypeDependent() || rhs->isTypeDependent(),
2498           lhs->isValueDependent() || rhs->isValueDependent(),
2499           (lhs->containsUnexpandedParameterPack() ||
2500            rhs->containsUnexpandedParameterPack())),
2501      Opc(opc), OpLoc(opLoc) {
2502    SubExprs[LHS] = lhs;
2503    SubExprs[RHS] = rhs;
2504    assert(!isCompoundAssignmentOp() &&
2505           "Use ArithAssignBinaryOperator for compound assignments");
2506  }
2507
2508  /// \brief Construct an empty binary operator.
2509  explicit BinaryOperator(EmptyShell Empty)
2510    : Expr(BinaryOperatorClass, Empty), Opc(BO_Comma) { }
2511
2512  SourceLocation getOperatorLoc() const { return OpLoc; }
2513  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
2514
2515  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
2516  void setOpcode(Opcode O) { Opc = O; }
2517
2518  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2519  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2520  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2521  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2522
2523  SourceRange getSourceRange() const {
2524    return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
2525  }
2526
2527  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
2528  /// corresponds to, e.g. "<<=".
2529  static const char *getOpcodeStr(Opcode Op);
2530
2531  const char *getOpcodeStr() const { return getOpcodeStr(getOpcode()); }
2532
2533  /// \brief Retrieve the binary opcode that corresponds to the given
2534  /// overloaded operator.
2535  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
2536
2537  /// \brief Retrieve the overloaded operator kind that corresponds to
2538  /// the given binary opcode.
2539  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
2540
2541  /// predicates to categorize the respective opcodes.
2542  bool isPtrMemOp() const { return Opc == BO_PtrMemD || Opc == BO_PtrMemI; }
2543  bool isMultiplicativeOp() const { return Opc >= BO_Mul && Opc <= BO_Rem; }
2544  static bool isAdditiveOp(Opcode Opc) { return Opc == BO_Add || Opc==BO_Sub; }
2545  bool isAdditiveOp() const { return isAdditiveOp(getOpcode()); }
2546  static bool isShiftOp(Opcode Opc) { return Opc == BO_Shl || Opc == BO_Shr; }
2547  bool isShiftOp() const { return isShiftOp(getOpcode()); }
2548
2549  static bool isBitwiseOp(Opcode Opc) { return Opc >= BO_And && Opc <= BO_Or; }
2550  bool isBitwiseOp() const { return isBitwiseOp(getOpcode()); }
2551
2552  static bool isRelationalOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_GE; }
2553  bool isRelationalOp() const { return isRelationalOp(getOpcode()); }
2554
2555  static bool isEqualityOp(Opcode Opc) { return Opc == BO_EQ || Opc == BO_NE; }
2556  bool isEqualityOp() const { return isEqualityOp(getOpcode()); }
2557
2558  static bool isComparisonOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_NE; }
2559  bool isComparisonOp() const { return isComparisonOp(getOpcode()); }
2560
2561  static bool isLogicalOp(Opcode Opc) { return Opc == BO_LAnd || Opc==BO_LOr; }
2562  bool isLogicalOp() const { return isLogicalOp(getOpcode()); }
2563
2564  static bool isAssignmentOp(Opcode Opc) {
2565    return Opc >= BO_Assign && Opc <= BO_OrAssign;
2566  }
2567  bool isAssignmentOp() const { return isAssignmentOp(getOpcode()); }
2568
2569  static bool isCompoundAssignmentOp(Opcode Opc) {
2570    return Opc > BO_Assign && Opc <= BO_OrAssign;
2571  }
2572  bool isCompoundAssignmentOp() const {
2573    return isCompoundAssignmentOp(getOpcode());
2574  }
2575
2576  static bool isShiftAssignOp(Opcode Opc) {
2577    return Opc == BO_ShlAssign || Opc == BO_ShrAssign;
2578  }
2579  bool isShiftAssignOp() const {
2580    return isShiftAssignOp(getOpcode());
2581  }
2582
2583  static bool classof(const Stmt *S) {
2584    return S->getStmtClass() >= firstBinaryOperatorConstant &&
2585           S->getStmtClass() <= lastBinaryOperatorConstant;
2586  }
2587  static bool classof(const BinaryOperator *) { return true; }
2588
2589  // Iterators
2590  child_range children() {
2591    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
2592  }
2593
2594protected:
2595  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2596                 ExprValueKind VK, ExprObjectKind OK,
2597                 SourceLocation opLoc, bool dead)
2598    : Expr(CompoundAssignOperatorClass, ResTy, VK, OK,
2599           lhs->isTypeDependent() || rhs->isTypeDependent(),
2600           lhs->isValueDependent() || rhs->isValueDependent(),
2601           (lhs->containsUnexpandedParameterPack() ||
2602            rhs->containsUnexpandedParameterPack())),
2603      Opc(opc), OpLoc(opLoc) {
2604    SubExprs[LHS] = lhs;
2605    SubExprs[RHS] = rhs;
2606  }
2607
2608  BinaryOperator(StmtClass SC, EmptyShell Empty)
2609    : Expr(SC, Empty), Opc(BO_MulAssign) { }
2610};
2611
2612/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
2613/// track of the type the operation is performed in.  Due to the semantics of
2614/// these operators, the operands are promoted, the aritmetic performed, an
2615/// implicit conversion back to the result type done, then the assignment takes
2616/// place.  This captures the intermediate type which the computation is done
2617/// in.
2618class CompoundAssignOperator : public BinaryOperator {
2619  QualType ComputationLHSType;
2620  QualType ComputationResultType;
2621public:
2622  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResType,
2623                         ExprValueKind VK, ExprObjectKind OK,
2624                         QualType CompLHSType, QualType CompResultType,
2625                         SourceLocation OpLoc)
2626    : BinaryOperator(lhs, rhs, opc, ResType, VK, OK, OpLoc, true),
2627      ComputationLHSType(CompLHSType),
2628      ComputationResultType(CompResultType) {
2629    assert(isCompoundAssignmentOp() &&
2630           "Only should be used for compound assignments");
2631  }
2632
2633  /// \brief Build an empty compound assignment operator expression.
2634  explicit CompoundAssignOperator(EmptyShell Empty)
2635    : BinaryOperator(CompoundAssignOperatorClass, Empty) { }
2636
2637  // The two computation types are the type the LHS is converted
2638  // to for the computation and the type of the result; the two are
2639  // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
2640  QualType getComputationLHSType() const { return ComputationLHSType; }
2641  void setComputationLHSType(QualType T) { ComputationLHSType = T; }
2642
2643  QualType getComputationResultType() const { return ComputationResultType; }
2644  void setComputationResultType(QualType T) { ComputationResultType = T; }
2645
2646  static bool classof(const CompoundAssignOperator *) { return true; }
2647  static bool classof(const Stmt *S) {
2648    return S->getStmtClass() == CompoundAssignOperatorClass;
2649  }
2650};
2651
2652/// AbstractConditionalOperator - An abstract base class for
2653/// ConditionalOperator and BinaryConditionalOperator.
2654class AbstractConditionalOperator : public Expr {
2655  SourceLocation QuestionLoc, ColonLoc;
2656  friend class ASTStmtReader;
2657
2658protected:
2659  AbstractConditionalOperator(StmtClass SC, QualType T,
2660                              ExprValueKind VK, ExprObjectKind OK,
2661                              bool TD, bool VD,
2662                              bool ContainsUnexpandedParameterPack,
2663                              SourceLocation qloc,
2664                              SourceLocation cloc)
2665    : Expr(SC, T, VK, OK, TD, VD, ContainsUnexpandedParameterPack),
2666      QuestionLoc(qloc), ColonLoc(cloc) {}
2667
2668  AbstractConditionalOperator(StmtClass SC, EmptyShell Empty)
2669    : Expr(SC, Empty) { }
2670
2671public:
2672  // getCond - Return the expression representing the condition for
2673  //   the ?: operator.
