Expr.h revision e873fb74219f48407ae0b8fa083aa7f0b6ff1427
1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/Stmt.h"
19#include "clang/AST/Type.h"
20#include "llvm/ADT/APSInt.h"
21#include "llvm/ADT/APFloat.h"
22#include "llvm/ADT/SmallVector.h"
23#include "llvm/ADT/StringRef.h"
24#include <vector>
25
26namespace clang {
27  class ASTContext;
28  class APValue;
29  class Decl;
30  class IdentifierInfo;
31  class ParmVarDecl;
32  class NamedDecl;
33  class ValueDecl;
34  class BlockDecl;
35  class CXXOperatorCallExpr;
36  class CXXMemberCallExpr;
37  class TemplateArgumentLoc;
38  class TemplateArgumentListInfo;
39
40/// Expr - This represents one expression.  Note that Expr's are subclasses of
41/// Stmt.  This allows an expression to be transparently used any place a Stmt
42/// is required.
43///
44class Expr : public Stmt {
45  QualType TR;
46
47protected:
48  /// TypeDependent - Whether this expression is type-dependent
49  /// (C++ [temp.dep.expr]).
50  bool TypeDependent : 1;
51
52  /// ValueDependent - Whether this expression is value-dependent
53  /// (C++ [temp.dep.constexpr]).
54  bool ValueDependent : 1;
55
56  Expr(StmtClass SC, QualType T, bool TD, bool VD)
57    : Stmt(SC), TypeDependent(TD), ValueDependent(VD) {
58    setType(T);
59  }
60
61  /// \brief Construct an empty expression.
62  explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
63
64public:
65  /// \brief Increases the reference count for this expression.
66  ///
67  /// Invoke the Retain() operation when this expression
68  /// is being shared by another owner.
69  Expr *Retain() {
70    Stmt::Retain();
71    return this;
72  }
73
74  QualType getType() const { return TR; }
75  void setType(QualType t) {
76    // In C++, the type of an expression is always adjusted so that it
77    // will not have reference type an expression will never have
78    // reference type (C++ [expr]p6). Use
79    // QualType::getNonReferenceType() to retrieve the non-reference
80    // type. Additionally, inspect Expr::isLvalue to determine whether
81    // an expression that is adjusted in this manner should be
82    // considered an lvalue.
83    assert((t.isNull() || !t->isReferenceType()) &&
84           "Expressions can't have reference type");
85
86    TR = t;
87  }
88
89  /// isValueDependent - Determines whether this expression is
90  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
91  /// array bound of "Chars" in the following example is
92  /// value-dependent.
93  /// @code
94  /// template<int Size, char (&Chars)[Size]> struct meta_string;
95  /// @endcode
96  bool isValueDependent() const { return ValueDependent; }
97
98  /// \brief Set whether this expression is value-dependent or not.
99  void setValueDependent(bool VD) { ValueDependent = VD; }
100
101  /// isTypeDependent - Determines whether this expression is
102  /// type-dependent (C++ [temp.dep.expr]), which means that its type
103  /// could change from one template instantiation to the next. For
104  /// example, the expressions "x" and "x + y" are type-dependent in
105  /// the following code, but "y" is not type-dependent:
106  /// @code
107  /// template<typename T>
108  /// void add(T x, int y) {
109  ///   x + y;
110  /// }
111  /// @endcode
112  bool isTypeDependent() const { return TypeDependent; }
113
114  /// \brief Set whether this expression is type-dependent or not.
115  void setTypeDependent(bool TD) { TypeDependent = TD; }
116
117  /// SourceLocation tokens are not useful in isolation - they are low level
118  /// value objects created/interpreted by SourceManager. We assume AST
119  /// clients will have a pointer to the respective SourceManager.
120  virtual SourceRange getSourceRange() const = 0;
121
122  /// getExprLoc - Return the preferred location for the arrow when diagnosing
123  /// a problem with a generic expression.
124  virtual SourceLocation getExprLoc() const { return getLocStart(); }
125
126  /// isUnusedResultAWarning - Return true if this immediate expression should
127  /// be warned about if the result is unused.  If so, fill in Loc and Ranges
128  /// with location to warn on and the source range[s] to report with the
129  /// warning.
130  bool isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
131                              SourceRange &R2, ASTContext &Ctx) const;
132
133  /// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or
134  /// incomplete type other than void. Nonarray expressions that can be lvalues:
135  ///  - name, where name must be a variable
136  ///  - e[i]
137  ///  - (e), where e must be an lvalue
138  ///  - e.name, where e must be an lvalue
139  ///  - e->name
140  ///  - *e, the type of e cannot be a function type
141  ///  - string-constant
142  ///  - reference type [C++ [expr]]
143  ///  - b ? x : y, where x and y are lvalues of suitable types [C++]
144  ///
145  enum isLvalueResult {
146    LV_Valid,
147    LV_NotObjectType,
148    LV_IncompleteVoidType,
149    LV_DuplicateVectorComponents,
150    LV_InvalidExpression,
151    LV_MemberFunction,
152    LV_SubObjCPropertySetting,
153    LV_SubObjCPropertyGetterSetting,
154    LV_ClassTemporary
155  };
156  isLvalueResult isLvalue(ASTContext &Ctx) const;
157
158  // Same as above, but excluding checks for non-object and void types in C
159  isLvalueResult isLvalueInternal(ASTContext &Ctx) const;
160
161  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
162  /// does not have an incomplete type, does not have a const-qualified type,
163  /// and if it is a structure or union, does not have any member (including,
164  /// recursively, any member or element of all contained aggregates or unions)
165  /// with a const-qualified type.
166  ///
167  /// \param Loc [in] [out] - A source location which *may* be filled
168  /// in with the location of the expression making this a
169  /// non-modifiable lvalue, if specified.
170  enum isModifiableLvalueResult {
171    MLV_Valid,
172    MLV_NotObjectType,
173    MLV_IncompleteVoidType,
174    MLV_DuplicateVectorComponents,
175    MLV_InvalidExpression,
176    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
177    MLV_IncompleteType,
178    MLV_ConstQualified,
179    MLV_ArrayType,
180    MLV_NotBlockQualified,
181    MLV_ReadonlyProperty,
182    MLV_NoSetterProperty,
183    MLV_MemberFunction,
184    MLV_SubObjCPropertySetting,
185    MLV_SubObjCPropertyGetterSetting,
186    MLV_ClassTemporary
187  };
188  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx,
189                                              SourceLocation *Loc = 0) const;
190
191  /// \brief If this expression refers to a bit-field, retrieve the
192  /// declaration of that bit-field.
193  FieldDecl *getBitField();
194
195  const FieldDecl *getBitField() const {
196    return const_cast<Expr*>(this)->getBitField();
197  }
198
199  /// \brief Returns whether this expression refers to a vector element.
200  bool refersToVectorElement() const;
201
202  /// isIntegerConstantExpr - Return true if this expression is a valid integer
203  /// constant expression, and, if so, return its value in Result.  If not a
204  /// valid i-c-e, return false and fill in Loc (if specified) with the location
205  /// of the invalid expression.
206  bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
207                             SourceLocation *Loc = 0,
208                             bool isEvaluated = true) const;
209  bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const {
210    llvm::APSInt X;
211    return isIntegerConstantExpr(X, Ctx, Loc);
212  }
213  /// isConstantInitializer - Returns true if this expression is a constant
214  /// initializer, which can be emitted at compile-time.
215  bool isConstantInitializer(ASTContext &Ctx) const;
216
217  /// EvalResult is a struct with detailed info about an evaluated expression.
218  struct EvalResult {
219    /// Val - This is the value the expression can be folded to.
220    APValue Val;
221
222    /// HasSideEffects - Whether the evaluated expression has side effects.
223    /// For example, (f() && 0) can be folded, but it still has side effects.
224    bool HasSideEffects;
225
226    /// Diag - If the expression is unfoldable, then Diag contains a note
227    /// diagnostic indicating why it's not foldable. DiagLoc indicates a caret
228    /// position for the error, and DiagExpr is the expression that caused
229    /// the error.
230    /// If the expression is foldable, but not an integer constant expression,
231    /// Diag contains a note diagnostic that describes why it isn't an integer
232    /// constant expression. If the expression *is* an integer constant
233    /// expression, then Diag will be zero.
234    unsigned Diag;
235    const Expr *DiagExpr;
236    SourceLocation DiagLoc;
237
238    EvalResult() : HasSideEffects(false), Diag(0), DiagExpr(0) {}
239  };
240
241  /// Evaluate - Return true if this is a constant which we can fold using
242  /// any crazy technique (that has nothing to do with language standards) that
243  /// we want to.  If this function returns true, it returns the folded constant
244  /// in Result.
245  bool Evaluate(EvalResult &Result, ASTContext &Ctx) const;
246
247  /// EvaluateAsAny - The same as Evaluate, except that it also succeeds on
248  /// stack based objects.
249  bool EvaluateAsAny(EvalResult &Result, ASTContext &Ctx) const;
250
251  /// EvaluateAsBooleanCondition - Return true if this is a constant
252  /// which we we can fold and convert to a boolean condition using
253  /// any crazy technique that we want to.
254  bool EvaluateAsBooleanCondition(bool &Result, ASTContext &Ctx) const;
255
256  /// isEvaluatable - Call Evaluate to see if this expression can be constant
257  /// folded, but discard the result.
258  bool isEvaluatable(ASTContext &Ctx) const;
259
260  /// HasSideEffects - This routine returns true for all those expressions
261  /// which must be evaluated each time and must not be optimization away
262  /// or evaluated at compile time. Example is a function call, volatile
263  /// variable read.
264  bool HasSideEffects(ASTContext &Ctx) const;
265
266  /// EvaluateAsInt - Call Evaluate and return the folded integer. This
267  /// must be called on an expression that constant folds to an integer.
268  llvm::APSInt EvaluateAsInt(ASTContext &Ctx) const;
269
270  /// EvaluateAsLValue - Evaluate an expression to see if it's a lvalue
271  /// with link time known address.
272  bool EvaluateAsLValue(EvalResult &Result, ASTContext &Ctx) const;
273
274  /// EvaluateAsAnyLValue - The same as EvaluateAsLValue, except that it
275  /// also succeeds on stack based, immutable address lvalues.
276  bool EvaluateAsAnyLValue(EvalResult &Result, ASTContext &Ctx) const;
277
278  /// \brief Enumeration used to describe how \c isNullPointerConstant()
279  /// should cope with value-dependent expressions.
280  enum NullPointerConstantValueDependence {
281    /// \brief Specifies that the expression should never be value-dependent.
282    NPC_NeverValueDependent = 0,
283
284    /// \brief Specifies that a value-dependent expression of integral or
285    /// dependent type should be considered a null pointer constant.
286    NPC_ValueDependentIsNull,
287
288    /// \brief Specifies that a value-dependent expression should be considered
289    /// to never be a null pointer constant.
290    NPC_ValueDependentIsNotNull
291  };
292
293  /// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
294  /// integer constant expression with the value zero, or if this is one that is
295  /// cast to void*.
296  bool isNullPointerConstant(ASTContext &Ctx,
297                             NullPointerConstantValueDependence NPC) const;
298
299  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
300  /// write barrier.
301  bool isOBJCGCCandidate(ASTContext &Ctx) const;
302
303  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
304  ///  its subexpression.  If that subexpression is also a ParenExpr,
305  ///  then this method recursively returns its subexpression, and so forth.
306  ///  Otherwise, the method returns the current Expr.
307  Expr* IgnoreParens();
308
309  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
310  /// or CastExprs, returning their operand.
311  Expr *IgnoreParenCasts();
312
313  /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
314  /// value (including ptr->int casts of the same size).  Strip off any
315  /// ParenExpr or CastExprs, returning their operand.
316  Expr *IgnoreParenNoopCasts(ASTContext &Ctx);
317
318  /// \brief Determine whether this expression is a default function argument.
319  ///
320  /// Default arguments are implicitly generated in the abstract syntax tree
321  /// by semantic analysis for function calls, object constructions, etc. in
322  /// C++. Default arguments are represented by \c CXXDefaultArgExpr nodes;
323  /// this routine also looks through any implicit casts to determine whether
324  /// the expression is a default argument.
325  bool isDefaultArgument() const;
326
327  const Expr* IgnoreParens() const {
328    return const_cast<Expr*>(this)->IgnoreParens();
329  }
330  const Expr *IgnoreParenCasts() const {
331    return const_cast<Expr*>(this)->IgnoreParenCasts();
332  }
333  const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const {
334    return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
335  }
336
337  static bool hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs);
338  static bool hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs);
339
340  static bool classof(const Stmt *T) {
341    return T->getStmtClass() >= firstExprConstant &&
342           T->getStmtClass() <= lastExprConstant;
343  }
344  static bool classof(const Expr *) { return true; }
345};
346
347
348//===----------------------------------------------------------------------===//
349// Primary Expressions.
350//===----------------------------------------------------------------------===//
351
352/// \brief Represents the qualifier that may precede a C++ name, e.g., the
353/// "std::" in "std::sort".
354struct NameQualifier {
355  /// \brief The nested name specifier.
356  NestedNameSpecifier *NNS;
357
358  /// \brief The source range covered by the nested name specifier.
359  SourceRange Range;
360};
361
362/// \brief Represents an explicit template argument list in C++, e.g.,
363/// the "<int>" in "sort<int>".
364struct ExplicitTemplateArgumentList {
365  /// \brief The source location of the left angle bracket ('<');
366  SourceLocation LAngleLoc;
367
368  /// \brief The source location of the right angle bracket ('>');
369  SourceLocation RAngleLoc;
370
371  /// \brief The number of template arguments in TemplateArgs.
372  /// The actual template arguments (if any) are stored after the
373  /// ExplicitTemplateArgumentList structure.
374  unsigned NumTemplateArgs;
375
376  /// \brief Retrieve the template arguments
377  TemplateArgumentLoc *getTemplateArgs() {
378    return reinterpret_cast<TemplateArgumentLoc *> (this + 1);
379  }
380
381  /// \brief Retrieve the template arguments
382  const TemplateArgumentLoc *getTemplateArgs() const {
383    return reinterpret_cast<const TemplateArgumentLoc *> (this + 1);
384  }
385
386  void initializeFrom(const TemplateArgumentListInfo &List);
387  void copyInto(TemplateArgumentListInfo &List) const;
388  static std::size_t sizeFor(const TemplateArgumentListInfo &List);
389};
390
391/// DeclRefExpr - [C99 6.5.1p2] - A reference to a declared variable, function,
392/// enum, etc.
393class DeclRefExpr : public Expr {
394  enum {
395    // Flag on DecoratedD that specifies when this declaration reference
396    // expression has a C++ nested-name-specifier.
397    HasQualifierFlag = 0x01,
398    // Flag on DecoratedD that specifies when this declaration reference
399    // expression has an explicit C++ template argument list.
