Expr.h revision dd1f29b6d686899bfd033f26e16cb1621e5549e8
1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/Stmt.h"
19#include "clang/AST/Type.h"
20#include "clang/AST/DeclAccessPair.h"
21#include "clang/AST/OperationKinds.h"
22#include "clang/AST/ASTVector.h"
23#include "clang/AST/TemplateBase.h"
24#include "clang/AST/UsuallyTinyPtrVector.h"
25#include "clang/Basic/TypeTraits.h"
26#include "llvm/ADT/APSInt.h"
27#include "llvm/ADT/APFloat.h"
28#include "llvm/ADT/SmallVector.h"
29#include "llvm/ADT/StringRef.h"
30#include <cctype>
31
32namespace clang {
33  class ASTContext;
34  class APValue;
35  class Decl;
36  class IdentifierInfo;
37  class ParmVarDecl;
38  class NamedDecl;
39  class ValueDecl;
40  class BlockDecl;
41  class CXXBaseSpecifier;
42  class CXXOperatorCallExpr;
43  class CXXMemberCallExpr;
44  class ObjCPropertyRefExpr;
45  class OpaqueValueExpr;
46
47/// \brief A simple array of base specifiers.
48typedef SmallVector<CXXBaseSpecifier*, 4> CXXCastPath;
49
50/// Expr - This represents one expression.  Note that Expr's are subclasses of
51/// Stmt.  This allows an expression to be transparently used any place a Stmt
52/// is required.
53///
54class Expr : public Stmt {
55  QualType TR;
56
57protected:
58  Expr(StmtClass SC, QualType T, ExprValueKind VK, ExprObjectKind OK,
59       bool TD, bool VD, bool ID, bool ContainsUnexpandedParameterPack)
60    : Stmt(SC)
61  {
62    ExprBits.TypeDependent = TD;
63    ExprBits.ValueDependent = VD;
64    ExprBits.InstantiationDependent = ID;
65    ExprBits.ValueKind = VK;
66    ExprBits.ObjectKind = OK;
67    ExprBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
68    setType(T);
69  }
70
71  /// \brief Construct an empty expression.
72  explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
73
74public:
75  QualType getType() const { return TR; }
76  void setType(QualType t) {
77    // In C++, the type of an expression is always adjusted so that it
78    // will not have reference type an expression will never have
79    // reference type (C++ [expr]p6). Use
80    // QualType::getNonReferenceType() to retrieve the non-reference
81    // type. Additionally, inspect Expr::isLvalue to determine whether
82    // an expression that is adjusted in this manner should be
83    // considered an lvalue.
84    assert((t.isNull() || !t->isReferenceType()) &&
85           "Expressions can't have reference type");
86
87    TR = t;
88  }
89
90  /// isValueDependent - Determines whether this expression is
91  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
92  /// array bound of "Chars" in the following example is
93  /// value-dependent.
94  /// @code
95  /// template<int Size, char (&Chars)[Size]> struct meta_string;
96  /// @endcode
97  bool isValueDependent() const { return ExprBits.ValueDependent; }
98
99  /// \brief Set whether this expression is value-dependent or not.
100  void setValueDependent(bool VD) {
101    ExprBits.ValueDependent = VD;
102    if (VD)
103      ExprBits.InstantiationDependent = true;
104  }
105
106  /// isTypeDependent - Determines whether this expression is
107  /// type-dependent (C++ [temp.dep.expr]), which means that its type
108  /// could change from one template instantiation to the next. For
109  /// example, the expressions "x" and "x + y" are type-dependent in
110  /// the following code, but "y" is not type-dependent:
111  /// @code
112  /// template<typename T>
113  /// void add(T x, int y) {
114  ///   x + y;
115  /// }
116  /// @endcode
117  bool isTypeDependent() const { return ExprBits.TypeDependent; }
118
119  /// \brief Set whether this expression is type-dependent or not.
120  void setTypeDependent(bool TD) {
121    ExprBits.TypeDependent = TD;
122    if (TD)
123      ExprBits.InstantiationDependent = true;
124  }
125
126  /// \brief Whether this expression is instantiation-dependent, meaning that
127  /// it depends in some way on a template parameter, even if neither its type
128  /// nor (constant) value can change due to the template instantiation.
129  ///
130  /// In the following example, the expression \c sizeof(sizeof(T() + T())) is
131  /// instantiation-dependent (since it involves a template parameter \c T), but
132  /// is neither type- nor value-dependent, since the type of the inner
133  /// \c sizeof is known (\c std::size_t) and therefore the size of the outer
134  /// \c sizeof is known.
135  ///
136  /// \code
137  /// template<typename T>
138  /// void f(T x, T y) {
139  ///   sizeof(sizeof(T() + T());
140  /// }
141  /// \endcode
142  ///
143  bool isInstantiationDependent() const {
144    return ExprBits.InstantiationDependent;
145  }
146
147  /// \brief Set whether this expression is instantiation-dependent or not.
148  void setInstantiationDependent(bool ID) {
149    ExprBits.InstantiationDependent = ID;
150  }
151
152  /// \brief Whether this expression contains an unexpanded parameter
153  /// pack (for C++0x variadic templates).
154  ///
155  /// Given the following function template:
156  ///
157  /// \code
158  /// template<typename F, typename ...Types>
159  /// void forward(const F &f, Types &&...args) {
160  ///   f(static_cast<Types&&>(args)...);
161  /// }
162  /// \endcode
163  ///
164  /// The expressions \c args and \c static_cast<Types&&>(args) both
165  /// contain parameter packs.
166  bool containsUnexpandedParameterPack() const {
167    return ExprBits.ContainsUnexpandedParameterPack;
168  }
169
170  /// \brief Set the bit that describes whether this expression
171  /// contains an unexpanded parameter pack.
172  void setContainsUnexpandedParameterPack(bool PP = true) {
173    ExprBits.ContainsUnexpandedParameterPack = PP;
174  }
175
176  /// getExprLoc - Return the preferred location for the arrow when diagnosing
177  /// a problem with a generic expression.
178  SourceLocation getExprLoc() const;
179
180  /// isUnusedResultAWarning - Return true if this immediate expression should
181  /// be warned about if the result is unused.  If so, fill in Loc and Ranges
182  /// with location to warn on and the source range[s] to report with the
183  /// warning.
184  bool isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
185                              SourceRange &R2, ASTContext &Ctx) const;
186
187  /// isLValue - True if this expression is an "l-value" according to
188  /// the rules of the current language.  C and C++ give somewhat
189  /// different rules for this concept, but in general, the result of
190  /// an l-value expression identifies a specific object whereas the
191  /// result of an r-value expression is a value detached from any
192  /// specific storage.
193  ///
194  /// C++0x divides the concept of "r-value" into pure r-values
195  /// ("pr-values") and so-called expiring values ("x-values"), which
196  /// identify specific objects that can be safely cannibalized for
197  /// their resources.  This is an unfortunate abuse of terminology on
198  /// the part of the C++ committee.  In Clang, when we say "r-value",
199  /// we generally mean a pr-value.
200  bool isLValue() const { return getValueKind() == VK_LValue; }
201  bool isRValue() const { return getValueKind() == VK_RValue; }
202  bool isXValue() const { return getValueKind() == VK_XValue; }
203  bool isGLValue() const { return getValueKind() != VK_RValue; }
204
205  enum LValueClassification {
206    LV_Valid,
207    LV_NotObjectType,
208    LV_IncompleteVoidType,
209    LV_DuplicateVectorComponents,
210    LV_InvalidExpression,
211    LV_InvalidMessageExpression,
212    LV_MemberFunction,
213    LV_SubObjCPropertySetting,
214    LV_ClassTemporary
215  };
216  /// Reasons why an expression might not be an l-value.
217  LValueClassification ClassifyLValue(ASTContext &Ctx) const;
218
219  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
220  /// does not have an incomplete type, does not have a const-qualified type,
221  /// and if it is a structure or union, does not have any member (including,
222  /// recursively, any member or element of all contained aggregates or unions)
223  /// with a const-qualified type.
224  ///
225  /// \param Loc [in] [out] - A source location which *may* be filled
226  /// in with the location of the expression making this a
227  /// non-modifiable lvalue, if specified.
228  enum isModifiableLvalueResult {
229    MLV_Valid,
230    MLV_NotObjectType,
231    MLV_IncompleteVoidType,
232    MLV_DuplicateVectorComponents,
233    MLV_InvalidExpression,
234    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
235    MLV_IncompleteType,
236    MLV_ConstQualified,
237    MLV_ArrayType,
238    MLV_NotBlockQualified,
239    MLV_ReadonlyProperty,
240    MLV_NoSetterProperty,
241    MLV_MemberFunction,
242    MLV_SubObjCPropertySetting,
243    MLV_InvalidMessageExpression,
244    MLV_ClassTemporary
245  };
246  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx,
247                                              SourceLocation *Loc = 0) const;
248
249  /// \brief The return type of classify(). Represents the C++0x expression
250  ///        taxonomy.
251  class Classification {
252  public:
253    /// \brief The various classification results. Most of these mean prvalue.
254    enum Kinds {
255      CL_LValue,
256      CL_XValue,
257      CL_Function, // Functions cannot be lvalues in C.
258      CL_Void, // Void cannot be an lvalue in C.
259      CL_AddressableVoid, // Void expression whose address can be taken in C.
260      CL_DuplicateVectorComponents, // A vector shuffle with dupes.
261      CL_MemberFunction, // An expression referring to a member function
262      CL_SubObjCPropertySetting,
263      CL_ClassTemporary, // A prvalue of class type
264      CL_ObjCMessageRValue, // ObjC message is an rvalue
265      CL_PRValue // A prvalue for any other reason, of any other type
266    };
267    /// \brief The results of modification testing.
268    enum ModifiableType {
269      CM_Untested, // testModifiable was false.
270      CM_Modifiable,
271      CM_RValue, // Not modifiable because it's an rvalue
272      CM_Function, // Not modifiable because it's a function; C++ only
273      CM_LValueCast, // Same as CM_RValue, but indicates GCC cast-as-lvalue ext
274      CM_NotBlockQualified, // Not captured in the closure
275      CM_NoSetterProperty,// Implicit assignment to ObjC property without setter
276      CM_ConstQualified,
277      CM_ArrayType,
278      CM_IncompleteType
279    };
280
281  private:
282    friend class Expr;
283
284    unsigned short Kind;
285    unsigned short Modifiable;
286
287    explicit Classification(Kinds k, ModifiableType m)
288      : Kind(k), Modifiable(m)
289    {}
290
291  public:
292    Classification() {}
293
294    Kinds getKind() const { return static_cast<Kinds>(Kind); }
295    ModifiableType getModifiable() const {
296      assert(Modifiable != CM_Untested && "Did not test for modifiability.");
297      return static_cast<ModifiableType>(Modifiable);
298    }
299    bool isLValue() const { return Kind == CL_LValue; }
300    bool isXValue() const { return Kind == CL_XValue; }
301    bool isGLValue() const { return Kind <= CL_XValue; }
302    bool isPRValue() const { return Kind >= CL_Function; }
303    bool isRValue() const { return Kind >= CL_XValue; }
304    bool isModifiable() const { return getModifiable() == CM_Modifiable; }
305
306    /// \brief Create a simple, modifiably lvalue
307    static Classification makeSimpleLValue() {
308      return Classification(CL_LValue, CM_Modifiable);
309    }
310
311  };
312  /// \brief Classify - Classify this expression according to the C++0x
313  ///        expression taxonomy.
314  ///
315  /// C++0x defines ([basic.lval]) a new taxonomy of expressions to replace the
316  /// old lvalue vs rvalue. This function determines the type of expression this
317  /// is. There are three expression types:
318  /// - lvalues are classical lvalues as in C++03.
319  /// - prvalues are equivalent to rvalues in C++03.
320  /// - xvalues are expressions yielding unnamed rvalue references, e.g. a
321  ///   function returning an rvalue reference.
322  /// lvalues and xvalues are collectively referred to as glvalues, while
323  /// prvalues and xvalues together form rvalues.
324  Classification Classify(ASTContext &Ctx) const {
325    return ClassifyImpl(Ctx, 0);
326  }
327
328  /// \brief ClassifyModifiable - Classify this expression according to the
329  ///        C++0x expression taxonomy, and see if it is valid on the left side
330  ///        of an assignment.
331  ///
332  /// This function extends classify in that it also tests whether the
333  /// expression is modifiable (C99 6.3.2.1p1).
334  /// \param Loc A source location that might be filled with a relevant location
335  ///            if the expression is not modifiable.
336  Classification ClassifyModifiable(ASTContext &Ctx, SourceLocation &Loc) const{
337    return ClassifyImpl(Ctx, &Loc);
338  }
339
340  /// getValueKindForType - Given a formal return or parameter type,
341  /// give its value kind.
342  static ExprValueKind getValueKindForType(QualType T) {
343    if (const ReferenceType *RT = T->getAs<ReferenceType>())
344      return (isa<LValueReferenceType>(RT)
345                ? VK_LValue
346                : (RT->getPointeeType()->isFunctionType()
347                     ? VK_LValue : VK_XValue));
348    return VK_RValue;
349  }
350
351  /// getValueKind - The value kind that this expression produces.
352  ExprValueKind getValueKind() const {
353    return static_cast<ExprValueKind>(ExprBits.ValueKind);
354  }
355
356  /// getObjectKind - The object kind that this expression produces.
357  /// Object kinds are meaningful only for expressions that yield an
358  /// l-value or x-value.
359  ExprObjectKind getObjectKind() const {
360    return static_cast<ExprObjectKind>(ExprBits.ObjectKind);
361  }
362
363  bool isOrdinaryOrBitFieldObject() const {
364    ExprObjectKind OK = getObjectKind();
365    return (OK == OK_Ordinary || OK == OK_BitField);
366  }
367
368  /// setValueKind - Set the value kind produced by this expression.
369  void setValueKind(ExprValueKind Cat) { ExprBits.ValueKind = Cat; }
370
371  /// setObjectKind - Set the object kind produced by this expression.
372  void setObjectKind(ExprObjectKind Cat) { ExprBits.ObjectKind = Cat; }
373
374private:
375  Classification ClassifyImpl(ASTContext &Ctx, SourceLocation *Loc) const;
376
377public:
378
379  /// \brief If this expression refers to a bit-field, retrieve the
380  /// declaration of that bit-field.
381  FieldDecl *getBitField();
382
383  const FieldDecl *getBitField() const {
384    return const_cast<Expr*>(this)->getBitField();
385  }
386
387  /// \brief If this expression is an l-value for an Objective C
388  /// property, find the underlying property reference expression.
389  const ObjCPropertyRefExpr *getObjCProperty() const;
390
391  /// \brief Returns whether this expression refers to a vector element.
392  bool refersToVectorElement() const;
393
394  /// \brief Returns whether this expression has a placeholder type.
395  bool hasPlaceholderType() const {
396    return getType()->isPlaceholderType();
397  }
398
399  /// \brief Returns whether this expression has a specific placeholder type.
400  bool hasPlaceholderType(BuiltinType::Kind K) const {
401    assert(BuiltinType::isPlaceholderTypeKind(K));
402    if (const BuiltinType *BT = dyn_cast<BuiltinType>(getType()))
403      return BT->getKind() == K;
404    return false;
405  }
406
407  /// isKnownToHaveBooleanValue - Return true if this is an integer expression
408  /// that is known to return 0 or 1.  This happens for _Bool/bool expressions
409  /// but also int expressions which are produced by things like comparisons in
410  /// C.
411  bool isKnownToHaveBooleanValue() const;
412
413  /// isIntegerConstantExpr - Return true if this expression is a valid integer
414  /// constant expression, and, if so, return its value in Result.  If not a
415  /// valid i-c-e, return false and fill in Loc (if specified) with the location
416  /// of the invalid expression.
417  bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
418                             SourceLocation *Loc = 0,
419                             bool isEvaluated = true) const;
420  bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const;
421
422  /// isConstantInitializer - Returns true if this expression can be emitted to
423  /// IR as a constant, and thus can be used as a constant initializer in C.
424  bool isConstantInitializer(ASTContext &Ctx, bool ForRef) const;
425
426  /// EvalStatus is a struct with detailed info about an evaluation in progress.
427  struct EvalStatus {
428    /// HasSideEffects - Whether the evaluated expression has side effects.
429    /// For example, (f() && 0) can be folded, but it still has side effects.
430    bool HasSideEffects;
431
432    /// Diag - If this is non-null, it will be filled in with a stack of notes
433    /// indicating why evaluation failed (or why it failed to produce a constant
434    /// expression).
435    /// If the expression is unfoldable, the notes will indicate why it's not
436    /// foldable. If the expression is foldable, but not a constant expression,
437    /// the notes will describes why it isn't a constant expression. If the
438    /// expression *is* a constant expression, no notes will be produced.
439    llvm::SmallVectorImpl<PartialDiagnosticAt> *Diag;
440
441    EvalStatus() : HasSideEffects(false), Diag(0) {}
442
443    // hasSideEffects - Return true if the evaluated expression has
444    // side effects.
445    bool hasSideEffects() const {
446      return HasSideEffects;
447    }
448  };
449
450  /// EvalResult is a struct with detailed info about an evaluated expression.
451  struct EvalResult : EvalStatus {
452    /// Val - This is the value the expression can be folded to.
453    APValue Val;
454
455    // isGlobalLValue - Return true if the evaluated lvalue expression
456    // is global.
457    bool isGlobalLValue() const;
458  };
459
460  /// EvaluateAsRValue - Return true if this is a constant which we can fold to
461  /// an rvalue using any crazy technique (that has nothing to do with language
462  /// standards) that we want to, even if the expression has side-effects. If
463  /// this function returns true, it returns the folded constant in Result. If
464  /// the expression is a glvalue, an lvalue-to-rvalue conversion will be
465  /// applied.
466  bool EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx) const;
467
468  /// EvaluateAsBooleanCondition - Return true if this is a constant
469  /// which we we can fold and convert to a boolean condition using
470  /// any crazy technique that we want to, even if the expression has
471  /// side-effects.
472  bool EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx) const;
473
474  /// EvaluateAsInt - Return true if this is a constant which we can fold and
475  /// convert to an integer without side-effects, using any crazy technique that
476  /// we want to.
477  bool EvaluateAsInt(llvm::APSInt &Result, const ASTContext &Ctx) const;
478
479  /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
480  /// constant folded without side-effects, but discard the result.
481  bool isEvaluatable(const ASTContext &Ctx) const;
482
483  /// HasSideEffects - This routine returns true for all those expressions
484  /// which must be evaluated each time and must not be optimized away
485  /// or evaluated at compile time. Example is a function call, volatile
486  /// variable read.
487  bool HasSideEffects(const ASTContext &Ctx) const;
488
489  /// EvaluateKnownConstInt - Call EvaluateAsRValue and return the folded
490  /// integer. This must be called on an expression that constant folds to an
491  /// integer.
492  llvm::APSInt EvaluateKnownConstInt(const ASTContext &Ctx) const;
493
494  /// EvaluateAsLValue - Evaluate an expression to see if we can fold it to an
495  /// lvalue with link time known address, with no side-effects.
496  bool EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const;
497
498  /// \brief Enumeration used to describe the kind of Null pointer constant
499  /// returned from \c isNullPointerConstant().
500  enum NullPointerConstantKind {
501    /// \brief Expression is not a Null pointer constant.
502    NPCK_NotNull = 0,
503
504    /// \brief Expression is a Null pointer constant built from a zero integer.
505    NPCK_ZeroInteger,
506
507    /// \brief Expression is a C++0X nullptr.
508    NPCK_CXX0X_nullptr,
509
510    /// \brief Expression is a GNU-style __null constant.
511    NPCK_GNUNull
512  };
513
514  /// \brief Enumeration used to describe how \c isNullPointerConstant()
515  /// should cope with value-dependent expressions.
516  enum NullPointerConstantValueDependence {
517    /// \brief Specifies that the expression should never be value-dependent.
518    NPC_NeverValueDependent = 0,
519
520    /// \brief Specifies that a value-dependent expression of integral or
521    /// dependent type should be considered a null pointer constant.
522    NPC_ValueDependentIsNull,
523
524    /// \brief Specifies that a value-dependent expression should be considered
525    /// to never be a null pointer constant.
526    NPC_ValueDependentIsNotNull
527  };
528
529  /// isNullPointerConstant - C99 6.3.2.3p3 - Test if this reduces down to
530  /// a Null pointer constant. The return value can further distinguish the
531  /// kind of NULL pointer constant that was detected.
532  NullPointerConstantKind isNullPointerConstant(
533      ASTContext &Ctx,
534      NullPointerConstantValueDependence NPC) const;
535
536  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
537  /// write barrier.
538  bool isOBJCGCCandidate(ASTContext &Ctx) const;
539
540  /// \brief Returns true if this expression is a bound member function.
541  bool isBoundMemberFunction(ASTContext &Ctx) const;
542
543  /// \brief Given an expression of bound-member type, find the type
544  /// of the member.  Returns null if this is an *overloaded* bound
545  /// member expression.
546  static QualType findBoundMemberType(const Expr *expr);
547
548  /// \brief Result type of CanThrow().
549  enum CanThrowResult {
550    CT_Cannot,
551    CT_Dependent,
552    CT_Can
553  };
554  /// \brief Test if this expression, if evaluated, might throw, according to
555  ///        the rules of C++ [expr.unary.noexcept].
556  CanThrowResult CanThrow(ASTContext &C) const;
557
558  /// IgnoreImpCasts - Skip past any implicit casts which might
559  /// surround this expression.  Only skips ImplicitCastExprs.
560  Expr *IgnoreImpCasts();
561
562  /// IgnoreImplicit - Skip past any implicit AST nodes which might
563  /// surround this expression.
564  Expr *IgnoreImplicit() { return cast<Expr>(Stmt::IgnoreImplicit()); }
565
566  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
567  ///  its subexpression.  If that subexpression is also a ParenExpr,
568  ///  then this method recursively returns its subexpression, and so forth.
569  ///  Otherwise, the method returns the current Expr.
570  Expr *IgnoreParens();
571
572  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
573  /// or CastExprs, returning their operand.
574  Expr *IgnoreParenCasts();
575
576  /// IgnoreParenImpCasts - Ignore parentheses and implicit casts.  Strip off
577  /// any ParenExpr or ImplicitCastExprs, returning their operand.
