Expr.h revision d077d759d0c7fceee98f4e77b6423a3f11cfc849
1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/Stmt.h"
19#include "clang/AST/Type.h"
20#include "llvm/ADT/APSInt.h"
21#include "llvm/ADT/APFloat.h"
22#include "llvm/ADT/SmallVector.h"
23#include <vector>
24
25namespace clang {
26  class ASTContext;
27  class APValue;
28  class Decl;
29  class IdentifierInfo;
30  class ParmVarDecl;
31  class NamedDecl;
32  class ValueDecl;
33  class BlockDecl;
34  class CXXOperatorCallExpr;
35  class CXXMemberCallExpr;
36
37/// Expr - This represents one expression.  Note that Expr's are subclasses of
38/// Stmt.  This allows an expression to be transparently used any place a Stmt
39/// is required.
40///
41class Expr : public Stmt {
42  QualType TR;
43
44  /// TypeDependent - Whether this expression is type-dependent
45  /// (C++ [temp.dep.expr]).
46  bool TypeDependent : 1;
47
48  /// ValueDependent - Whether this expression is value-dependent
49  /// (C++ [temp.dep.constexpr]).
50  bool ValueDependent : 1;
51
52protected:
53  // FIXME: Eventually, this constructor should go away and we should
54  // require every subclass to provide type/value-dependence
55  // information.
56  Expr(StmtClass SC, QualType T)
57    : Stmt(SC), TypeDependent(false), ValueDependent(false) {
58    setType(T);
59  }
60
61  Expr(StmtClass SC, QualType T, bool TD, bool VD)
62    : Stmt(SC), TypeDependent(TD), ValueDependent(VD) {
63    setType(T);
64  }
65
66  /// \brief Construct an empty expression.
67  explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
68
69public:
70  QualType getType() const { return TR; }
71  void setType(QualType t) {
72    // In C++, the type of an expression is always adjusted so that it
73    // will not have reference type an expression will never have
74    // reference type (C++ [expr]p6). Use
75    // QualType::getNonReferenceType() to retrieve the non-reference
76    // type. Additionally, inspect Expr::isLvalue to determine whether
77    // an expression that is adjusted in this manner should be
78    // considered an lvalue.
79    assert((TR.isNull() || !TR->isReferenceType()) &&
80           "Expressions can't have reference type");
81
82    TR = t;
83  }
84
85  /// isValueDependent - Determines whether this expression is
86  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
87  /// array bound of "Chars" in the following example is
88  /// value-dependent.
89  /// @code
90  /// template<int Size, char (&Chars)[Size]> struct meta_string;
91  /// @endcode
92  bool isValueDependent() const { return ValueDependent; }
93
94  /// \brief Set whether this expression is value-dependent or not.
95  void setValueDependent(bool VD) { ValueDependent = VD; }
96
97  /// isTypeDependent - Determines whether this expression is
98  /// type-dependent (C++ [temp.dep.expr]), which means that its type
99  /// could change from one template instantiation to the next. For
100  /// example, the expressions "x" and "x + y" are type-dependent in
101  /// the following code, but "y" is not type-dependent:
102  /// @code
103  /// template<typename T>
104  /// void add(T x, int y) {
105  ///   x + y;
106  /// }
107  /// @endcode
108  bool isTypeDependent() const { return TypeDependent; }
109
110  /// \brief Set whether this expression is type-dependent or not.
111  void setTypeDependent(bool TD) { TypeDependent = TD; }
112
113  /// SourceLocation tokens are not useful in isolation - they are low level
114  /// value objects created/interpreted by SourceManager. We assume AST
115  /// clients will have a pointer to the respective SourceManager.
116  virtual SourceRange getSourceRange() const = 0;
117
118  /// getExprLoc - Return the preferred location for the arrow when diagnosing
119  /// a problem with a generic expression.
120  virtual SourceLocation getExprLoc() const { return getLocStart(); }
121
122  /// isUnusedResultAWarning - Return true if this immediate expression should
123  /// be warned about if the result is unused.  If so, fill in Loc and Ranges
124  /// with location to warn on and the source range[s] to report with the
125  /// warning.
126  bool isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
127                              SourceRange &R2) const;
128
129  /// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or
130  /// incomplete type other than void. Nonarray expressions that can be lvalues:
131  ///  - name, where name must be a variable
132  ///  - e[i]
133  ///  - (e), where e must be an lvalue
134  ///  - e.name, where e must be an lvalue
135  ///  - e->name
136  ///  - *e, the type of e cannot be a function type
137  ///  - string-constant
138  ///  - reference type [C++ [expr]]
139  ///
140  enum isLvalueResult {
141    LV_Valid,
142    LV_NotObjectType,
143    LV_IncompleteVoidType,
144    LV_DuplicateVectorComponents,
145    LV_InvalidExpression,
146    LV_MemberFunction
147  };
148  isLvalueResult isLvalue(ASTContext &Ctx) const;
149
150  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
151  /// does not have an incomplete type, does not have a const-qualified type,
152  /// and if it is a structure or union, does not have any member (including,
153  /// recursively, any member or element of all contained aggregates or unions)
154  /// with a const-qualified type.
155  ///
156  /// \param Loc [in] [out] - A source location which *may* be filled
157  /// in with the location of the expression making this a
158  /// non-modifiable lvalue, if specified.
159  enum isModifiableLvalueResult {
160    MLV_Valid,
161    MLV_NotObjectType,
162    MLV_IncompleteVoidType,
163    MLV_DuplicateVectorComponents,
164    MLV_InvalidExpression,
165    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
166    MLV_IncompleteType,
167    MLV_ConstQualified,
168    MLV_ArrayType,
169    MLV_NotBlockQualified,
170    MLV_ReadonlyProperty,
171    MLV_NoSetterProperty,
172    MLV_MemberFunction
173  };
174  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx,
175                                              SourceLocation *Loc = 0) const;
176
177  bool isBitField();
178
179  /// getIntegerConstantExprValue() - Return the value of an integer
180  /// constant expression. The expression must be a valid integer
181  /// constant expression as determined by isIntegerConstantExpr.
182  llvm::APSInt getIntegerConstantExprValue(ASTContext &Ctx) const {
183    llvm::APSInt X;
184    bool success = isIntegerConstantExpr(X, Ctx);
185    success = success;
186    assert(success && "Illegal argument to getIntegerConstantExpr");
187    return X;
188  }
189
190  /// isIntegerConstantExpr - Return true if this expression is a valid integer
191  /// constant expression, and, if so, return its value in Result.  If not a
192  /// valid i-c-e, return false and fill in Loc (if specified) with the location
193  /// of the invalid expression.
194  bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
195                             SourceLocation *Loc = 0,
196                             bool isEvaluated = true) const;
197  bool isIntegerConstantExprInternal(llvm::APSInt &Result, ASTContext &Ctx,
198                             SourceLocation *Loc = 0,
199                             bool isEvaluated = true) const;
200  bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const {
201    llvm::APSInt X;
202    return isIntegerConstantExpr(X, Ctx, Loc);
203  }
204  /// isConstantInitializer - Returns true if this expression is a constant
205  /// initializer, which can be emitted at compile-time.
206  bool isConstantInitializer(ASTContext &Ctx) const;
207
208  /// EvalResult is a struct with detailed info about an evaluated expression.
209  struct EvalResult {
210    /// Val - This is the value the expression can be folded to.
211    APValue Val;
212
213    /// HasSideEffects - Whether the evaluated expression has side effects.
214    /// For example, (f() && 0) can be folded, but it still has side effects.
215    bool HasSideEffects;
216
217    /// Diag - If the expression is unfoldable, then Diag contains a note
218    /// diagnostic indicating why it's not foldable. DiagLoc indicates a caret
219    /// position for the error, and DiagExpr is the expression that caused
220    /// the error.
221    /// If the expression is foldable, but not an integer constant expression,
222    /// Diag contains a note diagnostic that describes why it isn't an integer
223    /// constant expression. If the expression *is* an integer constant
224    /// expression, then Diag will be zero.
225    unsigned Diag;
226    const Expr *DiagExpr;
227    SourceLocation DiagLoc;
228
229    EvalResult() : HasSideEffects(false), Diag(0), DiagExpr(0) {}
230  };
231
232  /// Evaluate - Return true if this is a constant which we can fold using
233  /// any crazy technique (that has nothing to do with language standards) that
234  /// we want to.  If this function returns true, it returns the folded constant
235  /// in Result.
236  bool Evaluate(EvalResult &Result, ASTContext &Ctx) const;
237
238  /// isEvaluatable - Call Evaluate to see if this expression can be constant
239  /// folded, but discard the result.
240  bool isEvaluatable(ASTContext &Ctx) const;
241
242  /// EvaluateAsInt - Call Evaluate and return the folded integer. This
243  /// must be called on an expression that constant folds to an integer.
244  llvm::APSInt EvaluateAsInt(ASTContext &Ctx) const;
245
246  /// EvaluateAsLValue - Evaluate an expression to see if it's a valid LValue.
247  bool EvaluateAsLValue(EvalResult &Result, ASTContext &Ctx) const;
248
249  /// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
250  /// integer constant expression with the value zero, or if this is one that is
251  /// cast to void*.
252  bool isNullPointerConstant(ASTContext &Ctx) const;
253
254  /// hasGlobalStorage - Return true if this expression has static storage
255  /// duration.  This means that the address of this expression is a link-time
256  /// constant.
257  bool hasGlobalStorage() const;
258
259  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
260  /// write barrier.
261  bool isOBJCGCCandidate() const;
262
263  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
264  ///  its subexpression.  If that subexpression is also a ParenExpr,
265  ///  then this method recursively returns its subexpression, and so forth.
266  ///  Otherwise, the method returns the current Expr.
267  Expr* IgnoreParens();
268
269  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
270  /// or CastExprs, returning their operand.
271  Expr *IgnoreParenCasts();
272
273  /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
274  /// value (including ptr->int casts of the same size).  Strip off any
275  /// ParenExpr or CastExprs, returning their operand.
276  Expr *IgnoreParenNoopCasts(ASTContext &Ctx);
277
278  const Expr* IgnoreParens() const {
279    return const_cast<Expr*>(this)->IgnoreParens();
280  }
281  const Expr *IgnoreParenCasts() const {
282    return const_cast<Expr*>(this)->IgnoreParenCasts();
283  }
284  const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const {
285    return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
286  }
287
288  static bool hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs);
289  static bool hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs);
290
291  static bool classof(const Stmt *T) {
292    return T->getStmtClass() >= firstExprConstant &&
293           T->getStmtClass() <= lastExprConstant;
294  }
295  static bool classof(const Expr *) { return true; }
296
297  static inline Expr* Create(llvm::Deserializer& D, ASTContext& C) {
298    return cast<Expr>(Stmt::Create(D, C));
299  }
300};
301
302
303//===----------------------------------------------------------------------===//
304// Primary Expressions.
305//===----------------------------------------------------------------------===//
306
307/// DeclRefExpr - [C99 6.5.1p2] - A reference to a declared variable, function,
308/// enum, etc.
309class DeclRefExpr : public Expr {
310  NamedDecl *D;
311  SourceLocation Loc;
312
313protected:
314  // FIXME: Eventually, this constructor will go away and all subclasses
315  // will have to provide the type- and value-dependent flags.
316  DeclRefExpr(StmtClass SC, NamedDecl *d, QualType t, SourceLocation l) :
317    Expr(SC, t), D(d), Loc(l) {}
318
319  DeclRefExpr(StmtClass SC, NamedDecl *d, QualType t, SourceLocation l, bool TD,
320              bool VD) :
321    Expr(SC, t, TD, VD), D(d), Loc(l) {}
322
323public:
324  // FIXME: Eventually, this constructor will go away and all clients
325  // will have to provide the type- and value-dependent flags.
326  DeclRefExpr(NamedDecl *d, QualType t, SourceLocation l) :
327    Expr(DeclRefExprClass, t), D(d), Loc(l) {}
328
329  DeclRefExpr(NamedDecl *d, QualType t, SourceLocation l, bool TD, bool VD) :
330    Expr(DeclRefExprClass, t, TD, VD), D(d), Loc(l) {}
331
332  /// \brief Construct an empty declaration reference expression.