2674  Expr *getCond() const;
2675
2676  // getTrueExpr - Return the subexpression representing the value of
2677  //   the expression if the condition evaluates to true.
2678  Expr *getTrueExpr() const;
2679
2680  // getFalseExpr - Return the subexpression representing the value of
2681  //   the expression if the condition evaluates to false.  This is
2682  //   the same as getRHS.
2683  Expr *getFalseExpr() const;
2684
2685  SourceLocation getQuestionLoc() const { return QuestionLoc; }
2686  SourceLocation getColonLoc() const { return ColonLoc; }
2687
2688  static bool classof(const Stmt *T) {
2689    return T->getStmtClass() == ConditionalOperatorClass ||
2690           T->getStmtClass() == BinaryConditionalOperatorClass;
2691  }
2692  static bool classof(const AbstractConditionalOperator *) { return true; }
2693};
2694
2695/// ConditionalOperator - The ?: ternary operator.  The GNU "missing
2696/// middle" extension is a BinaryConditionalOperator.
2697class ConditionalOperator : public AbstractConditionalOperator {
2698  enum { COND, LHS, RHS, END_EXPR };
2699  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
2700
2701  friend class ASTStmtReader;
2702public:
2703  ConditionalOperator(Expr *cond, SourceLocation QLoc, Expr *lhs,
2704                      SourceLocation CLoc, Expr *rhs,
2705                      QualType t, ExprValueKind VK, ExprObjectKind OK)
2706    : AbstractConditionalOperator(ConditionalOperatorClass, t, VK, OK,
2707           // FIXME: the type of the conditional operator doesn't
2708           // depend on the type of the conditional, but the standard
2709           // seems to imply that it could. File a bug!
2710           (lhs->isTypeDependent() || rhs->isTypeDependent()),
2711           (cond->isValueDependent() || lhs->isValueDependent() ||
2712            rhs->isValueDependent()),
2713           (cond->containsUnexpandedParameterPack() ||
2714            lhs->containsUnexpandedParameterPack() ||
2715            rhs->containsUnexpandedParameterPack()),
2716                                  QLoc, CLoc) {
2717    SubExprs[COND] = cond;
2718    SubExprs[LHS] = lhs;
2719    SubExprs[RHS] = rhs;
2720  }
2721
2722  /// \brief Build an empty conditional operator.
2723  explicit ConditionalOperator(EmptyShell Empty)
2724    : AbstractConditionalOperator(ConditionalOperatorClass, Empty) { }
2725
2726  // getCond - Return the expression representing the condition for
2727  //   the ?: operator.
2728  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
2729
2730  // getTrueExpr - Return the subexpression representing the value of
2731  //   the expression if the condition evaluates to true.
2732  Expr *getTrueExpr() const { return cast<Expr>(SubExprs[LHS]); }
2733
2734  // getFalseExpr - Return the subexpression representing the value of
2735  //   the expression if the condition evaluates to false.  This is
2736  //   the same as getRHS.
2737  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
2738
2739  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2740  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2741
2742  SourceRange getSourceRange() const {
2743    return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
2744  }
2745  static bool classof(const Stmt *T) {
2746    return T->getStmtClass() == ConditionalOperatorClass;
2747  }
2748  static bool classof(const ConditionalOperator *) { return true; }
2749
2750  // Iterators
2751  child_range children() {
2752    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
2753  }
2754};
2755
2756/// BinaryConditionalOperator - The GNU extension to the conditional
2757/// operator which allows the middle operand to be omitted.
2758///
2759/// This is a different expression kind on the assumption that almost
2760/// every client ends up needing to know that these are different.
2761class BinaryConditionalOperator : public AbstractConditionalOperator {
2762  enum { COMMON, COND, LHS, RHS, NUM_SUBEXPRS };
2763
2764  /// - the common condition/left-hand-side expression, which will be
2765  ///   evaluated as the opaque value
2766  /// - the condition, expressed in terms of the opaque value
2767  /// - the left-hand-side, expressed in terms of the opaque value
2768  /// - the right-hand-side
2769  Stmt *SubExprs[NUM_SUBEXPRS];
2770  OpaqueValueExpr *OpaqueValue;
2771
2772  friend class ASTStmtReader;
2773public:
2774  BinaryConditionalOperator(Expr *common, OpaqueValueExpr *opaqueValue,
2775                            Expr *cond, Expr *lhs, Expr *rhs,
2776                            SourceLocation qloc, SourceLocation cloc,
2777                            QualType t, ExprValueKind VK, ExprObjectKind OK)
2778    : AbstractConditionalOperator(BinaryConditionalOperatorClass, t, VK, OK,
2779           (common->isTypeDependent() || rhs->isTypeDependent()),
2780           (common->isValueDependent() || rhs->isValueDependent()),
2781           (common->containsUnexpandedParameterPack() ||
2782            rhs->containsUnexpandedParameterPack()),
2783                                  qloc, cloc),
2784      OpaqueValue(opaqueValue) {
2785    SubExprs[COMMON] = common;
2786    SubExprs[COND] = cond;
2787    SubExprs[LHS] = lhs;
2788    SubExprs[RHS] = rhs;
2789
2790    OpaqueValue->setSourceExpr(common);
2791  }
2792
2793  /// \brief Build an empty conditional operator.
2794  explicit BinaryConditionalOperator(EmptyShell Empty)
2795    : AbstractConditionalOperator(BinaryConditionalOperatorClass, Empty) { }
2796
2797  /// \brief getCommon - Return the common expression, written to the
2798  ///   left of the condition.  The opaque value will be bound to the
2799  ///   result of this expression.
2800  Expr *getCommon() const { return cast<Expr>(SubExprs[COMMON]); }
2801
2802  /// \brief getOpaqueValue - Return the opaque value placeholder.
2803  OpaqueValueExpr *getOpaqueValue() const { return OpaqueValue; }
2804
2805  /// \brief getCond - Return the condition expression; this is defined
2806  ///   in terms of the opaque value.
2807  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
2808
2809  /// \brief getTrueExpr - Return the subexpression which will be
2810  ///   evaluated if the condition evaluates to true;  this is defined
2811  ///   in terms of the opaque value.
2812  Expr *getTrueExpr() const {
2813    return cast<Expr>(SubExprs[LHS]);
2814  }
2815
2816  /// \brief getFalseExpr - Return the subexpression which will be
2817  ///   evaluated if the condnition evaluates to false; this is
2818  ///   defined in terms of the opaque value.