578  Expr *IgnoreParenImpCasts();
579
580  /// IgnoreConversionOperator - Ignore conversion operator. If this Expr is a
581  /// call to a conversion operator, return the argument.
582  Expr *IgnoreConversionOperator();
583
584  const Expr *IgnoreConversionOperator() const {
585    return const_cast<Expr*>(this)->IgnoreConversionOperator();
586  }
587
588  const Expr *IgnoreParenImpCasts() const {
589    return const_cast<Expr*>(this)->IgnoreParenImpCasts();
590  }
591
592  /// Ignore parentheses and lvalue casts.  Strip off any ParenExpr and
593  /// CastExprs that represent lvalue casts, returning their operand.
594  Expr *IgnoreParenLValueCasts();
595
596  const Expr *IgnoreParenLValueCasts() const {
597    return const_cast<Expr*>(this)->IgnoreParenLValueCasts();
598  }
599
600  /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
601  /// value (including ptr->int casts of the same size).  Strip off any
602  /// ParenExpr or CastExprs, returning their operand.
603  Expr *IgnoreParenNoopCasts(ASTContext &Ctx);
604
605  /// \brief Determine whether this expression is a default function argument.
606  ///
607  /// Default arguments are implicitly generated in the abstract syntax tree
608  /// by semantic analysis for function calls, object constructions, etc. in
609  /// C++. Default arguments are represented by \c CXXDefaultArgExpr nodes;
610  /// this routine also looks through any implicit casts to determine whether
611  /// the expression is a default argument.
612  bool isDefaultArgument() const;
613
614  /// \brief Determine whether the result of this expression is a
615  /// temporary object of the given class type.
616  bool isTemporaryObject(ASTContext &Ctx, const CXXRecordDecl *TempTy) const;
617
618  /// \brief Whether this expression is an implicit reference to 'this' in C++.
619  bool isImplicitCXXThis() const;
620
621  const Expr *IgnoreImpCasts() const {
622    return const_cast<Expr*>(this)->IgnoreImpCasts();
623  }
624  const Expr *IgnoreParens() const {
625    return const_cast<Expr*>(this)->IgnoreParens();
626  }
627  const Expr *IgnoreParenCasts() const {
628    return const_cast<Expr*>(this)->IgnoreParenCasts();
629  }
630  const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const {
631    return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
632  }
633
634  static bool hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs);
635  static bool hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs);
636
637  static bool classof(const Stmt *T) {
638    return T->getStmtClass() >= firstExprConstant &&
639           T->getStmtClass() <= lastExprConstant;
640  }
641  static bool classof(const Expr *) { return true; }
642};
643
644
645//===----------------------------------------------------------------------===//
646// Primary Expressions.
647//===----------------------------------------------------------------------===//
648
649/// OpaqueValueExpr - An expression referring to an opaque object of a
650/// fixed type and value class.  These don't correspond to concrete
651/// syntax; instead they're used to express operations (usually copy
652/// operations) on values whose source is generally obvious from
653/// context.
654class OpaqueValueExpr : public Expr {
655  friend class ASTStmtReader;
656  Expr *SourceExpr;
657  SourceLocation Loc;
658
659public:
660  OpaqueValueExpr(SourceLocation Loc, QualType T, ExprValueKind VK,
661                  ExprObjectKind OK = OK_Ordinary)
662    : Expr(OpaqueValueExprClass, T, VK, OK,
663           T->isDependentType(), T->isDependentType(),
664           T->isInstantiationDependentType(),
665           false),
666      SourceExpr(0), Loc(Loc) {
667  }
668
669  /// Given an expression which invokes a copy constructor --- i.e.  a
670  /// CXXConstructExpr, possibly wrapped in an ExprWithCleanups ---
671  /// find the OpaqueValueExpr that's the source of the construction.
672  static const OpaqueValueExpr *findInCopyConstruct(const Expr *expr);
673
674  explicit OpaqueValueExpr(EmptyShell Empty)
675    : Expr(OpaqueValueExprClass, Empty) { }
676
677  /// \brief Retrieve the location of this expression.
678  SourceLocation getLocation() const { return Loc; }
679
680  SourceRange getSourceRange() const {
681    if (SourceExpr) return SourceExpr->getSourceRange();
682    return Loc;
683  }
684  SourceLocation getExprLoc() const {
685    if (SourceExpr) return SourceExpr->getExprLoc();
686    return Loc;
687  }
688
689  child_range children() { return child_range(); }
690
691  /// The source expression of an opaque value expression is the
692  /// expression which originally generated the value.  This is
693  /// provided as a convenience for analyses that don't wish to
694  /// precisely model the execution behavior of the program.
695  ///
696  /// The source expression is typically set when building the
697  /// expression which binds the opaque value expression in the first
698  /// place.
699  Expr *getSourceExpr() const { return SourceExpr; }
700  void setSourceExpr(Expr *e) { SourceExpr = e; }
701
702  static bool classof(const Stmt *T) {
703    return T->getStmtClass() == OpaqueValueExprClass;
704  }
705  static bool classof(const OpaqueValueExpr *) { return true; }
706};
707
708/// \brief A reference to a declared variable, function, enum, etc.
709/// [C99 6.5.1p2]
710///
711/// This encodes all the information about how a declaration is referenced
712/// within an expression.
713///
714/// There are several optional constructs attached to DeclRefExprs only when
715/// they apply in order to conserve memory. These are laid out past the end of
716/// the object, and flags in the DeclRefExprBitfield track whether they exist:
717///
718///   DeclRefExprBits.HasQualifier:
719///       Specifies when this declaration reference expression has a C++
720///       nested-name-specifier.
721///   DeclRefExprBits.HasFoundDecl:
722///       Specifies when this declaration reference expression has a record of
723///       a NamedDecl (different from the referenced ValueDecl) which was found
724///       during name lookup and/or overload resolution.
725///   DeclRefExprBits.HasExplicitTemplateArgs:
726///       Specifies when this declaration reference expression has an explicit
727///       C++ template argument list.
728class DeclRefExpr : public Expr {
729  /// \brief The declaration that we are referencing.
730  ValueDecl *D;
731
732  /// \brief The location of the declaration name itself.
733  SourceLocation Loc;
734
735  /// \brief Provides source/type location info for the declaration name
736  /// embedded in D.
737  DeclarationNameLoc DNLoc;
738
739  /// \brief Helper to retrieve the optional NestedNameSpecifierLoc.
740  NestedNameSpecifierLoc &getInternalQualifierLoc() {
741    assert(hasQualifier());
742    return *reinterpret_cast<NestedNameSpecifierLoc *>(this + 1);
743  }
744
745  /// \brief Helper to retrieve the optional NestedNameSpecifierLoc.
746  const NestedNameSpecifierLoc &getInternalQualifierLoc() const {
747    return const_cast<DeclRefExpr *>(this)->getInternalQualifierLoc();
748  }
749
750  /// \brief Test whether there is a distinct FoundDecl attached to the end of
751  /// this DRE.
752  bool hasFoundDecl() const { return DeclRefExprBits.HasFoundDecl; }
753
754  /// \brief Helper to retrieve the optional NamedDecl through which this
755  /// reference occured.
756  NamedDecl *&getInternalFoundDecl() {
757    assert(hasFoundDecl());
758    if (hasQualifier())
759      return *reinterpret_cast<NamedDecl **>(&getInternalQualifierLoc() + 1);
760    return *reinterpret_cast<NamedDecl **>(this + 1);
761  }
762
763  /// \brief Helper to retrieve the optional NamedDecl through which this
764  /// reference occured.
765  NamedDecl *getInternalFoundDecl() const {
766    return const_cast<DeclRefExpr *>(this)->getInternalFoundDecl();
767  }
768
769  DeclRefExpr(NestedNameSpecifierLoc QualifierLoc,
770              ValueDecl *D, const DeclarationNameInfo &NameInfo,
771              NamedDecl *FoundD,
772              const TemplateArgumentListInfo *TemplateArgs,
773              QualType T, ExprValueKind VK);
774
775  /// \brief Construct an empty declaration reference expression.
776  explicit DeclRefExpr(EmptyShell Empty)
777    : Expr(DeclRefExprClass, Empty) { }
778
779  /// \brief Computes the type- and value-dependence flags for this
780  /// declaration reference expression.
781  void computeDependence();
782
783public:
784  DeclRefExpr(ValueDecl *D, QualType T, ExprValueKind VK, SourceLocation L,
785              const DeclarationNameLoc &LocInfo = DeclarationNameLoc())
786    : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
787      D(D), Loc(L), DNLoc(LocInfo) {
788    DeclRefExprBits.HasQualifier = 0;
789    DeclRefExprBits.HasExplicitTemplateArgs = 0;
790    DeclRefExprBits.HasFoundDecl = 0;
791    DeclRefExprBits.HadMultipleCandidates = 0;
792    computeDependence();
793  }
794
795  static DeclRefExpr *Create(ASTContext &Context,
796                             NestedNameSpecifierLoc QualifierLoc,
797                             ValueDecl *D,
798                             SourceLocation NameLoc,
799                             QualType T, ExprValueKind VK,
800                             NamedDecl *FoundD = 0,
801                             const TemplateArgumentListInfo *TemplateArgs = 0);
802
803  static DeclRefExpr *Create(ASTContext &Context,
804                             NestedNameSpecifierLoc QualifierLoc,
805                             ValueDecl *D,
806                             const DeclarationNameInfo &NameInfo,
807                             QualType T, ExprValueKind VK,
808                             NamedDecl *FoundD = 0,
809                             const TemplateArgumentListInfo *TemplateArgs = 0);
810
811  /// \brief Construct an empty declaration reference expression.
812  static DeclRefExpr *CreateEmpty(ASTContext &Context,
813                                  bool HasQualifier,
814                                  bool HasFoundDecl,
815                                  bool HasExplicitTemplateArgs,
816                                  unsigned NumTemplateArgs);
817
818  ValueDecl *getDecl() { return D; }
819  const ValueDecl *getDecl() const { return D; }
820  void setDecl(ValueDecl *NewD) { D = NewD; }
821
822  DeclarationNameInfo getNameInfo() const {
823    return DeclarationNameInfo(getDecl()->getDeclName(), Loc, DNLoc);
824  }
825
826  SourceLocation getLocation() const { return Loc; }
827  void setLocation(SourceLocation L) { Loc = L; }
828  SourceRange getSourceRange() const;
829
830  /// \brief Determine whether this declaration reference was preceded by a
831  /// C++ nested-name-specifier, e.g., \c N::foo.
832  bool hasQualifier() const { return DeclRefExprBits.HasQualifier; }
833
834  /// \brief If the name was qualified, retrieves the nested-name-specifier
835  /// that precedes the name. Otherwise, returns NULL.
836  NestedNameSpecifier *getQualifier() const {
837    if (!hasQualifier())
838      return 0;
839
840    return getInternalQualifierLoc().getNestedNameSpecifier();
841  }
842
843  /// \brief If the name was qualified, retrieves the nested-name-specifier
844  /// that precedes the name, with source-location information.
845  NestedNameSpecifierLoc getQualifierLoc() const {
846    if (!hasQualifier())
847      return NestedNameSpecifierLoc();
848
849    return getInternalQualifierLoc();
850  }
851
852  /// \brief Get the NamedDecl through which this reference occured.
853  ///
854  /// This Decl may be different from the ValueDecl actually referred to in the
855  /// presence of using declarations, etc. It always returns non-NULL, and may
856  /// simple return the ValueDecl when appropriate.
857  NamedDecl *getFoundDecl() {
858    return hasFoundDecl() ? getInternalFoundDecl() : D;
859  }
860
861  /// \brief Get the NamedDecl through which this reference occurred.
862  /// See non-const variant.
863  const NamedDecl *getFoundDecl() const {
864    return hasFoundDecl() ? getInternalFoundDecl() : D;
865  }
866
867  /// \brief Determines whether this declaration reference was followed by an
868  /// explict template argument list.
869  bool hasExplicitTemplateArgs() const {
870    return DeclRefExprBits.HasExplicitTemplateArgs;
871  }
872
873  /// \brief Retrieve the explicit template argument list that followed the
874  /// member template name.
875  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
876    assert(hasExplicitTemplateArgs());
877    if (hasFoundDecl())
878      return *reinterpret_cast<ASTTemplateArgumentListInfo *>(
879        &getInternalFoundDecl() + 1);
880
881    if (hasQualifier())
882      return *reinterpret_cast<ASTTemplateArgumentListInfo *>(
883        &getInternalQualifierLoc() + 1);
884
885    return *reinterpret_cast<ASTTemplateArgumentListInfo *>(this + 1);
886  }
887
888  /// \brief Retrieve the explicit template argument list that followed the
889  /// member template name.
890  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
891    return const_cast<DeclRefExpr *>(this)->getExplicitTemplateArgs();
892  }
893
894  /// \brief Retrieves the optional explicit template arguments.
895  /// This points to the same data as getExplicitTemplateArgs(), but
896  /// returns null if there are no explicit template arguments.
897  const ASTTemplateArgumentListInfo *getExplicitTemplateArgsOpt() const {
898    if (!hasExplicitTemplateArgs()) return 0;
899    return &getExplicitTemplateArgs();
900  }
901
902  /// \brief Copies the template arguments (if present) into the given
903  /// structure.
904  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
905    if (hasExplicitTemplateArgs())
906      getExplicitTemplateArgs().copyInto(List);
907  }
908
909  /// \brief Retrieve the location of the left angle bracket following the
910  /// member name ('<'), if any.
911  SourceLocation getLAngleLoc() const {
912    if (!hasExplicitTemplateArgs())
913      return SourceLocation();
914
915    return getExplicitTemplateArgs().LAngleLoc;
916  }
917
918  /// \brief Retrieve the template arguments provided as part of this
919  /// template-id.
920  const TemplateArgumentLoc *getTemplateArgs() const {
921    if (!hasExplicitTemplateArgs())
922      return 0;
923
924    return getExplicitTemplateArgs().getTemplateArgs();
925  }
926
927  /// \brief Retrieve the number of template arguments provided as part of this
928  /// template-id.
929  unsigned getNumTemplateArgs() const {
930    if (!hasExplicitTemplateArgs())
931      return 0;
932
933    return getExplicitTemplateArgs().NumTemplateArgs;
934  }
935
936  /// \brief Retrieve the location of the right angle bracket following the
937  /// template arguments ('>').
938  SourceLocation getRAngleLoc() const {
939    if (!hasExplicitTemplateArgs())
940      return SourceLocation();
941
942    return getExplicitTemplateArgs().RAngleLoc;
943  }
944
945  /// \brief Returns true if this expression refers to a function that
946  /// was resolved from an overloaded set having size greater than 1.
947  bool hadMultipleCandidates() const {
948    return DeclRefExprBits.HadMultipleCandidates;
949  }
950  /// \brief Sets the flag telling whether this expression refers to
951  /// a function that was resolved from an overloaded set having size
952  /// greater than 1.
953  void setHadMultipleCandidates(bool V = true) {
954    DeclRefExprBits.HadMultipleCandidates = V;
955  }
956
957  static bool classof(const Stmt *T) {
958    return T->getStmtClass() == DeclRefExprClass;
959  }
960  static bool classof(const DeclRefExpr *) { return true; }
961
962  // Iterators
963  child_range children() { return child_range(); }
964
965  friend class ASTStmtReader;
966  friend class ASTStmtWriter;
967};
968
969/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
970class PredefinedExpr : public Expr {
971public:
972  enum IdentType {
973    Func,
974    Function,
975    PrettyFunction,
976    /// PrettyFunctionNoVirtual - The same as PrettyFunction, except that the
977    /// 'virtual' keyword is omitted for virtual member functions.
978    PrettyFunctionNoVirtual
979  };
980
981private:
982  SourceLocation Loc;
983  IdentType Type;
984public:
985  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
986    : Expr(PredefinedExprClass, type, VK_LValue, OK_Ordinary,
987           type->isDependentType(), type->isDependentType(),
988           type->isInstantiationDependentType(),
989           /*ContainsUnexpandedParameterPack=*/false),
990      Loc(l), Type(IT) {}
991
992  /// \brief Construct an empty predefined expression.
993  explicit PredefinedExpr(EmptyShell Empty)
994    : Expr(PredefinedExprClass, Empty) { }
995
996  IdentType getIdentType() const { return Type; }
997  void setIdentType(IdentType IT) { Type = IT; }
998
999  SourceLocation getLocation() const { return Loc; }
1000  void setLocation(SourceLocation L) { Loc = L; }
1001
1002  static std::string ComputeName(IdentType IT, const Decl *CurrentDecl);
1003
1004  SourceRange getSourceRange() const { return SourceRange(Loc); }
1005
1006  static bool classof(const Stmt *T) {
1007    return T->getStmtClass() == PredefinedExprClass;
1008  }
1009  static bool classof(const PredefinedExpr *) { return true; }
1010
1011  // Iterators
1012  child_range children() { return child_range(); }
1013};
1014
1015/// \brief Used by IntegerLiteral/FloatingLiteral to store the numeric without
1016/// leaking memory.
1017///
1018/// For large floats/integers, APFloat/APInt will allocate memory from the heap
1019/// to represent these numbers.  Unfortunately, when we use a BumpPtrAllocator
1020/// to allocate IntegerLiteral/FloatingLiteral nodes the memory associated with
1021/// the APFloat/APInt values will never get freed. APNumericStorage uses
1022/// ASTContext's allocator for memory allocation.
1023class APNumericStorage {
1024  unsigned BitWidth;
1025  union {
1026    uint64_t VAL;    ///< Used to store the <= 64 bits integer value.
1027    uint64_t *pVal;  ///< Used to store the >64 bits integer value.
1028  };
1029
1030  bool hasAllocation() const { return llvm::APInt::getNumWords(BitWidth) > 1; }
1031
1032  APNumericStorage(const APNumericStorage&); // do not implement
1033  APNumericStorage& operator=(const APNumericStorage&); // do not implement
1034
1035protected:
1036  APNumericStorage() : BitWidth(0), VAL(0) { }
1037
1038  llvm::APInt getIntValue() const {
1039    unsigned NumWords = llvm::APInt::getNumWords(BitWidth);
1040    if (NumWords > 1)
1041      return llvm::APInt(BitWidth, NumWords, pVal);
1042    else
1043      return llvm::APInt(BitWidth, VAL);
1044  }
1045  void setIntValue(ASTContext &C, const llvm::APInt &Val);
1046};
1047
1048class APIntStorage : public APNumericStorage {
1049public:
1050  llvm::APInt getValue() const { return getIntValue(); }
1051  void setValue(ASTContext &C, const llvm::APInt &Val) { setIntValue(C, Val); }
1052};
1053
1054class APFloatStorage : public APNumericStorage {
1055public:
1056  llvm::APFloat getValue() const { return llvm::APFloat(getIntValue()); }
1057  void setValue(ASTContext &C, const llvm::APFloat &Val) {
1058    setIntValue(C, Val.bitcastToAPInt());
1059  }
1060};
1061
1062class IntegerLiteral : public Expr {
1063  APIntStorage Num;
1064  SourceLocation Loc;
1065
1066  /// \brief Construct an empty integer literal.
1067  explicit IntegerLiteral(EmptyShell Empty)
1068    : Expr(IntegerLiteralClass, Empty) { }
1069
1070public:
1071  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
1072  // or UnsignedLongLongTy
1073  IntegerLiteral(ASTContext &C, const llvm::APInt &V,
1074                 QualType type, SourceLocation l)
1075    : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
1076           false, false),
1077      Loc(l) {
1078    assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
1079    assert(V.getBitWidth() == C.getIntWidth(type) &&
1080           "Integer type is not the correct size for constant.");
1081    setValue(C, V);
1082  }
1083
1084  /// \brief Returns a new integer literal with value 'V' and type 'type'.
1085  /// \param type - either IntTy, LongTy, LongLongTy, UnsignedIntTy,
1086  /// UnsignedLongTy, or UnsignedLongLongTy which should match the size of V
1087  /// \param V - the value that the returned integer literal contains.
1088  static IntegerLiteral *Create(ASTContext &C, const llvm::APInt &V,
1089                                QualType type, SourceLocation l);
1090  /// \brief Returns a new empty integer literal.
1091  static IntegerLiteral *Create(ASTContext &C, EmptyShell Empty);
1092
1093  llvm::APInt getValue() const { return Num.getValue(); }
1094  SourceRange getSourceRange() const { return SourceRange(Loc); }
1095
1096  /// \brief Retrieve the location of the literal.
1097  SourceLocation getLocation() const { return Loc; }
1098
1099  void setValue(ASTContext &C, const llvm::APInt &Val) { Num.setValue(C, Val); }
1100  void setLocation(SourceLocation Location) { Loc = Location; }
1101
1102  static bool classof(const Stmt *T) {
1103    return T->getStmtClass() == IntegerLiteralClass;
1104  }
1105  static bool classof(const IntegerLiteral *) { return true; }
1106
1107  // Iterators
1108  child_range children() { return child_range(); }
1109};
1110
1111class CharacterLiteral : public Expr {
1112public:
1113  enum CharacterKind {
1114    Ascii,
1115    Wide,
1116    UTF16,
1117    UTF32
1118  };
1119
1120private:
1121  unsigned Value;
1122  SourceLocation Loc;
1123  unsigned Kind : 2;
1124public:
1125  // type should be IntTy
1126  CharacterLiteral(unsigned value, CharacterKind kind, QualType type,
1127                   SourceLocation l)
1128    : Expr(CharacterLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
1129           false, false),
1130      Value(value), Loc(l), Kind(kind) {
1131  }
1132
1133  /// \brief Construct an empty character literal.
1134  CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
1135
1136  SourceLocation getLocation() const { return Loc; }
1137  CharacterKind getKind() const { return static_cast<CharacterKind>(Kind); }
1138
1139  SourceRange getSourceRange() const { return SourceRange(Loc); }
1140
1141  unsigned getValue() const { return Value; }
1142
1143  void setLocation(SourceLocation Location) { Loc = Location; }
1144  void setKind(CharacterKind kind) { Kind = kind; }
1145  void setValue(unsigned Val) { Value = Val; }
1146
1147  static bool classof(const Stmt *T) {
1148    return T->getStmtClass() == CharacterLiteralClass;
1149  }
1150  static bool classof(const CharacterLiteral *) { return true; }
1151
1152  // Iterators
1153  child_range children() { return child_range(); }
1154};
1155
1156class FloatingLiteral : public Expr {
1157  APFloatStorage Num;
1158  bool IsExact : 1;
1159  SourceLocation Loc;
1160
1161  FloatingLiteral(ASTContext &C, const llvm::APFloat &V, bool isexact,
1162                  QualType Type, SourceLocation L)
1163    : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false,
1164           false, false),
1165      IsExact(isexact), Loc(L) {
1166    setValue(C, V);
1167  }
1168
1169  /// \brief Construct an empty floating-point literal.
