Expr.h revision ec79d877c1998366480d97a7a6c94e15c053edd8
1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/Stmt.h"
19#include "clang/AST/Type.h"
20#include "clang/AST/DeclAccessPair.h"
21#include "clang/AST/OperationKinds.h"
22#include "clang/AST/ASTVector.h"
23#include "clang/AST/TemplateBase.h"
24#include "clang/AST/UsuallyTinyPtrVector.h"
25#include "clang/Basic/TargetInfo.h"
26#include "clang/Basic/TypeTraits.h"
27#include "llvm/ADT/APSInt.h"
28#include "llvm/ADT/APFloat.h"
29#include "llvm/ADT/SmallVector.h"
30#include "llvm/ADT/StringRef.h"
31#include <cctype>
32
33namespace clang {
34  class ASTContext;
35  class APValue;
36  class Decl;
37  class IdentifierInfo;
38  class ParmVarDecl;
39  class NamedDecl;
40  class ValueDecl;
41  class BlockDecl;
42  class CXXBaseSpecifier;
43  class CXXOperatorCallExpr;
44  class CXXMemberCallExpr;
45  class ObjCPropertyRefExpr;
46  class OpaqueValueExpr;
47
48/// \brief A simple array of base specifiers.
49typedef SmallVector<CXXBaseSpecifier*, 4> CXXCastPath;
50
51/// Expr - This represents one expression.  Note that Expr's are subclasses of
52/// Stmt.  This allows an expression to be transparently used any place a Stmt
53/// is required.
54///
55class Expr : public Stmt {
56  QualType TR;
57
58protected:
59  Expr(StmtClass SC, QualType T, ExprValueKind VK, ExprObjectKind OK,
60       bool TD, bool VD, bool ID, bool ContainsUnexpandedParameterPack)
61    : Stmt(SC)
62  {
63    ExprBits.TypeDependent = TD;
64    ExprBits.ValueDependent = VD;
65    ExprBits.InstantiationDependent = ID;
66    ExprBits.ValueKind = VK;
67    ExprBits.ObjectKind = OK;
68    ExprBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
69    setType(T);
70  }
71
72  /// \brief Construct an empty expression.
73  explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
74
75public:
76  QualType getType() const { return TR; }
77  void setType(QualType t) {
78    // In C++, the type of an expression is always adjusted so that it
79    // will not have reference type an expression will never have
80    // reference type (C++ [expr]p6). Use
81    // QualType::getNonReferenceType() to retrieve the non-reference
82    // type. Additionally, inspect Expr::isLvalue to determine whether
83    // an expression that is adjusted in this manner should be
84    // considered an lvalue.
85    assert((t.isNull() || !t->isReferenceType()) &&
86           "Expressions can't have reference type");
87
88    TR = t;
89  }
90
91  /// isValueDependent - Determines whether this expression is
92  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
93  /// array bound of "Chars" in the following example is
94  /// value-dependent.
95  /// @code
96  /// template<int Size, char (&Chars)[Size]> struct meta_string;
97  /// @endcode
98  bool isValueDependent() const { return ExprBits.ValueDependent; }
99
100  /// \brief Set whether this expression is value-dependent or not.
101  void setValueDependent(bool VD) {
102    ExprBits.ValueDependent = VD;
103    if (VD)
104      ExprBits.InstantiationDependent = true;
105  }
106
107  /// isTypeDependent - Determines whether this expression is
108  /// type-dependent (C++ [temp.dep.expr]), which means that its type
109  /// could change from one template instantiation to the next. For
110  /// example, the expressions "x" and "x + y" are type-dependent in
111  /// the following code, but "y" is not type-dependent:
112  /// @code
113  /// template<typename T>
114  /// void add(T x, int y) {
115  ///   x + y;
116  /// }
117  /// @endcode
118  bool isTypeDependent() const { return ExprBits.TypeDependent; }
119
120  /// \brief Set whether this expression is type-dependent or not.
121  void setTypeDependent(bool TD) {
122    ExprBits.TypeDependent = TD;
123    if (TD)
124      ExprBits.InstantiationDependent = true;
125  }
126
127  /// \brief Whether this expression is instantiation-dependent, meaning that
128  /// it depends in some way on a template parameter, even if neither its type
129  /// nor (constant) value can change due to the template instantiation.
130  ///
131  /// In the following example, the expression \c sizeof(sizeof(T() + T())) is
132  /// instantiation-dependent (since it involves a template parameter \c T), but
133  /// is neither type- nor value-dependent, since the type of the inner
134  /// \c sizeof is known (\c std::size_t) and therefore the size of the outer
135  /// \c sizeof is known.
136  ///
137  /// \code
138  /// template<typename T>
139  /// void f(T x, T y) {
140  ///   sizeof(sizeof(T() + T());
141  /// }
142  /// \endcode
143  ///
144  bool isInstantiationDependent() const {
145    return ExprBits.InstantiationDependent;
146  }
147
148  /// \brief Set whether this expression is instantiation-dependent or not.
149  void setInstantiationDependent(bool ID) {
150    ExprBits.InstantiationDependent = ID;
151  }
152
153  /// \brief Whether this expression contains an unexpanded parameter
154  /// pack (for C++0x variadic templates).
155  ///
156  /// Given the following function template:
157  ///
158  /// \code
159  /// template<typename F, typename ...Types>
160  /// void forward(const F &f, Types &&...args) {
161  ///   f(static_cast<Types&&>(args)...);
162  /// }
163  /// \endcode
164  ///
165  /// The expressions \c args and \c static_cast<Types&&>(args) both
166  /// contain parameter packs.
167  bool containsUnexpandedParameterPack() const {
168    return ExprBits.ContainsUnexpandedParameterPack;
169  }
170
171  /// \brief Set the bit that describes whether this expression
172  /// contains an unexpanded parameter pack.
173  void setContainsUnexpandedParameterPack(bool PP = true) {
174    ExprBits.ContainsUnexpandedParameterPack = PP;
175  }
176
177  /// getExprLoc - Return the preferred location for the arrow when diagnosing
178  /// a problem with a generic expression.
179  SourceLocation getExprLoc() const;
180
181  /// isUnusedResultAWarning - Return true if this immediate expression should
182  /// be warned about if the result is unused.  If so, fill in Loc and Ranges
183  /// with location to warn on and the source range[s] to report with the
184  /// warning.
185  bool isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
186                              SourceRange &R2, ASTContext &Ctx) const;
187
188  /// isLValue - True if this expression is an "l-value" according to
189  /// the rules of the current language.  C and C++ give somewhat
190  /// different rules for this concept, but in general, the result of
191  /// an l-value expression identifies a specific object whereas the
192  /// result of an r-value expression is a value detached from any
193  /// specific storage.
194  ///
195  /// C++0x divides the concept of "r-value" into pure r-values
196  /// ("pr-values") and so-called expiring values ("x-values"), which
197  /// identify specific objects that can be safely cannibalized for
198  /// their resources.  This is an unfortunate abuse of terminology on
199  /// the part of the C++ committee.  In Clang, when we say "r-value",
200  /// we generally mean a pr-value.
201  bool isLValue() const { return getValueKind() == VK_LValue; }
202  bool isRValue() const { return getValueKind() == VK_RValue; }
203  bool isXValue() const { return getValueKind() == VK_XValue; }
204  bool isGLValue() const { return getValueKind() != VK_RValue; }
205
206  enum LValueClassification {
207    LV_Valid,
208    LV_NotObjectType,
209    LV_IncompleteVoidType,
210    LV_DuplicateVectorComponents,
211    LV_InvalidExpression,
212    LV_InvalidMessageExpression,
213    LV_MemberFunction,
214    LV_SubObjCPropertySetting,
215    LV_ClassTemporary
216  };
217  /// Reasons why an expression might not be an l-value.
