Expr.h revision d5cab5435371b8cc74a9e05ebd40b5995ebad149
1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/Stmt.h"
19#include "clang/AST/Type.h"
20#include "llvm/ADT/APSInt.h"
21#include "llvm/ADT/APFloat.h"
22#include "llvm/ADT/SmallVector.h"
23#include <vector>
24
25namespace clang {
26  class ASTContext;
27  class APValue;
28  class Decl;
29  class IdentifierInfo;
30  class ParmVarDecl;
31  class NamedDecl;
32  class ValueDecl;
33  class BlockDecl;
34  class CXXOperatorCallExpr;
35  class CXXMemberCallExpr;
36
37/// Expr - This represents one expression.  Note that Expr's are subclasses of
38/// Stmt.  This allows an expression to be transparently used any place a Stmt
39/// is required.
40///
41class Expr : public Stmt {
42  QualType TR;
43
44  /// TypeDependent - Whether this expression is type-dependent
45  /// (C++ [temp.dep.expr]).
46  bool TypeDependent : 1;
47
48  /// ValueDependent - Whether this expression is value-dependent
49  /// (C++ [temp.dep.constexpr]).
50  bool ValueDependent : 1;
51
52protected:
53  // FIXME: Eventually, this constructor should go away and we should
54  // require every subclass to provide type/value-dependence
55  // information.
56  Expr(StmtClass SC, QualType T)
57    : Stmt(SC), TypeDependent(false), ValueDependent(false) {
58    setType(T);
59  }
60
61  Expr(StmtClass SC, QualType T, bool TD, bool VD)
62    : Stmt(SC), TypeDependent(TD), ValueDependent(VD) {
63    setType(T);
64  }
65
66public:
67  QualType getType() const { return TR; }
68  void setType(QualType t) {
69    // In C++, the type of an expression is always adjusted so that it
70    // will not have reference type an expression will never have
71    // reference type (C++ [expr]p6). Use
72    // QualType::getNonReferenceType() to retrieve the non-reference
73    // type. Additionally, inspect Expr::isLvalue to determine whether
74    // an expression that is adjusted in this manner should be
75    // considered an lvalue.
76    assert((TR.isNull() || !TR->isReferenceType()) &&
77           "Expressions can't have reference type");
78
79    TR = t;
80  }
81
82  /// isValueDependent - Determines whether this expression is
83  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
84  /// array bound of "Chars" in the following example is
85  /// value-dependent.
86  /// @code
87  /// template<int Size, char (&Chars)[Size]> struct meta_string;
88  /// @endcode
89  bool isValueDependent() const { return ValueDependent; }
90
91  /// isTypeDependent - Determines whether this expression is
92  /// type-dependent (C++ [temp.dep.expr]), which means that its type
93  /// could change from one template instantiation to the next. For
94  /// example, the expressions "x" and "x + y" are type-dependent in
95  /// the following code, but "y" is not type-dependent:
96  /// @code
97  /// template<typename T>
98  /// void add(T x, int y) {
99  ///   x + y;
100  /// }
101  /// @endcode
102  bool isTypeDependent() const { return TypeDependent; }
103
104  /// SourceLocation tokens are not useful in isolation - they are low level
105  /// value objects created/interpreted by SourceManager. We assume AST
106  /// clients will have a pointer to the respective SourceManager.
107  virtual SourceRange getSourceRange() const = 0;
108
109  /// getExprLoc - Return the preferred location for the arrow when diagnosing
110  /// a problem with a generic expression.
111  virtual SourceLocation getExprLoc() const { return getLocStart(); }
112
113  /// hasLocalSideEffect - Return true if this immediate expression has side
114  /// effects, not counting any sub-expressions.
115  bool hasLocalSideEffect() const;
116
117  /// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or
118  /// incomplete type other than void. Nonarray expressions that can be lvalues:
119  ///  - name, where name must be a variable
120  ///  - e[i]
121  ///  - (e), where e must be an lvalue
122  ///  - e.name, where e must be an lvalue
123  ///  - e->name
124  ///  - *e, the type of e cannot be a function type
125  ///  - string-constant
126  ///  - reference type [C++ [expr]]
127  ///
128  enum isLvalueResult {
129    LV_Valid,
130    LV_NotObjectType,
131    LV_IncompleteVoidType,
132    LV_DuplicateVectorComponents,
133    LV_InvalidExpression,
134    LV_MemberFunction
135  };
136  isLvalueResult isLvalue(ASTContext &Ctx) const;
137
138  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
139  /// does not have an incomplete type, does not have a const-qualified type,
140  /// and if it is a structure or union, does not have any member (including,
141  /// recursively, any member or element of all contained aggregates or unions)
142  /// with a const-qualified type.
143  enum isModifiableLvalueResult {
144    MLV_Valid,
145    MLV_NotObjectType,
146    MLV_IncompleteVoidType,
147    MLV_DuplicateVectorComponents,
148    MLV_InvalidExpression,
149    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
150    MLV_IncompleteType,
151    MLV_ConstQualified,
152    MLV_ArrayType,
153    MLV_NotBlockQualified,
154    MLV_ReadonlyProperty,
155    MLV_NoSetterProperty,
156    MLV_MemberFunction
157  };
158  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx) const;
159
160  bool isBitField();
161
162  /// getIntegerConstantExprValue() - Return the value of an integer
163  /// constant expression. The expression must be a valid integer
164  /// constant expression as determined by isIntegerConstantExpr.
165  llvm::APSInt getIntegerConstantExprValue(ASTContext &Ctx) const {
166    llvm::APSInt X;
167    bool success = isIntegerConstantExpr(X, Ctx);
168    success = success;
169    assert(success && "Illegal argument to getIntegerConstantExpr");
170    return X;
171  }
172
173  /// isIntegerConstantExpr - Return true if this expression is a valid integer
174  /// constant expression, and, if so, return its value in Result.  If not a
175  /// valid i-c-e, return false and fill in Loc (if specified) with the location
176  /// of the invalid expression.
177  bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
178                             SourceLocation *Loc = 0,
179                             bool isEvaluated = true) const;
180  bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const {
181    llvm::APSInt X;
182    return isIntegerConstantExpr(X, Ctx, Loc);
183  }
184  /// isConstantInitializer - Returns true if this expression is a constant
185  /// initializer, which can be emitted at compile-time.
186  bool isConstantInitializer(ASTContext &Ctx) const;
187
188  /// EvalResult is a struct with detailed info about an evaluated expression.
189  struct EvalResult {
190    /// Val - This is the scalar value the expression can be folded to.
191    APValue Val;
192
193    /// HasSideEffects - Whether the evaluated expression has side effects.
194    /// For example, (f() && 0) can be folded, but it still has side effects.
195    bool HasSideEffects;
196
197    /// Diag - If the expression is unfoldable, then Diag contains a note
198    /// diagnostic indicating why it's not foldable. DiagLoc indicates a caret
199    /// position for the error, and DiagExpr is the expression that caused
200    /// the error.
201    /// If the expression is foldable, but not an integer constant expression,
202    /// Diag contains a note diagnostic that describes why it isn't an integer
203    /// constant expression. If the expression *is* an integer constant
204    /// expression, then Diag will be zero.
205    unsigned Diag;
206    const Expr *DiagExpr;
207    SourceLocation DiagLoc;
208
209    EvalResult() : HasSideEffects(false), Diag(0), DiagExpr(0) {}
210  };
211
212  /// Evaluate - Return true if this is a constant which we can fold using
213  /// any crazy technique (that has nothing to do with language standards) that
214  /// we want to.  If this function returns true, it returns the folded constant
215  /// in Result.
216  bool Evaluate(EvalResult &Result, ASTContext &Ctx) const;
217
218  /// isEvaluatable - Call Evaluate to see if this expression can be constant
219  /// folded, but discard the result.
220  bool isEvaluatable(ASTContext &Ctx) const;
221
222  /// EvaluateAsInt - Call Evaluate and return the folded integer. This
223  /// must be called on an expression that constant folds to an integer.
224  llvm::APSInt EvaluateAsInt(ASTContext &Ctx) const;
225
226  /// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
227  /// integer constant expression with the value zero, or if this is one that is
228  /// cast to void*.
229  bool isNullPointerConstant(ASTContext &Ctx) const;
230
231  /// hasGlobalStorage - Return true if this expression has static storage
232  /// duration.  This means that the address of this expression is a link-time
233  /// constant.
234  bool hasGlobalStorage() const;
235
236  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
237  ///  its subexpression.  If that subexpression is also a ParenExpr,
238  ///  then this method recursively returns its subexpression, and so forth.
239  ///  Otherwise, the method returns the current Expr.
240  Expr* IgnoreParens();
241
242  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
243  /// or CastExprs, returning their operand.
244  Expr *IgnoreParenCasts();
245
246  const Expr* IgnoreParens() const {
247    return const_cast<Expr*>(this)->IgnoreParens();
248  }
249  const Expr *IgnoreParenCasts() const {
250    return const_cast<Expr*>(this)->IgnoreParenCasts();
251  }
252
253  static bool hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs);
254  static bool hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs);
255
256  static bool classof(const Stmt *T) {
257    return T->getStmtClass() >= firstExprConstant &&
258           T->getStmtClass() <= lastExprConstant;
259  }
260  static bool classof(const Expr *) { return true; }
261
262  static inline Expr* Create(llvm::Deserializer& D, ASTContext& C) {
263    return cast<Expr>(Stmt::Create(D, C));
264  }
265};
266
267
268//===----------------------------------------------------------------------===//
269// Primary Expressions.
270//===----------------------------------------------------------------------===//
271
272/// DeclRefExpr - [C99 6.5.1p2] - A reference to a declared variable, function,
273/// enum, etc.
274class DeclRefExpr : public Expr {
275  NamedDecl *D;
276  SourceLocation Loc;
277
278protected:
279  // FIXME: Eventually, this constructor will go away and all subclasses
280  // will have to provide the type- and value-dependent flags.
281  DeclRefExpr(StmtClass SC, NamedDecl *d, QualType t, SourceLocation l) :
282    Expr(SC, t), D(d), Loc(l) {}
283
284  DeclRefExpr(StmtClass SC, NamedDecl *d, QualType t, SourceLocation l, bool TD,
285              bool VD) :
286    Expr(SC, t, TD, VD), D(d), Loc(l) {}
287
288public:
289  // FIXME: Eventually, this constructor will go away and all clients
290  // will have to provide the type- and value-dependent flags.