1170  explicit FloatingLiteral(EmptyShell Empty)
1171    : Expr(FloatingLiteralClass, Empty), IsExact(false) { }
1172
1173public:
1174  static FloatingLiteral *Create(ASTContext &C, const llvm::APFloat &V,
1175                                 bool isexact, QualType Type, SourceLocation L);
1176  static FloatingLiteral *Create(ASTContext &C, EmptyShell Empty);
1177
1178  llvm::APFloat getValue() const { return Num.getValue(); }
1179  void setValue(ASTContext &C, const llvm::APFloat &Val) {
1180    Num.setValue(C, Val);
1181  }
1182
1183  bool isExact() const { return IsExact; }
1184  void setExact(bool E) { IsExact = E; }
1185
1186  /// getValueAsApproximateDouble - This returns the value as an inaccurate
1187  /// double.  Note that this may cause loss of precision, but is useful for
1188  /// debugging dumps, etc.
1189  double getValueAsApproximateDouble() const;
1190
1191  SourceLocation getLocation() const { return Loc; }
1192  void setLocation(SourceLocation L) { Loc = L; }
1193
1194  SourceRange getSourceRange() const { return SourceRange(Loc); }
1195
1196  static bool classof(const Stmt *T) {
1197    return T->getStmtClass() == FloatingLiteralClass;
1198  }
1199  static bool classof(const FloatingLiteral *) { return true; }
1200
1201  // Iterators
1202  child_range children() { return child_range(); }
1203};
1204
1205/// ImaginaryLiteral - We support imaginary integer and floating point literals,
1206/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
1207/// IntegerLiteral classes.  Instances of this class always have a Complex type
1208/// whose element type matches the subexpression.
1209///
1210class ImaginaryLiteral : public Expr {
1211  Stmt *Val;
1212public:
1213  ImaginaryLiteral(Expr *val, QualType Ty)
1214    : Expr(ImaginaryLiteralClass, Ty, VK_RValue, OK_Ordinary, false, false,
1215           false, false),
1216      Val(val) {}
1217
1218  /// \brief Build an empty imaginary literal.
1219  explicit ImaginaryLiteral(EmptyShell Empty)
1220    : Expr(ImaginaryLiteralClass, Empty) { }
1221
1222  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1223  Expr *getSubExpr() { return cast<Expr>(Val); }
1224  void setSubExpr(Expr *E) { Val = E; }
1225
1226  SourceRange getSourceRange() const { return Val->getSourceRange(); }
1227  static bool classof(const Stmt *T) {
1228    return T->getStmtClass() == ImaginaryLiteralClass;
1229  }
1230  static bool classof(const ImaginaryLiteral *) { return true; }
1231
1232  // Iterators
1233  child_range children() { return child_range(&Val, &Val+1); }
1234};
1235
1236/// StringLiteral - This represents a string literal expression, e.g. "foo"
1237/// or L"bar" (wide strings).  The actual string is returned by getStrData()
1238/// is NOT null-terminated, and the length of the string is determined by
1239/// calling getByteLength().  The C type for a string is always a
1240/// ConstantArrayType.  In C++, the char type is const qualified, in C it is
1241/// not.
1242///
1243/// Note that strings in C can be formed by concatenation of multiple string
1244/// literal pptokens in translation phase #6.  This keeps track of the locations
1245/// of each of these pieces.
1246///
1247/// Strings in C can also be truncated and extended by assigning into arrays,
1248/// e.g. with constructs like:
1249///   char X[2] = "foobar";
1250/// In this case, getByteLength() will return 6, but the string literal will
1251/// have type "char[2]".
1252class StringLiteral : public Expr {
1253public:
1254  enum StringKind {
1255    Ascii,
1256    Wide,
1257    UTF8,
1258    UTF16,
1259    UTF32
1260  };
1261
1262private:
1263  friend class ASTStmtReader;
1264
1265  union {
1266    const char *asChar;
1267    const uint16_t *asUInt16;
1268    const uint32_t *asUInt32;
1269  } StrData;
1270  unsigned Length;
1271  unsigned CharByteWidth;
1272  unsigned NumConcatenated;
1273  unsigned Kind : 3;
1274  bool IsPascal : 1;
1275  SourceLocation TokLocs[1];
1276
1277  StringLiteral(QualType Ty) :
1278    Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary, false, false, false,
1279         false) {}
1280
1281  static int mapCharByteWidth(TargetInfo const &target,StringKind k);
1282
1283public:
1284  /// This is the "fully general" constructor that allows representation of
1285  /// strings formed from multiple concatenated tokens.
1286  static StringLiteral *Create(ASTContext &C, StringRef Str, StringKind Kind,
1287                               bool Pascal, QualType Ty,
1288                               const SourceLocation *Loc, unsigned NumStrs);
1289
1290  /// Simple constructor for string literals made from one token.
1291  static StringLiteral *Create(ASTContext &C, StringRef Str, StringKind Kind,
1292                               bool Pascal, QualType Ty,
1293                               SourceLocation Loc) {
1294    return Create(C, Str, Kind, Pascal, Ty, &Loc, 1);
1295  }
1296
1297  /// \brief Construct an empty string literal.
1298  static StringLiteral *CreateEmpty(ASTContext &C, unsigned NumStrs);
1299
1300  StringRef getString() const {
1301    assert(CharByteWidth==1
1302           && "This function is used in places that assume strings use char");
1303    return StringRef(StrData.asChar, getByteLength());
1304  }
1305
1306  /// Allow clients that need the byte representation, such as ASTWriterStmt
1307  /// ::VisitStringLiteral(), access.
1308  StringRef getBytes() const {
1309    // FIXME: StringRef may not be the right type to use as a result for this...
1310    assert((CharByteWidth==1 || CharByteWidth==2 || CharByteWidth==4)
1311           && "unsupported CharByteWidth");
1312    if (CharByteWidth==4) {
1313      return StringRef(reinterpret_cast<const char*>(StrData.asUInt32),
1314                       getByteLength());
1315    } else if (CharByteWidth==2) {
1316      return StringRef(reinterpret_cast<const char*>(StrData.asUInt16),
1317                       getByteLength());
1318    } else {
1319      return StringRef(StrData.asChar, getByteLength());
1320    }
1321  }
1322
1323  uint32_t getCodeUnit(size_t i) const {
1324    assert(i<Length && "out of bounds access");
1325    assert((CharByteWidth==1 || CharByteWidth==2 || CharByteWidth==4)
1326           && "unsupported CharByteWidth");
1327    if (CharByteWidth==4) {
1328      return StrData.asUInt32[i];
1329    } else if (CharByteWidth==2) {
1330      return StrData.asUInt16[i];
1331    } else {
1332      return static_cast<unsigned char>(StrData.asChar[i]);
1333    }
1334  }
1335
1336  unsigned getByteLength() const { return CharByteWidth*Length; }
1337  unsigned getLength() const { return Length; }
1338  unsigned getCharByteWidth() const { return CharByteWidth; }
1339
1340  /// \brief Sets the string data to the given string data.
1341  void setString(ASTContext &C, StringRef Str,
1342                 StringKind Kind, bool IsPascal);
1343
1344  StringKind getKind() const { return static_cast<StringKind>(Kind); }
1345
1346
1347  bool isAscii() const { return Kind == Ascii; }
1348  bool isWide() const { return Kind == Wide; }
1349  bool isUTF8() const { return Kind == UTF8; }
1350  bool isUTF16() const { return Kind == UTF16; }
1351  bool isUTF32() const { return Kind == UTF32; }
1352  bool isPascal() const { return IsPascal; }
1353
1354  bool containsNonAsciiOrNull() const {
1355    StringRef Str = getString();
1356    for (unsigned i = 0, e = Str.size(); i != e; ++i)
1357      if (!isascii(Str[i]) || !Str[i])
1358        return true;
1359    return false;
1360  }
1361
1362  /// getNumConcatenated - Get the number of string literal tokens that were
1363  /// concatenated in translation phase #6 to form this string literal.
1364  unsigned getNumConcatenated() const { return NumConcatenated; }
1365
1366  SourceLocation getStrTokenLoc(unsigned TokNum) const {
1367    assert(TokNum < NumConcatenated && "Invalid tok number");
1368    return TokLocs[TokNum];
1369  }
1370  void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
1371    assert(TokNum < NumConcatenated && "Invalid tok number");
1372    TokLocs[TokNum] = L;
1373  }
1374
1375  /// getLocationOfByte - Return a source location that points to the specified
1376  /// byte of this string literal.
1377  ///
1378  /// Strings are amazingly complex.  They can be formed from multiple tokens
1379  /// and can have escape sequences in them in addition to the usual trigraph
1380  /// and escaped newline business.  This routine handles this complexity.
1381  ///
1382  SourceLocation getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
1383                                   const LangOptions &Features,
1384                                   const TargetInfo &Target) const;
1385
1386  typedef const SourceLocation *tokloc_iterator;
1387  tokloc_iterator tokloc_begin() const { return TokLocs; }
1388  tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; }
1389
1390  SourceRange getSourceRange() const {
1391    return SourceRange(TokLocs[0], TokLocs[NumConcatenated-1]);
1392  }
1393  static bool classof(const Stmt *T) {
1394    return T->getStmtClass() == StringLiteralClass;
1395  }
1396  static bool classof(const StringLiteral *) { return true; }
1397
1398  // Iterators
1399  child_range children() { return child_range(); }
1400};
1401
1402/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
1403/// AST node is only formed if full location information is requested.
1404class ParenExpr : public Expr {
1405  SourceLocation L, R;
1406  Stmt *Val;
1407public:
1408  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
1409    : Expr(ParenExprClass, val->getType(),
1410           val->getValueKind(), val->getObjectKind(),
1411           val->isTypeDependent(), val->isValueDependent(),
1412           val->isInstantiationDependent(),
1413           val->containsUnexpandedParameterPack()),
1414      L(l), R(r), Val(val) {}
1415
1416  /// \brief Construct an empty parenthesized expression.
1417  explicit ParenExpr(EmptyShell Empty)
1418    : Expr(ParenExprClass, Empty) { }
1419
1420  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1421  Expr *getSubExpr() { return cast<Expr>(Val); }
1422  void setSubExpr(Expr *E) { Val = E; }
1423
1424  SourceRange getSourceRange() const { return SourceRange(L, R); }
1425
1426  /// \brief Get the location of the left parentheses '('.
1427  SourceLocation getLParen() const { return L; }
1428  void setLParen(SourceLocation Loc) { L = Loc; }
1429
1430  /// \brief Get the location of the right parentheses ')'.
1431  SourceLocation getRParen() const { return R; }
1432  void setRParen(SourceLocation Loc) { R = Loc; }
1433
1434  static bool classof(const Stmt *T) {
1435    return T->getStmtClass() == ParenExprClass;
1436  }
1437  static bool classof(const ParenExpr *) { return true; }
1438
1439  // Iterators
1440  child_range children() { return child_range(&Val, &Val+1); }
1441};
1442
1443
1444/// UnaryOperator - This represents the unary-expression's (except sizeof and
1445/// alignof), the postinc/postdec operators from postfix-expression, and various
1446/// extensions.
1447///
1448/// Notes on various nodes:
1449///
1450/// Real/Imag - These return the real/imag part of a complex operand.  If
1451///   applied to a non-complex value, the former returns its operand and the
1452///   later returns zero in the type of the operand.
1453///
1454class UnaryOperator : public Expr {
1455public:
1456  typedef UnaryOperatorKind Opcode;
1457
1458private:
1459  unsigned Opc : 5;
1460  SourceLocation Loc;
1461  Stmt *Val;
1462public:
1463
1464  UnaryOperator(Expr *input, Opcode opc, QualType type,
1465                ExprValueKind VK, ExprObjectKind OK, SourceLocation l)
1466    : Expr(UnaryOperatorClass, type, VK, OK,
1467           input->isTypeDependent() || type->isDependentType(),
1468           input->isValueDependent(),
1469           (input->isInstantiationDependent() ||
1470            type->isInstantiationDependentType()),
1471           input->containsUnexpandedParameterPack()),
1472      Opc(opc), Loc(l), Val(input) {}
1473
1474  /// \brief Build an empty unary operator.
1475  explicit UnaryOperator(EmptyShell Empty)
1476    : Expr(UnaryOperatorClass, Empty), Opc(UO_AddrOf) { }
1477
1478  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
1479  void setOpcode(Opcode O) { Opc = O; }
1480
1481  Expr *getSubExpr() const { return cast<Expr>(Val); }
1482  void setSubExpr(Expr *E) { Val = E; }
1483
1484  /// getOperatorLoc - Return the location of the operator.
1485  SourceLocation getOperatorLoc() const { return Loc; }
1486  void setOperatorLoc(SourceLocation L) { Loc = L; }
1487
1488  /// isPostfix - Return true if this is a postfix operation, like x++.
1489  static bool isPostfix(Opcode Op) {
1490    return Op == UO_PostInc || Op == UO_PostDec;
1491  }
1492
1493  /// isPrefix - Return true if this is a prefix operation, like --x.
1494  static bool isPrefix(Opcode Op) {
1495    return Op == UO_PreInc || Op == UO_PreDec;
1496  }
1497
1498  bool isPrefix() const { return isPrefix(getOpcode()); }
1499  bool isPostfix() const { return isPostfix(getOpcode()); }
1500
1501  static bool isIncrementOp(Opcode Op) {
1502    return Op == UO_PreInc || Op == UO_PostInc;
1503  }
1504  bool isIncrementOp() const {
1505    return isIncrementOp(getOpcode());
1506  }
1507
1508  static bool isDecrementOp(Opcode Op) {
1509    return Op == UO_PreDec || Op == UO_PostDec;
1510  }
1511  bool isDecrementOp() const {
1512    return isDecrementOp(getOpcode());
1513  }
1514
1515  static bool isIncrementDecrementOp(Opcode Op) { return Op <= UO_PreDec; }
1516  bool isIncrementDecrementOp() const {
1517    return isIncrementDecrementOp(getOpcode());
1518  }
1519
1520  static bool isArithmeticOp(Opcode Op) {
1521    return Op >= UO_Plus && Op <= UO_LNot;
1522  }
1523  bool isArithmeticOp() const { return isArithmeticOp(getOpcode()); }
1524
1525  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1526  /// corresponds to, e.g. "sizeof" or "[pre]++"
1527  static const char *getOpcodeStr(Opcode Op);
1528
1529  /// \brief Retrieve the unary opcode that corresponds to the given
1530  /// overloaded operator.
1531  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
1532
1533  /// \brief Retrieve the overloaded operator kind that corresponds to
1534  /// the given unary opcode.
1535  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
1536
1537  SourceRange getSourceRange() const {
1538    if (isPostfix())
1539      return SourceRange(Val->getLocStart(), Loc);
1540    else
1541      return SourceRange(Loc, Val->getLocEnd());
1542  }
1543  SourceLocation getExprLoc() const { return Loc; }
1544
1545  static bool classof(const Stmt *T) {
1546    return T->getStmtClass() == UnaryOperatorClass;
1547  }
1548  static bool classof(const UnaryOperator *) { return true; }
1549
1550  // Iterators
1551  child_range children() { return child_range(&Val, &Val+1); }
1552};
1553
1554/// OffsetOfExpr - [C99 7.17] - This represents an expression of the form
1555/// offsetof(record-type, member-designator). For example, given:
1556/// @code
1557/// struct S {
1558///   float f;
1559///   double d;
1560/// };
1561/// struct T {
1562///   int i;
1563///   struct S s[10];
1564/// };
1565/// @endcode
1566/// we can represent and evaluate the expression @c offsetof(struct T, s[2].d).
1567
1568class OffsetOfExpr : public Expr {
1569public:
1570  // __builtin_offsetof(type, identifier(.identifier|[expr])*)
1571  class OffsetOfNode {
1572  public:
1573    /// \brief The kind of offsetof node we have.
1574    enum Kind {
1575      /// \brief An index into an array.
1576      Array = 0x00,
1577      /// \brief A field.
1578      Field = 0x01,
1579      /// \brief A field in a dependent type, known only by its name.
1580      Identifier = 0x02,
1581      /// \brief An implicit indirection through a C++ base class, when the
1582      /// field found is in a base class.
1583      Base = 0x03
1584    };
1585
1586  private:
1587    enum { MaskBits = 2, Mask = 0x03 };
1588
1589    /// \brief The source range that covers this part of the designator.
1590    SourceRange Range;
1591
1592    /// \brief The data describing the designator, which comes in three
1593    /// different forms, depending on the lower two bits.
1594    ///   - An unsigned index into the array of Expr*'s stored after this node
1595    ///     in memory, for [constant-expression] designators.
1596    ///   - A FieldDecl*, for references to a known field.
1597    ///   - An IdentifierInfo*, for references to a field with a given name
1598    ///     when the class type is dependent.
1599    ///   - A CXXBaseSpecifier*, for references that look at a field in a
1600    ///     base class.
1601    uintptr_t Data;
1602
1603  public:
1604    /// \brief Create an offsetof node that refers to an array element.
1605    OffsetOfNode(SourceLocation LBracketLoc, unsigned Index,
1606                 SourceLocation RBracketLoc)
1607      : Range(LBracketLoc, RBracketLoc), Data((Index << 2) | Array) { }
1608
1609    /// \brief Create an offsetof node that refers to a field.
1610    OffsetOfNode(SourceLocation DotLoc, FieldDecl *Field,
1611                 SourceLocation NameLoc)
1612      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1613        Data(reinterpret_cast<uintptr_t>(Field) | OffsetOfNode::Field) { }
1614
1615    /// \brief Create an offsetof node that refers to an identifier.
1616    OffsetOfNode(SourceLocation DotLoc, IdentifierInfo *Name,
1617                 SourceLocation NameLoc)
1618      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1619        Data(reinterpret_cast<uintptr_t>(Name) | Identifier) { }
1620
1621    /// \brief Create an offsetof node that refers into a C++ base class.
1622    explicit OffsetOfNode(const CXXBaseSpecifier *Base)
1623      : Range(), Data(reinterpret_cast<uintptr_t>(Base) | OffsetOfNode::Base) {}
1624
1625    /// \brief Determine what kind of offsetof node this is.
1626    Kind getKind() const {
1627      return static_cast<Kind>(Data & Mask);
1628    }
1629
1630    /// \brief For an array element node, returns the index into the array
1631    /// of expressions.
1632    unsigned getArrayExprIndex() const {
1633      assert(getKind() == Array);
1634      return Data >> 2;
1635    }
1636
1637    /// \brief For a field offsetof node, returns the field.
1638    FieldDecl *getField() const {
1639      assert(getKind() == Field);
1640      return reinterpret_cast<FieldDecl *>(Data & ~(uintptr_t)Mask);
1641    }
1642
1643    /// \brief For a field or identifier offsetof node, returns the name of
1644    /// the field.
1645    IdentifierInfo *getFieldName() const;
1646
1647    /// \brief For a base class node, returns the base specifier.
1648    CXXBaseSpecifier *getBase() const {
1649      assert(getKind() == Base);
1650      return reinterpret_cast<CXXBaseSpecifier *>(Data & ~(uintptr_t)Mask);
1651    }
1652
1653    /// \brief Retrieve the source range that covers this offsetof node.
1654    ///
1655    /// For an array element node, the source range contains the locations of
1656    /// the square brackets. For a field or identifier node, the source range
1657    /// contains the location of the period (if there is one) and the
1658    /// identifier.
1659    SourceRange getSourceRange() const { return Range; }
1660  };
1661
1662private:
1663
1664  SourceLocation OperatorLoc, RParenLoc;
1665  // Base type;
1666  TypeSourceInfo *TSInfo;
1667  // Number of sub-components (i.e. instances of OffsetOfNode).
1668  unsigned NumComps;
1669  // Number of sub-expressions (i.e. array subscript expressions).
1670  unsigned NumExprs;
1671
1672  OffsetOfExpr(ASTContext &C, QualType type,
1673               SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1674               OffsetOfNode* compsPtr, unsigned numComps,
1675               Expr** exprsPtr, unsigned numExprs,
1676               SourceLocation RParenLoc);
1677
1678  explicit OffsetOfExpr(unsigned numComps, unsigned numExprs)
1679    : Expr(OffsetOfExprClass, EmptyShell()),
1680      TSInfo(0), NumComps(numComps), NumExprs(numExprs) {}
1681
1682public:
1683
1684  static OffsetOfExpr *Create(ASTContext &C, QualType type,
1685                              SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1686                              OffsetOfNode* compsPtr, unsigned numComps,
1687                              Expr** exprsPtr, unsigned numExprs,
1688                              SourceLocation RParenLoc);
1689
1690  static OffsetOfExpr *CreateEmpty(ASTContext &C,
1691                                   unsigned NumComps, unsigned NumExprs);
1692
1693  /// getOperatorLoc - Return the location of the operator.
1694  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1695  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
1696
1697  /// \brief Return the location of the right parentheses.