333  explicit DeclRefExpr(EmptyShell Empty)
334    : Expr(DeclRefExprClass, Empty) { }
335
336  NamedDecl *getDecl() { return D; }
337  const NamedDecl *getDecl() const { return D; }
338  void setDecl(NamedDecl *NewD) { D = NewD; }
339
340  SourceLocation getLocation() const { return Loc; }
341  void setLocation(SourceLocation L) { Loc = L; }
342  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
343
344  static bool classof(const Stmt *T) {
345    return T->getStmtClass() == DeclRefExprClass ||
346           T->getStmtClass() == CXXConditionDeclExprClass ||
347           T->getStmtClass() == QualifiedDeclRefExprClass;
348  }
349  static bool classof(const DeclRefExpr *) { return true; }
350
351  // Iterators
352  virtual child_iterator child_begin();
353  virtual child_iterator child_end();
354
355  virtual void EmitImpl(llvm::Serializer& S) const;
356  static DeclRefExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
357};
358
359/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
360class PredefinedExpr : public Expr {
361public:
362  enum IdentType {
363    Func,
364    Function,
365    PrettyFunction
366  };
367
368private:
369  SourceLocation Loc;
370  IdentType Type;
371public:
372  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
373    : Expr(PredefinedExprClass, type), Loc(l), Type(IT) {}
374
375  /// \brief Construct an empty predefined expression.
376  explicit PredefinedExpr(EmptyShell Empty)
377    : Expr(PredefinedExprClass, Empty) { }
378
379  IdentType getIdentType() const { return Type; }
380  void setIdentType(IdentType IT) { Type = IT; }
381
382  SourceLocation getLocation() const { return Loc; }
383  void setLocation(SourceLocation L) { Loc = L; }
384
385  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
386
387  static bool classof(const Stmt *T) {
388    return T->getStmtClass() == PredefinedExprClass;
389  }
390  static bool classof(const PredefinedExpr *) { return true; }
391
392  // Iterators
393  virtual child_iterator child_begin();
394  virtual child_iterator child_end();
395
396  virtual void EmitImpl(llvm::Serializer& S) const;
397  static PredefinedExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
398};
399
400class IntegerLiteral : public Expr {
401  llvm::APInt Value;
402  SourceLocation Loc;
403public:
404  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
405  // or UnsignedLongLongTy
406  IntegerLiteral(const llvm::APInt &V, QualType type, SourceLocation l)
407    : Expr(IntegerLiteralClass, type), Value(V), Loc(l) {
408    assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
409  }
410
411  /// \brief Construct an empty integer literal.
412  explicit IntegerLiteral(EmptyShell Empty)
413    : Expr(IntegerLiteralClass, Empty) { }
414
415  IntegerLiteral* Clone(ASTContext &C) const;
416
417  const llvm::APInt &getValue() const { return Value; }
418  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
419
420  /// \brief Retrieve the location of the literal.
421  SourceLocation getLocation() const { return Loc; }
422
423  void setValue(const llvm::APInt &Val) { Value = Val; }
424  void setLocation(SourceLocation Location) { Loc = Location; }
425
426  static bool classof(const Stmt *T) {
427    return T->getStmtClass() == IntegerLiteralClass;
428  }
429  static bool classof(const IntegerLiteral *) { return true; }
430
431  // Iterators
432  virtual child_iterator child_begin();
433  virtual child_iterator child_end();
434
435  virtual void EmitImpl(llvm::Serializer& S) const;
436  static IntegerLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
437};
438
439class CharacterLiteral : public Expr {
440  unsigned Value;
441  SourceLocation Loc;
442  bool IsWide;
443public:
444  // type should be IntTy
445  CharacterLiteral(unsigned value, bool iswide, QualType type, SourceLocation l)
446    : Expr(CharacterLiteralClass, type), Value(value), Loc(l), IsWide(iswide) {
447  }
448
449  /// \brief Construct an empty character literal.
450  CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
451
452  SourceLocation getLoc() const { return Loc; }
453  bool isWide() const { return IsWide; }
454
455  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
456
457  unsigned getValue() const { return Value; }
458
459  void setLocation(SourceLocation Location) { Loc = Location; }
460  void setWide(bool W) { IsWide = W; }
461  void setValue(unsigned Val) { Value = Val; }
462
463  static bool classof(const Stmt *T) {
464    return T->getStmtClass() == CharacterLiteralClass;
465  }
466  static bool classof(const CharacterLiteral *) { return true; }
467
468  // Iterators
469  virtual child_iterator child_begin();
470  virtual child_iterator child_end();
471
472  virtual void EmitImpl(llvm::Serializer& S) const;
473  static CharacterLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
474};
475
476class FloatingLiteral : public Expr {
477  llvm::APFloat Value;
478  bool IsExact : 1;
479  SourceLocation Loc;
480public:
481  FloatingLiteral(const llvm::APFloat &V, bool* isexact,
482                  QualType Type, SourceLocation L)
483    : Expr(FloatingLiteralClass, Type), Value(V), IsExact(*isexact), Loc(L) {}
484
485  /// \brief Construct an empty floating-point literal.
486  FloatingLiteral(EmptyShell Empty)
487    : Expr(FloatingLiteralClass, Empty), Value(0.0) { }
488
489  const llvm::APFloat &getValue() const { return Value; }
490  void setValue(const llvm::APFloat &Val) { Value = Val; }
491
492  bool isExact() const { return IsExact; }
493  void setExact(bool E) { IsExact = E; }
494
495  /// getValueAsApproximateDouble - This returns the value as an inaccurate
496  /// double.  Note that this may cause loss of precision, but is useful for
497  /// debugging dumps, etc.
498  double getValueAsApproximateDouble() const;
499
500  SourceLocation getLocation() const { return Loc; }
501  void setLocation(SourceLocation L) { Loc = L; }
502
503  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
504
505  static bool classof(const Stmt *T) {
506    return T->getStmtClass() == FloatingLiteralClass;
507  }
508  static bool classof(const FloatingLiteral *) { return true; }
509
510  // Iterators
511  virtual child_iterator child_begin();
512  virtual child_iterator child_end();
513
514  virtual void EmitImpl(llvm::Serializer& S) const;
515  static FloatingLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
516};
517
518/// ImaginaryLiteral - We support imaginary integer and floating point literals,
519/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
520/// IntegerLiteral classes.  Instances of this class always have a Complex type
521/// whose element type matches the subexpression.
522///
523class ImaginaryLiteral : public Expr {
524  Stmt *Val;
525public:
526  ImaginaryLiteral(Expr *val, QualType Ty)
527    : Expr(ImaginaryLiteralClass, Ty), Val(val) {}
528
529  /// \brief Build an empty imaginary literal.
530  explicit ImaginaryLiteral(EmptyShell Empty)
531    : Expr(ImaginaryLiteralClass, Empty) { }
532
533  const Expr *getSubExpr() const { return cast<Expr>(Val); }
534  Expr *getSubExpr() { return cast<Expr>(Val); }
535  void setSubExpr(Expr *E) { Val = E; }
536
537  virtual SourceRange getSourceRange() const { return Val->getSourceRange(); }
538  static bool classof(const Stmt *T) {
539    return T->getStmtClass() == ImaginaryLiteralClass;
540  }
541  static bool classof(const ImaginaryLiteral *) { return true; }
542
543  // Iterators
544  virtual child_iterator child_begin();
545  virtual child_iterator child_end();
546
547  virtual void EmitImpl(llvm::Serializer& S) const;
548  static ImaginaryLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
549};
550
551/// StringLiteral - This represents a string literal expression, e.g. "foo"
552/// or L"bar" (wide strings).  The actual string is returned by getStrData()
553/// is NOT null-terminated, and the length of the string is determined by
554/// calling getByteLength().  The C type for a string is always a
555/// ConstantArrayType.  In C++, the char type is const qualified, in C it is
556/// not.
557///
558/// Note that strings in C can be formed by concatenation of multiple string
559/// literal pptokens in translation phase #6.  This keeps track of the locations
560/// of each of these pieces.
561///
562/// Strings in C can also be truncated and extended by assigning into arrays,
563/// e.g. with constructs like:
564///   char X[2] = "foobar";
565/// In this case, getByteLength() will return 6, but the string literal will
566/// have type "char[2]".
567class StringLiteral : public Expr {
568  const char *StrData;
569  unsigned ByteLength;
570  bool IsWide;
571  unsigned NumConcatenated;
572  SourceLocation TokLocs[1];
573
574  StringLiteral(QualType Ty) : Expr(StringLiteralClass, Ty) {}
575public:
576  /// This is the "fully general" constructor that allows representation of
577  /// strings formed from multiple concatenated tokens.
578  static StringLiteral *Create(ASTContext &C, const char *StrData,
579                               unsigned ByteLength, bool Wide, QualType Ty,
580                               const SourceLocation *Loc, unsigned NumStrs);
581
582  /// Simple constructor for string literals made from one token.
583  static StringLiteral *Create(ASTContext &C, const char *StrData,
584                               unsigned ByteLength,
585                               bool Wide, QualType Ty, SourceLocation Loc) {
586    return Create(C, StrData, ByteLength, Wide, Ty, &Loc, 1);
587  }
588
589  /// \brief Construct an empty string literal.
590  static StringLiteral *CreateEmpty(ASTContext &C, unsigned NumStrs);
591
592  StringLiteral* Clone(ASTContext &C) const;
593  void Destroy(ASTContext &C);
594
595  const char *getStrData() const { return StrData; }
596  unsigned getByteLength() const { return ByteLength; }
597
598  /// \brief Sets the string data to the given string data.
599  void setStrData(ASTContext &C, const char *Str, unsigned Len);
600
601  bool isWide() const { return IsWide; }
602  void setWide(bool W) { IsWide = W; }
603
604  bool containsNonAsciiOrNull() const {
605    for (unsigned i = 0; i < getByteLength(); ++i)
606      if (!isascii(getStrData()[i]) || !getStrData()[i])
607        return true;
608    return false;
609  }
610  /// getNumConcatenated - Get the number of string literal tokens that were
611  /// concatenated in translation phase #6 to form this string literal.
612  unsigned getNumConcatenated() const { return NumConcatenated; }
613
614  SourceLocation getStrTokenLoc(unsigned TokNum) const {
615    assert(TokNum < NumConcatenated && "Invalid tok number");
616    return TokLocs[TokNum];
617  }
618  void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
619    assert(TokNum < NumConcatenated && "Invalid tok number");
620    TokLocs[TokNum] = L;
621  }
622
623  typedef const SourceLocation *tokloc_iterator;
624  tokloc_iterator tokloc_begin() const { return TokLocs; }
625  tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; }
626
627  virtual SourceRange getSourceRange() const {
628    return SourceRange(TokLocs[0], TokLocs[NumConcatenated-1]);
629  }
630  static bool classof(const Stmt *T) {
631    return T->getStmtClass() == StringLiteralClass;
632  }
633  static bool classof(const StringLiteral *) { return true; }
634
635  // Iterators
636  virtual child_iterator child_begin();
637  virtual child_iterator child_end();
638
639  virtual void EmitImpl(llvm::Serializer& S) const;
640  static StringLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
641};
642
643/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
644/// AST node is only formed if full location information is requested.
645class ParenExpr : public Expr {
646  SourceLocation L, R;
647  Stmt *Val;
648public:
649  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
650    : Expr(ParenExprClass, val->getType(),
651           val->isTypeDependent(), val->isValueDependent()),
652      L(l), R(r), Val(val) {}
653
654  /// \brief Construct an empty parenthesized expression.
655  explicit ParenExpr(EmptyShell Empty)
656    : Expr(ParenExprClass, Empty) { }
657
658  const Expr *getSubExpr() const { return cast<Expr>(Val); }
659  Expr *getSubExpr() { return cast<Expr>(Val); }
660  void setSubExpr(Expr *E) { Val = E; }
661
662  virtual SourceRange getSourceRange() const { return SourceRange(L, R); }
663
664  /// \brief Get the location of the left parentheses '('.
665  SourceLocation getLParen() const { return L; }
666  void setLParen(SourceLocation Loc) { L = Loc; }
667
668  /// \brief Get the location of the right parentheses ')'.