400    HasExplicitTemplateArgumentListFlag = 0x02
401  };
402
403  // DecoratedD - The declaration that we are referencing, plus two bits to
404  // indicate whether (1) the declaration's name was explicitly qualified and
405  // (2) the declaration's name was followed by an explicit template
406  // argument list.
407  llvm::PointerIntPair<ValueDecl *, 2> DecoratedD;
408
409  // Loc - The location of the declaration name itself.
410  SourceLocation Loc;
411
412  /// \brief Retrieve the qualifier that preceded the declaration name, if any.
413  NameQualifier *getNameQualifier() {
414    if ((DecoratedD.getInt() & HasQualifierFlag) == 0)
415      return 0;
416
417    return reinterpret_cast<NameQualifier *> (this + 1);
418  }
419
420  /// \brief Retrieve the qualifier that preceded the member name, if any.
421  const NameQualifier *getNameQualifier() const {
422    return const_cast<DeclRefExpr *>(this)->getNameQualifier();
423  }
424
425  /// \brief Retrieve the explicit template argument list that followed the
426  /// member template name, if any.
427  ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() {
428    if ((DecoratedD.getInt() & HasExplicitTemplateArgumentListFlag) == 0)
429      return 0;
430
431    if ((DecoratedD.getInt() & HasQualifierFlag) == 0)
432      return reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
433
434    return reinterpret_cast<ExplicitTemplateArgumentList *>(
435                                                      getNameQualifier() + 1);
436  }
437
438  /// \brief Retrieve the explicit template argument list that followed the
439  /// member template name, if any.
440  const ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() const {
441    return const_cast<DeclRefExpr *>(this)->getExplicitTemplateArgumentList();
442  }
443
444  DeclRefExpr(NestedNameSpecifier *Qualifier, SourceRange QualifierRange,
445              ValueDecl *D, SourceLocation NameLoc,
446              const TemplateArgumentListInfo *TemplateArgs,
447              QualType T);
448
449protected:
450  /// \brief Computes the type- and value-dependence flags for this
451  /// declaration reference expression.
452  void computeDependence();
453
454  DeclRefExpr(StmtClass SC, ValueDecl *d, QualType t, SourceLocation l) :
455    Expr(SC, t, false, false), DecoratedD(d, 0), Loc(l) {
456    computeDependence();
457  }
458
459public:
460  DeclRefExpr(ValueDecl *d, QualType t, SourceLocation l) :
461    Expr(DeclRefExprClass, t, false, false), DecoratedD(d, 0), Loc(l) {
462    computeDependence();
463  }
464
465  /// \brief Construct an empty declaration reference expression.
466  explicit DeclRefExpr(EmptyShell Empty)
467    : Expr(DeclRefExprClass, Empty) { }
468
469  static DeclRefExpr *Create(ASTContext &Context,
470                             NestedNameSpecifier *Qualifier,
471                             SourceRange QualifierRange,
472                             ValueDecl *D,
473                             SourceLocation NameLoc,
474                             QualType T,
475                             const TemplateArgumentListInfo *TemplateArgs = 0);
476
477  ValueDecl *getDecl() { return DecoratedD.getPointer(); }
478  const ValueDecl *getDecl() const { return DecoratedD.getPointer(); }
479  void setDecl(ValueDecl *NewD) { DecoratedD.setPointer(NewD); }
480
481  SourceLocation getLocation() const { return Loc; }
482  void setLocation(SourceLocation L) { Loc = L; }
483  virtual SourceRange getSourceRange() const;
484
485  /// \brief Determine whether this declaration reference was preceded by a
486  /// C++ nested-name-specifier, e.g., \c N::foo.
487  bool hasQualifier() const { return DecoratedD.getInt() & HasQualifierFlag; }
488
489  /// \brief If the name was qualified, retrieves the source range of
490  /// the nested-name-specifier that precedes the name. Otherwise,
491  /// returns an empty source range.
492  SourceRange getQualifierRange() const {
493    if (!hasQualifier())
494      return SourceRange();
495
496    return getNameQualifier()->Range;
497  }
498
499  /// \brief If the name was qualified, retrieves the nested-name-specifier
500  /// that precedes the name. Otherwise, returns NULL.
501  NestedNameSpecifier *getQualifier() const {
502    if (!hasQualifier())
503      return 0;
504
505    return getNameQualifier()->NNS;
506  }
507
508  /// \brief Determines whether this member expression actually had a C++
509  /// template argument list explicitly specified, e.g., x.f<int>.
510  bool hasExplicitTemplateArgumentList() const {
511    return DecoratedD.getInt() & HasExplicitTemplateArgumentListFlag;
512  }
513
514  /// \brief Copies the template arguments (if present) into the given
515  /// structure.
516  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
517    if (hasExplicitTemplateArgumentList())
518      getExplicitTemplateArgumentList()->copyInto(List);
519  }
520
521  /// \brief Retrieve the location of the left angle bracket following the
522  /// member name ('<'), if any.
523  SourceLocation getLAngleLoc() const {
524    if (!hasExplicitTemplateArgumentList())
525      return SourceLocation();
526
527    return getExplicitTemplateArgumentList()->LAngleLoc;
528  }
529
530  /// \brief Retrieve the template arguments provided as part of this
531  /// template-id.
532  const TemplateArgumentLoc *getTemplateArgs() const {
533    if (!hasExplicitTemplateArgumentList())
534      return 0;
535
536    return getExplicitTemplateArgumentList()->getTemplateArgs();
537  }
538
539  /// \brief Retrieve the number of template arguments provided as part of this
540  /// template-id.
541  unsigned getNumTemplateArgs() const {
542    if (!hasExplicitTemplateArgumentList())
543      return 0;
544
545    return getExplicitTemplateArgumentList()->NumTemplateArgs;
546  }
547
548  /// \brief Retrieve the location of the right angle bracket following the
549  /// template arguments ('>').
550  SourceLocation getRAngleLoc() const {
551    if (!hasExplicitTemplateArgumentList())
552      return SourceLocation();
553
554    return getExplicitTemplateArgumentList()->RAngleLoc;
555  }
556
557  static bool classof(const Stmt *T) {
558    return T->getStmtClass() == DeclRefExprClass;
559  }
560  static bool classof(const DeclRefExpr *) { return true; }
561
562  // Iterators
563  virtual child_iterator child_begin();
564  virtual child_iterator child_end();
565};
566
567/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
568class PredefinedExpr : public Expr {
569public:
570  enum IdentType {
571    Func,
572    Function,
573    PrettyFunction,
574    /// PrettyFunctionNoVirtual - The same as PrettyFunction, except that the
575    /// 'virtual' keyword is omitted for virtual member functions.
576    PrettyFunctionNoVirtual
577  };
578
579private:
580  SourceLocation Loc;
581  IdentType Type;
582public:
583  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
584    : Expr(PredefinedExprClass, type, type->isDependentType(),
585           type->isDependentType()), Loc(l), Type(IT) {}
586
587  /// \brief Construct an empty predefined expression.
588  explicit PredefinedExpr(EmptyShell Empty)
589    : Expr(PredefinedExprClass, Empty) { }
590
591  IdentType getIdentType() const { return Type; }
592  void setIdentType(IdentType IT) { Type = IT; }
593
594  SourceLocation getLocation() const { return Loc; }
595  void setLocation(SourceLocation L) { Loc = L; }
596
597  static std::string ComputeName(IdentType IT, const Decl *CurrentDecl);
598
599  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
600
601  static bool classof(const Stmt *T) {
602    return T->getStmtClass() == PredefinedExprClass;
603  }
604  static bool classof(const PredefinedExpr *) { return true; }
605
606  // Iterators
607  virtual child_iterator child_begin();
608  virtual child_iterator child_end();
609};
610
611class IntegerLiteral : public Expr {
612  llvm::APInt Value;
613  SourceLocation Loc;
614public:
615  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
616  // or UnsignedLongLongTy
617  IntegerLiteral(const llvm::APInt &V, QualType type, SourceLocation l)
618    : Expr(IntegerLiteralClass, type, false, false), Value(V), Loc(l) {
619    assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
620  }
621
622  /// \brief Construct an empty integer literal.
623  explicit IntegerLiteral(EmptyShell Empty)
624    : Expr(IntegerLiteralClass, Empty) { }
625
626  const llvm::APInt &getValue() const { return Value; }
627  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
628
629  /// \brief Retrieve the location of the literal.
630  SourceLocation getLocation() const { return Loc; }
631
632  void setValue(const llvm::APInt &Val) { Value = Val; }
633  void setLocation(SourceLocation Location) { Loc = Location; }
634
635  static bool classof(const Stmt *T) {
636    return T->getStmtClass() == IntegerLiteralClass;
637  }
638  static bool classof(const IntegerLiteral *) { return true; }
639
640  // Iterators
641  virtual child_iterator child_begin();
642  virtual child_iterator child_end();
643};
644
645class CharacterLiteral : public Expr {
646  unsigned Value;
647  SourceLocation Loc;
648  bool IsWide;
649public:
650  // type should be IntTy
651  CharacterLiteral(unsigned value, bool iswide, QualType type, SourceLocation l)
652    : Expr(CharacterLiteralClass, type, false, false), Value(value), Loc(l),
653      IsWide(iswide) {
654  }
655
656  /// \brief Construct an empty character literal.
657  CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
658
659  SourceLocation getLocation() const { return Loc; }
660  bool isWide() const { return IsWide; }
661
662  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
663
664  unsigned getValue() const { return Value; }
665
666  void setLocation(SourceLocation Location) { Loc = Location; }
667  void setWide(bool W) { IsWide = W; }
668  void setValue(unsigned Val) { Value = Val; }
669
670  static bool classof(const Stmt *T) {
671    return T->getStmtClass() == CharacterLiteralClass;
672  }
673  static bool classof(const CharacterLiteral *) { return true; }
674
675  // Iterators
676  virtual child_iterator child_begin();
677  virtual child_iterator child_end();
678};
679
680class FloatingLiteral : public Expr {
681  llvm::APFloat Value;
682  bool IsExact : 1;
683  SourceLocation Loc;
684public:
685  FloatingLiteral(const llvm::APFloat &V, bool isexact,
686                  QualType Type, SourceLocation L)
687    : Expr(FloatingLiteralClass, Type, false, false), Value(V),
688      IsExact(isexact), Loc(L) {}
689
690  /// \brief Construct an empty floating-point literal.
691  explicit FloatingLiteral(EmptyShell Empty)
692    : Expr(FloatingLiteralClass, Empty), Value(0.0) { }
693
694  const llvm::APFloat &getValue() const { return Value; }
695  void setValue(const llvm::APFloat &Val) { Value = Val; }
696
697  bool isExact() const { return IsExact; }
698  void setExact(bool E) { IsExact = E; }
699
700  /// getValueAsApproximateDouble - This returns the value as an inaccurate
701  /// double.  Note that this may cause loss of precision, but is useful for
702  /// debugging dumps, etc.
703  double getValueAsApproximateDouble() const;
704
705  SourceLocation getLocation() const { return Loc; }
706  void setLocation(SourceLocation L) { Loc = L; }
707
708  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
709
710  static bool classof(const Stmt *T) {
711    return T->getStmtClass() == FloatingLiteralClass;
712  }
713  static bool classof(const FloatingLiteral *) { return true; }
714
715  // Iterators
716  virtual child_iterator child_begin();
717  virtual child_iterator child_end();
718};
719
720/// ImaginaryLiteral - We support imaginary integer and floating point literals,
721/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
722/// IntegerLiteral classes.  Instances of this class always have a Complex type
723/// whose element type matches the subexpression.
724///
725class ImaginaryLiteral : public Expr {
726  Stmt *Val;
727public:
728  ImaginaryLiteral(Expr *val, QualType Ty)
729    : Expr(ImaginaryLiteralClass, Ty, false, false), Val(val) {}
730
731  /// \brief Build an empty imaginary literal.
732  explicit ImaginaryLiteral(EmptyShell Empty)
733    : Expr(ImaginaryLiteralClass, Empty) { }
734
735  const Expr *getSubExpr() const { return cast<Expr>(Val); }
736  Expr *getSubExpr() { return cast<Expr>(Val); }
737  void setSubExpr(Expr *E) { Val = E; }
738
739  virtual SourceRange getSourceRange() const { return Val->getSourceRange(); }
740  static bool classof(const Stmt *T) {
741    return T->getStmtClass() == ImaginaryLiteralClass;
742  }
743  static bool classof(const ImaginaryLiteral *) { return true; }
744
745  // Iterators
746  virtual child_iterator child_begin();
747  virtual child_iterator child_end();
748};
749
750/// StringLiteral - This represents a string literal expression, e.g. "foo"
751/// or L"bar" (wide strings).  The actual string is returned by getStrData()
752/// is NOT null-terminated, and the length of the string is determined by
753/// calling getByteLength().  The C type for a string is always a
754/// ConstantArrayType.  In C++, the char type is const qualified, in C it is
755/// not.
756///
757/// Note that strings in C can be formed by concatenation of multiple string
758/// literal pptokens in translation phase #6.  This keeps track of the locations
759/// of each of these pieces.
760///
761/// Strings in C can also be truncated and extended by assigning into arrays,
762/// e.g. with constructs like:
763///   char X[2] = "foobar";
764/// In this case, getByteLength() will return 6, but the string literal will
765/// have type "char[2]".
766class StringLiteral : public Expr {
767  const char *StrData;
768  unsigned ByteLength;
769  bool IsWide;
770  unsigned NumConcatenated;
771  SourceLocation TokLocs[1];
772
773  StringLiteral(QualType Ty) : Expr(StringLiteralClass, Ty, false, false) {}
774
775protected:
776  virtual void DoDestroy(ASTContext &C);
777
778public:
779  /// This is the "fully general" constructor that allows representation of
780  /// strings formed from multiple concatenated tokens.
781  static StringLiteral *Create(ASTContext &C, const char *StrData,
782                               unsigned ByteLength, bool Wide, QualType Ty,
783                               const SourceLocation *Loc, unsigned NumStrs);
784
785  /// Simple constructor for string literals made from one token.
786  static StringLiteral *Create(ASTContext &C, const char *StrData,
787                               unsigned ByteLength,
788                               bool Wide, QualType Ty, SourceLocation Loc) {
789    return Create(C, StrData, ByteLength, Wide, Ty, &Loc, 1);
790  }
791
792  /// \brief Construct an empty string literal.
793  static StringLiteral *CreateEmpty(ASTContext &C, unsigned NumStrs);
794
795  llvm::StringRef getString() const {
796    return llvm::StringRef(StrData, ByteLength);
797  }
798  // FIXME: These are deprecated, replace with StringRef.
799  const char *getStrData() const { return StrData; }
800  unsigned getByteLength() const { return ByteLength; }
801
802  /// \brief Sets the string data to the given string data.