218  LValueClassification ClassifyLValue(ASTContext &Ctx) const;
219
220  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
221  /// does not have an incomplete type, does not have a const-qualified type,
222  /// and if it is a structure or union, does not have any member (including,
223  /// recursively, any member or element of all contained aggregates or unions)
224  /// with a const-qualified type.
225  ///
226  /// \param Loc [in] [out] - A source location which *may* be filled
227  /// in with the location of the expression making this a
228  /// non-modifiable lvalue, if specified.
229  enum isModifiableLvalueResult {
230    MLV_Valid,
231    MLV_NotObjectType,
232    MLV_IncompleteVoidType,
233    MLV_DuplicateVectorComponents,
234    MLV_InvalidExpression,
235    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
236    MLV_IncompleteType,
237    MLV_ConstQualified,
238    MLV_ArrayType,
239    MLV_NotBlockQualified,
240    MLV_ReadonlyProperty,
241    MLV_NoSetterProperty,
242    MLV_MemberFunction,
243    MLV_SubObjCPropertySetting,
244    MLV_InvalidMessageExpression,
245    MLV_ClassTemporary
246  };
247  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx,
248                                              SourceLocation *Loc = 0) const;
249
250  /// \brief The return type of classify(). Represents the C++0x expression
251  ///        taxonomy.
252  class Classification {
253  public:
254    /// \brief The various classification results. Most of these mean prvalue.
255    enum Kinds {
256      CL_LValue,
257      CL_XValue,
258      CL_Function, // Functions cannot be lvalues in C.
259      CL_Void, // Void cannot be an lvalue in C.
260      CL_AddressableVoid, // Void expression whose address can be taken in C.
261      CL_DuplicateVectorComponents, // A vector shuffle with dupes.
262      CL_MemberFunction, // An expression referring to a member function
263      CL_SubObjCPropertySetting,
264      CL_ClassTemporary, // A prvalue of class type
265      CL_ObjCMessageRValue, // ObjC message is an rvalue
266      CL_PRValue // A prvalue for any other reason, of any other type
267    };
268    /// \brief The results of modification testing.
269    enum ModifiableType {
270      CM_Untested, // testModifiable was false.
271      CM_Modifiable,
272      CM_RValue, // Not modifiable because it's an rvalue
273      CM_Function, // Not modifiable because it's a function; C++ only
274      CM_LValueCast, // Same as CM_RValue, but indicates GCC cast-as-lvalue ext
275      CM_NotBlockQualified, // Not captured in the closure
276      CM_NoSetterProperty,// Implicit assignment to ObjC property without setter
277      CM_ConstQualified,
278      CM_ArrayType,
279      CM_IncompleteType
280    };
281
282  private:
283    friend class Expr;
284
285    unsigned short Kind;
286    unsigned short Modifiable;
287
288    explicit Classification(Kinds k, ModifiableType m)
289      : Kind(k), Modifiable(m)
290    {}
291
292  public:
293    Classification() {}
294
295    Kinds getKind() const { return static_cast<Kinds>(Kind); }
296    ModifiableType getModifiable() const {
297      assert(Modifiable != CM_Untested && "Did not test for modifiability.");
298      return static_cast<ModifiableType>(Modifiable);
299    }
300    bool isLValue() const { return Kind == CL_LValue; }
301    bool isXValue() const { return Kind == CL_XValue; }
302    bool isGLValue() const { return Kind <= CL_XValue; }
303    bool isPRValue() const { return Kind >= CL_Function; }
304    bool isRValue() const { return Kind >= CL_XValue; }
305    bool isModifiable() const { return getModifiable() == CM_Modifiable; }
306
307    /// \brief Create a simple, modifiably lvalue
308    static Classification makeSimpleLValue() {
309      return Classification(CL_LValue, CM_Modifiable);
310    }
311
312  };
313  /// \brief Classify - Classify this expression according to the C++0x
314  ///        expression taxonomy.
315  ///
316  /// C++0x defines ([basic.lval]) a new taxonomy of expressions to replace the
317  /// old lvalue vs rvalue. This function determines the type of expression this
318  /// is. There are three expression types:
319  /// - lvalues are classical lvalues as in C++03.
320  /// - prvalues are equivalent to rvalues in C++03.
321  /// - xvalues are expressions yielding unnamed rvalue references, e.g. a
322  ///   function returning an rvalue reference.
323  /// lvalues and xvalues are collectively referred to as glvalues, while
324  /// prvalues and xvalues together form rvalues.
325  Classification Classify(ASTContext &Ctx) const {
326    return ClassifyImpl(Ctx, 0);
327  }
328
329  /// \brief ClassifyModifiable - Classify this expression according to the
330  ///        C++0x expression taxonomy, and see if it is valid on the left side
331  ///        of an assignment.
332  ///
333  /// This function extends classify in that it also tests whether the
334  /// expression is modifiable (C99 6.3.2.1p1).
335  /// \param Loc A source location that might be filled with a relevant location
336  ///            if the expression is not modifiable.
337  Classification ClassifyModifiable(ASTContext &Ctx, SourceLocation &Loc) const{
338    return ClassifyImpl(Ctx, &Loc);
339  }
340
341  /// getValueKindForType - Given a formal return or parameter type,
342  /// give its value kind.
343  static ExprValueKind getValueKindForType(QualType T) {
344    if (const ReferenceType *RT = T->getAs<ReferenceType>())
345      return (isa<LValueReferenceType>(RT)
346                ? VK_LValue
347                : (RT->getPointeeType()->isFunctionType()
348                     ? VK_LValue : VK_XValue));
349    return VK_RValue;
350  }
351
352  /// getValueKind - The value kind that this expression produces.
353  ExprValueKind getValueKind() const {
354    return static_cast<ExprValueKind>(ExprBits.ValueKind);
355  }
356
357  /// getObjectKind - The object kind that this expression produces.
358  /// Object kinds are meaningful only for expressions that yield an
359  /// l-value or x-value.
360  ExprObjectKind getObjectKind() const {
361    return static_cast<ExprObjectKind>(ExprBits.ObjectKind);
362  }
363
364  bool isOrdinaryOrBitFieldObject() const {
365    ExprObjectKind OK = getObjectKind();
366    return (OK == OK_Ordinary || OK == OK_BitField);
367  }
368
369  /// setValueKind - Set the value kind produced by this expression.
370  void setValueKind(ExprValueKind Cat) { ExprBits.ValueKind = Cat; }
371
372  /// setObjectKind - Set the object kind produced by this expression.
373  void setObjectKind(ExprObjectKind Cat) { ExprBits.ObjectKind = Cat; }
374
375private:
376  Classification ClassifyImpl(ASTContext &Ctx, SourceLocation *Loc) const;
377
378public:
379
380  /// \brief If this expression refers to a bit-field, retrieve the
381  /// declaration of that bit-field.
382  FieldDecl *getBitField();
383
384  const FieldDecl *getBitField() const {
385    return const_cast<Expr*>(this)->getBitField();
386  }
387
388  /// \brief If this expression is an l-value for an Objective C
389  /// property, find the underlying property reference expression.
390  const ObjCPropertyRefExpr *getObjCProperty() const;
391
392  /// \brief Returns whether this expression refers to a vector element.
393  bool refersToVectorElement() const;
394
395  /// \brief Returns whether this expression has a placeholder type.
396  bool hasPlaceholderType() const {
397    return getType()->isPlaceholderType();
398  }
399
400  /// \brief Returns whether this expression has a specific placeholder type.
401  bool hasPlaceholderType(BuiltinType::Kind K) const {
402    assert(BuiltinType::isPlaceholderTypeKind(K));
403    if (const BuiltinType *BT = dyn_cast<BuiltinType>(getType()))
404      return BT->getKind() == K;
405    return false;
406  }
407
408  /// isKnownToHaveBooleanValue - Return true if this is an integer expression
409  /// that is known to return 0 or 1.  This happens for _Bool/bool expressions
410  /// but also int expressions which are produced by things like comparisons in
411  /// C.