2819  Expr *getFalseExpr() const {
2820    return cast<Expr>(SubExprs[RHS]);
2821  }
2822
2823  SourceRange getSourceRange() const {
2824    return SourceRange(getCommon()->getLocStart(), getFalseExpr()->getLocEnd());
2825  }
2826  static bool classof(const Stmt *T) {
2827    return T->getStmtClass() == BinaryConditionalOperatorClass;
2828  }
2829  static bool classof(const BinaryConditionalOperator *) { return true; }
2830
2831  // Iterators
2832  child_range children() {
2833    return child_range(SubExprs, SubExprs + NUM_SUBEXPRS);
2834  }
2835};
2836
2837inline Expr *AbstractConditionalOperator::getCond() const {
2838  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
2839    return co->getCond();
2840  return cast<BinaryConditionalOperator>(this)->getCond();
2841}
2842
2843inline Expr *AbstractConditionalOperator::getTrueExpr() const {
2844  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
2845    return co->getTrueExpr();
2846  return cast<BinaryConditionalOperator>(this)->getTrueExpr();
2847}
2848
2849inline Expr *AbstractConditionalOperator::getFalseExpr() const {
2850  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
2851    return co->getFalseExpr();
2852  return cast<BinaryConditionalOperator>(this)->getFalseExpr();
2853}
2854
2855/// AddrLabelExpr - The GNU address of label extension, representing &&label.
2856class AddrLabelExpr : public Expr {
2857  SourceLocation AmpAmpLoc, LabelLoc;
2858  LabelDecl *Label;
2859public:
2860  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelDecl *L,
2861                QualType t)
2862    : Expr(AddrLabelExprClass, t, VK_RValue, OK_Ordinary, false, false, false),
2863      AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
2864
2865  /// \brief Build an empty address of a label expression.
2866  explicit AddrLabelExpr(EmptyShell Empty)
2867    : Expr(AddrLabelExprClass, Empty) { }
2868
2869  SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
2870  void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
2871  SourceLocation getLabelLoc() const { return LabelLoc; }
2872  void setLabelLoc(SourceLocation L) { LabelLoc = L; }
2873
2874  SourceRange getSourceRange() const {
2875    return SourceRange(AmpAmpLoc, LabelLoc);
2876  }
2877
2878  LabelDecl *getLabel() const { return Label; }
2879  void setLabel(LabelDecl *L) { Label = L; }
2880
2881  static bool classof(const Stmt *T) {
2882    return T->getStmtClass() == AddrLabelExprClass;
2883  }
2884  static bool classof(const AddrLabelExpr *) { return true; }
2885
2886  // Iterators
2887  child_range children() { return child_range(); }
2888};
2889
2890/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
2891/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
2892/// takes the value of the last subexpression.
2893///
2894/// A StmtExpr is always an r-value; values "returned" out of a
2895/// StmtExpr will be copied.
2896class StmtExpr : public Expr {
2897  Stmt *SubStmt;
2898  SourceLocation LParenLoc, RParenLoc;
2899public:
2900  // FIXME: Does type-dependence need to be computed differently?
2901  StmtExpr(CompoundStmt *substmt, QualType T,
2902           SourceLocation lp, SourceLocation rp) :
2903    Expr(StmtExprClass, T, VK_RValue, OK_Ordinary,
2904         T->isDependentType(), false, false),
2905    SubStmt(substmt), LParenLoc(lp), RParenLoc(rp) { }
2906
2907  /// \brief Build an empty statement expression.
2908  explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
2909
2910  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
2911  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
2912  void setSubStmt(CompoundStmt *S) { SubStmt = S; }
2913
2914  SourceRange getSourceRange() const {
2915    return SourceRange(LParenLoc, RParenLoc);
2916  }
2917
2918  SourceLocation getLParenLoc() const { return LParenLoc; }
2919  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2920  SourceLocation getRParenLoc() const { return RParenLoc; }
2921  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2922
2923  static bool classof(const Stmt *T) {
2924    return T->getStmtClass() == StmtExprClass;
2925  }
2926  static bool classof(const StmtExpr *) { return true; }
2927
2928  // Iterators
2929  child_range children() { return child_range(&SubStmt, &SubStmt+1); }
2930};
2931
2932
2933/// ShuffleVectorExpr - clang-specific builtin-in function
2934/// __builtin_shufflevector.
2935/// This AST node represents a operator that does a constant
2936/// shuffle, similar to LLVM's shufflevector instruction. It takes
2937/// two vectors and a variable number of constant indices,
2938/// and returns the appropriately shuffled vector.
2939class ShuffleVectorExpr : public Expr {
2940  SourceLocation BuiltinLoc, RParenLoc;
2941
2942  // SubExprs - the list of values passed to the __builtin_shufflevector
2943  // function. The first two are vectors, and the rest are constant
2944  // indices.  The number of values in this list is always
2945  // 2+the number of indices in the vector type.
2946  Stmt **SubExprs;
2947  unsigned NumExprs;
2948
2949public:
2950  ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr,
2951                    QualType Type, SourceLocation BLoc,
2952                    SourceLocation RP);
2953
2954  /// \brief Build an empty vector-shuffle expression.
2955  explicit ShuffleVectorExpr(EmptyShell Empty)
2956    : Expr(ShuffleVectorExprClass, Empty), SubExprs(0) { }
2957
2958  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2959  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2960
2961  SourceLocation getRParenLoc() const { return RParenLoc; }
2962  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2963
2964  SourceRange getSourceRange() const {
2965    return SourceRange(BuiltinLoc, RParenLoc);
2966  }
2967  static bool classof(const Stmt *T) {
2968    return T->getStmtClass() == ShuffleVectorExprClass;
2969  }
2970  static bool classof(const ShuffleVectorExpr *) { return true; }
2971
2972  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
2973  /// constant expression, the actual arguments passed in, and the function
2974  /// pointers.
2975  unsigned getNumSubExprs() const { return NumExprs; }
2976
2977  /// \brief Retrieve the array of expressions.
2978  Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
2979
2980  /// getExpr - Return the Expr at the specified index.
2981  Expr *getExpr(unsigned Index) {
2982    assert((Index < NumExprs) && "Arg access out of range!");
2983    return cast<Expr>(SubExprs[Index]);
2984  }
2985  const Expr *getExpr(unsigned Index) const {
2986    assert((Index < NumExprs) && "Arg access out of range!");
2987    return cast<Expr>(SubExprs[Index]);
2988  }
2989
2990  void setExprs(ASTContext &C, Expr ** Exprs, unsigned NumExprs);
2991
2992  unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) {
2993    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
2994    return getExpr(N+2)->EvaluateAsInt(Ctx).getZExtValue();
2995  }
2996
2997  // Iterators
2998  child_range children() {
2999    return child_range(&SubExprs[0], &SubExprs[0]+NumExprs);
3000  }
3001};
3002
3003/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
3004/// This AST node is similar to the conditional operator (?:) in C, with
3005/// the following exceptions:
3006/// - the test expression must be a integer constant expression.
3007/// - the expression returned acts like the chosen subexpression in every
3008///   visible way: the type is the same as that of the chosen subexpression,
3009///   and all predicates (whether it's an l-value, whether it's an integer
3010///   constant expression, etc.) return the same result as for the chosen
3011///   sub-expression.
3012class ChooseExpr : public Expr {
3013  enum { COND, LHS, RHS, END_EXPR };
3014  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
3015  SourceLocation BuiltinLoc, RParenLoc;
3016public:
3017  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs,
3018             QualType t, ExprValueKind VK, ExprObjectKind OK,
3019             SourceLocation RP, bool TypeDependent, bool ValueDependent)
3020    : Expr(ChooseExprClass, t, VK, OK, TypeDependent, ValueDependent,
3021           (cond->containsUnexpandedParameterPack() ||
3022            lhs->containsUnexpandedParameterPack() ||
3023            rhs->containsUnexpandedParameterPack())),
3024      BuiltinLoc(BLoc), RParenLoc(RP) {
3025      SubExprs[COND] = cond;
3026      SubExprs[LHS] = lhs;
3027      SubExprs[RHS] = rhs;
3028    }
3029
3030  /// \brief Build an empty __builtin_choose_expr.