803  void setString(ASTContext &C, llvm::StringRef Str);
804
805  bool isWide() const { return IsWide; }
806  void setWide(bool W) { IsWide = W; }
807
808  bool containsNonAsciiOrNull() const {
809    llvm::StringRef Str = getString();
810    for (unsigned i = 0, e = Str.size(); i != e; ++i)
811      if (!isascii(Str[i]) || !Str[i])
812        return true;
813    return false;
814  }
815  /// getNumConcatenated - Get the number of string literal tokens that were
816  /// concatenated in translation phase #6 to form this string literal.
817  unsigned getNumConcatenated() const { return NumConcatenated; }
818
819  SourceLocation getStrTokenLoc(unsigned TokNum) const {
820    assert(TokNum < NumConcatenated && "Invalid tok number");
821    return TokLocs[TokNum];
822  }
823  void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
824    assert(TokNum < NumConcatenated && "Invalid tok number");
825    TokLocs[TokNum] = L;
826  }
827
828  typedef const SourceLocation *tokloc_iterator;
829  tokloc_iterator tokloc_begin() const { return TokLocs; }
830  tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; }
831
832  virtual SourceRange getSourceRange() const {
833    return SourceRange(TokLocs[0], TokLocs[NumConcatenated-1]);
834  }
835  static bool classof(const Stmt *T) {
836    return T->getStmtClass() == StringLiteralClass;
837  }
838  static bool classof(const StringLiteral *) { return true; }
839
840  // Iterators
841  virtual child_iterator child_begin();
842  virtual child_iterator child_end();
843};
844
845/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
846/// AST node is only formed if full location information is requested.
847class ParenExpr : public Expr {
848  SourceLocation L, R;
849  Stmt *Val;
850public:
851  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
852    : Expr(ParenExprClass, val->getType(),
853           val->isTypeDependent(), val->isValueDependent()),
854      L(l), R(r), Val(val) {}
855
856  /// \brief Construct an empty parenthesized expression.
857  explicit ParenExpr(EmptyShell Empty)
858    : Expr(ParenExprClass, Empty) { }
859
860  const Expr *getSubExpr() const { return cast<Expr>(Val); }
861  Expr *getSubExpr() { return cast<Expr>(Val); }
862  void setSubExpr(Expr *E) { Val = E; }
863
864  virtual SourceRange getSourceRange() const { return SourceRange(L, R); }
865
866  /// \brief Get the location of the left parentheses '('.
867  SourceLocation getLParen() const { return L; }
868  void setLParen(SourceLocation Loc) { L = Loc; }
869
870  /// \brief Get the location of the right parentheses ')'.
871  SourceLocation getRParen() const { return R; }
872  void setRParen(SourceLocation Loc) { R = Loc; }
873
874  static bool classof(const Stmt *T) {
875    return T->getStmtClass() == ParenExprClass;
876  }
877  static bool classof(const ParenExpr *) { return true; }
878
879  // Iterators
880  virtual child_iterator child_begin();
881  virtual child_iterator child_end();
882};
883
884
885/// UnaryOperator - This represents the unary-expression's (except sizeof and
886/// alignof), the postinc/postdec operators from postfix-expression, and various
887/// extensions.
888///
889/// Notes on various nodes:
890///
891/// Real/Imag - These return the real/imag part of a complex operand.  If
892///   applied to a non-complex value, the former returns its operand and the
893///   later returns zero in the type of the operand.
894///
895/// __builtin_offsetof(type, a.b[10]) is represented as a unary operator whose
896///   subexpression is a compound literal with the various MemberExpr and
897///   ArraySubscriptExpr's applied to it.
898///
899class UnaryOperator : public Expr {
900public:
901  // Note that additions to this should also update the StmtVisitor class.
902  enum Opcode {
903    PostInc, PostDec, // [C99 6.5.2.4] Postfix increment and decrement operators
904    PreInc, PreDec,   // [C99 6.5.3.1] Prefix increment and decrement operators.
905    AddrOf, Deref,    // [C99 6.5.3.2] Address and indirection operators.
906    Plus, Minus,      // [C99 6.5.3.3] Unary arithmetic operators.
907    Not, LNot,        // [C99 6.5.3.3] Unary arithmetic operators.
908    Real, Imag,       // "__real expr"/"__imag expr" Extension.
909    Extension,        // __extension__ marker.
910    OffsetOf          // __builtin_offsetof
911  };
912private:
913  Stmt *Val;
914  Opcode Opc;
915  SourceLocation Loc;
916public:
917
918  UnaryOperator(Expr *input, Opcode opc, QualType type, SourceLocation l)
919    : Expr(UnaryOperatorClass, type,
920           input->isTypeDependent() && opc != OffsetOf,
921           input->isValueDependent()),
922      Val(input), Opc(opc), Loc(l) {}
923
924  /// \brief Build an empty unary operator.
925  explicit UnaryOperator(EmptyShell Empty)
926    : Expr(UnaryOperatorClass, Empty), Opc(AddrOf) { }
927
928  Opcode getOpcode() const { return Opc; }
929  void setOpcode(Opcode O) { Opc = O; }
930
931  Expr *getSubExpr() const { return cast<Expr>(Val); }
932  void setSubExpr(Expr *E) { Val = E; }
933
934  /// getOperatorLoc - Return the location of the operator.
935  SourceLocation getOperatorLoc() const { return Loc; }
936  void setOperatorLoc(SourceLocation L) { Loc = L; }
937
938  /// isPostfix - Return true if this is a postfix operation, like x++.
939  static bool isPostfix(Opcode Op) {
940    return Op == PostInc || Op == PostDec;
941  }
942
943  /// isPostfix - Return true if this is a prefix operation, like --x.
944  static bool isPrefix(Opcode Op) {
945    return Op == PreInc || Op == PreDec;
946  }
947
948  bool isPrefix() const { return isPrefix(Opc); }
949  bool isPostfix() const { return isPostfix(Opc); }
950  bool isIncrementOp() const {return Opc==PreInc || Opc==PostInc; }
951  bool isIncrementDecrementOp() const { return Opc>=PostInc && Opc<=PreDec; }
952  bool isOffsetOfOp() const { return Opc == OffsetOf; }
953  static bool isArithmeticOp(Opcode Op) { return Op >= Plus && Op <= LNot; }
954  bool isArithmeticOp() const { return isArithmeticOp(Opc); }
955
956  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
957  /// corresponds to, e.g. "sizeof" or "[pre]++"
958  static const char *getOpcodeStr(Opcode Op);
959
960  /// \brief Retrieve the unary opcode that corresponds to the given
961  /// overloaded operator.
962  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
963
964  /// \brief Retrieve the overloaded operator kind that corresponds to
965  /// the given unary opcode.
966  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
967
968  virtual SourceRange getSourceRange() const {
969    if (isPostfix())
970      return SourceRange(Val->getLocStart(), Loc);
971    else
972      return SourceRange(Loc, Val->getLocEnd());
973  }
974  virtual SourceLocation getExprLoc() const { return Loc; }
975
976  static bool classof(const Stmt *T) {
977    return T->getStmtClass() == UnaryOperatorClass;
978  }
979  static bool classof(const UnaryOperator *) { return true; }
980
981  // Iterators
982  virtual child_iterator child_begin();
983  virtual child_iterator child_end();
984};
985
986/// SizeOfAlignOfExpr - [C99 6.5.3.4] - This is for sizeof/alignof, both of
987/// types and expressions.
988class SizeOfAlignOfExpr : public Expr {
989  bool isSizeof : 1;  // true if sizeof, false if alignof.
990  bool isType : 1;    // true if operand is a type, false if an expression
991  union {
992    TypeSourceInfo *Ty;
993    Stmt *Ex;
994  } Argument;
995  SourceLocation OpLoc, RParenLoc;
996
997protected:
998  virtual void DoDestroy(ASTContext& C);
999
1000public:
1001  SizeOfAlignOfExpr(bool issizeof, TypeSourceInfo *TInfo,
1002                    QualType resultType, SourceLocation op,
1003                    SourceLocation rp) :
1004      Expr(SizeOfAlignOfExprClass, resultType,
1005           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1006           // Value-dependent if the argument is type-dependent.
1007           TInfo->getType()->isDependentType()),
1008      isSizeof(issizeof), isType(true), OpLoc(op), RParenLoc(rp) {
1009    Argument.Ty = TInfo;
1010  }
1011
1012  SizeOfAlignOfExpr(bool issizeof, Expr *E,
1013                    QualType resultType, SourceLocation op,
1014                    SourceLocation rp) :
1015      Expr(SizeOfAlignOfExprClass, resultType,
1016           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1017           // Value-dependent if the argument is type-dependent.
1018           E->isTypeDependent()),
1019      isSizeof(issizeof), isType(false), OpLoc(op), RParenLoc(rp) {
1020    Argument.Ex = E;
1021  }
1022
1023  /// \brief Construct an empty sizeof/alignof expression.
1024  explicit SizeOfAlignOfExpr(EmptyShell Empty)
1025    : Expr(SizeOfAlignOfExprClass, Empty) { }
1026
1027  bool isSizeOf() const { return isSizeof; }
1028  void setSizeof(bool S) { isSizeof = S; }
1029
1030  bool isArgumentType() const { return isType; }
1031  QualType getArgumentType() const {
1032    return getArgumentTypeInfo()->getType();
1033  }
1034  TypeSourceInfo *getArgumentTypeInfo() const {
1035    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
1036    return Argument.Ty;
1037  }
1038  Expr *getArgumentExpr() {
1039    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
1040    return static_cast<Expr*>(Argument.Ex);
1041  }
1042  const Expr *getArgumentExpr() const {
1043    return const_cast<SizeOfAlignOfExpr*>(this)->getArgumentExpr();
1044  }
1045
1046  void setArgument(Expr *E) { Argument.Ex = E; isType = false; }
1047  void setArgument(TypeSourceInfo *TInfo) {
1048    Argument.Ty = TInfo;
1049    isType = true;
1050  }
1051
1052  /// Gets the argument type, or the type of the argument expression, whichever
1053  /// is appropriate.
1054  QualType getTypeOfArgument() const {
1055    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
1056  }
1057
1058  SourceLocation getOperatorLoc() const { return OpLoc; }
1059  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
1060
1061  SourceLocation getRParenLoc() const { return RParenLoc; }
1062  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1063
1064  virtual SourceRange getSourceRange() const {
1065    return SourceRange(OpLoc, RParenLoc);
1066  }
1067
1068  static bool classof(const Stmt *T) {
1069    return T->getStmtClass() == SizeOfAlignOfExprClass;
1070  }
1071  static bool classof(const SizeOfAlignOfExpr *) { return true; }
1072
1073  // Iterators
1074  virtual child_iterator child_begin();
1075  virtual child_iterator child_end();
1076};
1077
1078//===----------------------------------------------------------------------===//
1079// Postfix Operators.
1080//===----------------------------------------------------------------------===//
1081
1082/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
1083class ArraySubscriptExpr : public Expr {
1084  enum { LHS, RHS, END_EXPR=2 };
1085  Stmt* SubExprs[END_EXPR];
1086  SourceLocation RBracketLoc;
1087public:
1088  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
1089                     SourceLocation rbracketloc)
1090  : Expr(ArraySubscriptExprClass, t,
1091         lhs->isTypeDependent() || rhs->isTypeDependent(),
1092         lhs->isValueDependent() || rhs->isValueDependent()),
1093    RBracketLoc(rbracketloc) {
1094    SubExprs[LHS] = lhs;
1095    SubExprs[RHS] = rhs;
1096  }
1097
1098  /// \brief Create an empty array subscript expression.
1099  explicit ArraySubscriptExpr(EmptyShell Shell)
1100    : Expr(ArraySubscriptExprClass, Shell) { }
1101
1102  /// An array access can be written A[4] or 4[A] (both are equivalent).
1103  /// - getBase() and getIdx() always present the normalized view: A[4].
1104  ///    In this case getBase() returns "A" and getIdx() returns "4".
1105  /// - getLHS() and getRHS() present the syntactic view. e.g. for
1106  ///    4[A] getLHS() returns "4".
1107  /// Note: Because vector element access is also written A[4] we must
1108  /// predicate the format conversion in getBase and getIdx only on the
1109  /// the type of the RHS, as it is possible for the LHS to be a vector of
1110  /// integer type
1111  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
1112  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1113  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1114
1115  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
1116  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1117  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1118
1119  Expr *getBase() {
1120    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1121  }
1122
1123  const Expr *getBase() const {
1124    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1125  }
1126
1127  Expr *getIdx() {
1128    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1129  }
1130
1131  const Expr *getIdx() const {
1132    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1133  }
1134
1135  virtual SourceRange getSourceRange() const {
1136    return SourceRange(getLHS()->getLocStart(), RBracketLoc);
1137  }
1138
1139  SourceLocation getRBracketLoc() const { return RBracketLoc; }
1140  void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
1141
1142  virtual SourceLocation getExprLoc() const { return getBase()->getExprLoc(); }
1143
1144  static bool classof(const Stmt *T) {
1145    return T->getStmtClass() == ArraySubscriptExprClass;
1146  }
1147  static bool classof(const ArraySubscriptExpr *) { return true; }
1148
1149  // Iterators
1150  virtual child_iterator child_begin();
1151  virtual child_iterator child_end();
1152};
1153
1154
1155/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
1156/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
1157/// while its subclasses may represent alternative syntax that (semantically)
1158/// results in a function call. For example, CXXOperatorCallExpr is
1159/// a subclass for overloaded operator calls that use operator syntax, e.g.,
1160/// "str1 + str2" to resolve to a function call.
1161class CallExpr : public Expr {
1162  enum { FN=0, ARGS_START=1 };
1163  Stmt **SubExprs;
1164  unsigned NumArgs;
1165  SourceLocation RParenLoc;
1166
1167protected:
1168  // This version of the constructor is for derived classes.
1169  CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args, unsigned numargs,
1170           QualType t, SourceLocation rparenloc);
1171
1172  virtual void DoDestroy(ASTContext& C);
1173
1174public:
1175  CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, QualType t,
1176           SourceLocation rparenloc);
1177
1178  /// \brief Build an empty call expression.
1179  CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty);
1180
1181  ~CallExpr() {}
1182
1183  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
1184  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
1185  void setCallee(Expr *F) { SubExprs[FN] = F; }
1186
1187  Decl *getCalleeDecl();
1188  const Decl *getCalleeDecl() const {
1189    return const_cast<CallExpr*>(this)->getCalleeDecl();
1190  }
1191
1192  /// \brief If the callee is a FunctionDecl, return it. Otherwise return 0.
1193  FunctionDecl *getDirectCallee();
1194  const FunctionDecl *getDirectCallee() const {
1195    return const_cast<CallExpr*>(this)->getDirectCallee();
1196  }
1197
1198  /// getNumArgs - Return the number of actual arguments to this call.
1199  ///
1200  unsigned getNumArgs() const { return NumArgs; }
1201
1202  /// getArg - Return the specified argument.