1698  SourceLocation getRParenLoc() const { return RParenLoc; }
1699  void setRParenLoc(SourceLocation R) { RParenLoc = R; }
1700
1701  TypeSourceInfo *getTypeSourceInfo() const {
1702    return TSInfo;
1703  }
1704  void setTypeSourceInfo(TypeSourceInfo *tsi) {
1705    TSInfo = tsi;
1706  }
1707
1708  const OffsetOfNode &getComponent(unsigned Idx) const {
1709    assert(Idx < NumComps && "Subscript out of range");
1710    return reinterpret_cast<const OffsetOfNode *> (this + 1)[Idx];
1711  }
1712
1713  void setComponent(unsigned Idx, OffsetOfNode ON) {
1714    assert(Idx < NumComps && "Subscript out of range");
1715    reinterpret_cast<OffsetOfNode *> (this + 1)[Idx] = ON;
1716  }
1717
1718  unsigned getNumComponents() const {
1719    return NumComps;
1720  }
1721
1722  Expr* getIndexExpr(unsigned Idx) {
1723    assert(Idx < NumExprs && "Subscript out of range");
1724    return reinterpret_cast<Expr **>(
1725                    reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx];
1726  }
1727  const Expr *getIndexExpr(unsigned Idx) const {
1728    return const_cast<OffsetOfExpr*>(this)->getIndexExpr(Idx);
1729  }
1730
1731  void setIndexExpr(unsigned Idx, Expr* E) {
1732    assert(Idx < NumComps && "Subscript out of range");
1733    reinterpret_cast<Expr **>(
1734                reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx] = E;
1735  }
1736
1737  unsigned getNumExpressions() const {
1738    return NumExprs;
1739  }
1740
1741  SourceRange getSourceRange() const {
1742    return SourceRange(OperatorLoc, RParenLoc);
1743  }
1744
1745  static bool classof(const Stmt *T) {
1746    return T->getStmtClass() == OffsetOfExprClass;
1747  }
1748
1749  static bool classof(const OffsetOfExpr *) { return true; }
1750
1751  // Iterators
1752  child_range children() {
1753    Stmt **begin =
1754      reinterpret_cast<Stmt**>(reinterpret_cast<OffsetOfNode*>(this + 1)
1755                               + NumComps);
1756    return child_range(begin, begin + NumExprs);
1757  }
1758};
1759
1760/// UnaryExprOrTypeTraitExpr - expression with either a type or (unevaluated)
1761/// expression operand.  Used for sizeof/alignof (C99 6.5.3.4) and
1762/// vec_step (OpenCL 1.1 6.11.12).
1763class UnaryExprOrTypeTraitExpr : public Expr {
1764  unsigned Kind : 2;
1765  bool isType : 1;    // true if operand is a type, false if an expression
1766  union {
1767    TypeSourceInfo *Ty;
1768    Stmt *Ex;
1769  } Argument;
1770  SourceLocation OpLoc, RParenLoc;
1771
1772public:
1773  UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, TypeSourceInfo *TInfo,
1774                           QualType resultType, SourceLocation op,
1775                           SourceLocation rp) :
1776      Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
1777           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1778           // Value-dependent if the argument is type-dependent.
1779           TInfo->getType()->isDependentType(),
1780           TInfo->getType()->isInstantiationDependentType(),
1781           TInfo->getType()->containsUnexpandedParameterPack()),
1782      Kind(ExprKind), isType(true), OpLoc(op), RParenLoc(rp) {
1783    Argument.Ty = TInfo;
1784  }
1785
1786  UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, Expr *E,
1787                           QualType resultType, SourceLocation op,
1788                           SourceLocation rp) :
1789      Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
1790           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1791           // Value-dependent if the argument is type-dependent.
1792           E->isTypeDependent(),
1793           E->isInstantiationDependent(),
1794           E->containsUnexpandedParameterPack()),
1795      Kind(ExprKind), isType(false), OpLoc(op), RParenLoc(rp) {
1796    Argument.Ex = E;
1797  }
1798
1799  /// \brief Construct an empty sizeof/alignof expression.
1800  explicit UnaryExprOrTypeTraitExpr(EmptyShell Empty)
1801    : Expr(UnaryExprOrTypeTraitExprClass, Empty) { }
1802
1803  UnaryExprOrTypeTrait getKind() const {
1804    return static_cast<UnaryExprOrTypeTrait>(Kind);
1805  }
1806  void setKind(UnaryExprOrTypeTrait K) { Kind = K; }
1807
1808  bool isArgumentType() const { return isType; }
1809  QualType getArgumentType() const {
1810    return getArgumentTypeInfo()->getType();
1811  }
1812  TypeSourceInfo *getArgumentTypeInfo() const {
1813    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
1814    return Argument.Ty;
1815  }
1816  Expr *getArgumentExpr() {
1817    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
1818    return static_cast<Expr*>(Argument.Ex);
1819  }
1820  const Expr *getArgumentExpr() const {
1821    return const_cast<UnaryExprOrTypeTraitExpr*>(this)->getArgumentExpr();
1822  }
1823
1824  void setArgument(Expr *E) { Argument.Ex = E; isType = false; }
1825  void setArgument(TypeSourceInfo *TInfo) {
1826    Argument.Ty = TInfo;
1827    isType = true;
1828  }
1829
1830  /// Gets the argument type, or the type of the argument expression, whichever
1831  /// is appropriate.
1832  QualType getTypeOfArgument() const {
1833    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
1834  }
1835
1836  SourceLocation getOperatorLoc() const { return OpLoc; }
1837  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
1838
1839  SourceLocation getRParenLoc() const { return RParenLoc; }
1840  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1841
1842  SourceRange getSourceRange() const {
1843    return SourceRange(OpLoc, RParenLoc);
1844  }
1845
1846  static bool classof(const Stmt *T) {
1847    return T->getStmtClass() == UnaryExprOrTypeTraitExprClass;
1848  }
1849  static bool classof(const UnaryExprOrTypeTraitExpr *) { return true; }
1850
1851  // Iterators
1852  child_range children();
1853};
1854
1855//===----------------------------------------------------------------------===//
1856// Postfix Operators.
1857//===----------------------------------------------------------------------===//
1858
1859/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
1860class ArraySubscriptExpr : public Expr {
1861  enum { LHS, RHS, END_EXPR=2 };
1862  Stmt* SubExprs[END_EXPR];
1863  SourceLocation RBracketLoc;
1864public:
1865  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
1866                     ExprValueKind VK, ExprObjectKind OK,
1867                     SourceLocation rbracketloc)
1868  : Expr(ArraySubscriptExprClass, t, VK, OK,
1869         lhs->isTypeDependent() || rhs->isTypeDependent(),
1870         lhs->isValueDependent() || rhs->isValueDependent(),
1871         (lhs->isInstantiationDependent() ||
1872          rhs->isInstantiationDependent()),
1873         (lhs->containsUnexpandedParameterPack() ||
1874          rhs->containsUnexpandedParameterPack())),
1875    RBracketLoc(rbracketloc) {
1876    SubExprs[LHS] = lhs;
1877    SubExprs[RHS] = rhs;
1878  }
1879
1880  /// \brief Create an empty array subscript expression.
1881  explicit ArraySubscriptExpr(EmptyShell Shell)
1882    : Expr(ArraySubscriptExprClass, Shell) { }
1883
1884  /// An array access can be written A[4] or 4[A] (both are equivalent).
1885  /// - getBase() and getIdx() always present the normalized view: A[4].
1886  ///    In this case getBase() returns "A" and getIdx() returns "4".
1887  /// - getLHS() and getRHS() present the syntactic view. e.g. for
1888  ///    4[A] getLHS() returns "4".
1889  /// Note: Because vector element access is also written A[4] we must
1890  /// predicate the format conversion in getBase and getIdx only on the
1891  /// the type of the RHS, as it is possible for the LHS to be a vector of
1892  /// integer type
1893  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
1894  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1895  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1896
1897  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
1898  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1899  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1900
1901  Expr *getBase() {
1902    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1903  }
1904
1905  const Expr *getBase() const {
1906    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1907  }
1908
1909  Expr *getIdx() {
1910    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1911  }
1912
1913  const Expr *getIdx() const {
1914    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1915  }
1916
1917  SourceRange getSourceRange() const {
1918    return SourceRange(getLHS()->getLocStart(), RBracketLoc);
1919  }
1920
1921  SourceLocation getRBracketLoc() const { return RBracketLoc; }
1922  void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
1923
1924  SourceLocation getExprLoc() const { return getBase()->getExprLoc(); }
1925
1926  static bool classof(const Stmt *T) {
1927    return T->getStmtClass() == ArraySubscriptExprClass;
1928  }
1929  static bool classof(const ArraySubscriptExpr *) { return true; }
1930
1931  // Iterators
1932  child_range children() {
1933    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
1934  }
1935};
1936
1937
1938/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
1939/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
1940/// while its subclasses may represent alternative syntax that (semantically)
1941/// results in a function call. For example, CXXOperatorCallExpr is
1942/// a subclass for overloaded operator calls that use operator syntax, e.g.,
1943/// "str1 + str2" to resolve to a function call.
1944class CallExpr : public Expr {
1945  enum { FN=0, PREARGS_START=1 };
1946  Stmt **SubExprs;
1947  unsigned NumArgs;
1948  SourceLocation RParenLoc;
1949
1950protected:
1951  // These versions of the constructor are for derived classes.
1952  CallExpr(ASTContext& C, StmtClass SC, Expr *fn, unsigned NumPreArgs,
1953           Expr **args, unsigned numargs, QualType t, ExprValueKind VK,
1954           SourceLocation rparenloc);
1955  CallExpr(ASTContext &C, StmtClass SC, unsigned NumPreArgs, EmptyShell Empty);
1956
1957  Stmt *getPreArg(unsigned i) {
1958    assert(i < getNumPreArgs() && "Prearg access out of range!");
1959    return SubExprs[PREARGS_START+i];
1960  }
1961  const Stmt *getPreArg(unsigned i) const {
1962    assert(i < getNumPreArgs() && "Prearg access out of range!");
1963    return SubExprs[PREARGS_START+i];
1964  }
1965  void setPreArg(unsigned i, Stmt *PreArg) {
1966    assert(i < getNumPreArgs() && "Prearg access out of range!");
1967    SubExprs[PREARGS_START+i] = PreArg;
1968  }
1969
1970  unsigned getNumPreArgs() const { return CallExprBits.NumPreArgs; }
1971
1972public:
1973  CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, QualType t,
1974           ExprValueKind VK, SourceLocation rparenloc);
1975
1976  /// \brief Build an empty call expression.
1977  CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty);
1978
1979  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
1980  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
1981  void setCallee(Expr *F) { SubExprs[FN] = F; }
1982
1983  Decl *getCalleeDecl();
1984  const Decl *getCalleeDecl() const {
1985    return const_cast<CallExpr*>(this)->getCalleeDecl();
1986  }
1987
1988  /// \brief If the callee is a FunctionDecl, return it. Otherwise return 0.
1989  FunctionDecl *getDirectCallee();
1990  const FunctionDecl *getDirectCallee() const {
1991    return const_cast<CallExpr*>(this)->getDirectCallee();
1992  }
1993
1994  /// getNumArgs - Return the number of actual arguments to this call.
1995  ///
1996  unsigned getNumArgs() const { return NumArgs; }
1997
1998  /// \brief Retrieve the call arguments.
1999  Expr **getArgs() {
2000    return reinterpret_cast<Expr **>(SubExprs+getNumPreArgs()+PREARGS_START);
2001  }
2002  const Expr *const *getArgs() const {
2003    return const_cast<CallExpr*>(this)->getArgs();
2004  }
2005
2006  /// getArg - Return the specified argument.
2007  Expr *getArg(unsigned Arg) {
2008    assert(Arg < NumArgs && "Arg access out of range!");
2009    return cast<Expr>(SubExprs[Arg+getNumPreArgs()+PREARGS_START]);
2010  }
2011  const Expr *getArg(unsigned Arg) const {
2012    assert(Arg < NumArgs && "Arg access out of range!");
2013    return cast<Expr>(SubExprs[Arg+getNumPreArgs()+PREARGS_START]);
2014  }
2015
2016  /// setArg - Set the specified argument.
2017  void setArg(unsigned Arg, Expr *ArgExpr) {
2018    assert(Arg < NumArgs && "Arg access out of range!");
2019    SubExprs[Arg+getNumPreArgs()+PREARGS_START] = ArgExpr;
2020  }
2021
2022  /// setNumArgs - This changes the number of arguments present in this call.
2023  /// Any orphaned expressions are deleted by this, and any new operands are set
2024  /// to null.
2025  void setNumArgs(ASTContext& C, unsigned NumArgs);
2026
2027  typedef ExprIterator arg_iterator;
2028  typedef ConstExprIterator const_arg_iterator;
2029
2030  arg_iterator arg_begin() { return SubExprs+PREARGS_START+getNumPreArgs(); }
2031  arg_iterator arg_end() {
2032    return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
2033  }
2034  const_arg_iterator arg_begin() const {
2035    return SubExprs+PREARGS_START+getNumPreArgs();
2036  }
2037  const_arg_iterator arg_end() const {
2038    return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
2039  }
2040
2041  /// getNumCommas - Return the number of commas that must have been present in
2042  /// this function call.
2043  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
2044
2045  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
2046  /// not, return 0.
2047  unsigned isBuiltinCall() const;
2048
2049  /// getCallReturnType - Get the return type of the call expr. This is not
2050  /// always the type of the expr itself, if the return type is a reference
2051  /// type.
2052  QualType getCallReturnType() const;
2053
2054  SourceLocation getRParenLoc() const { return RParenLoc; }
2055  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2056
2057  SourceRange getSourceRange() const;
2058
2059  static bool classof(const Stmt *T) {
2060    return T->getStmtClass() >= firstCallExprConstant &&
2061           T->getStmtClass() <= lastCallExprConstant;
2062  }
2063  static bool classof(const CallExpr *) { return true; }
2064
2065  // Iterators
2066  child_range children() {
2067    return child_range(&SubExprs[0],
2068                       &SubExprs[0]+NumArgs+getNumPreArgs()+PREARGS_START);
2069  }
2070};
2071
2072/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.  X->F and X.F.
2073///
2074class MemberExpr : public Expr {
2075  /// Extra data stored in some member expressions.
2076  struct MemberNameQualifier {
2077    /// \brief The nested-name-specifier that qualifies the name, including
2078    /// source-location information.
2079    NestedNameSpecifierLoc QualifierLoc;
2080
2081    /// \brief The DeclAccessPair through which the MemberDecl was found due to
2082    /// name qualifiers.
2083    DeclAccessPair FoundDecl;
2084  };
2085
2086  /// Base - the expression for the base pointer or structure references.  In
2087  /// X.F, this is "X".
2088  Stmt *Base;
2089
2090  /// MemberDecl - This is the decl being referenced by the field/member name.
2091  /// In X.F, this is the decl referenced by F.
2092  ValueDecl *MemberDecl;
2093
2094  /// MemberLoc - This is the location of the member name.
2095  SourceLocation MemberLoc;
2096
2097  /// MemberDNLoc - Provides source/type location info for the
2098  /// declaration name embedded in MemberDecl.
2099  DeclarationNameLoc MemberDNLoc;
2100
2101  /// IsArrow - True if this is "X->F", false if this is "X.F".
2102  bool IsArrow : 1;
2103
2104  /// \brief True if this member expression used a nested-name-specifier to
2105  /// refer to the member, e.g., "x->Base::f", or found its member via a using
2106  /// declaration.  When true, a MemberNameQualifier
2107  /// structure is allocated immediately after the MemberExpr.
2108  bool HasQualifierOrFoundDecl : 1;
2109
2110  /// \brief True if this member expression specified a template argument list
2111  /// explicitly, e.g., x->f<int>. When true, an ExplicitTemplateArgumentList
2112  /// structure (and its TemplateArguments) are allocated immediately after
2113  /// the MemberExpr or, if the member expression also has a qualifier, after
2114  /// the MemberNameQualifier structure.
2115  bool HasExplicitTemplateArgumentList : 1;
2116
2117  /// \brief True if this member expression refers to a method that
2118  /// was resolved from an overloaded set having size greater than 1.
2119  bool HadMultipleCandidates : 1;
2120
2121  /// \brief Retrieve the qualifier that preceded the member name, if any.
2122  MemberNameQualifier *getMemberQualifier() {
2123    assert(HasQualifierOrFoundDecl);
2124    return reinterpret_cast<MemberNameQualifier *> (this + 1);
2125  }
2126
2127  /// \brief Retrieve the qualifier that preceded the member name, if any.
2128  const MemberNameQualifier *getMemberQualifier() const {
2129    return const_cast<MemberExpr *>(this)->getMemberQualifier();
2130  }
2131
2132public:
2133  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
2134             const DeclarationNameInfo &NameInfo, QualType ty,
2135             ExprValueKind VK, ExprObjectKind OK)
2136    : Expr(MemberExprClass, ty, VK, OK,
2137           base->isTypeDependent(),
2138           base->isValueDependent(),
2139           base->isInstantiationDependent(),
2140           base->containsUnexpandedParameterPack()),
2141      Base(base), MemberDecl(memberdecl), MemberLoc(NameInfo.getLoc()),
2142      MemberDNLoc(NameInfo.getInfo()), IsArrow(isarrow),
2143      HasQualifierOrFoundDecl(false), HasExplicitTemplateArgumentList(false),
2144      HadMultipleCandidates(false) {
2145    assert(memberdecl->getDeclName() == NameInfo.getName());
2146  }
2147
2148  // NOTE: this constructor should be used only when it is known that
2149  // the member name can not provide additional syntactic info
2150  // (i.e., source locations for C++ operator names or type source info
2151  // for constructors, destructors and conversion oeprators).
2152  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
2153             SourceLocation l, QualType ty,
2154             ExprValueKind VK, ExprObjectKind OK)
2155    : Expr(MemberExprClass, ty, VK, OK,
2156           base->isTypeDependent(), base->isValueDependent(),
2157           base->isInstantiationDependent(),
2158           base->containsUnexpandedParameterPack()),
2159      Base(base), MemberDecl(memberdecl), MemberLoc(l), MemberDNLoc(),
2160      IsArrow(isarrow),
2161      HasQualifierOrFoundDecl(false), HasExplicitTemplateArgumentList(false),
2162      HadMultipleCandidates(false) {}
2163
2164  static MemberExpr *Create(ASTContext &C, Expr *base, bool isarrow,
2165                            NestedNameSpecifierLoc QualifierLoc,
2166                            ValueDecl *memberdecl, DeclAccessPair founddecl,
2167                            DeclarationNameInfo MemberNameInfo,
2168                            const TemplateArgumentListInfo *targs,
2169                            QualType ty, ExprValueKind VK, ExprObjectKind OK);
2170
2171  void setBase(Expr *E) { Base = E; }
2172  Expr *getBase() const { return cast<Expr>(Base); }
2173
2174  /// \brief Retrieve the member declaration to which this expression refers.
2175  ///
2176  /// The returned declaration will either be a FieldDecl or (in C++)
2177  /// a CXXMethodDecl.
2178  ValueDecl *getMemberDecl() const { return MemberDecl; }
2179  void setMemberDecl(ValueDecl *D) { MemberDecl = D; }
2180
2181  /// \brief Retrieves the declaration found by lookup.
2182  DeclAccessPair getFoundDecl() const {
2183    if (!HasQualifierOrFoundDecl)
2184      return DeclAccessPair::make(getMemberDecl(),
2185                                  getMemberDecl()->getAccess());
2186    return getMemberQualifier()->FoundDecl;
2187  }
2188
2189  /// \brief Determines whether this member expression actually had
2190  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
2191  /// x->Base::foo.
2192  bool hasQualifier() const { return getQualifier() != 0; }
2193
2194  /// \brief If the member name was qualified, retrieves the
2195  /// nested-name-specifier that precedes the member name. Otherwise, returns
2196  /// NULL.
2197  NestedNameSpecifier *getQualifier() const {
2198    if (!HasQualifierOrFoundDecl)
2199      return 0;
2200
2201    return getMemberQualifier()->QualifierLoc.getNestedNameSpecifier();
2202  }
2203
2204  /// \brief If the member name was qualified, retrieves the
2205  /// nested-name-specifier that precedes the member name, with source-location
2206  /// information.
2207  NestedNameSpecifierLoc getQualifierLoc() const {
2208    if (!hasQualifier())
2209      return NestedNameSpecifierLoc();
2210
2211    return getMemberQualifier()->QualifierLoc;
2212  }
2213
2214  /// \brief Determines whether this member expression actually had a C++
2215  /// template argument list explicitly specified, e.g., x.f<int>.
2216  bool hasExplicitTemplateArgs() const {
2217    return HasExplicitTemplateArgumentList;
2218  }
2219
2220  /// \brief Copies the template arguments (if present) into the given
2221  /// structure.
2222  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2223    if (hasExplicitTemplateArgs())
2224      getExplicitTemplateArgs().copyInto(List);
2225  }
2226
2227  /// \brief Retrieve the explicit template argument list that
2228  /// follow the member template name.  This must only be called on an
2229  /// expression with explicit template arguments.
2230  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
2231    assert(HasExplicitTemplateArgumentList);
2232    if (!HasQualifierOrFoundDecl)
2233      return *reinterpret_cast<ASTTemplateArgumentListInfo *>(this + 1);
2234
2235    return *reinterpret_cast<ASTTemplateArgumentListInfo *>(
2236                                                      getMemberQualifier() + 1);
2237  }
2238
2239  /// \brief Retrieve the explicit template argument list that
2240  /// followed the member template name.  This must only be called on
2241  /// an expression with explicit template arguments.
2242  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2243    return const_cast<MemberExpr *>(this)->getExplicitTemplateArgs();
2244  }
2245
2246  /// \brief Retrieves the optional explicit template arguments.
2247  /// This points to the same data as getExplicitTemplateArgs(), but
2248  /// returns null if there are no explicit template arguments.
2249  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() const {
2250    if (!hasExplicitTemplateArgs()) return 0;
2251    return &getExplicitTemplateArgs();
2252  }
2253
2254  /// \brief Retrieve the location of the left angle bracket following the
2255  /// member name ('<'), if any.
2256  SourceLocation getLAngleLoc() const {
2257    if (!HasExplicitTemplateArgumentList)
2258      return SourceLocation();
2259
2260    return getExplicitTemplateArgs().LAngleLoc;
2261  }
2262
2263  /// \brief Retrieve the template arguments provided as part of this
2264  /// template-id.
2265  const TemplateArgumentLoc *getTemplateArgs() const {
2266    if (!HasExplicitTemplateArgumentList)
2267      return 0;
2268
2269    return getExplicitTemplateArgs().getTemplateArgs();
2270  }
2271
2272  /// \brief Retrieve the number of template arguments provided as part of this
2273  /// template-id.
2274  unsigned getNumTemplateArgs() const {
2275    if (!HasExplicitTemplateArgumentList)
2276      return 0;
2277
2278    return getExplicitTemplateArgs().NumTemplateArgs;
2279  }
2280
2281  /// \brief Retrieve the location of the right angle bracket following the
2282  /// template arguments ('>').
2283  SourceLocation getRAngleLoc() const {
2284    if (!HasExplicitTemplateArgumentList)
2285      return SourceLocation();
2286
2287    return getExplicitTemplateArgs().RAngleLoc;
2288  }
2289
2290  /// \brief Retrieve the member declaration name info.
