Expr.h revision de7e66256b1bdfcf6526994825a8c8fced52a31c
1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/Stmt.h"
19#include "clang/AST/Type.h"
20#include "clang/AST/DeclAccessPair.h"
21#include "clang/AST/ASTVector.h"
22#include "clang/AST/UsuallyTinyPtrVector.h"
23#include "llvm/ADT/APSInt.h"
24#include "llvm/ADT/APFloat.h"
25#include "llvm/ADT/SmallVector.h"
26#include "llvm/ADT/StringRef.h"
27#include <vector>
28
29namespace clang {
30  class ASTContext;
31  class APValue;
32  class Decl;
33  class IdentifierInfo;
34  class ParmVarDecl;
35  class NamedDecl;
36  class ValueDecl;
37  class BlockDecl;
38  class CXXBaseSpecifier;
39  class CXXOperatorCallExpr;
40  class CXXMemberCallExpr;
41  class TemplateArgumentLoc;
42  class TemplateArgumentListInfo;
43
44/// \brief A simple array of base specifiers.
45typedef llvm::SmallVector<CXXBaseSpecifier*, 4> CXXCastPath;
46
47/// Expr - This represents one expression.  Note that Expr's are subclasses of
48/// Stmt.  This allows an expression to be transparently used any place a Stmt
49/// is required.
50///
51class Expr : public Stmt {
52  QualType TR;
53
54  virtual void ANCHOR(); // key function.
55protected:
56  /// TypeDependent - Whether this expression is type-dependent
57  /// (C++ [temp.dep.expr]).
58  bool TypeDependent : 1;
59
60  /// ValueDependent - Whether this expression is value-dependent
61  /// (C++ [temp.dep.constexpr]).
62  bool ValueDependent : 1;
63
64  enum { BitsRemaining = 30 };
65
66  Expr(StmtClass SC, QualType T, bool TD, bool VD)
67    : Stmt(SC), TypeDependent(TD), ValueDependent(VD) {
68    setType(T);
69  }
70
71  /// \brief Construct an empty expression.
72  explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
73
74public:
75  /// \brief Increases the reference count for this expression.
76  ///
77  /// Invoke the Retain() operation when this expression
78  /// is being shared by another owner.
79  Expr *Retain() {
80    Stmt::Retain();
81    return this;
82  }
83
84  QualType getType() const { return TR; }
85  void setType(QualType t) {
86    // In C++, the type of an expression is always adjusted so that it
87    // will not have reference type an expression will never have
88    // reference type (C++ [expr]p6). Use
89    // QualType::getNonReferenceType() to retrieve the non-reference
90    // type. Additionally, inspect Expr::isLvalue to determine whether
91    // an expression that is adjusted in this manner should be
92    // considered an lvalue.
93    assert((t.isNull() || !t->isReferenceType()) &&
94           "Expressions can't have reference type");
95
96    TR = t;
97  }
98
99  /// isValueDependent - Determines whether this expression is
100  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
101  /// array bound of "Chars" in the following example is
102  /// value-dependent.
103  /// @code
104  /// template<int Size, char (&Chars)[Size]> struct meta_string;
105  /// @endcode
106  bool isValueDependent() const { return ValueDependent; }
107
108  /// \brief Set whether this expression is value-dependent or not.
109  void setValueDependent(bool VD) { ValueDependent = VD; }
110
111  /// isTypeDependent - Determines whether this expression is
112  /// type-dependent (C++ [temp.dep.expr]), which means that its type
113  /// could change from one template instantiation to the next. For
114  /// example, the expressions "x" and "x + y" are type-dependent in
115  /// the following code, but "y" is not type-dependent:
116  /// @code
117  /// template<typename T>
118  /// void add(T x, int y) {
119  ///   x + y;
120  /// }
121  /// @endcode
122  bool isTypeDependent() const { return TypeDependent; }
123
124  /// \brief Set whether this expression is type-dependent or not.
125  void setTypeDependent(bool TD) { TypeDependent = TD; }
126
127  /// SourceLocation tokens are not useful in isolation - they are low level
128  /// value objects created/interpreted by SourceManager. We assume AST
129  /// clients will have a pointer to the respective SourceManager.
130  virtual SourceRange getSourceRange() const = 0;
131
132  /// getExprLoc - Return the preferred location for the arrow when diagnosing
133  /// a problem with a generic expression.
134  virtual SourceLocation getExprLoc() const { return getLocStart(); }
135
136  /// isUnusedResultAWarning - Return true if this immediate expression should
137  /// be warned about if the result is unused.  If so, fill in Loc and Ranges
138  /// with location to warn on and the source range[s] to report with the
139  /// warning.
140  bool isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
141                              SourceRange &R2, ASTContext &Ctx) const;
142
143  /// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or
144  /// incomplete type other than void. Nonarray expressions that can be lvalues:
145  ///  - name, where name must be a variable
146  ///  - e[i]
147  ///  - (e), where e must be an lvalue
148  ///  - e.name, where e must be an lvalue
149  ///  - e->name
150  ///  - *e, the type of e cannot be a function type
151  ///  - string-constant
152  ///  - reference type [C++ [expr]]
153  ///  - b ? x : y, where x and y are lvalues of suitable types [C++]
154  ///
155  enum isLvalueResult {
156    LV_Valid,
157    LV_NotObjectType,
158    LV_IncompleteVoidType,
159    LV_DuplicateVectorComponents,
160    LV_InvalidExpression,
161    LV_MemberFunction,
162    LV_SubObjCPropertySetting,
163    LV_ClassTemporary
164  };
165  isLvalueResult isLvalue(ASTContext &Ctx) const;
166
167  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
168  /// does not have an incomplete type, does not have a const-qualified type,
169  /// and if it is a structure or union, does not have any member (including,
170  /// recursively, any member or element of all contained aggregates or unions)
171  /// with a const-qualified type.
172  ///
173  /// \param Loc [in] [out] - A source location which *may* be filled
174  /// in with the location of the expression making this a
175  /// non-modifiable lvalue, if specified.
176  enum isModifiableLvalueResult {
177    MLV_Valid,
178    MLV_NotObjectType,
179    MLV_IncompleteVoidType,
180    MLV_DuplicateVectorComponents,
181    MLV_InvalidExpression,
182    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
183    MLV_IncompleteType,
184    MLV_ConstQualified,
185    MLV_ArrayType,
186    MLV_NotBlockQualified,
187    MLV_ReadonlyProperty,
188    MLV_NoSetterProperty,
189    MLV_MemberFunction,
190    MLV_SubObjCPropertySetting,
191    MLV_ClassTemporary
192  };
193  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx,
194                                              SourceLocation *Loc = 0) const;
195
196  /// \brief The return type of classify(). Represents the C++0x expression
197  ///        taxonomy.
198  class Classification {
199  public:
200    /// \brief The various classification results. Most of these mean prvalue.
201    enum Kinds {
202      CL_LValue,
203      CL_XValue,
204      CL_Function, // Functions cannot be lvalues in C.
205      CL_Void, // Void cannot be an lvalue in C.
206      CL_DuplicateVectorComponents, // A vector shuffle with dupes.
207      CL_MemberFunction, // An expression referring to a member function
208      CL_SubObjCPropertySetting,
209      CL_ClassTemporary, // A prvalue of class type
210      CL_PRValue // A prvalue for any other reason, of any other type
211    };
212    /// \brief The results of modification testing.
213    enum ModifiableType {
214      CM_Untested, // testModifiable was false.
215      CM_Modifiable,
216      CM_RValue, // Not modifiable because it's an rvalue
217      CM_Function, // Not modifiable because it's a function; C++ only
218      CM_LValueCast, // Same as CM_RValue, but indicates GCC cast-as-lvalue ext
219      CM_NotBlockQualified, // Not captured in the closure
220      CM_NoSetterProperty,// Implicit assignment to ObjC property without setter
221      CM_ConstQualified,
222      CM_ArrayType,
223      CM_IncompleteType
224    };
225
226  private:
227    friend class Expr;
228
229    unsigned short Kind;
230    unsigned short Modifiable;
231
232    explicit Classification(Kinds k, ModifiableType m)
233      : Kind(k), Modifiable(m)
234    {}
235
236  public:
237    Classification() {}
238
239    Kinds getKind() const { return static_cast<Kinds>(Kind); }
240    ModifiableType getModifiable() const {
241      assert(Modifiable != CM_Untested && "Did not test for modifiability.");
242      return static_cast<ModifiableType>(Modifiable);
243    }
244    bool isLValue() const { return Kind == CL_LValue; }
245    bool isXValue() const { return Kind == CL_XValue; }
246    bool isGLValue() const { return Kind <= CL_XValue; }
247    bool isPRValue() const { return Kind >= CL_Function; }
248    bool isRValue() const { return Kind >= CL_XValue; }
249    bool isModifiable() const { return getModifiable() == CM_Modifiable; }
250  };
251  /// \brief classify - Classify this expression according to the C++0x
252  ///        expression taxonomy.
253  ///
254  /// C++0x defines ([basic.lval]) a new taxonomy of expressions to replace the
255  /// old lvalue vs rvalue. This function determines the type of expression this
256  /// is. There are three expression types:
257  /// - lvalues are classical lvalues as in C++03.
258  /// - prvalues are equivalent to rvalues in C++03.
259  /// - xvalues are expressions yielding unnamed rvalue references, e.g. a
260  ///   function returning an rvalue reference.
261  /// lvalues and xvalues are collectively referred to as glvalues, while
262  /// prvalues and xvalues together form rvalues.
263  Classification Classify(ASTContext &Ctx) const {
264    return ClassifyImpl(Ctx, 0);
265  }
266
267  /// \brief classifyModifiable - Classify this expression according to the
268  ///        C++0x expression taxonomy, and see if it is valid on the left side
269  ///        of an assignment.
270  ///
271  /// This function extends classify in that it also tests whether the
272  /// expression is modifiable (C99 6.3.2.1p1).
273  /// \param Loc A source location that might be filled with a relevant location
274  ///            if the expression is not modifiable.
275  Classification ClassifyModifiable(ASTContext &Ctx, SourceLocation &Loc) const{
276    return ClassifyImpl(Ctx, &Loc);
277  }
278
279private:
280  Classification ClassifyImpl(ASTContext &Ctx, SourceLocation *Loc) const;
281
282public:
283
284  /// \brief If this expression refers to a bit-field, retrieve the
285  /// declaration of that bit-field.
286  FieldDecl *getBitField();
287
288  const FieldDecl *getBitField() const {
289    return const_cast<Expr*>(this)->getBitField();
290  }
291
292  /// \brief Returns whether this expression refers to a vector element.
293  bool refersToVectorElement() const;
294
295  /// isKnownToHaveBooleanValue - Return true if this is an integer expression
296  /// that is known to return 0 or 1.  This happens for _Bool/bool expressions
297  /// but also int expressions which are produced by things like comparisons in
298  /// C.
299  bool isKnownToHaveBooleanValue() const;
300
301  /// isIntegerConstantExpr - Return true if this expression is a valid integer
302  /// constant expression, and, if so, return its value in Result.  If not a
303  /// valid i-c-e, return false and fill in Loc (if specified) with the location
304  /// of the invalid expression.
305  bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
306                             SourceLocation *Loc = 0,
307                             bool isEvaluated = true) const;
308  bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const {
309    llvm::APSInt X;
310    return isIntegerConstantExpr(X, Ctx, Loc);
311  }
312  /// isConstantInitializer - Returns true if this expression is a constant
313  /// initializer, which can be emitted at compile-time.
314  bool isConstantInitializer(ASTContext &Ctx, bool ForRef) const;
315
316  /// EvalResult is a struct with detailed info about an evaluated expression.
317  struct EvalResult {
318    /// Val - This is the value the expression can be folded to.
319    APValue Val;
320
321    /// HasSideEffects - Whether the evaluated expression has side effects.
322    /// For example, (f() && 0) can be folded, but it still has side effects.
323    bool HasSideEffects;
324
325    /// Diag - If the expression is unfoldable, then Diag contains a note
326    /// diagnostic indicating why it's not foldable. DiagLoc indicates a caret
327    /// position for the error, and DiagExpr is the expression that caused
328    /// the error.
329    /// If the expression is foldable, but not an integer constant expression,
330    /// Diag contains a note diagnostic that describes why it isn't an integer
331    /// constant expression. If the expression *is* an integer constant
332    /// expression, then Diag will be zero.
333    unsigned Diag;
334    const Expr *DiagExpr;
335    SourceLocation DiagLoc;
336
337    EvalResult() : HasSideEffects(false), Diag(0), DiagExpr(0) {}
338
339    // isGlobalLValue - Return true if the evaluated lvalue expression
340    // is global.
341    bool isGlobalLValue() const;
342    // hasSideEffects - Return true if the evaluated expression has
343    // side effects.
344    bool hasSideEffects() const {
345      return HasSideEffects;
346    }
347  };
348
349  /// Evaluate - Return true if this is a constant which we can fold using
350  /// any crazy technique (that has nothing to do with language standards) that
351  /// we want to.  If this function returns true, it returns the folded constant
352  /// in Result.
353  bool Evaluate(EvalResult &Result, ASTContext &Ctx) const;
354
355  /// EvaluateAsBooleanCondition - Return true if this is a constant
356  /// which we we can fold and convert to a boolean condition using
357  /// any crazy technique that we want to.
358  bool EvaluateAsBooleanCondition(bool &Result, ASTContext &Ctx) const;
359
360  /// isEvaluatable - Call Evaluate to see if this expression can be constant
361  /// folded, but discard the result.
362  bool isEvaluatable(ASTContext &Ctx) const;
363
364  /// HasSideEffects - This routine returns true for all those expressions
365  /// which must be evaluated each time and must not be optimization away
366  /// or evaluated at compile time. Example is a function call, volatile
367  /// variable read.
368  bool HasSideEffects(ASTContext &Ctx) const;
369
370  /// EvaluateAsInt - Call Evaluate and return the folded integer. This
371  /// must be called on an expression that constant folds to an integer.
372  llvm::APSInt EvaluateAsInt(ASTContext &Ctx) const;
373
374  /// EvaluateAsLValue - Evaluate an expression to see if it's a lvalue
375  /// with link time known address.
376  bool EvaluateAsLValue(EvalResult &Result, ASTContext &Ctx) const;
377
378  /// EvaluateAsLValue - Evaluate an expression to see if it's a lvalue.
379  bool EvaluateAsAnyLValue(EvalResult &Result, ASTContext &Ctx) const;
380
381  /// \brief Enumeration used to describe how \c isNullPointerConstant()
382  /// should cope with value-dependent expressions.
383  enum NullPointerConstantValueDependence {
384    /// \brief Specifies that the expression should never be value-dependent.
385    NPC_NeverValueDependent = 0,
386
387    /// \brief Specifies that a value-dependent expression of integral or
388    /// dependent type should be considered a null pointer constant.
389    NPC_ValueDependentIsNull,
390
391    /// \brief Specifies that a value-dependent expression should be considered
392    /// to never be a null pointer constant.
393    NPC_ValueDependentIsNotNull
394  };
395
396  /// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
397  /// integer constant expression with the value zero, or if this is one that is
398  /// cast to void*.
399  bool isNullPointerConstant(ASTContext &Ctx,
400                             NullPointerConstantValueDependence NPC) const;
401
402  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
403  /// write barrier.
404  bool isOBJCGCCandidate(ASTContext &Ctx) const;
405
406  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
407  ///  its subexpression.  If that subexpression is also a ParenExpr,
408  ///  then this method recursively returns its subexpression, and so forth.
409  ///  Otherwise, the method returns the current Expr.
410  Expr *IgnoreParens();
411
412  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
413  /// or CastExprs, returning their operand.
414  Expr *IgnoreParenCasts();
415
416  /// IgnoreParenImpCasts - Ignore parentheses and implicit casts.  Strip off any
417  /// ParenExpr or ImplicitCastExprs, returning their operand.
418  Expr *IgnoreParenImpCasts();
419
420  /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
421  /// value (including ptr->int casts of the same size).  Strip off any
422  /// ParenExpr or CastExprs, returning their operand.
423  Expr *IgnoreParenNoopCasts(ASTContext &Ctx);
424
425  /// \brief Determine whether this expression is a default function argument.
426  ///
427  /// Default arguments are implicitly generated in the abstract syntax tree
428  /// by semantic analysis for function calls, object constructions, etc. in
429  /// C++. Default arguments are represented by \c CXXDefaultArgExpr nodes;
430  /// this routine also looks through any implicit casts to determine whether
431  /// the expression is a default argument.
432  bool isDefaultArgument() const;
433
434  /// \brief Determine whether this expression directly creates a
435  /// temporary object (of class type).
436  bool isTemporaryObject() const { return getTemporaryObject() != 0; }
437
438  /// \brief If this expression directly creates a temporary object of
439  /// class type, return the expression that actually constructs that
440  /// temporary object.
441  const Expr *getTemporaryObject() const;
442
443  const Expr *IgnoreParens() const {
444    return const_cast<Expr*>(this)->IgnoreParens();
445  }
446  const Expr *IgnoreParenCasts() const {
447    return const_cast<Expr*>(this)->IgnoreParenCasts();
448  }
449  const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const {
450    return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
451  }
452
453  static bool hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs);
454  static bool hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs);
455
456  static bool classof(const Stmt *T) {
457    return T->getStmtClass() >= firstExprConstant &&
458           T->getStmtClass() <= lastExprConstant;
459  }
460  static bool classof(const Expr *) { return true; }
461};
462
463
464//===----------------------------------------------------------------------===//
465// Primary Expressions.