291  DeclRefExpr(NamedDecl *d, QualType t, SourceLocation l) :
292    Expr(DeclRefExprClass, t), D(d), Loc(l) {}
293
294  DeclRefExpr(NamedDecl *d, QualType t, SourceLocation l, bool TD, bool VD) :
295    Expr(DeclRefExprClass, t, TD, VD), D(d), Loc(l) {}
296
297  NamedDecl *getDecl() { return D; }
298  const NamedDecl *getDecl() const { return D; }
299  void setDecl(NamedDecl *NewD) { D = NewD; }
300
301  SourceLocation getLocation() const { return Loc; }
302  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
303
304  static bool classof(const Stmt *T) {
305    return T->getStmtClass() == DeclRefExprClass ||
306           T->getStmtClass() == CXXConditionDeclExprClass ||
307           T->getStmtClass() == QualifiedDeclRefExprClass;
308  }
309  static bool classof(const DeclRefExpr *) { return true; }
310
311  // Iterators
312  virtual child_iterator child_begin();
313  virtual child_iterator child_end();
314
315  virtual void EmitImpl(llvm::Serializer& S) const;
316  static DeclRefExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
317};
318
319/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
320class PredefinedExpr : public Expr {
321public:
322  enum IdentType {
323    Func,
324    Function,
325    PrettyFunction
326  };
327
328private:
329  SourceLocation Loc;
330  IdentType Type;
331public:
332  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
333    : Expr(PredefinedExprClass, type), Loc(l), Type(IT) {}
334
335  IdentType getIdentType() const { return Type; }
336
337  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
338
339  static bool classof(const Stmt *T) {
340    return T->getStmtClass() == PredefinedExprClass;
341  }
342  static bool classof(const PredefinedExpr *) { return true; }
343
344  // Iterators
345  virtual child_iterator child_begin();
346  virtual child_iterator child_end();
347
348  virtual void EmitImpl(llvm::Serializer& S) const;
349  static PredefinedExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
350};
351
352class IntegerLiteral : public Expr {
353  llvm::APInt Value;
354  SourceLocation Loc;
355public:
356  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
357  // or UnsignedLongLongTy
358  IntegerLiteral(const llvm::APInt &V, QualType type, SourceLocation l)
359    : Expr(IntegerLiteralClass, type), Value(V), Loc(l) {
360    assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
361  }
362  const llvm::APInt &getValue() const { return Value; }
363  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
364
365  static bool classof(const Stmt *T) {
366    return T->getStmtClass() == IntegerLiteralClass;
367  }
368  static bool classof(const IntegerLiteral *) { return true; }
369
370  // Iterators
371  virtual child_iterator child_begin();
372  virtual child_iterator child_end();
373
374  virtual void EmitImpl(llvm::Serializer& S) const;
375  static IntegerLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
376};
377
378class CharacterLiteral : public Expr {
379  unsigned Value;
380  SourceLocation Loc;
381  bool IsWide;
382public:
383  // type should be IntTy
384  CharacterLiteral(unsigned value, bool iswide, QualType type, SourceLocation l)
385    : Expr(CharacterLiteralClass, type), Value(value), Loc(l), IsWide(iswide) {
386  }
387  SourceLocation getLoc() const { return Loc; }
388  bool isWide() const { return IsWide; }
389
390  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
391
392  unsigned getValue() const { return Value; }
393
394  static bool classof(const Stmt *T) {
395    return T->getStmtClass() == CharacterLiteralClass;
396  }
397  static bool classof(const CharacterLiteral *) { return true; }
398
399  // Iterators
400  virtual child_iterator child_begin();
401  virtual child_iterator child_end();
402
403  virtual void EmitImpl(llvm::Serializer& S) const;
404  static CharacterLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
405};
406
407class FloatingLiteral : public Expr {
408  llvm::APFloat Value;
409  bool IsExact : 1;
410  SourceLocation Loc;
411public:
412  FloatingLiteral(const llvm::APFloat &V, bool* isexact,
413                  QualType Type, SourceLocation L)
414    : Expr(FloatingLiteralClass, Type), Value(V), IsExact(*isexact), Loc(L) {}
415
416  const llvm::APFloat &getValue() const { return Value; }
417
418  bool isExact() const { return IsExact; }
419
420  /// getValueAsApproximateDouble - This returns the value as an inaccurate
421  /// double.  Note that this may cause loss of precision, but is useful for
422  /// debugging dumps, etc.
423  double getValueAsApproximateDouble() const;
424
425  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
426
427  static bool classof(const Stmt *T) {
428    return T->getStmtClass() == FloatingLiteralClass;
429  }
430  static bool classof(const FloatingLiteral *) { return true; }
431
432  // Iterators
433  virtual child_iterator child_begin();
434  virtual child_iterator child_end();
435
436  virtual void EmitImpl(llvm::Serializer& S) const;
437  static FloatingLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
438};
439
440/// ImaginaryLiteral - We support imaginary integer and floating point literals,
441/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
442/// IntegerLiteral classes.  Instances of this class always have a Complex type
443/// whose element type matches the subexpression.
444///
445class ImaginaryLiteral : public Expr {
446  Stmt *Val;
447public:
448  ImaginaryLiteral(Expr *val, QualType Ty)
449    : Expr(ImaginaryLiteralClass, Ty), Val(val) {}
450
451  const Expr *getSubExpr() const { return cast<Expr>(Val); }
452  Expr *getSubExpr() { return cast<Expr>(Val); }
453
454  virtual SourceRange getSourceRange() const { return Val->getSourceRange(); }
455  static bool classof(const Stmt *T) {
456    return T->getStmtClass() == ImaginaryLiteralClass;
457  }
458  static bool classof(const ImaginaryLiteral *) { return true; }
459
460  // Iterators
461  virtual child_iterator child_begin();
462  virtual child_iterator child_end();
463
464  virtual void EmitImpl(llvm::Serializer& S) const;
465  static ImaginaryLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
466};
467
468/// StringLiteral - This represents a string literal expression, e.g. "foo"
469/// or L"bar" (wide strings).  The actual string is returned by getStrData()
470/// is NOT null-terminated, and the length of the string is determined by
471/// calling getByteLength().  The C type for a string is always a
472/// ConstantArrayType.
473class StringLiteral : public Expr {
474  const char *StrData;
475  unsigned ByteLength;
476  bool IsWide;
477  // if the StringLiteral was composed using token pasting, both locations
478  // are needed. If not (the common case), firstTokLoc == lastTokLoc.
479  // FIXME: if space becomes an issue, we should create a sub-class.
480  SourceLocation firstTokLoc, lastTokLoc;
481public:
482  StringLiteral(ASTContext& C, const char *strData, unsigned byteLength,
483                bool Wide, QualType t, SourceLocation b, SourceLocation e);
484
485  void Destroy(ASTContext& C);
486
487  const char *getStrData() const { return StrData; }
488  unsigned getByteLength() const { return ByteLength; }
489  bool isWide() const { return IsWide; }
490
491  virtual SourceRange getSourceRange() const {
492    return SourceRange(firstTokLoc,lastTokLoc);
493  }
494  static bool classof(const Stmt *T) {
495    return T->getStmtClass() == StringLiteralClass;
496  }
497  static bool classof(const StringLiteral *) { return true; }
498
499  // Iterators
500  virtual child_iterator child_begin();
501  virtual child_iterator child_end();
502
503  virtual void EmitImpl(llvm::Serializer& S) const;
504  static StringLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
505};
506
507/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
508/// AST node is only formed if full location information is requested.
509class ParenExpr : public Expr {
510  SourceLocation L, R;
511  Stmt *Val;
512public:
513  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
514    : Expr(ParenExprClass, val->getType(),
515           val->isTypeDependent(), val->isValueDependent()),
516      L(l), R(r), Val(val) {}
517
518  const Expr *getSubExpr() const { return cast<Expr>(Val); }
519  Expr *getSubExpr() { return cast<Expr>(Val); }
520  virtual SourceRange getSourceRange() const { return SourceRange(L, R); }
521
522  static bool classof(const Stmt *T) {
523    return T->getStmtClass() == ParenExprClass;
524  }
525  static bool classof(const ParenExpr *) { return true; }
526
527  // Iterators
528  virtual child_iterator child_begin();
529  virtual child_iterator child_end();
530
531  virtual void EmitImpl(llvm::Serializer& S) const;
532  static ParenExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
533};
534
535
536/// UnaryOperator - This represents the unary-expression's (except sizeof and
537/// alignof), the postinc/postdec operators from postfix-expression, and various
538/// extensions.
539///
540/// Notes on various nodes:
541///
542/// Real/Imag - These return the real/imag part of a complex operand.  If
543///   applied to a non-complex value, the former returns its operand and the
544///   later returns zero in the type of the operand.
545///
546/// __builtin_offsetof(type, a.b[10]) is represented as a unary operator whose
547///   subexpression is a compound literal with the various MemberExpr and
548///   ArraySubscriptExpr's applied to it.
549///
550class UnaryOperator : public Expr {
551public:
552  // Note that additions to this should also update the StmtVisitor class.
553  enum Opcode {
554    PostInc, PostDec, // [C99 6.5.2.4] Postfix increment and decrement operators
555    PreInc, PreDec,   // [C99 6.5.3.1] Prefix increment and decrement operators.
556    AddrOf, Deref,    // [C99 6.5.3.2] Address and indirection operators.
557    Plus, Minus,      // [C99 6.5.3.3] Unary arithmetic operators.
558    Not, LNot,        // [C99 6.5.3.3] Unary arithmetic operators.
559    Real, Imag,       // "__real expr"/"__imag expr" Extension.
560    Extension,        // __extension__ marker.
561    OffsetOf          // __builtin_offsetof
562  };
563private:
564  Stmt *Val;
565  Opcode Opc;
566  SourceLocation Loc;
567public:
568
569  UnaryOperator(Expr *input, Opcode opc, QualType type, SourceLocation l)
570    : Expr(UnaryOperatorClass, type,
571           input->isTypeDependent() && opc != OffsetOf,
572           input->isValueDependent()),
573      Val(input), Opc(opc), Loc(l) {}
574
575  Opcode getOpcode() const { return Opc; }
576  Expr *getSubExpr() const { return cast<Expr>(Val); }
577
578  /// getOperatorLoc - Return the location of the operator.