669  SourceLocation getRParen() const { return R; }
670  void setRParen(SourceLocation Loc) { R = Loc; }
671
672  static bool classof(const Stmt *T) {
673    return T->getStmtClass() == ParenExprClass;
674  }
675  static bool classof(const ParenExpr *) { return true; }
676
677  // Iterators
678  virtual child_iterator child_begin();
679  virtual child_iterator child_end();
680
681  virtual void EmitImpl(llvm::Serializer& S) const;
682  static ParenExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
683};
684
685
686/// UnaryOperator - This represents the unary-expression's (except sizeof and
687/// alignof), the postinc/postdec operators from postfix-expression, and various
688/// extensions.
689///
690/// Notes on various nodes:
691///
692/// Real/Imag - These return the real/imag part of a complex operand.  If
693///   applied to a non-complex value, the former returns its operand and the
694///   later returns zero in the type of the operand.
695///
696/// __builtin_offsetof(type, a.b[10]) is represented as a unary operator whose
697///   subexpression is a compound literal with the various MemberExpr and
698///   ArraySubscriptExpr's applied to it.
699///
700class UnaryOperator : public Expr {
701public:
702  // Note that additions to this should also update the StmtVisitor class.
703  enum Opcode {
704    PostInc, PostDec, // [C99 6.5.2.4] Postfix increment and decrement operators
705    PreInc, PreDec,   // [C99 6.5.3.1] Prefix increment and decrement operators.
706    AddrOf, Deref,    // [C99 6.5.3.2] Address and indirection operators.
707    Plus, Minus,      // [C99 6.5.3.3] Unary arithmetic operators.
708    Not, LNot,        // [C99 6.5.3.3] Unary arithmetic operators.
709    Real, Imag,       // "__real expr"/"__imag expr" Extension.
710    Extension,        // __extension__ marker.
711    OffsetOf          // __builtin_offsetof
712  };
713private:
714  Stmt *Val;
715  Opcode Opc;
716  SourceLocation Loc;
717public:
718
719  UnaryOperator(Expr *input, Opcode opc, QualType type, SourceLocation l)
720    : Expr(UnaryOperatorClass, type,
721           input->isTypeDependent() && opc != OffsetOf,
722           input->isValueDependent()),
723      Val(input), Opc(opc), Loc(l) {}
724
725  /// \brief Build an empty unary operator.
726  explicit UnaryOperator(EmptyShell Empty)
727    : Expr(UnaryOperatorClass, Empty), Opc(AddrOf) { }
728
729  Opcode getOpcode() const { return Opc; }
730  void setOpcode(Opcode O) { Opc = O; }
731
732  Expr *getSubExpr() const { return cast<Expr>(Val); }
733  void setSubExpr(Expr *E) { Val = E; }
734
735  /// getOperatorLoc - Return the location of the operator.
736  SourceLocation getOperatorLoc() const { return Loc; }
737  void setOperatorLoc(SourceLocation L) { Loc = L; }
738
739  /// isPostfix - Return true if this is a postfix operation, like x++.
740  static bool isPostfix(Opcode Op) {
741    return Op == PostInc || Op == PostDec;
742  }
743
744  /// isPostfix - Return true if this is a prefix operation, like --x.
745  static bool isPrefix(Opcode Op) {
746    return Op == PreInc || Op == PreDec;
747  }
748
749  bool isPrefix() const { return isPrefix(Opc); }
750  bool isPostfix() const { return isPostfix(Opc); }
751  bool isIncrementOp() const {return Opc==PreInc || Opc==PostInc; }
752  bool isIncrementDecrementOp() const { return Opc>=PostInc && Opc<=PreDec; }
753  bool isOffsetOfOp() const { return Opc == OffsetOf; }
754  static bool isArithmeticOp(Opcode Op) { return Op >= Plus && Op <= LNot; }
755
756  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
757  /// corresponds to, e.g. "sizeof" or "[pre]++"
758  static const char *getOpcodeStr(Opcode Op);
759
760  /// \brief Retrieve the unary opcode that corresponds to the given
761  /// overloaded operator.
762  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
763
764  /// \brief Retrieve the overloaded operator kind that corresponds to
765  /// the given unary opcode.
766  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
767
768  virtual SourceRange getSourceRange() const {
769    if (isPostfix())
770      return SourceRange(Val->getLocStart(), Loc);
771    else
772      return SourceRange(Loc, Val->getLocEnd());
773  }
774  virtual SourceLocation getExprLoc() const { return Loc; }
775
776  static bool classof(const Stmt *T) {
777    return T->getStmtClass() == UnaryOperatorClass;
778  }
779  static bool classof(const UnaryOperator *) { return true; }
780
781  // Iterators
782  virtual child_iterator child_begin();
783  virtual child_iterator child_end();
784
785  virtual void EmitImpl(llvm::Serializer& S) const;
786  static UnaryOperator* CreateImpl(llvm::Deserializer& D, ASTContext& C);
787};
788
789/// SizeOfAlignOfExpr - [C99 6.5.3.4] - This is for sizeof/alignof, both of
790/// types and expressions.
791class SizeOfAlignOfExpr : public Expr {
792  bool isSizeof : 1;  // true if sizeof, false if alignof.
793  bool isType : 1;    // true if operand is a type, false if an expression
794  union {
795    void *Ty;
796    Stmt *Ex;
797  } Argument;
798  SourceLocation OpLoc, RParenLoc;
799public:
800  SizeOfAlignOfExpr(bool issizeof, QualType T,
801                    QualType resultType, SourceLocation op,
802                    SourceLocation rp) :
803      Expr(SizeOfAlignOfExprClass, resultType,
804           false, // Never type-dependent (C++ [temp.dep.expr]p3).
805           // Value-dependent if the argument is type-dependent.
806           T->isDependentType()),
807      isSizeof(issizeof), isType(true), OpLoc(op), RParenLoc(rp) {
808    Argument.Ty = T.getAsOpaquePtr();
809  }
810
811  SizeOfAlignOfExpr(bool issizeof, Expr *E,
812                    QualType resultType, SourceLocation op,
813                    SourceLocation rp) :
814      Expr(SizeOfAlignOfExprClass, resultType,
815           false, // Never type-dependent (C++ [temp.dep.expr]p3).
816           // Value-dependent if the argument is type-dependent.
817           E->isTypeDependent()),
818      isSizeof(issizeof), isType(false), OpLoc(op), RParenLoc(rp) {
819    Argument.Ex = E;
820  }
821
822  /// \brief Construct an empty sizeof/alignof expression.
823  explicit SizeOfAlignOfExpr(EmptyShell Empty)
824    : Expr(SizeOfAlignOfExprClass, Empty) { }
825
826  virtual void Destroy(ASTContext& C);
827
828  bool isSizeOf() const { return isSizeof; }
829  void setSizeof(bool S) { isSizeof = S; }
830
831  bool isArgumentType() const { return isType; }
832  QualType getArgumentType() const {
833    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
834    return QualType::getFromOpaquePtr(Argument.Ty);
835  }
836  Expr *getArgumentExpr() {
837    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
838    return static_cast<Expr*>(Argument.Ex);
839  }
840  const Expr *getArgumentExpr() const {
841    return const_cast<SizeOfAlignOfExpr*>(this)->getArgumentExpr();
842  }
843
844  void setArgument(Expr *E) { Argument.Ex = E; isType = false; }
845  void setArgument(QualType T) {
846    Argument.Ty = T.getAsOpaquePtr();
847    isType = true;
848  }
849
850  /// Gets the argument type, or the type of the argument expression, whichever
851  /// is appropriate.
852  QualType getTypeOfArgument() const {
853    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
854  }
855
856  SourceLocation getOperatorLoc() const { return OpLoc; }
857  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
858
859  SourceLocation getRParenLoc() const { return RParenLoc; }
860  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
861
862  virtual SourceRange getSourceRange() const {
863    return SourceRange(OpLoc, RParenLoc);
864  }
865
866  static bool classof(const Stmt *T) {
867    return T->getStmtClass() == SizeOfAlignOfExprClass;
868  }
869  static bool classof(const SizeOfAlignOfExpr *) { return true; }
870
871  // Iterators
872  virtual child_iterator child_begin();
873  virtual child_iterator child_end();
874
875  virtual void EmitImpl(llvm::Serializer& S) const;
876  static SizeOfAlignOfExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
877};
878
879//===----------------------------------------------------------------------===//
880// Postfix Operators.
881//===----------------------------------------------------------------------===//
882
883/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
884class ArraySubscriptExpr : public Expr {
885  enum { LHS, RHS, END_EXPR=2 };
886  Stmt* SubExprs[END_EXPR];
887  SourceLocation RBracketLoc;
888public:
889  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
890                     SourceLocation rbracketloc)
891  : Expr(ArraySubscriptExprClass, t,
892         lhs->isTypeDependent() || rhs->isTypeDependent(),
893         lhs->isValueDependent() || rhs->isValueDependent()),
894    RBracketLoc(rbracketloc) {
895    SubExprs[LHS] = lhs;
896    SubExprs[RHS] = rhs;
897  }
898
899  /// \brief Create an empty array subscript expression.
900  explicit ArraySubscriptExpr(EmptyShell Shell)
901    : Expr(ArraySubscriptExprClass, Shell) { }
902
903  /// An array access can be written A[4] or 4[A] (both are equivalent).
904  /// - getBase() and getIdx() always present the normalized view: A[4].
905  ///    In this case getBase() returns "A" and getIdx() returns "4".
906  /// - getLHS() and getRHS() present the syntactic view. e.g. for
907  ///    4[A] getLHS() returns "4".
908  /// Note: Because vector element access is also written A[4] we must
909  /// predicate the format conversion in getBase and getIdx only on the
910  /// the type of the RHS, as it is possible for the LHS to be a vector of
911  /// integer type
912  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
913  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
914  void setLHS(Expr *E) { SubExprs[LHS] = E; }
915
916  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
917  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
918  void setRHS(Expr *E) { SubExprs[RHS] = E; }
919
920  Expr *getBase() {
921    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
922  }
923
924  const Expr *getBase() const {
925    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
926  }
927
928  Expr *getIdx() {
929    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
930  }
931
932  const Expr *getIdx() const {
933    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
934  }
935
936  virtual SourceRange getSourceRange() const {
937    return SourceRange(getLHS()->getLocStart(), RBracketLoc);
938  }
939
940  SourceLocation getRBracketLoc() const { return RBracketLoc; }
941  void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
942
943  virtual SourceLocation getExprLoc() const { return getBase()->getExprLoc(); }
944
945  static bool classof(const Stmt *T) {
946    return T->getStmtClass() == ArraySubscriptExprClass;
947  }
948  static bool classof(const ArraySubscriptExpr *) { return true; }
949
950  // Iterators
951  virtual child_iterator child_begin();
952  virtual child_iterator child_end();
953
954  virtual void EmitImpl(llvm::Serializer& S) const;
955  static ArraySubscriptExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
956};
957
958
959/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
960/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
961/// while its subclasses may represent alternative syntax that (semantically)
962/// results in a function call. For example, CXXOperatorCallExpr is
963/// a subclass for overloaded operator calls that use operator syntax, e.g.,
964/// "str1 + str2" to resolve to a function call.
965class CallExpr : public Expr {
966  enum { FN=0, ARGS_START=1 };
967  Stmt **SubExprs;
968  unsigned NumArgs;
969  SourceLocation RParenLoc;
970
971  // This version of the ctor is for deserialization.
972  CallExpr(StmtClass SC, Stmt** subexprs, unsigned numargs, QualType t,
973           SourceLocation rparenloc)
974  : Expr(SC,t), SubExprs(subexprs),
975    NumArgs(numargs), RParenLoc(rparenloc) {}
976
977protected:
978  // This version of the constructor is for derived classes.
979  CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args, unsigned numargs,
980           QualType t, SourceLocation rparenloc);
981
982public:
983  CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, QualType t,
984           SourceLocation rparenloc);
985
986  /// \brief Build an empty call expression.
987  CallExpr(ASTContext &C, EmptyShell Empty);
988
989  ~CallExpr() {}
990
991  void Destroy(ASTContext& C);
992
993  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
994  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
995  void setCallee(Expr *F) { SubExprs[FN] = F; }
996
997  /// getNumArgs - Return the number of actual arguments to this call.
998  ///
999  unsigned getNumArgs() const { return NumArgs; }
1000
1001  /// getArg - Return the specified argument.