466//===----------------------------------------------------------------------===//
467
468/// \brief Represents the qualifier that may precede a C++ name, e.g., the
469/// "std::" in "std::sort".
470struct NameQualifier {
471  /// \brief The nested name specifier.
472  NestedNameSpecifier *NNS;
473
474  /// \brief The source range covered by the nested name specifier.
475  SourceRange Range;
476};
477
478/// \brief Represents an explicit template argument list in C++, e.g.,
479/// the "<int>" in "sort<int>".
480struct ExplicitTemplateArgumentList {
481  /// \brief The source location of the left angle bracket ('<');
482  SourceLocation LAngleLoc;
483
484  /// \brief The source location of the right angle bracket ('>');
485  SourceLocation RAngleLoc;
486
487  /// \brief The number of template arguments in TemplateArgs.
488  /// The actual template arguments (if any) are stored after the
489  /// ExplicitTemplateArgumentList structure.
490  unsigned NumTemplateArgs;
491
492  /// \brief Retrieve the template arguments
493  TemplateArgumentLoc *getTemplateArgs() {
494    return reinterpret_cast<TemplateArgumentLoc *> (this + 1);
495  }
496
497  /// \brief Retrieve the template arguments
498  const TemplateArgumentLoc *getTemplateArgs() const {
499    return reinterpret_cast<const TemplateArgumentLoc *> (this + 1);
500  }
501
502  void initializeFrom(const TemplateArgumentListInfo &List);
503  void copyInto(TemplateArgumentListInfo &List) const;
504  static std::size_t sizeFor(unsigned NumTemplateArgs);
505  static std::size_t sizeFor(const TemplateArgumentListInfo &List);
506};
507
508/// DeclRefExpr - [C99 6.5.1p2] - A reference to a declared variable, function,
509/// enum, etc.
510class DeclRefExpr : public Expr {
511  enum {
512    // Flag on DecoratedD that specifies when this declaration reference
513    // expression has a C++ nested-name-specifier.
514    HasQualifierFlag = 0x01,
515    // Flag on DecoratedD that specifies when this declaration reference
516    // expression has an explicit C++ template argument list.
517    HasExplicitTemplateArgumentListFlag = 0x02
518  };
519
520  // DecoratedD - The declaration that we are referencing, plus two bits to
521  // indicate whether (1) the declaration's name was explicitly qualified and
522  // (2) the declaration's name was followed by an explicit template
523  // argument list.
524  llvm::PointerIntPair<ValueDecl *, 2> DecoratedD;
525
526  // Loc - The location of the declaration name itself.
527  SourceLocation Loc;
528
529  /// DNLoc - Provides source/type location info for the
530  /// declaration name embedded in DecoratedD.
531  DeclarationNameLoc DNLoc;
532
533  /// \brief Retrieve the qualifier that preceded the declaration name, if any.
534  NameQualifier *getNameQualifier() {
535    if ((DecoratedD.getInt() & HasQualifierFlag) == 0)
536      return 0;
537
538    return reinterpret_cast<NameQualifier *> (this + 1);
539  }
540
541  /// \brief Retrieve the qualifier that preceded the member name, if any.
542  const NameQualifier *getNameQualifier() const {
543    return const_cast<DeclRefExpr *>(this)->getNameQualifier();
544  }
545
546  /// \brief Retrieve the explicit template argument list that followed the
547  /// member template name, if any.
548  ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() {
549    if ((DecoratedD.getInt() & HasExplicitTemplateArgumentListFlag) == 0)
550      return 0;
551
552    if ((DecoratedD.getInt() & HasQualifierFlag) == 0)
553      return reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
554
555    return reinterpret_cast<ExplicitTemplateArgumentList *>(
556                                                      getNameQualifier() + 1);
557  }
558
559  /// \brief Retrieve the explicit template argument list that followed the
560  /// member template name, if any.
561  const ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() const {
562    return const_cast<DeclRefExpr *>(this)->getExplicitTemplateArgumentList();
563  }
564
565  DeclRefExpr(NestedNameSpecifier *Qualifier, SourceRange QualifierRange,
566              ValueDecl *D, SourceLocation NameLoc,
567              const TemplateArgumentListInfo *TemplateArgs,
568              QualType T);
569
570  DeclRefExpr(NestedNameSpecifier *Qualifier, SourceRange QualifierRange,
571              ValueDecl *D, const DeclarationNameInfo &NameInfo,
572              const TemplateArgumentListInfo *TemplateArgs,
573              QualType T);
574
575  /// \brief Construct an empty declaration reference expression.
576  explicit DeclRefExpr(EmptyShell Empty)
577    : Expr(DeclRefExprClass, Empty) { }
578
579  /// \brief Computes the type- and value-dependence flags for this
580  /// declaration reference expression.
581  void computeDependence();
582
583public:
584  DeclRefExpr(ValueDecl *d, QualType t, SourceLocation l) :
585    Expr(DeclRefExprClass, t, false, false), DecoratedD(d, 0), Loc(l) {
586    computeDependence();
587  }
588
589  static DeclRefExpr *Create(ASTContext &Context,
590                             NestedNameSpecifier *Qualifier,
591                             SourceRange QualifierRange,
592                             ValueDecl *D,
593                             SourceLocation NameLoc,
594                             QualType T,
595                             const TemplateArgumentListInfo *TemplateArgs = 0);
596
597  static DeclRefExpr *Create(ASTContext &Context,
598                             NestedNameSpecifier *Qualifier,
599                             SourceRange QualifierRange,
600                             ValueDecl *D,
601                             const DeclarationNameInfo &NameInfo,
602                             QualType T,
603                             const TemplateArgumentListInfo *TemplateArgs = 0);
604
605  /// \brief Construct an empty declaration reference expression.
606  static DeclRefExpr *CreateEmpty(ASTContext &Context,
607                                  bool HasQualifier, unsigned NumTemplateArgs);
608
609  ValueDecl *getDecl() { return DecoratedD.getPointer(); }
610  const ValueDecl *getDecl() const { return DecoratedD.getPointer(); }
611  void setDecl(ValueDecl *NewD) { DecoratedD.setPointer(NewD); }
612
613  DeclarationNameInfo getNameInfo() const {
614    return DeclarationNameInfo(getDecl()->getDeclName(), Loc, DNLoc);
615  }
616
617  SourceLocation getLocation() const { return Loc; }
618  void setLocation(SourceLocation L) { Loc = L; }
619  virtual SourceRange getSourceRange() const;
620
621  /// \brief Determine whether this declaration reference was preceded by a
622  /// C++ nested-name-specifier, e.g., \c N::foo.
623  bool hasQualifier() const { return DecoratedD.getInt() & HasQualifierFlag; }
624
625  /// \brief If the name was qualified, retrieves the source range of
626  /// the nested-name-specifier that precedes the name. Otherwise,
627  /// returns an empty source range.
628  SourceRange getQualifierRange() const {
629    if (!hasQualifier())
630      return SourceRange();
631
632    return getNameQualifier()->Range;
633  }
634
635  /// \brief If the name was qualified, retrieves the nested-name-specifier
636  /// that precedes the name. Otherwise, returns NULL.
637  NestedNameSpecifier *getQualifier() const {
638    if (!hasQualifier())
639      return 0;
640
641    return getNameQualifier()->NNS;
642  }
643
644  /// \brief Determines whether this member expression actually had a C++
645  /// template argument list explicitly specified, e.g., x.f<int>.
646  bool hasExplicitTemplateArgumentList() const {
647    return DecoratedD.getInt() & HasExplicitTemplateArgumentListFlag;
648  }
649
650  /// \brief Copies the template arguments (if present) into the given
651  /// structure.
652  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
653    if (hasExplicitTemplateArgumentList())
654      getExplicitTemplateArgumentList()->copyInto(List);
655  }
656
657  /// \brief Retrieve the location of the left angle bracket following the
658  /// member name ('<'), if any.
659  SourceLocation getLAngleLoc() const {
660    if (!hasExplicitTemplateArgumentList())
661      return SourceLocation();
662
663    return getExplicitTemplateArgumentList()->LAngleLoc;
664  }
665
666  /// \brief Retrieve the template arguments provided as part of this
667  /// template-id.
668  const TemplateArgumentLoc *getTemplateArgs() const {
669    if (!hasExplicitTemplateArgumentList())
670      return 0;
671
672    return getExplicitTemplateArgumentList()->getTemplateArgs();
673  }
674
675  /// \brief Retrieve the number of template arguments provided as part of this
676  /// template-id.
677  unsigned getNumTemplateArgs() const {
678    if (!hasExplicitTemplateArgumentList())
679      return 0;
680
681    return getExplicitTemplateArgumentList()->NumTemplateArgs;
682  }
683
684  /// \brief Retrieve the location of the right angle bracket following the
685  /// template arguments ('>').
686  SourceLocation getRAngleLoc() const {
687    if (!hasExplicitTemplateArgumentList())
688      return SourceLocation();
689
690    return getExplicitTemplateArgumentList()->RAngleLoc;
691  }
692
693  static bool classof(const Stmt *T) {
694    return T->getStmtClass() == DeclRefExprClass;
695  }
696  static bool classof(const DeclRefExpr *) { return true; }
697
698  // Iterators
699  virtual child_iterator child_begin();
700  virtual child_iterator child_end();
701
702  friend class PCHStmtReader;
703  friend class PCHStmtWriter;
704};
705
706/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
707class PredefinedExpr : public Expr {
708public:
709  enum IdentType {
710    Func,
711    Function,
712    PrettyFunction,
713    /// PrettyFunctionNoVirtual - The same as PrettyFunction, except that the
714    /// 'virtual' keyword is omitted for virtual member functions.
715    PrettyFunctionNoVirtual
716  };
717
718private:
719  SourceLocation Loc;
720  IdentType Type;
721public:
722  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
723    : Expr(PredefinedExprClass, type, type->isDependentType(),
724           type->isDependentType()), Loc(l), Type(IT) {}
725
726  /// \brief Construct an empty predefined expression.
727  explicit PredefinedExpr(EmptyShell Empty)
728    : Expr(PredefinedExprClass, Empty) { }
729
730  IdentType getIdentType() const { return Type; }
731  void setIdentType(IdentType IT) { Type = IT; }
732
733  SourceLocation getLocation() const { return Loc; }
734  void setLocation(SourceLocation L) { Loc = L; }
735
736  static std::string ComputeName(IdentType IT, const Decl *CurrentDecl);
737
738  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
739
740  static bool classof(const Stmt *T) {
741    return T->getStmtClass() == PredefinedExprClass;
742  }
743  static bool classof(const PredefinedExpr *) { return true; }
744
745  // Iterators
746  virtual child_iterator child_begin();
747  virtual child_iterator child_end();
748};
749
750class IntegerLiteral : public Expr {
751  llvm::APInt Value;
752  SourceLocation Loc;
753public:
754  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
755  // or UnsignedLongLongTy
756  IntegerLiteral(const llvm::APInt &V, QualType type, SourceLocation l)
757    : Expr(IntegerLiteralClass, type, false, false), Value(V), Loc(l) {
758    assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
759  }
760
761  /// \brief Construct an empty integer literal.
762  explicit IntegerLiteral(EmptyShell Empty)
763    : Expr(IntegerLiteralClass, Empty) { }
764
765  const llvm::APInt &getValue() const { return Value; }
766  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
767
768  /// \brief Retrieve the location of the literal.
769  SourceLocation getLocation() const { return Loc; }
770
771  void setValue(const llvm::APInt &Val) { Value = Val; }
772  void setLocation(SourceLocation Location) { Loc = Location; }
773
774  static bool classof(const Stmt *T) {
775    return T->getStmtClass() == IntegerLiteralClass;
776  }
777  static bool classof(const IntegerLiteral *) { return true; }
778
779  // Iterators
780  virtual child_iterator child_begin();
781  virtual child_iterator child_end();
782};
783
784class CharacterLiteral : public Expr {
785  unsigned Value;
786  SourceLocation Loc;
787  bool IsWide;
788public:
789  // type should be IntTy
790  CharacterLiteral(unsigned value, bool iswide, QualType type, SourceLocation l)
791    : Expr(CharacterLiteralClass, type, false, false), Value(value), Loc(l),
792      IsWide(iswide) {
793  }
794
795  /// \brief Construct an empty character literal.
796  CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
797
798  SourceLocation getLocation() const { return Loc; }
799  bool isWide() const { return IsWide; }
800
801  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
802
803  unsigned getValue() const { return Value; }
804
805  void setLocation(SourceLocation Location) { Loc = Location; }
806  void setWide(bool W) { IsWide = W; }
807  void setValue(unsigned Val) { Value = Val; }
808
809  static bool classof(const Stmt *T) {
810    return T->getStmtClass() == CharacterLiteralClass;
811  }
812  static bool classof(const CharacterLiteral *) { return true; }
813
814  // Iterators
815  virtual child_iterator child_begin();
816  virtual child_iterator child_end();
817};
818
819class FloatingLiteral : public Expr {
820  llvm::APFloat Value;
821  bool IsExact : 1;
822  SourceLocation Loc;
823public:
824  FloatingLiteral(const llvm::APFloat &V, bool isexact,
825                  QualType Type, SourceLocation L)
826    : Expr(FloatingLiteralClass, Type, false, false), Value(V),
827      IsExact(isexact), Loc(L) {}
828
829  /// \brief Construct an empty floating-point literal.
830  explicit FloatingLiteral(EmptyShell Empty)
831    : Expr(FloatingLiteralClass, Empty), Value(0.0) { }
832
833  const llvm::APFloat &getValue() const { return Value; }
834  void setValue(const llvm::APFloat &Val) { Value = Val; }
835
836  bool isExact() const { return IsExact; }
837  void setExact(bool E) { IsExact = E; }
838
839  /// getValueAsApproximateDouble - This returns the value as an inaccurate
840  /// double.  Note that this may cause loss of precision, but is useful for
841  /// debugging dumps, etc.
842  double getValueAsApproximateDouble() const;
843
844  SourceLocation getLocation() const { return Loc; }
845  void setLocation(SourceLocation L) { Loc = L; }
846
847  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
848
849  static bool classof(const Stmt *T) {
850    return T->getStmtClass() == FloatingLiteralClass;
851  }
852  static bool classof(const FloatingLiteral *) { return true; }
853
854  // Iterators
855  virtual child_iterator child_begin();
856  virtual child_iterator child_end();
857};
858
859/// ImaginaryLiteral - We support imaginary integer and floating point literals,
860/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
861/// IntegerLiteral classes.  Instances of this class always have a Complex type
862/// whose element type matches the subexpression.
863///
864class ImaginaryLiteral : public Expr {
865  Stmt *Val;
866public:
867  ImaginaryLiteral(Expr *val, QualType Ty)
868    : Expr(ImaginaryLiteralClass, Ty, false, false), Val(val) {}
869
870  /// \brief Build an empty imaginary literal.
871  explicit ImaginaryLiteral(EmptyShell Empty)
872    : Expr(ImaginaryLiteralClass, Empty) { }
873
874  const Expr *getSubExpr() const { return cast<Expr>(Val); }
875  Expr *getSubExpr() { return cast<Expr>(Val); }
876  void setSubExpr(Expr *E) { Val = E; }
877
878  virtual SourceRange getSourceRange() const { return Val->getSourceRange(); }
879  static bool classof(const Stmt *T) {
880    return T->getStmtClass() == ImaginaryLiteralClass;
881  }
882  static bool classof(const ImaginaryLiteral *) { return true; }
883
884  // Iterators
885  virtual child_iterator child_begin();
886  virtual child_iterator child_end();
887};
888
889/// StringLiteral - This represents a string literal expression, e.g. "foo"
890/// or L"bar" (wide strings).  The actual string is returned by getStrData()
891/// is NOT null-terminated, and the length of the string is determined by
892/// calling getByteLength().  The C type for a string is always a
893/// ConstantArrayType.  In C++, the char type is const qualified, in C it is
894/// not.
895///
896/// Note that strings in C can be formed by concatenation of multiple string
897/// literal pptokens in translation phase #6.  This keeps track of the locations
898/// of each of these pieces.
899///
900/// Strings in C can also be truncated and extended by assigning into arrays,
901/// e.g. with constructs like:
902///   char X[2] = "foobar";
903/// In this case, getByteLength() will return 6, but the string literal will
904/// have type "char[2]".
905class StringLiteral : public Expr {
906  const char *StrData;
907  unsigned ByteLength;
908  bool IsWide;
909  unsigned NumConcatenated;
910  SourceLocation TokLocs[1];
911
912  StringLiteral(QualType Ty) : Expr(StringLiteralClass, Ty, false, false) {}
913
914public:
915  /// This is the "fully general" constructor that allows representation of
916  /// strings formed from multiple concatenated tokens.
917  static StringLiteral *Create(ASTContext &C, const char *StrData,
918                               unsigned ByteLength, bool Wide, QualType Ty,
919                               const SourceLocation *Loc, unsigned NumStrs);
920
921  /// Simple constructor for string literals made from one token.
922  static StringLiteral *Create(ASTContext &C, const char *StrData,
923                               unsigned ByteLength,
924                               bool Wide, QualType Ty, SourceLocation Loc) {
925    return Create(C, StrData, ByteLength, Wide, Ty, &Loc, 1);
926  }
927
928  /// \brief Construct an empty string literal.