412  bool isKnownToHaveBooleanValue() const;
413
414  /// isIntegerConstantExpr - Return true if this expression is a valid integer
415  /// constant expression, and, if so, return its value in Result.  If not a
416  /// valid i-c-e, return false and fill in Loc (if specified) with the location
417  /// of the invalid expression.
418  ///
419  /// Note: This does not perform the implicit conversions required by C++11
420  /// [expr.const]p5.
421  bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
422                             SourceLocation *Loc = 0,
423                             bool isEvaluated = true) const;
424  bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const;
425
426  /// isCXX98IntegralConstantExpr - Return true if this expression is an
427  /// integral constant expression in C++98. Can only be used in C++.
428  bool isCXX98IntegralConstantExpr(ASTContext &Ctx) const;
429
430  /// isCXX11ConstantExpr - Return true if this expression is a constant
431  /// expression in C++11. Can only be used in C++.
432  ///
433  /// Note: This does not perform the implicit conversions required by C++11
434  /// [expr.const]p5.
435  bool isCXX11ConstantExpr(ASTContext &Ctx, APValue *Result = 0,
436                           SourceLocation *Loc = 0) const;
437
438  /// isPotentialConstantExpr - Return true if this function's definition
439  /// might be usable in a constant expression in C++11, if it were marked
440  /// constexpr. Return false if the function can never produce a constant
441  /// expression, along with diagnostics describing why not.
442  static bool isPotentialConstantExpr(const FunctionDecl *FD,
443                                      llvm::SmallVectorImpl<
444                                        PartialDiagnosticAt> &Diags);
445
446  /// isConstantInitializer - Returns true if this expression can be emitted to
447  /// IR as a constant, and thus can be used as a constant initializer in C.
448  bool isConstantInitializer(ASTContext &Ctx, bool ForRef) const;
449
450  /// EvalStatus is a struct with detailed info about an evaluation in progress.
451  struct EvalStatus {
452    /// HasSideEffects - Whether the evaluated expression has side effects.
453    /// For example, (f() && 0) can be folded, but it still has side effects.
454    bool HasSideEffects;
455
456    /// Diag - If this is non-null, it will be filled in with a stack of notes
457    /// indicating why evaluation failed (or why it failed to produce a constant
458    /// expression).
459    /// If the expression is unfoldable, the notes will indicate why it's not
460    /// foldable. If the expression is foldable, but not a constant expression,
461    /// the notes will describes why it isn't a constant expression. If the
462    /// expression *is* a constant expression, no notes will be produced.
463    llvm::SmallVectorImpl<PartialDiagnosticAt> *Diag;
464
465    EvalStatus() : HasSideEffects(false), Diag(0) {}
466
467    // hasSideEffects - Return true if the evaluated expression has
468    // side effects.
469    bool hasSideEffects() const {
470      return HasSideEffects;
471    }
472  };
473
474  /// EvalResult is a struct with detailed info about an evaluated expression.
475  struct EvalResult : EvalStatus {
476    /// Val - This is the value the expression can be folded to.
477    APValue Val;
478
479    // isGlobalLValue - Return true if the evaluated lvalue expression
480    // is global.
481    bool isGlobalLValue() const;
482  };
483
484  /// EvaluateAsRValue - Return true if this is a constant which we can fold to
485  /// an rvalue using any crazy technique (that has nothing to do with language
486  /// standards) that we want to, even if the expression has side-effects. If
487  /// this function returns true, it returns the folded constant in Result. If
488  /// the expression is a glvalue, an lvalue-to-rvalue conversion will be
489  /// applied.
490  bool EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx) const;
491
492  /// EvaluateAsBooleanCondition - Return true if this is a constant
493  /// which we we can fold and convert to a boolean condition using
494  /// any crazy technique that we want to, even if the expression has
495  /// side-effects.
496  bool EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx) const;
497
498  enum SideEffectsKind { SE_NoSideEffects, SE_AllowSideEffects };
499
500  /// EvaluateAsInt - Return true if this is a constant which we can fold and
501  /// convert to an integer, using any crazy technique that we want to.
502  bool EvaluateAsInt(llvm::APSInt &Result, const ASTContext &Ctx,
503                     SideEffectsKind AllowSideEffects = SE_NoSideEffects) const;
504
505  /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
506  /// constant folded without side-effects, but discard the result.
507  bool isEvaluatable(const ASTContext &Ctx) const;
508
509  /// HasSideEffects - This routine returns true for all those expressions
510  /// which must be evaluated each time and must not be optimized away
511  /// or evaluated at compile time. Example is a function call, volatile
512  /// variable read.
513  bool HasSideEffects(const ASTContext &Ctx) const;
514
515  /// \brief Determine whether this expression involves a call to any function
516  /// that is not trivial.
517  bool hasNonTrivialCall(ASTContext &Ctx);
518
519  /// EvaluateKnownConstInt - Call EvaluateAsRValue and return the folded
520  /// integer. This must be called on an expression that constant folds to an
521  /// integer.
522  llvm::APSInt EvaluateKnownConstInt(const ASTContext &Ctx) const;
523
524  /// EvaluateAsLValue - Evaluate an expression to see if we can fold it to an
525  /// lvalue with link time known address, with no side-effects.
526  bool EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const;
527
528  /// EvaluateAsInitializer - Evaluate an expression as if it were the
529  /// initializer of the given declaration. Returns true if the initializer
530  /// can be folded to a constant, and produces any relevant notes. In C++11,
531  /// notes will be produced if the expression is not a constant expression.
532  bool EvaluateAsInitializer(APValue &Result, const ASTContext &Ctx,
533                             const VarDecl *VD,
534                       llvm::SmallVectorImpl<PartialDiagnosticAt> &Notes) const;
535
536  /// \brief Enumeration used to describe the kind of Null pointer constant
537  /// returned from \c isNullPointerConstant().
538  enum NullPointerConstantKind {
539    /// \brief Expression is not a Null pointer constant.
540    NPCK_NotNull = 0,
541
542    /// \brief Expression is a Null pointer constant built from a zero integer.
543    NPCK_ZeroInteger,
544
545    /// \brief Expression is a C++0X nullptr.
546    NPCK_CXX0X_nullptr,
547
548    /// \brief Expression is a GNU-style __null constant.
549    NPCK_GNUNull
550  };
551
552  /// \brief Enumeration used to describe how \c isNullPointerConstant()
553  /// should cope with value-dependent expressions.
554  enum NullPointerConstantValueDependence {
555    /// \brief Specifies that the expression should never be value-dependent.
556    NPC_NeverValueDependent = 0,
557
558    /// \brief Specifies that a value-dependent expression of integral or
559    /// dependent type should be considered a null pointer constant.
560    NPC_ValueDependentIsNull,
561
562    /// \brief Specifies that a value-dependent expression should be considered
563    /// to never be a null pointer constant.
564    NPC_ValueDependentIsNotNull
565  };
566
567  /// isNullPointerConstant - C99 6.3.2.3p3 - Test if this reduces down to
568  /// a Null pointer constant. The return value can further distinguish the
569  /// kind of NULL pointer constant that was detected.
570  NullPointerConstantKind isNullPointerConstant(
571      ASTContext &Ctx,
572      NullPointerConstantValueDependence NPC) const;
573
574  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
575  /// write barrier.
576  bool isOBJCGCCandidate(ASTContext &Ctx) const;
577
578  /// \brief Returns true if this expression is a bound member function.
579  bool isBoundMemberFunction(ASTContext &Ctx) const;
580
581  /// \brief Given an expression of bound-member type, find the type
582  /// of the member.  Returns null if this is an *overloaded* bound
583  /// member expression.
584  static QualType findBoundMemberType(const Expr *expr);
585
586  /// \brief Result type of CanThrow().
