Expr.h revision cc8a5d5f90bbbbcb46f342117b851b7e07ec34f1
1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/Stmt.h"
19#include "clang/AST/Type.h"
20#include "clang/AST/DeclAccessPair.h"
21#include "clang/AST/ASTVector.h"
22#include "clang/AST/UsuallyTinyPtrVector.h"
23#include "llvm/ADT/APSInt.h"
24#include "llvm/ADT/APFloat.h"
25#include "llvm/ADT/SmallVector.h"
26#include "llvm/ADT/StringRef.h"
27#include <vector>
28
29namespace clang {
30  class ASTContext;
31  class APValue;
32  class Decl;
33  class IdentifierInfo;
34  class ParmVarDecl;
35  class NamedDecl;
36  class ValueDecl;
37  class BlockDecl;
38  class CXXBaseSpecifier;
39  class CXXOperatorCallExpr;
40  class CXXMemberCallExpr;
41  class TemplateArgumentLoc;
42  class TemplateArgumentListInfo;
43
44/// \brief A simple array of base specifiers.
45typedef UsuallyTinyPtrVector<const CXXBaseSpecifier> CXXBaseSpecifierArray;
46
47/// Expr - This represents one expression.  Note that Expr's are subclasses of
48/// Stmt.  This allows an expression to be transparently used any place a Stmt
49/// is required.
50///
51class Expr : public Stmt {
52  QualType TR;
53
54protected:
55  /// TypeDependent - Whether this expression is type-dependent
56  /// (C++ [temp.dep.expr]).
57  bool TypeDependent : 1;
58
59  /// ValueDependent - Whether this expression is value-dependent
60  /// (C++ [temp.dep.constexpr]).
61  bool ValueDependent : 1;
62
63  Expr(StmtClass SC, QualType T, bool TD, bool VD)
64    : Stmt(SC), TypeDependent(TD), ValueDependent(VD) {
65    setType(T);
66  }
67
68  /// \brief Construct an empty expression.
69  explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
70
71public:
72  /// \brief Increases the reference count for this expression.
73  ///
74  /// Invoke the Retain() operation when this expression
75  /// is being shared by another owner.
76  Expr *Retain() {
77    Stmt::Retain();
78    return this;
79  }
80
81  QualType getType() const { return TR; }
82  void setType(QualType t) {
83    // In C++, the type of an expression is always adjusted so that it
84    // will not have reference type an expression will never have
85    // reference type (C++ [expr]p6). Use
86    // QualType::getNonReferenceType() to retrieve the non-reference
87    // type. Additionally, inspect Expr::isLvalue to determine whether
88    // an expression that is adjusted in this manner should be
89    // considered an lvalue.
90    assert((t.isNull() || !t->isReferenceType()) &&
91           "Expressions can't have reference type");
92
93    TR = t;
94  }
95
96  /// isValueDependent - Determines whether this expression is
97  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
98  /// array bound of "Chars" in the following example is
99  /// value-dependent.
100  /// @code
101  /// template<int Size, char (&Chars)[Size]> struct meta_string;
102  /// @endcode
103  bool isValueDependent() const { return ValueDependent; }
104
105  /// \brief Set whether this expression is value-dependent or not.
106  void setValueDependent(bool VD) { ValueDependent = VD; }
107
108  /// isTypeDependent - Determines whether this expression is
109  /// type-dependent (C++ [temp.dep.expr]), which means that its type
110  /// could change from one template instantiation to the next. For
111  /// example, the expressions "x" and "x + y" are type-dependent in
112  /// the following code, but "y" is not type-dependent:
113  /// @code
114  /// template<typename T>
115  /// void add(T x, int y) {
116  ///   x + y;
117  /// }
118  /// @endcode
119  bool isTypeDependent() const { return TypeDependent; }
120
121  /// \brief Set whether this expression is type-dependent or not.
122  void setTypeDependent(bool TD) { TypeDependent = TD; }
123
124  /// SourceLocation tokens are not useful in isolation - they are low level
125  /// value objects created/interpreted by SourceManager. We assume AST
126  /// clients will have a pointer to the respective SourceManager.
127  virtual SourceRange getSourceRange() const = 0;
128
129  /// getExprLoc - Return the preferred location for the arrow when diagnosing
130  /// a problem with a generic expression.
131  virtual SourceLocation getExprLoc() const { return getLocStart(); }
132
133  /// isUnusedResultAWarning - Return true if this immediate expression should
134  /// be warned about if the result is unused.  If so, fill in Loc and Ranges
135  /// with location to warn on and the source range[s] to report with the
136  /// warning.
137  bool isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
138                              SourceRange &R2, ASTContext &Ctx) const;
139
140  /// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or
141  /// incomplete type other than void. Nonarray expressions that can be lvalues:
142  ///  - name, where name must be a variable
143  ///  - e[i]
144  ///  - (e), where e must be an lvalue
145  ///  - e.name, where e must be an lvalue
146  ///  - e->name
147  ///  - *e, the type of e cannot be a function type
148  ///  - string-constant
149  ///  - reference type [C++ [expr]]
150  ///  - b ? x : y, where x and y are lvalues of suitable types [C++]
151  ///
152  enum isLvalueResult {
153    LV_Valid,
154    LV_NotObjectType,
155    LV_IncompleteVoidType,
156    LV_DuplicateVectorComponents,
157    LV_InvalidExpression,
158    LV_MemberFunction,
159    LV_SubObjCPropertySetting,
160    LV_ClassTemporary
161  };
162  isLvalueResult isLvalue(ASTContext &Ctx) const;
163
164  // Same as above, but excluding checks for non-object and void types in C
165  isLvalueResult isLvalueInternal(ASTContext &Ctx) const;
166
167  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
168  /// does not have an incomplete type, does not have a const-qualified type,
169  /// and if it is a structure or union, does not have any member (including,
170  /// recursively, any member or element of all contained aggregates or unions)
171  /// with a const-qualified type.
172  ///
173  /// \param Loc [in] [out] - A source location which *may* be filled
174  /// in with the location of the expression making this a
175  /// non-modifiable lvalue, if specified.
176  enum isModifiableLvalueResult {
177    MLV_Valid,
178    MLV_NotObjectType,
179    MLV_IncompleteVoidType,
180    MLV_DuplicateVectorComponents,
181    MLV_InvalidExpression,
182    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
183    MLV_IncompleteType,
184    MLV_ConstQualified,
185    MLV_ArrayType,
186    MLV_NotBlockQualified,
187    MLV_ReadonlyProperty,
188    MLV_NoSetterProperty,
189    MLV_MemberFunction,
190    MLV_SubObjCPropertySetting,
191    MLV_ClassTemporary
192  };
193  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx,
194                                              SourceLocation *Loc = 0) const;
195
196  /// \brief If this expression refers to a bit-field, retrieve the
197  /// declaration of that bit-field.
198  FieldDecl *getBitField();
199
200  const FieldDecl *getBitField() const {
201    return const_cast<Expr*>(this)->getBitField();
202  }
203
204  /// \brief Returns whether this expression refers to a vector element.
205  bool refersToVectorElement() const;
206
207  /// isKnownToHaveBooleanValue - Return true if this is an integer expression
208  /// that is known to return 0 or 1.  This happens for _Bool/bool expressions
209  /// but also int expressions which are produced by things like comparisons in
210  /// C.
211  bool isKnownToHaveBooleanValue() const;
212
213  /// isIntegerConstantExpr - Return true if this expression is a valid integer
214  /// constant expression, and, if so, return its value in Result.  If not a
215  /// valid i-c-e, return false and fill in Loc (if specified) with the location
216  /// of the invalid expression.
217  bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
218                             SourceLocation *Loc = 0,
219                             bool isEvaluated = true) const;
220  bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const {
221    llvm::APSInt X;
222    return isIntegerConstantExpr(X, Ctx, Loc);
223  }
224  /// isConstantInitializer - Returns true if this expression is a constant
225  /// initializer, which can be emitted at compile-time.
226  bool isConstantInitializer(ASTContext &Ctx) const;
227
228  /// EvalResult is a struct with detailed info about an evaluated expression.
229  struct EvalResult {
230    /// Val - This is the value the expression can be folded to.
231    APValue Val;
232
233    /// HasSideEffects - Whether the evaluated expression has side effects.
234    /// For example, (f() && 0) can be folded, but it still has side effects.
235    bool HasSideEffects;
236
237    /// Diag - If the expression is unfoldable, then Diag contains a note
238    /// diagnostic indicating why it's not foldable. DiagLoc indicates a caret
239    /// position for the error, and DiagExpr is the expression that caused
240    /// the error.
241    /// If the expression is foldable, but not an integer constant expression,
242    /// Diag contains a note diagnostic that describes why it isn't an integer
243    /// constant expression. If the expression *is* an integer constant
244    /// expression, then Diag will be zero.
245    unsigned Diag;
246    const Expr *DiagExpr;
247    SourceLocation DiagLoc;
248
249    EvalResult() : HasSideEffects(false), Diag(0), DiagExpr(0) {}
250  };
251
252  /// Evaluate - Return true if this is a constant which we can fold using
253  /// any crazy technique (that has nothing to do with language standards) that
254  /// we want to.  If this function returns true, it returns the folded constant
255  /// in Result.
256  bool Evaluate(EvalResult &Result, ASTContext &Ctx) const;
257
258  /// EvaluateAsAny - The same as Evaluate, except that it also succeeds on
259  /// stack based objects.
260  bool EvaluateAsAny(EvalResult &Result, ASTContext &Ctx) const;
261
262  /// EvaluateAsBooleanCondition - Return true if this is a constant
263  /// which we we can fold and convert to a boolean condition using
264  /// any crazy technique that we want to.
265  bool EvaluateAsBooleanCondition(bool &Result, ASTContext &Ctx) const;
266
267  /// isEvaluatable - Call Evaluate to see if this expression can be constant
268  /// folded, but discard the result.
269  bool isEvaluatable(ASTContext &Ctx) const;
270
271  /// HasSideEffects - This routine returns true for all those expressions
272  /// which must be evaluated each time and must not be optimization away
273  /// or evaluated at compile time. Example is a function call, volatile
274  /// variable read.
275  bool HasSideEffects(ASTContext &Ctx) const;
276
277  /// EvaluateAsInt - Call Evaluate and return the folded integer. This
278  /// must be called on an expression that constant folds to an integer.
279  llvm::APSInt EvaluateAsInt(ASTContext &Ctx) const;
280
281  /// EvaluateAsLValue - Evaluate an expression to see if it's a lvalue
282  /// with link time known address.
283  bool EvaluateAsLValue(EvalResult &Result, ASTContext &Ctx) const;
284
285  /// EvaluateAsAnyLValue - The same as EvaluateAsLValue, except that it
286  /// also succeeds on stack based, immutable address lvalues.
287  bool EvaluateAsAnyLValue(EvalResult &Result, ASTContext &Ctx) const;
288
289  /// \brief Enumeration used to describe how \c isNullPointerConstant()
290  /// should cope with value-dependent expressions.
291  enum NullPointerConstantValueDependence {
292    /// \brief Specifies that the expression should never be value-dependent.
293    NPC_NeverValueDependent = 0,
294
295    /// \brief Specifies that a value-dependent expression of integral or
296    /// dependent type should be considered a null pointer constant.
297    NPC_ValueDependentIsNull,
298
299    /// \brief Specifies that a value-dependent expression should be considered
300    /// to never be a null pointer constant.
301    NPC_ValueDependentIsNotNull
302  };
303
304  /// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
305  /// integer constant expression with the value zero, or if this is one that is
306  /// cast to void*.
307  bool isNullPointerConstant(ASTContext &Ctx,
308                             NullPointerConstantValueDependence NPC) const;
309
310  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
311  /// write barrier.
312  bool isOBJCGCCandidate(ASTContext &Ctx) const;
313
314  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
315  ///  its subexpression.  If that subexpression is also a ParenExpr,
316  ///  then this method recursively returns its subexpression, and so forth.
317  ///  Otherwise, the method returns the current Expr.
318  Expr *IgnoreParens();
319
320  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
321  /// or CastExprs, returning their operand.
322  Expr *IgnoreParenCasts();
323
324  /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
325  /// value (including ptr->int casts of the same size).  Strip off any
326  /// ParenExpr or CastExprs, returning their operand.
327  Expr *IgnoreParenNoopCasts(ASTContext &Ctx);
328
329  /// \brief Determine whether this expression is a default function argument.
330  ///
331  /// Default arguments are implicitly generated in the abstract syntax tree
332  /// by semantic analysis for function calls, object constructions, etc. in
333  /// C++. Default arguments are represented by \c CXXDefaultArgExpr nodes;
334  /// this routine also looks through any implicit casts to determine whether
335  /// the expression is a default argument.
336  bool isDefaultArgument() const;
337
338  /// \brief Determine whether this expression directly creates a
339  /// temporary object (of class type).
340  bool isTemporaryObject() const { return getTemporaryObject() != 0; }
341
342  /// \brief If this expression directly creates a temporary object of
343  /// class type, return the expression that actually constructs that
344  /// temporary object.
345  const Expr *getTemporaryObject() const;
346
347  const Expr *IgnoreParens() const {
348    return const_cast<Expr*>(this)->IgnoreParens();
349  }
350  const Expr *IgnoreParenCasts() const {
351    return const_cast<Expr*>(this)->IgnoreParenCasts();
352  }
353  const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const {
354    return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
355  }
356
357  static bool hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs);
358  static bool hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs);
359
360  static bool classof(const Stmt *T) {
361    return T->getStmtClass() >= firstExprConstant &&
362           T->getStmtClass() <= lastExprConstant;
363  }
364  static bool classof(const Expr *) { return true; }
365};
366
367
368//===----------------------------------------------------------------------===//
369// Primary Expressions.
370//===----------------------------------------------------------------------===//
371
372/// \brief Represents the qualifier that may precede a C++ name, e.g., the
373/// "std::" in "std::sort".
374struct NameQualifier {
375  /// \brief The nested name specifier.
376  NestedNameSpecifier *NNS;
377
378  /// \brief The source range covered by the nested name specifier.
379  SourceRange Range;
380};
381
382/// \brief Represents an explicit template argument list in C++, e.g.,
383/// the "<int>" in "sort<int>".
384struct ExplicitTemplateArgumentList {
385  /// \brief The source location of the left angle bracket ('<');
386  SourceLocation LAngleLoc;
387
388  /// \brief The source location of the right angle bracket ('>');
389  SourceLocation RAngleLoc;
390
391  /// \brief The number of template arguments in TemplateArgs.
392  /// The actual template arguments (if any) are stored after the
393  /// ExplicitTemplateArgumentList structure.
394  unsigned NumTemplateArgs;
395
396  /// \brief Retrieve the template arguments
397  TemplateArgumentLoc *getTemplateArgs() {
398    return reinterpret_cast<TemplateArgumentLoc *> (this + 1);
399  }
400
401  /// \brief Retrieve the template arguments
402  const TemplateArgumentLoc *getTemplateArgs() const {
403    return reinterpret_cast<const TemplateArgumentLoc *> (this + 1);
404  }
405
406  void initializeFrom(const TemplateArgumentListInfo &List);
407  void copyInto(TemplateArgumentListInfo &List) const;
408  static std::size_t sizeFor(const TemplateArgumentListInfo &List);
409};
410
411/// DeclRefExpr - [C99 6.5.1p2] - A reference to a declared variable, function,
412/// enum, etc.
413class DeclRefExpr : public Expr {
414  enum {
415    // Flag on DecoratedD that specifies when this declaration reference
416    // expression has a C++ nested-name-specifier.
417    HasQualifierFlag = 0x01,
418    // Flag on DecoratedD that specifies when this declaration reference
419    // expression has an explicit C++ template argument list.
420    HasExplicitTemplateArgumentListFlag = 0x02
421  };
422
423  // DecoratedD - The declaration that we are referencing, plus two bits to
424  // indicate whether (1) the declaration's name was explicitly qualified and
425  // (2) the declaration's name was followed by an explicit template
426  // argument list.
427  llvm::PointerIntPair<ValueDecl *, 2> DecoratedD;
428
429  // Loc - The location of the declaration name itself.
430  SourceLocation Loc;
431
432  /// \brief Retrieve the qualifier that preceded the declaration name, if any.