929  static StringLiteral *CreateEmpty(ASTContext &C, unsigned NumStrs);
930
931  llvm::StringRef getString() const {
932    return llvm::StringRef(StrData, ByteLength);
933  }
934  // FIXME: These are deprecated, replace with StringRef.
935  const char *getStrData() const { return StrData; }
936  unsigned getByteLength() const { return ByteLength; }
937
938  /// \brief Sets the string data to the given string data.
939  void setString(ASTContext &C, llvm::StringRef Str);
940
941  bool isWide() const { return IsWide; }
942  void setWide(bool W) { IsWide = W; }
943
944  bool containsNonAsciiOrNull() const {
945    llvm::StringRef Str = getString();
946    for (unsigned i = 0, e = Str.size(); i != e; ++i)
947      if (!isascii(Str[i]) || !Str[i])
948        return true;
949    return false;
950  }
951  /// getNumConcatenated - Get the number of string literal tokens that were
952  /// concatenated in translation phase #6 to form this string literal.
953  unsigned getNumConcatenated() const { return NumConcatenated; }
954
955  SourceLocation getStrTokenLoc(unsigned TokNum) const {
956    assert(TokNum < NumConcatenated && "Invalid tok number");
957    return TokLocs[TokNum];
958  }
959  void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
960    assert(TokNum < NumConcatenated && "Invalid tok number");
961    TokLocs[TokNum] = L;
962  }
963
964  typedef const SourceLocation *tokloc_iterator;
965  tokloc_iterator tokloc_begin() const { return TokLocs; }
966  tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; }
967
968  virtual SourceRange getSourceRange() const {
969    return SourceRange(TokLocs[0], TokLocs[NumConcatenated-1]);
970  }
971  static bool classof(const Stmt *T) {
972    return T->getStmtClass() == StringLiteralClass;
973  }
974  static bool classof(const StringLiteral *) { return true; }
975
976  // Iterators
977  virtual child_iterator child_begin();
978  virtual child_iterator child_end();
979};
980
981/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
982/// AST node is only formed if full location information is requested.
983class ParenExpr : public Expr {
984  SourceLocation L, R;
985  Stmt *Val;
986public:
987  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
988    : Expr(ParenExprClass, val->getType(),
989           val->isTypeDependent(), val->isValueDependent()),
990      L(l), R(r), Val(val) {}
991
992  /// \brief Construct an empty parenthesized expression.
993  explicit ParenExpr(EmptyShell Empty)
994    : Expr(ParenExprClass, Empty) { }
995
996  const Expr *getSubExpr() const { return cast<Expr>(Val); }
997  Expr *getSubExpr() { return cast<Expr>(Val); }
998  void setSubExpr(Expr *E) { Val = E; }
999
1000  virtual SourceRange getSourceRange() const { return SourceRange(L, R); }
1001
1002  /// \brief Get the location of the left parentheses '('.
1003  SourceLocation getLParen() const { return L; }
1004  void setLParen(SourceLocation Loc) { L = Loc; }
1005
1006  /// \brief Get the location of the right parentheses ')'.
1007  SourceLocation getRParen() const { return R; }
1008  void setRParen(SourceLocation Loc) { R = Loc; }
1009
1010  static bool classof(const Stmt *T) {
1011    return T->getStmtClass() == ParenExprClass;
1012  }
1013  static bool classof(const ParenExpr *) { return true; }
1014
1015  // Iterators
1016  virtual child_iterator child_begin();
1017  virtual child_iterator child_end();
1018};
1019
1020
1021/// UnaryOperator - This represents the unary-expression's (except sizeof and
1022/// alignof), the postinc/postdec operators from postfix-expression, and various
1023/// extensions.
1024///
1025/// Notes on various nodes:
1026///
1027/// Real/Imag - These return the real/imag part of a complex operand.  If
1028///   applied to a non-complex value, the former returns its operand and the
1029///   later returns zero in the type of the operand.
1030///
1031class UnaryOperator : public Expr {
1032public:
1033  // Note that additions to this should also update the StmtVisitor class.
1034  enum Opcode {
1035    PostInc, PostDec, // [C99 6.5.2.4] Postfix increment and decrement operators
1036    PreInc, PreDec,   // [C99 6.5.3.1] Prefix increment and decrement operators.
1037    AddrOf, Deref,    // [C99 6.5.3.2] Address and indirection operators.
1038    Plus, Minus,      // [C99 6.5.3.3] Unary arithmetic operators.
1039    Not, LNot,        // [C99 6.5.3.3] Unary arithmetic operators.
1040    Real, Imag,       // "__real expr"/"__imag expr" Extension.
1041    Extension         // __extension__ marker.
1042  };
1043private:
1044  Stmt *Val;
1045  Opcode Opc;
1046  SourceLocation Loc;
1047public:
1048
1049  UnaryOperator(Expr *input, Opcode opc, QualType type, SourceLocation l)
1050    : Expr(UnaryOperatorClass, type,
1051           input->isTypeDependent() || type->isDependentType(),
1052           input->isValueDependent()),
1053      Val(input), Opc(opc), Loc(l) {}
1054
1055  /// \brief Build an empty unary operator.
1056  explicit UnaryOperator(EmptyShell Empty)
1057    : Expr(UnaryOperatorClass, Empty), Opc(AddrOf) { }
1058
1059  Opcode getOpcode() const { return Opc; }
1060  void setOpcode(Opcode O) { Opc = O; }
1061
1062  Expr *getSubExpr() const { return cast<Expr>(Val); }
1063  void setSubExpr(Expr *E) { Val = E; }
1064
1065  /// getOperatorLoc - Return the location of the operator.
1066  SourceLocation getOperatorLoc() const { return Loc; }
1067  void setOperatorLoc(SourceLocation L) { Loc = L; }
1068
1069  /// isPostfix - Return true if this is a postfix operation, like x++.
1070  static bool isPostfix(Opcode Op) {
1071    return Op == PostInc || Op == PostDec;
1072  }
1073
1074  /// isPostfix - Return true if this is a prefix operation, like --x.
1075  static bool isPrefix(Opcode Op) {
1076    return Op == PreInc || Op == PreDec;
1077  }
1078
1079  bool isPrefix() const { return isPrefix(Opc); }
1080  bool isPostfix() const { return isPostfix(Opc); }
1081  bool isIncrementOp() const {return Opc==PreInc || Opc==PostInc; }
1082  bool isIncrementDecrementOp() const { return Opc>=PostInc && Opc<=PreDec; }
1083  static bool isArithmeticOp(Opcode Op) { return Op >= Plus && Op <= LNot; }
1084  bool isArithmeticOp() const { return isArithmeticOp(Opc); }
1085
1086  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1087  /// corresponds to, e.g. "sizeof" or "[pre]++"
1088  static const char *getOpcodeStr(Opcode Op);
1089
1090  /// \brief Retrieve the unary opcode that corresponds to the given
1091  /// overloaded operator.
1092  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
1093
1094  /// \brief Retrieve the overloaded operator kind that corresponds to
1095  /// the given unary opcode.
1096  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
1097
1098  virtual SourceRange getSourceRange() const {
1099    if (isPostfix())
1100      return SourceRange(Val->getLocStart(), Loc);
1101    else
1102      return SourceRange(Loc, Val->getLocEnd());
1103  }
1104  virtual SourceLocation getExprLoc() const { return Loc; }
1105
1106  static bool classof(const Stmt *T) {
1107    return T->getStmtClass() == UnaryOperatorClass;
1108  }
1109  static bool classof(const UnaryOperator *) { return true; }
1110
1111  // Iterators
1112  virtual child_iterator child_begin();
1113  virtual child_iterator child_end();
1114};
1115
1116/// OffsetOfExpr - [C99 7.17] - This represents an expression of the form
1117/// offsetof(record-type, member-designator). For example, given:
1118/// @code
1119/// struct S {
1120///   float f;
1121///   double d;
1122/// };
1123/// struct T {
1124///   int i;
1125///   struct S s[10];
1126/// };
1127/// @endcode
1128/// we can represent and evaluate the expression @c offsetof(struct T, s[2].d).
1129
1130class OffsetOfExpr : public Expr {
1131public:
1132  // __builtin_offsetof(type, identifier(.identifier|[expr])*)
1133  class OffsetOfNode {
1134  public:
1135    /// \brief The kind of offsetof node we have.
1136    enum Kind {
1137      /// \brief An index into an array.
1138      Array = 0x00,
1139      /// \brief A field.
1140      Field = 0x01,
1141      /// \brief A field in a dependent type, known only by its name.
1142      Identifier = 0x02,
1143      /// \brief An implicit indirection through a C++ base class, when the
1144      /// field found is in a base class.
1145      Base = 0x03
1146    };
1147
1148  private:
1149    enum { MaskBits = 2, Mask = 0x03 };
1150
1151    /// \brief The source range that covers this part of the designator.
1152    SourceRange Range;
1153
1154    /// \brief The data describing the designator, which comes in three
1155    /// different forms, depending on the lower two bits.
1156    ///   - An unsigned index into the array of Expr*'s stored after this node
1157    ///     in memory, for [constant-expression] designators.
1158    ///   - A FieldDecl*, for references to a known field.
1159    ///   - An IdentifierInfo*, for references to a field with a given name
1160    ///     when the class type is dependent.
1161    ///   - A CXXBaseSpecifier*, for references that look at a field in a
1162    ///     base class.
1163    uintptr_t Data;
1164
1165  public:
1166    /// \brief Create an offsetof node that refers to an array element.
1167    OffsetOfNode(SourceLocation LBracketLoc, unsigned Index,
1168                 SourceLocation RBracketLoc)
1169      : Range(LBracketLoc, RBracketLoc), Data((Index << 2) | Array) { }
1170
1171    /// \brief Create an offsetof node that refers to a field.
1172    OffsetOfNode(SourceLocation DotLoc, FieldDecl *Field,
1173                 SourceLocation NameLoc)
1174      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1175        Data(reinterpret_cast<uintptr_t>(Field) | OffsetOfNode::Field) { }
1176
1177    /// \brief Create an offsetof node that refers to an identifier.
1178    OffsetOfNode(SourceLocation DotLoc, IdentifierInfo *Name,
1179                 SourceLocation NameLoc)
1180      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1181        Data(reinterpret_cast<uintptr_t>(Name) | Identifier) { }
1182
1183    /// \brief Create an offsetof node that refers into a C++ base class.
1184    explicit OffsetOfNode(const CXXBaseSpecifier *Base)
1185      : Range(), Data(reinterpret_cast<uintptr_t>(Base) | OffsetOfNode::Base) {}
1186
1187    /// \brief Determine what kind of offsetof node this is.
1188    Kind getKind() const {
1189      return static_cast<Kind>(Data & Mask);
1190    }
1191
1192    /// \brief For an array element node, returns the index into the array
1193    /// of expressions.
1194    unsigned getArrayExprIndex() const {
1195      assert(getKind() == Array);
1196      return Data >> 2;
1197    }
1198
1199    /// \brief For a field offsetof node, returns the field.
1200    FieldDecl *getField() const {
1201      assert(getKind() == Field);
1202      return reinterpret_cast<FieldDecl *>(Data & ~(uintptr_t)Mask);
1203    }
1204
1205    /// \brief For a field or identifier offsetof node, returns the name of
1206    /// the field.
1207    IdentifierInfo *getFieldName() const;
1208
1209    /// \brief For a base class node, returns the base specifier.
1210    CXXBaseSpecifier *getBase() const {
1211      assert(getKind() == Base);
1212      return reinterpret_cast<CXXBaseSpecifier *>(Data & ~(uintptr_t)Mask);
1213    }
1214
1215    /// \brief Retrieve the source range that covers this offsetof node.
1216    ///
1217    /// For an array element node, the source range contains the locations of
1218    /// the square brackets. For a field or identifier node, the source range
1219    /// contains the location of the period (if there is one) and the
1220    /// identifier.
1221    SourceRange getRange() const { return Range; }
1222  };
1223
1224private:
1225
1226  SourceLocation OperatorLoc, RParenLoc;
1227  // Base type;
1228  TypeSourceInfo *TSInfo;
1229  // Number of sub-components (i.e. instances of OffsetOfNode).
1230  unsigned NumComps;
1231  // Number of sub-expressions (i.e. array subscript expressions).
1232  unsigned NumExprs;
1233
1234  OffsetOfExpr(ASTContext &C, QualType type,
1235               SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1236               OffsetOfNode* compsPtr, unsigned numComps,
1237               Expr** exprsPtr, unsigned numExprs,
1238               SourceLocation RParenLoc);
1239
1240  explicit OffsetOfExpr(unsigned numComps, unsigned numExprs)
1241    : Expr(OffsetOfExprClass, EmptyShell()),
1242      TSInfo(0), NumComps(numComps), NumExprs(numExprs) {}
1243
1244public:
1245
1246  static OffsetOfExpr *Create(ASTContext &C, QualType type,
1247                              SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1248                              OffsetOfNode* compsPtr, unsigned numComps,
1249                              Expr** exprsPtr, unsigned numExprs,
1250                              SourceLocation RParenLoc);
1251
1252  static OffsetOfExpr *CreateEmpty(ASTContext &C,
1253                                   unsigned NumComps, unsigned NumExprs);
1254
1255  /// getOperatorLoc - Return the location of the operator.
1256  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1257  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
1258
1259  /// \brief Return the location of the right parentheses.
1260  SourceLocation getRParenLoc() const { return RParenLoc; }
1261  void setRParenLoc(SourceLocation R) { RParenLoc = R; }
1262
1263  TypeSourceInfo *getTypeSourceInfo() const {
1264    return TSInfo;
1265  }
1266  void setTypeSourceInfo(TypeSourceInfo *tsi) {
1267    TSInfo = tsi;
1268  }
1269
1270  const OffsetOfNode &getComponent(unsigned Idx) {
1271    assert(Idx < NumComps && "Subscript out of range");
1272    return reinterpret_cast<OffsetOfNode *> (this + 1)[Idx];
1273  }
1274
1275  void setComponent(unsigned Idx, OffsetOfNode ON) {
1276    assert(Idx < NumComps && "Subscript out of range");
1277    reinterpret_cast<OffsetOfNode *> (this + 1)[Idx] = ON;
1278  }
1279
1280  unsigned getNumComponents() const {
1281    return NumComps;
1282  }
1283
1284  Expr* getIndexExpr(unsigned Idx) {
1285    assert(Idx < NumExprs && "Subscript out of range");
1286    return reinterpret_cast<Expr **>(
1287                    reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx];
1288  }
1289
1290  void setIndexExpr(unsigned Idx, Expr* E) {
1291    assert(Idx < NumComps && "Subscript out of range");
1292    reinterpret_cast<Expr **>(
1293                reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx] = E;
1294  }
1295
1296  unsigned getNumExpressions() const {
1297    return NumExprs;
1298  }
1299
1300  virtual SourceRange getSourceRange() const {
1301    return SourceRange(OperatorLoc, RParenLoc);
1302  }
1303
1304  static bool classof(const Stmt *T) {
1305    return T->getStmtClass() == OffsetOfExprClass;
1306  }
1307
1308  static bool classof(const OffsetOfExpr *) { return true; }
1309
1310  // Iterators
1311  virtual child_iterator child_begin();
1312  virtual child_iterator child_end();
1313};
1314
1315/// SizeOfAlignOfExpr - [C99 6.5.3.4] - This is for sizeof/alignof, both of
1316/// types and expressions.
1317class SizeOfAlignOfExpr : public Expr {
1318  bool isSizeof : 1;  // true if sizeof, false if alignof.
1319  bool isType : 1;    // true if operand is a type, false if an expression
1320  union {
1321    TypeSourceInfo *Ty;
1322    Stmt *Ex;
1323  } Argument;
1324  SourceLocation OpLoc, RParenLoc;
1325
1326public:
1327  SizeOfAlignOfExpr(bool issizeof, TypeSourceInfo *TInfo,
1328                    QualType resultType, SourceLocation op,
1329                    SourceLocation rp) :
1330      Expr(SizeOfAlignOfExprClass, resultType,
1331           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1332           // Value-dependent if the argument is type-dependent.
1333           TInfo->getType()->isDependentType()),
1334      isSizeof(issizeof), isType(true), OpLoc(op), RParenLoc(rp) {
1335    Argument.Ty = TInfo;
1336  }
1337
1338  SizeOfAlignOfExpr(bool issizeof, Expr *E,
1339                    QualType resultType, SourceLocation op,
1340                    SourceLocation rp) :
1341      Expr(SizeOfAlignOfExprClass, resultType,
1342           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1343           // Value-dependent if the argument is type-dependent.
1344           E->isTypeDependent()),
1345      isSizeof(issizeof), isType(false), OpLoc(op), RParenLoc(rp) {
1346    Argument.Ex = E;
1347  }
1348
1349  /// \brief Construct an empty sizeof/alignof expression.