1002  Expr *getArg(unsigned Arg) {
1003    assert(Arg < NumArgs && "Arg access out of range!");
1004    return cast<Expr>(SubExprs[Arg+ARGS_START]);
1005  }
1006  const Expr *getArg(unsigned Arg) const {
1007    assert(Arg < NumArgs && "Arg access out of range!");
1008    return cast<Expr>(SubExprs[Arg+ARGS_START]);
1009  }
1010
1011  /// setArg - Set the specified argument.
1012  void setArg(unsigned Arg, Expr *ArgExpr) {
1013    assert(Arg < NumArgs && "Arg access out of range!");
1014    SubExprs[Arg+ARGS_START] = ArgExpr;
1015  }
1016
1017  /// setNumArgs - This changes the number of arguments present in this call.
1018  /// Any orphaned expressions are deleted by this, and any new operands are set
1019  /// to null.
1020  void setNumArgs(ASTContext& C, unsigned NumArgs);
1021
1022  typedef ExprIterator arg_iterator;
1023  typedef ConstExprIterator const_arg_iterator;
1024
1025  arg_iterator arg_begin() { return SubExprs+ARGS_START; }
1026  arg_iterator arg_end() { return SubExprs+ARGS_START+getNumArgs(); }
1027  const_arg_iterator arg_begin() const { return SubExprs+ARGS_START; }
1028  const_arg_iterator arg_end() const { return SubExprs+ARGS_START+getNumArgs();}
1029
1030  /// getNumCommas - Return the number of commas that must have been present in
1031  /// this function call.
1032  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
1033
1034  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
1035  /// not, return 0.
1036  unsigned isBuiltinCall(ASTContext &Context) const;
1037
1038  SourceLocation getRParenLoc() const { return RParenLoc; }
1039  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1040
1041  virtual SourceRange getSourceRange() const {
1042    return SourceRange(getCallee()->getLocStart(), RParenLoc);
1043  }
1044
1045  static bool classof(const Stmt *T) {
1046    return T->getStmtClass() == CallExprClass ||
1047           T->getStmtClass() == CXXOperatorCallExprClass ||
1048           T->getStmtClass() == CXXMemberCallExprClass;
1049  }
1050  static bool classof(const CallExpr *) { return true; }
1051  static bool classof(const CXXOperatorCallExpr *) { return true; }
1052  static bool classof(const CXXMemberCallExpr *) { return true; }
1053
1054  // Iterators
1055  virtual child_iterator child_begin();
1056  virtual child_iterator child_end();
1057
1058  virtual void EmitImpl(llvm::Serializer& S) const;
1059  static CallExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C,
1060                              StmtClass SC);
1061};
1062
1063/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.  X->F and X.F.
1064///
1065class MemberExpr : public Expr {
1066  /// Base - the expression for the base pointer or structure references.  In
1067  /// X.F, this is "X".
1068  Stmt *Base;
1069
1070  /// MemberDecl - This is the decl being referenced by the field/member name.
1071  /// In X.F, this is the decl referenced by F.
1072  NamedDecl *MemberDecl;
1073
1074  /// MemberLoc - This is the location of the member name.
1075  SourceLocation MemberLoc;
1076
1077  /// IsArrow - True if this is "X->F", false if this is "X.F".
1078  bool IsArrow;
1079public:
1080  MemberExpr(Expr *base, bool isarrow, NamedDecl *memberdecl, SourceLocation l,
1081             QualType ty)
1082    : Expr(MemberExprClass, ty),
1083      Base(base), MemberDecl(memberdecl), MemberLoc(l), IsArrow(isarrow) {}
1084
1085  /// \brief Build an empty member reference expression.
1086  explicit MemberExpr(EmptyShell Empty) : Expr(MemberExprClass, Empty) { }
1087
1088  void setBase(Expr *E) { Base = E; }
1089  Expr *getBase() const { return cast<Expr>(Base); }
1090
1091  /// \brief Retrieve the member declaration to which this expression refers.
1092  ///
1093  /// The returned declaration will either be a FieldDecl or (in C++)
1094  /// a CXXMethodDecl.
1095  NamedDecl *getMemberDecl() const { return MemberDecl; }
1096  void setMemberDecl(NamedDecl *D) { MemberDecl = D; }
1097
1098  bool isArrow() const { return IsArrow; }
1099  void setArrow(bool A) { IsArrow = A; }
1100
1101  /// getMemberLoc - Return the location of the "member", in X->F, it is the
1102  /// location of 'F'.
1103  SourceLocation getMemberLoc() const { return MemberLoc; }
1104  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
1105
1106  virtual SourceRange getSourceRange() const {
1107    return SourceRange(getBase()->getLocStart(), MemberLoc);
1108  }
1109
1110  virtual SourceLocation getExprLoc() const { return MemberLoc; }
1111
1112  static bool classof(const Stmt *T) {
1113    return T->getStmtClass() == MemberExprClass;
1114  }
1115  static bool classof(const MemberExpr *) { return true; }
1116
1117  // Iterators
1118  virtual child_iterator child_begin();
1119  virtual child_iterator child_end();
1120
1121  virtual void EmitImpl(llvm::Serializer& S) const;
1122  static MemberExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1123};
1124
1125/// CompoundLiteralExpr - [C99 6.5.2.5]
1126///
1127class CompoundLiteralExpr : public Expr {
1128  /// LParenLoc - If non-null, this is the location of the left paren in a
1129  /// compound literal like "(int){4}".  This can be null if this is a
1130  /// synthesized compound expression.
1131  SourceLocation LParenLoc;
1132  Stmt *Init;
1133  bool FileScope;
1134public:
1135  CompoundLiteralExpr(SourceLocation lparenloc, QualType ty, Expr *init,
1136                      bool fileScope)
1137    : Expr(CompoundLiteralExprClass, ty), LParenLoc(lparenloc), Init(init),
1138      FileScope(fileScope) {}
1139
1140  const Expr *getInitializer() const { return cast<Expr>(Init); }
1141  Expr *getInitializer() { return cast<Expr>(Init); }
1142
1143  bool isFileScope() const { return FileScope; }
1144
1145  SourceLocation getLParenLoc() const { return LParenLoc; }
1146
1147  virtual SourceRange getSourceRange() const {
1148    // FIXME: Init should never be null.
1149    if (!Init)
1150      return SourceRange();
1151    if (LParenLoc.isInvalid())
1152      return Init->getSourceRange();
1153    return SourceRange(LParenLoc, Init->getLocEnd());
1154  }
1155
1156  static bool classof(const Stmt *T) {
1157    return T->getStmtClass() == CompoundLiteralExprClass;
1158  }
1159  static bool classof(const CompoundLiteralExpr *) { return true; }
1160
1161  // Iterators
1162  virtual child_iterator child_begin();
1163  virtual child_iterator child_end();
1164
1165  virtual void EmitImpl(llvm::Serializer& S) const;
1166  static CompoundLiteralExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1167};
1168
1169/// CastExpr - Base class for type casts, including both implicit
1170/// casts (ImplicitCastExpr) and explicit casts that have some
1171/// representation in the source code (ExplicitCastExpr's derived
1172/// classes).
1173class CastExpr : public Expr {
1174  Stmt *Op;
1175protected:
1176  CastExpr(StmtClass SC, QualType ty, Expr *op) :
1177    Expr(SC, ty,
1178         // Cast expressions are type-dependent if the type is
1179         // dependent (C++ [temp.dep.expr]p3).
1180         ty->isDependentType(),
1181         // Cast expressions are value-dependent if the type is
1182         // dependent or if the subexpression is value-dependent.
1183         ty->isDependentType() || (op && op->isValueDependent())),
1184    Op(op) {}
1185
1186  /// \brief Construct an empty cast.
1187  CastExpr(StmtClass SC, EmptyShell Empty)
1188    : Expr(SC, Empty) { }
1189
1190public:
1191  Expr *getSubExpr() { return cast<Expr>(Op); }
1192  const Expr *getSubExpr() const { return cast<Expr>(Op); }
1193  void setSubExpr(Expr *E) { Op = E; }
1194
1195  static bool classof(const Stmt *T) {
1196    StmtClass SC = T->getStmtClass();
1197    if (SC >= CXXNamedCastExprClass && SC <= CXXFunctionalCastExprClass)
1198      return true;
1199
1200    if (SC >= ImplicitCastExprClass && SC <= CStyleCastExprClass)
1201      return true;
1202
1203    return false;
1204  }
1205  static bool classof(const CastExpr *) { return true; }
1206
1207  // Iterators
1208  virtual child_iterator child_begin();
1209  virtual child_iterator child_end();
1210};
1211
1212/// ImplicitCastExpr - Allows us to explicitly represent implicit type
1213/// conversions, which have no direct representation in the original
1214/// source code. For example: converting T[]->T*, void f()->void
1215/// (*f)(), float->double, short->int, etc.
1216///
1217/// In C, implicit casts always produce rvalues. However, in C++, an
1218/// implicit cast whose result is being bound to a reference will be
1219/// an lvalue. For example:
1220///
1221/// @code
1222/// class Base { };
1223/// class Derived : public Base { };
1224/// void f(Derived d) {
1225///   Base& b = d; // initializer is an ImplicitCastExpr to an lvalue of type Base
1226/// }
1227/// @endcode
1228class ImplicitCastExpr : public CastExpr {
1229  /// LvalueCast - Whether this cast produces an lvalue.
1230  bool LvalueCast;
1231
1232public:
1233  ImplicitCastExpr(QualType ty, Expr *op, bool Lvalue) :
1234    CastExpr(ImplicitCastExprClass, ty, op), LvalueCast(Lvalue) { }
1235
1236  /// \brief Construct an empty implicit cast.
1237  explicit ImplicitCastExpr(EmptyShell Shell)
1238    : CastExpr(ImplicitCastExprClass, Shell) { }
1239
1240
1241  virtual SourceRange getSourceRange() const {
1242    return getSubExpr()->getSourceRange();
1243  }
1244
1245  /// isLvalueCast - Whether this cast produces an lvalue.
1246  bool isLvalueCast() const { return LvalueCast; }
1247
1248  /// setLvalueCast - Set whether this cast produces an lvalue.
1249  void setLvalueCast(bool Lvalue) { LvalueCast = Lvalue; }
1250
1251  static bool classof(const Stmt *T) {
1252    return T->getStmtClass() == ImplicitCastExprClass;
1253  }
1254  static bool classof(const ImplicitCastExpr *) { return true; }
1255
1256  virtual void EmitImpl(llvm::Serializer& S) const;
1257  static ImplicitCastExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1258};
1259
1260/// ExplicitCastExpr - An explicit cast written in the source
1261/// code.
1262///
1263/// This class is effectively an abstract class, because it provides
1264/// the basic representation of an explicitly-written cast without
1265/// specifying which kind of cast (C cast, functional cast, static
1266/// cast, etc.) was written; specific derived classes represent the
1267/// particular style of cast and its location information.
1268///
1269/// Unlike implicit casts, explicit cast nodes have two different
1270/// types: the type that was written into the source code, and the
1271/// actual type of the expression as determined by semantic
1272/// analysis. These types may differ slightly. For example, in C++ one
1273/// can cast to a reference type, which indicates that the resulting
1274/// expression will be an lvalue. The reference type, however, will
1275/// not be used as the type of the expression.
1276class ExplicitCastExpr : public CastExpr {
1277  /// TypeAsWritten - The type that this expression is casting to, as
1278  /// written in the source code.
1279  QualType TypeAsWritten;
1280
1281protected:
1282  ExplicitCastExpr(StmtClass SC, QualType exprTy, Expr *op, QualType writtenTy)
1283    : CastExpr(SC, exprTy, op), TypeAsWritten(writtenTy) {}
1284
1285  /// \brief Construct an empty explicit cast.
1286  ExplicitCastExpr(StmtClass SC, EmptyShell Shell)
1287    : CastExpr(SC, Shell) { }
1288
1289public:
1290  /// getTypeAsWritten - Returns the type that this expression is
1291  /// casting to, as written in the source code.