433  NameQualifier *getNameQualifier() {
434    if ((DecoratedD.getInt() & HasQualifierFlag) == 0)
435      return 0;
436
437    return reinterpret_cast<NameQualifier *> (this + 1);
438  }
439
440  /// \brief Retrieve the qualifier that preceded the member name, if any.
441  const NameQualifier *getNameQualifier() const {
442    return const_cast<DeclRefExpr *>(this)->getNameQualifier();
443  }
444
445  /// \brief Retrieve the explicit template argument list that followed the
446  /// member template name, if any.
447  ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() {
448    if ((DecoratedD.getInt() & HasExplicitTemplateArgumentListFlag) == 0)
449      return 0;
450
451    if ((DecoratedD.getInt() & HasQualifierFlag) == 0)
452      return reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
453
454    return reinterpret_cast<ExplicitTemplateArgumentList *>(
455                                                      getNameQualifier() + 1);
456  }
457
458  /// \brief Retrieve the explicit template argument list that followed the
459  /// member template name, if any.
460  const ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() const {
461    return const_cast<DeclRefExpr *>(this)->getExplicitTemplateArgumentList();
462  }
463
464  DeclRefExpr(NestedNameSpecifier *Qualifier, SourceRange QualifierRange,
465              ValueDecl *D, SourceLocation NameLoc,
466              const TemplateArgumentListInfo *TemplateArgs,
467              QualType T);
468
469protected:
470  /// \brief Computes the type- and value-dependence flags for this
471  /// declaration reference expression.
472  void computeDependence();
473
474  DeclRefExpr(StmtClass SC, ValueDecl *d, QualType t, SourceLocation l) :
475    Expr(SC, t, false, false), DecoratedD(d, 0), Loc(l) {
476    computeDependence();
477  }
478
479public:
480  DeclRefExpr(ValueDecl *d, QualType t, SourceLocation l) :
481    Expr(DeclRefExprClass, t, false, false), DecoratedD(d, 0), Loc(l) {
482    computeDependence();
483  }
484
485  /// \brief Construct an empty declaration reference expression.
486  explicit DeclRefExpr(EmptyShell Empty)
487    : Expr(DeclRefExprClass, Empty) { }
488
489  static DeclRefExpr *Create(ASTContext &Context,
490                             NestedNameSpecifier *Qualifier,
491                             SourceRange QualifierRange,
492                             ValueDecl *D,
493                             SourceLocation NameLoc,
494                             QualType T,
495                             const TemplateArgumentListInfo *TemplateArgs = 0);
496
497  ValueDecl *getDecl() { return DecoratedD.getPointer(); }
498  const ValueDecl *getDecl() const { return DecoratedD.getPointer(); }
499  void setDecl(ValueDecl *NewD) { DecoratedD.setPointer(NewD); }
500
501  SourceLocation getLocation() const { return Loc; }
502  void setLocation(SourceLocation L) { Loc = L; }
503  virtual SourceRange getSourceRange() const;
504
505  /// \brief Determine whether this declaration reference was preceded by a
506  /// C++ nested-name-specifier, e.g., \c N::foo.
507  bool hasQualifier() const { return DecoratedD.getInt() & HasQualifierFlag; }
508
509  /// \brief If the name was qualified, retrieves the source range of
510  /// the nested-name-specifier that precedes the name. Otherwise,
511  /// returns an empty source range.
512  SourceRange getQualifierRange() const {
513    if (!hasQualifier())
514      return SourceRange();
515
516    return getNameQualifier()->Range;
517  }
518
519  /// \brief If the name was qualified, retrieves the nested-name-specifier
520  /// that precedes the name. Otherwise, returns NULL.
521  NestedNameSpecifier *getQualifier() const {
522    if (!hasQualifier())
523      return 0;
524
525    return getNameQualifier()->NNS;
526  }
527
528  /// \brief Determines whether this member expression actually had a C++
529  /// template argument list explicitly specified, e.g., x.f<int>.
530  bool hasExplicitTemplateArgumentList() const {
531    return DecoratedD.getInt() & HasExplicitTemplateArgumentListFlag;
532  }
533
534  /// \brief Copies the template arguments (if present) into the given
535  /// structure.
536  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
537    if (hasExplicitTemplateArgumentList())
538      getExplicitTemplateArgumentList()->copyInto(List);
539  }
540
541  /// \brief Retrieve the location of the left angle bracket following the
542  /// member name ('<'), if any.
543  SourceLocation getLAngleLoc() const {
544    if (!hasExplicitTemplateArgumentList())
545      return SourceLocation();
546
547    return getExplicitTemplateArgumentList()->LAngleLoc;
548  }
549
550  /// \brief Retrieve the template arguments provided as part of this
551  /// template-id.
552  const TemplateArgumentLoc *getTemplateArgs() const {
553    if (!hasExplicitTemplateArgumentList())
554      return 0;
555
556    return getExplicitTemplateArgumentList()->getTemplateArgs();
557  }
558
559  /// \brief Retrieve the number of template arguments provided as part of this
560  /// template-id.
561  unsigned getNumTemplateArgs() const {
562    if (!hasExplicitTemplateArgumentList())
563      return 0;
564
565    return getExplicitTemplateArgumentList()->NumTemplateArgs;
566  }
567
568  /// \brief Retrieve the location of the right angle bracket following the
569  /// template arguments ('>').
570  SourceLocation getRAngleLoc() const {
571    if (!hasExplicitTemplateArgumentList())
572      return SourceLocation();
573
574    return getExplicitTemplateArgumentList()->RAngleLoc;
575  }
576
577  static bool classof(const Stmt *T) {
578    return T->getStmtClass() == DeclRefExprClass;
579  }
580  static bool classof(const DeclRefExpr *) { return true; }
581
582  // Iterators
583  virtual child_iterator child_begin();
584  virtual child_iterator child_end();
585};
586
587/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
588class PredefinedExpr : public Expr {
589public:
590  enum IdentType {
591    Func,
592    Function,
593    PrettyFunction,
594    /// PrettyFunctionNoVirtual - The same as PrettyFunction, except that the
595    /// 'virtual' keyword is omitted for virtual member functions.
596    PrettyFunctionNoVirtual
597  };
598
599private:
600  SourceLocation Loc;
601  IdentType Type;
602public:
603  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
604    : Expr(PredefinedExprClass, type, type->isDependentType(),
605           type->isDependentType()), Loc(l), Type(IT) {}
606
607  /// \brief Construct an empty predefined expression.
608  explicit PredefinedExpr(EmptyShell Empty)
609    : Expr(PredefinedExprClass, Empty) { }
610
611  IdentType getIdentType() const { return Type; }
612  void setIdentType(IdentType IT) { Type = IT; }
613
614  SourceLocation getLocation() const { return Loc; }
615  void setLocation(SourceLocation L) { Loc = L; }
616
617  static std::string ComputeName(IdentType IT, const Decl *CurrentDecl);
618
619  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
620
621  static bool classof(const Stmt *T) {
622    return T->getStmtClass() == PredefinedExprClass;
623  }
624  static bool classof(const PredefinedExpr *) { return true; }
625
626  // Iterators
627  virtual child_iterator child_begin();
628  virtual child_iterator child_end();
629};
630
631class IntegerLiteral : public Expr {
632  llvm::APInt Value;
633  SourceLocation Loc;
634public:
635  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
636  // or UnsignedLongLongTy
637  IntegerLiteral(const llvm::APInt &V, QualType type, SourceLocation l)
638    : Expr(IntegerLiteralClass, type, false, false), Value(V), Loc(l) {
639    assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
640  }
641
642  /// \brief Construct an empty integer literal.
643  explicit IntegerLiteral(EmptyShell Empty)
644    : Expr(IntegerLiteralClass, Empty) { }
645
646  const llvm::APInt &getValue() const { return Value; }
647  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
648
649  /// \brief Retrieve the location of the literal.
650  SourceLocation getLocation() const { return Loc; }
651
652  void setValue(const llvm::APInt &Val) { Value = Val; }
653  void setLocation(SourceLocation Location) { Loc = Location; }
654
655  static bool classof(const Stmt *T) {
656    return T->getStmtClass() == IntegerLiteralClass;
657  }
658  static bool classof(const IntegerLiteral *) { return true; }
659
660  // Iterators
661  virtual child_iterator child_begin();
662  virtual child_iterator child_end();
663};
664
665class CharacterLiteral : public Expr {
666  unsigned Value;
667  SourceLocation Loc;
668  bool IsWide;
669public:
670  // type should be IntTy
671  CharacterLiteral(unsigned value, bool iswide, QualType type, SourceLocation l)
672    : Expr(CharacterLiteralClass, type, false, false), Value(value), Loc(l),
673      IsWide(iswide) {
674  }
675
676  /// \brief Construct an empty character literal.
677  CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
678
679  SourceLocation getLocation() const { return Loc; }
680  bool isWide() const { return IsWide; }
681
682  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
683
684  unsigned getValue() const { return Value; }
685
686  void setLocation(SourceLocation Location) { Loc = Location; }
687  void setWide(bool W) { IsWide = W; }
688  void setValue(unsigned Val) { Value = Val; }
689
690  static bool classof(const Stmt *T) {
691    return T->getStmtClass() == CharacterLiteralClass;
692  }
693  static bool classof(const CharacterLiteral *) { return true; }
694
695  // Iterators
696  virtual child_iterator child_begin();
697  virtual child_iterator child_end();
698};
699
700class FloatingLiteral : public Expr {
701  llvm::APFloat Value;
702  bool IsExact : 1;
703  SourceLocation Loc;
704public:
705  FloatingLiteral(const llvm::APFloat &V, bool isexact,
706                  QualType Type, SourceLocation L)
707    : Expr(FloatingLiteralClass, Type, false, false), Value(V),
708      IsExact(isexact), Loc(L) {}
709
710  /// \brief Construct an empty floating-point literal.
711  explicit FloatingLiteral(EmptyShell Empty)
712    : Expr(FloatingLiteralClass, Empty), Value(0.0) { }
713
714  const llvm::APFloat &getValue() const { return Value; }
715  void setValue(const llvm::APFloat &Val) { Value = Val; }
716
717  bool isExact() const { return IsExact; }
718  void setExact(bool E) { IsExact = E; }
719
720  /// getValueAsApproximateDouble - This returns the value as an inaccurate
721  /// double.  Note that this may cause loss of precision, but is useful for
722  /// debugging dumps, etc.
723  double getValueAsApproximateDouble() const;
724
725  SourceLocation getLocation() const { return Loc; }
726  void setLocation(SourceLocation L) { Loc = L; }
727
728  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
729
730  static bool classof(const Stmt *T) {
731    return T->getStmtClass() == FloatingLiteralClass;
732  }
733  static bool classof(const FloatingLiteral *) { return true; }
734
735  // Iterators
736  virtual child_iterator child_begin();
737  virtual child_iterator child_end();
738};
739
740/// ImaginaryLiteral - We support imaginary integer and floating point literals,
741/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
742/// IntegerLiteral classes.  Instances of this class always have a Complex type
743/// whose element type matches the subexpression.
744///
745class ImaginaryLiteral : public Expr {
746  Stmt *Val;
747public:
748  ImaginaryLiteral(Expr *val, QualType Ty)
749    : Expr(ImaginaryLiteralClass, Ty, false, false), Val(val) {}
750
751  /// \brief Build an empty imaginary literal.
752  explicit ImaginaryLiteral(EmptyShell Empty)
753    : Expr(ImaginaryLiteralClass, Empty) { }
754
755  const Expr *getSubExpr() const { return cast<Expr>(Val); }
756  Expr *getSubExpr() { return cast<Expr>(Val); }
757  void setSubExpr(Expr *E) { Val = E; }
758
759  virtual SourceRange getSourceRange() const { return Val->getSourceRange(); }
760  static bool classof(const Stmt *T) {
761    return T->getStmtClass() == ImaginaryLiteralClass;
762  }
763  static bool classof(const ImaginaryLiteral *) { return true; }
764
765  // Iterators
766  virtual child_iterator child_begin();
767  virtual child_iterator child_end();
768};
769
770/// StringLiteral - This represents a string literal expression, e.g. "foo"
771/// or L"bar" (wide strings).  The actual string is returned by getStrData()
772/// is NOT null-terminated, and the length of the string is determined by
773/// calling getByteLength().  The C type for a string is always a
774/// ConstantArrayType.  In C++, the char type is const qualified, in C it is
775/// not.
776///
777/// Note that strings in C can be formed by concatenation of multiple string
778/// literal pptokens in translation phase #6.  This keeps track of the locations
779/// of each of these pieces.
780///
781/// Strings in C can also be truncated and extended by assigning into arrays,
782/// e.g. with constructs like:
783///   char X[2] = "foobar";
784/// In this case, getByteLength() will return 6, but the string literal will
785/// have type "char[2]".
786class StringLiteral : public Expr {
787  const char *StrData;
788  unsigned ByteLength;
789  bool IsWide;
790  unsigned NumConcatenated;
791  SourceLocation TokLocs[1];
792
793  StringLiteral(QualType Ty) : Expr(StringLiteralClass, Ty, false, false) {}
794
795protected:
796  virtual void DoDestroy(ASTContext &C);
797
798public:
799  /// This is the "fully general" constructor that allows representation of
800  /// strings formed from multiple concatenated tokens.
801  static StringLiteral *Create(ASTContext &C, const char *StrData,
802                               unsigned ByteLength, bool Wide, QualType Ty,
803                               const SourceLocation *Loc, unsigned NumStrs);
804
805  /// Simple constructor for string literals made from one token.
806  static StringLiteral *Create(ASTContext &C, const char *StrData,
807                               unsigned ByteLength,
808                               bool Wide, QualType Ty, SourceLocation Loc) {
809    return Create(C, StrData, ByteLength, Wide, Ty, &Loc, 1);
810  }
811
812  /// \brief Construct an empty string literal.
813  static StringLiteral *CreateEmpty(ASTContext &C, unsigned NumStrs);
814
815  llvm::StringRef getString() const {
816    return llvm::StringRef(StrData, ByteLength);
817  }
818  // FIXME: These are deprecated, replace with StringRef.
819  const char *getStrData() const { return StrData; }
820  unsigned getByteLength() const { return ByteLength; }
821
822  /// \brief Sets the string data to the given string data.
823  void setString(ASTContext &C, llvm::StringRef Str);
824
825  bool isWide() const { return IsWide; }
826  void setWide(bool W) { IsWide = W; }
827
828  bool containsNonAsciiOrNull() const {
829    llvm::StringRef Str = getString();
830    for (unsigned i = 0, e = Str.size(); i != e; ++i)
831      if (!isascii(Str[i]) || !Str[i])
832        return true;
833    return false;
834  }
835  /// getNumConcatenated - Get the number of string literal tokens that were
836  /// concatenated in translation phase #6 to form this string literal.
837  unsigned getNumConcatenated() const { return NumConcatenated; }
838
839  SourceLocation getStrTokenLoc(unsigned TokNum) const {
840    assert(TokNum < NumConcatenated && "Invalid tok number");
841    return TokLocs[TokNum];
842  }
843  void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
844    assert(TokNum < NumConcatenated && "Invalid tok number");
845    TokLocs[TokNum] = L;
846  }
847
848  typedef const SourceLocation *tokloc_iterator;
849  tokloc_iterator tokloc_begin() const { return TokLocs; }
850  tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; }
851
852  virtual SourceRange getSourceRange() const {
853    return SourceRange(TokLocs[0], TokLocs[NumConcatenated-1]);
854  }
855  static bool classof(const Stmt *T) {
856    return T->getStmtClass() == StringLiteralClass;
857  }
858  static bool classof(const StringLiteral *) { return true; }
859
860  // Iterators
861  virtual child_iterator child_begin();
862  virtual child_iterator child_end();
863};
864
865/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
866/// AST node is only formed if full location information is requested.
867class ParenExpr : public Expr {
868  SourceLocation L, R;
869  Stmt *Val;
870public:
871  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
872    : Expr(ParenExprClass, val->getType(),
873           val->isTypeDependent(), val->isValueDependent()),
874      L(l), R(r), Val(val) {}
875
876  /// \brief Construct an empty parenthesized expression.