3031  explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
3032
3033  /// isConditionTrue - Return whether the condition is true (i.e. not
3034  /// equal to zero).
3035  bool isConditionTrue(const ASTContext &C) const;
3036
3037  /// getChosenSubExpr - Return the subexpression chosen according to the
3038  /// condition.
3039  Expr *getChosenSubExpr(const ASTContext &C) const {
3040    return isConditionTrue(C) ? getLHS() : getRHS();
3041  }
3042
3043  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3044  void setCond(Expr *E) { SubExprs[COND] = E; }
3045  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
3046  void setLHS(Expr *E) { SubExprs[LHS] = E; }
3047  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
3048  void setRHS(Expr *E) { SubExprs[RHS] = E; }
3049
3050  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3051  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3052
3053  SourceLocation getRParenLoc() const { return RParenLoc; }
3054  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3055
3056  SourceRange getSourceRange() const {
3057    return SourceRange(BuiltinLoc, RParenLoc);
3058  }
3059  static bool classof(const Stmt *T) {
3060    return T->getStmtClass() == ChooseExprClass;
3061  }
3062  static bool classof(const ChooseExpr *) { return true; }
3063
3064  // Iterators
3065  child_range children() {
3066    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
3067  }
3068};
3069
3070/// GNUNullExpr - Implements the GNU __null extension, which is a name
3071/// for a null pointer constant that has integral type (e.g., int or
3072/// long) and is the same size and alignment as a pointer. The __null
3073/// extension is typically only used by system headers, which define
3074/// NULL as __null in C++ rather than using 0 (which is an integer
3075/// that may not match the size of a pointer).
3076class GNUNullExpr : public Expr {
3077  /// TokenLoc - The location of the __null keyword.
3078  SourceLocation TokenLoc;
3079
3080public:
3081  GNUNullExpr(QualType Ty, SourceLocation Loc)
3082    : Expr(GNUNullExprClass, Ty, VK_RValue, OK_Ordinary, false, false, false),
3083      TokenLoc(Loc) { }
3084
3085  /// \brief Build an empty GNU __null expression.
3086  explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
3087
3088  /// getTokenLocation - The location of the __null token.
3089  SourceLocation getTokenLocation() const { return TokenLoc; }
3090  void setTokenLocation(SourceLocation L) { TokenLoc = L; }
3091
3092  SourceRange getSourceRange() const {
3093    return SourceRange(TokenLoc);
3094  }
3095  static bool classof(const Stmt *T) {
3096    return T->getStmtClass() == GNUNullExprClass;
3097  }
3098  static bool classof(const GNUNullExpr *) { return true; }
3099
3100  // Iterators
3101  child_range children() { return child_range(); }
3102};
3103
3104/// VAArgExpr, used for the builtin function __builtin_va_arg.
3105class VAArgExpr : public Expr {
3106  Stmt *Val;
3107  TypeSourceInfo *TInfo;
3108  SourceLocation BuiltinLoc, RParenLoc;
3109public:
3110  VAArgExpr(SourceLocation BLoc, Expr* e, TypeSourceInfo *TInfo,
3111            SourceLocation RPLoc, QualType t)
3112    : Expr(VAArgExprClass, t, VK_RValue, OK_Ordinary,
3113           t->isDependentType(), false,
3114           (TInfo->getType()->containsUnexpandedParameterPack() ||
3115            e->containsUnexpandedParameterPack())),
3116      Val(e), TInfo(TInfo),
3117      BuiltinLoc(BLoc),
3118      RParenLoc(RPLoc) { }
3119
3120  /// \brief Create an empty __builtin_va_arg expression.
3121  explicit VAArgExpr(EmptyShell Empty) : Expr(VAArgExprClass, Empty) { }
3122
3123  const Expr *getSubExpr() const { return cast<Expr>(Val); }
3124  Expr *getSubExpr() { return cast<Expr>(Val); }
3125  void setSubExpr(Expr *E) { Val = E; }
3126
3127  TypeSourceInfo *getWrittenTypeInfo() const { return TInfo; }
3128  void setWrittenTypeInfo(TypeSourceInfo *TI) { TInfo = TI; }
3129
3130  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3131  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3132
3133  SourceLocation getRParenLoc() const { return RParenLoc; }
3134  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3135
3136  SourceRange getSourceRange() const {
3137    return SourceRange(BuiltinLoc, RParenLoc);
3138  }
3139  static bool classof(const Stmt *T) {
3140    return T->getStmtClass() == VAArgExprClass;
3141  }
3142  static bool classof(const VAArgExpr *) { return true; }
3143
3144  // Iterators
3145  child_range children() { return child_range(&Val, &Val+1); }
3146};
3147
3148/// @brief Describes an C or C++ initializer list.
3149///
3150/// InitListExpr describes an initializer list, which can be used to
3151/// initialize objects of different types, including
3152/// struct/class/union types, arrays, and vectors. For example:
3153///
3154/// @code
3155/// struct foo x = { 1, { 2, 3 } };
3156/// @endcode
3157///
3158/// Prior to semantic analysis, an initializer list will represent the
3159/// initializer list as written by the user, but will have the
3160/// placeholder type "void". This initializer list is called the
3161/// syntactic form of the initializer, and may contain C99 designated
3162/// initializers (represented as DesignatedInitExprs), initializations
3163/// of subobject members without explicit braces, and so on. Clients
3164/// interested in the original syntax of the initializer list should
3165/// use the syntactic form of the initializer list.
3166///
3167/// After semantic analysis, the initializer list will represent the
3168/// semantic form of the initializer, where the initializations of all
3169/// subobjects are made explicit with nested InitListExpr nodes and
3170/// C99 designators have been eliminated by placing the designated
3171/// initializations into the subobject they initialize. Additionally,
3172/// any "holes" in the initialization, where no initializer has been
3173/// specified for a particular subobject, will be replaced with
3174/// implicitly-generated ImplicitValueInitExpr expressions that
3175/// value-initialize the subobjects. Note, however, that the
3176/// initializer lists may still have fewer initializers than there are
3177/// elements to initialize within the object.
3178///
3179/// Given the semantic form of the initializer list, one can retrieve
3180/// the original syntactic form of that initializer list (if it
3181/// exists) using getSyntacticForm(). Since many initializer lists
3182/// have the same syntactic and semantic forms, getSyntacticForm() may
3183/// return NULL, indicating that the current initializer list also
3184/// serves as its syntactic form.
3185class InitListExpr : public Expr {
3186  // FIXME: Eliminate this vector in favor of ASTContext allocation
3187  typedef ASTVector<Stmt *> InitExprsTy;
3188  InitExprsTy InitExprs;
3189  SourceLocation LBraceLoc, RBraceLoc;
3190
3191  /// Contains the initializer list that describes the syntactic form
3192  /// written in the source code.
3193  InitListExpr *SyntacticForm;
3194
3195  /// \brief Either:
3196  ///  If this initializer list initializes an array with more elements than
3197  ///  there are initializers in the list, specifies an expression to be used
3198  ///  for value initialization of the rest of the elements.
3199  /// Or
3200  ///  If this initializer list initializes a union, specifies which
3201  ///  field within the union will be initialized.
3202  llvm::PointerUnion<Expr *, FieldDecl *> ArrayFillerOrUnionFieldInit;
3203
3204  /// Whether this initializer list originally had a GNU array-range
3205  /// designator in it. This is a temporary marker used by CodeGen.