587  enum CanThrowResult {
588    CT_Cannot,
589    CT_Dependent,
590    CT_Can
591  };
592  /// \brief Test if this expression, if evaluated, might throw, according to
593  ///        the rules of C++ [expr.unary.noexcept].
594  CanThrowResult CanThrow(ASTContext &C) const;
595
596  /// IgnoreImpCasts - Skip past any implicit casts which might
597  /// surround this expression.  Only skips ImplicitCastExprs.
598  Expr *IgnoreImpCasts();
599
600  /// IgnoreImplicit - Skip past any implicit AST nodes which might
601  /// surround this expression.
602  Expr *IgnoreImplicit() { return cast<Expr>(Stmt::IgnoreImplicit()); }
603
604  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
605  ///  its subexpression.  If that subexpression is also a ParenExpr,
606  ///  then this method recursively returns its subexpression, and so forth.
607  ///  Otherwise, the method returns the current Expr.
608  Expr *IgnoreParens();
609
610  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
611  /// or CastExprs, returning their operand.
612  Expr *IgnoreParenCasts();
613
614  /// IgnoreParenImpCasts - Ignore parentheses and implicit casts.  Strip off
615  /// any ParenExpr or ImplicitCastExprs, returning their operand.
616  Expr *IgnoreParenImpCasts();
617
618  /// IgnoreConversionOperator - Ignore conversion operator. If this Expr is a
619  /// call to a conversion operator, return the argument.
620  Expr *IgnoreConversionOperator();
621
622  const Expr *IgnoreConversionOperator() const {
623    return const_cast<Expr*>(this)->IgnoreConversionOperator();
624  }
625
626  const Expr *IgnoreParenImpCasts() const {
627    return const_cast<Expr*>(this)->IgnoreParenImpCasts();
628  }
629
630  /// Ignore parentheses and lvalue casts.  Strip off any ParenExpr and
631  /// CastExprs that represent lvalue casts, returning their operand.
632  Expr *IgnoreParenLValueCasts();
633
634  const Expr *IgnoreParenLValueCasts() const {
635    return const_cast<Expr*>(this)->IgnoreParenLValueCasts();
636  }
637
638  /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
639  /// value (including ptr->int casts of the same size).  Strip off any
640  /// ParenExpr or CastExprs, returning their operand.
641  Expr *IgnoreParenNoopCasts(ASTContext &Ctx);
642
643  /// \brief Determine whether this expression is a default function argument.
644  ///
645  /// Default arguments are implicitly generated in the abstract syntax tree
646  /// by semantic analysis for function calls, object constructions, etc. in
647  /// C++. Default arguments are represented by \c CXXDefaultArgExpr nodes;
648  /// this routine also looks through any implicit casts to determine whether
649  /// the expression is a default argument.
650  bool isDefaultArgument() const;
651
652  /// \brief Determine whether the result of this expression is a
653  /// temporary object of the given class type.
654  bool isTemporaryObject(ASTContext &Ctx, const CXXRecordDecl *TempTy) const;
655
656  /// \brief Whether this expression is an implicit reference to 'this' in C++.
657  bool isImplicitCXXThis() const;
658
659  const Expr *IgnoreImpCasts() const {
660    return const_cast<Expr*>(this)->IgnoreImpCasts();
661  }
662  const Expr *IgnoreParens() const {
663    return const_cast<Expr*>(this)->IgnoreParens();
664  }
665  const Expr *IgnoreParenCasts() const {
666    return const_cast<Expr*>(this)->IgnoreParenCasts();
667  }
668  const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const {
669    return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
670  }
671
672  static bool hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs);
673  static bool hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs);
674
675  static bool classof(const Stmt *T) {
676    return T->getStmtClass() >= firstExprConstant &&
677           T->getStmtClass() <= lastExprConstant;
678  }
679  static bool classof(const Expr *) { return true; }
680};
681
682
683//===----------------------------------------------------------------------===//
684// Primary Expressions.
685//===----------------------------------------------------------------------===//
686
687/// OpaqueValueExpr - An expression referring to an opaque object of a
688/// fixed type and value class.  These don't correspond to concrete
689/// syntax; instead they're used to express operations (usually copy
690/// operations) on values whose source is generally obvious from
691/// context.
692class OpaqueValueExpr : public Expr {
693  friend class ASTStmtReader;
694  Expr *SourceExpr;
695  SourceLocation Loc;
696
697public:
698  OpaqueValueExpr(SourceLocation Loc, QualType T, ExprValueKind VK,
699                  ExprObjectKind OK = OK_Ordinary,
700                  Expr *SourceExpr = 0)
701    : Expr(OpaqueValueExprClass, T, VK, OK,
702           T->isDependentType(),
703           T->isDependentType() ||
704           (SourceExpr && SourceExpr->isValueDependent()),
705           T->isInstantiationDependentType(),
706           false),
707      SourceExpr(SourceExpr), Loc(Loc) {
708  }
709
710  /// Given an expression which invokes a copy constructor --- i.e.  a
711  /// CXXConstructExpr, possibly wrapped in an ExprWithCleanups ---
712  /// find the OpaqueValueExpr that's the source of the construction.
713  static const OpaqueValueExpr *findInCopyConstruct(const Expr *expr);
714
715  explicit OpaqueValueExpr(EmptyShell Empty)
716    : Expr(OpaqueValueExprClass, Empty) { }
717
718  /// \brief Retrieve the location of this expression.
719  SourceLocation getLocation() const { return Loc; }
720
721  SourceRange getSourceRange() const {
722    if (SourceExpr) return SourceExpr->getSourceRange();
723    return Loc;
724  }
725  SourceLocation getExprLoc() const {
726    if (SourceExpr) return SourceExpr->getExprLoc();
727    return Loc;
728  }
729
730  child_range children() { return child_range(); }
731
732  /// The source expression of an opaque value expression is the
733  /// expression which originally generated the value.  This is
734  /// provided as a convenience for analyses that don't wish to
735  /// precisely model the execution behavior of the program.
736  ///
737  /// The source expression is typically set when building the
738  /// expression which binds the opaque value expression in the first
739  /// place.
740  Expr *getSourceExpr() const { return SourceExpr; }
741
742  static bool classof(const Stmt *T) {
743    return T->getStmtClass() == OpaqueValueExprClass;
744  }
745  static bool classof(const OpaqueValueExpr *) { return true; }
746};
747
748/// \brief A reference to a declared variable, function, enum, etc.
749/// [C99 6.5.1p2]
750///
751/// This encodes all the information about how a declaration is referenced
752/// within an expression.
753///
754/// There are several optional constructs attached to DeclRefExprs only when
755/// they apply in order to conserve memory. These are laid out past the end of
756/// the object, and flags in the DeclRefExprBitfield track whether they exist:
757///
758///   DeclRefExprBits.HasQualifier:
759///       Specifies when this declaration reference expression has a C++
760///       nested-name-specifier.
761///   DeclRefExprBits.HasFoundDecl:
762///       Specifies when this declaration reference expression has a record of
763///       a NamedDecl (different from the referenced ValueDecl) which was found
764///       during name lookup and/or overload resolution.
765///   DeclRefExprBits.HasTemplateKWAndArgsInfo:
766///       Specifies when this declaration reference expression has an explicit
767///       C++ template keyword and/or template argument list.
768class DeclRefExpr : public Expr {
769  /// \brief The declaration that we are referencing.
770  ValueDecl *D;
771
772  /// \brief The location of the declaration name itself.
773  SourceLocation Loc;
774
775  /// \brief Provides source/type location info for the declaration name
776  /// embedded in D.
777  DeclarationNameLoc DNLoc;
778
779  /// \brief Helper to retrieve the optional NestedNameSpecifierLoc.
780  NestedNameSpecifierLoc &getInternalQualifierLoc() {
781    assert(hasQualifier());
782    return *reinterpret_cast<NestedNameSpecifierLoc *>(this + 1);
783  }
784
785  /// \brief Helper to retrieve the optional NestedNameSpecifierLoc.