877  explicit ParenExpr(EmptyShell Empty)
878    : Expr(ParenExprClass, Empty) { }
879
880  const Expr *getSubExpr() const { return cast<Expr>(Val); }
881  Expr *getSubExpr() { return cast<Expr>(Val); }
882  void setSubExpr(Expr *E) { Val = E; }
883
884  virtual SourceRange getSourceRange() const { return SourceRange(L, R); }
885
886  /// \brief Get the location of the left parentheses '('.
887  SourceLocation getLParen() const { return L; }
888  void setLParen(SourceLocation Loc) { L = Loc; }
889
890  /// \brief Get the location of the right parentheses ')'.
891  SourceLocation getRParen() const { return R; }
892  void setRParen(SourceLocation Loc) { R = Loc; }
893
894  static bool classof(const Stmt *T) {
895    return T->getStmtClass() == ParenExprClass;
896  }
897  static bool classof(const ParenExpr *) { return true; }
898
899  // Iterators
900  virtual child_iterator child_begin();
901  virtual child_iterator child_end();
902};
903
904
905/// UnaryOperator - This represents the unary-expression's (except sizeof and
906/// alignof), the postinc/postdec operators from postfix-expression, and various
907/// extensions.
908///
909/// Notes on various nodes:
910///
911/// Real/Imag - These return the real/imag part of a complex operand.  If
912///   applied to a non-complex value, the former returns its operand and the
913///   later returns zero in the type of the operand.
914///
915/// __builtin_offsetof(type, a.b[10]) is represented as a unary operator whose
916///   subexpression is a compound literal with the various MemberExpr and
917///   ArraySubscriptExpr's applied to it. (This is only used in C)
918///
919class UnaryOperator : public Expr {
920public:
921  // Note that additions to this should also update the StmtVisitor class.
922  enum Opcode {
923    PostInc, PostDec, // [C99 6.5.2.4] Postfix increment and decrement operators
924    PreInc, PreDec,   // [C99 6.5.3.1] Prefix increment and decrement operators.
925    AddrOf, Deref,    // [C99 6.5.3.2] Address and indirection operators.
926    Plus, Minus,      // [C99 6.5.3.3] Unary arithmetic operators.
927    Not, LNot,        // [C99 6.5.3.3] Unary arithmetic operators.
928    Real, Imag,       // "__real expr"/"__imag expr" Extension.
929    Extension,        // __extension__ marker.
930    OffsetOf          // __builtin_offsetof
931  };
932private:
933  Stmt *Val;
934  Opcode Opc;
935  SourceLocation Loc;
936public:
937
938  UnaryOperator(Expr *input, Opcode opc, QualType type, SourceLocation l)
939    : Expr(UnaryOperatorClass, type,
940           input->isTypeDependent() && opc != OffsetOf,
941           input->isValueDependent()),
942      Val(input), Opc(opc), Loc(l) {}
943
944  /// \brief Build an empty unary operator.
945  explicit UnaryOperator(EmptyShell Empty)
946    : Expr(UnaryOperatorClass, Empty), Opc(AddrOf) { }
947
948  Opcode getOpcode() const { return Opc; }
949  void setOpcode(Opcode O) { Opc = O; }
950
951  Expr *getSubExpr() const { return cast<Expr>(Val); }
952  void setSubExpr(Expr *E) { Val = E; }
953
954  /// getOperatorLoc - Return the location of the operator.
955  SourceLocation getOperatorLoc() const { return Loc; }
956  void setOperatorLoc(SourceLocation L) { Loc = L; }
957
958  /// isPostfix - Return true if this is a postfix operation, like x++.
959  static bool isPostfix(Opcode Op) {
960    return Op == PostInc || Op == PostDec;
961  }
962
963  /// isPostfix - Return true if this is a prefix operation, like --x.
964  static bool isPrefix(Opcode Op) {
965    return Op == PreInc || Op == PreDec;
966  }
967
968  bool isPrefix() const { return isPrefix(Opc); }
969  bool isPostfix() const { return isPostfix(Opc); }
970  bool isIncrementOp() const {return Opc==PreInc || Opc==PostInc; }
971  bool isIncrementDecrementOp() const { return Opc>=PostInc && Opc<=PreDec; }
972  bool isOffsetOfOp() const { return Opc == OffsetOf; }
973  static bool isArithmeticOp(Opcode Op) { return Op >= Plus && Op <= LNot; }
974  bool isArithmeticOp() const { return isArithmeticOp(Opc); }
975
976  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
977  /// corresponds to, e.g. "sizeof" or "[pre]++"
978  static const char *getOpcodeStr(Opcode Op);
979
980  /// \brief Retrieve the unary opcode that corresponds to the given
981  /// overloaded operator.
982  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
983
984  /// \brief Retrieve the overloaded operator kind that corresponds to
985  /// the given unary opcode.
986  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
987
988  virtual SourceRange getSourceRange() const {
989    if (isPostfix())
990      return SourceRange(Val->getLocStart(), Loc);
991    else
992      return SourceRange(Loc, Val->getLocEnd());
993  }
994  virtual SourceLocation getExprLoc() const { return Loc; }
995
996  static bool classof(const Stmt *T) {
997    return T->getStmtClass() == UnaryOperatorClass;
998  }
999  static bool classof(const UnaryOperator *) { return true; }
1000
1001  // Iterators
1002  virtual child_iterator child_begin();
1003  virtual child_iterator child_end();
1004};
1005
1006/// OffsetOfExpr - [C99 7.17] - This represents an expression of the form
1007/// offsetof(record-type, member-designator). For example, given:
1008/// @code
1009/// struct S {
1010///   float f;
1011///   double d;
1012/// };
1013/// struct T {
1014///   int i;
1015///   struct S s[10];
1016/// };
1017/// @endcode
1018/// we can represent and evaluate the expression @c offsetof(struct T, s[2].d).
1019
1020class OffsetOfExpr : public Expr {
1021public:
1022  // __builtin_offsetof(type, identifier(.identifier|[expr])*)
1023  class OffsetOfNode {
1024  public:
1025    /// \brief The kind of offsetof node we have.
1026    enum Kind {
1027      /// \brief An index into an array.
1028      Array = 0x00,
1029      /// \brief A field.
1030      Field = 0x01,
1031      /// \brief A field in a dependent type, known only by its name.
1032      Identifier = 0x02,
1033      /// \brief An implicit indirection through a C++ base class, when the
1034      /// field found is in a base class.
1035      Base = 0x03
1036    };
1037
1038  private:
1039    enum { MaskBits = 2, Mask = 0x03 };
1040
1041    /// \brief The source range that covers this part of the designator.
1042    SourceRange Range;
1043
1044    /// \brief The data describing the designator, which comes in three
1045    /// different forms, depending on the lower two bits.
1046    ///   - An unsigned index into the array of Expr*'s stored after this node
1047    ///     in memory, for [constant-expression] designators.
1048    ///   - A FieldDecl*, for references to a known field.
1049    ///   - An IdentifierInfo*, for references to a field with a given name
1050    ///     when the class type is dependent.
1051    ///   - A CXXBaseSpecifier*, for references that look at a field in a
1052    ///     base class.
1053    uintptr_t Data;
1054
1055  public:
1056    /// \brief Create an offsetof node that refers to an array element.
1057    OffsetOfNode(SourceLocation LBracketLoc, unsigned Index,
1058                 SourceLocation RBracketLoc)
1059      : Range(LBracketLoc, RBracketLoc), Data((Index << 2) | Array) { }
1060
1061    /// \brief Create an offsetof node that refers to a field.
1062    OffsetOfNode(SourceLocation DotLoc, FieldDecl *Field,
1063                 SourceLocation NameLoc)
1064      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1065        Data(reinterpret_cast<uintptr_t>(Field) | OffsetOfNode::Field) { }
1066
1067    /// \brief Create an offsetof node that refers to an identifier.
1068    OffsetOfNode(SourceLocation DotLoc, IdentifierInfo *Name,
1069                 SourceLocation NameLoc)
1070      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1071        Data(reinterpret_cast<uintptr_t>(Name) | Identifier) { }
1072
1073    /// \brief Create an offsetof node that refers into a C++ base class.
1074    explicit OffsetOfNode(const CXXBaseSpecifier *Base)
1075      : Range(), Data(reinterpret_cast<uintptr_t>(Base) | OffsetOfNode::Base) {}
1076
1077    /// \brief Determine what kind of offsetof node this is.
1078    Kind getKind() const {
1079      return static_cast<Kind>(Data & Mask);
1080    }
1081
1082    /// \brief For an array element node, returns the index into the array
1083    /// of expressions.
1084    unsigned getArrayExprIndex() const {
1085      assert(getKind() == Array);
1086      return Data >> 2;
1087    }
1088
1089    /// \brief For a field offsetof node, returns the field.
1090    FieldDecl *getField() const {
1091      assert(getKind() == Field);
1092      return reinterpret_cast<FieldDecl *>(Data & ~(uintptr_t)Mask);
1093    }
1094
1095    /// \brief For a field or identifier offsetof node, returns the name of
1096    /// the field.
1097    IdentifierInfo *getFieldName() const;
1098
1099    /// \brief For a base class node, returns the base specifier.
1100    CXXBaseSpecifier *getBase() const {
1101      assert(getKind() == Base);
1102      return reinterpret_cast<CXXBaseSpecifier *>(Data & ~(uintptr_t)Mask);
1103    }
1104
1105    /// \brief Retrieve the source range that covers this offsetof node.
1106    ///
1107    /// For an array element node, the source range contains the locations of
1108    /// the square brackets. For a field or identifier node, the source range
1109    /// contains the location of the period (if there is one) and the
1110    /// identifier.
1111    SourceRange getRange() const { return Range; }
1112  };
1113
1114private:
1115
1116  SourceLocation OperatorLoc, RParenLoc;
1117  // Base type;
1118  TypeSourceInfo *TSInfo;
1119  // Number of sub-components (i.e. instances of OffsetOfNode).
1120  unsigned NumComps;
1121  // Number of sub-expressions (i.e. array subscript expressions).
1122  unsigned NumExprs;
1123
1124  OffsetOfExpr(ASTContext &C, QualType type,
1125               SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1126               OffsetOfNode* compsPtr, unsigned numComps,
1127               Expr** exprsPtr, unsigned numExprs,
1128               SourceLocation RParenLoc);
1129
1130  explicit OffsetOfExpr(unsigned numComps, unsigned numExprs)
1131    : Expr(OffsetOfExprClass, EmptyShell()),
1132      TSInfo(0), NumComps(numComps), NumExprs(numExprs) {}
1133
1134public:
1135
1136  static OffsetOfExpr *Create(ASTContext &C, QualType type,
1137                              SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1138                              OffsetOfNode* compsPtr, unsigned numComps,
1139                              Expr** exprsPtr, unsigned numExprs,
1140                              SourceLocation RParenLoc);
1141
1142  static OffsetOfExpr *CreateEmpty(ASTContext &C,
1143                                   unsigned NumComps, unsigned NumExprs);
1144
1145  /// getOperatorLoc - Return the location of the operator.
1146  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1147  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
1148
1149  /// \brief Return the location of the right parentheses.
1150  SourceLocation getRParenLoc() const { return RParenLoc; }
1151  void setRParenLoc(SourceLocation R) { RParenLoc = R; }
1152
1153  TypeSourceInfo *getTypeSourceInfo() const {
1154    return TSInfo;
1155  }
1156  void setTypeSourceInfo(TypeSourceInfo *tsi) {
1157    TSInfo = tsi;
1158  }
1159
1160  const OffsetOfNode &getComponent(unsigned Idx) {
1161    assert(Idx < NumComps && "Subscript out of range");
1162    return reinterpret_cast<OffsetOfNode *> (this + 1)[Idx];
1163  }
1164
1165  void setComponent(unsigned Idx, OffsetOfNode ON) {
1166    assert(Idx < NumComps && "Subscript out of range");
1167    reinterpret_cast<OffsetOfNode *> (this + 1)[Idx] = ON;
1168  }
1169
1170  unsigned getNumComponents() const {
1171    return NumComps;
1172  }
1173
1174  Expr* getIndexExpr(unsigned Idx) {
1175    assert(Idx < NumExprs && "Subscript out of range");
1176    return reinterpret_cast<Expr **>(
1177                    reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx];
1178  }
1179
1180  void setIndexExpr(unsigned Idx, Expr* E) {
1181    assert(Idx < NumComps && "Subscript out of range");
1182    reinterpret_cast<Expr **>(
1183                reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx] = E;
1184  }
1185
1186  unsigned getNumExpressions() const {
1187    return NumExprs;
1188  }
1189
1190  virtual SourceRange getSourceRange() const {
1191    return SourceRange(OperatorLoc, RParenLoc);
1192  }
1193
1194  static bool classof(const Stmt *T) {
1195    return T->getStmtClass() == OffsetOfExprClass;
1196  }
1197
1198  static bool classof(const OffsetOfExpr *) { return true; }
1199
1200  // Iterators
1201  virtual child_iterator child_begin();
1202  virtual child_iterator child_end();
1203};
1204
1205/// SizeOfAlignOfExpr - [C99 6.5.3.4] - This is for sizeof/alignof, both of
1206/// types and expressions.
1207class SizeOfAlignOfExpr : public Expr {
1208  bool isSizeof : 1;  // true if sizeof, false if alignof.
1209  bool isType : 1;    // true if operand is a type, false if an expression
1210  union {
1211    TypeSourceInfo *Ty;
1212    Stmt *Ex;
1213  } Argument;
1214  SourceLocation OpLoc, RParenLoc;
1215
1216protected:
1217  virtual void DoDestroy(ASTContext& C);
1218
1219public:
1220  SizeOfAlignOfExpr(bool issizeof, TypeSourceInfo *TInfo,
1221                    QualType resultType, SourceLocation op,
1222                    SourceLocation rp) :
1223      Expr(SizeOfAlignOfExprClass, resultType,
1224           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1225           // Value-dependent if the argument is type-dependent.
1226           TInfo->getType()->isDependentType()),
1227      isSizeof(issizeof), isType(true), OpLoc(op), RParenLoc(rp) {
1228    Argument.Ty = TInfo;
1229  }
1230
1231  SizeOfAlignOfExpr(bool issizeof, Expr *E,
1232                    QualType resultType, SourceLocation op,
1233                    SourceLocation rp) :
1234      Expr(SizeOfAlignOfExprClass, resultType,
1235           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1236           // Value-dependent if the argument is type-dependent.
1237           E->isTypeDependent()),
1238      isSizeof(issizeof), isType(false), OpLoc(op), RParenLoc(rp) {
1239    Argument.Ex = E;
1240  }
1241
1242  /// \brief Construct an empty sizeof/alignof expression.
1243  explicit SizeOfAlignOfExpr(EmptyShell Empty)
1244    : Expr(SizeOfAlignOfExprClass, Empty) { }
1245
1246  bool isSizeOf() const { return isSizeof; }
1247  void setSizeof(bool S) { isSizeof = S; }
1248
1249  bool isArgumentType() const { return isType; }
1250  QualType getArgumentType() const {
1251    return getArgumentTypeInfo()->getType();
1252  }
1253  TypeSourceInfo *getArgumentTypeInfo() const {
1254    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
1255    return Argument.Ty;
1256  }
1257  Expr *getArgumentExpr() {
1258    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
1259    return static_cast<Expr*>(Argument.Ex);
1260  }
1261  const Expr *getArgumentExpr() const {
1262    return const_cast<SizeOfAlignOfExpr*>(this)->getArgumentExpr();
1263  }
1264
1265  void setArgument(Expr *E) { Argument.Ex = E; isType = false; }
1266  void setArgument(TypeSourceInfo *TInfo) {
1267    Argument.Ty = TInfo;
1268    isType = true;
1269  }
1270
1271  /// Gets the argument type, or the type of the argument expression, whichever
1272  /// is appropriate.
1273  QualType getTypeOfArgument() const {
1274    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
1275  }
1276
1277  SourceLocation getOperatorLoc() const { return OpLoc; }
1278  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
1279
1280  SourceLocation getRParenLoc() const { return RParenLoc; }
1281  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1282
1283  virtual SourceRange getSourceRange() const {
1284    return SourceRange(OpLoc, RParenLoc);
1285  }
1286
1287  static bool classof(const Stmt *T) {
1288    return T->getStmtClass() == SizeOfAlignOfExprClass;
1289  }
1290  static bool classof(const SizeOfAlignOfExpr *) { return true; }
1291
1292  // Iterators
1293  virtual child_iterator child_begin();
1294  virtual child_iterator child_end();
1295};
1296
1297//===----------------------------------------------------------------------===//
1298// Postfix Operators.