3206  bool HadArrayRangeDesignator;
3207
3208public:
3209  InitListExpr(ASTContext &C, SourceLocation lbraceloc,
3210               Expr **initexprs, unsigned numinits,
3211               SourceLocation rbraceloc);
3212
3213  /// \brief Build an empty initializer list.
3214  explicit InitListExpr(ASTContext &C, EmptyShell Empty)
3215    : Expr(InitListExprClass, Empty), InitExprs(C) { }
3216
3217  unsigned getNumInits() const { return InitExprs.size(); }
3218
3219  /// \brief Retrieve the set of initializers.
3220  Expr **getInits() { return reinterpret_cast<Expr **>(InitExprs.data()); }
3221
3222  const Expr *getInit(unsigned Init) const {
3223    assert(Init < getNumInits() && "Initializer access out of range!");
3224    return cast_or_null<Expr>(InitExprs[Init]);
3225  }
3226
3227  Expr *getInit(unsigned Init) {
3228    assert(Init < getNumInits() && "Initializer access out of range!");
3229    return cast_or_null<Expr>(InitExprs[Init]);
3230  }
3231
3232  void setInit(unsigned Init, Expr *expr) {
3233    assert(Init < getNumInits() && "Initializer access out of range!");
3234    InitExprs[Init] = expr;
3235  }
3236
3237  /// \brief Reserve space for some number of initializers.
3238  void reserveInits(ASTContext &C, unsigned NumInits);
3239
3240  /// @brief Specify the number of initializers
3241  ///
3242  /// If there are more than @p NumInits initializers, the remaining
3243  /// initializers will be destroyed. If there are fewer than @p
3244  /// NumInits initializers, NULL expressions will be added for the
3245  /// unknown initializers.
3246  void resizeInits(ASTContext &Context, unsigned NumInits);
3247
3248  /// @brief Updates the initializer at index @p Init with the new
3249  /// expression @p expr, and returns the old expression at that
3250  /// location.
3251  ///
3252  /// When @p Init is out of range for this initializer list, the
3253  /// initializer list will be extended with NULL expressions to
3254  /// accommodate the new entry.
3255  Expr *updateInit(ASTContext &C, unsigned Init, Expr *expr);
3256
3257  /// \brief If this initializer list initializes an array with more elements
3258  /// than there are initializers in the list, specifies an expression to be
3259  /// used for value initialization of the rest of the elements.
3260  Expr *getArrayFiller() {
3261    return ArrayFillerOrUnionFieldInit.dyn_cast<Expr *>();
3262  }
3263  void setArrayFiller(Expr *filler);
3264
3265  /// \brief If this initializes a union, specifies which field in the
3266  /// union to initialize.
3267  ///
3268  /// Typically, this field is the first named field within the
3269  /// union. However, a designated initializer can specify the
3270  /// initialization of a different field within the union.
3271  FieldDecl *getInitializedFieldInUnion() {
3272    return ArrayFillerOrUnionFieldInit.dyn_cast<FieldDecl *>();
3273  }
3274  void setInitializedFieldInUnion(FieldDecl *FD) {
3275    ArrayFillerOrUnionFieldInit = FD;
3276  }
3277
3278  // Explicit InitListExpr's originate from source code (and have valid source
3279  // locations). Implicit InitListExpr's are created by the semantic analyzer.
3280  bool isExplicit() {
3281    return LBraceLoc.isValid() && RBraceLoc.isValid();
3282  }
3283
3284  SourceLocation getLBraceLoc() const { return LBraceLoc; }
3285  void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
3286  SourceLocation getRBraceLoc() const { return RBraceLoc; }
3287  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
3288
3289  /// @brief Retrieve the initializer list that describes the
3290  /// syntactic form of the initializer.
3291  ///
3292  ///
3293  InitListExpr *getSyntacticForm() const { return SyntacticForm; }
3294  void setSyntacticForm(InitListExpr *Init) { SyntacticForm = Init; }
3295
3296  bool hadArrayRangeDesignator() const { return HadArrayRangeDesignator; }
3297  void sawArrayRangeDesignator(bool ARD = true) {
3298    HadArrayRangeDesignator = ARD;
3299  }
3300
3301  SourceRange getSourceRange() const;
3302
3303  static bool classof(const Stmt *T) {
3304    return T->getStmtClass() == InitListExprClass;
3305  }
3306  static bool classof(const InitListExpr *) { return true; }
3307
3308  // Iterators
3309  child_range children() {
3310    if (InitExprs.empty()) return child_range();
3311    return child_range(&InitExprs[0], &InitExprs[0] + InitExprs.size());
3312  }
3313
3314  typedef InitExprsTy::iterator iterator;
3315  typedef InitExprsTy::const_iterator const_iterator;
3316  typedef InitExprsTy::reverse_iterator reverse_iterator;
3317  typedef InitExprsTy::const_reverse_iterator const_reverse_iterator;
3318
3319  iterator begin() { return InitExprs.begin(); }
3320  const_iterator begin() const { return InitExprs.begin(); }
3321  iterator end() { return InitExprs.end(); }
3322  const_iterator end() const { return InitExprs.end(); }
3323  reverse_iterator rbegin() { return InitExprs.rbegin(); }
3324  const_reverse_iterator rbegin() const { return InitExprs.rbegin(); }
3325  reverse_iterator rend() { return InitExprs.rend(); }
3326  const_reverse_iterator rend() const { return InitExprs.rend(); }
3327
3328  friend class ASTStmtReader;
3329  friend class ASTStmtWriter;
3330};
3331
3332/// @brief Represents a C99 designated initializer expression.
3333///
3334/// A designated initializer expression (C99 6.7.8) contains one or
3335/// more designators (which can be field designators, array
3336/// designators, or GNU array-range designators) followed by an
3337/// expression that initializes the field or element(s) that the
3338/// designators refer to. For example, given:
3339///
3340/// @code
3341/// struct point {
3342///   double x;
3343///   double y;
3344/// };
3345/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
3346/// @endcode
3347///
3348/// The InitListExpr contains three DesignatedInitExprs, the first of
3349/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
3350/// designators, one array designator for @c [2] followed by one field
3351/// designator for @c .y. The initalization expression will be 1.0.
3352class DesignatedInitExpr : public Expr {
3353public:
3354  /// \brief Forward declaration of the Designator class.
3355  class Designator;
3356
3357private:
3358  /// The location of the '=' or ':' prior to the actual initializer
3359  /// expression.
3360  SourceLocation EqualOrColonLoc;
3361
3362  /// Whether this designated initializer used the GNU deprecated
3363  /// syntax rather than the C99 '=' syntax.
3364  bool GNUSyntax : 1;
3365
3366  /// The number of designators in this initializer expression.
3367  unsigned NumDesignators : 15;
3368
3369  /// \brief The designators in this designated initialization
3370  /// expression.
3371  Designator *Designators;
3372
3373  /// The number of subexpressions of this initializer expression,
3374  /// which contains both the initializer and any additional
3375  /// expressions used by array and array-range designators.
3376  unsigned NumSubExprs : 16;
3377
3378
3379  DesignatedInitExpr(ASTContext &C, QualType Ty, unsigned NumDesignators,
3380                     const Designator *Designators,
3381                     SourceLocation EqualOrColonLoc, bool GNUSyntax,
3382                     Expr **IndexExprs, unsigned NumIndexExprs,
3383                     Expr *Init);
3384
3385  explicit DesignatedInitExpr(unsigned NumSubExprs)
3386    : Expr(DesignatedInitExprClass, EmptyShell()),
3387      NumDesignators(0), Designators(0), NumSubExprs(NumSubExprs) { }
3388
3389public:
3390  /// A field designator, e.g., ".x".