1350  explicit SizeOfAlignOfExpr(EmptyShell Empty)
1351    : Expr(SizeOfAlignOfExprClass, Empty) { }
1352
1353  bool isSizeOf() const { return isSizeof; }
1354  void setSizeof(bool S) { isSizeof = S; }
1355
1356  bool isArgumentType() const { return isType; }
1357  QualType getArgumentType() const {
1358    return getArgumentTypeInfo()->getType();
1359  }
1360  TypeSourceInfo *getArgumentTypeInfo() const {
1361    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
1362    return Argument.Ty;
1363  }
1364  Expr *getArgumentExpr() {
1365    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
1366    return static_cast<Expr*>(Argument.Ex);
1367  }
1368  const Expr *getArgumentExpr() const {
1369    return const_cast<SizeOfAlignOfExpr*>(this)->getArgumentExpr();
1370  }
1371
1372  void setArgument(Expr *E) { Argument.Ex = E; isType = false; }
1373  void setArgument(TypeSourceInfo *TInfo) {
1374    Argument.Ty = TInfo;
1375    isType = true;
1376  }
1377
1378  /// Gets the argument type, or the type of the argument expression, whichever
1379  /// is appropriate.
1380  QualType getTypeOfArgument() const {
1381    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
1382  }
1383
1384  SourceLocation getOperatorLoc() const { return OpLoc; }
1385  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
1386
1387  SourceLocation getRParenLoc() const { return RParenLoc; }
1388  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1389
1390  virtual SourceRange getSourceRange() const {
1391    return SourceRange(OpLoc, RParenLoc);
1392  }
1393
1394  static bool classof(const Stmt *T) {
1395    return T->getStmtClass() == SizeOfAlignOfExprClass;
1396  }
1397  static bool classof(const SizeOfAlignOfExpr *) { return true; }
1398
1399  // Iterators
1400  virtual child_iterator child_begin();
1401  virtual child_iterator child_end();
1402};
1403
1404//===----------------------------------------------------------------------===//
1405// Postfix Operators.
1406//===----------------------------------------------------------------------===//
1407
1408/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
1409class ArraySubscriptExpr : public Expr {
1410  enum { LHS, RHS, END_EXPR=2 };
1411  Stmt* SubExprs[END_EXPR];
1412  SourceLocation RBracketLoc;
1413public:
1414  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
1415                     SourceLocation rbracketloc)
1416  : Expr(ArraySubscriptExprClass, t,
1417         lhs->isTypeDependent() || rhs->isTypeDependent(),
1418         lhs->isValueDependent() || rhs->isValueDependent()),
1419    RBracketLoc(rbracketloc) {
1420    SubExprs[LHS] = lhs;
1421    SubExprs[RHS] = rhs;
1422  }
1423
1424  /// \brief Create an empty array subscript expression.
1425  explicit ArraySubscriptExpr(EmptyShell Shell)
1426    : Expr(ArraySubscriptExprClass, Shell) { }
1427
1428  /// An array access can be written A[4] or 4[A] (both are equivalent).
1429  /// - getBase() and getIdx() always present the normalized view: A[4].
1430  ///    In this case getBase() returns "A" and getIdx() returns "4".
1431  /// - getLHS() and getRHS() present the syntactic view. e.g. for
1432  ///    4[A] getLHS() returns "4".
1433  /// Note: Because vector element access is also written A[4] we must
1434  /// predicate the format conversion in getBase and getIdx only on the
1435  /// the type of the RHS, as it is possible for the LHS to be a vector of
1436  /// integer type
1437  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
1438  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1439  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1440
1441  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
1442  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1443  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1444
1445  Expr *getBase() {
1446    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1447  }
1448
1449  const Expr *getBase() const {
1450    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1451  }
1452
1453  Expr *getIdx() {
1454    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1455  }
1456
1457  const Expr *getIdx() const {
1458    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1459  }
1460
1461  virtual SourceRange getSourceRange() const {
1462    return SourceRange(getLHS()->getLocStart(), RBracketLoc);
1463  }
1464
1465  SourceLocation getRBracketLoc() const { return RBracketLoc; }
1466  void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
1467
1468  virtual SourceLocation getExprLoc() const { return getBase()->getExprLoc(); }
1469
1470  static bool classof(const Stmt *T) {
1471    return T->getStmtClass() == ArraySubscriptExprClass;
1472  }
1473  static bool classof(const ArraySubscriptExpr *) { return true; }
1474
1475  // Iterators
1476  virtual child_iterator child_begin();
1477  virtual child_iterator child_end();
1478};
1479
1480
1481/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
1482/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
1483/// while its subclasses may represent alternative syntax that (semantically)
1484/// results in a function call. For example, CXXOperatorCallExpr is
1485/// a subclass for overloaded operator calls that use operator syntax, e.g.,
1486/// "str1 + str2" to resolve to a function call.
1487class CallExpr : public Expr {
1488  enum { FN=0, ARGS_START=1 };
1489  Stmt **SubExprs;
1490  unsigned NumArgs;
1491  SourceLocation RParenLoc;
1492
1493protected:
1494  // This version of the constructor is for derived classes.
1495  CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args, unsigned numargs,
1496           QualType t, SourceLocation rparenloc);
1497
1498public:
1499  CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, QualType t,
1500           SourceLocation rparenloc);
1501
1502  /// \brief Build an empty call expression.
1503  CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty);
1504
1505  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
1506  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
1507  void setCallee(Expr *F) { SubExprs[FN] = F; }
1508
1509  Decl *getCalleeDecl();
1510  const Decl *getCalleeDecl() const {
1511    return const_cast<CallExpr*>(this)->getCalleeDecl();
1512  }
1513
1514  /// \brief If the callee is a FunctionDecl, return it. Otherwise return 0.
1515  FunctionDecl *getDirectCallee();
1516  const FunctionDecl *getDirectCallee() const {
1517    return const_cast<CallExpr*>(this)->getDirectCallee();
1518  }
1519
1520  /// getNumArgs - Return the number of actual arguments to this call.
1521  ///
1522  unsigned getNumArgs() const { return NumArgs; }
1523
1524  /// getArg - Return the specified argument.
1525  Expr *getArg(unsigned Arg) {
1526    assert(Arg < NumArgs && "Arg access out of range!");
1527    return cast<Expr>(SubExprs[Arg+ARGS_START]);
1528  }
1529  const Expr *getArg(unsigned Arg) const {
1530    assert(Arg < NumArgs && "Arg access out of range!");
1531    return cast<Expr>(SubExprs[Arg+ARGS_START]);
1532  }
1533
1534  /// setArg - Set the specified argument.
1535  void setArg(unsigned Arg, Expr *ArgExpr) {
1536    assert(Arg < NumArgs && "Arg access out of range!");
1537    SubExprs[Arg+ARGS_START] = ArgExpr;
1538  }
1539
1540  /// setNumArgs - This changes the number of arguments present in this call.
1541  /// Any orphaned expressions are deleted by this, and any new operands are set
1542  /// to null.
1543  void setNumArgs(ASTContext& C, unsigned NumArgs);
1544
1545  typedef ExprIterator arg_iterator;
1546  typedef ConstExprIterator const_arg_iterator;
1547
1548  arg_iterator arg_begin() { return SubExprs+ARGS_START; }
1549  arg_iterator arg_end() { return SubExprs+ARGS_START+getNumArgs(); }
1550  const_arg_iterator arg_begin() const { return SubExprs+ARGS_START; }
1551  const_arg_iterator arg_end() const { return SubExprs+ARGS_START+getNumArgs();}
1552
1553  /// getNumCommas - Return the number of commas that must have been present in
1554  /// this function call.
1555  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
1556
1557  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
1558  /// not, return 0.
1559  unsigned isBuiltinCall(ASTContext &Context) const;
1560
1561  /// getCallReturnType - Get the return type of the call expr. This is not
1562  /// always the type of the expr itself, if the return type is a reference
1563  /// type.
1564  QualType getCallReturnType() const;
1565
1566  SourceLocation getRParenLoc() const { return RParenLoc; }
1567  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1568
1569  virtual SourceRange getSourceRange() const {
1570    return SourceRange(getCallee()->getLocStart(), RParenLoc);
1571  }
1572
1573  static bool classof(const Stmt *T) {
1574    return T->getStmtClass() >= firstCallExprConstant &&
1575           T->getStmtClass() <= lastCallExprConstant;
1576  }
1577  static bool classof(const CallExpr *) { return true; }
1578
1579  // Iterators
1580  virtual child_iterator child_begin();
1581  virtual child_iterator child_end();
1582};
1583
1584/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.  X->F and X.F.
1585///
1586class MemberExpr : public Expr {
1587  /// Extra data stored in some member expressions.
1588  struct MemberNameQualifier : public NameQualifier {
1589    DeclAccessPair FoundDecl;
1590  };
1591
1592  /// Base - the expression for the base pointer or structure references.  In
1593  /// X.F, this is "X".
1594  Stmt *Base;
1595
1596  /// MemberDecl - This is the decl being referenced by the field/member name.
1597  /// In X.F, this is the decl referenced by F.
1598  ValueDecl *MemberDecl;
1599
1600  /// MemberLoc - This is the location of the member name.
1601  SourceLocation MemberLoc;
1602
1603  /// MemberDNLoc - Provides source/type location info for the
1604  /// declaration name embedded in MemberDecl.
1605  DeclarationNameLoc MemberDNLoc;
1606
1607  /// IsArrow - True if this is "X->F", false if this is "X.F".
1608  bool IsArrow : 1;
1609
1610  /// \brief True if this member expression used a nested-name-specifier to
1611  /// refer to the member, e.g., "x->Base::f", or found its member via a using
1612  /// declaration.  When true, a MemberNameQualifier
1613  /// structure is allocated immediately after the MemberExpr.
1614  bool HasQualifierOrFoundDecl : 1;
1615
1616  /// \brief True if this member expression specified a template argument list
1617  /// explicitly, e.g., x->f<int>. When true, an ExplicitTemplateArgumentList
1618  /// structure (and its TemplateArguments) are allocated immediately after
1619  /// the MemberExpr or, if the member expression also has a qualifier, after
1620  /// the MemberNameQualifier structure.
1621  bool HasExplicitTemplateArgumentList : 1;
1622
1623  /// \brief Retrieve the qualifier that preceded the member name, if any.
1624  MemberNameQualifier *getMemberQualifier() {
1625    assert(HasQualifierOrFoundDecl);
1626    return reinterpret_cast<MemberNameQualifier *> (this + 1);
1627  }
1628
1629  /// \brief Retrieve the qualifier that preceded the member name, if any.
1630  const MemberNameQualifier *getMemberQualifier() const {
1631    return const_cast<MemberExpr *>(this)->getMemberQualifier();
1632  }
1633
1634  /// \brief Retrieve the explicit template argument list that followed the
1635  /// member template name, if any.
1636  ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() {
1637    if (!HasExplicitTemplateArgumentList)
1638      return 0;
1639
1640    if (!HasQualifierOrFoundDecl)
1641      return reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
1642
1643    return reinterpret_cast<ExplicitTemplateArgumentList *>(
1644                                                      getMemberQualifier() + 1);
1645  }
1646
1647  /// \brief Retrieve the explicit template argument list that followed the
1648  /// member template name, if any.
1649  const ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() const {
1650    return const_cast<MemberExpr *>(this)->getExplicitTemplateArgumentList();
1651  }
1652
1653public:
1654  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
1655             const DeclarationNameInfo &NameInfo, QualType ty)
1656    : Expr(MemberExprClass, ty,
1657           base->isTypeDependent(), base->isValueDependent()),
1658      Base(base), MemberDecl(memberdecl), MemberLoc(NameInfo.getLoc()),
1659      MemberDNLoc(NameInfo.getInfo()), IsArrow(isarrow),
1660      HasQualifierOrFoundDecl(false), HasExplicitTemplateArgumentList(false) {
1661    assert(memberdecl->getDeclName() == NameInfo.getName());
1662  }
1663
1664  // NOTE: this constructor should be used only when it is known that
1665  // the member name can not provide additional syntactic info
1666  // (i.e., source locations for C++ operator names or type source info
1667  // for constructors, destructors and conversion oeprators).
1668  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
1669             SourceLocation l, QualType ty)
1670    : Expr(MemberExprClass, ty,
1671           base->isTypeDependent(), base->isValueDependent()),
1672      Base(base), MemberDecl(memberdecl), MemberLoc(l), MemberDNLoc(),
1673      IsArrow(isarrow),
1674      HasQualifierOrFoundDecl(false), HasExplicitTemplateArgumentList(false) {}
1675
1676  static MemberExpr *Create(ASTContext &C, Expr *base, bool isarrow,
1677                            NestedNameSpecifier *qual, SourceRange qualrange,
1678                            ValueDecl *memberdecl, DeclAccessPair founddecl,
1679                            DeclarationNameInfo MemberNameInfo,
1680                            const TemplateArgumentListInfo *targs,
1681                            QualType ty);
1682
1683  void setBase(Expr *E) { Base = E; }
1684  Expr *getBase() const { return cast<Expr>(Base); }
1685
1686  /// \brief Retrieve the member declaration to which this expression refers.
1687  ///
1688  /// The returned declaration will either be a FieldDecl or (in C++)
1689  /// a CXXMethodDecl.
1690  ValueDecl *getMemberDecl() const { return MemberDecl; }
1691  void setMemberDecl(ValueDecl *D) { MemberDecl = D; }
1692
1693  /// \brief Retrieves the declaration found by lookup.
1694  DeclAccessPair getFoundDecl() const {
1695    if (!HasQualifierOrFoundDecl)
1696      return DeclAccessPair::make(getMemberDecl(),
1697                                  getMemberDecl()->getAccess());
1698    return getMemberQualifier()->FoundDecl;
1699  }
1700
1701  /// \brief Determines whether this member expression actually had
1702  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
1703  /// x->Base::foo.
1704  bool hasQualifier() const { return getQualifier() != 0; }
1705
1706  /// \brief If the member name was qualified, retrieves the source range of
1707  /// the nested-name-specifier that precedes the member name. Otherwise,
1708  /// returns an empty source range.
1709  SourceRange getQualifierRange() const {
1710    if (!HasQualifierOrFoundDecl)
1711      return SourceRange();
1712
1713    return getMemberQualifier()->Range;
1714  }
1715
1716  /// \brief If the member name was qualified, retrieves the
1717  /// nested-name-specifier that precedes the member name. Otherwise, returns
1718  /// NULL.
1719  NestedNameSpecifier *getQualifier() const {
1720    if (!HasQualifierOrFoundDecl)
1721      return 0;
1722
1723    return getMemberQualifier()->NNS;
1724  }
1725
1726  /// \brief Determines whether this member expression actually had a C++
1727  /// template argument list explicitly specified, e.g., x.f<int>.
1728  bool hasExplicitTemplateArgumentList() const {
1729    return HasExplicitTemplateArgumentList;
1730  }
1731
1732  /// \brief Copies the template arguments (if present) into the given
1733  /// structure.
1734  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1735    if (hasExplicitTemplateArgumentList())
1736      getExplicitTemplateArgumentList()->copyInto(List);
1737  }
1738
1739  /// \brief Retrieve the location of the left angle bracket following the
1740  /// member name ('<'), if any.
1741  SourceLocation getLAngleLoc() const {
1742    if (!HasExplicitTemplateArgumentList)
1743      return SourceLocation();
1744
1745    return getExplicitTemplateArgumentList()->LAngleLoc;
1746  }
1747
1748  /// \brief Retrieve the template arguments provided as part of this
1749  /// template-id.
1750  const TemplateArgumentLoc *getTemplateArgs() const {
1751    if (!HasExplicitTemplateArgumentList)
1752      return 0;
1753
1754    return getExplicitTemplateArgumentList()->getTemplateArgs();
1755  }
1756
1757  /// \brief Retrieve the number of template arguments provided as part of this
1758  /// template-id.
1759  unsigned getNumTemplateArgs() const {
1760    if (!HasExplicitTemplateArgumentList)
1761      return 0;
1762
1763    return getExplicitTemplateArgumentList()->NumTemplateArgs;
1764  }
1765
1766  /// \brief Retrieve the location of the right angle bracket following the
1767  /// template arguments ('>').
1768  SourceLocation getRAngleLoc() const {
1769    if (!HasExplicitTemplateArgumentList)
1770      return SourceLocation();
1771
1772    return getExplicitTemplateArgumentList()->RAngleLoc;
1773  }
1774
1775  /// \brief Retrieve the member declaration name info.
1776  DeclarationNameInfo getMemberNameInfo() const {
1777    return DeclarationNameInfo(MemberDecl->getDeclName(),
1778                               MemberLoc, MemberDNLoc);
1779  }
1780
1781  bool isArrow() const { return IsArrow; }
1782  void setArrow(bool A) { IsArrow = A; }
1783
1784  /// getMemberLoc - Return the location of the "member", in X->F, it is the
1785  /// location of 'F'.
1786  SourceLocation getMemberLoc() const { return MemberLoc; }
1787  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
1788
1789  virtual SourceRange getSourceRange() const {
1790    // If we have an implicit base (like a C++ implicit this),
1791    // make sure not to return its location
1792    SourceLocation EndLoc = (HasExplicitTemplateArgumentList)
1793      ? getRAngleLoc() : getMemberNameInfo().getEndLoc();
1794
1795    SourceLocation BaseLoc = getBase()->getLocStart();
1796    if (BaseLoc.isInvalid())
1797      return SourceRange(MemberLoc, EndLoc);
1798    return SourceRange(BaseLoc, EndLoc);
1799  }
1800
1801  virtual SourceLocation getExprLoc() const { return MemberLoc; }
1802
1803  static bool classof(const Stmt *T) {
1804    return T->getStmtClass() == MemberExprClass;
1805  }
1806  static bool classof(const MemberExpr *) { return true; }
1807
1808  // Iterators
1809  virtual child_iterator child_begin();
1810  virtual child_iterator child_end();
1811};
1812
1813/// CompoundLiteralExpr - [C99 6.5.2.5]
1814///
1815class CompoundLiteralExpr : public Expr {
1816  /// LParenLoc - If non-null, this is the location of the left paren in a
1817  /// compound literal like "(int){4}".  This can be null if this is a
1818  /// synthesized compound expression.