1299//===----------------------------------------------------------------------===//
1300
1301/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
1302class ArraySubscriptExpr : public Expr {
1303  enum { LHS, RHS, END_EXPR=2 };
1304  Stmt* SubExprs[END_EXPR];
1305  SourceLocation RBracketLoc;
1306public:
1307  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
1308                     SourceLocation rbracketloc)
1309  : Expr(ArraySubscriptExprClass, t,
1310         lhs->isTypeDependent() || rhs->isTypeDependent(),
1311         lhs->isValueDependent() || rhs->isValueDependent()),
1312    RBracketLoc(rbracketloc) {
1313    SubExprs[LHS] = lhs;
1314    SubExprs[RHS] = rhs;
1315  }
1316
1317  /// \brief Create an empty array subscript expression.
1318  explicit ArraySubscriptExpr(EmptyShell Shell)
1319    : Expr(ArraySubscriptExprClass, Shell) { }
1320
1321  /// An array access can be written A[4] or 4[A] (both are equivalent).
1322  /// - getBase() and getIdx() always present the normalized view: A[4].
1323  ///    In this case getBase() returns "A" and getIdx() returns "4".
1324  /// - getLHS() and getRHS() present the syntactic view. e.g. for
1325  ///    4[A] getLHS() returns "4".
1326  /// Note: Because vector element access is also written A[4] we must
1327  /// predicate the format conversion in getBase and getIdx only on the
1328  /// the type of the RHS, as it is possible for the LHS to be a vector of
1329  /// integer type
1330  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
1331  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1332  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1333
1334  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
1335  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1336  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1337
1338  Expr *getBase() {
1339    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1340  }
1341
1342  const Expr *getBase() const {
1343    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1344  }
1345
1346  Expr *getIdx() {
1347    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1348  }
1349
1350  const Expr *getIdx() const {
1351    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1352  }
1353
1354  virtual SourceRange getSourceRange() const {
1355    return SourceRange(getLHS()->getLocStart(), RBracketLoc);
1356  }
1357
1358  SourceLocation getRBracketLoc() const { return RBracketLoc; }
1359  void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
1360
1361  virtual SourceLocation getExprLoc() const { return getBase()->getExprLoc(); }
1362
1363  static bool classof(const Stmt *T) {
1364    return T->getStmtClass() == ArraySubscriptExprClass;
1365  }
1366  static bool classof(const ArraySubscriptExpr *) { return true; }
1367
1368  // Iterators
1369  virtual child_iterator child_begin();
1370  virtual child_iterator child_end();
1371};
1372
1373
1374/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
1375/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
1376/// while its subclasses may represent alternative syntax that (semantically)
1377/// results in a function call. For example, CXXOperatorCallExpr is
1378/// a subclass for overloaded operator calls that use operator syntax, e.g.,
1379/// "str1 + str2" to resolve to a function call.
1380class CallExpr : public Expr {
1381  enum { FN=0, ARGS_START=1 };
1382  Stmt **SubExprs;
1383  unsigned NumArgs;
1384  SourceLocation RParenLoc;
1385
1386protected:
1387  // This version of the constructor is for derived classes.
1388  CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args, unsigned numargs,
1389           QualType t, SourceLocation rparenloc);
1390
1391  virtual void DoDestroy(ASTContext& C);
1392
1393public:
1394  CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, QualType t,
1395           SourceLocation rparenloc);
1396
1397  /// \brief Build an empty call expression.
1398  CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty);
1399
1400  ~CallExpr() {}
1401
1402  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
1403  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
1404  void setCallee(Expr *F) { SubExprs[FN] = F; }
1405
1406  Decl *getCalleeDecl();
1407  const Decl *getCalleeDecl() const {
1408    return const_cast<CallExpr*>(this)->getCalleeDecl();
1409  }
1410
1411  /// \brief If the callee is a FunctionDecl, return it. Otherwise return 0.
1412  FunctionDecl *getDirectCallee();
1413  const FunctionDecl *getDirectCallee() const {
1414    return const_cast<CallExpr*>(this)->getDirectCallee();
1415  }
1416
1417  /// getNumArgs - Return the number of actual arguments to this call.
1418  ///
1419  unsigned getNumArgs() const { return NumArgs; }
1420
1421  /// getArg - Return the specified argument.
1422  Expr *getArg(unsigned Arg) {
1423    assert(Arg < NumArgs && "Arg access out of range!");
1424    return cast<Expr>(SubExprs[Arg+ARGS_START]);
1425  }
1426  const Expr *getArg(unsigned Arg) const {
1427    assert(Arg < NumArgs && "Arg access out of range!");
1428    return cast<Expr>(SubExprs[Arg+ARGS_START]);
1429  }
1430
1431  /// setArg - Set the specified argument.
1432  void setArg(unsigned Arg, Expr *ArgExpr) {
1433    assert(Arg < NumArgs && "Arg access out of range!");
1434    SubExprs[Arg+ARGS_START] = ArgExpr;
1435  }
1436
1437  /// setNumArgs - This changes the number of arguments present in this call.
1438  /// Any orphaned expressions are deleted by this, and any new operands are set
1439  /// to null.
1440  void setNumArgs(ASTContext& C, unsigned NumArgs);
1441
1442  typedef ExprIterator arg_iterator;
1443  typedef ConstExprIterator const_arg_iterator;
1444
1445  arg_iterator arg_begin() { return SubExprs+ARGS_START; }
1446  arg_iterator arg_end() { return SubExprs+ARGS_START+getNumArgs(); }
1447  const_arg_iterator arg_begin() const { return SubExprs+ARGS_START; }
1448  const_arg_iterator arg_end() const { return SubExprs+ARGS_START+getNumArgs();}
1449
1450  /// getNumCommas - Return the number of commas that must have been present in
1451  /// this function call.
1452  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
1453
1454  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
1455  /// not, return 0.
1456  unsigned isBuiltinCall(ASTContext &Context) const;
1457
1458  /// getCallReturnType - Get the return type of the call expr. This is not
1459  /// always the type of the expr itself, if the return type is a reference
1460  /// type.
1461  QualType getCallReturnType() const;
1462
1463  SourceLocation getRParenLoc() const { return RParenLoc; }
1464  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1465
1466  virtual SourceRange getSourceRange() const {
1467    return SourceRange(getCallee()->getLocStart(), RParenLoc);
1468  }
1469
1470  static bool classof(const Stmt *T) {
1471    return T->getStmtClass() == CallExprClass ||
1472           T->getStmtClass() == CXXOperatorCallExprClass ||
1473           T->getStmtClass() == CXXMemberCallExprClass;
1474  }
1475  static bool classof(const CallExpr *) { return true; }
1476  static bool classof(const CXXOperatorCallExpr *) { return true; }
1477  static bool classof(const CXXMemberCallExpr *) { return true; }
1478
1479  // Iterators
1480  virtual child_iterator child_begin();
1481  virtual child_iterator child_end();
1482};
1483
1484/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.  X->F and X.F.
1485///
1486class MemberExpr : public Expr {
1487  /// Extra data stored in some member expressions.
1488  struct MemberNameQualifier : public NameQualifier {
1489    DeclAccessPair FoundDecl;
1490  };
1491
1492  /// Base - the expression for the base pointer or structure references.  In
1493  /// X.F, this is "X".
1494  Stmt *Base;
1495
1496  /// MemberDecl - This is the decl being referenced by the field/member name.
1497  /// In X.F, this is the decl referenced by F.
1498  ValueDecl *MemberDecl;
1499
1500  /// MemberLoc - This is the location of the member name.
1501  SourceLocation MemberLoc;
1502
1503  /// IsArrow - True if this is "X->F", false if this is "X.F".
1504  bool IsArrow : 1;
1505
1506  /// \brief True if this member expression used a nested-name-specifier to
1507  /// refer to the member, e.g., "x->Base::f", or found its member via a using
1508  /// declaration.  When true, a MemberNameQualifier
1509  /// structure is allocated immediately after the MemberExpr.
1510  bool HasQualifierOrFoundDecl : 1;
1511
1512  /// \brief True if this member expression specified a template argument list
1513  /// explicitly, e.g., x->f<int>. When true, an ExplicitTemplateArgumentList
1514  /// structure (and its TemplateArguments) are allocated immediately after
1515  /// the MemberExpr or, if the member expression also has a qualifier, after
1516  /// the MemberNameQualifier structure.
1517  bool HasExplicitTemplateArgumentList : 1;
1518
1519  /// \brief Retrieve the qualifier that preceded the member name, if any.
1520  MemberNameQualifier *getMemberQualifier() {
1521    assert(HasQualifierOrFoundDecl);
1522    return reinterpret_cast<MemberNameQualifier *> (this + 1);
1523  }
1524
1525  /// \brief Retrieve the qualifier that preceded the member name, if any.
1526  const MemberNameQualifier *getMemberQualifier() const {
1527    return const_cast<MemberExpr *>(this)->getMemberQualifier();
1528  }
1529
1530  /// \brief Retrieve the explicit template argument list that followed the
1531  /// member template name, if any.
1532  ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() {
1533    if (!HasExplicitTemplateArgumentList)
1534      return 0;
1535
1536    if (!HasQualifierOrFoundDecl)
1537      return reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
1538
1539    return reinterpret_cast<ExplicitTemplateArgumentList *>(
1540                                                      getMemberQualifier() + 1);
1541  }
1542
1543  /// \brief Retrieve the explicit template argument list that followed the
1544  /// member template name, if any.
1545  const ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() const {
1546    return const_cast<MemberExpr *>(this)->getExplicitTemplateArgumentList();
1547  }
1548
1549public:
1550  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
1551             SourceLocation l, QualType ty)
1552    : Expr(MemberExprClass, ty,
1553           base->isTypeDependent(), base->isValueDependent()),
1554      Base(base), MemberDecl(memberdecl), MemberLoc(l), IsArrow(isarrow),
1555      HasQualifierOrFoundDecl(false), HasExplicitTemplateArgumentList(false) {}
1556
1557  /// \brief Build an empty member reference expression.
1558  explicit MemberExpr(EmptyShell Empty)
1559    : Expr(MemberExprClass, Empty), HasQualifierOrFoundDecl(false),
1560      HasExplicitTemplateArgumentList(false) { }
1561
1562  static MemberExpr *Create(ASTContext &C, Expr *base, bool isarrow,
1563                            NestedNameSpecifier *qual, SourceRange qualrange,
1564                            ValueDecl *memberdecl, DeclAccessPair founddecl,
1565                            SourceLocation l,
1566                            const TemplateArgumentListInfo *targs,
1567                            QualType ty);
1568
1569  void setBase(Expr *E) { Base = E; }
1570  Expr *getBase() const { return cast<Expr>(Base); }
1571
1572  /// \brief Retrieve the member declaration to which this expression refers.
1573  ///
1574  /// The returned declaration will either be a FieldDecl or (in C++)
1575  /// a CXXMethodDecl.
1576  ValueDecl *getMemberDecl() const { return MemberDecl; }
1577  void setMemberDecl(ValueDecl *D) { MemberDecl = D; }
1578
1579  /// \brief Retrieves the declaration found by lookup.
1580  DeclAccessPair getFoundDecl() const {
1581    if (!HasQualifierOrFoundDecl)
1582      return DeclAccessPair::make(getMemberDecl(),
1583                                  getMemberDecl()->getAccess());
1584    return getMemberQualifier()->FoundDecl;
1585  }
1586
1587  /// \brief Determines whether this member expression actually had
1588  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
1589  /// x->Base::foo.
1590  bool hasQualifier() const { return getQualifier() != 0; }
1591
1592  /// \brief If the member name was qualified, retrieves the source range of
1593  /// the nested-name-specifier that precedes the member name. Otherwise,
1594  /// returns an empty source range.
1595  SourceRange getQualifierRange() const {
1596    if (!HasQualifierOrFoundDecl)
1597      return SourceRange();
1598
1599    return getMemberQualifier()->Range;
1600  }
1601
1602  /// \brief If the member name was qualified, retrieves the
1603  /// nested-name-specifier that precedes the member name. Otherwise, returns
1604  /// NULL.
1605  NestedNameSpecifier *getQualifier() const {
1606    if (!HasQualifierOrFoundDecl)
1607      return 0;
1608
1609    return getMemberQualifier()->NNS;
1610  }
1611
1612  /// \brief Determines whether this member expression actually had a C++
1613  /// template argument list explicitly specified, e.g., x.f<int>.
1614  bool hasExplicitTemplateArgumentList() const {
1615    return HasExplicitTemplateArgumentList;
1616  }
1617
1618  /// \brief Copies the template arguments (if present) into the given
1619  /// structure.
1620  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1621    if (hasExplicitTemplateArgumentList())
1622      getExplicitTemplateArgumentList()->copyInto(List);
1623  }
1624
1625  /// \brief Retrieve the location of the left angle bracket following the
1626  /// member name ('<'), if any.
1627  SourceLocation getLAngleLoc() const {
1628    if (!HasExplicitTemplateArgumentList)
1629      return SourceLocation();
1630
1631    return getExplicitTemplateArgumentList()->LAngleLoc;
1632  }
1633
1634  /// \brief Retrieve the template arguments provided as part of this
1635  /// template-id.
1636  const TemplateArgumentLoc *getTemplateArgs() const {
1637    if (!HasExplicitTemplateArgumentList)
1638      return 0;
1639
1640    return getExplicitTemplateArgumentList()->getTemplateArgs();
1641  }
1642
1643  /// \brief Retrieve the number of template arguments provided as part of this
1644  /// template-id.
1645  unsigned getNumTemplateArgs() const {
1646    if (!HasExplicitTemplateArgumentList)
1647      return 0;
1648
1649    return getExplicitTemplateArgumentList()->NumTemplateArgs;
1650  }
1651
1652  /// \brief Retrieve the location of the right angle bracket following the
1653  /// template arguments ('>').
1654  SourceLocation getRAngleLoc() const {
1655    if (!HasExplicitTemplateArgumentList)
1656      return SourceLocation();
1657
1658    return getExplicitTemplateArgumentList()->RAngleLoc;
1659  }
1660
1661  bool isArrow() const { return IsArrow; }
1662  void setArrow(bool A) { IsArrow = A; }
1663
1664  /// getMemberLoc - Return the location of the "member", in X->F, it is the
1665  /// location of 'F'.
1666  SourceLocation getMemberLoc() const { return MemberLoc; }
1667  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
1668
1669  virtual SourceRange getSourceRange() const {
1670    // If we have an implicit base (like a C++ implicit this),
1671    // make sure not to return its location
1672    SourceLocation EndLoc = MemberLoc;
1673    if (HasExplicitTemplateArgumentList)
1674      EndLoc = getRAngleLoc();
1675
1676    SourceLocation BaseLoc = getBase()->getLocStart();
1677    if (BaseLoc.isInvalid())
1678      return SourceRange(MemberLoc, EndLoc);
1679    return SourceRange(BaseLoc, EndLoc);
1680  }
1681
1682  virtual SourceLocation getExprLoc() const { return MemberLoc; }
1683
1684  static bool classof(const Stmt *T) {
1685    return T->getStmtClass() == MemberExprClass;
1686  }
1687  static bool classof(const MemberExpr *) { return true; }
1688
1689  // Iterators
1690  virtual child_iterator child_begin();
1691  virtual child_iterator child_end();
1692};
1693
1694/// CompoundLiteralExpr - [C99 6.5.2.5]
1695///
1696class CompoundLiteralExpr : public Expr {
1697  /// LParenLoc - If non-null, this is the location of the left paren in a
1698  /// compound literal like "(int){4}".  This can be null if this is a
1699  /// synthesized compound expression.
1700  SourceLocation LParenLoc;
1701
1702  /// The type as written.  This can be an incomplete array type, in
1703  /// which case the actual expression type will be different.
1704  TypeSourceInfo *TInfo;
1705  Stmt *Init;
1706  bool FileScope;
1707public:
1708  // FIXME: Can compound literals be value-dependent?
1709  CompoundLiteralExpr(SourceLocation lparenloc, TypeSourceInfo *tinfo,
1710                      QualType T, Expr *init, bool fileScope)
1711    : Expr(CompoundLiteralExprClass, T,
1712           tinfo->getType()->isDependentType(), false),
1713      LParenLoc(lparenloc), TInfo(tinfo), Init(init), FileScope(fileScope) {}
1714
1715  /// \brief Construct an empty compound literal.