3391  struct FieldDesignator {
3392    /// Refers to the field that is being initialized. The low bit
3393    /// of this field determines whether this is actually a pointer
3394    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
3395    /// initially constructed, a field designator will store an
3396    /// IdentifierInfo*. After semantic analysis has resolved that
3397    /// name, the field designator will instead store a FieldDecl*.
3398    uintptr_t NameOrField;
3399
3400    /// The location of the '.' in the designated initializer.
3401    unsigned DotLoc;
3402
3403    /// The location of the field name in the designated initializer.
3404    unsigned FieldLoc;
3405  };
3406
3407  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
3408  struct ArrayOrRangeDesignator {
3409    /// Location of the first index expression within the designated
3410    /// initializer expression's list of subexpressions.
3411    unsigned Index;
3412    /// The location of the '[' starting the array range designator.
3413    unsigned LBracketLoc;
3414    /// The location of the ellipsis separating the start and end
3415    /// indices. Only valid for GNU array-range designators.
3416    unsigned EllipsisLoc;
3417    /// The location of the ']' terminating the array range designator.
3418    unsigned RBracketLoc;
3419  };
3420
3421  /// @brief Represents a single C99 designator.
3422  ///
3423  /// @todo This class is infuriatingly similar to clang::Designator,
3424  /// but minor differences (storing indices vs. storing pointers)
3425  /// keep us from reusing it. Try harder, later, to rectify these
3426  /// differences.
3427  class Designator {
3428    /// @brief The kind of designator this describes.
3429    enum {
3430      FieldDesignator,
3431      ArrayDesignator,
3432      ArrayRangeDesignator
3433    } Kind;
3434
3435    union {
3436      /// A field designator, e.g., ".x".
3437      struct FieldDesignator Field;
3438      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
3439      struct ArrayOrRangeDesignator ArrayOrRange;
3440    };
3441    friend class DesignatedInitExpr;
3442
3443  public:
3444    Designator() {}
3445
3446    /// @brief Initializes a field designator.
3447    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
3448               SourceLocation FieldLoc)
3449      : Kind(FieldDesignator) {
3450      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
3451      Field.DotLoc = DotLoc.getRawEncoding();
3452      Field.FieldLoc = FieldLoc.getRawEncoding();
3453    }
3454
3455    /// @brief Initializes an array designator.
3456    Designator(unsigned Index, SourceLocation LBracketLoc,
3457               SourceLocation RBracketLoc)
3458      : Kind(ArrayDesignator) {
3459      ArrayOrRange.Index = Index;
3460      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3461      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
3462      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3463    }
3464
3465    /// @brief Initializes a GNU array-range designator.
3466    Designator(unsigned Index, SourceLocation LBracketLoc,
3467               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
3468      : Kind(ArrayRangeDesignator) {
3469      ArrayOrRange.Index = Index;
3470      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3471      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
3472      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3473    }
3474
3475    bool isFieldDesignator() const { return Kind == FieldDesignator; }
3476    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
3477    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
3478
3479    IdentifierInfo * getFieldName();
3480
3481    FieldDecl *getField() {
3482      assert(Kind == FieldDesignator && "Only valid on a field designator");
3483      if (Field.NameOrField & 0x01)
3484        return 0;
3485      else
3486        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
3487    }
3488
3489    void setField(FieldDecl *FD) {
3490      assert(Kind == FieldDesignator && "Only valid on a field designator");
3491      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
3492    }
3493
3494    SourceLocation getDotLoc() const {
3495      assert(Kind == FieldDesignator && "Only valid on a field designator");
3496      return SourceLocation::getFromRawEncoding(Field.DotLoc);
3497    }
3498
3499    SourceLocation getFieldLoc() const {
3500      assert(Kind == FieldDesignator && "Only valid on a field designator");
3501      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
3502    }
3503
3504    SourceLocation getLBracketLoc() const {
3505      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3506             "Only valid on an array or array-range designator");
3507      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
3508    }
3509
3510    SourceLocation getRBracketLoc() const {
3511      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3512             "Only valid on an array or array-range designator");
3513      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
3514    }
3515
3516    SourceLocation getEllipsisLoc() const {
3517      assert(Kind == ArrayRangeDesignator &&
3518             "Only valid on an array-range designator");
3519      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
3520    }
3521
3522    unsigned getFirstExprIndex() const {
3523      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3524             "Only valid on an array or array-range designator");
3525      return ArrayOrRange.Index;
3526    }
3527
3528    SourceLocation getStartLocation() const {
3529      if (Kind == FieldDesignator)
3530        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
3531      else
3532        return getLBracketLoc();
3533    }
3534    SourceLocation getEndLocation() const {
3535      return Kind == FieldDesignator ? getFieldLoc() : getRBracketLoc();
3536    }
3537    SourceRange getSourceRange() const {
3538      return SourceRange(getStartLocation(), getEndLocation());
3539    }
3540  };
3541
3542  static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators,
3543                                    unsigned NumDesignators,
3544                                    Expr **IndexExprs, unsigned NumIndexExprs,
3545                                    SourceLocation EqualOrColonLoc,
3546                                    bool GNUSyntax, Expr *Init);
3547
3548  static DesignatedInitExpr *CreateEmpty(ASTContext &C, unsigned NumIndexExprs);
3549
3550  /// @brief Returns the number of designators in this initializer.
3551  unsigned size() const { return NumDesignators; }
3552
3553  // Iterator access to the designators.
3554  typedef Designator* designators_iterator;
3555  designators_iterator designators_begin() { return Designators; }
3556  designators_iterator designators_end() {
3557    return Designators + NumDesignators;
3558  }
3559
3560  typedef std::reverse_iterator<designators_iterator>
3561          reverse_designators_iterator;
3562  reverse_designators_iterator designators_rbegin() {
3563    return reverse_designators_iterator(designators_end());
3564  }
3565  reverse_designators_iterator designators_rend() {
3566    return reverse_designators_iterator(designators_begin());
3567  }
3568
3569  Designator *getDesignator(unsigned Idx) { return &designators_begin()[Idx]; }
3570
3571  void setDesignators(ASTContext &C, const Designator *Desigs,
3572                      unsigned NumDesigs);
3573
3574  Expr *getArrayIndex(const Designator& D);
3575  Expr *getArrayRangeStart(const Designator& D);
3576  Expr *getArrayRangeEnd(const Designator& D);
3577
3578  /// @brief Retrieve the location of the '=' that precedes the
3579  /// initializer value itself, if present.
3580  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
3581  void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
3582
3583  /// @brief Determines whether this designated initializer used the
3584  /// deprecated GNU syntax for designated initializers.
3585  bool usesGNUSyntax() const { return GNUSyntax; }
3586  void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
3587
3588  /// @brief Retrieve the initializer value.
3589  Expr *getInit() const {
3590    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
3591  }
3592
3593  void setInit(Expr *init) {
3594    *child_begin() = init;
3595  }
3596
3597  /// \brief Retrieve the total number of subexpressions in this
3598  /// designated initializer expression, including the actual
3599  /// initialized value and any expressions that occur within array
3600  /// and array-range designators.