579  SourceLocation getOperatorLoc() const { return Loc; }
580
581  /// isPostfix - Return true if this is a postfix operation, like x++.
582  static bool isPostfix(Opcode Op);
583
584  /// isPostfix - Return true if this is a prefix operation, like --x.
585  static bool isPrefix(Opcode Op);
586
587  bool isPrefix() const { return isPrefix(Opc); }
588  bool isPostfix() const { return isPostfix(Opc); }
589  bool isIncrementOp() const {return Opc==PreInc || Opc==PostInc; }
590  bool isIncrementDecrementOp() const { return Opc>=PostInc && Opc<=PreDec; }
591  bool isOffsetOfOp() const { return Opc == OffsetOf; }
592  static bool isArithmeticOp(Opcode Op) { return Op >= Plus && Op <= LNot; }
593
594  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
595  /// corresponds to, e.g. "sizeof" or "[pre]++"
596  static const char *getOpcodeStr(Opcode Op);
597
598  virtual SourceRange getSourceRange() const {
599    if (isPostfix())
600      return SourceRange(Val->getLocStart(), Loc);
601    else
602      return SourceRange(Loc, Val->getLocEnd());
603  }
604  virtual SourceLocation getExprLoc() const { return Loc; }
605
606  static bool classof(const Stmt *T) {
607    return T->getStmtClass() == UnaryOperatorClass;
608  }
609  static bool classof(const UnaryOperator *) { return true; }
610
611  int64_t evaluateOffsetOf(ASTContext& C) const;
612
613  // Iterators
614  virtual child_iterator child_begin();
615  virtual child_iterator child_end();
616
617  virtual void EmitImpl(llvm::Serializer& S) const;
618  static UnaryOperator* CreateImpl(llvm::Deserializer& D, ASTContext& C);
619};
620
621/// SizeOfAlignOfExpr - [C99 6.5.3.4] - This is for sizeof/alignof, both of
622/// types and expressions.
623class SizeOfAlignOfExpr : public Expr {
624  bool isSizeof : 1;  // true if sizeof, false if alignof.
625  bool isType : 1;    // true if operand is a type, false if an expression
626  union {
627    void *Ty;
628    Stmt *Ex;
629  } Argument;
630  SourceLocation OpLoc, RParenLoc;
631public:
632  SizeOfAlignOfExpr(bool issizeof, bool istype, void *argument,
633                    QualType resultType, SourceLocation op,
634                    SourceLocation rp) :
635      Expr(SizeOfAlignOfExprClass, resultType), isSizeof(issizeof),
636      isType(istype), OpLoc(op), RParenLoc(rp) {
637    if (isType)
638      Argument.Ty = argument;
639    else
640      // argument was an Expr*, so cast it back to that to be safe
641      Argument.Ex = static_cast<Expr*>(argument);
642  }
643
644  virtual void Destroy(ASTContext& C);
645
646  bool isSizeOf() const { return isSizeof; }
647  bool isArgumentType() const { return isType; }
648  QualType getArgumentType() const {
649    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
650    return QualType::getFromOpaquePtr(Argument.Ty);
651  }
652  Expr *getArgumentExpr() {
653    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
654    return static_cast<Expr*>(Argument.Ex);
655  }
656  const Expr *getArgumentExpr() const {
657    return const_cast<SizeOfAlignOfExpr*>(this)->getArgumentExpr();
658  }
659
660  /// Gets the argument type, or the type of the argument expression, whichever
661  /// is appropriate.
662  QualType getTypeOfArgument() const {
663    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
664  }
665
666  SourceLocation getOperatorLoc() const { return OpLoc; }
667
668  virtual SourceRange getSourceRange() const {
669    return SourceRange(OpLoc, RParenLoc);
670  }
671
672  static bool classof(const Stmt *T) {
673    return T->getStmtClass() == SizeOfAlignOfExprClass;
674  }
675  static bool classof(const SizeOfAlignOfExpr *) { return true; }
676
677  // Iterators
678  virtual child_iterator child_begin();
679  virtual child_iterator child_end();
680
681  virtual void EmitImpl(llvm::Serializer& S) const;
682  static SizeOfAlignOfExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
683};
684
685//===----------------------------------------------------------------------===//
686// Postfix Operators.
687//===----------------------------------------------------------------------===//
688
689/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
690class ArraySubscriptExpr : public Expr {
691  enum { LHS, RHS, END_EXPR=2 };
692  Stmt* SubExprs[END_EXPR];
693  SourceLocation RBracketLoc;
694public:
695  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
696                     SourceLocation rbracketloc)
697  : Expr(ArraySubscriptExprClass, t), RBracketLoc(rbracketloc) {
698    SubExprs[LHS] = lhs;
699    SubExprs[RHS] = rhs;
700  }
701
702  /// An array access can be written A[4] or 4[A] (both are equivalent).
703  /// - getBase() and getIdx() always present the normalized view: A[4].
704  ///    In this case getBase() returns "A" and getIdx() returns "4".
705  /// - getLHS() and getRHS() present the syntactic view. e.g. for
706  ///    4[A] getLHS() returns "4".
707  /// Note: Because vector element access is also written A[4] we must
708  /// predicate the format conversion in getBase and getIdx only on the
709  /// the type of the RHS, as it is possible for the LHS to be a vector of
710  /// integer type
711  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
712  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
713
714  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
715  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
716
717  Expr *getBase() {
718    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
719  }
720
721  const Expr *getBase() const {
722    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
723  }
724
725  Expr *getIdx() {
726    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
727  }
728
729  const Expr *getIdx() const {
730    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
731  }
732
733  virtual SourceRange getSourceRange() const {
734    return SourceRange(getLHS()->getLocStart(), RBracketLoc);
735  }
736
737  virtual SourceLocation getExprLoc() const { return getBase()->getExprLoc(); }
738
739  static bool classof(const Stmt *T) {
740    return T->getStmtClass() == ArraySubscriptExprClass;
741  }
742  static bool classof(const ArraySubscriptExpr *) { return true; }
743
744  // Iterators
745  virtual child_iterator child_begin();
746  virtual child_iterator child_end();
747
748  virtual void EmitImpl(llvm::Serializer& S) const;
749  static ArraySubscriptExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
750};
751
752
753/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
754/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
755/// while its subclasses may represent alternative syntax that (semantically)
756/// results in a function call. For example, CXXOperatorCallExpr is
757/// a subclass for overloaded operator calls that use operator syntax, e.g.,
758/// "str1 + str2" to resolve to a function call.
759class CallExpr : public Expr {
760  enum { FN=0, ARGS_START=1 };
761  Stmt **SubExprs;
762  unsigned NumArgs;
763  SourceLocation RParenLoc;
764
765  // This version of the ctor is for deserialization.
766  CallExpr(StmtClass SC, Stmt** subexprs, unsigned numargs, QualType t,
767           SourceLocation rparenloc)
768  : Expr(SC,t), SubExprs(subexprs),
769    NumArgs(numargs), RParenLoc(rparenloc) {}
770
771protected:
772  // This version of the constructor is for derived classes.
773  CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args, unsigned numargs,
774           QualType t, SourceLocation rparenloc);
775
776public:
777  CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, QualType t,
778           SourceLocation rparenloc);
779
780  ~CallExpr() {}
781
782  void Destroy(ASTContext& C);
783
784  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
785  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
786  void setCallee(Expr *F) { SubExprs[FN] = F; }
787
788  /// getNumArgs - Return the number of actual arguments to this call.
789  ///
790  unsigned getNumArgs() const { return NumArgs; }
791
792  /// getArg - Return the specified argument.
793  Expr *getArg(unsigned Arg) {
794    assert(Arg < NumArgs && "Arg access out of range!");
795    return cast<Expr>(SubExprs[Arg+ARGS_START]);
796  }
797  const Expr *getArg(unsigned Arg) const {
798    assert(Arg < NumArgs && "Arg access out of range!");
799    return cast<Expr>(SubExprs[Arg+ARGS_START]);
800  }
801
802  // FIXME: Why is this needed?  Why not just create the CallExpr with the
803  // corect number of arguments?  It makes the ASTs less brittle.
804  /// setArg - Set the specified argument.
805  void setArg(unsigned Arg, Expr *ArgExpr) {
806    assert(Arg < NumArgs && "Arg access out of range!");
807    SubExprs[Arg+ARGS_START] = ArgExpr;
808  }
809
810  // FIXME: It would be great to just get rid of this.  There is only one
811  // callee of this method, and it probably could be refactored to not use
812  // this method and instead just create a CallExpr with the right number of
813  // arguments.
814  /// setNumArgs - This changes the number of arguments present in this call.
815  /// Any orphaned expressions are deleted by this, and any new operands are set
816  /// to null.
817  void setNumArgs(ASTContext& C, unsigned NumArgs);
818
819  typedef ExprIterator arg_iterator;
820  typedef ConstExprIterator const_arg_iterator;
821
822  arg_iterator arg_begin() { return SubExprs+ARGS_START; }
823  arg_iterator arg_end() { return SubExprs+ARGS_START+getNumArgs(); }
824  const_arg_iterator arg_begin() const { return SubExprs+ARGS_START; }
825  const_arg_iterator arg_end() const { return SubExprs+ARGS_START+getNumArgs();}
826
827  /// getNumCommas - Return the number of commas that must have been present in
828  /// this function call.
829  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
830
831  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
832  /// not, return 0.
833  unsigned isBuiltinCall() const;
834
835  SourceLocation getRParenLoc() const { return RParenLoc; }
836
837  virtual SourceRange getSourceRange() const {
838    return SourceRange(getCallee()->getLocStart(), RParenLoc);
839  }
840
841  static bool classof(const Stmt *T) {
842    return T->getStmtClass() == CallExprClass ||
843           T->getStmtClass() == CXXOperatorCallExprClass ||
844           T->getStmtClass() == CXXMemberCallExprClass;
845  }
846  static bool classof(const CallExpr *) { return true; }
847  static bool classof(const CXXOperatorCallExpr *) { return true; }
848  static bool classof(const CXXMemberCallExpr *) { return true; }
849
850  // Iterators
851  virtual child_iterator child_begin();
852  virtual child_iterator child_end();
853
854  virtual void EmitImpl(llvm::Serializer& S) const;
855  static CallExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C,
856                              StmtClass SC);
857};
858
859/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.