1716  explicit CompoundLiteralExpr(EmptyShell Empty)
1717    : Expr(CompoundLiteralExprClass, Empty) { }
1718
1719  const Expr *getInitializer() const { return cast<Expr>(Init); }
1720  Expr *getInitializer() { return cast<Expr>(Init); }
1721  void setInitializer(Expr *E) { Init = E; }
1722
1723  bool isFileScope() const { return FileScope; }
1724  void setFileScope(bool FS) { FileScope = FS; }
1725
1726  SourceLocation getLParenLoc() const { return LParenLoc; }
1727  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
1728
1729  TypeSourceInfo *getTypeSourceInfo() const { return TInfo; }
1730  void setTypeSourceInfo(TypeSourceInfo* tinfo) { TInfo = tinfo; }
1731
1732  virtual SourceRange getSourceRange() const {
1733    // FIXME: Init should never be null.
1734    if (!Init)
1735      return SourceRange();
1736    if (LParenLoc.isInvalid())
1737      return Init->getSourceRange();
1738    return SourceRange(LParenLoc, Init->getLocEnd());
1739  }
1740
1741  static bool classof(const Stmt *T) {
1742    return T->getStmtClass() == CompoundLiteralExprClass;
1743  }
1744  static bool classof(const CompoundLiteralExpr *) { return true; }
1745
1746  // Iterators
1747  virtual child_iterator child_begin();
1748  virtual child_iterator child_end();
1749};
1750
1751/// CastExpr - Base class for type casts, including both implicit
1752/// casts (ImplicitCastExpr) and explicit casts that have some
1753/// representation in the source code (ExplicitCastExpr's derived
1754/// classes).
1755class CastExpr : public Expr {
1756public:
1757  /// CastKind - the kind of cast this represents.
1758  enum CastKind {
1759    /// CK_Unknown - Unknown cast kind.
1760    /// FIXME: The goal is to get rid of this and make all casts have a
1761    /// kind so that the AST client doesn't have to try to figure out what's
1762    /// going on.
1763    CK_Unknown,
1764
1765    /// CK_BitCast - Used for reinterpret_cast.
1766    CK_BitCast,
1767
1768    /// CK_NoOp - Used for const_cast.
1769    CK_NoOp,
1770
1771    /// CK_BaseToDerived - Base to derived class casts.
1772    CK_BaseToDerived,
1773
1774    /// CK_DerivedToBase - Derived to base class casts.
1775    CK_DerivedToBase,
1776
1777    /// CK_UncheckedDerivedToBase - Derived to base class casts that
1778    /// assume that the derived pointer is not null.
1779    CK_UncheckedDerivedToBase,
1780
1781    /// CK_Dynamic - Dynamic cast.
1782    CK_Dynamic,
1783
1784    /// CK_ToUnion - Cast to union (GCC extension).
1785    CK_ToUnion,
1786
1787    /// CK_ArrayToPointerDecay - Array to pointer decay.
1788    CK_ArrayToPointerDecay,
1789
1790    // CK_FunctionToPointerDecay - Function to pointer decay.
1791    CK_FunctionToPointerDecay,
1792
1793    /// CK_NullToMemberPointer - Null pointer to member pointer.
1794    CK_NullToMemberPointer,
1795
1796    /// CK_BaseToDerivedMemberPointer - Member pointer in base class to
1797    /// member pointer in derived class.
1798    CK_BaseToDerivedMemberPointer,
1799
1800    /// CK_DerivedToBaseMemberPointer - Member pointer in derived class to
1801    /// member pointer in base class.
1802    CK_DerivedToBaseMemberPointer,
1803
1804    /// CK_UserDefinedConversion - Conversion using a user defined type
1805    /// conversion function.
1806    CK_UserDefinedConversion,
1807
1808    /// CK_ConstructorConversion - Conversion by constructor
1809    CK_ConstructorConversion,
1810
1811    /// CK_IntegralToPointer - Integral to pointer
1812    CK_IntegralToPointer,
1813
1814    /// CK_PointerToIntegral - Pointer to integral
1815    CK_PointerToIntegral,
1816
1817    /// CK_ToVoid - Cast to void.
1818    CK_ToVoid,
1819
1820    /// CK_VectorSplat - Casting from an integer/floating type to an extended
1821    /// vector type with the same element type as the src type. Splats the
1822    /// src expression into the destination expression.
1823    CK_VectorSplat,
1824
1825    /// CK_IntegralCast - Casting between integral types of different size.
1826    CK_IntegralCast,
1827
1828    /// CK_IntegralToFloating - Integral to floating point.
1829    CK_IntegralToFloating,
1830
1831    /// CK_FloatingToIntegral - Floating point to integral.
1832    CK_FloatingToIntegral,
1833
1834    /// CK_FloatingCast - Casting between floating types of different size.
1835    CK_FloatingCast,
1836
1837    /// CK_MemberPointerToBoolean - Member pointer to boolean
1838    CK_MemberPointerToBoolean,
1839
1840    /// CK_AnyPointerToObjCPointerCast - Casting any pointer to objective-c
1841    /// pointer
1842    CK_AnyPointerToObjCPointerCast,
1843    /// CK_AnyPointerToBlockPointerCast - Casting any pointer to block
1844    /// pointer
1845    CK_AnyPointerToBlockPointerCast
1846
1847  };
1848
1849private:
1850  CastKind Kind;
1851  Stmt *Op;
1852
1853  /// BasePath - For derived-to-base and base-to-derived casts, the base array
1854  /// contains the inheritance path.
1855  CXXBaseSpecifierArray BasePath;
1856
1857  void CheckBasePath() const {
1858#ifndef NDEBUG
1859    switch (getCastKind()) {
1860    case CK_DerivedToBase:
1861    case CK_UncheckedDerivedToBase:
1862    case CK_DerivedToBaseMemberPointer:
1863    case CK_BaseToDerived:
1864    case CK_BaseToDerivedMemberPointer:
1865      assert(!BasePath.empty() && "Cast kind should have a base path!");
1866      break;
1867
1868    // These should not have an inheritance path.
1869    case CK_Unknown:
1870    case CK_BitCast:
1871    case CK_NoOp:
1872    case CK_Dynamic:
1873    case CK_ToUnion:
1874    case CK_ArrayToPointerDecay:
1875    case CK_FunctionToPointerDecay:
1876    case CK_NullToMemberPointer:
1877    case CK_UserDefinedConversion:
1878    case CK_ConstructorConversion:
1879    case CK_IntegralToPointer:
1880    case CK_PointerToIntegral:
1881    case CK_ToVoid:
1882    case CK_VectorSplat:
1883    case CK_IntegralCast:
1884    case CK_IntegralToFloating:
1885    case CK_FloatingToIntegral:
1886    case CK_FloatingCast:
1887    case CK_MemberPointerToBoolean:
1888    case CK_AnyPointerToObjCPointerCast:
1889    case CK_AnyPointerToBlockPointerCast:
1890      assert(BasePath.empty() && "Cast kind should not have a base path!");
1891      break;
1892    }
1893#endif
1894  }
1895
1896protected:
1897  CastExpr(StmtClass SC, QualType ty, const CastKind kind, Expr *op,
1898           CXXBaseSpecifierArray BasePath) :
1899    Expr(SC, ty,
1900         // Cast expressions are type-dependent if the type is
1901         // dependent (C++ [temp.dep.expr]p3).
1902         ty->isDependentType(),
1903         // Cast expressions are value-dependent if the type is
1904         // dependent or if the subexpression is value-dependent.
1905         ty->isDependentType() || (op && op->isValueDependent())),
1906    Kind(kind), Op(op), BasePath(BasePath) {
1907      CheckBasePath();
1908    }
1909
1910  /// \brief Construct an empty cast.
1911  CastExpr(StmtClass SC, EmptyShell Empty)
1912    : Expr(SC, Empty) { }
1913
1914  virtual void DoDestroy(ASTContext &C);
1915
1916public:
1917  CastKind getCastKind() const { return Kind; }
1918  void setCastKind(CastKind K) { Kind = K; }
1919  const char *getCastKindName() const;
1920
1921  Expr *getSubExpr() { return cast<Expr>(Op); }
1922  const Expr *getSubExpr() const { return cast<Expr>(Op); }
1923  void setSubExpr(Expr *E) { Op = E; }
1924
1925  /// \brief Retrieve the cast subexpression as it was written in the source
1926  /// code, looking through any implicit casts or other intermediate nodes
1927  /// introduced by semantic analysis.
1928  Expr *getSubExprAsWritten();
1929  const Expr *getSubExprAsWritten() const {
1930    return const_cast<CastExpr *>(this)->getSubExprAsWritten();
1931  }
1932
1933  const CXXBaseSpecifierArray& getBasePath() const { return BasePath; }
1934
1935  static bool classof(const Stmt *T) {
1936    StmtClass SC = T->getStmtClass();
1937    if (SC >= CXXStaticCastExprClass && SC <= CXXFunctionalCastExprClass)
1938      return true;
1939
1940    if (SC >= ImplicitCastExprClass && SC <= CStyleCastExprClass)
1941      return true;
1942
1943    return false;
1944  }
1945  static bool classof(const CastExpr *) { return true; }
1946
1947  // Iterators
1948  virtual child_iterator child_begin();
1949  virtual child_iterator child_end();
1950};
1951
1952/// ImplicitCastExpr - Allows us to explicitly represent implicit type
1953/// conversions, which have no direct representation in the original
1954/// source code. For example: converting T[]->T*, void f()->void
1955/// (*f)(), float->double, short->int, etc.
1956///
1957/// In C, implicit casts always produce rvalues. However, in C++, an
1958/// implicit cast whose result is being bound to a reference will be
1959/// an lvalue. For example:
1960///
1961/// @code
1962/// class Base { };
1963/// class Derived : public Base { };
1964/// void f(Derived d) {
1965///   Base& b = d; // initializer is an ImplicitCastExpr to an lvalue of type Base
1966/// }
1967/// @endcode
1968class ImplicitCastExpr : public CastExpr {
1969  /// LvalueCast - Whether this cast produces an lvalue.
1970  bool LvalueCast;
1971
1972public:
1973  ImplicitCastExpr(QualType ty, CastKind kind, Expr *op,
1974                   CXXBaseSpecifierArray BasePath, bool Lvalue)
1975    : CastExpr(ImplicitCastExprClass, ty, kind, op, BasePath),
1976    LvalueCast(Lvalue) { }
1977
1978  /// \brief Construct an empty implicit cast.
1979  explicit ImplicitCastExpr(EmptyShell Shell)
1980    : CastExpr(ImplicitCastExprClass, Shell) { }
1981
1982  virtual SourceRange getSourceRange() const {
1983    return getSubExpr()->getSourceRange();
1984  }
1985
1986  /// isLvalueCast - Whether this cast produces an lvalue.
1987  bool isLvalueCast() const { return LvalueCast; }
1988
1989  /// setLvalueCast - Set whether this cast produces an lvalue.
1990  void setLvalueCast(bool Lvalue) { LvalueCast = Lvalue; }
1991
1992  static bool classof(const Stmt *T) {
1993    return T->getStmtClass() == ImplicitCastExprClass;
1994  }
1995  static bool classof(const ImplicitCastExpr *) { return true; }
1996};
1997
1998/// ExplicitCastExpr - An explicit cast written in the source
1999/// code.
2000///
2001/// This class is effectively an abstract class, because it provides
2002/// the basic representation of an explicitly-written cast without
2003/// specifying which kind of cast (C cast, functional cast, static
2004/// cast, etc.) was written; specific derived classes represent the
2005/// particular style of cast and its location information.
2006///
2007/// Unlike implicit casts, explicit cast nodes have two different
2008/// types: the type that was written into the source code, and the
2009/// actual type of the expression as determined by semantic
2010/// analysis. These types may differ slightly. For example, in C++ one
2011/// can cast to a reference type, which indicates that the resulting
2012/// expression will be an lvalue. The reference type, however, will
2013/// not be used as the type of the expression.
2014class ExplicitCastExpr : public CastExpr {
2015  /// TInfo - Source type info for the (written) type
2016  /// this expression is casting to.
2017  TypeSourceInfo *TInfo;
2018
2019protected:
2020  ExplicitCastExpr(StmtClass SC, QualType exprTy, CastKind kind,
2021                   Expr *op, CXXBaseSpecifierArray BasePath,
2022                   TypeSourceInfo *writtenTy)
2023    : CastExpr(SC, exprTy, kind, op, BasePath), TInfo(writtenTy) {}
2024
2025  /// \brief Construct an empty explicit cast.
2026  ExplicitCastExpr(StmtClass SC, EmptyShell Shell)
2027    : CastExpr(SC, Shell) { }
2028
2029public:
2030  /// getTypeInfoAsWritten - Returns the type source info for the type
2031  /// that this expression is casting to.
2032  TypeSourceInfo *getTypeInfoAsWritten() const { return TInfo; }
2033  void setTypeInfoAsWritten(TypeSourceInfo *writtenTy) { TInfo = writtenTy; }
2034
2035  /// getTypeAsWritten - Returns the type that this expression is
2036  /// casting to, as written in the source code.
2037  QualType getTypeAsWritten() const { return TInfo->getType(); }
2038
2039  static bool classof(const Stmt *T) {
2040    StmtClass SC = T->getStmtClass();
2041    if (SC >= CStyleCastExprClass && SC <= CStyleCastExprClass)
2042      return true;
2043    if (SC >= CXXStaticCastExprClass && SC <= CXXFunctionalCastExprClass)
2044      return true;
2045
2046    return false;
2047  }
2048  static bool classof(const ExplicitCastExpr *) { return true; }
2049};
2050
2051/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
2052/// cast in C++ (C++ [expr.cast]), which uses the syntax
2053/// (Type)expr. For example: @c (int)f.
2054class CStyleCastExpr : public ExplicitCastExpr {
2055  SourceLocation LPLoc; // the location of the left paren
2056  SourceLocation RPLoc; // the location of the right paren
2057public:
2058  CStyleCastExpr(QualType exprTy, CastKind kind, Expr *op,
2059                 CXXBaseSpecifierArray BasePath, TypeSourceInfo *writtenTy,
2060                 SourceLocation l, SourceLocation r)
2061    : ExplicitCastExpr(CStyleCastExprClass, exprTy, kind, op, BasePath,
2062                       writtenTy), LPLoc(l), RPLoc(r) {}
2063
2064  /// \brief Construct an empty C-style explicit cast.
2065  explicit CStyleCastExpr(EmptyShell Shell)
2066    : ExplicitCastExpr(CStyleCastExprClass, Shell) { }
2067
2068  SourceLocation getLParenLoc() const { return LPLoc; }
2069  void setLParenLoc(SourceLocation L) { LPLoc = L; }
2070
2071  SourceLocation getRParenLoc() const { return RPLoc; }
2072  void setRParenLoc(SourceLocation L) { RPLoc = L; }
2073
2074  virtual SourceRange getSourceRange() const {
2075    return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd());
2076  }
2077  static bool classof(const Stmt *T) {
2078    return T->getStmtClass() == CStyleCastExprClass;
2079  }
2080  static bool classof(const CStyleCastExpr *) { return true; }
2081};
2082
2083/// \brief A builtin binary operation expression such as "x + y" or "x <= y".
2084///
2085/// This expression node kind describes a builtin binary operation,
2086/// such as "x + y" for integer values "x" and "y". The operands will
2087/// already have been converted to appropriate types (e.g., by
2088/// performing promotions or conversions).
2089///
2090/// In C++, where operators may be overloaded, a different kind of
2091/// expression node (CXXOperatorCallExpr) is used to express the
2092/// invocation of an overloaded operator with operator syntax. Within
2093/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
2094/// used to store an expression "x + y" depends on the subexpressions
2095/// for x and y. If neither x or y is type-dependent, and the "+"
2096/// operator resolves to a built-in operation, BinaryOperator will be
2097/// used to express the computation (x and y may still be
2098/// value-dependent). If either x or y is type-dependent, or if the
2099/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
2100/// be used to express the computation.
2101class BinaryOperator : public Expr {
2102public:
2103  enum Opcode {
2104    // Operators listed in order of precedence.
2105    // Note that additions to this should also update the StmtVisitor class.