1292  QualType getTypeAsWritten() const { return TypeAsWritten; }
1293  void setTypeAsWritten(QualType T) { TypeAsWritten = T; }
1294
1295  static bool classof(const Stmt *T) {
1296    StmtClass SC = T->getStmtClass();
1297    if (SC >= ExplicitCastExprClass && SC <= CStyleCastExprClass)
1298      return true;
1299    if (SC >= CXXNamedCastExprClass && SC <= CXXFunctionalCastExprClass)
1300      return true;
1301
1302    return false;
1303  }
1304  static bool classof(const ExplicitCastExpr *) { return true; }
1305};
1306
1307/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
1308/// cast in C++ (C++ [expr.cast]), which uses the syntax
1309/// (Type)expr. For example: @c (int)f.
1310class CStyleCastExpr : public ExplicitCastExpr {
1311  SourceLocation LPLoc; // the location of the left paren
1312  SourceLocation RPLoc; // the location of the right paren
1313public:
1314  CStyleCastExpr(QualType exprTy, Expr *op, QualType writtenTy,
1315                    SourceLocation l, SourceLocation r) :
1316    ExplicitCastExpr(CStyleCastExprClass, exprTy, op, writtenTy),
1317    LPLoc(l), RPLoc(r) {}
1318
1319  /// \brief Construct an empty C-style explicit cast.
1320  explicit CStyleCastExpr(EmptyShell Shell)
1321    : ExplicitCastExpr(CStyleCastExprClass, Shell) { }
1322
1323  SourceLocation getLParenLoc() const { return LPLoc; }
1324  void setLParenLoc(SourceLocation L) { LPLoc = L; }
1325
1326  SourceLocation getRParenLoc() const { return RPLoc; }
1327  void setRParenLoc(SourceLocation L) { RPLoc = L; }
1328
1329  virtual SourceRange getSourceRange() const {
1330    return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd());
1331  }
1332  static bool classof(const Stmt *T) {
1333    return T->getStmtClass() == CStyleCastExprClass;
1334  }
1335  static bool classof(const CStyleCastExpr *) { return true; }
1336
1337  virtual void EmitImpl(llvm::Serializer& S) const;
1338  static CStyleCastExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1339};
1340
1341/// \brief A builtin binary operation expression such as "x + y" or "x <= y".
1342///
1343/// This expression node kind describes a builtin binary operation,
1344/// such as "x + y" for integer values "x" and "y". The operands will
1345/// already have been converted to appropriate types (e.g., by
1346/// performing promotions or conversions).
1347///
1348/// In C++, where operators may be overloaded, a different kind of
1349/// expression node (CXXOperatorCallExpr) is used to express the
1350/// invocation of an overloaded operator with operator syntax. Within
1351/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
1352/// used to store an expression "x + y" depends on the subexpressions
1353/// for x and y. If neither x or y is type-dependent, and the "+"
1354/// operator resolves to a built-in operation, BinaryOperator will be
1355/// used to express the computation (x and y may still be
1356/// value-dependent). If either x or y is type-dependent, or if the
1357/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
1358/// be used to express the computation.
1359class BinaryOperator : public Expr {
1360public:
1361  enum Opcode {
1362    // Operators listed in order of precedence.
1363    // Note that additions to this should also update the StmtVisitor class.
1364    PtrMemD, PtrMemI, // [C++ 5.5] Pointer-to-member operators.
1365    Mul, Div, Rem,    // [C99 6.5.5] Multiplicative operators.
1366    Add, Sub,         // [C99 6.5.6] Additive operators.
1367    Shl, Shr,         // [C99 6.5.7] Bitwise shift operators.
1368    LT, GT, LE, GE,   // [C99 6.5.8] Relational operators.
1369    EQ, NE,           // [C99 6.5.9] Equality operators.
1370    And,              // [C99 6.5.10] Bitwise AND operator.
1371    Xor,              // [C99 6.5.11] Bitwise XOR operator.
1372    Or,               // [C99 6.5.12] Bitwise OR operator.
1373    LAnd,             // [C99 6.5.13] Logical AND operator.
1374    LOr,              // [C99 6.5.14] Logical OR operator.
1375    Assign, MulAssign,// [C99 6.5.16] Assignment operators.
1376    DivAssign, RemAssign,
1377    AddAssign, SubAssign,
1378    ShlAssign, ShrAssign,
1379    AndAssign, XorAssign,
1380    OrAssign,
1381    Comma             // [C99 6.5.17] Comma operator.
1382  };
1383private:
1384  enum { LHS, RHS, END_EXPR };
1385  Stmt* SubExprs[END_EXPR];
1386  Opcode Opc;
1387  SourceLocation OpLoc;
1388public:
1389
1390  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
1391                 SourceLocation opLoc)
1392    : Expr(BinaryOperatorClass, ResTy,
1393           lhs->isTypeDependent() || rhs->isTypeDependent(),
1394           lhs->isValueDependent() || rhs->isValueDependent()),
1395      Opc(opc), OpLoc(opLoc) {
1396    SubExprs[LHS] = lhs;
1397    SubExprs[RHS] = rhs;
1398    assert(!isCompoundAssignmentOp() &&
1399           "Use ArithAssignBinaryOperator for compound assignments");
1400  }
1401
1402  /// \brief Construct an empty binary operator.
1403  explicit BinaryOperator(EmptyShell Empty)
1404    : Expr(BinaryOperatorClass, Empty), Opc(Comma) { }
1405
1406  SourceLocation getOperatorLoc() const { return OpLoc; }
1407  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
1408
1409  Opcode getOpcode() const { return Opc; }
1410  void setOpcode(Opcode O) { Opc = O; }
1411
1412  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1413  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1414  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1415  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1416
1417  virtual SourceRange getSourceRange() const {
1418    return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
1419  }
1420
1421  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1422  /// corresponds to, e.g. "<<=".
1423  static const char *getOpcodeStr(Opcode Op);
1424
1425  /// \brief Retrieve the binary opcode that corresponds to the given
1426  /// overloaded operator.
1427  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
1428
1429  /// \brief Retrieve the overloaded operator kind that corresponds to
1430  /// the given binary opcode.
1431  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
1432
1433  /// predicates to categorize the respective opcodes.
1434  bool isMultiplicativeOp() const { return Opc >= Mul && Opc <= Rem; }
1435  bool isAdditiveOp() const { return Opc == Add || Opc == Sub; }
1436  bool isShiftOp() const { return Opc == Shl || Opc == Shr; }
1437  bool isBitwiseOp() const { return Opc >= And && Opc <= Or; }
1438
1439  static bool isRelationalOp(Opcode Opc) { return Opc >= LT && Opc <= GE; }
1440  bool isRelationalOp() const { return isRelationalOp(Opc); }
1441
1442  static bool isEqualityOp(Opcode Opc) { return Opc == EQ || Opc == NE; }
1443  bool isEqualityOp() const { return isEqualityOp(Opc); }
1444
1445  static bool isLogicalOp(Opcode Opc) { return Opc == LAnd || Opc == LOr; }
1446  bool isLogicalOp() const { return isLogicalOp(Opc); }
1447
1448  bool isAssignmentOp() const { return Opc >= Assign && Opc <= OrAssign; }
1449  bool isCompoundAssignmentOp() const { return Opc > Assign && Opc <= OrAssign;}
1450  bool isShiftAssignOp() const { return Opc == ShlAssign || Opc == ShrAssign; }
1451
1452  static bool classof(const Stmt *S) {
1453    return S->getStmtClass() == BinaryOperatorClass ||
1454           S->getStmtClass() == CompoundAssignOperatorClass;
1455  }
1456  static bool classof(const BinaryOperator *) { return true; }
1457
1458  // Iterators
1459  virtual child_iterator child_begin();
1460  virtual child_iterator child_end();
1461
1462  virtual void EmitImpl(llvm::Serializer& S) const;
1463  static BinaryOperator* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1464
1465protected:
1466  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
1467                 SourceLocation oploc, bool dead)
1468    : Expr(CompoundAssignOperatorClass, ResTy), Opc(opc), OpLoc(oploc) {
1469    SubExprs[LHS] = lhs;
1470    SubExprs[RHS] = rhs;
1471  }
1472
1473  BinaryOperator(StmtClass SC, EmptyShell Empty)
1474    : Expr(SC, Empty), Opc(MulAssign) { }
1475};
1476
1477/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
1478/// track of the type the operation is performed in.  Due to the semantics of
1479/// these operators, the operands are promoted, the aritmetic performed, an
1480/// implicit conversion back to the result type done, then the assignment takes
1481/// place.  This captures the intermediate type which the computation is done
1482/// in.
1483class CompoundAssignOperator : public BinaryOperator {
1484  QualType ComputationLHSType;
1485  QualType ComputationResultType;
1486public:
1487  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc,
1488                         QualType ResType, QualType CompLHSType,
1489                         QualType CompResultType,
1490                         SourceLocation OpLoc)
1491    : BinaryOperator(lhs, rhs, opc, ResType, OpLoc, true),
1492      ComputationLHSType(CompLHSType),
1493      ComputationResultType(CompResultType) {
1494    assert(isCompoundAssignmentOp() &&
1495           "Only should be used for compound assignments");
1496  }
1497
1498  /// \brief Build an empty compound assignment operator expression.
1499  explicit CompoundAssignOperator(EmptyShell Empty)
1500    : BinaryOperator(CompoundAssignOperatorClass, Empty) { }
1501
1502  // The two computation types are the type the LHS is converted
1503  // to for the computation and the type of the result; the two are
1504  // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
1505  QualType getComputationLHSType() const { return ComputationLHSType; }
1506  void setComputationLHSType(QualType T) { ComputationLHSType = T; }
1507
1508  QualType getComputationResultType() const { return ComputationResultType; }
1509  void setComputationResultType(QualType T) { ComputationResultType = T; }
1510
1511  static bool classof(const CompoundAssignOperator *) { return true; }
1512  static bool classof(const Stmt *S) {
1513    return S->getStmtClass() == CompoundAssignOperatorClass;
1514  }
1515
1516  virtual void EmitImpl(llvm::Serializer& S) const;
1517  static CompoundAssignOperator* CreateImpl(llvm::Deserializer& D,
1518                                            ASTContext& C);
1519};
1520
1521/// ConditionalOperator - The ?: operator.  Note that LHS may be null when the
1522/// GNU "missing LHS" extension is in use.
1523///
1524class ConditionalOperator : public Expr {
1525  enum { COND, LHS, RHS, END_EXPR };
1526  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
1527public:
1528  ConditionalOperator(Expr *cond, Expr *lhs, Expr *rhs, QualType t)
1529    : Expr(ConditionalOperatorClass, t,
1530           // FIXME: the type of the conditional operator doesn't
1531           // depend on the type of the conditional, but the standard
1532           // seems to imply that it could. File a bug!
1533           ((lhs && lhs->isTypeDependent()) || (rhs && rhs->isTypeDependent())),
1534           (cond->isValueDependent() ||
1535            (lhs && lhs->isValueDependent()) ||
1536            (rhs && rhs->isValueDependent()))) {
1537    SubExprs[COND] = cond;
1538    SubExprs[LHS] = lhs;
1539    SubExprs[RHS] = rhs;
1540  }
1541
1542  /// \brief Build an empty conditional operator.
1543  explicit ConditionalOperator(EmptyShell Empty)
1544    : Expr(ConditionalOperatorClass, Empty) { }
1545
1546  // getCond - Return the expression representing the condition for
1547  //  the ?: operator.
1548  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
1549  void setCond(Expr *E) { SubExprs[COND] = E; }
1550
1551  // getTrueExpr - Return the subexpression representing the value of the ?:
1552  //  expression if the condition evaluates to true.  In most cases this value
1553  //  will be the same as getLHS() except a GCC extension allows the left
1554  //  subexpression to be omitted, and instead of the condition be returned.
1555  //  e.g: x ?: y is shorthand for x ? x : y, except that the expression "x"
1556  //  is only evaluated once.
1557  Expr *getTrueExpr() const {
1558    return cast<Expr>(SubExprs[LHS] ? SubExprs[LHS] : SubExprs[COND]);
1559  }
1560
1561  // getTrueExpr - Return the subexpression representing the value of the ?:
1562  // expression if the condition evaluates to false. This is the same as getRHS.