1203  Expr *getArg(unsigned Arg) {
1204    assert(Arg < NumArgs && "Arg access out of range!");
1205    return cast<Expr>(SubExprs[Arg+ARGS_START]);
1206  }
1207  const Expr *getArg(unsigned Arg) const {
1208    assert(Arg < NumArgs && "Arg access out of range!");
1209    return cast<Expr>(SubExprs[Arg+ARGS_START]);
1210  }
1211
1212  /// setArg - Set the specified argument.
1213  void setArg(unsigned Arg, Expr *ArgExpr) {
1214    assert(Arg < NumArgs && "Arg access out of range!");
1215    SubExprs[Arg+ARGS_START] = ArgExpr;
1216  }
1217
1218  /// setNumArgs - This changes the number of arguments present in this call.
1219  /// Any orphaned expressions are deleted by this, and any new operands are set
1220  /// to null.
1221  void setNumArgs(ASTContext& C, unsigned NumArgs);
1222
1223  typedef ExprIterator arg_iterator;
1224  typedef ConstExprIterator const_arg_iterator;
1225
1226  arg_iterator arg_begin() { return SubExprs+ARGS_START; }
1227  arg_iterator arg_end() { return SubExprs+ARGS_START+getNumArgs(); }
1228  const_arg_iterator arg_begin() const { return SubExprs+ARGS_START; }
1229  const_arg_iterator arg_end() const { return SubExprs+ARGS_START+getNumArgs();}
1230
1231  /// getNumCommas - Return the number of commas that must have been present in
1232  /// this function call.
1233  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
1234
1235  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
1236  /// not, return 0.
1237  unsigned isBuiltinCall(ASTContext &Context) const;
1238
1239  /// getCallReturnType - Get the return type of the call expr. This is not
1240  /// always the type of the expr itself, if the return type is a reference
1241  /// type.
1242  QualType getCallReturnType() const;
1243
1244  SourceLocation getRParenLoc() const { return RParenLoc; }
1245  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1246
1247  virtual SourceRange getSourceRange() const {
1248    return SourceRange(getCallee()->getLocStart(), RParenLoc);
1249  }
1250
1251  static bool classof(const Stmt *T) {
1252    return T->getStmtClass() == CallExprClass ||
1253           T->getStmtClass() == CXXOperatorCallExprClass ||
1254           T->getStmtClass() == CXXMemberCallExprClass;
1255  }
1256  static bool classof(const CallExpr *) { return true; }
1257  static bool classof(const CXXOperatorCallExpr *) { return true; }
1258  static bool classof(const CXXMemberCallExpr *) { return true; }
1259
1260  // Iterators
1261  virtual child_iterator child_begin();
1262  virtual child_iterator child_end();
1263};
1264
1265/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.  X->F and X.F.
1266///
1267class MemberExpr : public Expr {
1268  /// Base - the expression for the base pointer or structure references.  In
1269  /// X.F, this is "X".
1270  Stmt *Base;
1271
1272  /// MemberDecl - This is the decl being referenced by the field/member name.
1273  /// In X.F, this is the decl referenced by F.
1274  ValueDecl *MemberDecl;
1275
1276  /// MemberLoc - This is the location of the member name.
1277  SourceLocation MemberLoc;
1278
1279  /// IsArrow - True if this is "X->F", false if this is "X.F".
1280  bool IsArrow : 1;
1281
1282  /// \brief True if this member expression used a nested-name-specifier to
1283  /// refer to the member, e.g., "x->Base::f". When true, a NameQualifier
1284  /// structure is allocated immediately after the MemberExpr.
1285  bool HasQualifier : 1;
1286
1287  /// \brief True if this member expression specified a template argument list
1288  /// explicitly, e.g., x->f<int>. When true, an ExplicitTemplateArgumentList
1289  /// structure (and its TemplateArguments) are allocated immediately after
1290  /// the MemberExpr or, if the member expression also has a qualifier, after
1291  /// the NameQualifier structure.
1292  bool HasExplicitTemplateArgumentList : 1;
1293
1294  /// \brief Retrieve the qualifier that preceded the member name, if any.
1295  NameQualifier *getMemberQualifier() {
1296    if (!HasQualifier)
1297      return 0;
1298
1299    return reinterpret_cast<NameQualifier *> (this + 1);
1300  }
1301
1302  /// \brief Retrieve the qualifier that preceded the member name, if any.
1303  const NameQualifier *getMemberQualifier() const {
1304    return const_cast<MemberExpr *>(this)->getMemberQualifier();
1305  }
1306
1307  /// \brief Retrieve the explicit template argument list that followed the
1308  /// member template name, if any.
1309  ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() {
1310    if (!HasExplicitTemplateArgumentList)
1311      return 0;
1312
1313    if (!HasQualifier)
1314      return reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
1315
1316    return reinterpret_cast<ExplicitTemplateArgumentList *>(
1317                                                      getMemberQualifier() + 1);
1318  }
1319
1320  /// \brief Retrieve the explicit template argument list that followed the
1321  /// member template name, if any.
1322  const ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() const {
1323    return const_cast<MemberExpr *>(this)->getExplicitTemplateArgumentList();
1324  }
1325
1326  MemberExpr(Expr *base, bool isarrow, NestedNameSpecifier *qual,
1327             SourceRange qualrange, ValueDecl *memberdecl, SourceLocation l,
1328             const TemplateArgumentListInfo *targs, QualType ty);
1329
1330public:
1331  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
1332             SourceLocation l, QualType ty)
1333    : Expr(MemberExprClass, ty,
1334           base->isTypeDependent(), base->isValueDependent()),
1335      Base(base), MemberDecl(memberdecl), MemberLoc(l), IsArrow(isarrow),
1336      HasQualifier(false), HasExplicitTemplateArgumentList(false) {}
1337
1338  /// \brief Build an empty member reference expression.
1339  explicit MemberExpr(EmptyShell Empty)
1340    : Expr(MemberExprClass, Empty), HasQualifier(false),
1341      HasExplicitTemplateArgumentList(false) { }
1342
1343  static MemberExpr *Create(ASTContext &C, Expr *base, bool isarrow,
1344                            NestedNameSpecifier *qual, SourceRange qualrange,
1345                            ValueDecl *memberdecl,
1346                            SourceLocation l,
1347                            const TemplateArgumentListInfo *targs,
1348                            QualType ty);
1349
1350  void setBase(Expr *E) { Base = E; }
1351  Expr *getBase() const { return cast<Expr>(Base); }
1352
1353  /// \brief Retrieve the member declaration to which this expression refers.
1354  ///
1355  /// The returned declaration will either be a FieldDecl or (in C++)
1356  /// a CXXMethodDecl.
1357  ValueDecl *getMemberDecl() const { return MemberDecl; }
1358  void setMemberDecl(ValueDecl *D) { MemberDecl = D; }
1359
1360  /// \brief Determines whether this member expression actually had
1361  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
1362  /// x->Base::foo.
1363  bool hasQualifier() const { return HasQualifier; }
1364
1365  /// \brief If the member name was qualified, retrieves the source range of
1366  /// the nested-name-specifier that precedes the member name. Otherwise,
1367  /// returns an empty source range.
1368  SourceRange getQualifierRange() const {
1369    if (!HasQualifier)
1370      return SourceRange();
1371
1372    return getMemberQualifier()->Range;
1373  }
1374
1375  /// \brief If the member name was qualified, retrieves the
1376  /// nested-name-specifier that precedes the member name. Otherwise, returns
1377  /// NULL.
1378  NestedNameSpecifier *getQualifier() const {
1379    if (!HasQualifier)
1380      return 0;
1381
1382    return getMemberQualifier()->NNS;
1383  }
1384
1385  /// \brief Determines whether this member expression actually had a C++
1386  /// template argument list explicitly specified, e.g., x.f<int>.
1387  bool hasExplicitTemplateArgumentList() const {
1388    return HasExplicitTemplateArgumentList;
1389  }
1390
1391  /// \brief Copies the template arguments (if present) into the given
1392  /// structure.
1393  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1394    if (hasExplicitTemplateArgumentList())
1395      getExplicitTemplateArgumentList()->copyInto(List);
1396  }
1397
1398  /// \brief Retrieve the location of the left angle bracket following the
1399  /// member name ('<'), if any.
1400  SourceLocation getLAngleLoc() const {
1401    if (!HasExplicitTemplateArgumentList)
1402      return SourceLocation();
1403
1404    return getExplicitTemplateArgumentList()->LAngleLoc;
1405  }
1406
1407  /// \brief Retrieve the template arguments provided as part of this
1408  /// template-id.
1409  const TemplateArgumentLoc *getTemplateArgs() const {
1410    if (!HasExplicitTemplateArgumentList)
1411      return 0;
1412
1413    return getExplicitTemplateArgumentList()->getTemplateArgs();
1414  }
1415
1416  /// \brief Retrieve the number of template arguments provided as part of this
1417  /// template-id.
1418  unsigned getNumTemplateArgs() const {
1419    if (!HasExplicitTemplateArgumentList)
1420      return 0;
1421
1422    return getExplicitTemplateArgumentList()->NumTemplateArgs;
1423  }
1424
1425  /// \brief Retrieve the location of the right angle bracket following the
1426  /// template arguments ('>').
1427  SourceLocation getRAngleLoc() const {
1428    if (!HasExplicitTemplateArgumentList)
1429      return SourceLocation();
1430
1431    return getExplicitTemplateArgumentList()->RAngleLoc;
1432  }
1433
1434  bool isArrow() const { return IsArrow; }
1435  void setArrow(bool A) { IsArrow = A; }
1436
1437  /// getMemberLoc - Return the location of the "member", in X->F, it is the
1438  /// location of 'F'.
1439  SourceLocation getMemberLoc() const { return MemberLoc; }
1440  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
1441
1442  virtual SourceRange getSourceRange() const {
1443    // If we have an implicit base (like a C++ implicit this),
1444    // make sure not to return its location
1445    SourceLocation EndLoc = MemberLoc;
1446    if (HasExplicitTemplateArgumentList)
1447      EndLoc = getRAngleLoc();
1448
1449    SourceLocation BaseLoc = getBase()->getLocStart();
1450    if (BaseLoc.isInvalid())
1451      return SourceRange(MemberLoc, EndLoc);
1452    return SourceRange(BaseLoc, EndLoc);
1453  }
1454
1455  virtual SourceLocation getExprLoc() const { return MemberLoc; }
1456
1457  static bool classof(const Stmt *T) {
1458    return T->getStmtClass() == MemberExprClass;
1459  }
1460  static bool classof(const MemberExpr *) { return true; }
1461
1462  // Iterators
1463  virtual child_iterator child_begin();
1464  virtual child_iterator child_end();
1465};
1466
1467/// CompoundLiteralExpr - [C99 6.5.2.5]
1468///
1469class CompoundLiteralExpr : public Expr {
1470  /// LParenLoc - If non-null, this is the location of the left paren in a
1471  /// compound literal like "(int){4}".  This can be null if this is a
1472  /// synthesized compound expression.
1473  SourceLocation LParenLoc;
1474
1475  /// The type as written.  This can be an incomplete array type, in
1476  /// which case the actual expression type will be different.
1477  TypeSourceInfo *TInfo;
1478  Stmt *Init;
1479  bool FileScope;
1480public:
1481  // FIXME: Can compound literals be value-dependent?
1482  CompoundLiteralExpr(SourceLocation lparenloc, TypeSourceInfo *tinfo,
1483                      QualType T, Expr *init, bool fileScope)
1484    : Expr(CompoundLiteralExprClass, T,
1485           tinfo->getType()->isDependentType(), false),
1486      LParenLoc(lparenloc), TInfo(tinfo), Init(init), FileScope(fileScope) {}
1487
1488  /// \brief Construct an empty compound literal.
1489  explicit CompoundLiteralExpr(EmptyShell Empty)
1490    : Expr(CompoundLiteralExprClass, Empty) { }
1491
1492  const Expr *getInitializer() const { return cast<Expr>(Init); }
1493  Expr *getInitializer() { return cast<Expr>(Init); }
1494  void setInitializer(Expr *E) { Init = E; }
1495
1496  bool isFileScope() const { return FileScope; }
1497  void setFileScope(bool FS) { FileScope = FS; }
1498
1499  SourceLocation getLParenLoc() const { return LParenLoc; }
1500  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
1501
1502  TypeSourceInfo *getTypeSourceInfo() const { return TInfo; }
1503  void setTypeSourceInfo(TypeSourceInfo* tinfo) { TInfo = tinfo; }
1504
1505  virtual SourceRange getSourceRange() const {
1506    // FIXME: Init should never be null.
1507    if (!Init)
1508      return SourceRange();
1509    if (LParenLoc.isInvalid())
1510      return Init->getSourceRange();
1511    return SourceRange(LParenLoc, Init->getLocEnd());
1512  }
1513
1514  static bool classof(const Stmt *T) {
1515    return T->getStmtClass() == CompoundLiteralExprClass;
1516  }
1517  static bool classof(const CompoundLiteralExpr *) { return true; }
1518
1519  // Iterators
1520  virtual child_iterator child_begin();
1521  virtual child_iterator child_end();
1522};
1523
1524/// CastExpr - Base class for type casts, including both implicit
1525/// casts (ImplicitCastExpr) and explicit casts that have some
1526/// representation in the source code (ExplicitCastExpr's derived
1527/// classes).
1528class CastExpr : public Expr {
1529public:
1530  /// CastKind - the kind of cast this represents.
1531  enum CastKind {
1532    /// CK_Unknown - Unknown cast kind.
1533    /// FIXME: The goal is to get rid of this and make all casts have a
1534    /// kind so that the AST client doesn't have to try to figure out what's
1535    /// going on.
1536    CK_Unknown,
1537
1538    /// CK_BitCast - Used for reinterpret_cast.
1539    CK_BitCast,
1540
1541    /// CK_NoOp - Used for const_cast.
1542    CK_NoOp,
1543
1544    /// CK_BaseToDerived - Base to derived class casts.
1545    CK_BaseToDerived,
1546
1547    /// CK_DerivedToBase - Derived to base class casts.
1548    CK_DerivedToBase,
1549
1550    /// CK_Dynamic - Dynamic cast.
1551    CK_Dynamic,
1552
1553    /// CK_ToUnion - Cast to union (GCC extension).
1554    CK_ToUnion,
1555
1556    /// CK_ArrayToPointerDecay - Array to pointer decay.
1557    CK_ArrayToPointerDecay,
1558
1559    // CK_FunctionToPointerDecay - Function to pointer decay.
1560    CK_FunctionToPointerDecay,
1561
1562    /// CK_NullToMemberPointer - Null pointer to member pointer.
1563    CK_NullToMemberPointer,
1564
1565    /// CK_BaseToDerivedMemberPointer - Member pointer in base class to
1566    /// member pointer in derived class.
1567    CK_BaseToDerivedMemberPointer,
1568
1569    /// CK_DerivedToBaseMemberPointer - Member pointer in derived class to
1570    /// member pointer in base class.