2291  DeclarationNameInfo getMemberNameInfo() const {
2292    return DeclarationNameInfo(MemberDecl->getDeclName(),
2293                               MemberLoc, MemberDNLoc);
2294  }
2295
2296  bool isArrow() const { return IsArrow; }
2297  void setArrow(bool A) { IsArrow = A; }
2298
2299  /// getMemberLoc - Return the location of the "member", in X->F, it is the
2300  /// location of 'F'.
2301  SourceLocation getMemberLoc() const { return MemberLoc; }
2302  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
2303
2304  SourceRange getSourceRange() const;
2305
2306  SourceLocation getExprLoc() const { return MemberLoc; }
2307
2308  /// \brief Determine whether the base of this explicit is implicit.
2309  bool isImplicitAccess() const {
2310    return getBase() && getBase()->isImplicitCXXThis();
2311  }
2312
2313  /// \brief Returns true if this member expression refers to a method that
2314  /// was resolved from an overloaded set having size greater than 1.
2315  bool hadMultipleCandidates() const {
2316    return HadMultipleCandidates;
2317  }
2318  /// \brief Sets the flag telling whether this expression refers to
2319  /// a method that was resolved from an overloaded set having size
2320  /// greater than 1.
2321  void setHadMultipleCandidates(bool V = true) {
2322    HadMultipleCandidates = V;
2323  }
2324
2325  static bool classof(const Stmt *T) {
2326    return T->getStmtClass() == MemberExprClass;
2327  }
2328  static bool classof(const MemberExpr *) { return true; }
2329
2330  // Iterators
2331  child_range children() { return child_range(&Base, &Base+1); }
2332
2333  friend class ASTReader;
2334  friend class ASTStmtWriter;
2335};
2336
2337/// CompoundLiteralExpr - [C99 6.5.2.5]
2338///
2339class CompoundLiteralExpr : public Expr {
2340  /// LParenLoc - If non-null, this is the location of the left paren in a
2341  /// compound literal like "(int){4}".  This can be null if this is a
2342  /// synthesized compound expression.
2343  SourceLocation LParenLoc;
2344
2345  /// The type as written.  This can be an incomplete array type, in
2346  /// which case the actual expression type will be different.
2347  TypeSourceInfo *TInfo;
2348  Stmt *Init;
2349  bool FileScope;
2350public:
2351  CompoundLiteralExpr(SourceLocation lparenloc, TypeSourceInfo *tinfo,
2352                      QualType T, ExprValueKind VK, Expr *init, bool fileScope)
2353    : Expr(CompoundLiteralExprClass, T, VK, OK_Ordinary,
2354           tinfo->getType()->isDependentType(),
2355           init->isValueDependent(),
2356           (init->isInstantiationDependent() ||
2357            tinfo->getType()->isInstantiationDependentType()),
2358           init->containsUnexpandedParameterPack()),
2359      LParenLoc(lparenloc), TInfo(tinfo), Init(init), FileScope(fileScope) {}
2360
2361  /// \brief Construct an empty compound literal.
2362  explicit CompoundLiteralExpr(EmptyShell Empty)
2363    : Expr(CompoundLiteralExprClass, Empty) { }
2364
2365  const Expr *getInitializer() const { return cast<Expr>(Init); }
2366  Expr *getInitializer() { return cast<Expr>(Init); }
2367  void setInitializer(Expr *E) { Init = E; }
2368
2369  bool isFileScope() const { return FileScope; }
2370  void setFileScope(bool FS) { FileScope = FS; }
2371
2372  SourceLocation getLParenLoc() const { return LParenLoc; }
2373  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2374
2375  TypeSourceInfo *getTypeSourceInfo() const { return TInfo; }
2376  void setTypeSourceInfo(TypeSourceInfo* tinfo) { TInfo = tinfo; }
2377
2378  SourceRange getSourceRange() const {
2379    // FIXME: Init should never be null.
2380    if (!Init)
2381      return SourceRange();
2382    if (LParenLoc.isInvalid())
2383      return Init->getSourceRange();
2384    return SourceRange(LParenLoc, Init->getLocEnd());
2385  }
2386
2387  static bool classof(const Stmt *T) {
2388    return T->getStmtClass() == CompoundLiteralExprClass;
2389  }
2390  static bool classof(const CompoundLiteralExpr *) { return true; }
2391
2392  // Iterators
2393  child_range children() { return child_range(&Init, &Init+1); }
2394};
2395
2396/// CastExpr - Base class for type casts, including both implicit
2397/// casts (ImplicitCastExpr) and explicit casts that have some
2398/// representation in the source code (ExplicitCastExpr's derived
2399/// classes).
2400class CastExpr : public Expr {
2401public:
2402  typedef clang::CastKind CastKind;
2403
2404private:
2405  Stmt *Op;
2406
2407  void CheckCastConsistency() const;
2408
2409  const CXXBaseSpecifier * const *path_buffer() const {
2410    return const_cast<CastExpr*>(this)->path_buffer();
2411  }
2412  CXXBaseSpecifier **path_buffer();
2413
2414  void setBasePathSize(unsigned basePathSize) {
2415    CastExprBits.BasePathSize = basePathSize;
2416    assert(CastExprBits.BasePathSize == basePathSize &&
2417           "basePathSize doesn't fit in bits of CastExprBits.BasePathSize!");
2418  }
2419
2420protected:
2421  CastExpr(StmtClass SC, QualType ty, ExprValueKind VK,
2422           const CastKind kind, Expr *op, unsigned BasePathSize) :
2423    Expr(SC, ty, VK, OK_Ordinary,
2424         // Cast expressions are type-dependent if the type is
2425         // dependent (C++ [temp.dep.expr]p3).
2426         ty->isDependentType(),
2427         // Cast expressions are value-dependent if the type is
2428         // dependent or if the subexpression is value-dependent.
2429         ty->isDependentType() || (op && op->isValueDependent()),
2430         (ty->isInstantiationDependentType() ||
2431          (op && op->isInstantiationDependent())),
2432         (ty->containsUnexpandedParameterPack() ||
2433          op->containsUnexpandedParameterPack())),
2434    Op(op) {
2435    assert(kind != CK_Invalid && "creating cast with invalid cast kind");
2436    CastExprBits.Kind = kind;
2437    setBasePathSize(BasePathSize);
2438#ifndef NDEBUG
2439    CheckCastConsistency();
2440#endif
2441  }
2442
2443  /// \brief Construct an empty cast.
2444  CastExpr(StmtClass SC, EmptyShell Empty, unsigned BasePathSize)
2445    : Expr(SC, Empty) {
2446    setBasePathSize(BasePathSize);
2447  }
2448
2449public:
2450  CastKind getCastKind() const { return (CastKind) CastExprBits.Kind; }
2451  void setCastKind(CastKind K) { CastExprBits.Kind = K; }
2452  const char *getCastKindName() const;
2453
2454  Expr *getSubExpr() { return cast<Expr>(Op); }
2455  const Expr *getSubExpr() const { return cast<Expr>(Op); }
2456  void setSubExpr(Expr *E) { Op = E; }
2457
2458  /// \brief Retrieve the cast subexpression as it was written in the source
2459  /// code, looking through any implicit casts or other intermediate nodes
2460  /// introduced by semantic analysis.
2461  Expr *getSubExprAsWritten();
2462  const Expr *getSubExprAsWritten() const {
2463    return const_cast<CastExpr *>(this)->getSubExprAsWritten();
2464  }
2465
2466  typedef CXXBaseSpecifier **path_iterator;
2467  typedef const CXXBaseSpecifier * const *path_const_iterator;
2468  bool path_empty() const { return CastExprBits.BasePathSize == 0; }
2469  unsigned path_size() const { return CastExprBits.BasePathSize; }
2470  path_iterator path_begin() { return path_buffer(); }
2471  path_iterator path_end() { return path_buffer() + path_size(); }
2472  path_const_iterator path_begin() const { return path_buffer(); }
2473  path_const_iterator path_end() const { return path_buffer() + path_size(); }
2474
2475  void setCastPath(const CXXCastPath &Path);
2476
2477  static bool classof(const Stmt *T) {
2478    return T->getStmtClass() >= firstCastExprConstant &&
2479           T->getStmtClass() <= lastCastExprConstant;
2480  }
2481  static bool classof(const CastExpr *) { return true; }
2482
2483  // Iterators
2484  child_range children() { return child_range(&Op, &Op+1); }
2485};
2486
2487/// ImplicitCastExpr - Allows us to explicitly represent implicit type
2488/// conversions, which have no direct representation in the original
2489/// source code. For example: converting T[]->T*, void f()->void
2490/// (*f)(), float->double, short->int, etc.
2491///
2492/// In C, implicit casts always produce rvalues. However, in C++, an
2493/// implicit cast whose result is being bound to a reference will be
2494/// an lvalue or xvalue. For example:
2495///
2496/// @code
2497/// class Base { };
2498/// class Derived : public Base { };
2499/// Derived &&ref();
2500/// void f(Derived d) {
2501///   Base& b = d; // initializer is an ImplicitCastExpr
2502///                // to an lvalue of type Base
2503///   Base&& r = ref(); // initializer is an ImplicitCastExpr
2504///                     // to an xvalue of type Base
2505/// }
2506/// @endcode
2507class ImplicitCastExpr : public CastExpr {
2508private:
2509  ImplicitCastExpr(QualType ty, CastKind kind, Expr *op,
2510                   unsigned BasePathLength, ExprValueKind VK)
2511    : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, BasePathLength) {
2512  }
2513
2514  /// \brief Construct an empty implicit cast.
2515  explicit ImplicitCastExpr(EmptyShell Shell, unsigned PathSize)
2516    : CastExpr(ImplicitCastExprClass, Shell, PathSize) { }
2517
2518public:
2519  enum OnStack_t { OnStack };
2520  ImplicitCastExpr(OnStack_t _, QualType ty, CastKind kind, Expr *op,
2521                   ExprValueKind VK)
2522    : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, 0) {
2523  }
2524
2525  static ImplicitCastExpr *Create(ASTContext &Context, QualType T,
2526                                  CastKind Kind, Expr *Operand,
2527                                  const CXXCastPath *BasePath,
2528                                  ExprValueKind Cat);
2529
2530  static ImplicitCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize);
2531
2532  SourceRange getSourceRange() const {
2533    return getSubExpr()->getSourceRange();
2534  }
2535
2536  static bool classof(const Stmt *T) {
2537    return T->getStmtClass() == ImplicitCastExprClass;
2538  }
2539  static bool classof(const ImplicitCastExpr *) { return true; }
2540};
2541
2542inline Expr *Expr::IgnoreImpCasts() {
2543  Expr *e = this;
2544  while (ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
2545    e = ice->getSubExpr();
2546  return e;
2547}
2548
2549/// ExplicitCastExpr - An explicit cast written in the source
2550/// code.
2551///
2552/// This class is effectively an abstract class, because it provides
2553/// the basic representation of an explicitly-written cast without
2554/// specifying which kind of cast (C cast, functional cast, static
2555/// cast, etc.) was written; specific derived classes represent the
2556/// particular style of cast and its location information.
2557///
2558/// Unlike implicit casts, explicit cast nodes have two different
2559/// types: the type that was written into the source code, and the
2560/// actual type of the expression as determined by semantic
2561/// analysis. These types may differ slightly. For example, in C++ one
2562/// can cast to a reference type, which indicates that the resulting
2563/// expression will be an lvalue or xvalue. The reference type, however,
2564/// will not be used as the type of the expression.
2565class ExplicitCastExpr : public CastExpr {
2566  /// TInfo - Source type info for the (written) type
2567  /// this expression is casting to.
2568  TypeSourceInfo *TInfo;
2569
2570protected:
2571  ExplicitCastExpr(StmtClass SC, QualType exprTy, ExprValueKind VK,
2572                   CastKind kind, Expr *op, unsigned PathSize,
2573                   TypeSourceInfo *writtenTy)
2574    : CastExpr(SC, exprTy, VK, kind, op, PathSize), TInfo(writtenTy) {}
2575
2576  /// \brief Construct an empty explicit cast.
2577  ExplicitCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
2578    : CastExpr(SC, Shell, PathSize) { }
2579
2580public:
2581  /// getTypeInfoAsWritten - Returns the type source info for the type
2582  /// that this expression is casting to.
2583  TypeSourceInfo *getTypeInfoAsWritten() const { return TInfo; }
2584  void setTypeInfoAsWritten(TypeSourceInfo *writtenTy) { TInfo = writtenTy; }
2585
2586  /// getTypeAsWritten - Returns the type that this expression is
2587  /// casting to, as written in the source code.
2588  QualType getTypeAsWritten() const { return TInfo->getType(); }
2589
2590  static bool classof(const Stmt *T) {
2591     return T->getStmtClass() >= firstExplicitCastExprConstant &&
2592            T->getStmtClass() <= lastExplicitCastExprConstant;
2593  }
2594  static bool classof(const ExplicitCastExpr *) { return true; }
2595};
2596
2597/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
2598/// cast in C++ (C++ [expr.cast]), which uses the syntax
2599/// (Type)expr. For example: @c (int)f.
2600class CStyleCastExpr : public ExplicitCastExpr {
2601  SourceLocation LPLoc; // the location of the left paren
2602  SourceLocation RPLoc; // the location of the right paren
2603
2604  CStyleCastExpr(QualType exprTy, ExprValueKind vk, CastKind kind, Expr *op,
2605                 unsigned PathSize, TypeSourceInfo *writtenTy,
2606                 SourceLocation l, SourceLocation r)
2607    : ExplicitCastExpr(CStyleCastExprClass, exprTy, vk, kind, op, PathSize,
2608                       writtenTy), LPLoc(l), RPLoc(r) {}
2609
2610  /// \brief Construct an empty C-style explicit cast.
2611  explicit CStyleCastExpr(EmptyShell Shell, unsigned PathSize)
2612    : ExplicitCastExpr(CStyleCastExprClass, Shell, PathSize) { }
2613
2614public:
2615  static CStyleCastExpr *Create(ASTContext &Context, QualType T,
2616                                ExprValueKind VK, CastKind K,
2617                                Expr *Op, const CXXCastPath *BasePath,
2618                                TypeSourceInfo *WrittenTy, SourceLocation L,
2619                                SourceLocation R);
2620
2621  static CStyleCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize);
2622
2623  SourceLocation getLParenLoc() const { return LPLoc; }
2624  void setLParenLoc(SourceLocation L) { LPLoc = L; }
2625
2626  SourceLocation getRParenLoc() const { return RPLoc; }
2627  void setRParenLoc(SourceLocation L) { RPLoc = L; }
2628
2629  SourceRange getSourceRange() const {
2630    return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd());
2631  }
2632  static bool classof(const Stmt *T) {
2633    return T->getStmtClass() == CStyleCastExprClass;
2634  }
2635  static bool classof(const CStyleCastExpr *) { return true; }
2636};
2637
2638/// \brief A builtin binary operation expression such as "x + y" or "x <= y".
2639///
2640/// This expression node kind describes a builtin binary operation,
2641/// such as "x + y" for integer values "x" and "y". The operands will
2642/// already have been converted to appropriate types (e.g., by
2643/// performing promotions or conversions).
2644///
2645/// In C++, where operators may be overloaded, a different kind of
2646/// expression node (CXXOperatorCallExpr) is used to express the
2647/// invocation of an overloaded operator with operator syntax. Within
2648/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
2649/// used to store an expression "x + y" depends on the subexpressions
2650/// for x and y. If neither x or y is type-dependent, and the "+"
2651/// operator resolves to a built-in operation, BinaryOperator will be
2652/// used to express the computation (x and y may still be
2653/// value-dependent). If either x or y is type-dependent, or if the
2654/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
2655/// be used to express the computation.
2656class BinaryOperator : public Expr {
2657public:
2658  typedef BinaryOperatorKind Opcode;
2659
2660private:
2661  unsigned Opc : 6;
2662  SourceLocation OpLoc;
2663
2664  enum { LHS, RHS, END_EXPR };
2665  Stmt* SubExprs[END_EXPR];
2666public:
2667
2668  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2669                 ExprValueKind VK, ExprObjectKind OK,
2670                 SourceLocation opLoc)
2671    : Expr(BinaryOperatorClass, ResTy, VK, OK,
2672           lhs->isTypeDependent() || rhs->isTypeDependent(),
2673           lhs->isValueDependent() || rhs->isValueDependent(),
2674           (lhs->isInstantiationDependent() ||
2675            rhs->isInstantiationDependent()),
2676           (lhs->containsUnexpandedParameterPack() ||
2677            rhs->containsUnexpandedParameterPack())),
2678      Opc(opc), OpLoc(opLoc) {
2679    SubExprs[LHS] = lhs;
2680    SubExprs[RHS] = rhs;
2681    assert(!isCompoundAssignmentOp() &&
2682           "Use ArithAssignBinaryOperator for compound assignments");
2683  }
2684
2685  /// \brief Construct an empty binary operator.
2686  explicit BinaryOperator(EmptyShell Empty)
2687    : Expr(BinaryOperatorClass, Empty), Opc(BO_Comma) { }
2688
2689  SourceLocation getExprLoc() const { return OpLoc; }
2690  SourceLocation getOperatorLoc() const { return OpLoc; }
2691  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
2692
2693  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
2694  void setOpcode(Opcode O) { Opc = O; }
2695
2696  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2697  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2698  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2699  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2700
2701  SourceRange getSourceRange() const {
2702    return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
2703  }
2704
2705  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
2706  /// corresponds to, e.g. "<<=".
2707  static const char *getOpcodeStr(Opcode Op);
2708
2709  const char *getOpcodeStr() const { return getOpcodeStr(getOpcode()); }
2710
2711  /// \brief Retrieve the binary opcode that corresponds to the given
2712  /// overloaded operator.
2713  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
2714
2715  /// \brief Retrieve the overloaded operator kind that corresponds to
2716  /// the given binary opcode.
2717  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
2718
2719  /// predicates to categorize the respective opcodes.
2720  bool isPtrMemOp() const { return Opc == BO_PtrMemD || Opc == BO_PtrMemI; }
2721  bool isMultiplicativeOp() const { return Opc >= BO_Mul && Opc <= BO_Rem; }
2722  static bool isAdditiveOp(Opcode Opc) { return Opc == BO_Add || Opc==BO_Sub; }
2723  bool isAdditiveOp() const { return isAdditiveOp(getOpcode()); }
2724  static bool isShiftOp(Opcode Opc) { return Opc == BO_Shl || Opc == BO_Shr; }
2725  bool isShiftOp() const { return isShiftOp(getOpcode()); }
2726
2727  static bool isBitwiseOp(Opcode Opc) { return Opc >= BO_And && Opc <= BO_Or; }
2728  bool isBitwiseOp() const { return isBitwiseOp(getOpcode()); }
2729
2730  static bool isRelationalOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_GE; }
2731  bool isRelationalOp() const { return isRelationalOp(getOpcode()); }
2732
2733  static bool isEqualityOp(Opcode Opc) { return Opc == BO_EQ || Opc == BO_NE; }
2734  bool isEqualityOp() const { return isEqualityOp(getOpcode()); }
2735
2736  static bool isComparisonOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_NE; }
2737  bool isComparisonOp() const { return isComparisonOp(getOpcode()); }
2738
2739  static bool isLogicalOp(Opcode Opc) { return Opc == BO_LAnd || Opc==BO_LOr; }
2740  bool isLogicalOp() const { return isLogicalOp(getOpcode()); }
2741
2742  static bool isAssignmentOp(Opcode Opc) {
2743    return Opc >= BO_Assign && Opc <= BO_OrAssign;
2744  }
2745  bool isAssignmentOp() const { return isAssignmentOp(getOpcode()); }
2746
2747  static bool isCompoundAssignmentOp(Opcode Opc) {
2748    return Opc > BO_Assign && Opc <= BO_OrAssign;
2749  }
2750  bool isCompoundAssignmentOp() const {
2751    return isCompoundAssignmentOp(getOpcode());
2752  }
2753  static Opcode getOpForCompoundAssignment(Opcode Opc) {
2754    assert(isCompoundAssignmentOp(Opc));
2755    if (Opc >= BO_AndAssign)
2756      return Opcode(unsigned(Opc) - BO_AndAssign + BO_And);
2757    else
2758      return Opcode(unsigned(Opc) - BO_MulAssign + BO_Mul);
2759  }
2760
2761  static bool isShiftAssignOp(Opcode Opc) {
2762    return Opc == BO_ShlAssign || Opc == BO_ShrAssign;
2763  }
2764  bool isShiftAssignOp() const {
2765    return isShiftAssignOp(getOpcode());
2766  }
2767
2768  static bool classof(const Stmt *S) {
2769    return S->getStmtClass() >= firstBinaryOperatorConstant &&
2770           S->getStmtClass() <= lastBinaryOperatorConstant;
2771  }
2772  static bool classof(const BinaryOperator *) { return true; }
2773
2774  // Iterators
2775  child_range children() {
2776    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
2777  }
2778
2779protected:
2780  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2781                 ExprValueKind VK, ExprObjectKind OK,
2782                 SourceLocation opLoc, bool dead)
2783    : Expr(CompoundAssignOperatorClass, ResTy, VK, OK,
2784           lhs->isTypeDependent() || rhs->isTypeDependent(),
2785           lhs->isValueDependent() || rhs->isValueDependent(),
2786           (lhs->isInstantiationDependent() ||
2787            rhs->isInstantiationDependent()),
2788           (lhs->containsUnexpandedParameterPack() ||
2789            rhs->containsUnexpandedParameterPack())),
2790      Opc(opc), OpLoc(opLoc) {
2791    SubExprs[LHS] = lhs;
2792    SubExprs[RHS] = rhs;
2793  }
2794
2795  BinaryOperator(StmtClass SC, EmptyShell Empty)
2796    : Expr(SC, Empty), Opc(BO_MulAssign) { }
2797};
2798
2799/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
2800/// track of the type the operation is performed in.  Due to the semantics of
2801/// these operators, the operands are promoted, the arithmetic performed, an
2802/// implicit conversion back to the result type done, then the assignment takes
2803/// place.  This captures the intermediate type which the computation is done
2804/// in.