1819  SourceLocation LParenLoc;
1820
1821  /// The type as written.  This can be an incomplete array type, in
1822  /// which case the actual expression type will be different.
1823  TypeSourceInfo *TInfo;
1824  Stmt *Init;
1825  bool FileScope;
1826public:
1827  // FIXME: Can compound literals be value-dependent?
1828  CompoundLiteralExpr(SourceLocation lparenloc, TypeSourceInfo *tinfo,
1829                      QualType T, Expr *init, bool fileScope)
1830    : Expr(CompoundLiteralExprClass, T,
1831           tinfo->getType()->isDependentType(), false),
1832      LParenLoc(lparenloc), TInfo(tinfo), Init(init), FileScope(fileScope) {}
1833
1834  /// \brief Construct an empty compound literal.
1835  explicit CompoundLiteralExpr(EmptyShell Empty)
1836    : Expr(CompoundLiteralExprClass, Empty) { }
1837
1838  const Expr *getInitializer() const { return cast<Expr>(Init); }
1839  Expr *getInitializer() { return cast<Expr>(Init); }
1840  void setInitializer(Expr *E) { Init = E; }
1841
1842  bool isFileScope() const { return FileScope; }
1843  void setFileScope(bool FS) { FileScope = FS; }
1844
1845  SourceLocation getLParenLoc() const { return LParenLoc; }
1846  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
1847
1848  TypeSourceInfo *getTypeSourceInfo() const { return TInfo; }
1849  void setTypeSourceInfo(TypeSourceInfo* tinfo) { TInfo = tinfo; }
1850
1851  virtual SourceRange getSourceRange() const {
1852    // FIXME: Init should never be null.
1853    if (!Init)
1854      return SourceRange();
1855    if (LParenLoc.isInvalid())
1856      return Init->getSourceRange();
1857    return SourceRange(LParenLoc, Init->getLocEnd());
1858  }
1859
1860  static bool classof(const Stmt *T) {
1861    return T->getStmtClass() == CompoundLiteralExprClass;
1862  }
1863  static bool classof(const CompoundLiteralExpr *) { return true; }
1864
1865  // Iterators
1866  virtual child_iterator child_begin();
1867  virtual child_iterator child_end();
1868};
1869
1870/// CastExpr - Base class for type casts, including both implicit
1871/// casts (ImplicitCastExpr) and explicit casts that have some
1872/// representation in the source code (ExplicitCastExpr's derived
1873/// classes).
1874class CastExpr : public Expr {
1875public:
1876  /// CastKind - the kind of cast this represents.
1877  enum CastKind {
1878    /// CK_Unknown - Unknown cast kind.
1879    /// FIXME: The goal is to get rid of this and make all casts have a
1880    /// kind so that the AST client doesn't have to try to figure out what's
1881    /// going on.
1882    CK_Unknown,
1883
1884    /// CK_BitCast - Used for reinterpret_cast.
1885    CK_BitCast,
1886
1887    /// CK_LValueBitCast - Used for reinterpret_cast of expressions to
1888    /// a reference type.
1889    CK_LValueBitCast,
1890
1891    /// CK_NoOp - Used for const_cast.
1892    CK_NoOp,
1893
1894    /// CK_BaseToDerived - Base to derived class casts.
1895    CK_BaseToDerived,
1896
1897    /// CK_DerivedToBase - Derived to base class casts.
1898    CK_DerivedToBase,
1899
1900    /// CK_UncheckedDerivedToBase - Derived to base class casts that
1901    /// assume that the derived pointer is not null.
1902    CK_UncheckedDerivedToBase,
1903
1904    /// CK_Dynamic - Dynamic cast.
1905    CK_Dynamic,
1906
1907    /// CK_ToUnion - Cast to union (GCC extension).
1908    CK_ToUnion,
1909
1910    /// CK_ArrayToPointerDecay - Array to pointer decay.
1911    CK_ArrayToPointerDecay,
1912
1913    // CK_FunctionToPointerDecay - Function to pointer decay.
1914    CK_FunctionToPointerDecay,
1915
1916    /// CK_NullToMemberPointer - Null pointer to member pointer.
1917    CK_NullToMemberPointer,
1918
1919    /// CK_BaseToDerivedMemberPointer - Member pointer in base class to
1920    /// member pointer in derived class.
1921    CK_BaseToDerivedMemberPointer,
1922
1923    /// CK_DerivedToBaseMemberPointer - Member pointer in derived class to
1924    /// member pointer in base class.
1925    CK_DerivedToBaseMemberPointer,
1926
1927    /// CK_UserDefinedConversion - Conversion using a user defined type
1928    /// conversion function.
1929    CK_UserDefinedConversion,
1930
1931    /// CK_ConstructorConversion - Conversion by constructor
1932    CK_ConstructorConversion,
1933
1934    /// CK_IntegralToPointer - Integral to pointer
1935    CK_IntegralToPointer,
1936
1937    /// CK_PointerToIntegral - Pointer to integral
1938    CK_PointerToIntegral,
1939
1940    /// CK_ToVoid - Cast to void.
1941    CK_ToVoid,
1942
1943    /// CK_VectorSplat - Casting from an integer/floating type to an extended
1944    /// vector type with the same element type as the src type. Splats the
1945    /// src expression into the destination expression.
1946    CK_VectorSplat,
1947
1948    /// CK_IntegralCast - Casting between integral types of different size.
1949    CK_IntegralCast,
1950
1951    /// CK_IntegralToFloating - Integral to floating point.
1952    CK_IntegralToFloating,
1953
1954    /// CK_FloatingToIntegral - Floating point to integral.
1955    CK_FloatingToIntegral,
1956
1957    /// CK_FloatingCast - Casting between floating types of different size.
1958    CK_FloatingCast,
1959
1960    /// CK_MemberPointerToBoolean - Member pointer to boolean
1961    CK_MemberPointerToBoolean,
1962
1963    /// CK_AnyPointerToObjCPointerCast - Casting any pointer to objective-c
1964    /// pointer
1965    CK_AnyPointerToObjCPointerCast,
1966    /// CK_AnyPointerToBlockPointerCast - Casting any pointer to block
1967    /// pointer
1968    CK_AnyPointerToBlockPointerCast,
1969
1970    /// \brief Converting between two Objective-C object types, which
1971    /// can occur when performing reference binding to an Objective-C
1972    /// object.
1973    CK_ObjCObjectLValueCast
1974  };
1975
1976private:
1977  unsigned Kind : 5;
1978  unsigned BasePathSize : BitsRemaining - 5;
1979  Stmt *Op;
1980
1981  void CheckBasePath() const {
1982#ifndef NDEBUG
1983    switch (getCastKind()) {
1984    case CK_DerivedToBase:
1985    case CK_UncheckedDerivedToBase:
1986    case CK_DerivedToBaseMemberPointer:
1987    case CK_BaseToDerived:
1988    case CK_BaseToDerivedMemberPointer:
1989      assert(!path_empty() && "Cast kind should have a base path!");
1990      break;
1991
1992    // These should not have an inheritance path.
1993    case CK_Unknown:
1994    case CK_BitCast:
1995    case CK_LValueBitCast:
1996    case CK_NoOp:
1997    case CK_Dynamic:
1998    case CK_ToUnion:
1999    case CK_ArrayToPointerDecay:
2000    case CK_FunctionToPointerDecay:
2001    case CK_NullToMemberPointer:
2002    case CK_UserDefinedConversion:
2003    case CK_ConstructorConversion:
2004    case CK_IntegralToPointer:
2005    case CK_PointerToIntegral:
2006    case CK_ToVoid:
2007    case CK_VectorSplat:
2008    case CK_IntegralCast:
2009    case CK_IntegralToFloating:
2010    case CK_FloatingToIntegral:
2011    case CK_FloatingCast:
2012    case CK_MemberPointerToBoolean:
2013    case CK_AnyPointerToObjCPointerCast:
2014    case CK_AnyPointerToBlockPointerCast:
2015    case CK_ObjCObjectLValueCast:
2016      assert(path_empty() && "Cast kind should not have a base path!");
2017      break;
2018    }
2019#endif
2020  }
2021
2022  const CXXBaseSpecifier * const *path_buffer() const {
2023    return const_cast<CastExpr*>(this)->path_buffer();
2024  }
2025  CXXBaseSpecifier **path_buffer();
2026
2027protected:
2028  CastExpr(StmtClass SC, QualType ty, const CastKind kind, Expr *op,
2029           unsigned BasePathSize) :
2030    Expr(SC, ty,
2031         // Cast expressions are type-dependent if the type is
2032         // dependent (C++ [temp.dep.expr]p3).
2033         ty->isDependentType(),
2034         // Cast expressions are value-dependent if the type is
2035         // dependent or if the subexpression is value-dependent.
2036         ty->isDependentType() || (op && op->isValueDependent())),
2037    Kind(kind), BasePathSize(BasePathSize), Op(op) {
2038    CheckBasePath();
2039  }
2040
2041  /// \brief Construct an empty cast.
2042  CastExpr(StmtClass SC, EmptyShell Empty, unsigned BasePathSize)
2043    : Expr(SC, Empty), BasePathSize(BasePathSize) { }
2044
2045public:
2046  CastKind getCastKind() const { return static_cast<CastKind>(Kind); }
2047  void setCastKind(CastKind K) { Kind = K; }
2048  const char *getCastKindName() const;
2049
2050  Expr *getSubExpr() { return cast<Expr>(Op); }
2051  const Expr *getSubExpr() const { return cast<Expr>(Op); }
2052  void setSubExpr(Expr *E) { Op = E; }
2053
2054  /// \brief Retrieve the cast subexpression as it was written in the source
2055  /// code, looking through any implicit casts or other intermediate nodes
2056  /// introduced by semantic analysis.
2057  Expr *getSubExprAsWritten();
2058  const Expr *getSubExprAsWritten() const {
2059    return const_cast<CastExpr *>(this)->getSubExprAsWritten();
2060  }
2061
2062  typedef CXXBaseSpecifier **path_iterator;
2063  typedef const CXXBaseSpecifier * const *path_const_iterator;
2064  bool path_empty() const { return BasePathSize == 0; }
2065  unsigned path_size() const { return BasePathSize; }
2066  path_iterator path_begin() { return path_buffer(); }
2067  path_iterator path_end() { return path_buffer() + path_size(); }
2068  path_const_iterator path_begin() const { return path_buffer(); }
2069  path_const_iterator path_end() const { return path_buffer() + path_size(); }
2070
2071  void setCastPath(const CXXCastPath &Path);
2072
2073  static bool classof(const Stmt *T) {
2074    return T->getStmtClass() >= firstCastExprConstant &&
2075           T->getStmtClass() <= lastCastExprConstant;
2076  }
2077  static bool classof(const CastExpr *) { return true; }
2078
2079  // Iterators
2080  virtual child_iterator child_begin();
2081  virtual child_iterator child_end();
2082};
2083
2084/// ImplicitCastExpr - Allows us to explicitly represent implicit type
2085/// conversions, which have no direct representation in the original
2086/// source code. For example: converting T[]->T*, void f()->void
2087/// (*f)(), float->double, short->int, etc.
2088///
2089/// In C, implicit casts always produce rvalues. However, in C++, an
2090/// implicit cast whose result is being bound to a reference will be
2091/// an lvalue or xvalue. For example:
2092///
2093/// @code
2094/// class Base { };
2095/// class Derived : public Base { };
2096/// Derived &&ref();
2097/// void f(Derived d) {
2098///   Base& b = d; // initializer is an ImplicitCastExpr
2099///                // to an lvalue of type Base
2100///   Base&& r = ref(); // initializer is an ImplicitCastExpr
2101///                     // to an xvalue of type Base
2102/// }
2103/// @endcode
2104class ImplicitCastExpr : public CastExpr {
2105public:
2106  enum ResultCategory {
2107    RValue, LValue, XValue
2108  };
2109
2110private:
2111  /// Category - The category this cast produces.
2112  ResultCategory Category;
2113
2114  ImplicitCastExpr(QualType ty, CastKind kind, Expr *op,
2115                   unsigned BasePathLength, ResultCategory Cat)
2116    : CastExpr(ImplicitCastExprClass, ty, kind, op, BasePathLength),
2117      Category(Cat) { }
2118
2119  /// \brief Construct an empty implicit cast.
2120  explicit ImplicitCastExpr(EmptyShell Shell, unsigned PathSize)
2121    : CastExpr(ImplicitCastExprClass, Shell, PathSize) { }
2122
2123public:
2124  enum OnStack_t { OnStack };
2125  ImplicitCastExpr(OnStack_t _, QualType ty, CastKind kind, Expr *op,
2126                   ResultCategory Cat)
2127    : CastExpr(ImplicitCastExprClass, ty, kind, op, 0),
2128      Category(Cat) { }
2129
2130  static ImplicitCastExpr *Create(ASTContext &Context, QualType T,
2131                                  CastKind Kind, Expr *Operand,
2132                                  const CXXCastPath *BasePath,
2133                                  ResultCategory Cat);
2134
2135  static ImplicitCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize);
2136
2137  virtual SourceRange getSourceRange() const {
2138    return getSubExpr()->getSourceRange();
2139  }
2140
2141  /// getCategory - The value category this cast produces.
2142  ResultCategory getCategory() const { return Category; }
2143
2144  /// setCategory - Set the value category this cast produces.
2145  void setCategory(ResultCategory Cat) { Category = Cat; }
2146
2147  static bool classof(const Stmt *T) {
2148    return T->getStmtClass() == ImplicitCastExprClass;
2149  }
2150  static bool classof(const ImplicitCastExpr *) { return true; }
2151};
2152
2153/// ExplicitCastExpr - An explicit cast written in the source
2154/// code.
2155///
2156/// This class is effectively an abstract class, because it provides
2157/// the basic representation of an explicitly-written cast without
2158/// specifying which kind of cast (C cast, functional cast, static
2159/// cast, etc.) was written; specific derived classes represent the
2160/// particular style of cast and its location information.
2161///
2162/// Unlike implicit casts, explicit cast nodes have two different
2163/// types: the type that was written into the source code, and the
2164/// actual type of the expression as determined by semantic
2165/// analysis. These types may differ slightly. For example, in C++ one
2166/// can cast to a reference type, which indicates that the resulting
2167/// expression will be an lvalue or xvalue. The reference type, however,
2168/// will not be used as the type of the expression.
2169class ExplicitCastExpr : public CastExpr {
2170  /// TInfo - Source type info for the (written) type
2171  /// this expression is casting to.
2172  TypeSourceInfo *TInfo;
2173
2174protected:
2175  ExplicitCastExpr(StmtClass SC, QualType exprTy, CastKind kind,
2176                   Expr *op, unsigned PathSize, TypeSourceInfo *writtenTy)
2177    : CastExpr(SC, exprTy, kind, op, PathSize), TInfo(writtenTy) {}
2178
2179  /// \brief Construct an empty explicit cast.
2180  ExplicitCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
2181    : CastExpr(SC, Shell, PathSize) { }
2182
2183public:
2184  /// getTypeInfoAsWritten - Returns the type source info for the type
2185  /// that this expression is casting to.
2186  TypeSourceInfo *getTypeInfoAsWritten() const { return TInfo; }
2187  void setTypeInfoAsWritten(TypeSourceInfo *writtenTy) { TInfo = writtenTy; }
2188
2189  /// getTypeAsWritten - Returns the type that this expression is
2190  /// casting to, as written in the source code.
2191  QualType getTypeAsWritten() const { return TInfo->getType(); }
2192
2193  static bool classof(const Stmt *T) {
2194     return T->getStmtClass() >= firstExplicitCastExprConstant &&
2195            T->getStmtClass() <= lastExplicitCastExprConstant;
2196  }
2197  static bool classof(const ExplicitCastExpr *) { return true; }
2198};
2199
2200/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
2201/// cast in C++ (C++ [expr.cast]), which uses the syntax
2202/// (Type)expr. For example: @c (int)f.
2203class CStyleCastExpr : public ExplicitCastExpr {
2204  SourceLocation LPLoc; // the location of the left paren
2205  SourceLocation RPLoc; // the location of the right paren
2206
2207  CStyleCastExpr(QualType exprTy, CastKind kind, Expr *op,
2208                 unsigned PathSize, TypeSourceInfo *writtenTy,
2209                 SourceLocation l, SourceLocation r)
2210    : ExplicitCastExpr(CStyleCastExprClass, exprTy, kind, op, PathSize,
2211                       writtenTy), LPLoc(l), RPLoc(r) {}
2212
2213  /// \brief Construct an empty C-style explicit cast.