1571    CK_DerivedToBaseMemberPointer,
1572
1573    /// CK_UserDefinedConversion - Conversion using a user defined type
1574    /// conversion function.
1575    CK_UserDefinedConversion,
1576
1577    /// CK_ConstructorConversion - Conversion by constructor
1578    CK_ConstructorConversion,
1579
1580    /// CK_IntegralToPointer - Integral to pointer
1581    CK_IntegralToPointer,
1582
1583    /// CK_PointerToIntegral - Pointer to integral
1584    CK_PointerToIntegral,
1585
1586    /// CK_ToVoid - Cast to void.
1587    CK_ToVoid,
1588
1589    /// CK_VectorSplat - Casting from an integer/floating type to an extended
1590    /// vector type with the same element type as the src type. Splats the
1591    /// src expression into the destination expression.
1592    CK_VectorSplat,
1593
1594    /// CK_IntegralCast - Casting between integral types of different size.
1595    CK_IntegralCast,
1596
1597    /// CK_IntegralToFloating - Integral to floating point.
1598    CK_IntegralToFloating,
1599
1600    /// CK_FloatingToIntegral - Floating point to integral.
1601    CK_FloatingToIntegral,
1602
1603    /// CK_FloatingCast - Casting between floating types of different size.
1604    CK_FloatingCast,
1605
1606    /// CK_MemberPointerToBoolean - Member pointer to boolean
1607    CK_MemberPointerToBoolean,
1608
1609    /// CK_AnyPointerToObjCPointerCast - Casting any pointer to objective-c
1610    /// pointer
1611    CK_AnyPointerToObjCPointerCast,
1612    /// CK_AnyPointerToBlockPointerCast - Casting any pointer to block
1613    /// pointer
1614    CK_AnyPointerToBlockPointerCast
1615
1616  };
1617
1618private:
1619  CastKind Kind;
1620  Stmt *Op;
1621protected:
1622  CastExpr(StmtClass SC, QualType ty, const CastKind kind, Expr *op) :
1623    Expr(SC, ty,
1624         // Cast expressions are type-dependent if the type is
1625         // dependent (C++ [temp.dep.expr]p3).
1626         ty->isDependentType(),
1627         // Cast expressions are value-dependent if the type is
1628         // dependent or if the subexpression is value-dependent.
1629         ty->isDependentType() || (op && op->isValueDependent())),
1630    Kind(kind), Op(op) {}
1631
1632  /// \brief Construct an empty cast.
1633  CastExpr(StmtClass SC, EmptyShell Empty)
1634    : Expr(SC, Empty) { }
1635
1636public:
1637  CastKind getCastKind() const { return Kind; }
1638  void setCastKind(CastKind K) { Kind = K; }
1639  const char *getCastKindName() const;
1640
1641  Expr *getSubExpr() { return cast<Expr>(Op); }
1642  const Expr *getSubExpr() const { return cast<Expr>(Op); }
1643  void setSubExpr(Expr *E) { Op = E; }
1644
1645  /// \brief Retrieve the cast subexpression as it was written in the source
1646  /// code, looking through any implicit casts or other intermediate nodes
1647  /// introduced by semantic analysis.
1648  Expr *getSubExprAsWritten();
1649  const Expr *getSubExprAsWritten() const {
1650    return const_cast<CastExpr *>(this)->getSubExprAsWritten();
1651  }
1652
1653  static bool classof(const Stmt *T) {
1654    StmtClass SC = T->getStmtClass();
1655    if (SC >= CXXNamedCastExprClass && SC <= CXXFunctionalCastExprClass)
1656      return true;
1657
1658    if (SC >= ImplicitCastExprClass && SC <= CStyleCastExprClass)
1659      return true;
1660
1661    return false;
1662  }
1663  static bool classof(const CastExpr *) { return true; }
1664
1665  // Iterators
1666  virtual child_iterator child_begin();
1667  virtual child_iterator child_end();
1668};
1669
1670/// ImplicitCastExpr - Allows us to explicitly represent implicit type
1671/// conversions, which have no direct representation in the original
1672/// source code. For example: converting T[]->T*, void f()->void
1673/// (*f)(), float->double, short->int, etc.
1674///
1675/// In C, implicit casts always produce rvalues. However, in C++, an
1676/// implicit cast whose result is being bound to a reference will be
1677/// an lvalue. For example:
1678///
1679/// @code
1680/// class Base { };
1681/// class Derived : public Base { };
1682/// void f(Derived d) {
1683///   Base& b = d; // initializer is an ImplicitCastExpr to an lvalue of type Base
1684/// }
1685/// @endcode
1686class ImplicitCastExpr : public CastExpr {
1687  /// LvalueCast - Whether this cast produces an lvalue.
1688  bool LvalueCast;
1689
1690public:
1691  ImplicitCastExpr(QualType ty, CastKind kind, Expr *op, bool Lvalue) :
1692    CastExpr(ImplicitCastExprClass, ty, kind, op), LvalueCast(Lvalue) { }
1693
1694  /// \brief Construct an empty implicit cast.
1695  explicit ImplicitCastExpr(EmptyShell Shell)
1696    : CastExpr(ImplicitCastExprClass, Shell) { }
1697
1698
1699  virtual SourceRange getSourceRange() const {
1700    return getSubExpr()->getSourceRange();
1701  }
1702
1703  /// isLvalueCast - Whether this cast produces an lvalue.
1704  bool isLvalueCast() const { return LvalueCast; }
1705
1706  /// setLvalueCast - Set whether this cast produces an lvalue.
1707  void setLvalueCast(bool Lvalue) { LvalueCast = Lvalue; }
1708
1709  static bool classof(const Stmt *T) {
1710    return T->getStmtClass() == ImplicitCastExprClass;
1711  }
1712  static bool classof(const ImplicitCastExpr *) { return true; }
1713};
1714
1715/// ExplicitCastExpr - An explicit cast written in the source
1716/// code.
1717///
1718/// This class is effectively an abstract class, because it provides
1719/// the basic representation of an explicitly-written cast without
1720/// specifying which kind of cast (C cast, functional cast, static
1721/// cast, etc.) was written; specific derived classes represent the
1722/// particular style of cast and its location information.
1723///
1724/// Unlike implicit casts, explicit cast nodes have two different
1725/// types: the type that was written into the source code, and the
1726/// actual type of the expression as determined by semantic
1727/// analysis. These types may differ slightly. For example, in C++ one
1728/// can cast to a reference type, which indicates that the resulting
1729/// expression will be an lvalue. The reference type, however, will
1730/// not be used as the type of the expression.
1731class ExplicitCastExpr : public CastExpr {
1732  /// TInfo - Source type info for the (written) type
1733  /// this expression is casting to.
1734  TypeSourceInfo *TInfo;
1735
1736protected:
1737  ExplicitCastExpr(StmtClass SC, QualType exprTy, CastKind kind,
1738                   Expr *op, TypeSourceInfo *writtenTy)
1739    : CastExpr(SC, exprTy, kind, op), TInfo(writtenTy) {}
1740
1741  /// \brief Construct an empty explicit cast.
1742  ExplicitCastExpr(StmtClass SC, EmptyShell Shell)
1743    : CastExpr(SC, Shell) { }
1744
1745public:
1746  /// getTypeInfoAsWritten - Returns the type source info for the type
1747  /// that this expression is casting to.
1748  TypeSourceInfo *getTypeInfoAsWritten() const { return TInfo; }
1749  void setTypeInfoAsWritten(TypeSourceInfo *writtenTy) { TInfo = writtenTy; }
1750
1751  /// getTypeAsWritten - Returns the type that this expression is
1752  /// casting to, as written in the source code.
1753  QualType getTypeAsWritten() const { return TInfo->getType(); }
1754
1755  static bool classof(const Stmt *T) {
1756    StmtClass SC = T->getStmtClass();
1757    if (SC >= CStyleCastExprClass && SC <= CStyleCastExprClass)
1758      return true;
1759    if (SC >= CXXNamedCastExprClass && SC <= CXXFunctionalCastExprClass)
1760      return true;
1761
1762    return false;
1763  }
1764  static bool classof(const ExplicitCastExpr *) { return true; }
1765};
1766
1767/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
1768/// cast in C++ (C++ [expr.cast]), which uses the syntax
1769/// (Type)expr. For example: @c (int)f.
1770class CStyleCastExpr : public ExplicitCastExpr {
1771  SourceLocation LPLoc; // the location of the left paren
1772  SourceLocation RPLoc; // the location of the right paren
1773public:
1774  CStyleCastExpr(QualType exprTy, CastKind kind, Expr *op,
1775                 TypeSourceInfo *writtenTy,
1776                 SourceLocation l, SourceLocation r) :
1777    ExplicitCastExpr(CStyleCastExprClass, exprTy, kind, op, writtenTy),
1778    LPLoc(l), RPLoc(r) {}
1779
1780  /// \brief Construct an empty C-style explicit cast.
1781  explicit CStyleCastExpr(EmptyShell Shell)
1782    : ExplicitCastExpr(CStyleCastExprClass, Shell) { }
1783
1784  SourceLocation getLParenLoc() const { return LPLoc; }
1785  void setLParenLoc(SourceLocation L) { LPLoc = L; }
1786
1787  SourceLocation getRParenLoc() const { return RPLoc; }
1788  void setRParenLoc(SourceLocation L) { RPLoc = L; }
1789
1790  virtual SourceRange getSourceRange() const {
1791    return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd());
1792  }
1793  static bool classof(const Stmt *T) {
1794    return T->getStmtClass() == CStyleCastExprClass;
1795  }
1796  static bool classof(const CStyleCastExpr *) { return true; }
1797};
1798
1799/// \brief A builtin binary operation expression such as "x + y" or "x <= y".
1800///
1801/// This expression node kind describes a builtin binary operation,
1802/// such as "x + y" for integer values "x" and "y". The operands will
1803/// already have been converted to appropriate types (e.g., by
1804/// performing promotions or conversions).
1805///
1806/// In C++, where operators may be overloaded, a different kind of
1807/// expression node (CXXOperatorCallExpr) is used to express the
1808/// invocation of an overloaded operator with operator syntax. Within
1809/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
1810/// used to store an expression "x + y" depends on the subexpressions
1811/// for x and y. If neither x or y is type-dependent, and the "+"
1812/// operator resolves to a built-in operation, BinaryOperator will be
1813/// used to express the computation (x and y may still be
1814/// value-dependent). If either x or y is type-dependent, or if the
1815/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
1816/// be used to express the computation.
1817class BinaryOperator : public Expr {
1818public:
1819  enum Opcode {
1820    // Operators listed in order of precedence.
1821    // Note that additions to this should also update the StmtVisitor class.
1822    PtrMemD, PtrMemI, // [C++ 5.5] Pointer-to-member operators.
1823    Mul, Div, Rem,    // [C99 6.5.5] Multiplicative operators.
1824    Add, Sub,         // [C99 6.5.6] Additive operators.
1825    Shl, Shr,         // [C99 6.5.7] Bitwise shift operators.
1826    LT, GT, LE, GE,   // [C99 6.5.8] Relational operators.
1827    EQ, NE,           // [C99 6.5.9] Equality operators.
1828    And,              // [C99 6.5.10] Bitwise AND operator.
1829    Xor,              // [C99 6.5.11] Bitwise XOR operator.
1830    Or,               // [C99 6.5.12] Bitwise OR operator.
1831    LAnd,             // [C99 6.5.13] Logical AND operator.
1832    LOr,              // [C99 6.5.14] Logical OR operator.
1833    Assign, MulAssign,// [C99 6.5.16] Assignment operators.
1834    DivAssign, RemAssign,
1835    AddAssign, SubAssign,
1836    ShlAssign, ShrAssign,
1837    AndAssign, XorAssign,
1838    OrAssign,
1839    Comma             // [C99 6.5.17] Comma operator.
1840  };
1841private:
1842  enum { LHS, RHS, END_EXPR };
1843  Stmt* SubExprs[END_EXPR];
1844  Opcode Opc;
1845  SourceLocation OpLoc;
1846public:
1847
1848  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
1849                 SourceLocation opLoc)
1850    : Expr(BinaryOperatorClass, ResTy,
1851           lhs->isTypeDependent() || rhs->isTypeDependent(),
1852           lhs->isValueDependent() || rhs->isValueDependent()),
1853      Opc(opc), OpLoc(opLoc) {
1854    SubExprs[LHS] = lhs;
1855    SubExprs[RHS] = rhs;
1856    assert(!isCompoundAssignmentOp() &&
1857           "Use ArithAssignBinaryOperator for compound assignments");
1858  }
1859
1860  /// \brief Construct an empty binary operator.
1861  explicit BinaryOperator(EmptyShell Empty)
1862    : Expr(BinaryOperatorClass, Empty), Opc(Comma) { }
1863
1864  SourceLocation getOperatorLoc() const { return OpLoc; }
1865  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
1866
1867  Opcode getOpcode() const { return Opc; }
1868  void setOpcode(Opcode O) { Opc = O; }
1869
1870  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1871  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1872  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1873  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1874
1875  virtual SourceRange getSourceRange() const {
1876    return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
1877  }
1878
1879  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1880  /// corresponds to, e.g. "<<=".
1881  static const char *getOpcodeStr(Opcode Op);
1882
1883  /// \brief Retrieve the binary opcode that corresponds to the given
1884  /// overloaded operator.
1885  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
1886
1887  /// \brief Retrieve the overloaded operator kind that corresponds to
1888  /// the given binary opcode.
1889  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
1890
1891  /// predicates to categorize the respective opcodes.