2805class CompoundAssignOperator : public BinaryOperator {
2806  QualType ComputationLHSType;
2807  QualType ComputationResultType;
2808public:
2809  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResType,
2810                         ExprValueKind VK, ExprObjectKind OK,
2811                         QualType CompLHSType, QualType CompResultType,
2812                         SourceLocation OpLoc)
2813    : BinaryOperator(lhs, rhs, opc, ResType, VK, OK, OpLoc, true),
2814      ComputationLHSType(CompLHSType),
2815      ComputationResultType(CompResultType) {
2816    assert(isCompoundAssignmentOp() &&
2817           "Only should be used for compound assignments");
2818  }
2819
2820  /// \brief Build an empty compound assignment operator expression.
2821  explicit CompoundAssignOperator(EmptyShell Empty)
2822    : BinaryOperator(CompoundAssignOperatorClass, Empty) { }
2823
2824  // The two computation types are the type the LHS is converted
2825  // to for the computation and the type of the result; the two are
2826  // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
2827  QualType getComputationLHSType() const { return ComputationLHSType; }
2828  void setComputationLHSType(QualType T) { ComputationLHSType = T; }
2829
2830  QualType getComputationResultType() const { return ComputationResultType; }
2831  void setComputationResultType(QualType T) { ComputationResultType = T; }
2832
2833  static bool classof(const CompoundAssignOperator *) { return true; }
2834  static bool classof(const Stmt *S) {
2835    return S->getStmtClass() == CompoundAssignOperatorClass;
2836  }
2837};
2838
2839/// AbstractConditionalOperator - An abstract base class for
2840/// ConditionalOperator and BinaryConditionalOperator.
2841class AbstractConditionalOperator : public Expr {
2842  SourceLocation QuestionLoc, ColonLoc;
2843  friend class ASTStmtReader;
2844
2845protected:
2846  AbstractConditionalOperator(StmtClass SC, QualType T,
2847                              ExprValueKind VK, ExprObjectKind OK,
2848                              bool TD, bool VD, bool ID,
2849                              bool ContainsUnexpandedParameterPack,
2850                              SourceLocation qloc,
2851                              SourceLocation cloc)
2852    : Expr(SC, T, VK, OK, TD, VD, ID, ContainsUnexpandedParameterPack),
2853      QuestionLoc(qloc), ColonLoc(cloc) {}
2854
2855  AbstractConditionalOperator(StmtClass SC, EmptyShell Empty)
2856    : Expr(SC, Empty) { }
2857
2858public:
2859  // getCond - Return the expression representing the condition for
2860  //   the ?: operator.
2861  Expr *getCond() const;
2862
2863  // getTrueExpr - Return the subexpression representing the value of
2864  //   the expression if the condition evaluates to true.
2865  Expr *getTrueExpr() const;
2866
2867  // getFalseExpr - Return the subexpression representing the value of
2868  //   the expression if the condition evaluates to false.  This is
2869  //   the same as getRHS.
2870  Expr *getFalseExpr() const;
2871
2872  SourceLocation getQuestionLoc() const { return QuestionLoc; }
2873  SourceLocation getColonLoc() const { return ColonLoc; }
2874
2875  static bool classof(const Stmt *T) {
2876    return T->getStmtClass() == ConditionalOperatorClass ||
2877           T->getStmtClass() == BinaryConditionalOperatorClass;
2878  }
2879  static bool classof(const AbstractConditionalOperator *) { return true; }
2880};
2881
2882/// ConditionalOperator - The ?: ternary operator.  The GNU "missing
2883/// middle" extension is a BinaryConditionalOperator.
2884class ConditionalOperator : public AbstractConditionalOperator {
2885  enum { COND, LHS, RHS, END_EXPR };
2886  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
2887
2888  friend class ASTStmtReader;
2889public:
2890  ConditionalOperator(Expr *cond, SourceLocation QLoc, Expr *lhs,
2891                      SourceLocation CLoc, Expr *rhs,
2892                      QualType t, ExprValueKind VK, ExprObjectKind OK)
2893    : AbstractConditionalOperator(ConditionalOperatorClass, t, VK, OK,
2894           // FIXME: the type of the conditional operator doesn't
2895           // depend on the type of the conditional, but the standard
2896           // seems to imply that it could. File a bug!
2897           (lhs->isTypeDependent() || rhs->isTypeDependent()),
2898           (cond->isValueDependent() || lhs->isValueDependent() ||
2899            rhs->isValueDependent()),
2900           (cond->isInstantiationDependent() ||
2901            lhs->isInstantiationDependent() ||
2902            rhs->isInstantiationDependent()),
2903           (cond->containsUnexpandedParameterPack() ||
2904            lhs->containsUnexpandedParameterPack() ||
2905            rhs->containsUnexpandedParameterPack()),
2906                                  QLoc, CLoc) {
2907    SubExprs[COND] = cond;
2908    SubExprs[LHS] = lhs;
2909    SubExprs[RHS] = rhs;
2910  }
2911
2912  /// \brief Build an empty conditional operator.
2913  explicit ConditionalOperator(EmptyShell Empty)
2914    : AbstractConditionalOperator(ConditionalOperatorClass, Empty) { }
2915
2916  // getCond - Return the expression representing the condition for
2917  //   the ?: operator.
2918  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
2919
2920  // getTrueExpr - Return the subexpression representing the value of
2921  //   the expression if the condition evaluates to true.
2922  Expr *getTrueExpr() const { return cast<Expr>(SubExprs[LHS]); }
2923
2924  // getFalseExpr - Return the subexpression representing the value of
2925  //   the expression if the condition evaluates to false.  This is
2926  //   the same as getRHS.
2927  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
2928
2929  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2930  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2931
2932  SourceRange getSourceRange() const {
2933    return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
2934  }
2935  static bool classof(const Stmt *T) {
2936    return T->getStmtClass() == ConditionalOperatorClass;
2937  }
2938  static bool classof(const ConditionalOperator *) { return true; }
2939
2940  // Iterators
2941  child_range children() {
2942    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
2943  }
2944};
2945
2946/// BinaryConditionalOperator - The GNU extension to the conditional
2947/// operator which allows the middle operand to be omitted.
2948///
2949/// This is a different expression kind on the assumption that almost
2950/// every client ends up needing to know that these are different.
2951class BinaryConditionalOperator : public AbstractConditionalOperator {
2952  enum { COMMON, COND, LHS, RHS, NUM_SUBEXPRS };
2953
2954  /// - the common condition/left-hand-side expression, which will be
2955  ///   evaluated as the opaque value
2956  /// - the condition, expressed in terms of the opaque value
2957  /// - the left-hand-side, expressed in terms of the opaque value
2958  /// - the right-hand-side
2959  Stmt *SubExprs[NUM_SUBEXPRS];
2960  OpaqueValueExpr *OpaqueValue;
2961
2962  friend class ASTStmtReader;
2963public:
2964  BinaryConditionalOperator(Expr *common, OpaqueValueExpr *opaqueValue,
2965                            Expr *cond, Expr *lhs, Expr *rhs,
2966                            SourceLocation qloc, SourceLocation cloc,
2967                            QualType t, ExprValueKind VK, ExprObjectKind OK)
2968    : AbstractConditionalOperator(BinaryConditionalOperatorClass, t, VK, OK,
2969           (common->isTypeDependent() || rhs->isTypeDependent()),
2970           (common->isValueDependent() || rhs->isValueDependent()),
2971           (common->isInstantiationDependent() ||
2972            rhs->isInstantiationDependent()),
2973           (common->containsUnexpandedParameterPack() ||
2974            rhs->containsUnexpandedParameterPack()),
2975                                  qloc, cloc),
2976      OpaqueValue(opaqueValue) {
2977    SubExprs[COMMON] = common;
2978    SubExprs[COND] = cond;
2979    SubExprs[LHS] = lhs;
2980    SubExprs[RHS] = rhs;
2981
2982    OpaqueValue->setSourceExpr(common);
2983  }
2984
2985  /// \brief Build an empty conditional operator.
2986  explicit BinaryConditionalOperator(EmptyShell Empty)
2987    : AbstractConditionalOperator(BinaryConditionalOperatorClass, Empty) { }
2988
2989  /// \brief getCommon - Return the common expression, written to the
2990  ///   left of the condition.  The opaque value will be bound to the
2991  ///   result of this expression.
2992  Expr *getCommon() const { return cast<Expr>(SubExprs[COMMON]); }
2993
2994  /// \brief getOpaqueValue - Return the opaque value placeholder.
2995  OpaqueValueExpr *getOpaqueValue() const { return OpaqueValue; }
2996
2997  /// \brief getCond - Return the condition expression; this is defined
2998  ///   in terms of the opaque value.
2999  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3000
3001  /// \brief getTrueExpr - Return the subexpression which will be
3002  ///   evaluated if the condition evaluates to true;  this is defined
3003  ///   in terms of the opaque value.
3004  Expr *getTrueExpr() const {
3005    return cast<Expr>(SubExprs[LHS]);
3006  }
3007
3008  /// \brief getFalseExpr - Return the subexpression which will be
3009  ///   evaluated if the condnition evaluates to false; this is
3010  ///   defined in terms of the opaque value.
3011  Expr *getFalseExpr() const {
3012    return cast<Expr>(SubExprs[RHS]);
3013  }
3014
3015  SourceRange getSourceRange() const {
3016    return SourceRange(getCommon()->getLocStart(), getFalseExpr()->getLocEnd());
3017  }
3018  static bool classof(const Stmt *T) {
3019    return T->getStmtClass() == BinaryConditionalOperatorClass;
3020  }
3021  static bool classof(const BinaryConditionalOperator *) { return true; }
3022
3023  // Iterators
3024  child_range children() {
3025    return child_range(SubExprs, SubExprs + NUM_SUBEXPRS);
3026  }
3027};
3028
3029inline Expr *AbstractConditionalOperator::getCond() const {
3030  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3031    return co->getCond();
3032  return cast<BinaryConditionalOperator>(this)->getCond();
3033}
3034
3035inline Expr *AbstractConditionalOperator::getTrueExpr() const {
3036  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3037    return co->getTrueExpr();
3038  return cast<BinaryConditionalOperator>(this)->getTrueExpr();
3039}
3040
3041inline Expr *AbstractConditionalOperator::getFalseExpr() const {
3042  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3043    return co->getFalseExpr();
3044  return cast<BinaryConditionalOperator>(this)->getFalseExpr();
3045}
3046
3047/// AddrLabelExpr - The GNU address of label extension, representing &&label.
3048class AddrLabelExpr : public Expr {
3049  SourceLocation AmpAmpLoc, LabelLoc;
3050  LabelDecl *Label;
3051public:
3052  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelDecl *L,
3053                QualType t)
3054    : Expr(AddrLabelExprClass, t, VK_RValue, OK_Ordinary, false, false, false,
3055           false),
3056      AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
3057
3058  /// \brief Build an empty address of a label expression.
3059  explicit AddrLabelExpr(EmptyShell Empty)
3060    : Expr(AddrLabelExprClass, Empty) { }
3061
3062  SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
3063  void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
3064  SourceLocation getLabelLoc() const { return LabelLoc; }
3065  void setLabelLoc(SourceLocation L) { LabelLoc = L; }
3066
3067  SourceRange getSourceRange() const {
3068    return SourceRange(AmpAmpLoc, LabelLoc);
3069  }
3070
3071  LabelDecl *getLabel() const { return Label; }
3072  void setLabel(LabelDecl *L) { Label = L; }
3073
3074  static bool classof(const Stmt *T) {
3075    return T->getStmtClass() == AddrLabelExprClass;
3076  }
3077  static bool classof(const AddrLabelExpr *) { return true; }
3078
3079  // Iterators
3080  child_range children() { return child_range(); }
3081};
3082
3083/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
3084/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
3085/// takes the value of the last subexpression.
3086///
3087/// A StmtExpr is always an r-value; values "returned" out of a
3088/// StmtExpr will be copied.
3089class StmtExpr : public Expr {
3090  Stmt *SubStmt;
3091  SourceLocation LParenLoc, RParenLoc;
3092public:
3093  // FIXME: Does type-dependence need to be computed differently?
3094  // FIXME: Do we need to compute instantiation instantiation-dependence for
3095  // statements? (ugh!)
3096  StmtExpr(CompoundStmt *substmt, QualType T,
3097           SourceLocation lp, SourceLocation rp) :
3098    Expr(StmtExprClass, T, VK_RValue, OK_Ordinary,
3099         T->isDependentType(), false, false, false),
3100    SubStmt(substmt), LParenLoc(lp), RParenLoc(rp) { }
3101
3102  /// \brief Build an empty statement expression.
3103  explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
3104
3105  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
3106  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
3107  void setSubStmt(CompoundStmt *S) { SubStmt = S; }
3108
3109  SourceRange getSourceRange() const {
3110    return SourceRange(LParenLoc, RParenLoc);
3111  }
3112
3113  SourceLocation getLParenLoc() const { return LParenLoc; }
3114  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
3115  SourceLocation getRParenLoc() const { return RParenLoc; }
3116  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3117
3118  static bool classof(const Stmt *T) {
3119    return T->getStmtClass() == StmtExprClass;
3120  }
3121  static bool classof(const StmtExpr *) { return true; }
3122
3123  // Iterators
3124  child_range children() { return child_range(&SubStmt, &SubStmt+1); }
3125};
3126
3127
3128/// ShuffleVectorExpr - clang-specific builtin-in function
3129/// __builtin_shufflevector.
3130/// This AST node represents a operator that does a constant
3131/// shuffle, similar to LLVM's shufflevector instruction. It takes
3132/// two vectors and a variable number of constant indices,
3133/// and returns the appropriately shuffled vector.
3134class ShuffleVectorExpr : public Expr {
3135  SourceLocation BuiltinLoc, RParenLoc;
3136
3137  // SubExprs - the list of values passed to the __builtin_shufflevector
3138  // function. The first two are vectors, and the rest are constant
3139  // indices.  The number of values in this list is always
3140  // 2+the number of indices in the vector type.
3141  Stmt **SubExprs;
3142  unsigned NumExprs;
3143
3144public:
3145  ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr,
3146                    QualType Type, SourceLocation BLoc,
3147                    SourceLocation RP);
3148
3149  /// \brief Build an empty vector-shuffle expression.
3150  explicit ShuffleVectorExpr(EmptyShell Empty)
3151    : Expr(ShuffleVectorExprClass, Empty), SubExprs(0) { }
3152
3153  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3154  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3155
3156  SourceLocation getRParenLoc() const { return RParenLoc; }
3157  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3158
3159  SourceRange getSourceRange() const {
3160    return SourceRange(BuiltinLoc, RParenLoc);
3161  }
3162  static bool classof(const Stmt *T) {
3163    return T->getStmtClass() == ShuffleVectorExprClass;
3164  }
3165  static bool classof(const ShuffleVectorExpr *) { return true; }
3166
3167  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
3168  /// constant expression, the actual arguments passed in, and the function
3169  /// pointers.
3170  unsigned getNumSubExprs() const { return NumExprs; }
3171
3172  /// \brief Retrieve the array of expressions.
3173  Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
3174
3175  /// getExpr - Return the Expr at the specified index.
3176  Expr *getExpr(unsigned Index) {
3177    assert((Index < NumExprs) && "Arg access out of range!");
3178    return cast<Expr>(SubExprs[Index]);
3179  }
3180  const Expr *getExpr(unsigned Index) const {
3181    assert((Index < NumExprs) && "Arg access out of range!");
3182    return cast<Expr>(SubExprs[Index]);
3183  }
3184
3185  void setExprs(ASTContext &C, Expr ** Exprs, unsigned NumExprs);
3186
3187  unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) {
3188    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
3189    return getExpr(N+2)->EvaluateKnownConstInt(Ctx).getZExtValue();
3190  }
3191
3192  // Iterators
3193  child_range children() {
3194    return child_range(&SubExprs[0], &SubExprs[0]+NumExprs);
3195  }
3196};
3197
3198/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
3199/// This AST node is similar to the conditional operator (?:) in C, with
3200/// the following exceptions:
3201/// - the test expression must be a integer constant expression.
3202/// - the expression returned acts like the chosen subexpression in every
3203///   visible way: the type is the same as that of the chosen subexpression,
3204///   and all predicates (whether it's an l-value, whether it's an integer
3205///   constant expression, etc.) return the same result as for the chosen
3206///   sub-expression.
3207class ChooseExpr : public Expr {
3208  enum { COND, LHS, RHS, END_EXPR };
3209  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
3210  SourceLocation BuiltinLoc, RParenLoc;
3211public:
3212  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs,
3213             QualType t, ExprValueKind VK, ExprObjectKind OK,
3214             SourceLocation RP, bool TypeDependent, bool ValueDependent)
3215    : Expr(ChooseExprClass, t, VK, OK, TypeDependent, ValueDependent,
3216           (cond->isInstantiationDependent() ||
3217            lhs->isInstantiationDependent() ||
3218            rhs->isInstantiationDependent()),
3219           (cond->containsUnexpandedParameterPack() ||
3220            lhs->containsUnexpandedParameterPack() ||
3221            rhs->containsUnexpandedParameterPack())),
3222      BuiltinLoc(BLoc), RParenLoc(RP) {
3223      SubExprs[COND] = cond;
3224      SubExprs[LHS] = lhs;
3225      SubExprs[RHS] = rhs;
3226    }
3227
3228  /// \brief Build an empty __builtin_choose_expr.
3229  explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
3230
3231  /// isConditionTrue - Return whether the condition is true (i.e. not
3232  /// equal to zero).
3233  bool isConditionTrue(const ASTContext &C) const;
3234
3235  /// getChosenSubExpr - Return the subexpression chosen according to the
3236  /// condition.
3237  Expr *getChosenSubExpr(const ASTContext &C) const {
3238    return isConditionTrue(C) ? getLHS() : getRHS();
3239  }
3240
3241  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3242  void setCond(Expr *E) { SubExprs[COND] = E; }
3243  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
3244  void setLHS(Expr *E) { SubExprs[LHS] = E; }
3245  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
3246  void setRHS(Expr *E) { SubExprs[RHS] = E; }
3247
3248  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3249  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3250
3251  SourceLocation getRParenLoc() const { return RParenLoc; }
3252  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3253
3254  SourceRange getSourceRange() const {
3255    return SourceRange(BuiltinLoc, RParenLoc);
3256  }
3257  static bool classof(const Stmt *T) {
3258    return T->getStmtClass() == ChooseExprClass;
3259  }
3260  static bool classof(const ChooseExpr *) { return true; }
3261
3262  // Iterators
3263  child_range children() {
3264    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
3265  }
3266};
3267
3268/// GNUNullExpr - Implements the GNU __null extension, which is a name
3269/// for a null pointer constant that has integral type (e.g., int or
3270/// long) and is the same size and alignment as a pointer. The __null
3271/// extension is typically only used by system headers, which define
3272/// NULL as __null in C++ rather than using 0 (which is an integer
3273/// that may not match the size of a pointer).
3274class GNUNullExpr : public Expr {
3275  /// TokenLoc - The location of the __null keyword.
3276  SourceLocation TokenLoc;
3277
3278public:
3279  GNUNullExpr(QualType Ty, SourceLocation Loc)
3280    : Expr(GNUNullExprClass, Ty, VK_RValue, OK_Ordinary, false, false, false,
3281           false),
3282      TokenLoc(Loc) { }
3283
3284  /// \brief Build an empty GNU __null expression.
3285  explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
3286
3287  /// getTokenLocation - The location of the __null token.
3288  SourceLocation getTokenLocation() const { return TokenLoc; }
3289  void setTokenLocation(SourceLocation L) { TokenLoc = L; }
3290
3291  SourceRange getSourceRange() const {
3292    return SourceRange(TokenLoc);
3293  }
3294  static bool classof(const Stmt *T) {
3295    return T->getStmtClass() == GNUNullExprClass;
3296  }
3297  static bool classof(const GNUNullExpr *) { return true; }
3298
3299  // Iterators
3300  child_range children() { return child_range(); }
3301};
3302
3303/// VAArgExpr, used for the builtin function __builtin_va_arg.
3304class VAArgExpr : public Expr {
3305  Stmt *Val;
3306  TypeSourceInfo *TInfo;
3307  SourceLocation BuiltinLoc, RParenLoc;
3308public:
3309  VAArgExpr(SourceLocation BLoc, Expr* e, TypeSourceInfo *TInfo,
3310            SourceLocation RPLoc, QualType t)
3311    : Expr(VAArgExprClass, t, VK_RValue, OK_Ordinary,
3312           t->isDependentType(), false,
3313           (TInfo->getType()->isInstantiationDependentType() ||
3314            e->isInstantiationDependent()),
3315           (TInfo->getType()->containsUnexpandedParameterPack() ||
3316            e->containsUnexpandedParameterPack())),
3317      Val(e), TInfo(TInfo),
3318      BuiltinLoc(BLoc),
3319      RParenLoc(RPLoc) { }
3320
3321  /// \brief Create an empty __builtin_va_arg expression.
3322  explicit VAArgExpr(EmptyShell Empty) : Expr(VAArgExprClass, Empty) { }
3323
3324  const Expr *getSubExpr() const { return cast<Expr>(Val); }
3325  Expr *getSubExpr() { return cast<Expr>(Val); }
3326  void setSubExpr(Expr *E) { Val = E; }
3327
3328  TypeSourceInfo *getWrittenTypeInfo() const { return TInfo; }
3329  void setWrittenTypeInfo(TypeSourceInfo *TI) { TInfo = TI; }
3330
3331  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3332  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3333
3334  SourceLocation getRParenLoc() const { return RParenLoc; }
3335  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3336
3337  SourceRange getSourceRange() const {
3338    return SourceRange(BuiltinLoc, RParenLoc);
3339  }
3340  static bool classof(const Stmt *T) {
3341    return T->getStmtClass() == VAArgExprClass;
3342  }
3343  static bool classof(const VAArgExpr *) { return true; }
3344
3345  // Iterators
3346  child_range children() { return child_range(&Val, &Val+1); }
3347};
3348
3349/// @brief Describes an C or C++ initializer list.
3350///
3351/// InitListExpr describes an initializer list, which can be used to
3352/// initialize objects of different types, including
3353/// struct/class/union types, arrays, and vectors. For example:
3354///
3355/// @code
3356/// struct foo x = { 1, { 2, 3 } };
3357/// @endcode
3358///
3359/// Prior to semantic analysis, an initializer list will represent the
3360/// initializer list as written by the user, but will have the
3361/// placeholder type "void". This initializer list is called the
3362/// syntactic form of the initializer, and may contain C99 designated
3363/// initializers (represented as DesignatedInitExprs), initializations
3364/// of subobject members without explicit braces, and so on. Clients
3365/// interested in the original syntax of the initializer list should
3366/// use the syntactic form of the initializer list.