860///
861class MemberExpr : public Expr {
862  Stmt *Base;
863  NamedDecl *MemberDecl;
864  SourceLocation MemberLoc;
865  bool IsArrow;      // True if this is "X->F", false if this is "X.F".
866public:
867  MemberExpr(Expr *base, bool isarrow, NamedDecl *memberdecl, SourceLocation l,
868             QualType ty)
869    : Expr(MemberExprClass, ty),
870      Base(base), MemberDecl(memberdecl), MemberLoc(l), IsArrow(isarrow) {}
871
872  void setBase(Expr *E) { Base = E; }
873  Expr *getBase() const { return cast<Expr>(Base); }
874  NamedDecl *getMemberDecl() const { return MemberDecl; }
875  void setMemberDecl(NamedDecl *D) { MemberDecl = D; }
876  bool isArrow() const { return IsArrow; }
877
878  virtual SourceRange getSourceRange() const {
879    return SourceRange(getBase()->getLocStart(), MemberLoc);
880  }
881
882  virtual SourceLocation getExprLoc() const { return MemberLoc; }
883
884  static bool classof(const Stmt *T) {
885    return T->getStmtClass() == MemberExprClass;
886  }
887  static bool classof(const MemberExpr *) { return true; }
888
889  // Iterators
890  virtual child_iterator child_begin();
891  virtual child_iterator child_end();
892
893  virtual void EmitImpl(llvm::Serializer& S) const;
894  static MemberExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
895};
896
897/// CompoundLiteralExpr - [C99 6.5.2.5]
898///
899class CompoundLiteralExpr : public Expr {
900  /// LParenLoc - If non-null, this is the location of the left paren in a
901  /// compound literal like "(int){4}".  This can be null if this is a
902  /// synthesized compound expression.
903  SourceLocation LParenLoc;
904  Stmt *Init;
905  bool FileScope;
906public:
907  CompoundLiteralExpr(SourceLocation lparenloc, QualType ty, Expr *init,
908                      bool fileScope)
909    : Expr(CompoundLiteralExprClass, ty), LParenLoc(lparenloc), Init(init),
910      FileScope(fileScope) {}
911
912  const Expr *getInitializer() const { return cast<Expr>(Init); }
913  Expr *getInitializer() { return cast<Expr>(Init); }
914
915  bool isFileScope() const { return FileScope; }
916
917  SourceLocation getLParenLoc() const { return LParenLoc; }
918
919  virtual SourceRange getSourceRange() const {
920    // FIXME: Init should never be null.
921    if (!Init)
922      return SourceRange();
923    if (LParenLoc.isInvalid())
924      return Init->getSourceRange();
925    return SourceRange(LParenLoc, Init->getLocEnd());
926  }
927
928  static bool classof(const Stmt *T) {
929    return T->getStmtClass() == CompoundLiteralExprClass;
930  }
931  static bool classof(const CompoundLiteralExpr *) { return true; }
932
933  // Iterators
934  virtual child_iterator child_begin();
935  virtual child_iterator child_end();
936
937  virtual void EmitImpl(llvm::Serializer& S) const;
938  static CompoundLiteralExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
939};
940
941/// CastExpr - Base class for type casts, including both implicit
942/// casts (ImplicitCastExpr) and explicit casts that have some
943/// representation in the source code (ExplicitCastExpr's derived
944/// classes).
945class CastExpr : public Expr {
946  Stmt *Op;
947protected:
948  CastExpr(StmtClass SC, QualType ty, Expr *op) :
949    Expr(SC, ty,
950         // Cast expressions are type-dependent if the type is
951         // dependent (C++ [temp.dep.expr]p3).
952         ty->isDependentType(),
953         // Cast expressions are value-dependent if the type is
954         // dependent or if the subexpression is value-dependent.
955         ty->isDependentType() || (op && op->isValueDependent())),
956    Op(op) {}
957
958public:
959  Expr *getSubExpr() { return cast<Expr>(Op); }
960  const Expr *getSubExpr() const { return cast<Expr>(Op); }
961
962  static bool classof(const Stmt *T) {
963    StmtClass SC = T->getStmtClass();
964    if (SC >= CXXNamedCastExprClass && SC <= CXXFunctionalCastExprClass)
965      return true;
966
967    if (SC >= ImplicitCastExprClass && SC <= CStyleCastExprClass)
968      return true;
969
970    return false;
971  }
972  static bool classof(const CastExpr *) { return true; }
973
974  // Iterators
975  virtual child_iterator child_begin();
976  virtual child_iterator child_end();
977};
978
979/// ImplicitCastExpr - Allows us to explicitly represent implicit type
980/// conversions, which have no direct representation in the original
981/// source code. For example: converting T[]->T*, void f()->void
982/// (*f)(), float->double, short->int, etc.
983///
984/// In C, implicit casts always produce rvalues. However, in C++, an
985/// implicit cast whose result is being bound to a reference will be
986/// an lvalue. For example:
987///
988/// @code
989/// class Base { };
990/// class Derived : public Base { };
991/// void f(Derived d) {
992///   Base& b = d; // initializer is an ImplicitCastExpr to an lvalue of type Base
993/// }
994/// @endcode
995class ImplicitCastExpr : public CastExpr {
996  /// LvalueCast - Whether this cast produces an lvalue.
997  bool LvalueCast;
998
999public:
1000  ImplicitCastExpr(QualType ty, Expr *op, bool Lvalue) :
1001    CastExpr(ImplicitCastExprClass, ty, op), LvalueCast(Lvalue) { }
1002
1003  virtual SourceRange getSourceRange() const {
1004    return getSubExpr()->getSourceRange();
1005  }
1006
1007  /// isLvalueCast - Whether this cast produces an lvalue.
1008  bool isLvalueCast() const { return LvalueCast; }
1009
1010  /// setLvalueCast - Set whether this cast produces an lvalue.
1011  void setLvalueCast(bool Lvalue) { LvalueCast = Lvalue; }
1012
1013  static bool classof(const Stmt *T) {
1014    return T->getStmtClass() == ImplicitCastExprClass;
1015  }
1016  static bool classof(const ImplicitCastExpr *) { return true; }
1017
1018  virtual void EmitImpl(llvm::Serializer& S) const;
1019  static ImplicitCastExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1020};
1021
1022/// ExplicitCastExpr - An explicit cast written in the source
1023/// code.
1024///
1025/// This class is effectively an abstract class, because it provides
1026/// the basic representation of an explicitly-written cast without
1027/// specifying which kind of cast (C cast, functional cast, static
1028/// cast, etc.) was written; specific derived classes represent the
1029/// particular style of cast and its location information.
1030///
1031/// Unlike implicit casts, explicit cast nodes have two different
1032/// types: the type that was written into the source code, and the
1033/// actual type of the expression as determined by semantic
1034/// analysis. These types may differ slightly. For example, in C++ one
1035/// can cast to a reference type, which indicates that the resulting
1036/// expression will be an lvalue. The reference type, however, will
1037/// not be used as the type of the expression.
1038class ExplicitCastExpr : public CastExpr {
1039  /// TypeAsWritten - The type that this expression is casting to, as
1040  /// written in the source code.
1041  QualType TypeAsWritten;
1042
1043protected:
1044  ExplicitCastExpr(StmtClass SC, QualType exprTy, Expr *op, QualType writtenTy)
1045    : CastExpr(SC, exprTy, op), TypeAsWritten(writtenTy) {}
1046
1047public:
1048  /// getTypeAsWritten - Returns the type that this expression is
1049  /// casting to, as written in the source code.
1050  QualType getTypeAsWritten() const { return TypeAsWritten; }
1051
1052  static bool classof(const Stmt *T) {
1053    StmtClass SC = T->getStmtClass();
1054    if (SC >= ExplicitCastExprClass && SC <= CStyleCastExprClass)
1055      return true;
1056    if (SC >= CXXNamedCastExprClass && SC <= CXXFunctionalCastExprClass)
1057      return true;
1058
1059    return false;
1060  }
1061  static bool classof(const ExplicitCastExpr *) { return true; }
1062};
1063
1064/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
1065/// cast in C++ (C++ [expr.cast]), which uses the syntax
1066/// (Type)expr. For example: @c (int)f.
1067class CStyleCastExpr : public ExplicitCastExpr {
1068  SourceLocation LPLoc; // the location of the left paren
1069  SourceLocation RPLoc; // the location of the right paren
1070public:
1071  CStyleCastExpr(QualType exprTy, Expr *op, QualType writtenTy,
1072                    SourceLocation l, SourceLocation r) :
1073    ExplicitCastExpr(CStyleCastExprClass, exprTy, op, writtenTy),
1074    LPLoc(l), RPLoc(r) {}
1075
1076  SourceLocation getLParenLoc() const { return LPLoc; }
1077  SourceLocation getRParenLoc() const { return RPLoc; }
1078
1079  virtual SourceRange getSourceRange() const {
1080    return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd());
1081  }
1082  static bool classof(const Stmt *T) {
1083    return T->getStmtClass() == CStyleCastExprClass;
1084  }
1085  static bool classof(const CStyleCastExpr *) { return true; }
1086
1087  virtual void EmitImpl(llvm::Serializer& S) const;
1088  static CStyleCastExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1089};
1090
1091class BinaryOperator : public Expr {
1092public:
1093  enum Opcode {
1094    // Operators listed in order of precedence.
1095    // Note that additions to this should also update the StmtVisitor class.