1892  bool isMultiplicativeOp() const { return Opc >= Mul && Opc <= Rem; }
1893  bool isAdditiveOp() const { return Opc == Add || Opc == Sub; }
1894  static bool isShiftOp(Opcode Opc) { return Opc == Shl || Opc == Shr; }
1895  bool isShiftOp() const { return isShiftOp(Opc); }
1896
1897  static bool isBitwiseOp(Opcode Opc) { return Opc >= And && Opc <= Or; }
1898  bool isBitwiseOp() const { return isBitwiseOp(Opc); }
1899
1900  static bool isRelationalOp(Opcode Opc) { return Opc >= LT && Opc <= GE; }
1901  bool isRelationalOp() const { return isRelationalOp(Opc); }
1902
1903  static bool isEqualityOp(Opcode Opc) { return Opc == EQ || Opc == NE; }
1904  bool isEqualityOp() const { return isEqualityOp(Opc); }
1905
1906  static bool isComparisonOp(Opcode Opc) { return Opc >= LT && Opc <= NE; }
1907  bool isComparisonOp() const { return isComparisonOp(Opc); }
1908
1909  static bool isLogicalOp(Opcode Opc) { return Opc == LAnd || Opc == LOr; }
1910  bool isLogicalOp() const { return isLogicalOp(Opc); }
1911
1912  bool isAssignmentOp() const { return Opc >= Assign && Opc <= OrAssign; }
1913  bool isCompoundAssignmentOp() const { return Opc > Assign && Opc <= OrAssign;}
1914  bool isShiftAssignOp() const { return Opc == ShlAssign || Opc == ShrAssign; }
1915
1916  static bool classof(const Stmt *S) {
1917    return S->getStmtClass() == BinaryOperatorClass ||
1918           S->getStmtClass() == CompoundAssignOperatorClass;
1919  }
1920  static bool classof(const BinaryOperator *) { return true; }
1921
1922  // Iterators
1923  virtual child_iterator child_begin();
1924  virtual child_iterator child_end();
1925
1926protected:
1927  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
1928                 SourceLocation opLoc, bool dead)
1929    : Expr(CompoundAssignOperatorClass, ResTy,
1930           lhs->isTypeDependent() || rhs->isTypeDependent(),
1931           lhs->isValueDependent() || rhs->isValueDependent()),
1932      Opc(opc), OpLoc(opLoc) {
1933    SubExprs[LHS] = lhs;
1934    SubExprs[RHS] = rhs;
1935  }
1936
1937  BinaryOperator(StmtClass SC, EmptyShell Empty)
1938    : Expr(SC, Empty), Opc(MulAssign) { }
1939};
1940
1941/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
1942/// track of the type the operation is performed in.  Due to the semantics of
1943/// these operators, the operands are promoted, the aritmetic performed, an
1944/// implicit conversion back to the result type done, then the assignment takes
1945/// place.  This captures the intermediate type which the computation is done
1946/// in.
1947class CompoundAssignOperator : public BinaryOperator {
1948  QualType ComputationLHSType;
1949  QualType ComputationResultType;
1950public:
1951  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc,
1952                         QualType ResType, QualType CompLHSType,
1953                         QualType CompResultType,
1954                         SourceLocation OpLoc)
1955    : BinaryOperator(lhs, rhs, opc, ResType, OpLoc, true),
1956      ComputationLHSType(CompLHSType),
1957      ComputationResultType(CompResultType) {
1958    assert(isCompoundAssignmentOp() &&
1959           "Only should be used for compound assignments");
1960  }
1961
1962  /// \brief Build an empty compound assignment operator expression.
1963  explicit CompoundAssignOperator(EmptyShell Empty)
1964    : BinaryOperator(CompoundAssignOperatorClass, Empty) { }
1965
1966  // The two computation types are the type the LHS is converted
1967  // to for the computation and the type of the result; the two are
1968  // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
1969  QualType getComputationLHSType() const { return ComputationLHSType; }
1970  void setComputationLHSType(QualType T) { ComputationLHSType = T; }
1971
1972  QualType getComputationResultType() const { return ComputationResultType; }
1973  void setComputationResultType(QualType T) { ComputationResultType = T; }
1974
1975  static bool classof(const CompoundAssignOperator *) { return true; }
1976  static bool classof(const Stmt *S) {
1977    return S->getStmtClass() == CompoundAssignOperatorClass;
1978  }
1979};
1980
1981/// ConditionalOperator - The ?: operator.  Note that LHS may be null when the
1982/// GNU "missing LHS" extension is in use.
1983///
1984class ConditionalOperator : public Expr {
1985  enum { COND, LHS, RHS, END_EXPR };
1986  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
1987  SourceLocation QuestionLoc, ColonLoc;
1988public:
1989  ConditionalOperator(Expr *cond, SourceLocation QLoc, Expr *lhs,
1990                      SourceLocation CLoc, Expr *rhs, QualType t)
1991    : Expr(ConditionalOperatorClass, t,
1992           // FIXME: the type of the conditional operator doesn't
1993           // depend on the type of the conditional, but the standard
1994           // seems to imply that it could. File a bug!
1995           ((lhs && lhs->isTypeDependent()) || (rhs && rhs->isTypeDependent())),
1996           (cond->isValueDependent() ||
1997            (lhs && lhs->isValueDependent()) ||
1998            (rhs && rhs->isValueDependent()))),
1999      QuestionLoc(QLoc),
2000      ColonLoc(CLoc) {
2001    SubExprs[COND] = cond;
2002    SubExprs[LHS] = lhs;
2003    SubExprs[RHS] = rhs;
2004  }
2005
2006  /// \brief Build an empty conditional operator.
2007  explicit ConditionalOperator(EmptyShell Empty)
2008    : Expr(ConditionalOperatorClass, Empty) { }
2009
2010  // getCond - Return the expression representing the condition for
2011  //  the ?: operator.
2012  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
2013  void setCond(Expr *E) { SubExprs[COND] = E; }
2014
2015  // getTrueExpr - Return the subexpression representing the value of the ?:
2016  //  expression if the condition evaluates to true.  In most cases this value
2017  //  will be the same as getLHS() except a GCC extension allows the left
2018  //  subexpression to be omitted, and instead of the condition be returned.
2019  //  e.g: x ?: y is shorthand for x ? x : y, except that the expression "x"
2020  //  is only evaluated once.
2021  Expr *getTrueExpr() const {
2022    return cast<Expr>(SubExprs[LHS] ? SubExprs[LHS] : SubExprs[COND]);
2023  }
2024
2025  // getTrueExpr - Return the subexpression representing the value of the ?:
2026  // expression if the condition evaluates to false. This is the same as getRHS.
2027  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
2028
2029  Expr *getLHS() const { return cast_or_null<Expr>(SubExprs[LHS]); }
2030  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2031
2032  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2033  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2034
2035  SourceLocation getQuestionLoc() const { return QuestionLoc; }
2036  void setQuestionLoc(SourceLocation L) { QuestionLoc = L; }
2037
2038  SourceLocation getColonLoc() const { return ColonLoc; }
2039  void setColonLoc(SourceLocation L) { ColonLoc = L; }
2040
2041  virtual SourceRange getSourceRange() const {
2042    return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
2043  }
2044  static bool classof(const Stmt *T) {
2045    return T->getStmtClass() == ConditionalOperatorClass;
2046  }
2047  static bool classof(const ConditionalOperator *) { return true; }
2048
2049  // Iterators
2050  virtual child_iterator child_begin();
2051  virtual child_iterator child_end();
2052};
2053
2054/// AddrLabelExpr - The GNU address of label extension, representing &&label.
2055class AddrLabelExpr : public Expr {
2056  SourceLocation AmpAmpLoc, LabelLoc;
2057  LabelStmt *Label;
2058public:
2059  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelStmt *L,
2060                QualType t)
2061    : Expr(AddrLabelExprClass, t, false, false),
2062      AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
2063
2064  /// \brief Build an empty address of a label expression.
2065  explicit AddrLabelExpr(EmptyShell Empty)
2066    : Expr(AddrLabelExprClass, Empty) { }
2067
2068  SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
2069  void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
2070  SourceLocation getLabelLoc() const { return LabelLoc; }
2071  void setLabelLoc(SourceLocation L) { LabelLoc = L; }
2072
2073  virtual SourceRange getSourceRange() const {
2074    return SourceRange(AmpAmpLoc, LabelLoc);
2075  }
2076
2077  LabelStmt *getLabel() const { return Label; }
2078  void setLabel(LabelStmt *S) { Label = S; }
2079
2080  static bool classof(const Stmt *T) {
2081    return T->getStmtClass() == AddrLabelExprClass;
2082  }
2083  static bool classof(const AddrLabelExpr *) { return true; }
2084
2085  // Iterators
2086  virtual child_iterator child_begin();
2087  virtual child_iterator child_end();
2088};
2089
2090/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
2091/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
2092/// takes the value of the last subexpression.
2093class StmtExpr : public Expr {
2094  Stmt *SubStmt;
2095  SourceLocation LParenLoc, RParenLoc;
2096public:
2097  // FIXME: Does type-dependence need to be computed differently?
2098  StmtExpr(CompoundStmt *substmt, QualType T,
2099           SourceLocation lp, SourceLocation rp) :
2100    Expr(StmtExprClass, T, T->isDependentType(), false),
2101    SubStmt(substmt), LParenLoc(lp), RParenLoc(rp) { }
2102
2103  /// \brief Build an empty statement expression.
2104  explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
2105
2106  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
2107  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
2108  void setSubStmt(CompoundStmt *S) { SubStmt = S; }
2109
2110  virtual SourceRange getSourceRange() const {
2111    return SourceRange(LParenLoc, RParenLoc);
2112  }
2113
2114  SourceLocation getLParenLoc() const { return LParenLoc; }
2115  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2116  SourceLocation getRParenLoc() const { return RParenLoc; }
2117  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2118
2119  static bool classof(const Stmt *T) {
2120    return T->getStmtClass() == StmtExprClass;
2121  }
2122  static bool classof(const StmtExpr *) { return true; }
2123
2124  // Iterators
2125  virtual child_iterator child_begin();
2126  virtual child_iterator child_end();
2127};
2128
2129/// TypesCompatibleExpr - GNU builtin-in function __builtin_types_compatible_p.
2130/// This AST node represents a function that returns 1 if two *types* (not
2131/// expressions) are compatible. The result of this built-in function can be
2132/// used in integer constant expressions.
2133class TypesCompatibleExpr : public Expr {
2134  QualType Type1;
2135  QualType Type2;
2136  SourceLocation BuiltinLoc, RParenLoc;
2137public:
2138  TypesCompatibleExpr(QualType ReturnType, SourceLocation BLoc,
2139                      QualType t1, QualType t2, SourceLocation RP) :
2140    Expr(TypesCompatibleExprClass, ReturnType, false, false),
2141    Type1(t1), Type2(t2), BuiltinLoc(BLoc), RParenLoc(RP) {}
2142
2143  /// \brief Build an empty __builtin_type_compatible_p expression.
2144  explicit TypesCompatibleExpr(EmptyShell Empty)
2145    : Expr(TypesCompatibleExprClass, Empty) { }
2146
2147  QualType getArgType1() const { return Type1; }
2148  void setArgType1(QualType T) { Type1 = T; }
2149  QualType getArgType2() const { return Type2; }
2150  void setArgType2(QualType T) { Type2 = T; }
2151
2152  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2153  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2154
2155  SourceLocation getRParenLoc() const { return RParenLoc; }
2156  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2157
2158  virtual SourceRange getSourceRange() const {
2159    return SourceRange(BuiltinLoc, RParenLoc);
2160  }
2161  static bool classof(const Stmt *T) {
2162    return T->getStmtClass() == TypesCompatibleExprClass;
2163  }
2164  static bool classof(const TypesCompatibleExpr *) { return true; }
2165
2166  // Iterators
2167  virtual child_iterator child_begin();
2168  virtual child_iterator child_end();
2169};
2170
2171/// ShuffleVectorExpr - clang-specific builtin-in function
2172/// __builtin_shufflevector.
2173/// This AST node represents a operator that does a constant
2174/// shuffle, similar to LLVM's shufflevector instruction. It takes
2175/// two vectors and a variable number of constant indices,
2176/// and returns the appropriately shuffled vector.
2177class ShuffleVectorExpr : public Expr {
2178  SourceLocation BuiltinLoc, RParenLoc;
2179
2180  // SubExprs - the list of values passed to the __builtin_shufflevector
2181  // function. The first two are vectors, and the rest are constant
2182  // indices.  The number of values in this list is always
2183  // 2+the number of indices in the vector type.
2184  Stmt **SubExprs;
2185  unsigned NumExprs;
2186
2187protected:
2188  virtual void DoDestroy(ASTContext &C);
2189
2190public:
2191  // FIXME: Can a shufflevector be value-dependent?  Does type-dependence need
2192  // to be computed differently?
2193  ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr,
2194                    QualType Type, SourceLocation BLoc,
2195                    SourceLocation RP) :
2196    Expr(ShuffleVectorExprClass, Type, Type->isDependentType(), false),
2197    BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(nexpr) {
2198
2199    SubExprs = new (C) Stmt*[nexpr];
2200    for (unsigned i = 0; i < nexpr; i++)
2201      SubExprs[i] = args[i];
2202  }
2203
2204  /// \brief Build an empty vector-shuffle expression.
2205  explicit ShuffleVectorExpr(EmptyShell Empty)
2206    : Expr(ShuffleVectorExprClass, Empty), SubExprs(0) { }
2207
2208  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2209  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2210
2211  SourceLocation getRParenLoc() const { return RParenLoc; }
2212  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2213
2214  virtual SourceRange getSourceRange() const {
2215    return SourceRange(BuiltinLoc, RParenLoc);
2216  }
2217  static bool classof(const Stmt *T) {
2218    return T->getStmtClass() == ShuffleVectorExprClass;
2219  }
2220  static bool classof(const ShuffleVectorExpr *) { return true; }
2221
2222  ~ShuffleVectorExpr() {}
2223
2224  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
2225  /// constant expression, the actual arguments passed in, and the function
2226  /// pointers.
2227  unsigned getNumSubExprs() const { return NumExprs; }
2228
2229  /// getExpr - Return the Expr at the specified index.
2230  Expr *getExpr(unsigned Index) {
2231    assert((Index < NumExprs) && "Arg access out of range!");
2232    return cast<Expr>(SubExprs[Index]);
2233  }
2234  const Expr *getExpr(unsigned Index) const {
2235    assert((Index < NumExprs) && "Arg access out of range!");
2236    return cast<Expr>(SubExprs[Index]);
2237  }
2238
2239  void setExprs(ASTContext &C, Expr ** Exprs, unsigned NumExprs);
2240
2241  unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) {
2242    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
2243    return getExpr(N+2)->EvaluateAsInt(Ctx).getZExtValue();
2244  }
2245
2246  // Iterators
2247  virtual child_iterator child_begin();
2248  virtual child_iterator child_end();
2249};
2250
2251/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
2252/// This AST node is similar to the conditional operator (?:) in C, with
2253/// the following exceptions:
2254/// - the test expression must be a integer constant expression.
2255/// - the expression returned acts like the chosen subexpression in every
2256///   visible way: the type is the same as that of the chosen subexpression,
2257///   and all predicates (whether it's an l-value, whether it's an integer
2258///   constant expression, etc.) return the same result as for the chosen
2259///   sub-expression.
2260class ChooseExpr : public Expr {
2261  enum { COND, LHS, RHS, END_EXPR };
2262  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
2263  SourceLocation BuiltinLoc, RParenLoc;
2264public:
2265  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs, QualType t,
2266             SourceLocation RP, bool TypeDependent, bool ValueDependent)
2267    : Expr(ChooseExprClass, t, TypeDependent, ValueDependent),
2268      BuiltinLoc(BLoc), RParenLoc(RP) {
2269      SubExprs[COND] = cond;
2270      SubExprs[LHS] = lhs;
2271      SubExprs[RHS] = rhs;
2272    }
2273
2274  /// \brief Build an empty __builtin_choose_expr.
2275  explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
2276
2277  /// isConditionTrue - Return whether the condition is true (i.e. not
2278  /// equal to zero).