3367///
3368/// After semantic analysis, the initializer list will represent the
3369/// semantic form of the initializer, where the initializations of all
3370/// subobjects are made explicit with nested InitListExpr nodes and
3371/// C99 designators have been eliminated by placing the designated
3372/// initializations into the subobject they initialize. Additionally,
3373/// any "holes" in the initialization, where no initializer has been
3374/// specified for a particular subobject, will be replaced with
3375/// implicitly-generated ImplicitValueInitExpr expressions that
3376/// value-initialize the subobjects. Note, however, that the
3377/// initializer lists may still have fewer initializers than there are
3378/// elements to initialize within the object.
3379///
3380/// Given the semantic form of the initializer list, one can retrieve
3381/// the original syntactic form of that initializer list (if it
3382/// exists) using getSyntacticForm(). Since many initializer lists
3383/// have the same syntactic and semantic forms, getSyntacticForm() may
3384/// return NULL, indicating that the current initializer list also
3385/// serves as its syntactic form.
3386class InitListExpr : public Expr {
3387  // FIXME: Eliminate this vector in favor of ASTContext allocation
3388  typedef ASTVector<Stmt *> InitExprsTy;
3389  InitExprsTy InitExprs;
3390  SourceLocation LBraceLoc, RBraceLoc;
3391
3392  /// Contains the initializer list that describes the syntactic form
3393  /// written in the source code.
3394  InitListExpr *SyntacticForm;
3395
3396  /// \brief Either:
3397  ///  If this initializer list initializes an array with more elements than
3398  ///  there are initializers in the list, specifies an expression to be used
3399  ///  for value initialization of the rest of the elements.
3400  /// Or
3401  ///  If this initializer list initializes a union, specifies which
3402  ///  field within the union will be initialized.
3403  llvm::PointerUnion<Expr *, FieldDecl *> ArrayFillerOrUnionFieldInit;
3404
3405  /// Whether this initializer list originally had a GNU array-range
3406  /// designator in it. This is a temporary marker used by CodeGen.
3407  bool HadArrayRangeDesignator;
3408
3409public:
3410  InitListExpr(ASTContext &C, SourceLocation lbraceloc,
3411               Expr **initexprs, unsigned numinits,
3412               SourceLocation rbraceloc);
3413
3414  /// \brief Build an empty initializer list.
3415  explicit InitListExpr(ASTContext &C, EmptyShell Empty)
3416    : Expr(InitListExprClass, Empty), InitExprs(C) { }
3417
3418  unsigned getNumInits() const { return InitExprs.size(); }
3419
3420  /// \brief Retrieve the set of initializers.
3421  Expr **getInits() { return reinterpret_cast<Expr **>(InitExprs.data()); }
3422
3423  const Expr *getInit(unsigned Init) const {
3424    assert(Init < getNumInits() && "Initializer access out of range!");
3425    return cast_or_null<Expr>(InitExprs[Init]);
3426  }
3427
3428  Expr *getInit(unsigned Init) {
3429    assert(Init < getNumInits() && "Initializer access out of range!");
3430    return cast_or_null<Expr>(InitExprs[Init]);
3431  }
3432
3433  void setInit(unsigned Init, Expr *expr) {
3434    assert(Init < getNumInits() && "Initializer access out of range!");
3435    InitExprs[Init] = expr;
3436  }
3437
3438  /// \brief Reserve space for some number of initializers.
3439  void reserveInits(ASTContext &C, unsigned NumInits);
3440
3441  /// @brief Specify the number of initializers
3442  ///
3443  /// If there are more than @p NumInits initializers, the remaining
3444  /// initializers will be destroyed. If there are fewer than @p
3445  /// NumInits initializers, NULL expressions will be added for the
3446  /// unknown initializers.
3447  void resizeInits(ASTContext &Context, unsigned NumInits);
3448
3449  /// @brief Updates the initializer at index @p Init with the new
3450  /// expression @p expr, and returns the old expression at that
3451  /// location.
3452  ///
3453  /// When @p Init is out of range for this initializer list, the
3454  /// initializer list will be extended with NULL expressions to
3455  /// accommodate the new entry.
3456  Expr *updateInit(ASTContext &C, unsigned Init, Expr *expr);
3457
3458  /// \brief If this initializer list initializes an array with more elements
3459  /// than there are initializers in the list, specifies an expression to be
3460  /// used for value initialization of the rest of the elements.
3461  Expr *getArrayFiller() {
3462    return ArrayFillerOrUnionFieldInit.dyn_cast<Expr *>();
3463  }
3464  const Expr *getArrayFiller() const {
3465    return const_cast<InitListExpr *>(this)->getArrayFiller();
3466  }
3467  void setArrayFiller(Expr *filler);
3468
3469  /// \brief Return true if this is an array initializer and its array "filler"
3470  /// has been set.
3471  bool hasArrayFiller() const { return getArrayFiller(); }
3472
3473  /// \brief If this initializes a union, specifies which field in the
3474  /// union to initialize.
3475  ///
3476  /// Typically, this field is the first named field within the
3477  /// union. However, a designated initializer can specify the
3478  /// initialization of a different field within the union.
3479  FieldDecl *getInitializedFieldInUnion() {
3480    return ArrayFillerOrUnionFieldInit.dyn_cast<FieldDecl *>();
3481  }
3482  const FieldDecl *getInitializedFieldInUnion() const {
3483    return const_cast<InitListExpr *>(this)->getInitializedFieldInUnion();
3484  }
3485  void setInitializedFieldInUnion(FieldDecl *FD) {
3486    ArrayFillerOrUnionFieldInit = FD;
3487  }
3488
3489  // Explicit InitListExpr's originate from source code (and have valid source
3490  // locations). Implicit InitListExpr's are created by the semantic analyzer.
3491  bool isExplicit() {
3492    return LBraceLoc.isValid() && RBraceLoc.isValid();
3493  }
3494
3495  SourceLocation getLBraceLoc() const { return LBraceLoc; }
3496  void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
3497  SourceLocation getRBraceLoc() const { return RBraceLoc; }
3498  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
3499
3500  /// @brief Retrieve the initializer list that describes the
3501  /// syntactic form of the initializer.
3502  ///
3503  ///
3504  InitListExpr *getSyntacticForm() const { return SyntacticForm; }
3505  void setSyntacticForm(InitListExpr *Init) { SyntacticForm = Init; }
3506
3507  bool hadArrayRangeDesignator() const { return HadArrayRangeDesignator; }
3508  void sawArrayRangeDesignator(bool ARD = true) {
3509    HadArrayRangeDesignator = ARD;
3510  }
3511
3512  SourceRange getSourceRange() const;
3513
3514  static bool classof(const Stmt *T) {
3515    return T->getStmtClass() == InitListExprClass;
3516  }
3517  static bool classof(const InitListExpr *) { return true; }
3518
3519  // Iterators
3520  child_range children() {
3521    if (InitExprs.empty()) return child_range();
3522    return child_range(&InitExprs[0], &InitExprs[0] + InitExprs.size());
3523  }
3524
3525  typedef InitExprsTy::iterator iterator;
3526  typedef InitExprsTy::const_iterator const_iterator;
3527  typedef InitExprsTy::reverse_iterator reverse_iterator;
3528  typedef InitExprsTy::const_reverse_iterator const_reverse_iterator;
3529
3530  iterator begin() { return InitExprs.begin(); }
3531  const_iterator begin() const { return InitExprs.begin(); }
3532  iterator end() { return InitExprs.end(); }
3533  const_iterator end() const { return InitExprs.end(); }
3534  reverse_iterator rbegin() { return InitExprs.rbegin(); }
3535  const_reverse_iterator rbegin() const { return InitExprs.rbegin(); }
3536  reverse_iterator rend() { return InitExprs.rend(); }
3537  const_reverse_iterator rend() const { return InitExprs.rend(); }
3538
3539  friend class ASTStmtReader;
3540  friend class ASTStmtWriter;
3541};
3542
3543/// @brief Represents a C99 designated initializer expression.
3544///
3545/// A designated initializer expression (C99 6.7.8) contains one or
3546/// more designators (which can be field designators, array
3547/// designators, or GNU array-range designators) followed by an
3548/// expression that initializes the field or element(s) that the
3549/// designators refer to. For example, given:
3550///
3551/// @code
3552/// struct point {
3553///   double x;
3554///   double y;
3555/// };
3556/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
3557/// @endcode
3558///
3559/// The InitListExpr contains three DesignatedInitExprs, the first of
3560/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
3561/// designators, one array designator for @c [2] followed by one field
3562/// designator for @c .y. The initalization expression will be 1.0.
3563class DesignatedInitExpr : public Expr {
3564public:
3565  /// \brief Forward declaration of the Designator class.
3566  class Designator;
3567
3568private:
3569  /// The location of the '=' or ':' prior to the actual initializer
3570  /// expression.
3571  SourceLocation EqualOrColonLoc;
3572
3573  /// Whether this designated initializer used the GNU deprecated
3574  /// syntax rather than the C99 '=' syntax.
3575  bool GNUSyntax : 1;
3576
3577  /// The number of designators in this initializer expression.
3578  unsigned NumDesignators : 15;
3579
3580  /// \brief The designators in this designated initialization
3581  /// expression.
3582  Designator *Designators;
3583
3584  /// The number of subexpressions of this initializer expression,
3585  /// which contains both the initializer and any additional
3586  /// expressions used by array and array-range designators.
3587  unsigned NumSubExprs : 16;
3588
3589
3590  DesignatedInitExpr(ASTContext &C, QualType Ty, unsigned NumDesignators,
3591                     const Designator *Designators,
3592                     SourceLocation EqualOrColonLoc, bool GNUSyntax,
3593                     Expr **IndexExprs, unsigned NumIndexExprs,
3594                     Expr *Init);
3595
3596  explicit DesignatedInitExpr(unsigned NumSubExprs)
3597    : Expr(DesignatedInitExprClass, EmptyShell()),
3598      NumDesignators(0), Designators(0), NumSubExprs(NumSubExprs) { }
3599
3600public:
3601  /// A field designator, e.g., ".x".
3602  struct FieldDesignator {
3603    /// Refers to the field that is being initialized. The low bit
3604    /// of this field determines whether this is actually a pointer
3605    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
3606    /// initially constructed, a field designator will store an
3607    /// IdentifierInfo*. After semantic analysis has resolved that
3608    /// name, the field designator will instead store a FieldDecl*.
3609    uintptr_t NameOrField;
3610
3611    /// The location of the '.' in the designated initializer.
3612    unsigned DotLoc;
3613
3614    /// The location of the field name in the designated initializer.
3615    unsigned FieldLoc;
3616  };
3617
3618  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
3619  struct ArrayOrRangeDesignator {
3620    /// Location of the first index expression within the designated
3621    /// initializer expression's list of subexpressions.
3622    unsigned Index;
3623    /// The location of the '[' starting the array range designator.
3624    unsigned LBracketLoc;
3625    /// The location of the ellipsis separating the start and end
3626    /// indices. Only valid for GNU array-range designators.
3627    unsigned EllipsisLoc;
3628    /// The location of the ']' terminating the array range designator.
3629    unsigned RBracketLoc;
3630  };
3631
3632  /// @brief Represents a single C99 designator.
3633  ///
3634  /// @todo This class is infuriatingly similar to clang::Designator,
3635  /// but minor differences (storing indices vs. storing pointers)
3636  /// keep us from reusing it. Try harder, later, to rectify these
3637  /// differences.
3638  class Designator {
3639    /// @brief The kind of designator this describes.
3640    enum {
3641      FieldDesignator,
3642      ArrayDesignator,
3643      ArrayRangeDesignator
3644    } Kind;
3645
3646    union {
3647      /// A field designator, e.g., ".x".
3648      struct FieldDesignator Field;
3649      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
3650      struct ArrayOrRangeDesignator ArrayOrRange;
3651    };
3652    friend class DesignatedInitExpr;
3653
3654  public:
3655    Designator() {}
3656
3657    /// @brief Initializes a field designator.
3658    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
3659               SourceLocation FieldLoc)
3660      : Kind(FieldDesignator) {
3661      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
3662      Field.DotLoc = DotLoc.getRawEncoding();
3663      Field.FieldLoc = FieldLoc.getRawEncoding();
3664    }
3665
3666    /// @brief Initializes an array designator.
3667    Designator(unsigned Index, SourceLocation LBracketLoc,
3668               SourceLocation RBracketLoc)
3669      : Kind(ArrayDesignator) {
3670      ArrayOrRange.Index = Index;
3671      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3672      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
3673      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3674    }
3675
3676    /// @brief Initializes a GNU array-range designator.
3677    Designator(unsigned Index, SourceLocation LBracketLoc,
3678               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
3679      : Kind(ArrayRangeDesignator) {
3680      ArrayOrRange.Index = Index;
3681      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3682      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
3683      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3684    }
3685
3686    bool isFieldDesignator() const { return Kind == FieldDesignator; }
3687    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
3688    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
3689
3690    IdentifierInfo *getFieldName() const;
3691
3692    FieldDecl *getField() const {
3693      assert(Kind == FieldDesignator && "Only valid on a field designator");
3694      if (Field.NameOrField & 0x01)
3695        return 0;
3696      else
3697        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
3698    }
3699
3700    void setField(FieldDecl *FD) {
3701      assert(Kind == FieldDesignator && "Only valid on a field designator");
3702      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
3703    }
3704
3705    SourceLocation getDotLoc() const {
3706      assert(Kind == FieldDesignator && "Only valid on a field designator");
3707      return SourceLocation::getFromRawEncoding(Field.DotLoc);
3708    }
3709
3710    SourceLocation getFieldLoc() const {
3711      assert(Kind == FieldDesignator && "Only valid on a field designator");
3712      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
3713    }
3714
3715    SourceLocation getLBracketLoc() const {
3716      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3717             "Only valid on an array or array-range designator");
3718      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
3719    }
3720
3721    SourceLocation getRBracketLoc() const {
3722      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3723             "Only valid on an array or array-range designator");
3724      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
3725    }
3726
3727    SourceLocation getEllipsisLoc() const {
3728      assert(Kind == ArrayRangeDesignator &&
3729             "Only valid on an array-range designator");
3730      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
3731    }
3732
3733    unsigned getFirstExprIndex() const {
3734      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3735             "Only valid on an array or array-range designator");
3736      return ArrayOrRange.Index;
3737    }
3738
3739    SourceLocation getStartLocation() const {
3740      if (Kind == FieldDesignator)
3741        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
3742      else
3743        return getLBracketLoc();
3744    }
3745    SourceLocation getEndLocation() const {
3746      return Kind == FieldDesignator ? getFieldLoc() : getRBracketLoc();
3747    }
3748    SourceRange getSourceRange() const {
3749      return SourceRange(getStartLocation(), getEndLocation());
3750    }
3751  };
3752
3753  static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators,
3754                                    unsigned NumDesignators,
3755                                    Expr **IndexExprs, unsigned NumIndexExprs,
3756                                    SourceLocation EqualOrColonLoc,
3757                                    bool GNUSyntax, Expr *Init);
3758
3759  static DesignatedInitExpr *CreateEmpty(ASTContext &C, unsigned NumIndexExprs);
3760
3761  /// @brief Returns the number of designators in this initializer.
3762  unsigned size() const { return NumDesignators; }
3763
3764  // Iterator access to the designators.
3765  typedef Designator *designators_iterator;
3766  designators_iterator designators_begin() { return Designators; }
3767  designators_iterator designators_end() {
3768    return Designators + NumDesignators;
3769  }
3770
3771  typedef const Designator *const_designators_iterator;
3772  const_designators_iterator designators_begin() const { return Designators; }
3773  const_designators_iterator designators_end() const {
3774    return Designators + NumDesignators;
3775  }
3776
3777  typedef std::reverse_iterator<designators_iterator>
3778          reverse_designators_iterator;
3779  reverse_designators_iterator designators_rbegin() {
3780    return reverse_designators_iterator(designators_end());
3781  }
3782  reverse_designators_iterator designators_rend() {
3783    return reverse_designators_iterator(designators_begin());
3784  }
3785
3786  typedef std::reverse_iterator<const_designators_iterator>
3787          const_reverse_designators_iterator;
3788  const_reverse_designators_iterator designators_rbegin() const {
3789    return const_reverse_designators_iterator(designators_end());
3790  }
3791  const_reverse_designators_iterator designators_rend() const {
3792    return const_reverse_designators_iterator(designators_begin());
3793  }
3794
3795  Designator *getDesignator(unsigned Idx) { return &designators_begin()[Idx]; }
3796
3797  void setDesignators(ASTContext &C, const Designator *Desigs,
3798                      unsigned NumDesigs);
3799
3800  Expr *getArrayIndex(const Designator& D);
3801  Expr *getArrayRangeStart(const Designator& D);
3802  Expr *getArrayRangeEnd(const Designator& D);
3803
3804  /// @brief Retrieve the location of the '=' that precedes the
3805  /// initializer value itself, if present.
3806  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
3807  void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
3808
3809  /// @brief Determines whether this designated initializer used the
3810  /// deprecated GNU syntax for designated initializers.
3811  bool usesGNUSyntax() const { return GNUSyntax; }
3812  void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
3813
3814  /// @brief Retrieve the initializer value.
3815  Expr *getInit() const {
3816    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
3817  }
3818
3819  void setInit(Expr *init) {
3820    *child_begin() = init;
3821  }
3822
3823  /// \brief Retrieve the total number of subexpressions in this
3824  /// designated initializer expression, including the actual
3825  /// initialized value and any expressions that occur within array
3826  /// and array-range designators.
3827  unsigned getNumSubExprs() const { return NumSubExprs; }
3828
3829  Expr *getSubExpr(unsigned Idx) {
3830    assert(Idx < NumSubExprs && "Subscript out of range");
3831    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3832    Ptr += sizeof(DesignatedInitExpr);
3833    return reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx];
3834  }
3835
3836  void setSubExpr(unsigned Idx, Expr *E) {
3837    assert(Idx < NumSubExprs && "Subscript out of range");
3838    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3839    Ptr += sizeof(DesignatedInitExpr);
3840    reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx] = E;
3841  }
3842
3843  /// \brief Replaces the designator at index @p Idx with the series
3844  /// of designators in [First, Last).
3845  void ExpandDesignator(ASTContext &C, unsigned Idx, const Designator *First,
3846                        const Designator *Last);
3847
3848  SourceRange getDesignatorsSourceRange() const;
3849
3850  SourceRange getSourceRange() const;
3851
3852  static bool classof(const Stmt *T) {
3853    return T->getStmtClass() == DesignatedInitExprClass;
3854  }
3855  static bool classof(const DesignatedInitExpr *) { return true; }
3856
3857  // Iterators
3858  child_range children() {
3859    Stmt **begin = reinterpret_cast<Stmt**>(this + 1);
3860    return child_range(begin, begin + NumSubExprs);
3861  }
3862};
3863
3864/// \brief Represents an implicitly-generated value initialization of
3865/// an object of a given type.
3866///
3867/// Implicit value initializations occur within semantic initializer
3868/// list expressions (InitListExpr) as placeholders for subobject
3869/// initializations not explicitly specified by the user.
3870///
3871/// \see InitListExpr
3872class ImplicitValueInitExpr : public Expr {
3873public:
3874  explicit ImplicitValueInitExpr(QualType ty)
3875    : Expr(ImplicitValueInitExprClass, ty, VK_RValue, OK_Ordinary,
3876           false, false, ty->isInstantiationDependentType(), false) { }
3877
3878  /// \brief Construct an empty implicit value initialization.
3879  explicit ImplicitValueInitExpr(EmptyShell Empty)
3880    : Expr(ImplicitValueInitExprClass, Empty) { }
3881
3882  static bool classof(const Stmt *T) {
3883    return T->getStmtClass() == ImplicitValueInitExprClass;
3884  }
3885  static bool classof(const ImplicitValueInitExpr *) { return true; }
3886
3887  SourceRange getSourceRange() const {
3888    return SourceRange();
3889  }
3890
3891  // Iterators
3892  child_range children() { return child_range(); }
3893};
3894
3895
3896class ParenListExpr : public Expr {
3897  Stmt **Exprs;
3898  unsigned NumExprs;
3899  SourceLocation LParenLoc, RParenLoc;
3900
3901public:
3902  ParenListExpr(ASTContext& C, SourceLocation lparenloc, Expr **exprs,
3903                unsigned numexprs, SourceLocation rparenloc, QualType T);
3904
3905  /// \brief Build an empty paren list.
3906  explicit ParenListExpr(EmptyShell Empty) : Expr(ParenListExprClass, Empty) { }
3907
3908  unsigned getNumExprs() const { return NumExprs; }
3909
3910  const Expr* getExpr(unsigned Init) const {
3911    assert(Init < getNumExprs() && "Initializer access out of range!");
3912    return cast_or_null<Expr>(Exprs[Init]);
3913  }
3914
3915  Expr* getExpr(unsigned Init) {
3916    assert(Init < getNumExprs() && "Initializer access out of range!");
3917    return cast_or_null<Expr>(Exprs[Init]);
3918  }
3919
3920  Expr **getExprs() { return reinterpret_cast<Expr **>(Exprs); }
3921
3922  SourceLocation getLParenLoc() const { return LParenLoc; }
3923  SourceLocation getRParenLoc() const { return RParenLoc; }
3924
3925  SourceRange getSourceRange() const {
3926    return SourceRange(LParenLoc, RParenLoc);
3927  }
3928  static bool classof(const Stmt *T) {
3929    return T->getStmtClass() == ParenListExprClass;
3930  }
3931  static bool classof(const ParenListExpr *) { return true; }
3932
3933  // Iterators
3934  child_range children() {
3935    return child_range(&Exprs[0], &Exprs[0]+NumExprs);
3936  }
3937
3938  friend class ASTStmtReader;
3939  friend class ASTStmtWriter;
3940};
3941
3942
3943/// \brief Represents a C1X generic selection.
3944///
3945/// A generic selection (C1X 6.5.1.1) contains an unevaluated controlling
3946/// expression, followed by one or more generic associations.  Each generic
3947/// association specifies a type name and an expression, or "default" and an
3948/// expression (in which case it is known as a default generic association).