2214  explicit CStyleCastExpr(EmptyShell Shell, unsigned PathSize)
2215    : ExplicitCastExpr(CStyleCastExprClass, Shell, PathSize) { }
2216
2217public:
2218  static CStyleCastExpr *Create(ASTContext &Context, QualType T, CastKind K,
2219                                Expr *Op, const CXXCastPath *BasePath,
2220                                TypeSourceInfo *WrittenTy, SourceLocation L,
2221                                SourceLocation R);
2222
2223  static CStyleCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize);
2224
2225  SourceLocation getLParenLoc() const { return LPLoc; }
2226  void setLParenLoc(SourceLocation L) { LPLoc = L; }
2227
2228  SourceLocation getRParenLoc() const { return RPLoc; }
2229  void setRParenLoc(SourceLocation L) { RPLoc = L; }
2230
2231  virtual SourceRange getSourceRange() const {
2232    return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd());
2233  }
2234  static bool classof(const Stmt *T) {
2235    return T->getStmtClass() == CStyleCastExprClass;
2236  }
2237  static bool classof(const CStyleCastExpr *) { return true; }
2238};
2239
2240/// \brief A builtin binary operation expression such as "x + y" or "x <= y".
2241///
2242/// This expression node kind describes a builtin binary operation,
2243/// such as "x + y" for integer values "x" and "y". The operands will
2244/// already have been converted to appropriate types (e.g., by
2245/// performing promotions or conversions).
2246///
2247/// In C++, where operators may be overloaded, a different kind of
2248/// expression node (CXXOperatorCallExpr) is used to express the
2249/// invocation of an overloaded operator with operator syntax. Within
2250/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
2251/// used to store an expression "x + y" depends on the subexpressions
2252/// for x and y. If neither x or y is type-dependent, and the "+"
2253/// operator resolves to a built-in operation, BinaryOperator will be
2254/// used to express the computation (x and y may still be
2255/// value-dependent). If either x or y is type-dependent, or if the
2256/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
2257/// be used to express the computation.
2258class BinaryOperator : public Expr {
2259public:
2260  enum Opcode {
2261    // Operators listed in order of precedence.
2262    // Note that additions to this should also update the StmtVisitor class.
2263    PtrMemD, PtrMemI, // [C++ 5.5] Pointer-to-member operators.
2264    Mul, Div, Rem,    // [C99 6.5.5] Multiplicative operators.
2265    Add, Sub,         // [C99 6.5.6] Additive operators.
2266    Shl, Shr,         // [C99 6.5.7] Bitwise shift operators.
2267    LT, GT, LE, GE,   // [C99 6.5.8] Relational operators.
2268    EQ, NE,           // [C99 6.5.9] Equality operators.
2269    And,              // [C99 6.5.10] Bitwise AND operator.
2270    Xor,              // [C99 6.5.11] Bitwise XOR operator.
2271    Or,               // [C99 6.5.12] Bitwise OR operator.
2272    LAnd,             // [C99 6.5.13] Logical AND operator.
2273    LOr,              // [C99 6.5.14] Logical OR operator.
2274    Assign, MulAssign,// [C99 6.5.16] Assignment operators.
2275    DivAssign, RemAssign,
2276    AddAssign, SubAssign,
2277    ShlAssign, ShrAssign,
2278    AndAssign, XorAssign,
2279    OrAssign,
2280    Comma             // [C99 6.5.17] Comma operator.
2281  };
2282private:
2283  enum { LHS, RHS, END_EXPR };
2284  Stmt* SubExprs[END_EXPR];
2285  Opcode Opc;
2286  SourceLocation OpLoc;
2287public:
2288
2289  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2290                 SourceLocation opLoc)
2291    : Expr(BinaryOperatorClass, ResTy,
2292           lhs->isTypeDependent() || rhs->isTypeDependent(),
2293           lhs->isValueDependent() || rhs->isValueDependent()),
2294      Opc(opc), OpLoc(opLoc) {
2295    SubExprs[LHS] = lhs;
2296    SubExprs[RHS] = rhs;
2297    assert(!isCompoundAssignmentOp() &&
2298           "Use ArithAssignBinaryOperator for compound assignments");
2299  }
2300
2301  /// \brief Construct an empty binary operator.
2302  explicit BinaryOperator(EmptyShell Empty)
2303    : Expr(BinaryOperatorClass, Empty), Opc(Comma) { }
2304
2305  SourceLocation getOperatorLoc() const { return OpLoc; }
2306  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
2307
2308  Opcode getOpcode() const { return Opc; }
2309  void setOpcode(Opcode O) { Opc = O; }
2310
2311  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2312  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2313  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2314  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2315
2316  virtual SourceRange getSourceRange() const {
2317    return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
2318  }
2319
2320  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
2321  /// corresponds to, e.g. "<<=".
2322  static const char *getOpcodeStr(Opcode Op);
2323
2324  const char *getOpcodeStr() const { return getOpcodeStr(Opc); }
2325
2326  /// \brief Retrieve the binary opcode that corresponds to the given
2327  /// overloaded operator.
2328  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
2329
2330  /// \brief Retrieve the overloaded operator kind that corresponds to
2331  /// the given binary opcode.
2332  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
2333
2334  /// predicates to categorize the respective opcodes.
2335  bool isMultiplicativeOp() const { return Opc >= Mul && Opc <= Rem; }
2336  static bool isAdditiveOp(Opcode Opc) { return Opc == Add || Opc == Sub; }
2337  bool isAdditiveOp() const { return isAdditiveOp(Opc); }
2338  static bool isShiftOp(Opcode Opc) { return Opc == Shl || Opc == Shr; }
2339  bool isShiftOp() const { return isShiftOp(Opc); }
2340
2341  static bool isBitwiseOp(Opcode Opc) { return Opc >= And && Opc <= Or; }
2342  bool isBitwiseOp() const { return isBitwiseOp(Opc); }
2343
2344  static bool isRelationalOp(Opcode Opc) { return Opc >= LT && Opc <= GE; }
2345  bool isRelationalOp() const { return isRelationalOp(Opc); }
2346
2347  static bool isEqualityOp(Opcode Opc) { return Opc == EQ || Opc == NE; }
2348  bool isEqualityOp() const { return isEqualityOp(Opc); }
2349
2350  static bool isComparisonOp(Opcode Opc) { return Opc >= LT && Opc <= NE; }
2351  bool isComparisonOp() const { return isComparisonOp(Opc); }
2352
2353  static bool isLogicalOp(Opcode Opc) { return Opc == LAnd || Opc == LOr; }
2354  bool isLogicalOp() const { return isLogicalOp(Opc); }
2355
2356  bool isAssignmentOp() const { return Opc >= Assign && Opc <= OrAssign; }
2357  bool isCompoundAssignmentOp() const { return Opc > Assign && Opc <= OrAssign;}
2358  bool isShiftAssignOp() const { return Opc == ShlAssign || Opc == ShrAssign; }
2359
2360  static bool classof(const Stmt *S) {
2361    return S->getStmtClass() >= firstBinaryOperatorConstant &&
2362           S->getStmtClass() <= lastBinaryOperatorConstant;
2363  }
2364  static bool classof(const BinaryOperator *) { return true; }
2365
2366  // Iterators
2367  virtual child_iterator child_begin();
2368  virtual child_iterator child_end();
2369
2370protected:
2371  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2372                 SourceLocation opLoc, bool dead)
2373    : Expr(CompoundAssignOperatorClass, ResTy,
2374           lhs->isTypeDependent() || rhs->isTypeDependent(),
2375           lhs->isValueDependent() || rhs->isValueDependent()),
2376      Opc(opc), OpLoc(opLoc) {
2377    SubExprs[LHS] = lhs;
2378    SubExprs[RHS] = rhs;
2379  }
2380
2381  BinaryOperator(StmtClass SC, EmptyShell Empty)
2382    : Expr(SC, Empty), Opc(MulAssign) { }
2383};
2384
2385/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
2386/// track of the type the operation is performed in.  Due to the semantics of
2387/// these operators, the operands are promoted, the aritmetic performed, an
2388/// implicit conversion back to the result type done, then the assignment takes
2389/// place.  This captures the intermediate type which the computation is done
2390/// in.
2391class CompoundAssignOperator : public BinaryOperator {
2392  QualType ComputationLHSType;
2393  QualType ComputationResultType;
2394public:
2395  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc,
2396                         QualType ResType, QualType CompLHSType,
2397                         QualType CompResultType,
2398                         SourceLocation OpLoc)
2399    : BinaryOperator(lhs, rhs, opc, ResType, OpLoc, true),
2400      ComputationLHSType(CompLHSType),
2401      ComputationResultType(CompResultType) {
2402    assert(isCompoundAssignmentOp() &&
2403           "Only should be used for compound assignments");
2404  }
2405
2406  /// \brief Build an empty compound assignment operator expression.
2407  explicit CompoundAssignOperator(EmptyShell Empty)
2408    : BinaryOperator(CompoundAssignOperatorClass, Empty) { }
2409
2410  // The two computation types are the type the LHS is converted
2411  // to for the computation and the type of the result; the two are
2412  // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
2413  QualType getComputationLHSType() const { return ComputationLHSType; }
2414  void setComputationLHSType(QualType T) { ComputationLHSType = T; }
2415
2416  QualType getComputationResultType() const { return ComputationResultType; }
2417  void setComputationResultType(QualType T) { ComputationResultType = T; }
2418
2419  static bool classof(const CompoundAssignOperator *) { return true; }
2420  static bool classof(const Stmt *S) {
2421    return S->getStmtClass() == CompoundAssignOperatorClass;
2422  }
2423};
2424
2425/// ConditionalOperator - The ?: operator.  Note that LHS may be null when the
2426/// GNU "missing LHS" extension is in use.
2427///
2428class ConditionalOperator : public Expr {
2429  enum { COND, LHS, RHS, END_EXPR };
2430  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
2431  SourceLocation QuestionLoc, ColonLoc;
2432public:
2433  ConditionalOperator(Expr *cond, SourceLocation QLoc, Expr *lhs,
2434                      SourceLocation CLoc, Expr *rhs, QualType t)
2435    : Expr(ConditionalOperatorClass, t,
2436           // FIXME: the type of the conditional operator doesn't
2437           // depend on the type of the conditional, but the standard
2438           // seems to imply that it could. File a bug!
2439           ((lhs && lhs->isTypeDependent()) || (rhs && rhs->isTypeDependent())),
2440           (cond->isValueDependent() ||
2441            (lhs && lhs->isValueDependent()) ||
2442            (rhs && rhs->isValueDependent()))),
2443      QuestionLoc(QLoc),
2444      ColonLoc(CLoc) {
2445    SubExprs[COND] = cond;
2446    SubExprs[LHS] = lhs;
2447    SubExprs[RHS] = rhs;
2448  }
2449
2450  /// \brief Build an empty conditional operator.
2451  explicit ConditionalOperator(EmptyShell Empty)
2452    : Expr(ConditionalOperatorClass, Empty) { }
2453
2454  // getCond - Return the expression representing the condition for
2455  //  the ?: operator.
2456  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
2457  void setCond(Expr *E) { SubExprs[COND] = E; }
2458
2459  // getTrueExpr - Return the subexpression representing the value of the ?:
2460  //  expression if the condition evaluates to true.  In most cases this value
2461  //  will be the same as getLHS() except a GCC extension allows the left
2462  //  subexpression to be omitted, and instead of the condition be returned.
2463  //  e.g: x ?: y is shorthand for x ? x : y, except that the expression "x"
2464  //  is only evaluated once.
2465  Expr *getTrueExpr() const {
2466    return cast<Expr>(SubExprs[LHS] ? SubExprs[LHS] : SubExprs[COND]);
2467  }
2468
2469  // getTrueExpr - Return the subexpression representing the value of the ?:
2470  // expression if the condition evaluates to false. This is the same as getRHS.
2471  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
2472
2473  Expr *getLHS() const { return cast_or_null<Expr>(SubExprs[LHS]); }
2474  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2475
2476  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2477  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2478
2479  SourceLocation getQuestionLoc() const { return QuestionLoc; }
2480  void setQuestionLoc(SourceLocation L) { QuestionLoc = L; }
2481
2482  SourceLocation getColonLoc() const { return ColonLoc; }
2483  void setColonLoc(SourceLocation L) { ColonLoc = L; }
2484
2485  virtual SourceRange getSourceRange() const {
2486    return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
2487  }
2488  static bool classof(const Stmt *T) {
2489    return T->getStmtClass() == ConditionalOperatorClass;
2490  }
2491  static bool classof(const ConditionalOperator *) { return true; }
2492
2493  // Iterators
2494  virtual child_iterator child_begin();
2495  virtual child_iterator child_end();
2496};
2497
2498/// AddrLabelExpr - The GNU address of label extension, representing &&label.
2499class AddrLabelExpr : public Expr {
2500  SourceLocation AmpAmpLoc, LabelLoc;
2501  LabelStmt *Label;
2502public:
2503  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelStmt *L,
2504                QualType t)
2505    : Expr(AddrLabelExprClass, t, false, false),
2506      AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
2507
2508  /// \brief Build an empty address of a label expression.
2509  explicit AddrLabelExpr(EmptyShell Empty)
2510    : Expr(AddrLabelExprClass, Empty) { }
2511
2512  SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
2513  void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
2514  SourceLocation getLabelLoc() const { return LabelLoc; }
2515  void setLabelLoc(SourceLocation L) { LabelLoc = L; }
2516
2517  virtual SourceRange getSourceRange() const {
2518    return SourceRange(AmpAmpLoc, LabelLoc);
2519  }
2520
2521  LabelStmt *getLabel() const { return Label; }
2522  void setLabel(LabelStmt *S) { Label = S; }
2523
2524  static bool classof(const Stmt *T) {
2525    return T->getStmtClass() == AddrLabelExprClass;
2526  }
2527  static bool classof(const AddrLabelExpr *) { return true; }
2528
2529  // Iterators
2530  virtual child_iterator child_begin();
2531  virtual child_iterator child_end();
2532};
2533
2534/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
2535/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
2536/// takes the value of the last subexpression.
2537class StmtExpr : public Expr {
2538  Stmt *SubStmt;
2539  SourceLocation LParenLoc, RParenLoc;
2540public:
2541  // FIXME: Does type-dependence need to be computed differently?
2542  StmtExpr(CompoundStmt *substmt, QualType T,
2543           SourceLocation lp, SourceLocation rp) :
2544    Expr(StmtExprClass, T, T->isDependentType(), false),
2545    SubStmt(substmt), LParenLoc(lp), RParenLoc(rp) { }
2546
2547  /// \brief Build an empty statement expression.
2548  explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
2549
2550  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
2551  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
2552  void setSubStmt(CompoundStmt *S) { SubStmt = S; }
2553
2554  virtual SourceRange getSourceRange() const {
2555    return SourceRange(LParenLoc, RParenLoc);
2556  }
2557
2558  SourceLocation getLParenLoc() const { return LParenLoc; }
2559  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2560  SourceLocation getRParenLoc() const { return RParenLoc; }
2561  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2562
2563  static bool classof(const Stmt *T) {
2564    return T->getStmtClass() == StmtExprClass;
2565  }
2566  static bool classof(const StmtExpr *) { return true; }
2567
2568  // Iterators
2569  virtual child_iterator child_begin();
2570  virtual child_iterator child_end();
2571};
2572
2573/// TypesCompatibleExpr - GNU builtin-in function __builtin_types_compatible_p.
2574/// This AST node represents a function that returns 1 if two *types* (not
2575/// expressions) are compatible. The result of this built-in function can be
2576/// used in integer constant expressions.
2577class TypesCompatibleExpr : public Expr {
2578  TypeSourceInfo *TInfo1;
2579  TypeSourceInfo *TInfo2;
2580  SourceLocation BuiltinLoc, RParenLoc;
2581public:
2582  TypesCompatibleExpr(QualType ReturnType, SourceLocation BLoc,
2583                      TypeSourceInfo *tinfo1, TypeSourceInfo *tinfo2,
2584                      SourceLocation RP) :
2585    Expr(TypesCompatibleExprClass, ReturnType, false, false),
2586    TInfo1(tinfo1), TInfo2(tinfo2), BuiltinLoc(BLoc), RParenLoc(RP) {}
2587
2588  /// \brief Build an empty __builtin_type_compatible_p expression.
2589  explicit TypesCompatibleExpr(EmptyShell Empty)
2590    : Expr(TypesCompatibleExprClass, Empty) { }
2591
2592  TypeSourceInfo *getArgTInfo1() const { return TInfo1; }
2593  void setArgTInfo1(TypeSourceInfo *TInfo) { TInfo1 = TInfo; }
2594  TypeSourceInfo *getArgTInfo2() const { return TInfo2; }
2595  void setArgTInfo2(TypeSourceInfo *TInfo) { TInfo2 = TInfo; }
2596
2597  QualType getArgType1() const { return TInfo1->getType(); }
2598  QualType getArgType2() const { return TInfo2->getType(); }
2599
2600  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2601  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2602
2603  SourceLocation getRParenLoc() const { return RParenLoc; }
2604  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2605
2606  virtual SourceRange getSourceRange() const {
2607    return SourceRange(BuiltinLoc, RParenLoc);
2608  }
2609  static bool classof(const Stmt *T) {
2610    return T->getStmtClass() == TypesCompatibleExprClass;
2611  }
2612  static bool classof(const TypesCompatibleExpr *) { return true; }
2613
2614  // Iterators
2615  virtual child_iterator child_begin();
2616  virtual child_iterator child_end();
2617};
2618
2619/// ShuffleVectorExpr - clang-specific builtin-in function
2620/// __builtin_shufflevector.
2621/// This AST node represents a operator that does a constant
2622/// shuffle, similar to LLVM's shufflevector instruction. It takes
2623/// two vectors and a variable number of constant indices,
2624/// and returns the appropriately shuffled vector.