1096    PtrMemD, PtrMemI, // [C++ 5.5] Pointer-to-member operators.
1097    Mul, Div, Rem,    // [C99 6.5.5] Multiplicative operators.
1098    Add, Sub,         // [C99 6.5.6] Additive operators.
1099    Shl, Shr,         // [C99 6.5.7] Bitwise shift operators.
1100    LT, GT, LE, GE,   // [C99 6.5.8] Relational operators.
1101    EQ, NE,           // [C99 6.5.9] Equality operators.
1102    And,              // [C99 6.5.10] Bitwise AND operator.
1103    Xor,              // [C99 6.5.11] Bitwise XOR operator.
1104    Or,               // [C99 6.5.12] Bitwise OR operator.
1105    LAnd,             // [C99 6.5.13] Logical AND operator.
1106    LOr,              // [C99 6.5.14] Logical OR operator.
1107    Assign, MulAssign,// [C99 6.5.16] Assignment operators.
1108    DivAssign, RemAssign,
1109    AddAssign, SubAssign,
1110    ShlAssign, ShrAssign,
1111    AndAssign, XorAssign,
1112    OrAssign,
1113    Comma             // [C99 6.5.17] Comma operator.
1114  };
1115private:
1116  enum { LHS, RHS, END_EXPR };
1117  Stmt* SubExprs[END_EXPR];
1118  Opcode Opc;
1119  SourceLocation OpLoc;
1120public:
1121
1122  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
1123                 SourceLocation opLoc)
1124    : Expr(BinaryOperatorClass, ResTy,
1125           lhs->isTypeDependent() || rhs->isTypeDependent(),
1126           lhs->isValueDependent() || rhs->isValueDependent()),
1127      Opc(opc), OpLoc(opLoc) {
1128    SubExprs[LHS] = lhs;
1129    SubExprs[RHS] = rhs;
1130    assert(!isCompoundAssignmentOp() &&
1131           "Use ArithAssignBinaryOperator for compound assignments");
1132  }
1133
1134  SourceLocation getOperatorLoc() const { return OpLoc; }
1135  Opcode getOpcode() const { return Opc; }
1136  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1137  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1138  virtual SourceRange getSourceRange() const {
1139    return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
1140  }
1141
1142  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1143  /// corresponds to, e.g. "<<=".
1144  static const char *getOpcodeStr(Opcode Op);
1145
1146  /// predicates to categorize the respective opcodes.
1147  bool isMultiplicativeOp() const { return Opc >= Mul && Opc <= Rem; }
1148  bool isAdditiveOp() const { return Opc == Add || Opc == Sub; }
1149  bool isShiftOp() const { return Opc == Shl || Opc == Shr; }
1150  bool isBitwiseOp() const { return Opc >= And && Opc <= Or; }
1151
1152  static bool isRelationalOp(Opcode Opc) { return Opc >= LT && Opc <= GE; }
1153  bool isRelationalOp() const { return isRelationalOp(Opc); }
1154
1155  static bool isEqualityOp(Opcode Opc) { return Opc == EQ || Opc == NE; }
1156  bool isEqualityOp() const { return isEqualityOp(Opc); }
1157
1158  static bool isLogicalOp(Opcode Opc) { return Opc == LAnd || Opc == LOr; }
1159  bool isLogicalOp() const { return isLogicalOp(Opc); }
1160
1161  bool isAssignmentOp() const { return Opc >= Assign && Opc <= OrAssign; }
1162  bool isCompoundAssignmentOp() const { return Opc > Assign && Opc <= OrAssign;}
1163  bool isShiftAssignOp() const { return Opc == ShlAssign || Opc == ShrAssign; }
1164
1165  static bool classof(const Stmt *S) {
1166    return S->getStmtClass() == BinaryOperatorClass ||
1167           S->getStmtClass() == CompoundAssignOperatorClass;
1168  }
1169  static bool classof(const BinaryOperator *) { return true; }
1170
1171  // Iterators
1172  virtual child_iterator child_begin();
1173  virtual child_iterator child_end();
1174
1175  virtual void EmitImpl(llvm::Serializer& S) const;
1176  static BinaryOperator* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1177
1178protected:
1179  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
1180                 SourceLocation oploc, bool dead)
1181    : Expr(CompoundAssignOperatorClass, ResTy), Opc(opc), OpLoc(oploc) {
1182    SubExprs[LHS] = lhs;
1183    SubExprs[RHS] = rhs;
1184  }
1185};
1186
1187/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
1188/// track of the type the operation is performed in.  Due to the semantics of
1189/// these operators, the operands are promoted, the aritmetic performed, an
1190/// implicit conversion back to the result type done, then the assignment takes
1191/// place.  This captures the intermediate type which the computation is done
1192/// in.
1193class CompoundAssignOperator : public BinaryOperator {
1194  QualType ComputationType;
1195public:
1196  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc,
1197                         QualType ResType, QualType CompType,
1198                         SourceLocation OpLoc)
1199    : BinaryOperator(lhs, rhs, opc, ResType, OpLoc, true),
1200      ComputationType(CompType) {
1201    assert(isCompoundAssignmentOp() &&
1202           "Only should be used for compound assignments");
1203  }
1204
1205  QualType getComputationType() const { return ComputationType; }
1206
1207  static bool classof(const CompoundAssignOperator *) { return true; }
1208  static bool classof(const Stmt *S) {
1209    return S->getStmtClass() == CompoundAssignOperatorClass;
1210  }
1211
1212  virtual void EmitImpl(llvm::Serializer& S) const;
1213  static CompoundAssignOperator* CreateImpl(llvm::Deserializer& D,
1214                                            ASTContext& C);
1215};
1216
1217/// ConditionalOperator - The ?: operator.  Note that LHS may be null when the
1218/// GNU "missing LHS" extension is in use.
1219///
1220class ConditionalOperator : public Expr {
1221  enum { COND, LHS, RHS, END_EXPR };
1222  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
1223public:
1224  ConditionalOperator(Expr *cond, Expr *lhs, Expr *rhs, QualType t)
1225    : Expr(ConditionalOperatorClass, t,
1226           // FIXME: the type of the conditional operator doesn't
1227           // depend on the type of the conditional, but the standard
1228           // seems to imply that it could. File a bug!
1229           ((lhs && lhs->isTypeDependent()) || (rhs && rhs->isTypeDependent())),
1230           (cond->isValueDependent() ||
1231            (lhs && lhs->isValueDependent()) ||
1232            (rhs && rhs->isValueDependent()))) {
1233    SubExprs[COND] = cond;
1234    SubExprs[LHS] = lhs;
1235    SubExprs[RHS] = rhs;
1236  }
1237
1238  // getCond - Return the expression representing the condition for
1239  //  the ?: operator.
1240  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
1241
1242  // getTrueExpr - Return the subexpression representing the value of the ?:
1243  //  expression if the condition evaluates to true.  In most cases this value
1244  //  will be the same as getLHS() except a GCC extension allows the left
1245  //  subexpression to be omitted, and instead of the condition be returned.
1246  //  e.g: x ?: y is shorthand for x ? x : y, except that the expression "x"
1247  //  is only evaluated once.
1248  Expr *getTrueExpr() const {
1249    return cast<Expr>(SubExprs[LHS] ? SubExprs[LHS] : SubExprs[COND]);
1250  }
1251
1252  // getTrueExpr - Return the subexpression representing the value of the ?:
1253  // expression if the condition evaluates to false. This is the same as getRHS.
1254  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
1255
1256  Expr *getLHS() const { return cast_or_null<Expr>(SubExprs[LHS]); }
1257  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1258
1259  virtual SourceRange getSourceRange() const {
1260    return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
1261  }
1262  static bool classof(const Stmt *T) {
1263    return T->getStmtClass() == ConditionalOperatorClass;
1264  }
1265  static bool classof(const ConditionalOperator *) { return true; }
1266
1267  // Iterators
1268  virtual child_iterator child_begin();
1269  virtual child_iterator child_end();
1270
1271  virtual void EmitImpl(llvm::Serializer& S) const;
1272  static ConditionalOperator* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1273};
1274
1275/// AddrLabelExpr - The GNU address of label extension, representing &&label.
1276class AddrLabelExpr : public Expr {
1277  SourceLocation AmpAmpLoc, LabelLoc;
1278  LabelStmt *Label;
1279public:
1280  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelStmt *L,
1281                QualType t)
1282    : Expr(AddrLabelExprClass, t), AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
1283
1284  virtual SourceRange getSourceRange() const {
1285    return SourceRange(AmpAmpLoc, LabelLoc);
1286  }
1287
1288  LabelStmt *getLabel() const { return Label; }
1289
1290  static bool classof(const Stmt *T) {
1291    return T->getStmtClass() == AddrLabelExprClass;
1292  }
1293  static bool classof(const AddrLabelExpr *) { return true; }
1294
1295  // Iterators
1296  virtual child_iterator child_begin();
1297  virtual child_iterator child_end();
1298
1299  virtual void EmitImpl(llvm::Serializer& S) const;
1300  static AddrLabelExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1301};
1302
1303/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
1304/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
1305/// takes the value of the last subexpression.
1306class StmtExpr : public Expr {
1307  Stmt *SubStmt;
1308  SourceLocation LParenLoc, RParenLoc;
1309public:
1310  StmtExpr(CompoundStmt *substmt, QualType T,
1311           SourceLocation lp, SourceLocation rp) :
1312    Expr(StmtExprClass, T), SubStmt(substmt),  LParenLoc(lp), RParenLoc(rp) { }
1313
1314  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
1315  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
1316
1317  virtual SourceRange getSourceRange() const {
1318    return SourceRange(LParenLoc, RParenLoc);
1319  }
1320
1321  static bool classof(const Stmt *T) {
1322    return T->getStmtClass() == StmtExprClass;
1323  }
1324  static bool classof(const StmtExpr *) { return true; }
1325
1326  // Iterators
1327  virtual child_iterator child_begin();
1328  virtual child_iterator child_end();
1329
1330  virtual void EmitImpl(llvm::Serializer& S) const;
1331  static StmtExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1332};
1333
1334/// TypesCompatibleExpr - GNU builtin-in function __builtin_type_compatible_p.
1335/// This AST node represents a function that returns 1 if two *types* (not
1336/// expressions) are compatible. The result of this built-in function can be
1337/// used in integer constant expressions.
1338class TypesCompatibleExpr : public Expr {
1339  QualType Type1;
1340  QualType Type2;
1341  SourceLocation BuiltinLoc, RParenLoc;
1342public:
1343  TypesCompatibleExpr(QualType ReturnType, SourceLocation BLoc,
1344                      QualType t1, QualType t2, SourceLocation RP) :
1345    Expr(TypesCompatibleExprClass, ReturnType), Type1(t1), Type2(t2),
1346    BuiltinLoc(BLoc), RParenLoc(RP) {}
1347
1348  QualType getArgType1() const { return Type1; }
1349  QualType getArgType2() const { return Type2; }
1350
1351  virtual SourceRange getSourceRange() const {
1352    return SourceRange(BuiltinLoc, RParenLoc);
1353  }
1354  static bool classof(const Stmt *T) {
1355    return T->getStmtClass() == TypesCompatibleExprClass;
1356  }
1357  static bool classof(const TypesCompatibleExpr *) { return true; }
1358
1359  // Iterators
1360  virtual child_iterator child_begin();
1361  virtual child_iterator child_end();
1362
1363  virtual void EmitImpl(llvm::Serializer& S) const;
1364  static TypesCompatibleExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1365};
1366
1367/// ShuffleVectorExpr - clang-specific builtin-in function
1368/// __builtin_shufflevector.