786  const NestedNameSpecifierLoc &getInternalQualifierLoc() const {
787    return const_cast<DeclRefExpr *>(this)->getInternalQualifierLoc();
788  }
789
790  /// \brief Test whether there is a distinct FoundDecl attached to the end of
791  /// this DRE.
792  bool hasFoundDecl() const { return DeclRefExprBits.HasFoundDecl; }
793
794  /// \brief Helper to retrieve the optional NamedDecl through which this
795  /// reference occured.
796  NamedDecl *&getInternalFoundDecl() {
797    assert(hasFoundDecl());
798    if (hasQualifier())
799      return *reinterpret_cast<NamedDecl **>(&getInternalQualifierLoc() + 1);
800    return *reinterpret_cast<NamedDecl **>(this + 1);
801  }
802
803  /// \brief Helper to retrieve the optional NamedDecl through which this
804  /// reference occured.
805  NamedDecl *getInternalFoundDecl() const {
806    return const_cast<DeclRefExpr *>(this)->getInternalFoundDecl();
807  }
808
809  DeclRefExpr(NestedNameSpecifierLoc QualifierLoc,
810              SourceLocation TemplateKWLoc,
811              ValueDecl *D, const DeclarationNameInfo &NameInfo,
812              NamedDecl *FoundD,
813              const TemplateArgumentListInfo *TemplateArgs,
814              QualType T, ExprValueKind VK);
815
816  /// \brief Construct an empty declaration reference expression.
817  explicit DeclRefExpr(EmptyShell Empty)
818    : Expr(DeclRefExprClass, Empty) { }
819
820  /// \brief Computes the type- and value-dependence flags for this
821  /// declaration reference expression.
822  void computeDependence();
823
824public:
825  DeclRefExpr(ValueDecl *D, QualType T, ExprValueKind VK, SourceLocation L,
826              const DeclarationNameLoc &LocInfo = DeclarationNameLoc())
827    : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
828      D(D), Loc(L), DNLoc(LocInfo) {
829    DeclRefExprBits.HasQualifier = 0;
830    DeclRefExprBits.HasTemplateKWAndArgsInfo = 0;
831    DeclRefExprBits.HasFoundDecl = 0;
832    DeclRefExprBits.HadMultipleCandidates = 0;
833    computeDependence();
834  }
835
836  static DeclRefExpr *Create(ASTContext &Context,
837                             NestedNameSpecifierLoc QualifierLoc,
838                             SourceLocation TemplateKWLoc,
839                             ValueDecl *D,
840                             SourceLocation NameLoc,
841                             QualType T, ExprValueKind VK,
842                             NamedDecl *FoundD = 0,
843                             const TemplateArgumentListInfo *TemplateArgs = 0);
844
845  static DeclRefExpr *Create(ASTContext &Context,
846                             NestedNameSpecifierLoc QualifierLoc,
847                             SourceLocation TemplateKWLoc,
848                             ValueDecl *D,
849                             const DeclarationNameInfo &NameInfo,
850                             QualType T, ExprValueKind VK,
851                             NamedDecl *FoundD = 0,
852                             const TemplateArgumentListInfo *TemplateArgs = 0);
853
854  /// \brief Construct an empty declaration reference expression.
855  static DeclRefExpr *CreateEmpty(ASTContext &Context,
856                                  bool HasQualifier,
857                                  bool HasFoundDecl,
858                                  bool HasTemplateKWAndArgsInfo,
859                                  unsigned NumTemplateArgs);
860
861  ValueDecl *getDecl() { return D; }
862  const ValueDecl *getDecl() const { return D; }
863  void setDecl(ValueDecl *NewD) { D = NewD; }
864
865  DeclarationNameInfo getNameInfo() const {
866    return DeclarationNameInfo(getDecl()->getDeclName(), Loc, DNLoc);
867  }
868
869  SourceLocation getLocation() const { return Loc; }
870  void setLocation(SourceLocation L) { Loc = L; }
871  SourceRange getSourceRange() const;
872
873  /// \brief Determine whether this declaration reference was preceded by a
874  /// C++ nested-name-specifier, e.g., \c N::foo.
875  bool hasQualifier() const { return DeclRefExprBits.HasQualifier; }
876
877  /// \brief If the name was qualified, retrieves the nested-name-specifier
878  /// that precedes the name. Otherwise, returns NULL.
879  NestedNameSpecifier *getQualifier() const {
880    if (!hasQualifier())
881      return 0;
882
883    return getInternalQualifierLoc().getNestedNameSpecifier();
884  }
885
886  /// \brief If the name was qualified, retrieves the nested-name-specifier
887  /// that precedes the name, with source-location information.
888  NestedNameSpecifierLoc getQualifierLoc() const {
889    if (!hasQualifier())
890      return NestedNameSpecifierLoc();
891
892    return getInternalQualifierLoc();
893  }
894
895  /// \brief Get the NamedDecl through which this reference occured.
896  ///
897  /// This Decl may be different from the ValueDecl actually referred to in the
898  /// presence of using declarations, etc. It always returns non-NULL, and may
899  /// simple return the ValueDecl when appropriate.
900  NamedDecl *getFoundDecl() {
901    return hasFoundDecl() ? getInternalFoundDecl() : D;
902  }
903
904  /// \brief Get the NamedDecl through which this reference occurred.
905  /// See non-const variant.
906  const NamedDecl *getFoundDecl() const {
907    return hasFoundDecl() ? getInternalFoundDecl() : D;
908  }
909
910  bool hasTemplateKWAndArgsInfo() const {
911    return DeclRefExprBits.HasTemplateKWAndArgsInfo;
912  }
913
914  /// \brief Return the optional template keyword and arguments info.
915  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
916    if (!hasTemplateKWAndArgsInfo())
917      return 0;
918
919    if (hasFoundDecl())
920      return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(
921        &getInternalFoundDecl() + 1);
922
923    if (hasQualifier())
924      return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(
925        &getInternalQualifierLoc() + 1);
926
927    return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(this + 1);
928  }
929
930  /// \brief Return the optional template keyword and arguments info.
931  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
932    return const_cast<DeclRefExpr*>(this)->getTemplateKWAndArgsInfo();
933  }
934
935  /// \brief Retrieve the location of the template keyword preceding
936  /// this name, if any.
937  SourceLocation getTemplateKeywordLoc() const {
938    if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
939    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
940  }
941
942  /// \brief Retrieve the location of the left angle bracket starting the
943  /// explicit template argument list following the name, if any.
944  SourceLocation getLAngleLoc() const {
945    if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
946    return getTemplateKWAndArgsInfo()->LAngleLoc;
947  }
948
949  /// \brief Retrieve the location of the right angle bracket ending the
950  /// explicit template argument list following the name, if any.
951  SourceLocation getRAngleLoc() const {
952    if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
953    return getTemplateKWAndArgsInfo()->RAngleLoc;
954  }
955
956  /// \brief Determines whether the name in this declaration reference
957  /// was preceded by the template keyword.
958  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
959
960  /// \brief Determines whether this declaration reference was followed by an
961  /// explicit template argument list.
962  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
963
964  /// \brief Retrieve the explicit template argument list that followed the
965  /// member template name.
966  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
967    assert(hasExplicitTemplateArgs());
968    return *getTemplateKWAndArgsInfo();
969  }
970
971  /// \brief Retrieve the explicit template argument list that followed the
972  /// member template name.
973  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
974    return const_cast<DeclRefExpr *>(this)->getExplicitTemplateArgs();
975  }
976
977  /// \brief Retrieves the optional explicit template arguments.
978  /// This points to the same data as getExplicitTemplateArgs(), but
979  /// returns null if there are no explicit template arguments.
980  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() const {
981    if (!hasExplicitTemplateArgs()) return 0;
982    return &getExplicitTemplateArgs();
983  }
984
985  /// \brief Copies the template arguments (if present) into the given
986  /// structure.