2625class ShuffleVectorExpr : public Expr {
2626  SourceLocation BuiltinLoc, RParenLoc;
2627
2628  // SubExprs - the list of values passed to the __builtin_shufflevector
2629  // function. The first two are vectors, and the rest are constant
2630  // indices.  The number of values in this list is always
2631  // 2+the number of indices in the vector type.
2632  Stmt **SubExprs;
2633  unsigned NumExprs;
2634
2635public:
2636  // FIXME: Can a shufflevector be value-dependent?  Does type-dependence need
2637  // to be computed differently?
2638  ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr,
2639                    QualType Type, SourceLocation BLoc,
2640                    SourceLocation RP) :
2641    Expr(ShuffleVectorExprClass, Type, Type->isDependentType(), false),
2642    BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(nexpr) {
2643
2644    SubExprs = new (C) Stmt*[nexpr];
2645    for (unsigned i = 0; i < nexpr; i++)
2646      SubExprs[i] = args[i];
2647  }
2648
2649  /// \brief Build an empty vector-shuffle expression.
2650  explicit ShuffleVectorExpr(EmptyShell Empty)
2651    : Expr(ShuffleVectorExprClass, Empty), SubExprs(0) { }
2652
2653  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2654  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2655
2656  SourceLocation getRParenLoc() const { return RParenLoc; }
2657  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2658
2659  virtual SourceRange getSourceRange() const {
2660    return SourceRange(BuiltinLoc, RParenLoc);
2661  }
2662  static bool classof(const Stmt *T) {
2663    return T->getStmtClass() == ShuffleVectorExprClass;
2664  }
2665  static bool classof(const ShuffleVectorExpr *) { return true; }
2666
2667  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
2668  /// constant expression, the actual arguments passed in, and the function
2669  /// pointers.
2670  unsigned getNumSubExprs() const { return NumExprs; }
2671
2672  /// getExpr - Return the Expr at the specified index.
2673  Expr *getExpr(unsigned Index) {
2674    assert((Index < NumExprs) && "Arg access out of range!");
2675    return cast<Expr>(SubExprs[Index]);
2676  }
2677  const Expr *getExpr(unsigned Index) const {
2678    assert((Index < NumExprs) && "Arg access out of range!");
2679    return cast<Expr>(SubExprs[Index]);
2680  }
2681
2682  void setExprs(ASTContext &C, Expr ** Exprs, unsigned NumExprs);
2683
2684  unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) {
2685    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
2686    return getExpr(N+2)->EvaluateAsInt(Ctx).getZExtValue();
2687  }
2688
2689  // Iterators
2690  virtual child_iterator child_begin();
2691  virtual child_iterator child_end();
2692};
2693
2694/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
2695/// This AST node is similar to the conditional operator (?:) in C, with
2696/// the following exceptions:
2697/// - the test expression must be a integer constant expression.
2698/// - the expression returned acts like the chosen subexpression in every
2699///   visible way: the type is the same as that of the chosen subexpression,
2700///   and all predicates (whether it's an l-value, whether it's an integer
2701///   constant expression, etc.) return the same result as for the chosen
2702///   sub-expression.
2703class ChooseExpr : public Expr {
2704  enum { COND, LHS, RHS, END_EXPR };
2705  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
2706  SourceLocation BuiltinLoc, RParenLoc;
2707public:
2708  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs, QualType t,
2709             SourceLocation RP, bool TypeDependent, bool ValueDependent)
2710    : Expr(ChooseExprClass, t, TypeDependent, ValueDependent),
2711      BuiltinLoc(BLoc), RParenLoc(RP) {
2712      SubExprs[COND] = cond;
2713      SubExprs[LHS] = lhs;
2714      SubExprs[RHS] = rhs;
2715    }
2716
2717  /// \brief Build an empty __builtin_choose_expr.
2718  explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
2719
2720  /// isConditionTrue - Return whether the condition is true (i.e. not
2721  /// equal to zero).
2722  bool isConditionTrue(ASTContext &C) const;
2723
2724  /// getChosenSubExpr - Return the subexpression chosen according to the
2725  /// condition.
2726  Expr *getChosenSubExpr(ASTContext &C) const {
2727    return isConditionTrue(C) ? getLHS() : getRHS();
2728  }
2729
2730  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
2731  void setCond(Expr *E) { SubExprs[COND] = E; }
2732  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2733  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2734  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2735  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2736
2737  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2738  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2739
2740  SourceLocation getRParenLoc() const { return RParenLoc; }
2741  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2742
2743  virtual SourceRange getSourceRange() const {
2744    return SourceRange(BuiltinLoc, RParenLoc);
2745  }
2746  static bool classof(const Stmt *T) {
2747    return T->getStmtClass() == ChooseExprClass;
2748  }
2749  static bool classof(const ChooseExpr *) { return true; }
2750
2751  // Iterators
2752  virtual child_iterator child_begin();
2753  virtual child_iterator child_end();
2754};
2755
2756/// GNUNullExpr - Implements the GNU __null extension, which is a name
2757/// for a null pointer constant that has integral type (e.g., int or
2758/// long) and is the same size and alignment as a pointer. The __null
2759/// extension is typically only used by system headers, which define
2760/// NULL as __null in C++ rather than using 0 (which is an integer
2761/// that may not match the size of a pointer).
2762class GNUNullExpr : public Expr {
2763  /// TokenLoc - The location of the __null keyword.
2764  SourceLocation TokenLoc;
2765
2766public:
2767  GNUNullExpr(QualType Ty, SourceLocation Loc)
2768    : Expr(GNUNullExprClass, Ty, false, false), TokenLoc(Loc) { }
2769
2770  /// \brief Build an empty GNU __null expression.
2771  explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
2772
2773  /// getTokenLocation - The location of the __null token.
2774  SourceLocation getTokenLocation() const { return TokenLoc; }
2775  void setTokenLocation(SourceLocation L) { TokenLoc = L; }
2776
2777  virtual SourceRange getSourceRange() const {
2778    return SourceRange(TokenLoc);
2779  }
2780  static bool classof(const Stmt *T) {
2781    return T->getStmtClass() == GNUNullExprClass;
2782  }
2783  static bool classof(const GNUNullExpr *) { return true; }
2784
2785  // Iterators
2786  virtual child_iterator child_begin();
2787  virtual child_iterator child_end();
2788};
2789
2790/// VAArgExpr, used for the builtin function __builtin_va_arg.
2791class VAArgExpr : public Expr {
2792  Stmt *Val;
2793  TypeSourceInfo *TInfo;
2794  SourceLocation BuiltinLoc, RParenLoc;
2795public:
2796  VAArgExpr(SourceLocation BLoc, Expr* e, TypeSourceInfo *TInfo,
2797            SourceLocation RPLoc, QualType t)
2798    : Expr(VAArgExprClass, t, t->isDependentType(), false),
2799      Val(e), TInfo(TInfo),
2800      BuiltinLoc(BLoc),
2801      RParenLoc(RPLoc) { }
2802
2803  /// \brief Create an empty __builtin_va_arg expression.
2804  explicit VAArgExpr(EmptyShell Empty) : Expr(VAArgExprClass, Empty) { }
2805
2806  const Expr *getSubExpr() const { return cast<Expr>(Val); }
2807  Expr *getSubExpr() { return cast<Expr>(Val); }
2808  void setSubExpr(Expr *E) { Val = E; }
2809
2810  TypeSourceInfo *getWrittenTypeInfo() const { return TInfo; }
2811  void setWrittenTypeInfo(TypeSourceInfo *TI) { TInfo = TI; }
2812
2813  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2814  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2815
2816  SourceLocation getRParenLoc() const { return RParenLoc; }
2817  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2818
2819  virtual SourceRange getSourceRange() const {
2820    return SourceRange(BuiltinLoc, RParenLoc);
2821  }
2822  static bool classof(const Stmt *T) {
2823    return T->getStmtClass() == VAArgExprClass;
2824  }
2825  static bool classof(const VAArgExpr *) { return true; }
2826
2827  // Iterators
2828  virtual child_iterator child_begin();
2829  virtual child_iterator child_end();
2830};
2831
2832/// @brief Describes an C or C++ initializer list.
2833///
2834/// InitListExpr describes an initializer list, which can be used to
2835/// initialize objects of different types, including
2836/// struct/class/union types, arrays, and vectors. For example:
2837///
2838/// @code
2839/// struct foo x = { 1, { 2, 3 } };
2840/// @endcode
2841///
2842/// Prior to semantic analysis, an initializer list will represent the
2843/// initializer list as written by the user, but will have the
2844/// placeholder type "void". This initializer list is called the
2845/// syntactic form of the initializer, and may contain C99 designated
2846/// initializers (represented as DesignatedInitExprs), initializations
2847/// of subobject members without explicit braces, and so on. Clients
2848/// interested in the original syntax of the initializer list should
2849/// use the syntactic form of the initializer list.
2850///
2851/// After semantic analysis, the initializer list will represent the
2852/// semantic form of the initializer, where the initializations of all
2853/// subobjects are made explicit with nested InitListExpr nodes and
2854/// C99 designators have been eliminated by placing the designated
2855/// initializations into the subobject they initialize. Additionally,
2856/// any "holes" in the initialization, where no initializer has been
2857/// specified for a particular subobject, will be replaced with
2858/// implicitly-generated ImplicitValueInitExpr expressions that
2859/// value-initialize the subobjects. Note, however, that the
2860/// initializer lists may still have fewer initializers than there are
2861/// elements to initialize within the object.
2862///
2863/// Given the semantic form of the initializer list, one can retrieve
2864/// the original syntactic form of that initializer list (if it
2865/// exists) using getSyntacticForm(). Since many initializer lists
2866/// have the same syntactic and semantic forms, getSyntacticForm() may
2867/// return NULL, indicating that the current initializer list also
2868/// serves as its syntactic form.
2869class InitListExpr : public Expr {
2870  // FIXME: Eliminate this vector in favor of ASTContext allocation
2871  typedef ASTVector<Stmt *> InitExprsTy;
2872  InitExprsTy InitExprs;
2873  SourceLocation LBraceLoc, RBraceLoc;
2874
2875  /// Contains the initializer list that describes the syntactic form
2876  /// written in the source code.
2877  InitListExpr *SyntacticForm;
2878
2879  /// If this initializer list initializes a union, specifies which
2880  /// field within the union will be initialized.
2881  FieldDecl *UnionFieldInit;
2882
2883  /// Whether this initializer list originally had a GNU array-range
2884  /// designator in it. This is a temporary marker used by CodeGen.
2885  bool HadArrayRangeDesignator;
2886
2887public:
2888  InitListExpr(ASTContext &C, SourceLocation lbraceloc,
2889               Expr **initexprs, unsigned numinits,
2890               SourceLocation rbraceloc);
2891
2892  /// \brief Build an empty initializer list.
2893  explicit InitListExpr(ASTContext &C, EmptyShell Empty)
2894    : Expr(InitListExprClass, Empty), InitExprs(C) { }
2895
2896  unsigned getNumInits() const { return InitExprs.size(); }
2897
2898  const Expr* getInit(unsigned Init) const {
2899    assert(Init < getNumInits() && "Initializer access out of range!");
2900    return cast_or_null<Expr>(InitExprs[Init]);
2901  }
2902
2903  Expr* getInit(unsigned Init) {
2904    assert(Init < getNumInits() && "Initializer access out of range!");
2905    return cast_or_null<Expr>(InitExprs[Init]);
2906  }
2907
2908  void setInit(unsigned Init, Expr *expr) {
2909    assert(Init < getNumInits() && "Initializer access out of range!");
2910    InitExprs[Init] = expr;
2911  }
2912
2913  /// \brief Reserve space for some number of initializers.
2914  void reserveInits(ASTContext &C, unsigned NumInits);
2915
2916  /// @brief Specify the number of initializers
2917  ///
2918  /// If there are more than @p NumInits initializers, the remaining
2919  /// initializers will be destroyed. If there are fewer than @p
2920  /// NumInits initializers, NULL expressions will be added for the
2921  /// unknown initializers.
2922  void resizeInits(ASTContext &Context, unsigned NumInits);
2923
2924  /// @brief Updates the initializer at index @p Init with the new
2925  /// expression @p expr, and returns the old expression at that
2926  /// location.
2927  ///
2928  /// When @p Init is out of range for this initializer list, the
2929  /// initializer list will be extended with NULL expressions to
2930  /// accomodate the new entry.
2931  Expr *updateInit(ASTContext &C, unsigned Init, Expr *expr);
2932
2933  /// \brief If this initializes a union, specifies which field in the
2934  /// union to initialize.
2935  ///
2936  /// Typically, this field is the first named field within the
2937  /// union. However, a designated initializer can specify the
2938  /// initialization of a different field within the union.
2939  FieldDecl *getInitializedFieldInUnion() { return UnionFieldInit; }
2940  void setInitializedFieldInUnion(FieldDecl *FD) { UnionFieldInit = FD; }
2941
2942  // Explicit InitListExpr's originate from source code (and have valid source
2943  // locations). Implicit InitListExpr's are created by the semantic analyzer.
2944  bool isExplicit() {
2945    return LBraceLoc.isValid() && RBraceLoc.isValid();
2946  }
2947
2948  SourceLocation getLBraceLoc() const { return LBraceLoc; }
2949  void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
2950  SourceLocation getRBraceLoc() const { return RBraceLoc; }
2951  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
2952
2953  /// @brief Retrieve the initializer list that describes the
2954  /// syntactic form of the initializer.
2955  ///
2956  ///
2957  InitListExpr *getSyntacticForm() const { return SyntacticForm; }
2958  void setSyntacticForm(InitListExpr *Init) { SyntacticForm = Init; }
2959
2960  bool hadArrayRangeDesignator() const { return HadArrayRangeDesignator; }
2961  void sawArrayRangeDesignator(bool ARD = true) {
2962    HadArrayRangeDesignator = ARD;
2963  }
2964
2965  virtual SourceRange getSourceRange() const {
2966    return SourceRange(LBraceLoc, RBraceLoc);
2967  }
2968  static bool classof(const Stmt *T) {
2969    return T->getStmtClass() == InitListExprClass;
2970  }
2971  static bool classof(const InitListExpr *) { return true; }
2972
2973  // Iterators
2974  virtual child_iterator child_begin();
2975  virtual child_iterator child_end();
2976
2977  typedef InitExprsTy::iterator iterator;
2978  typedef InitExprsTy::const_iterator const_iterator;
2979  typedef InitExprsTy::reverse_iterator reverse_iterator;
2980  typedef InitExprsTy::const_reverse_iterator const_reverse_iterator;
2981
2982  iterator begin() { return InitExprs.begin(); }
2983  const_iterator begin() const { return InitExprs.begin(); }
2984  iterator end() { return InitExprs.end(); }
2985  const_iterator end() const { return InitExprs.end(); }
2986  reverse_iterator rbegin() { return InitExprs.rbegin(); }
2987  const_reverse_iterator rbegin() const { return InitExprs.rbegin(); }
2988  reverse_iterator rend() { return InitExprs.rend(); }
2989  const_reverse_iterator rend() const { return InitExprs.rend(); }
2990};
2991
2992/// @brief Represents a C99 designated initializer expression.
2993///
2994/// A designated initializer expression (C99 6.7.8) contains one or
2995/// more designators (which can be field designators, array
2996/// designators, or GNU array-range designators) followed by an
2997/// expression that initializes the field or element(s) that the
2998/// designators refer to. For example, given:
2999///
3000/// @code
3001/// struct point {
3002///   double x;
3003///   double y;
3004/// };
3005/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
3006/// @endcode
3007///
3008/// The InitListExpr contains three DesignatedInitExprs, the first of
3009/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
3010/// designators, one array designator for @c [2] followed by one field
3011/// designator for @c .y. The initalization expression will be 1.0.
3012class DesignatedInitExpr : public Expr {
3013public:
3014  /// \brief Forward declaration of the Designator class.
3015  class Designator;
3016
3017private:
3018  /// The location of the '=' or ':' prior to the actual initializer
3019  /// expression.
3020  SourceLocation EqualOrColonLoc;
3021
3022  /// Whether this designated initializer used the GNU deprecated
3023  /// syntax rather than the C99 '=' syntax.
3024  bool GNUSyntax : 1;
3025
3026  /// The number of designators in this initializer expression.
3027  unsigned NumDesignators : 15;
3028
3029  /// \brief The designators in this designated initialization
3030  /// expression.
3031  Designator *Designators;
3032
3033  /// The number of subexpressions of this initializer expression,
3034  /// which contains both the initializer and any additional
3035  /// expressions used by array and array-range designators.
3036  unsigned NumSubExprs : 16;
3037
3038
3039  DesignatedInitExpr(ASTContext &C, QualType Ty, unsigned NumDesignators,
3040                     const Designator *Designators,
3041                     SourceLocation EqualOrColonLoc, bool GNUSyntax,
3042                     Expr **IndexExprs, unsigned NumIndexExprs,
3043                     Expr *Init);
3044
3045  explicit DesignatedInitExpr(unsigned NumSubExprs)
3046    : Expr(DesignatedInitExprClass, EmptyShell()),
3047      NumDesignators(0), Designators(0), NumSubExprs(NumSubExprs) { }
3048
3049public:
3050  /// A field designator, e.g., ".x".