1563  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
1564
1565  Expr *getLHS() const { return cast_or_null<Expr>(SubExprs[LHS]); }
1566  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1567
1568  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1569  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1570
1571  virtual SourceRange getSourceRange() const {
1572    return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
1573  }
1574  static bool classof(const Stmt *T) {
1575    return T->getStmtClass() == ConditionalOperatorClass;
1576  }
1577  static bool classof(const ConditionalOperator *) { return true; }
1578
1579  // Iterators
1580  virtual child_iterator child_begin();
1581  virtual child_iterator child_end();
1582
1583  virtual void EmitImpl(llvm::Serializer& S) const;
1584  static ConditionalOperator* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1585};
1586
1587/// AddrLabelExpr - The GNU address of label extension, representing &&label.
1588class AddrLabelExpr : public Expr {
1589  SourceLocation AmpAmpLoc, LabelLoc;
1590  LabelStmt *Label;
1591public:
1592  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelStmt *L,
1593                QualType t)
1594    : Expr(AddrLabelExprClass, t), AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
1595
1596  virtual SourceRange getSourceRange() const {
1597    return SourceRange(AmpAmpLoc, LabelLoc);
1598  }
1599
1600  LabelStmt *getLabel() const { return Label; }
1601
1602  static bool classof(const Stmt *T) {
1603    return T->getStmtClass() == AddrLabelExprClass;
1604  }
1605  static bool classof(const AddrLabelExpr *) { return true; }
1606
1607  // Iterators
1608  virtual child_iterator child_begin();
1609  virtual child_iterator child_end();
1610
1611  virtual void EmitImpl(llvm::Serializer& S) const;
1612  static AddrLabelExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1613};
1614
1615/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
1616/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
1617/// takes the value of the last subexpression.
1618class StmtExpr : public Expr {
1619  Stmt *SubStmt;
1620  SourceLocation LParenLoc, RParenLoc;
1621public:
1622  StmtExpr(CompoundStmt *substmt, QualType T,
1623           SourceLocation lp, SourceLocation rp) :
1624    Expr(StmtExprClass, T), SubStmt(substmt),  LParenLoc(lp), RParenLoc(rp) { }
1625
1626  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
1627  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
1628
1629  virtual SourceRange getSourceRange() const {
1630    return SourceRange(LParenLoc, RParenLoc);
1631  }
1632
1633  SourceLocation getLParenLoc() const { return LParenLoc; }
1634  SourceLocation getRParenLoc() const { return RParenLoc; }
1635
1636  static bool classof(const Stmt *T) {
1637    return T->getStmtClass() == StmtExprClass;
1638  }
1639  static bool classof(const StmtExpr *) { return true; }
1640
1641  // Iterators
1642  virtual child_iterator child_begin();
1643  virtual child_iterator child_end();
1644
1645  virtual void EmitImpl(llvm::Serializer& S) const;
1646  static StmtExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1647};
1648
1649/// TypesCompatibleExpr - GNU builtin-in function __builtin_type_compatible_p.
1650/// This AST node represents a function that returns 1 if two *types* (not
1651/// expressions) are compatible. The result of this built-in function can be
1652/// used in integer constant expressions.
1653class TypesCompatibleExpr : public Expr {
1654  QualType Type1;
1655  QualType Type2;
1656  SourceLocation BuiltinLoc, RParenLoc;
1657public:
1658  TypesCompatibleExpr(QualType ReturnType, SourceLocation BLoc,
1659                      QualType t1, QualType t2, SourceLocation RP) :
1660    Expr(TypesCompatibleExprClass, ReturnType), Type1(t1), Type2(t2),
1661    BuiltinLoc(BLoc), RParenLoc(RP) {}
1662
1663  /// \brief Build an empty __builtin_type_compatible_p expression.
1664  explicit TypesCompatibleExpr(EmptyShell Empty)
1665    : Expr(TypesCompatibleExprClass, Empty) { }
1666
1667  QualType getArgType1() const { return Type1; }
1668  void setArgType1(QualType T) { Type1 = T; }
1669  QualType getArgType2() const { return Type2; }
1670  void setArgType2(QualType T) { Type2 = T; }
1671
1672  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
1673  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
1674
1675  SourceLocation getRParenLoc() const { return RParenLoc; }
1676  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1677
1678  virtual SourceRange getSourceRange() const {
1679    return SourceRange(BuiltinLoc, RParenLoc);
1680  }
1681  static bool classof(const Stmt *T) {
1682    return T->getStmtClass() == TypesCompatibleExprClass;
1683  }
1684  static bool classof(const TypesCompatibleExpr *) { return true; }
1685
1686  // Iterators
1687  virtual child_iterator child_begin();
1688  virtual child_iterator child_end();
1689
1690  virtual void EmitImpl(llvm::Serializer& S) const;
1691  static TypesCompatibleExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1692};
1693
1694/// ShuffleVectorExpr - clang-specific builtin-in function
1695/// __builtin_shufflevector.
1696/// This AST node represents a operator that does a constant
1697/// shuffle, similar to LLVM's shufflevector instruction. It takes
1698/// two vectors and a variable number of constant indices,
1699/// and returns the appropriately shuffled vector.
1700class ShuffleVectorExpr : public Expr {
1701  SourceLocation BuiltinLoc, RParenLoc;
1702
1703  // SubExprs - the list of values passed to the __builtin_shufflevector
1704  // function. The first two are vectors, and the rest are constant
1705  // indices.  The number of values in this list is always
1706  // 2+the number of indices in the vector type.
1707  Stmt **SubExprs;
1708  unsigned NumExprs;
1709
1710public:
1711  ShuffleVectorExpr(Expr **args, unsigned nexpr,
1712                    QualType Type, SourceLocation BLoc,
1713                    SourceLocation RP) :
1714    Expr(ShuffleVectorExprClass, Type), BuiltinLoc(BLoc),
1715    RParenLoc(RP), NumExprs(nexpr) {
1716
1717    SubExprs = new Stmt*[nexpr];
1718    for (unsigned i = 0; i < nexpr; i++)
1719      SubExprs[i] = args[i];
1720  }
1721
1722  /// \brief Build an empty vector-shuffle expression.
1723  explicit ShuffleVectorExpr(EmptyShell Empty)
1724    : Expr(ShuffleVectorExprClass, Empty), SubExprs(0) { }
1725
1726  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
1727  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
1728
1729  SourceLocation getRParenLoc() const { return RParenLoc; }
1730  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1731
1732  virtual SourceRange getSourceRange() const {
1733    return SourceRange(BuiltinLoc, RParenLoc);
1734  }
1735  static bool classof(const Stmt *T) {
1736    return T->getStmtClass() == ShuffleVectorExprClass;
1737  }
1738  static bool classof(const ShuffleVectorExpr *) { return true; }
1739
1740  ~ShuffleVectorExpr() {
1741    delete [] SubExprs;
1742  }
1743
1744  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
1745  /// constant expression, the actual arguments passed in, and the function
1746  /// pointers.
1747  unsigned getNumSubExprs() const { return NumExprs; }
1748
1749  /// getExpr - Return the Expr at the specified index.
1750  Expr *getExpr(unsigned Index) {
1751    assert((Index < NumExprs) && "Arg access out of range!");
1752    return cast<Expr>(SubExprs[Index]);
1753  }
1754  const Expr *getExpr(unsigned Index) const {
1755    assert((Index < NumExprs) && "Arg access out of range!");
1756    return cast<Expr>(SubExprs[Index]);
1757  }
1758
1759  void setExprs(Expr ** Exprs, unsigned NumExprs);
1760
1761  unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) {
1762    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
1763    return getExpr(N+2)->getIntegerConstantExprValue(Ctx).getZExtValue();
1764  }
1765
1766  // Iterators
1767  virtual child_iterator child_begin();
1768  virtual child_iterator child_end();
1769
1770  virtual void EmitImpl(llvm::Serializer& S) const;
1771  static ShuffleVectorExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1772};
1773
1774/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
1775/// This AST node is similar to the conditional operator (?:) in C, with
1776/// the following exceptions:
1777/// - the test expression must be a integer constant expression.
1778/// - the expression returned acts like the chosen subexpression in every
1779///   visible way: the type is the same as that of the chosen subexpression,
1780///   and all predicates (whether it's an l-value, whether it's an integer
1781///   constant expression, etc.) return the same result as for the chosen
1782///   sub-expression.
1783class ChooseExpr : public Expr {
1784  enum { COND, LHS, RHS, END_EXPR };
1785  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
1786  SourceLocation BuiltinLoc, RParenLoc;
1787public:
1788  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs, QualType t,
1789             SourceLocation RP)
1790    : Expr(ChooseExprClass, t),
1791      BuiltinLoc(BLoc), RParenLoc(RP) {
1792      SubExprs[COND] = cond;
1793      SubExprs[LHS] = lhs;
1794      SubExprs[RHS] = rhs;
1795    }
1796
1797  /// \brief Build an empty __builtin_choose_expr.
1798  explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
1799
1800  /// isConditionTrue - Return whether the condition is true (i.e. not
1801  /// equal to zero).
1802  bool isConditionTrue(ASTContext &C) const;
1803
1804  /// getChosenSubExpr - Return the subexpression chosen according to the
1805  /// condition.
1806  Expr *getChosenSubExpr(ASTContext &C) const {
1807    return isConditionTrue(C) ? getLHS() : getRHS();
1808  }
1809
1810  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
1811  void setCond(Expr *E) { SubExprs[COND] = E; }
1812  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1813  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1814  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1815  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1816
1817  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
1818  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
1819
1820  SourceLocation getRParenLoc() const { return RParenLoc; }
1821  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1822
1823  virtual SourceRange getSourceRange() const {
1824    return SourceRange(BuiltinLoc, RParenLoc);
1825  }
1826  static bool classof(const Stmt *T) {
1827    return T->getStmtClass() == ChooseExprClass;
1828  }
1829  static bool classof(const ChooseExpr *) { return true; }
1830
1831  // Iterators
1832  virtual child_iterator child_begin();
1833  virtual child_iterator child_end();
1834
1835  virtual void EmitImpl(llvm::Serializer& S) const;
1836  static ChooseExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1837};
1838
1839/// GNUNullExpr - Implements the GNU __null extension, which is a name
1840/// for a null pointer constant that has integral type (e.g., int or
1841/// long) and is the same size and alignment as a pointer. The __null
1842/// extension is typically only used by system headers, which define
1843/// NULL as __null in C++ rather than using 0 (which is an integer
1844/// that may not match the size of a pointer).
1845class GNUNullExpr : public Expr {
1846  /// TokenLoc - The location of the __null keyword.
1847  SourceLocation TokenLoc;
1848
1849public:
1850  GNUNullExpr(QualType Ty, SourceLocation Loc)
1851    : Expr(GNUNullExprClass, Ty), TokenLoc(Loc) { }
1852
1853  /// \brief Build an empty GNU __null expression.
1854  explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
1855
1856  /// getTokenLocation - The location of the __null token.
1857  SourceLocation getTokenLocation() const { return TokenLoc; }
1858  void setTokenLocation(SourceLocation L) { TokenLoc = L; }
1859
1860  virtual SourceRange getSourceRange() const {
1861    return SourceRange(TokenLoc);
1862  }
1863  static bool classof(const Stmt *T) {
1864    return T->getStmtClass() == GNUNullExprClass;
1865  }
1866  static bool classof(const GNUNullExpr *) { return true; }
1867
1868  // Iterators
1869  virtual child_iterator child_begin();
1870  virtual child_iterator child_end();
1871
1872  virtual void EmitImpl(llvm::Serializer& S) const;
1873  static GNUNullExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1874};
1875
1876/// VAArgExpr, used for the builtin function __builtin_va_start.
1877class VAArgExpr : public Expr {
1878  Stmt *Val;
1879  SourceLocation BuiltinLoc, RParenLoc;
1880public:
1881  VAArgExpr(SourceLocation BLoc, Expr* e, QualType t, SourceLocation RPLoc)
1882    : Expr(VAArgExprClass, t),
1883      Val(e),
1884      BuiltinLoc(BLoc),
1885      RParenLoc(RPLoc) { }
1886
1887  /// \brief Create an empty __builtin_va_start expression.