987  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
988    if (hasExplicitTemplateArgs())
989      getExplicitTemplateArgs().copyInto(List);
990  }
991
992  /// \brief Retrieve the template arguments provided as part of this
993  /// template-id.
994  const TemplateArgumentLoc *getTemplateArgs() const {
995    if (!hasExplicitTemplateArgs())
996      return 0;
997
998    return getExplicitTemplateArgs().getTemplateArgs();
999  }
1000
1001  /// \brief Retrieve the number of template arguments provided as part of this
1002  /// template-id.
1003  unsigned getNumTemplateArgs() const {
1004    if (!hasExplicitTemplateArgs())
1005      return 0;
1006
1007    return getExplicitTemplateArgs().NumTemplateArgs;
1008  }
1009
1010  /// \brief Returns true if this expression refers to a function that
1011  /// was resolved from an overloaded set having size greater than 1.
1012  bool hadMultipleCandidates() const {
1013    return DeclRefExprBits.HadMultipleCandidates;
1014  }
1015  /// \brief Sets the flag telling whether this expression refers to
1016  /// a function that was resolved from an overloaded set having size
1017  /// greater than 1.
1018  void setHadMultipleCandidates(bool V = true) {
1019    DeclRefExprBits.HadMultipleCandidates = V;
1020  }
1021
1022  static bool classof(const Stmt *T) {
1023    return T->getStmtClass() == DeclRefExprClass;
1024  }
1025  static bool classof(const DeclRefExpr *) { return true; }
1026
1027  // Iterators
1028  child_range children() { return child_range(); }
1029
1030  friend class ASTStmtReader;
1031  friend class ASTStmtWriter;
1032};
1033
1034/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
1035class PredefinedExpr : public Expr {
1036public:
1037  enum IdentType {
1038    Func,
1039    Function,
1040    PrettyFunction,
1041    /// PrettyFunctionNoVirtual - The same as PrettyFunction, except that the
1042    /// 'virtual' keyword is omitted for virtual member functions.
1043    PrettyFunctionNoVirtual
1044  };
1045
1046private:
1047  SourceLocation Loc;
1048  IdentType Type;
1049public:
1050  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
1051    : Expr(PredefinedExprClass, type, VK_LValue, OK_Ordinary,
1052           type->isDependentType(), type->isDependentType(),
1053           type->isInstantiationDependentType(),
1054           /*ContainsUnexpandedParameterPack=*/false),
1055      Loc(l), Type(IT) {}
1056
1057  /// \brief Construct an empty predefined expression.
1058  explicit PredefinedExpr(EmptyShell Empty)
1059    : Expr(PredefinedExprClass, Empty) { }
1060
1061  IdentType getIdentType() const { return Type; }
1062  void setIdentType(IdentType IT) { Type = IT; }
1063
1064  SourceLocation getLocation() const { return Loc; }
1065  void setLocation(SourceLocation L) { Loc = L; }
1066
1067  static std::string ComputeName(IdentType IT, const Decl *CurrentDecl);
1068
1069  SourceRange getSourceRange() const { return SourceRange(Loc); }
1070
1071  static bool classof(const Stmt *T) {
1072    return T->getStmtClass() == PredefinedExprClass;
1073  }
1074  static bool classof(const PredefinedExpr *) { return true; }
1075
1076  // Iterators
1077  child_range children() { return child_range(); }
1078};
1079
1080/// \brief Used by IntegerLiteral/FloatingLiteral to store the numeric without
1081/// leaking memory.
1082///
1083/// For large floats/integers, APFloat/APInt will allocate memory from the heap
1084/// to represent these numbers.  Unfortunately, when we use a BumpPtrAllocator
1085/// to allocate IntegerLiteral/FloatingLiteral nodes the memory associated with
1086/// the APFloat/APInt values will never get freed. APNumericStorage uses
1087/// ASTContext's allocator for memory allocation.
1088class APNumericStorage {
1089  unsigned BitWidth;
1090  union {
1091    uint64_t VAL;    ///< Used to store the <= 64 bits integer value.
1092    uint64_t *pVal;  ///< Used to store the >64 bits integer value.
1093  };
1094
1095  bool hasAllocation() const { return llvm::APInt::getNumWords(BitWidth) > 1; }
1096
1097  APNumericStorage(const APNumericStorage&); // do not implement
1098  APNumericStorage& operator=(const APNumericStorage&); // do not implement
1099
1100protected:
1101  APNumericStorage() : BitWidth(0), VAL(0) { }
1102
1103  llvm::APInt getIntValue() const {
1104    unsigned NumWords = llvm::APInt::getNumWords(BitWidth);
1105    if (NumWords > 1)
1106      return llvm::APInt(BitWidth, NumWords, pVal);
1107    else
1108      return llvm::APInt(BitWidth, VAL);
1109  }
1110  void setIntValue(ASTContext &C, const llvm::APInt &Val);
1111};
1112
1113class APIntStorage : public APNumericStorage {
1114public:
1115  llvm::APInt getValue() const { return getIntValue(); }
1116  void setValue(ASTContext &C, const llvm::APInt &Val) { setIntValue(C, Val); }
1117};
1118
1119class APFloatStorage : public APNumericStorage {
1120public:
1121  llvm::APFloat getValue(bool IsIEEE) const {
1122    return llvm::APFloat(getIntValue(), IsIEEE);
1123  }
1124  void setValue(ASTContext &C, const llvm::APFloat &Val) {
1125    setIntValue(C, Val.bitcastToAPInt());
1126  }
1127};
1128
1129class IntegerLiteral : public Expr {
1130  APIntStorage Num;
1131  SourceLocation Loc;
1132
1133  /// \brief Construct an empty integer literal.
1134  explicit IntegerLiteral(EmptyShell Empty)
1135    : Expr(IntegerLiteralClass, Empty) { }
1136
1137public:
1138  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
1139  // or UnsignedLongLongTy
1140  IntegerLiteral(ASTContext &C, const llvm::APInt &V,
1141                 QualType type, SourceLocation l)
1142    : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
1143           false, false),
1144      Loc(l) {
1145    assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
1146    assert(V.getBitWidth() == C.getIntWidth(type) &&
1147           "Integer type is not the correct size for constant.");
1148    setValue(C, V);
1149  }
1150
1151  /// \brief Returns a new integer literal with value 'V' and type 'type'.
1152  /// \param type - either IntTy, LongTy, LongLongTy, UnsignedIntTy,
1153  /// UnsignedLongTy, or UnsignedLongLongTy which should match the size of V
1154  /// \param V - the value that the returned integer literal contains.
1155  static IntegerLiteral *Create(ASTContext &C, const llvm::APInt &V,
1156                                QualType type, SourceLocation l);
1157  /// \brief Returns a new empty integer literal.
1158  static IntegerLiteral *Create(ASTContext &C, EmptyShell Empty);
1159
1160  llvm::APInt getValue() const { return Num.getValue(); }
1161  SourceRange getSourceRange() const { return SourceRange(Loc); }
1162
1163  /// \brief Retrieve the location of the literal.
1164  SourceLocation getLocation() const { return Loc; }
1165
1166  void setValue(ASTContext &C, const llvm::APInt &Val) { Num.setValue(C, Val); }
1167  void setLocation(SourceLocation Location) { Loc = Location; }
1168
1169  static bool classof(const Stmt *T) {
1170    return T->getStmtClass() == IntegerLiteralClass;
1171  }
1172  static bool classof(const IntegerLiteral *) { return true; }
1173
1174  // Iterators
1175  child_range children() { return child_range(); }
1176};
1177
1178class CharacterLiteral : public Expr {
1179public:
1180  enum CharacterKind {
1181    Ascii,
1182    Wide,
1183    UTF16,
1184    UTF32
1185  };
1186
1187private:
1188  unsigned Value;
1189  SourceLocation Loc;
1190  unsigned Kind : 2;
1191public:
1192  // type should be IntTy
1193  CharacterLiteral(unsigned value, CharacterKind kind, QualType type,
1194                   SourceLocation l)
1195    : Expr(CharacterLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
1196           false, false),
1197      Value(value), Loc(l), Kind(kind) {
1198  }
1199
1200  /// \brief Construct an empty character literal.