2279  bool isConditionTrue(ASTContext &C) const;
2280
2281  /// getChosenSubExpr - Return the subexpression chosen according to the
2282  /// condition.
2283  Expr *getChosenSubExpr(ASTContext &C) const {
2284    return isConditionTrue(C) ? getLHS() : getRHS();
2285  }
2286
2287  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
2288  void setCond(Expr *E) { SubExprs[COND] = E; }
2289  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2290  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2291  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2292  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2293
2294  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2295  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2296
2297  SourceLocation getRParenLoc() const { return RParenLoc; }
2298  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2299
2300  virtual SourceRange getSourceRange() const {
2301    return SourceRange(BuiltinLoc, RParenLoc);
2302  }
2303  static bool classof(const Stmt *T) {
2304    return T->getStmtClass() == ChooseExprClass;
2305  }
2306  static bool classof(const ChooseExpr *) { return true; }
2307
2308  // Iterators
2309  virtual child_iterator child_begin();
2310  virtual child_iterator child_end();
2311};
2312
2313/// GNUNullExpr - Implements the GNU __null extension, which is a name
2314/// for a null pointer constant that has integral type (e.g., int or
2315/// long) and is the same size and alignment as a pointer. The __null
2316/// extension is typically only used by system headers, which define
2317/// NULL as __null in C++ rather than using 0 (which is an integer
2318/// that may not match the size of a pointer).
2319class GNUNullExpr : public Expr {
2320  /// TokenLoc - The location of the __null keyword.
2321  SourceLocation TokenLoc;
2322
2323public:
2324  GNUNullExpr(QualType Ty, SourceLocation Loc)
2325    : Expr(GNUNullExprClass, Ty, false, false), TokenLoc(Loc) { }
2326
2327  /// \brief Build an empty GNU __null expression.
2328  explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
2329
2330  /// getTokenLocation - The location of the __null token.
2331  SourceLocation getTokenLocation() const { return TokenLoc; }
2332  void setTokenLocation(SourceLocation L) { TokenLoc = L; }
2333
2334  virtual SourceRange getSourceRange() const {
2335    return SourceRange(TokenLoc);
2336  }
2337  static bool classof(const Stmt *T) {
2338    return T->getStmtClass() == GNUNullExprClass;
2339  }
2340  static bool classof(const GNUNullExpr *) { return true; }
2341
2342  // Iterators
2343  virtual child_iterator child_begin();
2344  virtual child_iterator child_end();
2345};
2346
2347/// VAArgExpr, used for the builtin function __builtin_va_start.
2348class VAArgExpr : public Expr {
2349  Stmt *Val;
2350  SourceLocation BuiltinLoc, RParenLoc;
2351public:
2352  VAArgExpr(SourceLocation BLoc, Expr* e, QualType t, SourceLocation RPLoc)
2353    : Expr(VAArgExprClass, t, t->isDependentType(), false),
2354      Val(e),
2355      BuiltinLoc(BLoc),
2356      RParenLoc(RPLoc) { }
2357
2358  /// \brief Create an empty __builtin_va_start expression.
2359  explicit VAArgExpr(EmptyShell Empty) : Expr(VAArgExprClass, Empty) { }
2360
2361  const Expr *getSubExpr() const { return cast<Expr>(Val); }
2362  Expr *getSubExpr() { return cast<Expr>(Val); }
2363  void setSubExpr(Expr *E) { Val = E; }
2364
2365  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2366  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2367
2368  SourceLocation getRParenLoc() const { return RParenLoc; }
2369  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2370
2371  virtual SourceRange getSourceRange() const {
2372    return SourceRange(BuiltinLoc, RParenLoc);
2373  }
2374  static bool classof(const Stmt *T) {
2375    return T->getStmtClass() == VAArgExprClass;
2376  }
2377  static bool classof(const VAArgExpr *) { return true; }
2378
2379  // Iterators
2380  virtual child_iterator child_begin();
2381  virtual child_iterator child_end();
2382};
2383
2384/// @brief Describes an C or C++ initializer list.
2385///
2386/// InitListExpr describes an initializer list, which can be used to
2387/// initialize objects of different types, including
2388/// struct/class/union types, arrays, and vectors. For example:
2389///
2390/// @code
2391/// struct foo x = { 1, { 2, 3 } };
2392/// @endcode
2393///
2394/// Prior to semantic analysis, an initializer list will represent the
2395/// initializer list as written by the user, but will have the
2396/// placeholder type "void". This initializer list is called the
2397/// syntactic form of the initializer, and may contain C99 designated
2398/// initializers (represented as DesignatedInitExprs), initializations
2399/// of subobject members without explicit braces, and so on. Clients
2400/// interested in the original syntax of the initializer list should
2401/// use the syntactic form of the initializer list.
2402///
2403/// After semantic analysis, the initializer list will represent the
2404/// semantic form of the initializer, where the initializations of all
2405/// subobjects are made explicit with nested InitListExpr nodes and
2406/// C99 designators have been eliminated by placing the designated
2407/// initializations into the subobject they initialize. Additionally,
2408/// any "holes" in the initialization, where no initializer has been
2409/// specified for a particular subobject, will be replaced with
2410/// implicitly-generated ImplicitValueInitExpr expressions that
2411/// value-initialize the subobjects. Note, however, that the
2412/// initializer lists may still have fewer initializers than there are
2413/// elements to initialize within the object.
2414///
2415/// Given the semantic form of the initializer list, one can retrieve
2416/// the original syntactic form of that initializer list (if it
2417/// exists) using getSyntacticForm(). Since many initializer lists
2418/// have the same syntactic and semantic forms, getSyntacticForm() may
2419/// return NULL, indicating that the current initializer list also
2420/// serves as its syntactic form.
2421class InitListExpr : public Expr {
2422  // FIXME: Eliminate this vector in favor of ASTContext allocation
2423  std::vector<Stmt *> InitExprs;
2424  SourceLocation LBraceLoc, RBraceLoc;
2425
2426  /// Contains the initializer list that describes the syntactic form
2427  /// written in the source code.
2428  InitListExpr *SyntacticForm;
2429
2430  /// If this initializer list initializes a union, specifies which
2431  /// field within the union will be initialized.
2432  FieldDecl *UnionFieldInit;
2433
2434  /// Whether this initializer list originally had a GNU array-range
2435  /// designator in it. This is a temporary marker used by CodeGen.
2436  bool HadArrayRangeDesignator;
2437
2438public:
2439  InitListExpr(SourceLocation lbraceloc, Expr **initexprs, unsigned numinits,
2440               SourceLocation rbraceloc);
2441
2442  /// \brief Build an empty initializer list.
2443  explicit InitListExpr(EmptyShell Empty) : Expr(InitListExprClass, Empty) { }
2444
2445  unsigned getNumInits() const { return InitExprs.size(); }
2446
2447  const Expr* getInit(unsigned Init) const {
2448    assert(Init < getNumInits() && "Initializer access out of range!");
2449    return cast_or_null<Expr>(InitExprs[Init]);
2450  }
2451
2452  Expr* getInit(unsigned Init) {
2453    assert(Init < getNumInits() && "Initializer access out of range!");
2454    return cast_or_null<Expr>(InitExprs[Init]);
2455  }
2456
2457  void setInit(unsigned Init, Expr *expr) {
2458    assert(Init < getNumInits() && "Initializer access out of range!");
2459    InitExprs[Init] = expr;
2460  }
2461
2462  /// \brief Reserve space for some number of initializers.
2463  void reserveInits(unsigned NumInits);
2464
2465  /// @brief Specify the number of initializers
2466  ///
2467  /// If there are more than @p NumInits initializers, the remaining
2468  /// initializers will be destroyed. If there are fewer than @p
2469  /// NumInits initializers, NULL expressions will be added for the
2470  /// unknown initializers.
2471  void resizeInits(ASTContext &Context, unsigned NumInits);
2472
2473  /// @brief Updates the initializer at index @p Init with the new
2474  /// expression @p expr, and returns the old expression at that
2475  /// location.
2476  ///
2477  /// When @p Init is out of range for this initializer list, the
2478  /// initializer list will be extended with NULL expressions to
2479  /// accomodate the new entry.
2480  Expr *updateInit(unsigned Init, Expr *expr);
2481
2482  /// \brief If this initializes a union, specifies which field in the
2483  /// union to initialize.
2484  ///
2485  /// Typically, this field is the first named field within the
2486  /// union. However, a designated initializer can specify the
2487  /// initialization of a different field within the union.
2488  FieldDecl *getInitializedFieldInUnion() { return UnionFieldInit; }
2489  void setInitializedFieldInUnion(FieldDecl *FD) { UnionFieldInit = FD; }
2490
2491  // Explicit InitListExpr's originate from source code (and have valid source
2492  // locations). Implicit InitListExpr's are created by the semantic analyzer.
2493  bool isExplicit() {
2494    return LBraceLoc.isValid() && RBraceLoc.isValid();
2495  }
2496
2497  SourceLocation getLBraceLoc() const { return LBraceLoc; }
2498  void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
2499  SourceLocation getRBraceLoc() const { return RBraceLoc; }
2500  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
2501
2502  /// @brief Retrieve the initializer list that describes the
2503  /// syntactic form of the initializer.
2504  ///
2505  ///
2506  InitListExpr *getSyntacticForm() const { return SyntacticForm; }
2507  void setSyntacticForm(InitListExpr *Init) { SyntacticForm = Init; }
2508
2509  bool hadArrayRangeDesignator() const { return HadArrayRangeDesignator; }
2510  void sawArrayRangeDesignator(bool ARD = true) {
2511    HadArrayRangeDesignator = ARD;
2512  }
2513
2514  virtual SourceRange getSourceRange() const {
2515    return SourceRange(LBraceLoc, RBraceLoc);
2516  }
2517  static bool classof(const Stmt *T) {
2518    return T->getStmtClass() == InitListExprClass;
2519  }
2520  static bool classof(const InitListExpr *) { return true; }
2521
2522  // Iterators
2523  virtual child_iterator child_begin();
2524  virtual child_iterator child_end();
2525
2526  typedef std::vector<Stmt *>::iterator iterator;
2527  typedef std::vector<Stmt *>::reverse_iterator reverse_iterator;
2528
2529  iterator begin() { return InitExprs.begin(); }
2530  iterator end() { return InitExprs.end(); }
2531  reverse_iterator rbegin() { return InitExprs.rbegin(); }
2532  reverse_iterator rend() { return InitExprs.rend(); }
2533};
2534
2535/// @brief Represents a C99 designated initializer expression.
2536///
2537/// A designated initializer expression (C99 6.7.8) contains one or
2538/// more designators (which can be field designators, array
2539/// designators, or GNU array-range designators) followed by an
2540/// expression that initializes the field or element(s) that the
2541/// designators refer to. For example, given:
2542///
2543/// @code
2544/// struct point {
2545///   double x;
2546///   double y;
2547/// };
2548/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
2549/// @endcode
2550///
2551/// The InitListExpr contains three DesignatedInitExprs, the first of
2552/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
2553/// designators, one array designator for @c [2] followed by one field
2554/// designator for @c .y. The initalization expression will be 1.0.
2555class DesignatedInitExpr : public Expr {
2556public:
2557  /// \brief Forward declaration of the Designator class.
2558  class Designator;
2559
2560private:
2561  /// The location of the '=' or ':' prior to the actual initializer
2562  /// expression.
2563  SourceLocation EqualOrColonLoc;
2564
2565  /// Whether this designated initializer used the GNU deprecated
2566  /// syntax rather than the C99 '=' syntax.
2567  bool GNUSyntax : 1;
2568
2569  /// The number of designators in this initializer expression.
2570  unsigned NumDesignators : 15;
2571
2572  /// \brief The designators in this designated initialization
2573  /// expression.
2574  Designator *Designators;
2575
2576  /// The number of subexpressions of this initializer expression,
2577  /// which contains both the initializer and any additional
2578  /// expressions used by array and array-range designators.
2579  unsigned NumSubExprs : 16;
2580
2581
2582  DesignatedInitExpr(ASTContext &C, QualType Ty, unsigned NumDesignators,
2583                     const Designator *Designators,
2584                     SourceLocation EqualOrColonLoc, bool GNUSyntax,
2585                     Expr **IndexExprs, unsigned NumIndexExprs,
2586                     Expr *Init);
2587
2588  explicit DesignatedInitExpr(unsigned NumSubExprs)
2589    : Expr(DesignatedInitExprClass, EmptyShell()),
2590      NumDesignators(0), Designators(0), NumSubExprs(NumSubExprs) { }
2591
2592protected:
2593  virtual void DoDestroy(ASTContext &C);
2594
2595  void DestroyDesignators(ASTContext &C);
2596
2597public:
2598  /// A field designator, e.g., ".x".
2599  struct FieldDesignator {
2600    /// Refers to the field that is being initialized. The low bit
2601    /// of this field determines whether this is actually a pointer
2602    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
2603    /// initially constructed, a field designator will store an
2604    /// IdentifierInfo*. After semantic analysis has resolved that
2605    /// name, the field designator will instead store a FieldDecl*.
2606    uintptr_t NameOrField;
2607
2608    /// The location of the '.' in the designated initializer.
2609    unsigned DotLoc;
2610
2611    /// The location of the field name in the designated initializer.
2612    unsigned FieldLoc;
2613  };
2614
2615  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
2616  struct ArrayOrRangeDesignator {
2617    /// Location of the first index expression within the designated
2618    /// initializer expression's list of subexpressions.
2619    unsigned Index;
2620    /// The location of the '[' starting the array range designator.
2621    unsigned LBracketLoc;
2622    /// The location of the ellipsis separating the start and end
2623    /// indices. Only valid for GNU array-range designators.
2624    unsigned EllipsisLoc;
2625    /// The location of the ']' terminating the array range designator.
2626    unsigned RBracketLoc;
2627  };
2628
2629  /// @brief Represents a single C99 designator.
2630  ///
2631  /// @todo This class is infuriatingly similar to clang::Designator,
2632  /// but minor differences (storing indices vs. storing pointers)
2633  /// keep us from reusing it. Try harder, later, to rectify these
2634  /// differences.
2635  class Designator {
2636    /// @brief The kind of designator this describes.
2637    enum {
2638      FieldDesignator,
2639      ArrayDesignator,
2640      ArrayRangeDesignator
2641    } Kind;
2642
2643    union {
2644      /// A field designator, e.g., ".x".
2645      struct FieldDesignator Field;
2646      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
2647      struct ArrayOrRangeDesignator ArrayOrRange;
2648    };
2649    friend class DesignatedInitExpr;
2650
2651  public:
2652    Designator() {}
2653
2654    /// @brief Initializes a field designator.
2655    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
2656               SourceLocation FieldLoc)
2657      : Kind(FieldDesignator) {
2658      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
2659      Field.DotLoc = DotLoc.getRawEncoding();
2660      Field.FieldLoc = FieldLoc.getRawEncoding();
2661    }
2662
2663    /// @brief Initializes an array designator.