3949/// The type and value of the generic selection are identical to those of its
3950/// result expression, which is defined as the expression in the generic
3951/// association with a type name that is compatible with the type of the
3952/// controlling expression, or the expression in the default generic association
3953/// if no types are compatible.  For example:
3954///
3955/// @code
3956/// _Generic(X, double: 1, float: 2, default: 3)
3957/// @endcode
3958///
3959/// The above expression evaluates to 1 if 1.0 is substituted for X, 2 if 1.0f
3960/// or 3 if "hello".
3961///
3962/// As an extension, generic selections are allowed in C++, where the following
3963/// additional semantics apply:
3964///
3965/// Any generic selection whose controlling expression is type-dependent or
3966/// which names a dependent type in its association list is result-dependent,
3967/// which means that the choice of result expression is dependent.
3968/// Result-dependent generic associations are both type- and value-dependent.
3969class GenericSelectionExpr : public Expr {
3970  enum { CONTROLLING, END_EXPR };
3971  TypeSourceInfo **AssocTypes;
3972  Stmt **SubExprs;
3973  unsigned NumAssocs, ResultIndex;
3974  SourceLocation GenericLoc, DefaultLoc, RParenLoc;
3975
3976public:
3977  GenericSelectionExpr(ASTContext &Context,
3978                       SourceLocation GenericLoc, Expr *ControllingExpr,
3979                       TypeSourceInfo **AssocTypes, Expr **AssocExprs,
3980                       unsigned NumAssocs, SourceLocation DefaultLoc,
3981                       SourceLocation RParenLoc,
3982                       bool ContainsUnexpandedParameterPack,
3983                       unsigned ResultIndex);
3984
3985  /// This constructor is used in the result-dependent case.
3986  GenericSelectionExpr(ASTContext &Context,
3987                       SourceLocation GenericLoc, Expr *ControllingExpr,
3988                       TypeSourceInfo **AssocTypes, Expr **AssocExprs,
3989                       unsigned NumAssocs, SourceLocation DefaultLoc,
3990                       SourceLocation RParenLoc,
3991                       bool ContainsUnexpandedParameterPack);
3992
3993  explicit GenericSelectionExpr(EmptyShell Empty)
3994    : Expr(GenericSelectionExprClass, Empty) { }
3995
3996  unsigned getNumAssocs() const { return NumAssocs; }
3997
3998  SourceLocation getGenericLoc() const { return GenericLoc; }
3999  SourceLocation getDefaultLoc() const { return DefaultLoc; }
4000  SourceLocation getRParenLoc() const { return RParenLoc; }
4001
4002  const Expr *getAssocExpr(unsigned i) const {
4003    return cast<Expr>(SubExprs[END_EXPR+i]);
4004  }
4005  Expr *getAssocExpr(unsigned i) { return cast<Expr>(SubExprs[END_EXPR+i]); }
4006
4007  const TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) const {
4008    return AssocTypes[i];
4009  }
4010  TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) { return AssocTypes[i]; }
4011
4012  QualType getAssocType(unsigned i) const {
4013    if (const TypeSourceInfo *TS = getAssocTypeSourceInfo(i))
4014      return TS->getType();
4015    else
4016      return QualType();
4017  }
4018
4019  const Expr *getControllingExpr() const {
4020    return cast<Expr>(SubExprs[CONTROLLING]);
4021  }
4022  Expr *getControllingExpr() { return cast<Expr>(SubExprs[CONTROLLING]); }
4023
4024  /// Whether this generic selection is result-dependent.
4025  bool isResultDependent() const { return ResultIndex == -1U; }
4026
4027  /// The zero-based index of the result expression's generic association in
4028  /// the generic selection's association list.  Defined only if the
4029  /// generic selection is not result-dependent.
4030  unsigned getResultIndex() const {
4031    assert(!isResultDependent() && "Generic selection is result-dependent");
4032    return ResultIndex;
4033  }
4034
4035  /// The generic selection's result expression.  Defined only if the
4036  /// generic selection is not result-dependent.
4037  const Expr *getResultExpr() const { return getAssocExpr(getResultIndex()); }
4038  Expr *getResultExpr() { return getAssocExpr(getResultIndex()); }
4039
4040  SourceRange getSourceRange() const {
4041    return SourceRange(GenericLoc, RParenLoc);
4042  }
4043  static bool classof(const Stmt *T) {
4044    return T->getStmtClass() == GenericSelectionExprClass;
4045  }
4046  static bool classof(const GenericSelectionExpr *) { return true; }
4047
4048  child_range children() {
4049    return child_range(SubExprs, SubExprs+END_EXPR+NumAssocs);
4050  }
4051
4052  friend class ASTStmtReader;
4053};
4054
4055//===----------------------------------------------------------------------===//
4056// Clang Extensions
4057//===----------------------------------------------------------------------===//
4058
4059
4060/// ExtVectorElementExpr - This represents access to specific elements of a
4061/// vector, and may occur on the left hand side or right hand side.  For example
4062/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
4063///
4064/// Note that the base may have either vector or pointer to vector type, just
4065/// like a struct field reference.
4066///
4067class ExtVectorElementExpr : public Expr {
4068  Stmt *Base;
4069  IdentifierInfo *Accessor;
4070  SourceLocation AccessorLoc;
4071public:
4072  ExtVectorElementExpr(QualType ty, ExprValueKind VK, Expr *base,
4073                       IdentifierInfo &accessor, SourceLocation loc)
4074    : Expr(ExtVectorElementExprClass, ty, VK,
4075           (VK == VK_RValue ? OK_Ordinary : OK_VectorComponent),
4076           base->isTypeDependent(), base->isValueDependent(),
4077           base->isInstantiationDependent(),
4078           base->containsUnexpandedParameterPack()),
4079      Base(base), Accessor(&accessor), AccessorLoc(loc) {}
4080
4081  /// \brief Build an empty vector element expression.
4082  explicit ExtVectorElementExpr(EmptyShell Empty)
4083    : Expr(ExtVectorElementExprClass, Empty) { }
4084
4085  const Expr *getBase() const { return cast<Expr>(Base); }
4086  Expr *getBase() { return cast<Expr>(Base); }
4087  void setBase(Expr *E) { Base = E; }
4088
4089  IdentifierInfo &getAccessor() const { return *Accessor; }
4090  void setAccessor(IdentifierInfo *II) { Accessor = II; }
4091
4092  SourceLocation getAccessorLoc() const { return AccessorLoc; }
4093  void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
4094
4095  /// getNumElements - Get the number of components being selected.
4096  unsigned getNumElements() const;
4097
4098  /// containsDuplicateElements - Return true if any element access is
4099  /// repeated.
4100  bool containsDuplicateElements() const;
4101
4102  /// getEncodedElementAccess - Encode the elements accessed into an llvm
4103  /// aggregate Constant of ConstantInt(s).
4104  void getEncodedElementAccess(SmallVectorImpl<unsigned> &Elts) const;
4105
4106  SourceRange getSourceRange() const {
4107    return SourceRange(getBase()->getLocStart(), AccessorLoc);
4108  }
4109
4110  /// isArrow - Return true if the base expression is a pointer to vector,
4111  /// return false if the base expression is a vector.
4112  bool isArrow() const;
4113
4114  static bool classof(const Stmt *T) {
4115    return T->getStmtClass() == ExtVectorElementExprClass;
4116  }
4117  static bool classof(const ExtVectorElementExpr *) { return true; }
4118
4119  // Iterators
4120  child_range children() { return child_range(&Base, &Base+1); }
4121};
4122
4123
4124/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
4125/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
4126class BlockExpr : public Expr {
4127protected:
4128  BlockDecl *TheBlock;
4129public:
4130  BlockExpr(BlockDecl *BD, QualType ty)
4131    : Expr(BlockExprClass, ty, VK_RValue, OK_Ordinary,
4132           ty->isDependentType(), false,
4133           // FIXME: Check for instantiate-dependence in the statement?
4134           ty->isInstantiationDependentType(),
4135           false),
4136      TheBlock(BD) {}
4137
4138  /// \brief Build an empty block expression.
4139  explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { }
4140
4141  const BlockDecl *getBlockDecl() const { return TheBlock; }
4142  BlockDecl *getBlockDecl() { return TheBlock; }
4143  void setBlockDecl(BlockDecl *BD) { TheBlock = BD; }
4144
4145  // Convenience functions for probing the underlying BlockDecl.
4146  SourceLocation getCaretLocation() const;
4147  const Stmt *getBody() const;
4148  Stmt *getBody();
4149
4150  SourceRange getSourceRange() const {
4151    return SourceRange(getCaretLocation(), getBody()->getLocEnd());
4152  }
4153
4154  /// getFunctionType - Return the underlying function type for this block.
4155  const FunctionType *getFunctionType() const;
4156
4157  static bool classof(const Stmt *T) {
4158    return T->getStmtClass() == BlockExprClass;
4159  }
4160  static bool classof(const BlockExpr *) { return true; }
4161
4162  // Iterators
4163  child_range children() { return child_range(); }
4164};
4165
4166/// BlockDeclRefExpr - A reference to a local variable declared in an
4167/// enclosing scope.
4168class BlockDeclRefExpr : public Expr {
4169  VarDecl *D;
4170  SourceLocation Loc;
4171  bool IsByRef : 1;
4172  bool ConstQualAdded : 1;
4173public:
4174  BlockDeclRefExpr(VarDecl *d, QualType t, ExprValueKind VK,
4175                   SourceLocation l, bool ByRef, bool constAdded = false);
4176
4177  // \brief Build an empty reference to a declared variable in a
4178  // block.
4179  explicit BlockDeclRefExpr(EmptyShell Empty)
4180    : Expr(BlockDeclRefExprClass, Empty) { }
4181
4182  VarDecl *getDecl() { return D; }
4183  const VarDecl *getDecl() const { return D; }
4184  void setDecl(VarDecl *VD) { D = VD; }
4185
4186  SourceLocation getLocation() const { return Loc; }
4187  void setLocation(SourceLocation L) { Loc = L; }
4188
4189  SourceRange getSourceRange() const { return SourceRange(Loc); }
4190
4191  bool isByRef() const { return IsByRef; }
4192  void setByRef(bool BR) { IsByRef = BR; }
4193
4194  bool isConstQualAdded() const { return ConstQualAdded; }
4195  void setConstQualAdded(bool C) { ConstQualAdded = C; }
4196
4197  static bool classof(const Stmt *T) {
4198    return T->getStmtClass() == BlockDeclRefExprClass;
4199  }
4200  static bool classof(const BlockDeclRefExpr *) { return true; }
4201
4202  // Iterators
4203  child_range children() { return child_range(); }
4204};
4205
4206/// AsTypeExpr - Clang builtin function __builtin_astype [OpenCL 6.2.4.2]
4207/// This AST node provides support for reinterpreting a type to another
4208/// type of the same size.
4209class AsTypeExpr : public Expr { // Should this be an ExplicitCastExpr?
4210private:
4211  Stmt *SrcExpr;
4212  SourceLocation BuiltinLoc, RParenLoc;
4213
4214  friend class ASTReader;
4215  friend class ASTStmtReader;
4216  explicit AsTypeExpr(EmptyShell Empty) : Expr(AsTypeExprClass, Empty) {}
4217
4218public:
4219  AsTypeExpr(Expr* SrcExpr, QualType DstType,
4220             ExprValueKind VK, ExprObjectKind OK,
4221             SourceLocation BuiltinLoc, SourceLocation RParenLoc)
4222    : Expr(AsTypeExprClass, DstType, VK, OK,
4223           DstType->isDependentType(),
4224           DstType->isDependentType() || SrcExpr->isValueDependent(),
4225           (DstType->isInstantiationDependentType() ||
4226            SrcExpr->isInstantiationDependent()),
4227           (DstType->containsUnexpandedParameterPack() ||
4228            SrcExpr->containsUnexpandedParameterPack())),
4229  SrcExpr(SrcExpr), BuiltinLoc(BuiltinLoc), RParenLoc(RParenLoc) {}
4230
4231  /// getSrcExpr - Return the Expr to be converted.
4232  Expr *getSrcExpr() const { return cast<Expr>(SrcExpr); }
4233
4234  /// getBuiltinLoc - Return the location of the __builtin_astype token.
4235  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
4236
4237  /// getRParenLoc - Return the location of final right parenthesis.
4238  SourceLocation getRParenLoc() const { return RParenLoc; }
4239
4240  SourceRange getSourceRange() const {
4241    return SourceRange(BuiltinLoc, RParenLoc);
4242  }
4243
4244  static bool classof(const Stmt *T) {
4245    return T->getStmtClass() == AsTypeExprClass;
4246  }
4247  static bool classof(const AsTypeExpr *) { return true; }
4248
4249  // Iterators
4250  child_range children() { return child_range(&SrcExpr, &SrcExpr+1); }
4251};
4252
4253/// PseudoObjectExpr - An expression which accesses a pseudo-object
4254/// l-value.  A pseudo-object is an abstract object, accesses to which
4255/// are translated to calls.  The pseudo-object expression has a
4256/// syntactic form, which shows how the expression was actually
4257/// written in the source code, and a semantic form, which is a series
4258/// of expressions to be executed in order which detail how the
4259/// operation is actually evaluated.  Optionally, one of the semantic
4260/// forms may also provide a result value for the expression.
4261///
4262/// If any of the semantic-form expressions is an OpaqueValueExpr,
4263/// that OVE is required to have a source expression, and it is bound
4264/// to the result of that source expression.  Such OVEs may appear
4265/// only in subsequent semantic-form expressions and as
4266/// sub-expressions of the syntactic form.
4267///
4268/// PseudoObjectExpr should be used only when an operation can be
4269/// usefully described in terms of fairly simple rewrite rules on
4270/// objects and functions that are meant to be used by end-developers.
4271/// For example, under the Itanium ABI, dynamic casts are implemented
4272/// as a call to a runtime function called __dynamic_cast; using this
4273/// class to describe that would be inappropriate because that call is
4274/// not really part of the user-visible semantics, and instead the
4275/// cast is properly reflected in the AST and IR-generation has been
4276/// taught to generate the call as necessary.  In contrast, an
4277/// Objective-C property access is semantically defined to be
4278/// equivalent to a particular message send, and this is very much
4279/// part of the user model.  The name of this class encourages this
4280/// modelling design.
4281class PseudoObjectExpr : public Expr {
4282  // PseudoObjectExprBits.NumSubExprs - The number of sub-expressions.
4283  // Always at least two, because the first sub-expression is the
4284  // syntactic form.
4285
4286  // PseudoObjectExprBits.ResultIndex - The index of the
4287  // sub-expression holding the result.  0 means the result is void,
4288  // which is unambiguous because it's the index of the syntactic
4289  // form.  Note that this is therefore 1 higher than the value passed
4290  // in to Create, which is an index within the semantic forms.
4291  // Note also that ASTStmtWriter assumes this encoding.
4292
4293  Expr **getSubExprsBuffer() { return reinterpret_cast<Expr**>(this + 1); }
4294  const Expr * const *getSubExprsBuffer() const {
4295    return reinterpret_cast<const Expr * const *>(this + 1);
4296  }
4297
4298  friend class ASTStmtReader;
4299
4300  PseudoObjectExpr(QualType type, ExprValueKind VK,
4301                   Expr *syntactic, ArrayRef<Expr*> semantic,
4302                   unsigned resultIndex);
4303
4304  PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs);
4305
4306  unsigned getNumSubExprs() const {
4307    return PseudoObjectExprBits.NumSubExprs;
4308  }
4309
4310public:
4311  /// NoResult - A value for the result index indicating that there is
4312  /// no semantic result.
4313  enum { NoResult = ~0U };
4314
4315  static PseudoObjectExpr *Create(ASTContext &Context, Expr *syntactic,
4316                                  ArrayRef<Expr*> semantic,
4317                                  unsigned resultIndex);
4318
4319  static PseudoObjectExpr *Create(ASTContext &Context, EmptyShell shell,
4320                                  unsigned numSemanticExprs);
4321
4322  /// Return the syntactic form of this expression, i.e. the
4323  /// expression it actually looks like.  Likely to be expressed in
4324  /// terms of OpaqueValueExprs bound in the semantic form.
4325  Expr *getSyntacticForm() { return getSubExprsBuffer()[0]; }
4326  const Expr *getSyntacticForm() const { return getSubExprsBuffer()[0]; }
4327
4328  /// Return the index of the result-bearing expression into the semantics
4329  /// expressions, or PseudoObjectExpr::NoResult if there is none.
4330  unsigned getResultExprIndex() const {
4331    if (PseudoObjectExprBits.ResultIndex == 0) return NoResult;
4332    return PseudoObjectExprBits.ResultIndex - 1;
4333  }
4334
4335  /// Return the result-bearing expression, or null if there is none.
4336  Expr *getResultExpr() {
4337    if (PseudoObjectExprBits.ResultIndex == 0)
4338      return 0;
4339    return getSubExprsBuffer()[PseudoObjectExprBits.ResultIndex];
4340  }
4341  const Expr *getResultExpr() const {
4342    return const_cast<PseudoObjectExpr*>(this)->getResultExpr();
4343  }
4344
4345  unsigned getNumSemanticExprs() const { return getNumSubExprs() - 1; }
4346
4347  typedef Expr * const *semantics_iterator;
4348  typedef const Expr * const *const_semantics_iterator;
4349  semantics_iterator semantics_begin() {
4350    return getSubExprsBuffer() + 1;
4351  }
4352  const_semantics_iterator semantics_begin() const {
4353    return getSubExprsBuffer() + 1;
4354  }
4355  semantics_iterator semantics_end() {
4356    return getSubExprsBuffer() + getNumSubExprs();
4357  }
4358  const_semantics_iterator semantics_end() const {
4359    return getSubExprsBuffer() + getNumSubExprs();
4360  }
4361  Expr *getSemanticExpr(unsigned index) {
4362    assert(index + 1 < getNumSubExprs());
4363    return getSubExprsBuffer()[index + 1];
4364  }
4365  const Expr *getSemanticExpr(unsigned index) const {
4366    return const_cast<PseudoObjectExpr*>(this)->getSemanticExpr(index);
4367  }
4368
4369  SourceLocation getExprLoc() const {
4370    return getSyntacticForm()->getExprLoc();
4371  }
4372  SourceRange getSourceRange() const {
4373    return getSyntacticForm()->getSourceRange();
4374  }
4375
4376  child_range children() {
4377    Stmt **cs = reinterpret_cast<Stmt**>(getSubExprsBuffer());
4378    return child_range(cs, cs + getNumSubExprs());
4379  }
4380
4381  static bool classof(const Stmt *T) {
4382    return T->getStmtClass() == PseudoObjectExprClass;
4383  }
4384  static bool classof(const PseudoObjectExpr *) { return true; }
4385};
4386
4387/// AtomicExpr - Variadic atomic builtins: __atomic_exchange, __atomic_fetch_*,
4388/// __atomic_load, __atomic_store, and __atomic_compare_exchange_*, for the
4389/// similarly-named C++0x instructions.  All of these instructions take one
4390/// primary pointer and at least one memory order.
4391class AtomicExpr : public Expr {
4392public:
4393  enum AtomicOp { Load, Store, CmpXchgStrong, CmpXchgWeak, Xchg,
4394                  Add, Sub, And, Or, Xor };
4395private:
4396  enum { PTR, ORDER, VAL1, ORDER_FAIL, VAL2, END_EXPR };
4397  Stmt* SubExprs[END_EXPR];
4398  unsigned NumSubExprs;
4399  SourceLocation BuiltinLoc, RParenLoc;
4400  AtomicOp Op;
4401
4402public:
4403  AtomicExpr(SourceLocation BLoc, Expr **args, unsigned nexpr, QualType t,
4404             AtomicOp op, SourceLocation RP);
4405
4406  /// \brief Build an empty AtomicExpr.
4407  explicit AtomicExpr(EmptyShell Empty) : Expr(AtomicExprClass, Empty) { }
4408
4409  Expr *getPtr() const {
4410    return cast<Expr>(SubExprs[PTR]);
4411  }
4412  void setPtr(Expr *E) {
4413    SubExprs[PTR] = E;
4414  }
4415  Expr *getOrder() const {
4416    return cast<Expr>(SubExprs[ORDER]);
4417  }
4418  void setOrder(Expr *E) {
4419    SubExprs[ORDER] = E;
4420  }
4421  Expr *getVal1() const {
4422    assert(NumSubExprs >= 3);
4423    return cast<Expr>(SubExprs[VAL1]);
4424  }
4425  void setVal1(Expr *E) {
4426    assert(NumSubExprs >= 3);
4427    SubExprs[VAL1] = E;
4428  }
4429  Expr *getOrderFail() const {
4430    assert(NumSubExprs == 5);
4431    return cast<Expr>(SubExprs[ORDER_FAIL]);
4432  }
4433  void setOrderFail(Expr *E) {
4434    assert(NumSubExprs == 5);
4435    SubExprs[ORDER_FAIL] = E;
4436  }
4437  Expr *getVal2() const {
4438    assert(NumSubExprs == 5);
4439    return cast<Expr>(SubExprs[VAL2]);
4440  }
4441  void setVal2(Expr *E) {
4442    assert(NumSubExprs == 5);
4443    SubExprs[VAL2] = E;
4444  }
4445
4446  AtomicOp getOp() const { return Op; }
4447  void setOp(AtomicOp op) { Op = op; }
4448  unsigned getNumSubExprs() { return NumSubExprs; }
4449  void setNumSubExprs(unsigned num) { NumSubExprs = num; }
4450
4451  Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
4452
4453  bool isVolatile() const {
4454    return getPtr()->getType()->getPointeeType().isVolatileQualified();
4455  }
4456
4457  bool isCmpXChg() const {
4458    return getOp() == AtomicExpr::CmpXchgStrong ||
4459           getOp() == AtomicExpr::CmpXchgWeak;
4460  }
4461
4462  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
4463  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
4464
4465  SourceLocation getRParenLoc() const { return RParenLoc; }
4466  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
4467
4468  SourceRange getSourceRange() const {
4469    return SourceRange(BuiltinLoc, RParenLoc);
4470  }
4471  static bool classof(const Stmt *T) {
4472    return T->getStmtClass() == AtomicExprClass;
4473  }
4474  static bool classof(const AtomicExpr *) { return true; }
4475
4476  // Iterators
4477  child_range children() {
4478    return child_range(SubExprs, SubExprs+NumSubExprs);
4479  }
4480};
4481}  // end namespace clang
4482
4483#endif
4484