1369/// This AST node represents a operator that does a constant
1370/// shuffle, similar to LLVM's shufflevector instruction. It takes
1371/// two vectors and a variable number of constant indices,
1372/// and returns the appropriately shuffled vector.
1373class ShuffleVectorExpr : public Expr {
1374  SourceLocation BuiltinLoc, RParenLoc;
1375
1376  // SubExprs - the list of values passed to the __builtin_shufflevector
1377  // function. The first two are vectors, and the rest are constant
1378  // indices.  The number of values in this list is always
1379  // 2+the number of indices in the vector type.
1380  Stmt **SubExprs;
1381  unsigned NumExprs;
1382
1383public:
1384  ShuffleVectorExpr(Expr **args, unsigned nexpr,
1385                    QualType Type, SourceLocation BLoc,
1386                    SourceLocation RP) :
1387    Expr(ShuffleVectorExprClass, Type), BuiltinLoc(BLoc),
1388    RParenLoc(RP), NumExprs(nexpr) {
1389
1390    SubExprs = new Stmt*[nexpr];
1391    for (unsigned i = 0; i < nexpr; i++)
1392      SubExprs[i] = args[i];
1393  }
1394
1395  virtual SourceRange getSourceRange() const {
1396    return SourceRange(BuiltinLoc, RParenLoc);
1397  }
1398  static bool classof(const Stmt *T) {
1399    return T->getStmtClass() == ShuffleVectorExprClass;
1400  }
1401  static bool classof(const ShuffleVectorExpr *) { return true; }
1402
1403  ~ShuffleVectorExpr() {
1404    delete [] SubExprs;
1405  }
1406
1407  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
1408  /// constant expression, the actual arguments passed in, and the function
1409  /// pointers.
1410  unsigned getNumSubExprs() const { return NumExprs; }
1411
1412  /// getExpr - Return the Expr at the specified index.
1413  Expr *getExpr(unsigned Index) {
1414    assert((Index < NumExprs) && "Arg access out of range!");
1415    return cast<Expr>(SubExprs[Index]);
1416  }
1417  const Expr *getExpr(unsigned Index) const {
1418    assert((Index < NumExprs) && "Arg access out of range!");
1419    return cast<Expr>(SubExprs[Index]);
1420  }
1421
1422  unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) {
1423    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
1424    return getExpr(N+2)->getIntegerConstantExprValue(Ctx).getZExtValue();
1425  }
1426
1427  // Iterators
1428  virtual child_iterator child_begin();
1429  virtual child_iterator child_end();
1430
1431  virtual void EmitImpl(llvm::Serializer& S) const;
1432  static ShuffleVectorExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1433};
1434
1435/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
1436/// This AST node is similar to the conditional operator (?:) in C, with
1437/// the following exceptions:
1438/// - the test expression must be a constant expression.
1439/// - the expression returned has it's type unaltered by promotion rules.
1440/// - does not evaluate the expression that was not chosen.
1441class ChooseExpr : public Expr {
1442  enum { COND, LHS, RHS, END_EXPR };
1443  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
1444  SourceLocation BuiltinLoc, RParenLoc;
1445public:
1446  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs, QualType t,
1447             SourceLocation RP)
1448    : Expr(ChooseExprClass, t),
1449      BuiltinLoc(BLoc), RParenLoc(RP) {
1450      SubExprs[COND] = cond;
1451      SubExprs[LHS] = lhs;
1452      SubExprs[RHS] = rhs;
1453    }
1454
1455  /// isConditionTrue - Return true if the condition is true.  This is always
1456  /// statically knowable for a well-formed choosexpr.
1457  bool isConditionTrue(ASTContext &C) const;
1458
1459  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
1460  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1461  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1462
1463  virtual SourceRange getSourceRange() const {
1464    return SourceRange(BuiltinLoc, RParenLoc);
1465  }
1466  static bool classof(const Stmt *T) {
1467    return T->getStmtClass() == ChooseExprClass;
1468  }
1469  static bool classof(const ChooseExpr *) { return true; }
1470
1471  // Iterators
1472  virtual child_iterator child_begin();
1473  virtual child_iterator child_end();
1474
1475  virtual void EmitImpl(llvm::Serializer& S) const;
1476  static ChooseExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1477};
1478
1479/// GNUNullExpr - Implements the GNU __null extension, which is a name
1480/// for a null pointer constant that has integral type (e.g., int or
1481/// long) and is the same size and alignment as a pointer. The __null
1482/// extension is typically only used by system headers, which define
1483/// NULL as __null in C++ rather than using 0 (which is an integer
1484/// that may not match the size of a pointer).
1485class GNUNullExpr : public Expr {
1486  /// TokenLoc - The location of the __null keyword.
1487  SourceLocation TokenLoc;
1488
1489public:
1490  GNUNullExpr(QualType Ty, SourceLocation Loc)
1491    : Expr(GNUNullExprClass, Ty), TokenLoc(Loc) { }
1492
1493  /// getTokenLocation - The location of the __null token.
1494  SourceLocation getTokenLocation() const { return TokenLoc; }
1495
1496  virtual SourceRange getSourceRange() const {
1497    return SourceRange(TokenLoc);
1498  }
1499  static bool classof(const Stmt *T) {
1500    return T->getStmtClass() == GNUNullExprClass;
1501  }
1502  static bool classof(const GNUNullExpr *) { return true; }
1503
1504  // Iterators
1505  virtual child_iterator child_begin();
1506  virtual child_iterator child_end();
1507
1508  virtual void EmitImpl(llvm::Serializer& S) const;
1509  static GNUNullExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1510};
1511
1512/// OverloadExpr - Clang builtin function __builtin_overload.
1513/// This AST node provides a way to overload functions in C.
1514///
1515/// The first argument is required to be a constant expression, for the number
1516/// of arguments passed to each candidate function.
1517///
1518/// The next N arguments, where N is the value of the constant expression,
1519/// are the values to be passed as arguments.
1520///
1521/// The rest of the arguments are values of pointer to function type, which
1522/// are the candidate functions for overloading.
1523///
1524/// The result is a equivalent to a CallExpr taking N arguments to the
1525/// candidate function whose parameter types match the types of the N arguments.
1526///
1527/// example: float Z = __builtin_overload(2, X, Y, modf, mod, modl);
1528/// If X and Y are long doubles, Z will assigned the result of modl(X, Y);
1529/// If X and Y are floats, Z will be assigned the result of modf(X, Y);
1530class OverloadExpr : public Expr {
1531  // SubExprs - the list of values passed to the __builtin_overload function.
1532  // SubExpr[0] is a constant expression
1533  // SubExpr[1-N] are the parameters to pass to the matching function call
1534  // SubExpr[N-...] are the candidate functions, of type pointer to function.
1535  Stmt **SubExprs;
1536
1537  // NumExprs - the size of the SubExprs array
1538  unsigned NumExprs;
1539
1540  // The index of the matching candidate function
1541  unsigned FnIndex;
1542
1543  SourceLocation BuiltinLoc;
1544  SourceLocation RParenLoc;
1545public:
1546  OverloadExpr(ASTContext& C, Expr **args, unsigned nexprs, unsigned idx,
1547               QualType t, SourceLocation bloc, SourceLocation rploc)
1548    : Expr(OverloadExprClass, t), NumExprs(nexprs), FnIndex(idx),
1549      BuiltinLoc(bloc), RParenLoc(rploc) {
1550    SubExprs = new (C) Stmt*[nexprs];
1551    for (unsigned i = 0; i != nexprs; ++i)
1552      SubExprs[i] = args[i];
1553  }
1554
1555  ~OverloadExpr() {}
1556
1557  void Destroy(ASTContext& C);
1558
1559  /// arg_begin - Return a pointer to the list of arguments that will be passed
1560  /// to the matching candidate function, skipping over the initial constant
1561  /// expression.
1562  typedef ConstExprIterator const_arg_iterator;
1563  const_arg_iterator arg_begin() const { return &SubExprs[0]+1; }
1564  const_arg_iterator arg_end(ASTContext& Ctx) const {
1565    return &SubExprs[0]+1+getNumArgs(Ctx);
1566  }
1567
1568  /// getNumArgs - Return the number of arguments to pass to the candidate
1569  /// functions.
1570  unsigned getNumArgs(ASTContext &Ctx) const {
1571    return getExpr(0)->getIntegerConstantExprValue(Ctx).getZExtValue();
1572  }
1573
1574  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
1575  /// constant expression, the actual arguments passed in, and the function
1576  /// pointers.
1577  unsigned getNumSubExprs() const { return NumExprs; }
1578
1579  /// getExpr - Return the Expr at the specified index.
1580  Expr *getExpr(unsigned Index) const {
1581    assert((Index < NumExprs) && "Arg access out of range!");
1582    return cast<Expr>(SubExprs[Index]);
1583  }
1584
1585  /// getFn - Return the matching candidate function for this OverloadExpr.
1586  Expr *getFn() const { return cast<Expr>(SubExprs[FnIndex]); }
1587
1588  virtual SourceRange getSourceRange() const {
1589    return SourceRange(BuiltinLoc, RParenLoc);
1590  }
1591  static bool classof(const Stmt *T) {
1592    return T->getStmtClass() == OverloadExprClass;
1593  }
1594  static bool classof(const OverloadExpr *) { return true; }
1595
1596  // Iterators
1597  virtual child_iterator child_begin();
1598  virtual child_iterator child_end();
1599
1600  virtual void EmitImpl(llvm::Serializer& S) const;
1601  static OverloadExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1602};
1603
1604/// VAArgExpr, used for the builtin function __builtin_va_start.