2106    PtrMemD, PtrMemI, // [C++ 5.5] Pointer-to-member operators.
2107    Mul, Div, Rem,    // [C99 6.5.5] Multiplicative operators.
2108    Add, Sub,         // [C99 6.5.6] Additive operators.
2109    Shl, Shr,         // [C99 6.5.7] Bitwise shift operators.
2110    LT, GT, LE, GE,   // [C99 6.5.8] Relational operators.
2111    EQ, NE,           // [C99 6.5.9] Equality operators.
2112    And,              // [C99 6.5.10] Bitwise AND operator.
2113    Xor,              // [C99 6.5.11] Bitwise XOR operator.
2114    Or,               // [C99 6.5.12] Bitwise OR operator.
2115    LAnd,             // [C99 6.5.13] Logical AND operator.
2116    LOr,              // [C99 6.5.14] Logical OR operator.
2117    Assign, MulAssign,// [C99 6.5.16] Assignment operators.
2118    DivAssign, RemAssign,
2119    AddAssign, SubAssign,
2120    ShlAssign, ShrAssign,
2121    AndAssign, XorAssign,
2122    OrAssign,
2123    Comma             // [C99 6.5.17] Comma operator.
2124  };
2125private:
2126  enum { LHS, RHS, END_EXPR };
2127  Stmt* SubExprs[END_EXPR];
2128  Opcode Opc;
2129  SourceLocation OpLoc;
2130public:
2131
2132  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2133                 SourceLocation opLoc)
2134    : Expr(BinaryOperatorClass, ResTy,
2135           lhs->isTypeDependent() || rhs->isTypeDependent(),
2136           lhs->isValueDependent() || rhs->isValueDependent()),
2137      Opc(opc), OpLoc(opLoc) {
2138    SubExprs[LHS] = lhs;
2139    SubExprs[RHS] = rhs;
2140    assert(!isCompoundAssignmentOp() &&
2141           "Use ArithAssignBinaryOperator for compound assignments");
2142  }
2143
2144  /// \brief Construct an empty binary operator.
2145  explicit BinaryOperator(EmptyShell Empty)
2146    : Expr(BinaryOperatorClass, Empty), Opc(Comma) { }
2147
2148  SourceLocation getOperatorLoc() const { return OpLoc; }
2149  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
2150
2151  Opcode getOpcode() const { return Opc; }
2152  void setOpcode(Opcode O) { Opc = O; }
2153
2154  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2155  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2156  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2157  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2158
2159  virtual SourceRange getSourceRange() const {
2160    return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
2161  }
2162
2163  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
2164  /// corresponds to, e.g. "<<=".
2165  static const char *getOpcodeStr(Opcode Op);
2166
2167  /// \brief Retrieve the binary opcode that corresponds to the given
2168  /// overloaded operator.
2169  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
2170
2171  /// \brief Retrieve the overloaded operator kind that corresponds to
2172  /// the given binary opcode.
2173  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
2174
2175  /// predicates to categorize the respective opcodes.
2176  bool isMultiplicativeOp() const { return Opc >= Mul && Opc <= Rem; }
2177  bool isAdditiveOp() const { return Opc == Add || Opc == Sub; }
2178  static bool isShiftOp(Opcode Opc) { return Opc == Shl || Opc == Shr; }
2179  bool isShiftOp() const { return isShiftOp(Opc); }
2180
2181  static bool isBitwiseOp(Opcode Opc) { return Opc >= And && Opc <= Or; }
2182  bool isBitwiseOp() const { return isBitwiseOp(Opc); }
2183
2184  static bool isRelationalOp(Opcode Opc) { return Opc >= LT && Opc <= GE; }
2185  bool isRelationalOp() const { return isRelationalOp(Opc); }
2186
2187  static bool isEqualityOp(Opcode Opc) { return Opc == EQ || Opc == NE; }
2188  bool isEqualityOp() const { return isEqualityOp(Opc); }
2189
2190  static bool isComparisonOp(Opcode Opc) { return Opc >= LT && Opc <= NE; }
2191  bool isComparisonOp() const { return isComparisonOp(Opc); }
2192
2193  static bool isLogicalOp(Opcode Opc) { return Opc == LAnd || Opc == LOr; }
2194  bool isLogicalOp() const { return isLogicalOp(Opc); }
2195
2196  bool isAssignmentOp() const { return Opc >= Assign && Opc <= OrAssign; }
2197  bool isCompoundAssignmentOp() const { return Opc > Assign && Opc <= OrAssign;}
2198  bool isShiftAssignOp() const { return Opc == ShlAssign || Opc == ShrAssign; }
2199
2200  static bool classof(const Stmt *S) {
2201    return S->getStmtClass() == BinaryOperatorClass ||
2202           S->getStmtClass() == CompoundAssignOperatorClass;
2203  }
2204  static bool classof(const BinaryOperator *) { return true; }
2205
2206  // Iterators
2207  virtual child_iterator child_begin();
2208  virtual child_iterator child_end();
2209
2210protected:
2211  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2212                 SourceLocation opLoc, bool dead)
2213    : Expr(CompoundAssignOperatorClass, ResTy,
2214           lhs->isTypeDependent() || rhs->isTypeDependent(),
2215           lhs->isValueDependent() || rhs->isValueDependent()),
2216      Opc(opc), OpLoc(opLoc) {
2217    SubExprs[LHS] = lhs;
2218    SubExprs[RHS] = rhs;
2219  }
2220
2221  BinaryOperator(StmtClass SC, EmptyShell Empty)
2222    : Expr(SC, Empty), Opc(MulAssign) { }
2223};
2224
2225/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
2226/// track of the type the operation is performed in.  Due to the semantics of
2227/// these operators, the operands are promoted, the aritmetic performed, an
2228/// implicit conversion back to the result type done, then the assignment takes
2229/// place.  This captures the intermediate type which the computation is done
2230/// in.
2231class CompoundAssignOperator : public BinaryOperator {
2232  QualType ComputationLHSType;
2233  QualType ComputationResultType;
2234public:
2235  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc,
2236                         QualType ResType, QualType CompLHSType,
2237                         QualType CompResultType,
2238                         SourceLocation OpLoc)
2239    : BinaryOperator(lhs, rhs, opc, ResType, OpLoc, true),
2240      ComputationLHSType(CompLHSType),
2241      ComputationResultType(CompResultType) {
2242    assert(isCompoundAssignmentOp() &&
2243           "Only should be used for compound assignments");
2244  }
2245
2246  /// \brief Build an empty compound assignment operator expression.
2247  explicit CompoundAssignOperator(EmptyShell Empty)
2248    : BinaryOperator(CompoundAssignOperatorClass, Empty) { }
2249
2250  // The two computation types are the type the LHS is converted
2251  // to for the computation and the type of the result; the two are
2252  // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
2253  QualType getComputationLHSType() const { return ComputationLHSType; }
2254  void setComputationLHSType(QualType T) { ComputationLHSType = T; }
2255
2256  QualType getComputationResultType() const { return ComputationResultType; }
2257  void setComputationResultType(QualType T) { ComputationResultType = T; }
2258
2259  static bool classof(const CompoundAssignOperator *) { return true; }
2260  static bool classof(const Stmt *S) {
2261    return S->getStmtClass() == CompoundAssignOperatorClass;
2262  }
2263};
2264
2265/// ConditionalOperator - The ?: operator.  Note that LHS may be null when the
2266/// GNU "missing LHS" extension is in use.
2267///
2268class ConditionalOperator : public Expr {
2269  enum { COND, LHS, RHS, END_EXPR };
2270  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
2271  SourceLocation QuestionLoc, ColonLoc;
2272public:
2273  ConditionalOperator(Expr *cond, SourceLocation QLoc, Expr *lhs,
2274                      SourceLocation CLoc, Expr *rhs, QualType t)
2275    : Expr(ConditionalOperatorClass, t,
2276           // FIXME: the type of the conditional operator doesn't
2277           // depend on the type of the conditional, but the standard
2278           // seems to imply that it could. File a bug!
2279           ((lhs && lhs->isTypeDependent()) || (rhs && rhs->isTypeDependent())),
2280           (cond->isValueDependent() ||
2281            (lhs && lhs->isValueDependent()) ||
2282            (rhs && rhs->isValueDependent()))),
2283      QuestionLoc(QLoc),
2284      ColonLoc(CLoc) {
2285    SubExprs[COND] = cond;
2286    SubExprs[LHS] = lhs;
2287    SubExprs[RHS] = rhs;
2288  }
2289
2290  /// \brief Build an empty conditional operator.
2291  explicit ConditionalOperator(EmptyShell Empty)
2292    : Expr(ConditionalOperatorClass, Empty) { }
2293
2294  // getCond - Return the expression representing the condition for
2295  //  the ?: operator.
2296  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
2297  void setCond(Expr *E) { SubExprs[COND] = E; }
2298
2299  // getTrueExpr - Return the subexpression representing the value of the ?:
2300  //  expression if the condition evaluates to true.  In most cases this value
2301  //  will be the same as getLHS() except a GCC extension allows the left
2302  //  subexpression to be omitted, and instead of the condition be returned.
2303  //  e.g: x ?: y is shorthand for x ? x : y, except that the expression "x"
2304  //  is only evaluated once.
2305  Expr *getTrueExpr() const {
2306    return cast<Expr>(SubExprs[LHS] ? SubExprs[LHS] : SubExprs[COND]);
2307  }
2308
2309  // getTrueExpr - Return the subexpression representing the value of the ?:
2310  // expression if the condition evaluates to false. This is the same as getRHS.
2311  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
2312
2313  Expr *getLHS() const { return cast_or_null<Expr>(SubExprs[LHS]); }
2314  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2315
2316  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2317  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2318
2319  SourceLocation getQuestionLoc() const { return QuestionLoc; }
2320  void setQuestionLoc(SourceLocation L) { QuestionLoc = L; }
2321
2322  SourceLocation getColonLoc() const { return ColonLoc; }
2323  void setColonLoc(SourceLocation L) { ColonLoc = L; }
2324
2325  virtual SourceRange getSourceRange() const {
2326    return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
2327  }
2328  static bool classof(const Stmt *T) {
2329    return T->getStmtClass() == ConditionalOperatorClass;
2330  }
2331  static bool classof(const ConditionalOperator *) { return true; }
2332
2333  // Iterators
2334  virtual child_iterator child_begin();
2335  virtual child_iterator child_end();
2336};
2337
2338/// AddrLabelExpr - The GNU address of label extension, representing &&label.
2339class AddrLabelExpr : public Expr {
2340  SourceLocation AmpAmpLoc, LabelLoc;
2341  LabelStmt *Label;
2342public:
2343  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelStmt *L,
2344                QualType t)
2345    : Expr(AddrLabelExprClass, t, false, false),
2346      AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
2347
2348  /// \brief Build an empty address of a label expression.
2349  explicit AddrLabelExpr(EmptyShell Empty)
2350    : Expr(AddrLabelExprClass, Empty) { }
2351
2352  SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
2353  void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
2354  SourceLocation getLabelLoc() const { return LabelLoc; }
2355  void setLabelLoc(SourceLocation L) { LabelLoc = L; }
2356
2357  virtual SourceRange getSourceRange() const {
2358    return SourceRange(AmpAmpLoc, LabelLoc);
2359  }
2360
2361  LabelStmt *getLabel() const { return Label; }
2362  void setLabel(LabelStmt *S) { Label = S; }
2363
2364  static bool classof(const Stmt *T) {
2365    return T->getStmtClass() == AddrLabelExprClass;
2366  }
2367  static bool classof(const AddrLabelExpr *) { return true; }
2368
2369  // Iterators
2370  virtual child_iterator child_begin();
2371  virtual child_iterator child_end();
2372};
2373
2374/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
2375/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
2376/// takes the value of the last subexpression.
2377class StmtExpr : public Expr {
2378  Stmt *SubStmt;
2379  SourceLocation LParenLoc, RParenLoc;
2380public:
2381  // FIXME: Does type-dependence need to be computed differently?
2382  StmtExpr(CompoundStmt *substmt, QualType T,
2383           SourceLocation lp, SourceLocation rp) :
2384    Expr(StmtExprClass, T, T->isDependentType(), false),
2385    SubStmt(substmt), LParenLoc(lp), RParenLoc(rp) { }
2386
2387  /// \brief Build an empty statement expression.
2388  explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
2389
2390  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
2391  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
2392  void setSubStmt(CompoundStmt *S) { SubStmt = S; }
2393
2394  virtual SourceRange getSourceRange() const {
2395    return SourceRange(LParenLoc, RParenLoc);
2396  }
2397
2398  SourceLocation getLParenLoc() const { return LParenLoc; }
2399  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2400  SourceLocation getRParenLoc() const { return RParenLoc; }
2401  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2402
2403  static bool classof(const Stmt *T) {
2404    return T->getStmtClass() == StmtExprClass;
2405  }
2406  static bool classof(const StmtExpr *) { return true; }
2407
2408  // Iterators
2409  virtual child_iterator child_begin();
2410  virtual child_iterator child_end();
2411};
2412
2413/// TypesCompatibleExpr - GNU builtin-in function __builtin_types_compatible_p.
2414/// This AST node represents a function that returns 1 if two *types* (not
2415/// expressions) are compatible. The result of this built-in function can be
2416/// used in integer constant expressions.
2417class TypesCompatibleExpr : public Expr {
2418  QualType Type1;
2419  QualType Type2;
2420  SourceLocation BuiltinLoc, RParenLoc;
2421public:
2422  TypesCompatibleExpr(QualType ReturnType, SourceLocation BLoc,
2423                      QualType t1, QualType t2, SourceLocation RP) :
2424    Expr(TypesCompatibleExprClass, ReturnType, false, false),
2425    Type1(t1), Type2(t2), BuiltinLoc(BLoc), RParenLoc(RP) {}
2426
2427  /// \brief Build an empty __builtin_type_compatible_p expression.
2428  explicit TypesCompatibleExpr(EmptyShell Empty)
2429    : Expr(TypesCompatibleExprClass, Empty) { }
2430
2431  QualType getArgType1() const { return Type1; }
2432  void setArgType1(QualType T) { Type1 = T; }
2433  QualType getArgType2() const { return Type2; }
2434  void setArgType2(QualType T) { Type2 = T; }
2435
2436  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2437  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2438
2439  SourceLocation getRParenLoc() const { return RParenLoc; }
2440  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2441
2442  virtual SourceRange getSourceRange() const {
2443    return SourceRange(BuiltinLoc, RParenLoc);
2444  }
2445  static bool classof(const Stmt *T) {
2446    return T->getStmtClass() == TypesCompatibleExprClass;
2447  }
2448  static bool classof(const TypesCompatibleExpr *) { return true; }
2449
2450  // Iterators
2451  virtual child_iterator child_begin();
2452  virtual child_iterator child_end();
2453};
2454
2455/// ShuffleVectorExpr - clang-specific builtin-in function
2456/// __builtin_shufflevector.
2457/// This AST node represents a operator that does a constant
2458/// shuffle, similar to LLVM's shufflevector instruction. It takes
2459/// two vectors and a variable number of constant indices,
2460/// and returns the appropriately shuffled vector.
2461class ShuffleVectorExpr : public Expr {
2462  SourceLocation BuiltinLoc, RParenLoc;
2463
2464  // SubExprs - the list of values passed to the __builtin_shufflevector
2465  // function. The first two are vectors, and the rest are constant
2466  // indices.  The number of values in this list is always
2467  // 2+the number of indices in the vector type.
2468  Stmt **SubExprs;
2469  unsigned NumExprs;
2470
2471protected:
2472  virtual void DoDestroy(ASTContext &C);
2473
2474public:
2475  // FIXME: Can a shufflevector be value-dependent?  Does type-dependence need
2476  // to be computed differently?
2477  ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr,
2478                    QualType Type, SourceLocation BLoc,
2479                    SourceLocation RP) :
2480    Expr(ShuffleVectorExprClass, Type, Type->isDependentType(), false),
2481    BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(nexpr) {
2482
2483    SubExprs = new (C) Stmt*[nexpr];
2484    for (unsigned i = 0; i < nexpr; i++)
2485      SubExprs[i] = args[i];
2486  }
2487
2488  /// \brief Build an empty vector-shuffle expression.