1201  CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
1202
1203  SourceLocation getLocation() const { return Loc; }
1204  CharacterKind getKind() const { return static_cast<CharacterKind>(Kind); }
1205
1206  SourceRange getSourceRange() const { return SourceRange(Loc); }
1207
1208  unsigned getValue() const { return Value; }
1209
1210  void setLocation(SourceLocation Location) { Loc = Location; }
1211  void setKind(CharacterKind kind) { Kind = kind; }
1212  void setValue(unsigned Val) { Value = Val; }
1213
1214  static bool classof(const Stmt *T) {
1215    return T->getStmtClass() == CharacterLiteralClass;
1216  }
1217  static bool classof(const CharacterLiteral *) { return true; }
1218
1219  // Iterators
1220  child_range children() { return child_range(); }
1221};
1222
1223class FloatingLiteral : public Expr {
1224  APFloatStorage Num;
1225  bool IsIEEE : 1; // Distinguishes between PPC128 and IEEE128.
1226  bool IsExact : 1;
1227  SourceLocation Loc;
1228
1229  FloatingLiteral(ASTContext &C, const llvm::APFloat &V, bool isexact,
1230                  QualType Type, SourceLocation L)
1231    : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false,
1232           false, false),
1233      IsIEEE(&C.getTargetInfo().getLongDoubleFormat() ==
1234             &llvm::APFloat::IEEEquad),
1235      IsExact(isexact), Loc(L) {
1236    setValue(C, V);
1237  }
1238
1239  /// \brief Construct an empty floating-point literal.
1240  explicit FloatingLiteral(ASTContext &C, EmptyShell Empty)
1241    : Expr(FloatingLiteralClass, Empty),
1242      IsIEEE(&C.getTargetInfo().getLongDoubleFormat() ==
1243             &llvm::APFloat::IEEEquad),
1244      IsExact(false) { }
1245
1246public:
1247  static FloatingLiteral *Create(ASTContext &C, const llvm::APFloat &V,
1248                                 bool isexact, QualType Type, SourceLocation L);
1249  static FloatingLiteral *Create(ASTContext &C, EmptyShell Empty);
1250
1251  llvm::APFloat getValue() const { return Num.getValue(IsIEEE); }
1252  void setValue(ASTContext &C, const llvm::APFloat &Val) {
1253    Num.setValue(C, Val);
1254  }
1255
1256  bool isExact() const { return IsExact; }
1257  void setExact(bool E) { IsExact = E; }
1258
1259  /// getValueAsApproximateDouble - This returns the value as an inaccurate
1260  /// double.  Note that this may cause loss of precision, but is useful for
1261  /// debugging dumps, etc.
1262  double getValueAsApproximateDouble() const;
1263
1264  SourceLocation getLocation() const { return Loc; }
1265  void setLocation(SourceLocation L) { Loc = L; }
1266
1267  SourceRange getSourceRange() const { return SourceRange(Loc); }
1268
1269  static bool classof(const Stmt *T) {
1270    return T->getStmtClass() == FloatingLiteralClass;
1271  }
1272  static bool classof(const FloatingLiteral *) { return true; }
1273
1274  // Iterators
1275  child_range children() { return child_range(); }
1276};
1277
1278/// ImaginaryLiteral - We support imaginary integer and floating point literals,
1279/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
1280/// IntegerLiteral classes.  Instances of this class always have a Complex type
1281/// whose element type matches the subexpression.
1282///
1283class ImaginaryLiteral : public Expr {
1284  Stmt *Val;
1285public:
1286  ImaginaryLiteral(Expr *val, QualType Ty)
1287    : Expr(ImaginaryLiteralClass, Ty, VK_RValue, OK_Ordinary, false, false,
1288           false, false),
1289      Val(val) {}
1290
1291  /// \brief Build an empty imaginary literal.
1292  explicit ImaginaryLiteral(EmptyShell Empty)
1293    : Expr(ImaginaryLiteralClass, Empty) { }
1294
1295  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1296  Expr *getSubExpr() { return cast<Expr>(Val); }
1297  void setSubExpr(Expr *E) { Val = E; }
1298
1299  SourceRange getSourceRange() const { return Val->getSourceRange(); }
1300  static bool classof(const Stmt *T) {
1301    return T->getStmtClass() == ImaginaryLiteralClass;
1302  }
1303  static bool classof(const ImaginaryLiteral *) { return true; }
1304
1305  // Iterators
1306  child_range children() { return child_range(&Val, &Val+1); }
1307};
1308
1309/// StringLiteral - This represents a string literal expression, e.g. "foo"
1310/// or L"bar" (wide strings).  The actual string is returned by getStrData()
1311/// is NOT null-terminated, and the length of the string is determined by
1312/// calling getByteLength().  The C type for a string is always a
1313/// ConstantArrayType.  In C++, the char type is const qualified, in C it is
1314/// not.
1315///
1316/// Note that strings in C can be formed by concatenation of multiple string
1317/// literal pptokens in translation phase #6.  This keeps track of the locations
1318/// of each of these pieces.
1319///
1320/// Strings in C can also be truncated and extended by assigning into arrays,
1321/// e.g. with constructs like:
1322///   char X[2] = "foobar";
1323/// In this case, getByteLength() will return 6, but the string literal will
1324/// have type "char[2]".
1325class StringLiteral : public Expr {
1326public:
1327  enum StringKind {
1328    Ascii,
1329    Wide,
1330    UTF8,
1331    UTF16,
1332    UTF32
1333  };
1334
1335private:
1336  friend class ASTStmtReader;
1337
1338  union {
1339    const char *asChar;
1340    const uint16_t *asUInt16;
1341    const uint32_t *asUInt32;
1342  } StrData;
1343  unsigned Length;
1344  unsigned CharByteWidth;
1345  unsigned NumConcatenated;
1346  unsigned Kind : 3;
1347  bool IsPascal : 1;
1348  SourceLocation TokLocs[1];
1349
1350  StringLiteral(QualType Ty) :
1351    Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary, false, false, false,
1352         false) {}
1353
1354  static int mapCharByteWidth(TargetInfo const &target,StringKind k);
1355
1356public:
1357  /// This is the "fully general" constructor that allows representation of
1358  /// strings formed from multiple concatenated tokens.
1359  static StringLiteral *Create(ASTContext &C, StringRef Str, StringKind Kind,
1360                               bool Pascal, QualType Ty,
1361                               const SourceLocation *Loc, unsigned NumStrs);
1362
1363  /// Simple constructor for string literals made from one token.
1364  static StringLiteral *Create(ASTContext &C, StringRef Str, StringKind Kind,
1365                               bool Pascal, QualType Ty,
1366                               SourceLocation Loc) {
1367    return Create(C, Str, Kind, Pascal, Ty, &Loc, 1);
1368  }
1369
1370  /// \brief Construct an empty string literal.
1371  static StringLiteral *CreateEmpty(ASTContext &C, unsigned NumStrs);
1372
1373  StringRef getString() const {
1374    assert(CharByteWidth==1
1375           && "This function is used in places that assume strings use char");
1376    return StringRef(StrData.asChar, getByteLength());
1377  }
1378
1379  /// Allow clients that need the byte representation, such as ASTWriterStmt
1380  /// ::VisitStringLiteral(), access.
1381  StringRef getBytes() const {
1382    // FIXME: StringRef may not be the right type to use as a result for this.