1605class VAArgExpr : public Expr {
1606  Stmt *Val;
1607  SourceLocation BuiltinLoc, RParenLoc;
1608public:
1609  VAArgExpr(SourceLocation BLoc, Expr* e, QualType t, SourceLocation RPLoc)
1610    : Expr(VAArgExprClass, t),
1611      Val(e),
1612      BuiltinLoc(BLoc),
1613      RParenLoc(RPLoc) { }
1614
1615  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1616  Expr *getSubExpr() { return cast<Expr>(Val); }
1617  virtual SourceRange getSourceRange() const {
1618    return SourceRange(BuiltinLoc, RParenLoc);
1619  }
1620  static bool classof(const Stmt *T) {
1621    return T->getStmtClass() == VAArgExprClass;
1622  }
1623  static bool classof(const VAArgExpr *) { return true; }
1624
1625  // Iterators
1626  virtual child_iterator child_begin();
1627  virtual child_iterator child_end();
1628
1629  virtual void EmitImpl(llvm::Serializer& S) const;
1630  static VAArgExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1631};
1632
1633/// @brief Describes an C or C++ initializer list.
1634///
1635/// InitListExpr describes an initializer list, which can be used to
1636/// initialize objects of different types, including
1637/// struct/class/union types, arrays, and vectors. For example:
1638///
1639/// @code
1640/// struct foo x = { 1, { 2, 3 } };
1641/// @endcode
1642///
1643/// Prior to semantic analysis, an initializer list will represent the
1644/// initializer list as written by the user, but will have the
1645/// placeholder type "void". This initializer list is called the
1646/// syntactic form of the initializer, and may contain C99 designated
1647/// initializers (represented as DesignatedInitExprs), initializations
1648/// of subobject members without explicit braces, and so on. Clients
1649/// interested in the original syntax of the initializer list should
1650/// use the syntactic form of the initializer list.
1651///
1652/// After semantic analysis, the initializer list will represent the
1653/// semantic form of the initializer, where the initializations of all
1654/// subobjects are made explicit with nested InitListExpr nodes and
1655/// C99 designators have been eliminated by placing the designated
1656/// initializations into the subobject they initialize. Additionally,
1657/// any "holes" in the initialization, where no initializer has been
1658/// specified for a particular subobject, will be replaced with
1659/// implicitly-generated ImplicitValueInitExpr expressions that
1660/// value-initialize the subobjects. Note, however, that the
1661/// initializer lists may still have fewer initializers than there are
1662/// elements to initialize within the object.
1663///
1664/// Given the semantic form of the initializer list, one can retrieve
1665/// the original syntactic form of that initializer list (if it
1666/// exists) using getSyntacticForm(). Since many initializer lists
1667/// have the same syntactic and semantic forms, getSyntacticForm() may
1668/// return NULL, indicating that the current initializer list also
1669/// serves as its syntactic form.
1670class InitListExpr : public Expr {
1671  std::vector<Stmt *> InitExprs;
1672  SourceLocation LBraceLoc, RBraceLoc;
1673
1674  /// Contains the initializer list that describes the syntactic form
1675  /// written in the source code.
1676  InitListExpr *SyntacticForm;
1677
1678  /// If this initializer list initializes a union, specifies which
1679  /// field within the union will be initialized.
1680  FieldDecl *UnionFieldInit;
1681
1682  /// Whether this initializer list originally had a GNU array-range
1683  /// designator in it. This is a temporary marker used by CodeGen.
1684  bool HadArrayRangeDesignator;
1685
1686public:
1687  InitListExpr(SourceLocation lbraceloc, Expr **initexprs, unsigned numinits,
1688               SourceLocation rbraceloc);
1689
1690  unsigned getNumInits() const { return InitExprs.size(); }
1691
1692  const Expr* getInit(unsigned Init) const {
1693    assert(Init < getNumInits() && "Initializer access out of range!");
1694    return cast_or_null<Expr>(InitExprs[Init]);
1695  }
1696
1697  Expr* getInit(unsigned Init) {
1698    assert(Init < getNumInits() && "Initializer access out of range!");
1699    return cast_or_null<Expr>(InitExprs[Init]);
1700  }
1701
1702  void setInit(unsigned Init, Expr *expr) {
1703    assert(Init < getNumInits() && "Initializer access out of range!");
1704    InitExprs[Init] = expr;
1705  }
1706
1707  /// @brief Specify the number of initializers
1708  ///
1709  /// If there are more than @p NumInits initializers, the remaining
1710  /// initializers will be destroyed. If there are fewer than @p
1711  /// NumInits initializers, NULL expressions will be added for the
1712  /// unknown initializers.
1713  void resizeInits(ASTContext &Context, unsigned NumInits);
1714
1715  /// @brief Updates the initializer at index @p Init with the new
1716  /// expression @p expr, and returns the old expression at that
1717  /// location.
1718  ///
1719  /// When @p Init is out of range for this initializer list, the
1720  /// initializer list will be extended with NULL expressions to
1721  /// accomodate the new entry.
1722  Expr *updateInit(unsigned Init, Expr *expr);
1723
1724  /// \brief If this initializes a union, specifies which field in the
1725  /// union to initialize.
1726  ///
1727  /// Typically, this field is the first named field within the
1728  /// union. However, a designated initializer can specify the
1729  /// initialization of a different field within the union.
1730  FieldDecl *getInitializedFieldInUnion() { return UnionFieldInit; }
1731  void setInitializedFieldInUnion(FieldDecl *FD) { UnionFieldInit = FD; }
1732
1733  // Explicit InitListExpr's originate from source code (and have valid source
1734  // locations). Implicit InitListExpr's are created by the semantic analyzer.
1735  bool isExplicit() {
1736    return LBraceLoc.isValid() && RBraceLoc.isValid();
1737  }
1738
1739  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
1740
1741  /// @brief Retrieve the initializer list that describes the
1742  /// syntactic form of the initializer.
1743  ///
1744  ///
1745  InitListExpr *getSyntacticForm() const { return SyntacticForm; }
1746  void setSyntacticForm(InitListExpr *Init) { SyntacticForm = Init; }
1747
1748  bool hadArrayRangeDesignator() const { return HadArrayRangeDesignator; }
1749  void sawArrayRangeDesignator() {
1750    HadArrayRangeDesignator = true;
1751  }
1752
1753  virtual SourceRange getSourceRange() const {
1754    return SourceRange(LBraceLoc, RBraceLoc);
1755  }
1756  static bool classof(const Stmt *T) {
1757    return T->getStmtClass() == InitListExprClass;
1758  }
1759  static bool classof(const InitListExpr *) { return true; }
1760
1761  // Iterators
1762  virtual child_iterator child_begin();
1763  virtual child_iterator child_end();
1764
1765  typedef std::vector<Stmt *>::iterator iterator;
1766  typedef std::vector<Stmt *>::reverse_iterator reverse_iterator;
1767
1768  iterator begin() { return InitExprs.begin(); }
1769  iterator end() { return InitExprs.end(); }
1770  reverse_iterator rbegin() { return InitExprs.rbegin(); }
1771  reverse_iterator rend() { return InitExprs.rend(); }
1772
1773  // Serailization.
1774  virtual void EmitImpl(llvm::Serializer& S) const;
1775  static InitListExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1776
1777private:
1778  // Used by serializer.
1779  InitListExpr() : Expr(InitListExprClass, QualType()) {}
1780};
1781
1782/// @brief Represents a C99 designated initializer expression.
1783///
1784/// A designated initializer expression (C99 6.7.8) contains one or
1785/// more designators (which can be field designators, array
1786/// designators, or GNU array-range designators) followed by an
1787/// expression that initializes the field or element(s) that the
1788/// designators refer to. For example, given:
1789///
1790/// @code
1791/// struct point {
1792///   double x;
1793///   double y;
1794/// };
1795/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
1796/// @endcode
1797///
1798/// The InitListExpr contains three DesignatedInitExprs, the first of
1799/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
1800/// designators, one array designator for @c [2] followed by one field
1801/// designator for @c .y. The initalization expression will be 1.0.
1802class DesignatedInitExpr : public Expr {
1803  /// The location of the '=' or ':' prior to the actual initializer
1804  /// expression.
1805  SourceLocation EqualOrColonLoc;
1806
1807  /// Whether this designated initializer used the GNU deprecated ':'
1808  /// syntax rather than the C99 '=' syntax.
1809  bool UsesColonSyntax : 1;
1810
1811  /// The number of designators in this initializer expression.
1812  unsigned NumDesignators : 15;
1813
1814  /// The number of subexpressions of this initializer expression,
1815  /// which contains both the initializer and any additional
1816  /// expressions used by array and array-range designators.
1817  unsigned NumSubExprs : 16;
1818
1819  DesignatedInitExpr(QualType Ty, unsigned NumDesignators,
1820                     SourceLocation EqualOrColonLoc, bool UsesColonSyntax,
1821                     unsigned NumSubExprs)
1822    : Expr(DesignatedInitExprClass, Ty),
1823      EqualOrColonLoc(EqualOrColonLoc), UsesColonSyntax(UsesColonSyntax),
1824      NumDesignators(NumDesignators), NumSubExprs(NumSubExprs) { }
1825
1826public:
1827  /// A field designator, e.g., ".x".
1828  struct FieldDesignator {
1829    /// Refers to the field that is being initialized. The low bit
1830    /// of this field determines whether this is actually a pointer
1831    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
1832    /// initially constructed, a field designator will store an
1833    /// IdentifierInfo*. After semantic analysis has resolved that
1834    /// name, the field designator will instead store a FieldDecl*.
1835    uintptr_t NameOrField;
1836
1837    /// The location of the '.' in the designated initializer.
1838    unsigned DotLoc;
1839
1840    /// The location of the field name in the designated initializer.
1841    unsigned FieldLoc;
1842  };
1843
1844  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
1845  struct ArrayOrRangeDesignator {
1846    /// Location of the first index expression within the designated
1847    /// initializer expression's list of subexpressions.
1848    unsigned Index;
1849    /// The location of the '[' starting the array range designator.
1850    unsigned LBracketLoc;
1851    /// The location of the ellipsis separating the start and end
1852    /// indices. Only valid for GNU array-range designators.
1853    unsigned EllipsisLoc;
1854    /// The location of the ']' terminating the array range designator.
1855    unsigned RBracketLoc;
1856  };
1857
1858  /// @brief Represents a single C99 designator.