2489  explicit ShuffleVectorExpr(EmptyShell Empty)
2490    : Expr(ShuffleVectorExprClass, Empty), SubExprs(0) { }
2491
2492  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2493  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2494
2495  SourceLocation getRParenLoc() const { return RParenLoc; }
2496  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2497
2498  virtual SourceRange getSourceRange() const {
2499    return SourceRange(BuiltinLoc, RParenLoc);
2500  }
2501  static bool classof(const Stmt *T) {
2502    return T->getStmtClass() == ShuffleVectorExprClass;
2503  }
2504  static bool classof(const ShuffleVectorExpr *) { return true; }
2505
2506  ~ShuffleVectorExpr() {}
2507
2508  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
2509  /// constant expression, the actual arguments passed in, and the function
2510  /// pointers.
2511  unsigned getNumSubExprs() const { return NumExprs; }
2512
2513  /// getExpr - Return the Expr at the specified index.
2514  Expr *getExpr(unsigned Index) {
2515    assert((Index < NumExprs) && "Arg access out of range!");
2516    return cast<Expr>(SubExprs[Index]);
2517  }
2518  const Expr *getExpr(unsigned Index) const {
2519    assert((Index < NumExprs) && "Arg access out of range!");
2520    return cast<Expr>(SubExprs[Index]);
2521  }
2522
2523  void setExprs(ASTContext &C, Expr ** Exprs, unsigned NumExprs);
2524
2525  unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) {
2526    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
2527    return getExpr(N+2)->EvaluateAsInt(Ctx).getZExtValue();
2528  }
2529
2530  // Iterators
2531  virtual child_iterator child_begin();
2532  virtual child_iterator child_end();
2533};
2534
2535/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
2536/// This AST node is similar to the conditional operator (?:) in C, with
2537/// the following exceptions:
2538/// - the test expression must be a integer constant expression.
2539/// - the expression returned acts like the chosen subexpression in every
2540///   visible way: the type is the same as that of the chosen subexpression,
2541///   and all predicates (whether it's an l-value, whether it's an integer
2542///   constant expression, etc.) return the same result as for the chosen
2543///   sub-expression.
2544class ChooseExpr : public Expr {
2545  enum { COND, LHS, RHS, END_EXPR };
2546  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
2547  SourceLocation BuiltinLoc, RParenLoc;
2548public:
2549  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs, QualType t,
2550             SourceLocation RP, bool TypeDependent, bool ValueDependent)
2551    : Expr(ChooseExprClass, t, TypeDependent, ValueDependent),
2552      BuiltinLoc(BLoc), RParenLoc(RP) {
2553      SubExprs[COND] = cond;
2554      SubExprs[LHS] = lhs;
2555      SubExprs[RHS] = rhs;
2556    }
2557
2558  /// \brief Build an empty __builtin_choose_expr.
2559  explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
2560
2561  /// isConditionTrue - Return whether the condition is true (i.e. not
2562  /// equal to zero).
2563  bool isConditionTrue(ASTContext &C) const;
2564
2565  /// getChosenSubExpr - Return the subexpression chosen according to the
2566  /// condition.
2567  Expr *getChosenSubExpr(ASTContext &C) const {
2568    return isConditionTrue(C) ? getLHS() : getRHS();
2569  }
2570
2571  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
2572  void setCond(Expr *E) { SubExprs[COND] = E; }
2573  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2574  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2575  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2576  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2577
2578  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2579  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2580
2581  SourceLocation getRParenLoc() const { return RParenLoc; }
2582  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2583
2584  virtual SourceRange getSourceRange() const {
2585    return SourceRange(BuiltinLoc, RParenLoc);
2586  }
2587  static bool classof(const Stmt *T) {
2588    return T->getStmtClass() == ChooseExprClass;
2589  }
2590  static bool classof(const ChooseExpr *) { return true; }
2591
2592  // Iterators
2593  virtual child_iterator child_begin();
2594  virtual child_iterator child_end();
2595};
2596
2597/// GNUNullExpr - Implements the GNU __null extension, which is a name
2598/// for a null pointer constant that has integral type (e.g., int or
2599/// long) and is the same size and alignment as a pointer. The __null
2600/// extension is typically only used by system headers, which define
2601/// NULL as __null in C++ rather than using 0 (which is an integer
2602/// that may not match the size of a pointer).
2603class GNUNullExpr : public Expr {
2604  /// TokenLoc - The location of the __null keyword.
2605  SourceLocation TokenLoc;
2606
2607public:
2608  GNUNullExpr(QualType Ty, SourceLocation Loc)
2609    : Expr(GNUNullExprClass, Ty, false, false), TokenLoc(Loc) { }
2610
2611  /// \brief Build an empty GNU __null expression.
2612  explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
2613
2614  /// getTokenLocation - The location of the __null token.
2615  SourceLocation getTokenLocation() const { return TokenLoc; }
2616  void setTokenLocation(SourceLocation L) { TokenLoc = L; }
2617
2618  virtual SourceRange getSourceRange() const {
2619    return SourceRange(TokenLoc);
2620  }
2621  static bool classof(const Stmt *T) {
2622    return T->getStmtClass() == GNUNullExprClass;
2623  }
2624  static bool classof(const GNUNullExpr *) { return true; }
2625
2626  // Iterators
2627  virtual child_iterator child_begin();
2628  virtual child_iterator child_end();
2629};
2630
2631/// VAArgExpr, used for the builtin function __builtin_va_arg.
2632class VAArgExpr : public Expr {
2633  Stmt *Val;
2634  SourceLocation BuiltinLoc, RParenLoc;
2635public:
2636  VAArgExpr(SourceLocation BLoc, Expr* e, QualType t, SourceLocation RPLoc)
2637    : Expr(VAArgExprClass, t, t->isDependentType(), false),
2638      Val(e),
2639      BuiltinLoc(BLoc),
2640      RParenLoc(RPLoc) { }
2641
2642  /// \brief Create an empty __builtin_va_arg expression.
2643  explicit VAArgExpr(EmptyShell Empty) : Expr(VAArgExprClass, Empty) { }
2644
2645  const Expr *getSubExpr() const { return cast<Expr>(Val); }
2646  Expr *getSubExpr() { return cast<Expr>(Val); }
2647  void setSubExpr(Expr *E) { Val = E; }
2648
2649  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2650  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2651
2652  SourceLocation getRParenLoc() const { return RParenLoc; }
2653  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2654
2655  virtual SourceRange getSourceRange() const {
2656    return SourceRange(BuiltinLoc, RParenLoc);
2657  }
2658  static bool classof(const Stmt *T) {
2659    return T->getStmtClass() == VAArgExprClass;
2660  }
2661  static bool classof(const VAArgExpr *) { return true; }
2662
2663  // Iterators
2664  virtual child_iterator child_begin();
2665  virtual child_iterator child_end();
2666};
2667
2668/// @brief Describes an C or C++ initializer list.
2669///
2670/// InitListExpr describes an initializer list, which can be used to
2671/// initialize objects of different types, including
2672/// struct/class/union types, arrays, and vectors. For example:
2673///
2674/// @code
2675/// struct foo x = { 1, { 2, 3 } };
2676/// @endcode
2677///
2678/// Prior to semantic analysis, an initializer list will represent the
2679/// initializer list as written by the user, but will have the
2680/// placeholder type "void". This initializer list is called the
2681/// syntactic form of the initializer, and may contain C99 designated
2682/// initializers (represented as DesignatedInitExprs), initializations
2683/// of subobject members without explicit braces, and so on. Clients
2684/// interested in the original syntax of the initializer list should
2685/// use the syntactic form of the initializer list.
2686///
2687/// After semantic analysis, the initializer list will represent the
2688/// semantic form of the initializer, where the initializations of all
2689/// subobjects are made explicit with nested InitListExpr nodes and
2690/// C99 designators have been eliminated by placing the designated
2691/// initializations into the subobject they initialize. Additionally,
2692/// any "holes" in the initialization, where no initializer has been
2693/// specified for a particular subobject, will be replaced with
2694/// implicitly-generated ImplicitValueInitExpr expressions that
2695/// value-initialize the subobjects. Note, however, that the
2696/// initializer lists may still have fewer initializers than there are
2697/// elements to initialize within the object.
2698///
2699/// Given the semantic form of the initializer list, one can retrieve
2700/// the original syntactic form of that initializer list (if it
2701/// exists) using getSyntacticForm(). Since many initializer lists
2702/// have the same syntactic and semantic forms, getSyntacticForm() may
2703/// return NULL, indicating that the current initializer list also
2704/// serves as its syntactic form.
2705class InitListExpr : public Expr {
2706  // FIXME: Eliminate this vector in favor of ASTContext allocation
2707  typedef ASTVector<Stmt *> InitExprsTy;
2708  InitExprsTy InitExprs;
2709  SourceLocation LBraceLoc, RBraceLoc;
2710
2711  /// Contains the initializer list that describes the syntactic form
2712  /// written in the source code.
2713  InitListExpr *SyntacticForm;
2714
2715  /// If this initializer list initializes a union, specifies which
2716  /// field within the union will be initialized.
2717  FieldDecl *UnionFieldInit;
2718
2719  /// Whether this initializer list originally had a GNU array-range
2720  /// designator in it. This is a temporary marker used by CodeGen.
2721  bool HadArrayRangeDesignator;
2722
2723public:
2724  InitListExpr(ASTContext &C, SourceLocation lbraceloc,
2725               Expr **initexprs, unsigned numinits,
2726               SourceLocation rbraceloc);
2727
2728  /// \brief Build an empty initializer list.
2729  explicit InitListExpr(ASTContext &C, EmptyShell Empty)
2730    : Expr(InitListExprClass, Empty), InitExprs(C) { }
2731
2732  unsigned getNumInits() const { return InitExprs.size(); }
2733
2734  const Expr* getInit(unsigned Init) const {
2735    assert(Init < getNumInits() && "Initializer access out of range!");
2736    return cast_or_null<Expr>(InitExprs[Init]);
2737  }
2738
2739  Expr* getInit(unsigned Init) {
2740    assert(Init < getNumInits() && "Initializer access out of range!");
2741    return cast_or_null<Expr>(InitExprs[Init]);
2742  }
2743
2744  void setInit(unsigned Init, Expr *expr) {
2745    assert(Init < getNumInits() && "Initializer access out of range!");
2746    InitExprs[Init] = expr;
2747  }
2748
2749  /// \brief Reserve space for some number of initializers.
2750  void reserveInits(ASTContext &C, unsigned NumInits);
2751
2752  /// @brief Specify the number of initializers
2753  ///
2754  /// If there are more than @p NumInits initializers, the remaining
2755  /// initializers will be destroyed. If there are fewer than @p
2756  /// NumInits initializers, NULL expressions will be added for the
2757  /// unknown initializers.
2758  void resizeInits(ASTContext &Context, unsigned NumInits);
2759
2760  /// @brief Updates the initializer at index @p Init with the new
2761  /// expression @p expr, and returns the old expression at that
2762  /// location.
2763  ///
2764  /// When @p Init is out of range for this initializer list, the
2765  /// initializer list will be extended with NULL expressions to
2766  /// accomodate the new entry.
2767  Expr *updateInit(ASTContext &C, unsigned Init, Expr *expr);
2768
2769  /// \brief If this initializes a union, specifies which field in the
2770  /// union to initialize.
2771  ///
2772  /// Typically, this field is the first named field within the
2773  /// union. However, a designated initializer can specify the
2774  /// initialization of a different field within the union.
2775  FieldDecl *getInitializedFieldInUnion() { return UnionFieldInit; }
2776  void setInitializedFieldInUnion(FieldDecl *FD) { UnionFieldInit = FD; }
2777
2778  // Explicit InitListExpr's originate from source code (and have valid source
2779  // locations). Implicit InitListExpr's are created by the semantic analyzer.
2780  bool isExplicit() {
2781    return LBraceLoc.isValid() && RBraceLoc.isValid();
2782  }
2783
2784  SourceLocation getLBraceLoc() const { return LBraceLoc; }
2785  void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
2786  SourceLocation getRBraceLoc() const { return RBraceLoc; }
2787  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
2788
2789  /// @brief Retrieve the initializer list that describes the
2790  /// syntactic form of the initializer.
2791  ///
2792  ///
2793  InitListExpr *getSyntacticForm() const { return SyntacticForm; }
2794  void setSyntacticForm(InitListExpr *Init) { SyntacticForm = Init; }
2795
2796  bool hadArrayRangeDesignator() const { return HadArrayRangeDesignator; }
2797  void sawArrayRangeDesignator(bool ARD = true) {
2798    HadArrayRangeDesignator = ARD;
2799  }
2800
2801  virtual SourceRange getSourceRange() const {
2802    return SourceRange(LBraceLoc, RBraceLoc);
2803  }
2804  static bool classof(const Stmt *T) {
2805    return T->getStmtClass() == InitListExprClass;
2806  }
2807  static bool classof(const InitListExpr *) { return true; }
2808
2809  // Iterators
2810  virtual child_iterator child_begin();
2811  virtual child_iterator child_end();
2812
2813  typedef InitExprsTy::iterator iterator;
2814  typedef InitExprsTy::reverse_iterator reverse_iterator;
2815
2816  iterator begin() { return InitExprs.begin(); }
2817  iterator end() { return InitExprs.end(); }
2818  reverse_iterator rbegin() { return InitExprs.rbegin(); }
2819  reverse_iterator rend() { return InitExprs.rend(); }
2820};
2821
2822/// @brief Represents a C99 designated initializer expression.
2823///
2824/// A designated initializer expression (C99 6.7.8) contains one or
2825/// more designators (which can be field designators, array
2826/// designators, or GNU array-range designators) followed by an
2827/// expression that initializes the field or element(s) that the
2828/// designators refer to. For example, given:
2829///
2830/// @code
2831/// struct point {
2832///   double x;
2833///   double y;
2834/// };
2835/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
2836/// @endcode
2837///
2838/// The InitListExpr contains three DesignatedInitExprs, the first of
2839/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
2840/// designators, one array designator for @c [2] followed by one field
2841/// designator for @c .y. The initalization expression will be 1.0.
2842class DesignatedInitExpr : public Expr {
2843public:
2844  /// \brief Forward declaration of the Designator class.
2845  class Designator;
2846
2847private:
2848  /// The location of the '=' or ':' prior to the actual initializer
2849  /// expression.
2850  SourceLocation EqualOrColonLoc;
2851
2852  /// Whether this designated initializer used the GNU deprecated
2853  /// syntax rather than the C99 '=' syntax.
2854  bool GNUSyntax : 1;
2855
2856  /// The number of designators in this initializer expression.
2857  unsigned NumDesignators : 15;
2858
2859  /// \brief The designators in this designated initialization
2860  /// expression.
2861  Designator *Designators;
2862
2863  /// The number of subexpressions of this initializer expression,
2864  /// which contains both the initializer and any additional
2865  /// expressions used by array and array-range designators.
2866  unsigned NumSubExprs : 16;
2867
2868
2869  DesignatedInitExpr(ASTContext &C, QualType Ty, unsigned NumDesignators,
2870                     const Designator *Designators,
2871                     SourceLocation EqualOrColonLoc, bool GNUSyntax,
2872                     Expr **IndexExprs, unsigned NumIndexExprs,
2873                     Expr *Init);
2874
2875  explicit DesignatedInitExpr(unsigned NumSubExprs)
2876    : Expr(DesignatedInitExprClass, EmptyShell()),
2877      NumDesignators(0), Designators(0), NumSubExprs(NumSubExprs) { }
2878
2879protected:
2880  virtual void DoDestroy(ASTContext &C);
2881
2882  void DestroyDesignators(ASTContext &C);
2883
2884public:
2885  /// A field designator, e.g., ".x".
2886  struct FieldDesignator {
2887    /// Refers to the field that is being initialized. The low bit
2888    /// of this field determines whether this is actually a pointer
2889    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
2890    /// initially constructed, a field designator will store an
2891    /// IdentifierInfo*. After semantic analysis has resolved that
2892    /// name, the field designator will instead store a FieldDecl*.
2893    uintptr_t NameOrField;
2894
2895    /// The location of the '.' in the designated initializer.
2896    unsigned DotLoc;
2897
2898    /// The location of the field name in the designated initializer.
2899    unsigned FieldLoc;
2900  };
2901
2902  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
2903  struct ArrayOrRangeDesignator {
2904    /// Location of the first index expression within the designated
2905    /// initializer expression's list of subexpressions.