3051  struct FieldDesignator {
3052    /// Refers to the field that is being initialized. The low bit
3053    /// of this field determines whether this is actually a pointer
3054    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
3055    /// initially constructed, a field designator will store an
3056    /// IdentifierInfo*. After semantic analysis has resolved that
3057    /// name, the field designator will instead store a FieldDecl*.
3058    uintptr_t NameOrField;
3059
3060    /// The location of the '.' in the designated initializer.
3061    unsigned DotLoc;
3062
3063    /// The location of the field name in the designated initializer.
3064    unsigned FieldLoc;
3065  };
3066
3067  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
3068  struct ArrayOrRangeDesignator {
3069    /// Location of the first index expression within the designated
3070    /// initializer expression's list of subexpressions.
3071    unsigned Index;
3072    /// The location of the '[' starting the array range designator.
3073    unsigned LBracketLoc;
3074    /// The location of the ellipsis separating the start and end
3075    /// indices. Only valid for GNU array-range designators.
3076    unsigned EllipsisLoc;
3077    /// The location of the ']' terminating the array range designator.
3078    unsigned RBracketLoc;
3079  };
3080
3081  /// @brief Represents a single C99 designator.
3082  ///
3083  /// @todo This class is infuriatingly similar to clang::Designator,
3084  /// but minor differences (storing indices vs. storing pointers)
3085  /// keep us from reusing it. Try harder, later, to rectify these
3086  /// differences.
3087  class Designator {
3088    /// @brief The kind of designator this describes.
3089    enum {
3090      FieldDesignator,
3091      ArrayDesignator,
3092      ArrayRangeDesignator
3093    } Kind;
3094
3095    union {
3096      /// A field designator, e.g., ".x".
3097      struct FieldDesignator Field;
3098      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
3099      struct ArrayOrRangeDesignator ArrayOrRange;
3100    };
3101    friend class DesignatedInitExpr;
3102
3103  public:
3104    Designator() {}
3105
3106    /// @brief Initializes a field designator.
3107    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
3108               SourceLocation FieldLoc)
3109      : Kind(FieldDesignator) {
3110      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
3111      Field.DotLoc = DotLoc.getRawEncoding();
3112      Field.FieldLoc = FieldLoc.getRawEncoding();
3113    }
3114
3115    /// @brief Initializes an array designator.
3116    Designator(unsigned Index, SourceLocation LBracketLoc,
3117               SourceLocation RBracketLoc)
3118      : Kind(ArrayDesignator) {
3119      ArrayOrRange.Index = Index;
3120      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3121      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
3122      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3123    }
3124
3125    /// @brief Initializes a GNU array-range designator.
3126    Designator(unsigned Index, SourceLocation LBracketLoc,
3127               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
3128      : Kind(ArrayRangeDesignator) {
3129      ArrayOrRange.Index = Index;
3130      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3131      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
3132      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3133    }
3134
3135    bool isFieldDesignator() const { return Kind == FieldDesignator; }
3136    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
3137    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
3138
3139    IdentifierInfo * getFieldName();
3140
3141    FieldDecl *getField() {
3142      assert(Kind == FieldDesignator && "Only valid on a field designator");
3143      if (Field.NameOrField & 0x01)
3144        return 0;
3145      else
3146        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
3147    }
3148
3149    void setField(FieldDecl *FD) {
3150      assert(Kind == FieldDesignator && "Only valid on a field designator");
3151      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
3152    }
3153
3154    SourceLocation getDotLoc() const {
3155      assert(Kind == FieldDesignator && "Only valid on a field designator");
3156      return SourceLocation::getFromRawEncoding(Field.DotLoc);
3157    }
3158
3159    SourceLocation getFieldLoc() const {
3160      assert(Kind == FieldDesignator && "Only valid on a field designator");
3161      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
3162    }
3163
3164    SourceLocation getLBracketLoc() const {
3165      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3166             "Only valid on an array or array-range designator");
3167      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
3168    }
3169
3170    SourceLocation getRBracketLoc() const {
3171      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3172             "Only valid on an array or array-range designator");
3173      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
3174    }
3175
3176    SourceLocation getEllipsisLoc() const {
3177      assert(Kind == ArrayRangeDesignator &&
3178             "Only valid on an array-range designator");
3179      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
3180    }
3181
3182    unsigned getFirstExprIndex() const {
3183      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3184             "Only valid on an array or array-range designator");
3185      return ArrayOrRange.Index;
3186    }
3187
3188    SourceLocation getStartLocation() const {
3189      if (Kind == FieldDesignator)
3190        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
3191      else
3192        return getLBracketLoc();
3193    }
3194  };
3195
3196  static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators,
3197                                    unsigned NumDesignators,
3198                                    Expr **IndexExprs, unsigned NumIndexExprs,
3199                                    SourceLocation EqualOrColonLoc,
3200                                    bool GNUSyntax, Expr *Init);
3201
3202  static DesignatedInitExpr *CreateEmpty(ASTContext &C, unsigned NumIndexExprs);
3203
3204  /// @brief Returns the number of designators in this initializer.
3205  unsigned size() const { return NumDesignators; }
3206
3207  // Iterator access to the designators.
3208  typedef Designator* designators_iterator;
3209  designators_iterator designators_begin() { return Designators; }
3210  designators_iterator designators_end() {
3211    return Designators + NumDesignators;
3212  }
3213
3214  Designator *getDesignator(unsigned Idx) { return &designators_begin()[Idx]; }
3215
3216  void setDesignators(ASTContext &C, const Designator *Desigs,
3217                      unsigned NumDesigs);
3218
3219  Expr *getArrayIndex(const Designator& D);
3220  Expr *getArrayRangeStart(const Designator& D);
3221  Expr *getArrayRangeEnd(const Designator& D);
3222
3223  /// @brief Retrieve the location of the '=' that precedes the
3224  /// initializer value itself, if present.
3225  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
3226  void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
3227
3228  /// @brief Determines whether this designated initializer used the
3229  /// deprecated GNU syntax for designated initializers.
3230  bool usesGNUSyntax() const { return GNUSyntax; }
3231  void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
3232
3233  /// @brief Retrieve the initializer value.
3234  Expr *getInit() const {
3235    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
3236  }
3237
3238  void setInit(Expr *init) {
3239    *child_begin() = init;
3240  }
3241
3242  /// \brief Retrieve the total number of subexpressions in this
3243  /// designated initializer expression, including the actual
3244  /// initialized value and any expressions that occur within array
3245  /// and array-range designators.
3246  unsigned getNumSubExprs() const { return NumSubExprs; }
3247
3248  Expr *getSubExpr(unsigned Idx) {
3249    assert(Idx < NumSubExprs && "Subscript out of range");
3250    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3251    Ptr += sizeof(DesignatedInitExpr);
3252    return reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx];
3253  }
3254
3255  void setSubExpr(unsigned Idx, Expr *E) {
3256    assert(Idx < NumSubExprs && "Subscript out of range");
3257    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3258    Ptr += sizeof(DesignatedInitExpr);
3259    reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx] = E;
3260  }
3261
3262  /// \brief Replaces the designator at index @p Idx with the series
3263  /// of designators in [First, Last).
3264  void ExpandDesignator(ASTContext &C, unsigned Idx, const Designator *First,
3265                        const Designator *Last);
3266
3267  virtual SourceRange getSourceRange() const;
3268
3269  static bool classof(const Stmt *T) {
3270    return T->getStmtClass() == DesignatedInitExprClass;
3271  }
3272  static bool classof(const DesignatedInitExpr *) { return true; }
3273
3274  // Iterators
3275  virtual child_iterator child_begin();
3276  virtual child_iterator child_end();
3277};
3278
3279/// \brief Represents an implicitly-generated value initialization of
3280/// an object of a given type.
3281///
3282/// Implicit value initializations occur within semantic initializer
3283/// list expressions (InitListExpr) as placeholders for subobject
3284/// initializations not explicitly specified by the user.
3285///
3286/// \see InitListExpr
3287class ImplicitValueInitExpr : public Expr {
3288public:
3289  explicit ImplicitValueInitExpr(QualType ty)
3290    : Expr(ImplicitValueInitExprClass, ty, false, false) { }
3291
3292  /// \brief Construct an empty implicit value initialization.
3293  explicit ImplicitValueInitExpr(EmptyShell Empty)
3294    : Expr(ImplicitValueInitExprClass, Empty) { }
3295
3296  static bool classof(const Stmt *T) {
3297    return T->getStmtClass() == ImplicitValueInitExprClass;
3298  }
3299  static bool classof(const ImplicitValueInitExpr *) { return true; }
3300
3301  virtual SourceRange getSourceRange() const {
3302    return SourceRange();
3303  }
3304
3305  // Iterators
3306  virtual child_iterator child_begin();
3307  virtual child_iterator child_end();
3308};
3309
3310
3311class ParenListExpr : public Expr {
3312  Stmt **Exprs;
3313  unsigned NumExprs;
3314  SourceLocation LParenLoc, RParenLoc;
3315
3316public:
3317  ParenListExpr(ASTContext& C, SourceLocation lparenloc, Expr **exprs,
3318                unsigned numexprs, SourceLocation rparenloc);
3319
3320  /// \brief Build an empty paren list.
3321  explicit ParenListExpr(EmptyShell Empty) : Expr(ParenListExprClass, Empty) { }
3322
3323  unsigned getNumExprs() const { return NumExprs; }
3324
3325  const Expr* getExpr(unsigned Init) const {
3326    assert(Init < getNumExprs() && "Initializer access out of range!");
3327    return cast_or_null<Expr>(Exprs[Init]);
3328  }
3329
3330  Expr* getExpr(unsigned Init) {
3331    assert(Init < getNumExprs() && "Initializer access out of range!");
3332    return cast_or_null<Expr>(Exprs[Init]);
3333  }
3334
3335  Expr **getExprs() { return reinterpret_cast<Expr **>(Exprs); }
3336
3337  SourceLocation getLParenLoc() const { return LParenLoc; }
3338  SourceLocation getRParenLoc() const { return RParenLoc; }
3339
3340  virtual SourceRange getSourceRange() const {
3341    return SourceRange(LParenLoc, RParenLoc);
3342  }
3343  static bool classof(const Stmt *T) {
3344    return T->getStmtClass() == ParenListExprClass;
3345  }
3346  static bool classof(const ParenListExpr *) { return true; }
3347
3348  // Iterators
3349  virtual child_iterator child_begin();
3350  virtual child_iterator child_end();
3351
3352  friend class PCHStmtReader;
3353  friend class PCHStmtWriter;
3354};
3355
3356
3357//===----------------------------------------------------------------------===//
3358// Clang Extensions
3359//===----------------------------------------------------------------------===//
3360
3361
3362/// ExtVectorElementExpr - This represents access to specific elements of a
3363/// vector, and may occur on the left hand side or right hand side.  For example
3364/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
3365///
3366/// Note that the base may have either vector or pointer to vector type, just
3367/// like a struct field reference.
3368///
3369class ExtVectorElementExpr : public Expr {
3370  Stmt *Base;
3371  IdentifierInfo *Accessor;
3372  SourceLocation AccessorLoc;
3373public:
3374  ExtVectorElementExpr(QualType ty, Expr *base, IdentifierInfo &accessor,
3375                       SourceLocation loc)
3376    : Expr(ExtVectorElementExprClass, ty, base->isTypeDependent(),
3377           base->isValueDependent()),
3378      Base(base), Accessor(&accessor), AccessorLoc(loc) {}
3379
3380  /// \brief Build an empty vector element expression.
3381  explicit ExtVectorElementExpr(EmptyShell Empty)
3382    : Expr(ExtVectorElementExprClass, Empty) { }
3383
3384  const Expr *getBase() const { return cast<Expr>(Base); }
3385  Expr *getBase() { return cast<Expr>(Base); }
3386  void setBase(Expr *E) { Base = E; }
3387
3388  IdentifierInfo &getAccessor() const { return *Accessor; }
3389  void setAccessor(IdentifierInfo *II) { Accessor = II; }
3390
3391  SourceLocation getAccessorLoc() const { return AccessorLoc; }
3392  void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
3393
3394  /// getNumElements - Get the number of components being selected.
3395  unsigned getNumElements() const;
3396
3397  /// containsDuplicateElements - Return true if any element access is
3398  /// repeated.
3399  bool containsDuplicateElements() const;
3400
3401  /// getEncodedElementAccess - Encode the elements accessed into an llvm
3402  /// aggregate Constant of ConstantInt(s).
3403  void getEncodedElementAccess(llvm::SmallVectorImpl<unsigned> &Elts) const;
3404
3405  virtual SourceRange getSourceRange() const {
3406    return SourceRange(getBase()->getLocStart(), AccessorLoc);
3407  }
3408
3409  /// isArrow - Return true if the base expression is a pointer to vector,
3410  /// return false if the base expression is a vector.
3411  bool isArrow() const;
3412
3413  static bool classof(const Stmt *T) {
3414    return T->getStmtClass() == ExtVectorElementExprClass;
3415  }
3416  static bool classof(const ExtVectorElementExpr *) { return true; }
3417
3418  // Iterators
3419  virtual child_iterator child_begin();
3420  virtual child_iterator child_end();
3421};
3422
3423
3424/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
3425/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
3426class BlockExpr : public Expr {
3427protected:
3428  BlockDecl *TheBlock;
3429  bool HasBlockDeclRefExprs;
3430public:
3431  BlockExpr(BlockDecl *BD, QualType ty, bool hasBlockDeclRefExprs)
3432    : Expr(BlockExprClass, ty, ty->isDependentType(), false),
3433      TheBlock(BD), HasBlockDeclRefExprs(hasBlockDeclRefExprs) {}
3434
3435  /// \brief Build an empty block expression.
3436  explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { }
3437
3438  const BlockDecl *getBlockDecl() const { return TheBlock; }
3439  BlockDecl *getBlockDecl() { return TheBlock; }
3440  void setBlockDecl(BlockDecl *BD) { TheBlock = BD; }
3441
3442  // Convenience functions for probing the underlying BlockDecl.
3443  SourceLocation getCaretLocation() const;
3444  const Stmt *getBody() const;
3445  Stmt *getBody();
3446
3447  virtual SourceRange getSourceRange() const {
3448    return SourceRange(getCaretLocation(), getBody()->getLocEnd());
3449  }
3450
3451  /// getFunctionType - Return the underlying function type for this block.
3452  const FunctionType *getFunctionType() const;
3453
3454  /// hasBlockDeclRefExprs - Return true iff the block has BlockDeclRefExpr
3455  /// inside of the block that reference values outside the block.
3456  bool hasBlockDeclRefExprs() const { return HasBlockDeclRefExprs; }
3457  void setHasBlockDeclRefExprs(bool BDRE) { HasBlockDeclRefExprs = BDRE; }
3458
3459  static bool classof(const Stmt *T) {
3460    return T->getStmtClass() == BlockExprClass;
3461  }
3462  static bool classof(const BlockExpr *) { return true; }
3463
3464  // Iterators
3465  virtual child_iterator child_begin();
3466  virtual child_iterator child_end();
3467};
3468
3469/// BlockDeclRefExpr - A reference to a declared variable, function,
3470/// enum, etc.
3471class BlockDeclRefExpr : public Expr {
3472  ValueDecl *D;
3473  SourceLocation Loc;
3474  bool IsByRef : 1;
3475  bool ConstQualAdded : 1;
3476  Stmt *CopyConstructorVal;
3477public:
3478  // FIXME: Fix type/value dependence!
3479  BlockDeclRefExpr(ValueDecl *d, QualType t, SourceLocation l, bool ByRef,
3480                   bool constAdded = false,
3481                   Stmt *copyConstructorVal = 0)
3482  : Expr(BlockDeclRefExprClass, t, (!t.isNull() && t->isDependentType()),false),
3483    D(d), Loc(l), IsByRef(ByRef),
3484    ConstQualAdded(constAdded),  CopyConstructorVal(copyConstructorVal) {}
3485
3486  // \brief Build an empty reference to a declared variable in a
3487  // block.
3488  explicit BlockDeclRefExpr(EmptyShell Empty)
3489    : Expr(BlockDeclRefExprClass, Empty) { }
3490
3491  ValueDecl *getDecl() { return D; }
3492  const ValueDecl *getDecl() const { return D; }
3493  void setDecl(ValueDecl *VD) { D = VD; }
3494
3495  SourceLocation getLocation() const { return Loc; }
3496  void setLocation(SourceLocation L) { Loc = L; }
3497
3498  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
3499
3500  bool isByRef() const { return IsByRef; }
3501  void setByRef(bool BR) { IsByRef = BR; }
3502
3503  bool isConstQualAdded() const { return ConstQualAdded; }
3504  void setConstQualAdded(bool C) { ConstQualAdded = C; }
3505
3506  const Expr *getCopyConstructorExpr() const
3507    { return cast_or_null<Expr>(CopyConstructorVal); }
3508  Expr *getCopyConstructorExpr()
3509    { return cast_or_null<Expr>(CopyConstructorVal); }
3510  void setCopyConstructorExpr(Expr *E) { CopyConstructorVal = E; }
3511
3512  static bool classof(const Stmt *T) {
3513    return T->getStmtClass() == BlockDeclRefExprClass;
3514  }
3515  static bool classof(const BlockDeclRefExpr *) { return true; }
3516
3517  // Iterators
3518  virtual child_iterator child_begin();
3519  virtual child_iterator child_end();
3520};
3521
3522}  // end namespace clang
3523
3524#endif
3525