1859  ///
1860  /// @todo This class is infuriatingly similar to clang::Designator,
1861  /// but minor differences (storing indices vs. storing pointers)
1862  /// keep us from reusing it. Try harder, later, to rectify these
1863  /// differences.
1864  class Designator {
1865    /// @brief The kind of designator this describes.
1866    enum {
1867      FieldDesignator,
1868      ArrayDesignator,
1869      ArrayRangeDesignator
1870    } Kind;
1871
1872    union {
1873      /// A field designator, e.g., ".x".
1874      struct FieldDesignator Field;
1875      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
1876      struct ArrayOrRangeDesignator ArrayOrRange;
1877    };
1878    friend class DesignatedInitExpr;
1879
1880  public:
1881    /// @brief Initializes a field designator.
1882    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
1883               SourceLocation FieldLoc)
1884      : Kind(FieldDesignator) {
1885      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
1886      Field.DotLoc = DotLoc.getRawEncoding();
1887      Field.FieldLoc = FieldLoc.getRawEncoding();
1888    }
1889
1890    /// @brief Initializes an array designator.
1891    Designator(unsigned Index, SourceLocation LBracketLoc,
1892               SourceLocation RBracketLoc)
1893      : Kind(ArrayDesignator) {
1894      ArrayOrRange.Index = Index;
1895      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
1896      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
1897      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
1898    }
1899
1900    /// @brief Initializes a GNU array-range designator.
1901    Designator(unsigned Index, SourceLocation LBracketLoc,
1902               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
1903      : Kind(ArrayRangeDesignator) {
1904      ArrayOrRange.Index = Index;
1905      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
1906      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
1907      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
1908    }
1909
1910    bool isFieldDesignator() const { return Kind == FieldDesignator; }
1911    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
1912    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
1913
1914    IdentifierInfo * getFieldName();
1915
1916    FieldDecl *getField() {
1917      assert(Kind == FieldDesignator && "Only valid on a field designator");
1918      if (Field.NameOrField & 0x01)
1919        return 0;
1920      else
1921        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
1922    }
1923
1924    void setField(FieldDecl *FD) {
1925      assert(Kind == FieldDesignator && "Only valid on a field designator");
1926      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
1927    }
1928
1929    SourceLocation getDotLoc() const {
1930      assert(Kind == FieldDesignator && "Only valid on a field designator");
1931      return SourceLocation::getFromRawEncoding(Field.DotLoc);
1932    }
1933
1934    SourceLocation getFieldLoc() const {
1935      assert(Kind == FieldDesignator && "Only valid on a field designator");
1936      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
1937    }
1938
1939    SourceLocation getLBracketLoc() const {
1940      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
1941             "Only valid on an array or array-range designator");
1942      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
1943    }
1944
1945    SourceLocation getRBracketLoc() const {
1946      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
1947             "Only valid on an array or array-range designator");
1948      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
1949    }
1950
1951    SourceLocation getEllipsisLoc() const {
1952      assert(Kind == ArrayRangeDesignator &&
1953             "Only valid on an array-range designator");
1954      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
1955    }
1956
1957    SourceLocation getStartLocation() const {
1958      if (Kind == FieldDesignator)
1959        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
1960      else
1961        return getLBracketLoc();
1962    }
1963  };
1964
1965  static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators,
1966                                    unsigned NumDesignators,
1967                                    Expr **IndexExprs, unsigned NumIndexExprs,
1968                                    SourceLocation EqualOrColonLoc,
1969                                    bool UsesColonSyntax, Expr *Init);
1970
1971  /// @brief Returns the number of designators in this initializer.
1972  unsigned size() const { return NumDesignators; }
1973
1974  // Iterator access to the designators.
1975  typedef Designator* designators_iterator;
1976  designators_iterator designators_begin();
1977  designators_iterator designators_end();
1978
1979  Expr *getArrayIndex(const Designator& D);
1980  Expr *getArrayRangeStart(const Designator& D);
1981  Expr *getArrayRangeEnd(const Designator& D);
1982
1983  /// @brief Retrieve the location of the '=' that precedes the
1984  /// initializer value itself, if present.
1985  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
1986
1987  /// @brief Determines whether this designated initializer used the
1988  /// GNU 'fieldname:' syntax or the C99 '=' syntax.
1989  bool usesColonSyntax() const { return UsesColonSyntax; }
1990
1991  /// @brief Retrieve the initializer value.
1992  Expr *getInit() const {
1993    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
1994  }
1995
1996  void setInit(Expr *init) {
1997    *child_begin() = init;
1998  }
1999
2000  virtual SourceRange getSourceRange() const;
2001
2002  static bool classof(const Stmt *T) {
2003    return T->getStmtClass() == DesignatedInitExprClass;
2004  }
2005  static bool classof(const DesignatedInitExpr *) { return true; }
2006
2007  // Iterators
2008  virtual child_iterator child_begin();
2009  virtual child_iterator child_end();
2010};
2011
2012/// \brief Represents an implicitly-generated value initialization of
2013/// an object of a given type.
2014///
2015/// Implicit value initializations occur within semantic initializer
2016/// list expressions (InitListExpr) as placeholders for subobject
2017/// initializations not explicitly specified by the user.
2018///
2019/// \see InitListExpr
2020class ImplicitValueInitExpr : public Expr {
2021public:
2022  explicit ImplicitValueInitExpr(QualType ty)
2023    : Expr(ImplicitValueInitExprClass, ty) { }
2024
2025  static bool classof(const Stmt *T) {
2026    return T->getStmtClass() == ImplicitValueInitExprClass;
2027  }
2028  static bool classof(const ImplicitValueInitExpr *) { return true; }
2029
2030  virtual SourceRange getSourceRange() const {
2031    return SourceRange();
2032  }
2033
2034  // Iterators
2035  virtual child_iterator child_begin();
2036  virtual child_iterator child_end();
2037};
2038
2039//===----------------------------------------------------------------------===//
2040// Clang Extensions
2041//===----------------------------------------------------------------------===//
2042
2043
2044/// ExtVectorElementExpr - This represents access to specific elements of a
2045/// vector, and may occur on the left hand side or right hand side.  For example
2046/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
2047///
2048class ExtVectorElementExpr : public Expr {
2049  Stmt *Base;
2050  IdentifierInfo &Accessor;
2051  SourceLocation AccessorLoc;
2052public:
2053  ExtVectorElementExpr(QualType ty, Expr *base, IdentifierInfo &accessor,
2054                       SourceLocation loc)
2055    : Expr(ExtVectorElementExprClass, ty),
2056      Base(base), Accessor(accessor), AccessorLoc(loc) {}
2057
2058  const Expr *getBase() const { return cast<Expr>(Base); }
2059  Expr *getBase() { return cast<Expr>(Base); }
2060
2061  IdentifierInfo &getAccessor() const { return Accessor; }
2062
2063  /// getNumElements - Get the number of components being selected.
2064  unsigned getNumElements() const;
2065
2066  /// containsDuplicateElements - Return true if any element access is
2067  /// repeated.
2068  bool containsDuplicateElements() const;
2069
2070  /// getEncodedElementAccess - Encode the elements accessed into an llvm
2071  /// aggregate Constant of ConstantInt(s).
2072  void getEncodedElementAccess(llvm::SmallVectorImpl<unsigned> &Elts) const;
2073
2074  virtual SourceRange getSourceRange() const {
2075    return SourceRange(getBase()->getLocStart(), AccessorLoc);
2076  }
2077
2078  static bool classof(const Stmt *T) {
2079    return T->getStmtClass() == ExtVectorElementExprClass;
2080  }
2081  static bool classof(const ExtVectorElementExpr *) { return true; }
2082
2083  // Iterators
2084  virtual child_iterator child_begin();
2085  virtual child_iterator child_end();
2086
2087  virtual void EmitImpl(llvm::Serializer& S) const;
2088  static ExtVectorElementExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
2089};
2090
2091
2092/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
2093/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
2094class BlockExpr : public Expr {
2095protected:
2096  BlockDecl *TheBlock;
2097public:
2098  BlockExpr(BlockDecl *BD, QualType ty) : Expr(BlockExprClass, ty),
2099            TheBlock(BD) {}
2100
2101  const BlockDecl *getBlockDecl() const { return TheBlock; }
2102  BlockDecl *getBlockDecl() { return TheBlock; }
2103
2104  // Convenience functions for probing the underlying BlockDecl.
2105  SourceLocation getCaretLocation() const;
2106  const Stmt *getBody() const;
2107  Stmt *getBody();
2108
2109  virtual SourceRange getSourceRange() const {
2110    return SourceRange(getCaretLocation(), getBody()->getLocEnd());
2111  }
2112
2113  /// getFunctionType - Return the underlying function type for this block.
2114  const FunctionType *getFunctionType() const;
2115
2116  static bool classof(const Stmt *T) {
2117    return T->getStmtClass() == BlockExprClass;
2118  }
2119  static bool classof(const BlockExpr *) { return true; }
2120
2121  // Iterators
2122  virtual child_iterator child_begin();
2123  virtual child_iterator child_end();
2124
2125  virtual void EmitImpl(llvm::Serializer& S) const;
2126  static BlockExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
2127};
2128
2129/// BlockDeclRefExpr - A reference to a declared variable, function,
2130/// enum, etc.
2131class BlockDeclRefExpr : public Expr {
2132  ValueDecl *D;
2133  SourceLocation Loc;
2134  bool IsByRef;
2135public:
2136  BlockDeclRefExpr(ValueDecl *d, QualType t, SourceLocation l, bool ByRef) :
2137       Expr(BlockDeclRefExprClass, t), D(d), Loc(l), IsByRef(ByRef) {}
2138
2139  ValueDecl *getDecl() { return D; }
2140  const ValueDecl *getDecl() const { return D; }
2141  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
2142
2143  bool isByRef() const { return IsByRef; }
2144
2145  static bool classof(const Stmt *T) {
2146    return T->getStmtClass() == BlockDeclRefExprClass;
2147  }
2148  static bool classof(const BlockDeclRefExpr *) { return true; }
2149
2150  // Iterators
2151  virtual child_iterator child_begin();
2152  virtual child_iterator child_end();
2153
2154  virtual void EmitImpl(llvm::Serializer& S) const;
2155  static BlockDeclRefExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
2156};
2157
2158}  // end namespace clang
2159
2160#endif
2161