1888  explicit VAArgExpr(EmptyShell Empty) : Expr(VAArgExprClass, Empty) { }
1889
1890  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1891  Expr *getSubExpr() { return cast<Expr>(Val); }
1892  void setSubExpr(Expr *E) { Val = E; }
1893
1894  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
1895  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
1896
1897  SourceLocation getRParenLoc() const { return RParenLoc; }
1898  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1899
1900  virtual SourceRange getSourceRange() const {
1901    return SourceRange(BuiltinLoc, RParenLoc);
1902  }
1903  static bool classof(const Stmt *T) {
1904    return T->getStmtClass() == VAArgExprClass;
1905  }
1906  static bool classof(const VAArgExpr *) { return true; }
1907
1908  // Iterators
1909  virtual child_iterator child_begin();
1910  virtual child_iterator child_end();
1911
1912  virtual void EmitImpl(llvm::Serializer& S) const;
1913  static VAArgExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1914};
1915
1916/// @brief Describes an C or C++ initializer list.
1917///
1918/// InitListExpr describes an initializer list, which can be used to
1919/// initialize objects of different types, including
1920/// struct/class/union types, arrays, and vectors. For example:
1921///
1922/// @code
1923/// struct foo x = { 1, { 2, 3 } };
1924/// @endcode
1925///
1926/// Prior to semantic analysis, an initializer list will represent the
1927/// initializer list as written by the user, but will have the
1928/// placeholder type "void". This initializer list is called the
1929/// syntactic form of the initializer, and may contain C99 designated
1930/// initializers (represented as DesignatedInitExprs), initializations
1931/// of subobject members without explicit braces, and so on. Clients
1932/// interested in the original syntax of the initializer list should
1933/// use the syntactic form of the initializer list.
1934///
1935/// After semantic analysis, the initializer list will represent the
1936/// semantic form of the initializer, where the initializations of all
1937/// subobjects are made explicit with nested InitListExpr nodes and
1938/// C99 designators have been eliminated by placing the designated
1939/// initializations into the subobject they initialize. Additionally,
1940/// any "holes" in the initialization, where no initializer has been
1941/// specified for a particular subobject, will be replaced with
1942/// implicitly-generated ImplicitValueInitExpr expressions that
1943/// value-initialize the subobjects. Note, however, that the
1944/// initializer lists may still have fewer initializers than there are
1945/// elements to initialize within the object.
1946///
1947/// Given the semantic form of the initializer list, one can retrieve
1948/// the original syntactic form of that initializer list (if it
1949/// exists) using getSyntacticForm(). Since many initializer lists
1950/// have the same syntactic and semantic forms, getSyntacticForm() may
1951/// return NULL, indicating that the current initializer list also
1952/// serves as its syntactic form.
1953class InitListExpr : public Expr {
1954  std::vector<Stmt *> InitExprs;
1955  SourceLocation LBraceLoc, RBraceLoc;
1956
1957  /// Contains the initializer list that describes the syntactic form
1958  /// written in the source code.
1959  InitListExpr *SyntacticForm;
1960
1961  /// If this initializer list initializes a union, specifies which
1962  /// field within the union will be initialized.
1963  FieldDecl *UnionFieldInit;
1964
1965  /// Whether this initializer list originally had a GNU array-range
1966  /// designator in it. This is a temporary marker used by CodeGen.
1967  bool HadArrayRangeDesignator;
1968
1969public:
1970  InitListExpr(SourceLocation lbraceloc, Expr **initexprs, unsigned numinits,
1971               SourceLocation rbraceloc);
1972
1973  /// \brief Build an empty initializer list.
1974  explicit InitListExpr(EmptyShell Empty) : Expr(InitListExprClass, Empty) { }
1975
1976  unsigned getNumInits() const { return InitExprs.size(); }
1977
1978  const Expr* getInit(unsigned Init) const {
1979    assert(Init < getNumInits() && "Initializer access out of range!");
1980    return cast_or_null<Expr>(InitExprs[Init]);
1981  }
1982
1983  Expr* getInit(unsigned Init) {
1984    assert(Init < getNumInits() && "Initializer access out of range!");
1985    return cast_or_null<Expr>(InitExprs[Init]);
1986  }
1987
1988  void setInit(unsigned Init, Expr *expr) {
1989    assert(Init < getNumInits() && "Initializer access out of range!");
1990    InitExprs[Init] = expr;
1991  }
1992
1993  /// \brief Reserve space for some number of initializers.
1994  void reserveInits(unsigned NumInits);
1995
1996  /// @brief Specify the number of initializers
1997  ///
1998  /// If there are more than @p NumInits initializers, the remaining
1999  /// initializers will be destroyed. If there are fewer than @p
2000  /// NumInits initializers, NULL expressions will be added for the
2001  /// unknown initializers.
2002  void resizeInits(ASTContext &Context, unsigned NumInits);
2003
2004  /// @brief Updates the initializer at index @p Init with the new
2005  /// expression @p expr, and returns the old expression at that
2006  /// location.
2007  ///
2008  /// When @p Init is out of range for this initializer list, the
2009  /// initializer list will be extended with NULL expressions to
2010  /// accomodate the new entry.
2011  Expr *updateInit(unsigned Init, Expr *expr);
2012
2013  /// \brief If this initializes a union, specifies which field in the
2014  /// union to initialize.
2015  ///
2016  /// Typically, this field is the first named field within the
2017  /// union. However, a designated initializer can specify the
2018  /// initialization of a different field within the union.
2019  FieldDecl *getInitializedFieldInUnion() { return UnionFieldInit; }
2020  void setInitializedFieldInUnion(FieldDecl *FD) { UnionFieldInit = FD; }
2021
2022  // Explicit InitListExpr's originate from source code (and have valid source
2023  // locations). Implicit InitListExpr's are created by the semantic analyzer.
2024  bool isExplicit() {
2025    return LBraceLoc.isValid() && RBraceLoc.isValid();
2026  }
2027
2028  SourceLocation getLBraceLoc() const { return LBraceLoc; }
2029  void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
2030  SourceLocation getRBraceLoc() const { return RBraceLoc; }
2031  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
2032
2033  /// @brief Retrieve the initializer list that describes the
2034  /// syntactic form of the initializer.
2035  ///
2036  ///
2037  InitListExpr *getSyntacticForm() const { return SyntacticForm; }
2038  void setSyntacticForm(InitListExpr *Init) { SyntacticForm = Init; }
2039
2040  bool hadArrayRangeDesignator() const { return HadArrayRangeDesignator; }
2041  void sawArrayRangeDesignator(bool ARD = true) {
2042    HadArrayRangeDesignator = ARD;
2043  }
2044
2045  virtual SourceRange getSourceRange() const {
2046    return SourceRange(LBraceLoc, RBraceLoc);
2047  }
2048  static bool classof(const Stmt *T) {
2049    return T->getStmtClass() == InitListExprClass;
2050  }
2051  static bool classof(const InitListExpr *) { return true; }
2052
2053  // Iterators
2054  virtual child_iterator child_begin();
2055  virtual child_iterator child_end();
2056
2057  typedef std::vector<Stmt *>::iterator iterator;
2058  typedef std::vector<Stmt *>::reverse_iterator reverse_iterator;
2059
2060  iterator begin() { return InitExprs.begin(); }
2061  iterator end() { return InitExprs.end(); }
2062  reverse_iterator rbegin() { return InitExprs.rbegin(); }
2063  reverse_iterator rend() { return InitExprs.rend(); }
2064
2065  // Serailization.
2066  virtual void EmitImpl(llvm::Serializer& S) const;
2067  static InitListExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
2068
2069private:
2070  // Used by serializer.
2071  InitListExpr() : Expr(InitListExprClass, QualType()) {}
2072};
2073
2074/// @brief Represents a C99 designated initializer expression.
2075///
2076/// A designated initializer expression (C99 6.7.8) contains one or
2077/// more designators (which can be field designators, array
2078/// designators, or GNU array-range designators) followed by an
2079/// expression that initializes the field or element(s) that the
2080/// designators refer to. For example, given:
2081///
2082/// @code
2083/// struct point {
2084///   double x;
2085///   double y;
2086/// };
2087/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
2088/// @endcode
2089///
2090/// The InitListExpr contains three DesignatedInitExprs, the first of
2091/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
2092/// designators, one array designator for @c [2] followed by one field
2093/// designator for @c .y. The initalization expression will be 1.0.
2094class DesignatedInitExpr : public Expr {
2095public:
2096  /// \brief Forward declaration of the Designator class.
2097  class Designator;
2098
2099private:
2100  /// The location of the '=' or ':' prior to the actual initializer
2101  /// expression.
2102  SourceLocation EqualOrColonLoc;
2103
2104  /// Whether this designated initializer used the GNU deprecated
2105  /// syntax rather than the C99 '=' syntax.
2106  bool GNUSyntax : 1;
2107
2108  /// The number of designators in this initializer expression.
2109  unsigned NumDesignators : 15;
2110
2111  /// \brief The designators in this designated initialization
2112  /// expression.
2113  Designator *Designators;
2114
2115  /// The number of subexpressions of this initializer expression,
2116  /// which contains both the initializer and any additional
2117  /// expressions used by array and array-range designators.
2118  unsigned NumSubExprs : 16;
2119
2120
2121  DesignatedInitExpr(QualType Ty, unsigned NumDesignators,
2122                     const Designator *Designators,
2123                     SourceLocation EqualOrColonLoc, bool GNUSyntax,
2124                     unsigned NumSubExprs);
2125
2126  explicit DesignatedInitExpr(unsigned NumSubExprs)
2127    : Expr(DesignatedInitExprClass, EmptyShell()),
2128      NumDesignators(0), Designators(0), NumSubExprs(NumSubExprs) { }
2129
2130public:
2131  /// A field designator, e.g., ".x".
2132  struct FieldDesignator {
2133    /// Refers to the field that is being initialized. The low bit
2134    /// of this field determines whether this is actually a pointer
2135    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
2136    /// initially constructed, a field designator will store an
2137    /// IdentifierInfo*. After semantic analysis has resolved that
2138    /// name, the field designator will instead store a FieldDecl*.
2139    uintptr_t NameOrField;
2140
2141    /// The location of the '.' in the designated initializer.
2142    unsigned DotLoc;
2143
2144    /// The location of the field name in the designated initializer.
2145    unsigned FieldLoc;
2146  };
2147
2148  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
2149  struct ArrayOrRangeDesignator {
2150    /// Location of the first index expression within the designated
2151    /// initializer expression's list of subexpressions.
2152    unsigned Index;
2153    /// The location of the '[' starting the array range designator.
2154    unsigned LBracketLoc;
2155    /// The location of the ellipsis separating the start and end
2156    /// indices. Only valid for GNU array-range designators.
2157    unsigned EllipsisLoc;
2158    /// The location of the ']' terminating the array range designator.
2159    unsigned RBracketLoc;
2160  };
2161
2162  /// @brief Represents a single C99 designator.
2163  ///
2164  /// @todo This class is infuriatingly similar to clang::Designator,
2165  /// but minor differences (storing indices vs. storing pointers)
2166  /// keep us from reusing it. Try harder, later, to rectify these
2167  /// differences.
2168  class Designator {
2169    /// @brief The kind of designator this describes.
2170    enum {
2171      FieldDesignator,
2172      ArrayDesignator,
2173      ArrayRangeDesignator
2174    } Kind;
2175
2176    union {
2177      /// A field designator, e.g., ".x".
2178      struct FieldDesignator Field;
2179      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
2180      struct ArrayOrRangeDesignator ArrayOrRange;
2181    };
2182    friend class DesignatedInitExpr;
2183
2184  public:
2185    Designator() {}
2186
2187    /// @brief Initializes a field designator.
2188    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
2189               SourceLocation FieldLoc)
2190      : Kind(FieldDesignator) {
2191      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
2192      Field.DotLoc = DotLoc.getRawEncoding();
2193      Field.FieldLoc = FieldLoc.getRawEncoding();
2194    }
2195
2196    /// @brief Initializes an array designator.
2197    Designator(unsigned Index, SourceLocation LBracketLoc,
2198               SourceLocation RBracketLoc)
2199      : Kind(ArrayDesignator) {
2200      ArrayOrRange.Index = Index;
2201      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
2202      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
2203      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
2204    }
2205
2206    /// @brief Initializes a GNU array-range designator.