3601  unsigned getNumSubExprs() const { return NumSubExprs; }
3602
3603  Expr *getSubExpr(unsigned Idx) {
3604    assert(Idx < NumSubExprs && "Subscript out of range");
3605    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3606    Ptr += sizeof(DesignatedInitExpr);
3607    return reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx];
3608  }
3609
3610  void setSubExpr(unsigned Idx, Expr *E) {
3611    assert(Idx < NumSubExprs && "Subscript out of range");
3612    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3613    Ptr += sizeof(DesignatedInitExpr);
3614    reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx] = E;
3615  }
3616
3617  /// \brief Replaces the designator at index @p Idx with the series
3618  /// of designators in [First, Last).
3619  void ExpandDesignator(ASTContext &C, unsigned Idx, const Designator *First,
3620                        const Designator *Last);
3621
3622  SourceRange getDesignatorsSourceRange() const;
3623
3624  SourceRange getSourceRange() const;
3625
3626  static bool classof(const Stmt *T) {
3627    return T->getStmtClass() == DesignatedInitExprClass;
3628  }
3629  static bool classof(const DesignatedInitExpr *) { return true; }
3630
3631  // Iterators
3632  child_range children() {
3633    Stmt **begin = reinterpret_cast<Stmt**>(this + 1);
3634    return child_range(begin, begin + NumSubExprs);
3635  }
3636};
3637
3638/// \brief Represents an implicitly-generated value initialization of
3639/// an object of a given type.
3640///
3641/// Implicit value initializations occur within semantic initializer
3642/// list expressions (InitListExpr) as placeholders for subobject
3643/// initializations not explicitly specified by the user.
3644///
3645/// \see InitListExpr
3646class ImplicitValueInitExpr : public Expr {
3647public:
3648  explicit ImplicitValueInitExpr(QualType ty)
3649    : Expr(ImplicitValueInitExprClass, ty, VK_RValue, OK_Ordinary,
3650           false, false, false) { }
3651
3652  /// \brief Construct an empty implicit value initialization.
3653  explicit ImplicitValueInitExpr(EmptyShell Empty)
3654    : Expr(ImplicitValueInitExprClass, Empty) { }
3655
3656  static bool classof(const Stmt *T) {
3657    return T->getStmtClass() == ImplicitValueInitExprClass;
3658  }
3659  static bool classof(const ImplicitValueInitExpr *) { return true; }
3660
3661  SourceRange getSourceRange() const {
3662    return SourceRange();
3663  }
3664
3665  // Iterators
3666  child_range children() { return child_range(); }
3667};
3668
3669
3670class ParenListExpr : public Expr {
3671  Stmt **Exprs;
3672  unsigned NumExprs;
3673  SourceLocation LParenLoc, RParenLoc;
3674
3675public:
3676  ParenListExpr(ASTContext& C, SourceLocation lparenloc, Expr **exprs,
3677                unsigned numexprs, SourceLocation rparenloc);
3678
3679  /// \brief Build an empty paren list.
3680  explicit ParenListExpr(EmptyShell Empty) : Expr(ParenListExprClass, Empty) { }
3681
3682  unsigned getNumExprs() const { return NumExprs; }
3683
3684  const Expr* getExpr(unsigned Init) const {
3685    assert(Init < getNumExprs() && "Initializer access out of range!");
3686    return cast_or_null<Expr>(Exprs[Init]);
3687  }
3688
3689  Expr* getExpr(unsigned Init) {
3690    assert(Init < getNumExprs() && "Initializer access out of range!");
3691    return cast_or_null<Expr>(Exprs[Init]);
3692  }
3693
3694  Expr **getExprs() { return reinterpret_cast<Expr **>(Exprs); }
3695
3696  SourceLocation getLParenLoc() const { return LParenLoc; }
3697  SourceLocation getRParenLoc() const { return RParenLoc; }
3698
3699  SourceRange getSourceRange() const {
3700    return SourceRange(LParenLoc, RParenLoc);
3701  }
3702  static bool classof(const Stmt *T) {
3703    return T->getStmtClass() == ParenListExprClass;
3704  }
3705  static bool classof(const ParenListExpr *) { return true; }
3706
3707  // Iterators
3708  child_range children() {
3709    return child_range(&Exprs[0], &Exprs[0]+NumExprs);
3710  }
3711
3712  friend class ASTStmtReader;
3713  friend class ASTStmtWriter;
3714};
3715
3716
3717/// \brief Represents a C1X generic selection.
3718///
3719/// A generic selection (C1X 6.5.1.1) contains an unevaluated controlling
3720/// expression, followed by one or more generic associations.  Each generic
3721/// association specifies a type name and an expression, or "default" and an
3722/// expression (in which case it is known as a default generic association).
3723/// The type and value of the generic selection are identical to those of its
3724/// result expression, which is defined as the expression in the generic
3725/// association with a type name that is compatible with the type of the
3726/// controlling expression, or the expression in the default generic association
3727/// if no types are compatible.  For example:
3728///
3729/// @code
3730/// _Generic(X, double: 1, float: 2, default: 3)
3731/// @endcode
3732///
3733/// The above expression evaluates to 1 if 1.0 is substituted for X, 2 if 1.0f
3734/// or 3 if "hello".
3735///
3736/// As an extension, generic selections are allowed in C++, where the following
3737/// additional semantics apply:
3738///
3739/// Any generic selection whose controlling expression is type-dependent or
3740/// which names a dependent type in its association list is result-dependent,
3741/// which means that the choice of result expression is dependent.
3742/// Result-dependent generic associations are both type- and value-dependent.
3743class GenericSelectionExpr : public Expr {
3744  enum { CONTROLLING, END_EXPR };
3745  TypeSourceInfo **AssocTypes;
3746  Stmt **SubExprs;
3747  unsigned NumAssocs, ResultIndex;
3748  SourceLocation GenericLoc, DefaultLoc, RParenLoc;
3749
3750public:
3751  GenericSelectionExpr(ASTContext &Context,
3752                       SourceLocation GenericLoc, Expr *ControllingExpr,
3753                       TypeSourceInfo **AssocTypes, Expr **AssocExprs,
3754                       unsigned NumAssocs, SourceLocation DefaultLoc,
3755                       SourceLocation RParenLoc,
3756                       bool ContainsUnexpandedParameterPack,
3757                       unsigned ResultIndex);
3758
3759  /// This constructor is used in the result-dependent case.
3760  GenericSelectionExpr(ASTContext &Context,
3761                       SourceLocation GenericLoc, Expr *ControllingExpr,
3762                       TypeSourceInfo **AssocTypes, Expr **AssocExprs,
3763                       unsigned NumAssocs, SourceLocation DefaultLoc,
3764                       SourceLocation RParenLoc,
3765                       bool ContainsUnexpandedParameterPack);
3766
3767  explicit GenericSelectionExpr(EmptyShell Empty)
3768    : Expr(GenericSelectionExprClass, Empty) { }
3769
3770  unsigned getNumAssocs() const { return NumAssocs; }
3771
3772  SourceLocation getGenericLoc() const { return GenericLoc; }
3773  SourceLocation getDefaultLoc() const { return DefaultLoc; }
3774  SourceLocation getRParenLoc() const { return RParenLoc; }
3775
3776  const Expr *getAssocExpr(unsigned i) const {
3777    return cast<Expr>(SubExprs[END_EXPR+i]);
3778  }
3779  Expr *getAssocExpr(unsigned i) { return cast<Expr>(SubExprs[END_EXPR+i]); }
3780
3781  const TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) const {
3782    return AssocTypes[i];
3783  }
3784  TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) { return AssocTypes[i]; }
3785
3786  QualType getAssocType(unsigned i) const {
3787    if (const TypeSourceInfo *TS = getAssocTypeSourceInfo(i))
3788      return TS->getType();
3789    else
3790      return QualType();
3791  }
3792
3793  const Expr *getControllingExpr() const {
3794    return cast<Expr>(SubExprs[CONTROLLING]);
3795  }
3796  Expr *getControllingExpr() { return cast<Expr>(SubExprs[CONTROLLING]); }
3797
3798  /// Whether this generic selection is result-dependent.