2906    unsigned Index;
2907    /// The location of the '[' starting the array range designator.
2908    unsigned LBracketLoc;
2909    /// The location of the ellipsis separating the start and end
2910    /// indices. Only valid for GNU array-range designators.
2911    unsigned EllipsisLoc;
2912    /// The location of the ']' terminating the array range designator.
2913    unsigned RBracketLoc;
2914  };
2915
2916  /// @brief Represents a single C99 designator.
2917  ///
2918  /// @todo This class is infuriatingly similar to clang::Designator,
2919  /// but minor differences (storing indices vs. storing pointers)
2920  /// keep us from reusing it. Try harder, later, to rectify these
2921  /// differences.
2922  class Designator {
2923    /// @brief The kind of designator this describes.
2924    enum {
2925      FieldDesignator,
2926      ArrayDesignator,
2927      ArrayRangeDesignator
2928    } Kind;
2929
2930    union {
2931      /// A field designator, e.g., ".x".
2932      struct FieldDesignator Field;
2933      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
2934      struct ArrayOrRangeDesignator ArrayOrRange;
2935    };
2936    friend class DesignatedInitExpr;
2937
2938  public:
2939    Designator() {}
2940
2941    /// @brief Initializes a field designator.
2942    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
2943               SourceLocation FieldLoc)
2944      : Kind(FieldDesignator) {
2945      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
2946      Field.DotLoc = DotLoc.getRawEncoding();
2947      Field.FieldLoc = FieldLoc.getRawEncoding();
2948    }
2949
2950    /// @brief Initializes an array designator.
2951    Designator(unsigned Index, SourceLocation LBracketLoc,
2952               SourceLocation RBracketLoc)
2953      : Kind(ArrayDesignator) {
2954      ArrayOrRange.Index = Index;
2955      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
2956      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
2957      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
2958    }
2959
2960    /// @brief Initializes a GNU array-range designator.
2961    Designator(unsigned Index, SourceLocation LBracketLoc,
2962               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
2963      : Kind(ArrayRangeDesignator) {
2964      ArrayOrRange.Index = Index;
2965      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
2966      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
2967      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
2968    }
2969
2970    bool isFieldDesignator() const { return Kind == FieldDesignator; }
2971    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
2972    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
2973
2974    IdentifierInfo * getFieldName();
2975
2976    FieldDecl *getField() {
2977      assert(Kind == FieldDesignator && "Only valid on a field designator");
2978      if (Field.NameOrField & 0x01)
2979        return 0;
2980      else
2981        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
2982    }
2983
2984    void setField(FieldDecl *FD) {
2985      assert(Kind == FieldDesignator && "Only valid on a field designator");
2986      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
2987    }
2988
2989    SourceLocation getDotLoc() const {
2990      assert(Kind == FieldDesignator && "Only valid on a field designator");
2991      return SourceLocation::getFromRawEncoding(Field.DotLoc);
2992    }
2993
2994    SourceLocation getFieldLoc() const {
2995      assert(Kind == FieldDesignator && "Only valid on a field designator");
2996      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
2997    }
2998
2999    SourceLocation getLBracketLoc() const {
3000      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3001             "Only valid on an array or array-range designator");
3002      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
3003    }
3004
3005    SourceLocation getRBracketLoc() const {
3006      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3007             "Only valid on an array or array-range designator");
3008      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
3009    }
3010
3011    SourceLocation getEllipsisLoc() const {
3012      assert(Kind == ArrayRangeDesignator &&
3013             "Only valid on an array-range designator");
3014      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
3015    }
3016
3017    unsigned getFirstExprIndex() const {
3018      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3019             "Only valid on an array or array-range designator");
3020      return ArrayOrRange.Index;
3021    }
3022
3023    SourceLocation getStartLocation() const {
3024      if (Kind == FieldDesignator)
3025        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
3026      else
3027        return getLBracketLoc();
3028    }
3029  };
3030
3031  static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators,
3032                                    unsigned NumDesignators,
3033                                    Expr **IndexExprs, unsigned NumIndexExprs,
3034                                    SourceLocation EqualOrColonLoc,
3035                                    bool GNUSyntax, Expr *Init);
3036
3037  static DesignatedInitExpr *CreateEmpty(ASTContext &C, unsigned NumIndexExprs);
3038
3039  /// @brief Returns the number of designators in this initializer.
3040  unsigned size() const { return NumDesignators; }
3041
3042  // Iterator access to the designators.
3043  typedef Designator* designators_iterator;
3044  designators_iterator designators_begin() { return Designators; }
3045  designators_iterator designators_end() {
3046    return Designators + NumDesignators;
3047  }
3048
3049  Designator *getDesignator(unsigned Idx) { return &designators_begin()[Idx]; }
3050
3051  void setDesignators(ASTContext &C, const Designator *Desigs,
3052                      unsigned NumDesigs);
3053
3054  Expr *getArrayIndex(const Designator& D);
3055  Expr *getArrayRangeStart(const Designator& D);
3056  Expr *getArrayRangeEnd(const Designator& D);
3057
3058  /// @brief Retrieve the location of the '=' that precedes the
3059  /// initializer value itself, if present.
3060  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
3061  void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
3062
3063  /// @brief Determines whether this designated initializer used the
3064  /// deprecated GNU syntax for designated initializers.
3065  bool usesGNUSyntax() const { return GNUSyntax; }
3066  void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
3067
3068  /// @brief Retrieve the initializer value.
3069  Expr *getInit() const {
3070    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
3071  }
3072
3073  void setInit(Expr *init) {
3074    *child_begin() = init;
3075  }
3076
3077  /// \brief Retrieve the total number of subexpressions in this
3078  /// designated initializer expression, including the actual
3079  /// initialized value and any expressions that occur within array
3080  /// and array-range designators.
3081  unsigned getNumSubExprs() const { return NumSubExprs; }
3082
3083  Expr *getSubExpr(unsigned Idx) {
3084    assert(Idx < NumSubExprs && "Subscript out of range");
3085    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3086    Ptr += sizeof(DesignatedInitExpr);
3087    return reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx];
3088  }
3089
3090  void setSubExpr(unsigned Idx, Expr *E) {
3091    assert(Idx < NumSubExprs && "Subscript out of range");
3092    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3093    Ptr += sizeof(DesignatedInitExpr);
3094    reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx] = E;
3095  }
3096
3097  /// \brief Replaces the designator at index @p Idx with the series
3098  /// of designators in [First, Last).
3099  void ExpandDesignator(ASTContext &C, unsigned Idx, const Designator *First,
3100                        const Designator *Last);
3101
3102  virtual SourceRange getSourceRange() const;
3103
3104  static bool classof(const Stmt *T) {
3105    return T->getStmtClass() == DesignatedInitExprClass;
3106  }
3107  static bool classof(const DesignatedInitExpr *) { return true; }
3108
3109  // Iterators
3110  virtual child_iterator child_begin();
3111  virtual child_iterator child_end();
3112};
3113
3114/// \brief Represents an implicitly-generated value initialization of
3115/// an object of a given type.
3116///
3117/// Implicit value initializations occur within semantic initializer
3118/// list expressions (InitListExpr) as placeholders for subobject
3119/// initializations not explicitly specified by the user.
3120///
3121/// \see InitListExpr
3122class ImplicitValueInitExpr : public Expr {
3123public:
3124  explicit ImplicitValueInitExpr(QualType ty)
3125    : Expr(ImplicitValueInitExprClass, ty, false, false) { }
3126
3127  /// \brief Construct an empty implicit value initialization.
3128  explicit ImplicitValueInitExpr(EmptyShell Empty)
3129    : Expr(ImplicitValueInitExprClass, Empty) { }
3130
3131  static bool classof(const Stmt *T) {
3132    return T->getStmtClass() == ImplicitValueInitExprClass;
3133  }
3134  static bool classof(const ImplicitValueInitExpr *) { return true; }
3135
3136  virtual SourceRange getSourceRange() const {
3137    return SourceRange();
3138  }
3139
3140  // Iterators
3141  virtual child_iterator child_begin();
3142  virtual child_iterator child_end();
3143};
3144
3145
3146class ParenListExpr : public Expr {
3147  Stmt **Exprs;
3148  unsigned NumExprs;
3149  SourceLocation LParenLoc, RParenLoc;
3150
3151protected:
3152  virtual void DoDestroy(ASTContext& C);
3153
3154public:
3155  ParenListExpr(ASTContext& C, SourceLocation lparenloc, Expr **exprs,
3156                unsigned numexprs, SourceLocation rparenloc);
3157
3158  ~ParenListExpr() {}
3159
3160  /// \brief Build an empty paren list.
3161  //explicit ParenListExpr(EmptyShell Empty) : Expr(ParenListExprClass, Empty) { }
3162
3163  unsigned getNumExprs() const { return NumExprs; }
3164
3165  const Expr* getExpr(unsigned Init) const {
3166    assert(Init < getNumExprs() && "Initializer access out of range!");
3167    return cast_or_null<Expr>(Exprs[Init]);
3168  }
3169
3170  Expr* getExpr(unsigned Init) {
3171    assert(Init < getNumExprs() && "Initializer access out of range!");
3172    return cast_or_null<Expr>(Exprs[Init]);
3173  }
3174
3175  Expr **getExprs() { return reinterpret_cast<Expr **>(Exprs); }
3176
3177  SourceLocation getLParenLoc() const { return LParenLoc; }
3178  SourceLocation getRParenLoc() const { return RParenLoc; }
3179
3180  virtual SourceRange getSourceRange() const {
3181    return SourceRange(LParenLoc, RParenLoc);
3182  }
3183  static bool classof(const Stmt *T) {
3184    return T->getStmtClass() == ParenListExprClass;
3185  }
3186  static bool classof(const ParenListExpr *) { return true; }
3187
3188  // Iterators
3189  virtual child_iterator child_begin();
3190  virtual child_iterator child_end();
3191};
3192
3193
3194//===----------------------------------------------------------------------===//
3195// Clang Extensions
3196//===----------------------------------------------------------------------===//
3197
3198
3199/// ExtVectorElementExpr - This represents access to specific elements of a
3200/// vector, and may occur on the left hand side or right hand side.  For example
3201/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
3202///
3203/// Note that the base may have either vector or pointer to vector type, just
3204/// like a struct field reference.
3205///
3206class ExtVectorElementExpr : public Expr {
3207  Stmt *Base;
3208  IdentifierInfo *Accessor;
3209  SourceLocation AccessorLoc;
3210public:
3211  ExtVectorElementExpr(QualType ty, Expr *base, IdentifierInfo &accessor,
3212                       SourceLocation loc)
3213    : Expr(ExtVectorElementExprClass, ty, base->isTypeDependent(),
3214           base->isValueDependent()),
3215      Base(base), Accessor(&accessor), AccessorLoc(loc) {}
3216
3217  /// \brief Build an empty vector element expression.
3218  explicit ExtVectorElementExpr(EmptyShell Empty)
3219    : Expr(ExtVectorElementExprClass, Empty) { }
3220
3221  const Expr *getBase() const { return cast<Expr>(Base); }
3222  Expr *getBase() { return cast<Expr>(Base); }
3223  void setBase(Expr *E) { Base = E; }
3224
3225  IdentifierInfo &getAccessor() const { return *Accessor; }
3226  void setAccessor(IdentifierInfo *II) { Accessor = II; }
3227
3228  SourceLocation getAccessorLoc() const { return AccessorLoc; }
3229  void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
3230
3231  /// getNumElements - Get the number of components being selected.
3232  unsigned getNumElements() const;
3233
3234  /// containsDuplicateElements - Return true if any element access is
3235  /// repeated.
3236  bool containsDuplicateElements() const;
3237
3238  /// getEncodedElementAccess - Encode the elements accessed into an llvm
3239  /// aggregate Constant of ConstantInt(s).
3240  void getEncodedElementAccess(llvm::SmallVectorImpl<unsigned> &Elts) const;
3241
3242  virtual SourceRange getSourceRange() const {
3243    return SourceRange(getBase()->getLocStart(), AccessorLoc);
3244  }
3245
3246  /// isArrow - Return true if the base expression is a pointer to vector,
3247  /// return false if the base expression is a vector.
3248  bool isArrow() const;
3249
3250  static bool classof(const Stmt *T) {
3251    return T->getStmtClass() == ExtVectorElementExprClass;
3252  }
3253  static bool classof(const ExtVectorElementExpr *) { return true; }
3254
3255  // Iterators
3256  virtual child_iterator child_begin();
3257  virtual child_iterator child_end();
3258};
3259
3260
3261/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
3262/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
3263class BlockExpr : public Expr {
3264protected:
3265  BlockDecl *TheBlock;
3266  bool HasBlockDeclRefExprs;
3267public:
3268  BlockExpr(BlockDecl *BD, QualType ty, bool hasBlockDeclRefExprs)
3269    : Expr(BlockExprClass, ty, ty->isDependentType(), false),
3270      TheBlock(BD), HasBlockDeclRefExprs(hasBlockDeclRefExprs) {}
3271
3272  /// \brief Build an empty block expression.
3273  explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { }
3274
3275  const BlockDecl *getBlockDecl() const { return TheBlock; }
3276  BlockDecl *getBlockDecl() { return TheBlock; }
3277  void setBlockDecl(BlockDecl *BD) { TheBlock = BD; }
3278
3279  // Convenience functions for probing the underlying BlockDecl.
3280  SourceLocation getCaretLocation() const;
3281  const Stmt *getBody() const;
3282  Stmt *getBody();
3283
3284  virtual SourceRange getSourceRange() const {
3285    return SourceRange(getCaretLocation(), getBody()->getLocEnd());
3286  }
3287
3288  /// getFunctionType - Return the underlying function type for this block.
3289  const FunctionType *getFunctionType() const;
3290
3291  /// hasBlockDeclRefExprs - Return true iff the block has BlockDeclRefExpr
3292  /// inside of the block that reference values outside the block.
3293  bool hasBlockDeclRefExprs() const { return HasBlockDeclRefExprs; }
3294  void setHasBlockDeclRefExprs(bool BDRE) { HasBlockDeclRefExprs = BDRE; }
3295
3296  static bool classof(const Stmt *T) {
3297    return T->getStmtClass() == BlockExprClass;
3298  }
3299  static bool classof(const BlockExpr *) { return true; }
3300
3301  // Iterators
3302  virtual child_iterator child_begin();
3303  virtual child_iterator child_end();
3304};
3305
3306/// BlockDeclRefExpr - A reference to a declared variable, function,
3307/// enum, etc.
3308class BlockDeclRefExpr : public Expr {
3309  ValueDecl *D;
3310  SourceLocation Loc;
3311  bool IsByRef : 1;
3312  bool ConstQualAdded : 1;
3313public:
3314  // FIXME: Fix type/value dependence!
3315  BlockDeclRefExpr(ValueDecl *d, QualType t, SourceLocation l, bool ByRef,
3316                   bool constAdded = false)
3317  : Expr(BlockDeclRefExprClass, t, false, false), D(d), Loc(l), IsByRef(ByRef),
3318    ConstQualAdded(constAdded) {}
3319
3320  // \brief Build an empty reference to a declared variable in a
3321  // block.
3322  explicit BlockDeclRefExpr(EmptyShell Empty)
3323    : Expr(BlockDeclRefExprClass, Empty) { }
3324
3325  ValueDecl *getDecl() { return D; }
3326  const ValueDecl *getDecl() const { return D; }
3327  void setDecl(ValueDecl *VD) { D = VD; }
3328
3329  SourceLocation getLocation() const { return Loc; }
3330  void setLocation(SourceLocation L) { Loc = L; }
3331
3332  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
3333
3334  bool isByRef() const { return IsByRef; }
3335  void setByRef(bool BR) { IsByRef = BR; }
3336
3337  bool isConstQualAdded() const { return ConstQualAdded; }
3338  void setConstQualAdded(bool C) { ConstQualAdded = C; }
3339
3340  static bool classof(const Stmt *T) {
3341    return T->getStmtClass() == BlockDeclRefExprClass;
3342  }
3343  static bool classof(const BlockDeclRefExpr *) { return true; }
3344
3345  // Iterators
3346  virtual child_iterator child_begin();
3347  virtual child_iterator child_end();
3348};
3349
3350}  // end namespace clang
3351
3352#endif
3353