2664    Designator(unsigned Index, SourceLocation LBracketLoc,
2665               SourceLocation RBracketLoc)
2666      : Kind(ArrayDesignator) {
2667      ArrayOrRange.Index = Index;
2668      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
2669      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
2670      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
2671    }
2672
2673    /// @brief Initializes a GNU array-range designator.
2674    Designator(unsigned Index, SourceLocation LBracketLoc,
2675               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
2676      : Kind(ArrayRangeDesignator) {
2677      ArrayOrRange.Index = Index;
2678      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
2679      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
2680      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
2681    }
2682
2683    bool isFieldDesignator() const { return Kind == FieldDesignator; }
2684    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
2685    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
2686
2687    IdentifierInfo * getFieldName();
2688
2689    FieldDecl *getField() {
2690      assert(Kind == FieldDesignator && "Only valid on a field designator");
2691      if (Field.NameOrField & 0x01)
2692        return 0;
2693      else
2694        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
2695    }
2696
2697    void setField(FieldDecl *FD) {
2698      assert(Kind == FieldDesignator && "Only valid on a field designator");
2699      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
2700    }
2701
2702    SourceLocation getDotLoc() const {
2703      assert(Kind == FieldDesignator && "Only valid on a field designator");
2704      return SourceLocation::getFromRawEncoding(Field.DotLoc);
2705    }
2706
2707    SourceLocation getFieldLoc() const {
2708      assert(Kind == FieldDesignator && "Only valid on a field designator");
2709      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
2710    }
2711
2712    SourceLocation getLBracketLoc() const {
2713      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
2714             "Only valid on an array or array-range designator");
2715      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
2716    }
2717
2718    SourceLocation getRBracketLoc() const {
2719      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
2720             "Only valid on an array or array-range designator");
2721      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
2722    }
2723
2724    SourceLocation getEllipsisLoc() const {
2725      assert(Kind == ArrayRangeDesignator &&
2726             "Only valid on an array-range designator");
2727      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
2728    }
2729
2730    unsigned getFirstExprIndex() const {
2731      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
2732             "Only valid on an array or array-range designator");
2733      return ArrayOrRange.Index;
2734    }
2735
2736    SourceLocation getStartLocation() const {
2737      if (Kind == FieldDesignator)
2738        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
2739      else
2740        return getLBracketLoc();
2741    }
2742  };
2743
2744  static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators,
2745                                    unsigned NumDesignators,
2746                                    Expr **IndexExprs, unsigned NumIndexExprs,
2747                                    SourceLocation EqualOrColonLoc,
2748                                    bool GNUSyntax, Expr *Init);
2749
2750  static DesignatedInitExpr *CreateEmpty(ASTContext &C, unsigned NumIndexExprs);
2751
2752  /// @brief Returns the number of designators in this initializer.
2753  unsigned size() const { return NumDesignators; }
2754
2755  // Iterator access to the designators.
2756  typedef Designator* designators_iterator;
2757  designators_iterator designators_begin() { return Designators; }
2758  designators_iterator designators_end() {
2759    return Designators + NumDesignators;
2760  }
2761
2762  Designator *getDesignator(unsigned Idx) { return &designators_begin()[Idx]; }
2763
2764  void setDesignators(ASTContext &C, const Designator *Desigs,
2765                      unsigned NumDesigs);
2766
2767  Expr *getArrayIndex(const Designator& D);
2768  Expr *getArrayRangeStart(const Designator& D);
2769  Expr *getArrayRangeEnd(const Designator& D);
2770
2771  /// @brief Retrieve the location of the '=' that precedes the
2772  /// initializer value itself, if present.
2773  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
2774  void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
2775
2776  /// @brief Determines whether this designated initializer used the
2777  /// deprecated GNU syntax for designated initializers.
2778  bool usesGNUSyntax() const { return GNUSyntax; }
2779  void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
2780
2781  /// @brief Retrieve the initializer value.
2782  Expr *getInit() const {
2783    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
2784  }
2785
2786  void setInit(Expr *init) {
2787    *child_begin() = init;
2788  }
2789
2790  /// \brief Retrieve the total number of subexpressions in this
2791  /// designated initializer expression, including the actual
2792  /// initialized value and any expressions that occur within array
2793  /// and array-range designators.
2794  unsigned getNumSubExprs() const { return NumSubExprs; }
2795
2796  Expr *getSubExpr(unsigned Idx) {
2797    assert(Idx < NumSubExprs && "Subscript out of range");
2798    char* Ptr = static_cast<char*>(static_cast<void *>(this));
2799    Ptr += sizeof(DesignatedInitExpr);
2800    return reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx];
2801  }
2802
2803  void setSubExpr(unsigned Idx, Expr *E) {
2804    assert(Idx < NumSubExprs && "Subscript out of range");
2805    char* Ptr = static_cast<char*>(static_cast<void *>(this));
2806    Ptr += sizeof(DesignatedInitExpr);
2807    reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx] = E;
2808  }
2809
2810  /// \brief Replaces the designator at index @p Idx with the series
2811  /// of designators in [First, Last).
2812  void ExpandDesignator(ASTContext &C, unsigned Idx, const Designator *First,
2813                        const Designator *Last);
2814
2815  virtual SourceRange getSourceRange() const;
2816
2817  static bool classof(const Stmt *T) {
2818    return T->getStmtClass() == DesignatedInitExprClass;
2819  }
2820  static bool classof(const DesignatedInitExpr *) { return true; }
2821
2822  // Iterators
2823  virtual child_iterator child_begin();
2824  virtual child_iterator child_end();
2825};
2826
2827/// \brief Represents an implicitly-generated value initialization of
2828/// an object of a given type.
2829///
2830/// Implicit value initializations occur within semantic initializer
2831/// list expressions (InitListExpr) as placeholders for subobject
2832/// initializations not explicitly specified by the user.
2833///
2834/// \see InitListExpr
2835class ImplicitValueInitExpr : public Expr {
2836public:
2837  explicit ImplicitValueInitExpr(QualType ty)
2838    : Expr(ImplicitValueInitExprClass, ty, false, false) { }
2839
2840  /// \brief Construct an empty implicit value initialization.
2841  explicit ImplicitValueInitExpr(EmptyShell Empty)
2842    : Expr(ImplicitValueInitExprClass, Empty) { }
2843
2844  static bool classof(const Stmt *T) {
2845    return T->getStmtClass() == ImplicitValueInitExprClass;
2846  }
2847  static bool classof(const ImplicitValueInitExpr *) { return true; }
2848
2849  virtual SourceRange getSourceRange() const {
2850    return SourceRange();
2851  }
2852
2853  // Iterators
2854  virtual child_iterator child_begin();
2855  virtual child_iterator child_end();
2856};
2857
2858
2859class ParenListExpr : public Expr {
2860  Stmt **Exprs;
2861  unsigned NumExprs;
2862  SourceLocation LParenLoc, RParenLoc;
2863
2864protected:
2865  virtual void DoDestroy(ASTContext& C);
2866
2867public:
2868  ParenListExpr(ASTContext& C, SourceLocation lparenloc, Expr **exprs,
2869                unsigned numexprs, SourceLocation rparenloc);
2870
2871  ~ParenListExpr() {}
2872
2873  /// \brief Build an empty paren list.
2874  //explicit ParenListExpr(EmptyShell Empty) : Expr(ParenListExprClass, Empty) { }
2875
2876  unsigned getNumExprs() const { return NumExprs; }
2877
2878  const Expr* getExpr(unsigned Init) const {
2879    assert(Init < getNumExprs() && "Initializer access out of range!");
2880    return cast_or_null<Expr>(Exprs[Init]);
2881  }
2882
2883  Expr* getExpr(unsigned Init) {
2884    assert(Init < getNumExprs() && "Initializer access out of range!");
2885    return cast_or_null<Expr>(Exprs[Init]);
2886  }
2887
2888  Expr **getExprs() { return reinterpret_cast<Expr **>(Exprs); }
2889
2890  SourceLocation getLParenLoc() const { return LParenLoc; }
2891  SourceLocation getRParenLoc() const { return RParenLoc; }
2892
2893  virtual SourceRange getSourceRange() const {
2894    return SourceRange(LParenLoc, RParenLoc);
2895  }
2896  static bool classof(const Stmt *T) {
2897    return T->getStmtClass() == ParenListExprClass;
2898  }
2899  static bool classof(const ParenListExpr *) { return true; }
2900
2901  // Iterators
2902  virtual child_iterator child_begin();
2903  virtual child_iterator child_end();
2904};
2905
2906
2907//===----------------------------------------------------------------------===//
2908// Clang Extensions
2909//===----------------------------------------------------------------------===//
2910
2911
2912/// ExtVectorElementExpr - This represents access to specific elements of a
2913/// vector, and may occur on the left hand side or right hand side.  For example
2914/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
2915///
2916/// Note that the base may have either vector or pointer to vector type, just
2917/// like a struct field reference.
2918///
2919class ExtVectorElementExpr : public Expr {
2920  Stmt *Base;
2921  IdentifierInfo *Accessor;
2922  SourceLocation AccessorLoc;
2923public:
2924  ExtVectorElementExpr(QualType ty, Expr *base, IdentifierInfo &accessor,
2925                       SourceLocation loc)
2926    : Expr(ExtVectorElementExprClass, ty, base->isTypeDependent(),
2927           base->isValueDependent()),
2928      Base(base), Accessor(&accessor), AccessorLoc(loc) {}
2929
2930  /// \brief Build an empty vector element expression.
2931  explicit ExtVectorElementExpr(EmptyShell Empty)
2932    : Expr(ExtVectorElementExprClass, Empty) { }
2933
2934  const Expr *getBase() const { return cast<Expr>(Base); }
2935  Expr *getBase() { return cast<Expr>(Base); }
2936  void setBase(Expr *E) { Base = E; }
2937
2938  IdentifierInfo &getAccessor() const { return *Accessor; }
2939  void setAccessor(IdentifierInfo *II) { Accessor = II; }
2940
2941  SourceLocation getAccessorLoc() const { return AccessorLoc; }
2942  void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
2943
2944  /// getNumElements - Get the number of components being selected.
2945  unsigned getNumElements() const;
2946
2947  /// containsDuplicateElements - Return true if any element access is
2948  /// repeated.
2949  bool containsDuplicateElements() const;
2950
2951  /// getEncodedElementAccess - Encode the elements accessed into an llvm
2952  /// aggregate Constant of ConstantInt(s).
2953  void getEncodedElementAccess(llvm::SmallVectorImpl<unsigned> &Elts) const;
2954
2955  virtual SourceRange getSourceRange() const {
2956    return SourceRange(getBase()->getLocStart(), AccessorLoc);
2957  }
2958
2959  /// isArrow - Return true if the base expression is a pointer to vector,
2960  /// return false if the base expression is a vector.
2961  bool isArrow() const;
2962
2963  static bool classof(const Stmt *T) {
2964    return T->getStmtClass() == ExtVectorElementExprClass;
2965  }
2966  static bool classof(const ExtVectorElementExpr *) { return true; }
2967
2968  // Iterators
2969  virtual child_iterator child_begin();
2970  virtual child_iterator child_end();
2971};
2972
2973
2974/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
2975/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
2976class BlockExpr : public Expr {
2977protected:
2978  BlockDecl *TheBlock;
2979  bool HasBlockDeclRefExprs;
2980public:
2981  BlockExpr(BlockDecl *BD, QualType ty, bool hasBlockDeclRefExprs)
2982    : Expr(BlockExprClass, ty, ty->isDependentType(), false),
2983      TheBlock(BD), HasBlockDeclRefExprs(hasBlockDeclRefExprs) {}
2984
2985  /// \brief Build an empty block expression.
2986  explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { }
2987
2988  const BlockDecl *getBlockDecl() const { return TheBlock; }
2989  BlockDecl *getBlockDecl() { return TheBlock; }
2990  void setBlockDecl(BlockDecl *BD) { TheBlock = BD; }
2991
2992  // Convenience functions for probing the underlying BlockDecl.
2993  SourceLocation getCaretLocation() const;
2994  const Stmt *getBody() const;
2995  Stmt *getBody();
2996
2997  virtual SourceRange getSourceRange() const {
2998    return SourceRange(getCaretLocation(), getBody()->getLocEnd());
2999  }
3000
3001  /// getFunctionType - Return the underlying function type for this block.
3002  const FunctionType *getFunctionType() const;
3003
3004  /// hasBlockDeclRefExprs - Return true iff the block has BlockDeclRefExpr
3005  /// inside of the block that reference values outside the block.
3006  bool hasBlockDeclRefExprs() const { return HasBlockDeclRefExprs; }
3007  void setHasBlockDeclRefExprs(bool BDRE) { HasBlockDeclRefExprs = BDRE; }
3008
3009  static bool classof(const Stmt *T) {
3010    return T->getStmtClass() == BlockExprClass;
3011  }
3012  static bool classof(const BlockExpr *) { return true; }
3013
3014  // Iterators
3015  virtual child_iterator child_begin();
3016  virtual child_iterator child_end();
3017};
3018
3019/// BlockDeclRefExpr - A reference to a declared variable, function,
3020/// enum, etc.
3021class BlockDeclRefExpr : public Expr {
3022  ValueDecl *D;
3023  SourceLocation Loc;
3024  bool IsByRef : 1;
3025  bool ConstQualAdded : 1;
3026public:
3027  // FIXME: Fix type/value dependence!
3028  BlockDeclRefExpr(ValueDecl *d, QualType t, SourceLocation l, bool ByRef,
3029                   bool constAdded = false)
3030  : Expr(BlockDeclRefExprClass, t, false, false), D(d), Loc(l), IsByRef(ByRef),
3031    ConstQualAdded(constAdded) {}
3032
3033  // \brief Build an empty reference to a declared variable in a
3034  // block.
3035  explicit BlockDeclRefExpr(EmptyShell Empty)
3036    : Expr(BlockDeclRefExprClass, Empty) { }
3037
3038  ValueDecl *getDecl() { return D; }
3039  const ValueDecl *getDecl() const { return D; }
3040  void setDecl(ValueDecl *VD) { D = VD; }
3041
3042  SourceLocation getLocation() const { return Loc; }
3043  void setLocation(SourceLocation L) { Loc = L; }
3044
3045  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
3046
3047  bool isByRef() const { return IsByRef; }
3048  void setByRef(bool BR) { IsByRef = BR; }
3049
3050  bool isConstQualAdded() const { return ConstQualAdded; }
3051  void setConstQualAdded(bool C) { ConstQualAdded = C; }
3052
3053  static bool classof(const Stmt *T) {
3054    return T->getStmtClass() == BlockDeclRefExprClass;
3055  }
3056  static bool classof(const BlockDeclRefExpr *) { return true; }
3057
3058  // Iterators
3059  virtual child_iterator child_begin();
3060  virtual child_iterator child_end();
3061};
3062
3063}  // end namespace clang
3064
3065#endif
3066