3799  bool isResultDependent() const { return ResultIndex == -1U; }
3800
3801  /// The zero-based index of the result expression's generic association in
3802  /// the generic selection's association list.  Defined only if the
3803  /// generic selection is not result-dependent.
3804  unsigned getResultIndex() const {
3805    assert(!isResultDependent() && "Generic selection is result-dependent");
3806    return ResultIndex;
3807  }
3808
3809  /// The generic selection's result expression.  Defined only if the
3810  /// generic selection is not result-dependent.
3811  const Expr *getResultExpr() const { return getAssocExpr(getResultIndex()); }
3812  Expr *getResultExpr() { return getAssocExpr(getResultIndex()); }
3813
3814  SourceRange getSourceRange() const {
3815    return SourceRange(GenericLoc, RParenLoc);
3816  }
3817  static bool classof(const Stmt *T) {
3818    return T->getStmtClass() == GenericSelectionExprClass;
3819  }
3820  static bool classof(const GenericSelectionExpr *) { return true; }
3821
3822  child_range children() {
3823    return child_range(SubExprs, SubExprs+END_EXPR+NumAssocs);
3824  }
3825
3826  friend class ASTStmtReader;
3827};
3828
3829//===----------------------------------------------------------------------===//
3830// Clang Extensions
3831//===----------------------------------------------------------------------===//
3832
3833
3834/// ExtVectorElementExpr - This represents access to specific elements of a
3835/// vector, and may occur on the left hand side or right hand side.  For example
3836/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
3837///
3838/// Note that the base may have either vector or pointer to vector type, just
3839/// like a struct field reference.
3840///
3841class ExtVectorElementExpr : public Expr {
3842  Stmt *Base;
3843  IdentifierInfo *Accessor;
3844  SourceLocation AccessorLoc;
3845public:
3846  ExtVectorElementExpr(QualType ty, ExprValueKind VK, Expr *base,
3847                       IdentifierInfo &accessor, SourceLocation loc)
3848    : Expr(ExtVectorElementExprClass, ty, VK,
3849           (VK == VK_RValue ? OK_Ordinary : OK_VectorComponent),
3850           base->isTypeDependent(), base->isValueDependent(),
3851           base->containsUnexpandedParameterPack()),
3852      Base(base), Accessor(&accessor), AccessorLoc(loc) {}
3853
3854  /// \brief Build an empty vector element expression.
3855  explicit ExtVectorElementExpr(EmptyShell Empty)
3856    : Expr(ExtVectorElementExprClass, Empty) { }
3857
3858  const Expr *getBase() const { return cast<Expr>(Base); }
3859  Expr *getBase() { return cast<Expr>(Base); }
3860  void setBase(Expr *E) { Base = E; }
3861
3862  IdentifierInfo &getAccessor() const { return *Accessor; }
3863  void setAccessor(IdentifierInfo *II) { Accessor = II; }
3864
3865  SourceLocation getAccessorLoc() const { return AccessorLoc; }
3866  void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
3867
3868  /// getNumElements - Get the number of components being selected.
3869  unsigned getNumElements() const;
3870
3871  /// containsDuplicateElements - Return true if any element access is
3872  /// repeated.
3873  bool containsDuplicateElements() const;
3874
3875  /// getEncodedElementAccess - Encode the elements accessed into an llvm
3876  /// aggregate Constant of ConstantInt(s).
3877  void getEncodedElementAccess(llvm::SmallVectorImpl<unsigned> &Elts) const;
3878
3879  SourceRange getSourceRange() const {
3880    return SourceRange(getBase()->getLocStart(), AccessorLoc);
3881  }
3882
3883  /// isArrow - Return true if the base expression is a pointer to vector,
3884  /// return false if the base expression is a vector.
3885  bool isArrow() const;
3886
3887  static bool classof(const Stmt *T) {
3888    return T->getStmtClass() == ExtVectorElementExprClass;
3889  }
3890  static bool classof(const ExtVectorElementExpr *) { return true; }
3891
3892  // Iterators
3893  child_range children() { return child_range(&Base, &Base+1); }
3894};
3895
3896
3897/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
3898/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
3899class BlockExpr : public Expr {
3900protected:
3901  BlockDecl *TheBlock;
3902public:
3903  BlockExpr(BlockDecl *BD, QualType ty)
3904    : Expr(BlockExprClass, ty, VK_RValue, OK_Ordinary,
3905           ty->isDependentType(), false, false),
3906      TheBlock(BD) {}
3907
3908  /// \brief Build an empty block expression.
3909  explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { }
3910
3911  const BlockDecl *getBlockDecl() const { return TheBlock; }
3912  BlockDecl *getBlockDecl() { return TheBlock; }
3913  void setBlockDecl(BlockDecl *BD) { TheBlock = BD; }
3914
3915  // Convenience functions for probing the underlying BlockDecl.
3916  SourceLocation getCaretLocation() const;
3917  const Stmt *getBody() const;
3918  Stmt *getBody();
3919
3920  SourceRange getSourceRange() const {
3921    return SourceRange(getCaretLocation(), getBody()->getLocEnd());
3922  }
3923
3924  /// getFunctionType - Return the underlying function type for this block.
3925  const FunctionType *getFunctionType() const;
3926
3927  static bool classof(const Stmt *T) {
3928    return T->getStmtClass() == BlockExprClass;
3929  }
3930  static bool classof(const BlockExpr *) { return true; }
3931
3932  // Iterators
3933  child_range children() { return child_range(); }
3934};
3935
3936/// BlockDeclRefExpr - A reference to a local variable declared in an
3937/// enclosing scope.
3938class BlockDeclRefExpr : public Expr {
3939  VarDecl *D;
3940  SourceLocation Loc;
3941  bool IsByRef : 1;
3942  bool ConstQualAdded : 1;
3943public:
3944  BlockDeclRefExpr(VarDecl *d, QualType t, ExprValueKind VK,
3945                   SourceLocation l, bool ByRef, bool constAdded = false);
3946
3947  // \brief Build an empty reference to a declared variable in a
3948  // block.
3949  explicit BlockDeclRefExpr(EmptyShell Empty)
3950    : Expr(BlockDeclRefExprClass, Empty) { }
3951
3952  VarDecl *getDecl() { return D; }
3953  const VarDecl *getDecl() const { return D; }
3954  void setDecl(VarDecl *VD) { D = VD; }
3955
3956  SourceLocation getLocation() const { return Loc; }
3957  void setLocation(SourceLocation L) { Loc = L; }
3958
3959  SourceRange getSourceRange() const { return SourceRange(Loc); }
3960
3961  bool isByRef() const { return IsByRef; }
3962  void setByRef(bool BR) { IsByRef = BR; }
3963
3964  bool isConstQualAdded() const { return ConstQualAdded; }
3965  void setConstQualAdded(bool C) { ConstQualAdded = C; }
3966
3967  static bool classof(const Stmt *T) {
3968    return T->getStmtClass() == BlockDeclRefExprClass;
3969  }
3970  static bool classof(const BlockDeclRefExpr *) { return true; }
3971
3972  // Iterators
3973  child_range children() { return child_range(); }
3974};
3975
3976}  // end namespace clang
3977
3978#endif
3979