2207    Designator(unsigned Index, SourceLocation LBracketLoc,
2208               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
2209      : Kind(ArrayRangeDesignator) {
2210      ArrayOrRange.Index = Index;
2211      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
2212      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
2213      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
2214    }
2215
2216    bool isFieldDesignator() const { return Kind == FieldDesignator; }
2217    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
2218    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
2219
2220    IdentifierInfo * getFieldName();
2221
2222    FieldDecl *getField() {
2223      assert(Kind == FieldDesignator && "Only valid on a field designator");
2224      if (Field.NameOrField & 0x01)
2225        return 0;
2226      else
2227        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
2228    }
2229
2230    void setField(FieldDecl *FD) {
2231      assert(Kind == FieldDesignator && "Only valid on a field designator");
2232      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
2233    }
2234
2235    SourceLocation getDotLoc() const {
2236      assert(Kind == FieldDesignator && "Only valid on a field designator");
2237      return SourceLocation::getFromRawEncoding(Field.DotLoc);
2238    }
2239
2240    SourceLocation getFieldLoc() const {
2241      assert(Kind == FieldDesignator && "Only valid on a field designator");
2242      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
2243    }
2244
2245    SourceLocation getLBracketLoc() const {
2246      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
2247             "Only valid on an array or array-range designator");
2248      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
2249    }
2250
2251    SourceLocation getRBracketLoc() const {
2252      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
2253             "Only valid on an array or array-range designator");
2254      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
2255    }
2256
2257    SourceLocation getEllipsisLoc() const {
2258      assert(Kind == ArrayRangeDesignator &&
2259             "Only valid on an array-range designator");
2260      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
2261    }
2262
2263    unsigned getFirstExprIndex() const {
2264      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
2265             "Only valid on an array or array-range designator");
2266      return ArrayOrRange.Index;
2267    }
2268
2269    SourceLocation getStartLocation() const {
2270      if (Kind == FieldDesignator)
2271        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
2272      else
2273        return getLBracketLoc();
2274    }
2275  };
2276
2277  static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators,
2278                                    unsigned NumDesignators,
2279                                    Expr **IndexExprs, unsigned NumIndexExprs,
2280                                    SourceLocation EqualOrColonLoc,
2281                                    bool GNUSyntax, Expr *Init);
2282
2283  static DesignatedInitExpr *CreateEmpty(ASTContext &C, unsigned NumIndexExprs);
2284
2285  /// @brief Returns the number of designators in this initializer.
2286  unsigned size() const { return NumDesignators; }
2287
2288  // Iterator access to the designators.
2289  typedef Designator* designators_iterator;
2290  designators_iterator designators_begin() { return Designators; }
2291  designators_iterator designators_end() {
2292    return Designators + NumDesignators;
2293  }
2294
2295  Designator *getDesignator(unsigned Idx) { return &designators_begin()[Idx]; }
2296
2297  void setDesignators(const Designator *Desigs, unsigned NumDesigs);
2298
2299  Expr *getArrayIndex(const Designator& D);
2300  Expr *getArrayRangeStart(const Designator& D);
2301  Expr *getArrayRangeEnd(const Designator& D);
2302
2303  /// @brief Retrieve the location of the '=' that precedes the
2304  /// initializer value itself, if present.
2305  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
2306  void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
2307
2308  /// @brief Determines whether this designated initializer used the
2309  /// deprecated GNU syntax for designated initializers.
2310  bool usesGNUSyntax() const { return GNUSyntax; }
2311  void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
2312
2313  /// @brief Retrieve the initializer value.
2314  Expr *getInit() const {
2315    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
2316  }
2317
2318  void setInit(Expr *init) {
2319    *child_begin() = init;
2320  }
2321
2322  /// \brief Retrieve the total number of subexpressions in this
2323  /// designated initializer expression, including the actual
2324  /// initialized value and any expressions that occur within array
2325  /// and array-range designators.
2326  unsigned getNumSubExprs() const { return NumSubExprs; }
2327
2328  Expr *getSubExpr(unsigned Idx) {
2329    assert(Idx < NumSubExprs && "Subscript out of range");
2330    char* Ptr = static_cast<char*>(static_cast<void *>(this));
2331    Ptr += sizeof(DesignatedInitExpr);
2332    return reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx];
2333  }
2334
2335  void setSubExpr(unsigned Idx, Expr *E) {
2336    assert(Idx < NumSubExprs && "Subscript out of range");
2337    char* Ptr = static_cast<char*>(static_cast<void *>(this));
2338    Ptr += sizeof(DesignatedInitExpr);
2339    reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx] = E;
2340  }
2341
2342  /// \brief Replaces the designator at index @p Idx with the series
2343  /// of designators in [First, Last).
2344  void ExpandDesignator(unsigned Idx, const Designator *First,
2345                        const Designator *Last);
2346
2347  virtual SourceRange getSourceRange() const;
2348
2349  virtual void Destroy(ASTContext &C);
2350
2351  static bool classof(const Stmt *T) {
2352    return T->getStmtClass() == DesignatedInitExprClass;
2353  }
2354  static bool classof(const DesignatedInitExpr *) { return true; }
2355
2356  // Iterators
2357  virtual child_iterator child_begin();
2358  virtual child_iterator child_end();
2359};
2360
2361/// \brief Represents an implicitly-generated value initialization of
2362/// an object of a given type.
2363///
2364/// Implicit value initializations occur within semantic initializer
2365/// list expressions (InitListExpr) as placeholders for subobject
2366/// initializations not explicitly specified by the user.
2367///
2368/// \see InitListExpr
2369class ImplicitValueInitExpr : public Expr {
2370public:
2371  explicit ImplicitValueInitExpr(QualType ty)
2372    : Expr(ImplicitValueInitExprClass, ty) { }
2373
2374  /// \brief Construct an empty implicit value initialization.
2375  explicit ImplicitValueInitExpr(EmptyShell Empty)
2376    : Expr(ImplicitValueInitExprClass, Empty) { }
2377
2378  static bool classof(const Stmt *T) {
2379    return T->getStmtClass() == ImplicitValueInitExprClass;
2380  }
2381  static bool classof(const ImplicitValueInitExpr *) { return true; }
2382
2383  virtual SourceRange getSourceRange() const {
2384    return SourceRange();
2385  }
2386
2387  // Iterators
2388  virtual child_iterator child_begin();
2389  virtual child_iterator child_end();
2390};
2391
2392//===----------------------------------------------------------------------===//
2393// Clang Extensions
2394//===----------------------------------------------------------------------===//
2395
2396
2397/// ExtVectorElementExpr - This represents access to specific elements of a
2398/// vector, and may occur on the left hand side or right hand side.  For example
2399/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
2400///
2401/// Note that the base may have either vector or pointer to vector type, just
2402/// like a struct field reference.
2403///
2404class ExtVectorElementExpr : public Expr {
2405  Stmt *Base;
2406  IdentifierInfo *Accessor;
2407  SourceLocation AccessorLoc;
2408public:
2409  ExtVectorElementExpr(QualType ty, Expr *base, IdentifierInfo &accessor,
2410                       SourceLocation loc)
2411    : Expr(ExtVectorElementExprClass, ty),
2412      Base(base), Accessor(&accessor), AccessorLoc(loc) {}
2413
2414  /// \brief Build an empty vector element expression.
2415  explicit ExtVectorElementExpr(EmptyShell Empty)
2416    : Expr(ExtVectorElementExprClass, Empty) { }
2417
2418  const Expr *getBase() const { return cast<Expr>(Base); }
2419  Expr *getBase() { return cast<Expr>(Base); }
2420  void setBase(Expr *E) { Base = E; }
2421
2422  IdentifierInfo &getAccessor() const { return *Accessor; }
2423  void setAccessor(IdentifierInfo *II) { Accessor = II; }
2424
2425  SourceLocation getAccessorLoc() const { return AccessorLoc; }
2426  void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
2427
2428  /// getNumElements - Get the number of components being selected.
2429  unsigned getNumElements() const;
2430
2431  /// containsDuplicateElements - Return true if any element access is
2432  /// repeated.
2433  bool containsDuplicateElements() const;
2434
2435  /// getEncodedElementAccess - Encode the elements accessed into an llvm
2436  /// aggregate Constant of ConstantInt(s).
2437  void getEncodedElementAccess(llvm::SmallVectorImpl<unsigned> &Elts) const;
2438
2439  virtual SourceRange getSourceRange() const {
2440    return SourceRange(getBase()->getLocStart(), AccessorLoc);
2441  }
2442
2443  /// isArrow - Return true if the base expression is a pointer to vector,
2444  /// return false if the base expression is a vector.
2445  bool isArrow() const;
2446
2447  static bool classof(const Stmt *T) {
2448    return T->getStmtClass() == ExtVectorElementExprClass;
2449  }
2450  static bool classof(const ExtVectorElementExpr *) { return true; }
2451
2452  // Iterators
2453  virtual child_iterator child_begin();
2454  virtual child_iterator child_end();
2455
2456  virtual void EmitImpl(llvm::Serializer& S) const;
2457  static ExtVectorElementExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
2458};
2459
2460
2461/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
2462/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
2463class BlockExpr : public Expr {
2464protected:
2465  BlockDecl *TheBlock;
2466  bool HasBlockDeclRefExprs;
2467public:
2468  BlockExpr(BlockDecl *BD, QualType ty, bool hasBlockDeclRefExprs)
2469    : Expr(BlockExprClass, ty),
2470      TheBlock(BD), HasBlockDeclRefExprs(hasBlockDeclRefExprs) {}
2471
2472  const BlockDecl *getBlockDecl() const { return TheBlock; }
2473  BlockDecl *getBlockDecl() { return TheBlock; }
2474
2475  // Convenience functions for probing the underlying BlockDecl.
2476  SourceLocation getCaretLocation() const;
2477  const Stmt *getBody() const;
2478  Stmt *getBody();
2479
2480  virtual SourceRange getSourceRange() const {
2481    return SourceRange(getCaretLocation(), getBody()->getLocEnd());
2482  }
2483
2484  /// getFunctionType - Return the underlying function type for this block.
2485  const FunctionType *getFunctionType() const;
2486
2487  /// hasBlockDeclRefExprs - Return true iff the block has BlockDeclRefExpr
2488  /// contained inside.
2489  bool hasBlockDeclRefExprs() const { return HasBlockDeclRefExprs; }
2490
2491  static bool classof(const Stmt *T) {
2492    return T->getStmtClass() == BlockExprClass;
2493  }
2494  static bool classof(const BlockExpr *) { return true; }
2495
2496  // Iterators
2497  virtual child_iterator child_begin();
2498  virtual child_iterator child_end();
2499
2500  virtual void EmitImpl(llvm::Serializer& S) const;
2501  static BlockExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
2502};
2503
2504/// BlockDeclRefExpr - A reference to a declared variable, function,
2505/// enum, etc.
2506class BlockDeclRefExpr : public Expr {
2507  ValueDecl *D;
2508  SourceLocation Loc;
2509  bool IsByRef;
2510public:
2511  BlockDeclRefExpr(ValueDecl *d, QualType t, SourceLocation l, bool ByRef) :
2512       Expr(BlockDeclRefExprClass, t), D(d), Loc(l), IsByRef(ByRef) {}
2513
2514  // \brief Build an empty reference to a declared variable in a
2515  // block.
2516  explicit BlockDeclRefExpr(EmptyShell Empty)
2517    : Expr(BlockDeclRefExprClass, Empty) { }
2518
2519  ValueDecl *getDecl() { return D; }
2520  const ValueDecl *getDecl() const { return D; }
2521  void setDecl(ValueDecl *VD) { D = VD; }
2522
2523  SourceLocation getLocation() const { return Loc; }
2524  void setLocation(SourceLocation L) { Loc = L; }
2525
2526  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
2527
2528  bool isByRef() const { return IsByRef; }
2529  void setByRef(bool BR) { IsByRef = BR; }
2530
2531  static bool classof(const Stmt *T) {
2532    return T->getStmtClass() == BlockDeclRefExprClass;
2533  }
2534  static bool classof(const BlockDeclRefExpr *) { return true; }
2535
2536  // Iterators
2537  virtual child_iterator child_begin();
2538  virtual child_iterator child_end();
2539
2540  virtual void EmitImpl(llvm::Serializer& S) const;
2541  static BlockDeclRefExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
2542};
2543
2544}  // end namespace clang
2545
2546#endif
2547