1383    if (CharByteWidth == 1)
1384      return StringRef(StrData.asChar, getByteLength());
1385    if (CharByteWidth == 4)
1386      return StringRef(reinterpret_cast<const char*>(StrData.asUInt32),
1387                       getByteLength());
1388    assert(CharByteWidth == 2 && "unsupported CharByteWidth");
1389    return StringRef(reinterpret_cast<const char*>(StrData.asUInt16),
1390                     getByteLength());
1391  }
1392
1393  uint32_t getCodeUnit(size_t i) const {
1394    assert(i < Length && "out of bounds access");
1395    if (CharByteWidth == 1)
1396      return static_cast<unsigned char>(StrData.asChar[i]);
1397    if (CharByteWidth == 4)
1398      return StrData.asUInt32[i];
1399    assert(CharByteWidth == 2 && "unsupported CharByteWidth");
1400    return StrData.asUInt16[i];
1401  }
1402
1403  unsigned getByteLength() const { return CharByteWidth*Length; }
1404  unsigned getLength() const { return Length; }
1405  unsigned getCharByteWidth() const { return CharByteWidth; }
1406
1407  /// \brief Sets the string data to the given string data.
1408  void setString(ASTContext &C, StringRef Str,
1409                 StringKind Kind, bool IsPascal);
1410
1411  StringKind getKind() const { return static_cast<StringKind>(Kind); }
1412
1413
1414  bool isAscii() const { return Kind == Ascii; }
1415  bool isWide() const { return Kind == Wide; }
1416  bool isUTF8() const { return Kind == UTF8; }
1417  bool isUTF16() const { return Kind == UTF16; }
1418  bool isUTF32() const { return Kind == UTF32; }
1419  bool isPascal() const { return IsPascal; }
1420
1421  bool containsNonAsciiOrNull() const {
1422    StringRef Str = getString();
1423    for (unsigned i = 0, e = Str.size(); i != e; ++i)
1424      if (!isascii(Str[i]) || !Str[i])
1425        return true;
1426    return false;
1427  }
1428
1429  /// getNumConcatenated - Get the number of string literal tokens that were
1430  /// concatenated in translation phase #6 to form this string literal.
1431  unsigned getNumConcatenated() const { return NumConcatenated; }
1432
1433  SourceLocation getStrTokenLoc(unsigned TokNum) const {
1434    assert(TokNum < NumConcatenated && "Invalid tok number");
1435    return TokLocs[TokNum];
1436  }
1437  void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
1438    assert(TokNum < NumConcatenated && "Invalid tok number");
1439    TokLocs[TokNum] = L;
1440  }
1441
1442  /// getLocationOfByte - Return a source location that points to the specified
1443  /// byte of this string literal.
1444  ///
1445  /// Strings are amazingly complex.  They can be formed from multiple tokens
1446  /// and can have escape sequences in them in addition to the usual trigraph
1447  /// and escaped newline business.  This routine handles this complexity.
1448  ///
1449  SourceLocation getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
1450                                   const LangOptions &Features,
1451                                   const TargetInfo &Target) const;
1452
1453  typedef const SourceLocation *tokloc_iterator;
1454  tokloc_iterator tokloc_begin() const { return TokLocs; }
1455  tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; }
1456
1457  SourceRange getSourceRange() const {
1458    return SourceRange(TokLocs[0], TokLocs[NumConcatenated-1]);
1459  }
1460  static bool classof(const Stmt *T) {
1461    return T->getStmtClass() == StringLiteralClass;
1462  }
1463  static bool classof(const StringLiteral *) { return true; }
1464
1465  // Iterators
1466  child_range children() { return child_range(); }
1467};
1468
1469/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
1470/// AST node is only formed if full location information is requested.
1471class ParenExpr : public Expr {
1472  SourceLocation L, R;
1473  Stmt *Val;
1474public:
1475  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
1476    : Expr(ParenExprClass, val->getType(),
1477           val->getValueKind(), val->getObjectKind(),
1478           val->isTypeDependent(), val->isValueDependent(),
1479           val->isInstantiationDependent(),
1480           val->containsUnexpandedParameterPack()),
1481      L(l), R(r), Val(val) {}
1482
1483  /// \brief Construct an empty parenthesized expression.
1484  explicit ParenExpr(EmptyShell Empty)
1485    : Expr(ParenExprClass, Empty) { }
1486
1487  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1488  Expr *getSubExpr() { return cast<Expr>(Val); }
1489  void setSubExpr(Expr *E) { Val = E; }
1490
1491  SourceRange getSourceRange() const { return SourceRange(L, R); }
1492
1493  /// \brief Get the location of the left parentheses '('.
1494  SourceLocation getLParen() const { return L; }
1495  void setLParen(SourceLocation Loc) { L = Loc; }
1496
1497  /// \brief Get the location of the right parentheses ')'.
1498  SourceLocation getRParen() const { return R; }
1499  void setRParen(SourceLocation Loc) { R = Loc; }
1500
1501  static bool classof(const Stmt *T) {
1502    return T->getStmtClass() == ParenExprClass;
1503  }
1504  static bool classof(const ParenExpr *) { return true; }
1505
1506  // Iterators
1507  child_range children() { return child_range(&Val, &Val+1); }
1508};
1509
1510
1511/// UnaryOperator - This represents the unary-expression's (except sizeof and
1512/// alignof), the postinc/postdec operators from postfix-expression, and various
1513/// extensions.
1514///
1515/// Notes on various nodes:
1516///
1517/// Real/Imag - These return the real/imag part of a complex operand.  If
1518///   applied to a non-complex value, the former returns its operand and the
1519///   later returns zero in the type of the operand.
1520///
1521class UnaryOperator : public Expr {
1522public:
1523  typedef UnaryOperatorKind Opcode;
1524
1525private:
1526  unsigned Opc : 5;
1527  SourceLocation Loc;
1528  Stmt *Val;
1529public:
1530
1531  UnaryOperator(Expr *input, Opcode opc, QualType type,
1532                ExprValueKind VK, ExprObjectKind OK, SourceLocation l)
1533    : Expr(UnaryOperatorClass, type, VK, OK,
1534           input->isTypeDependent() || type->isDependentType(),
1535           input->isValueDependent(),
1536           (input->isInstantiationDependent() ||
1537            type->isInstantiationDependentType()),
1538           input->containsUnexpandedParameterPack()),
1539      Opc(opc), Loc(l), Val(input) {}
1540
1541  /// \brief Build an empty unary operator.
1542  explicit UnaryOperator(EmptyShell Empty)
1543    : Expr(UnaryOperatorClass, Empty), Opc(UO_AddrOf) { }
1544
1545  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
1546  void setOpcode(Opcode O) { Opc = O; }
1547
1548  Expr *getSubExpr() const { return cast<Expr>(Val); }
1549  void setSubExpr(Expr *E) { Val = E; }
1550
1551  /// getOperatorLoc - Return the location of the operator.
1552  SourceLocation getOperatorLoc() const { return Loc; }
1553  void setOperatorLoc(SourceLocation L) { Loc = L; }
1554
1555  /// isPostfix - Return true if this is a postfix operation, like x++.
1556  static bool isPostfix(Opcode Op) {
1557    return Op == UO_PostInc || Op == UO_PostDec;
1558  }
1559
1560  /// isPrefix - Return true if this is a prefix operation, like --x.
1561  static bool isPrefix(Opcode Op) {
1562    return Op == UO_PreInc || Op == UO_PreDec;
1563  }
1564
1565  bool isPrefix() const { return isPrefix(getOpcode()); }
1566  bool isPostfix() const { return isPostfix(getOpcode()); }
1567
1568  static bool isIncrementOp(Opcode Op) {
1569    return Op == UO_PreInc || Op == UO_PostInc;
1570  }
1571  bool isIncrementOp() const {
1572    return isIncrementOp(getOpcode());
1573  }
1574
1575  static bool isDecrementOp(Opcode Op) {
1576    return Op == UO_PreDec || Op == UO_PostDec;
1577  }
1578  bool isDecrementOp() const {
1579    return isDecrementOp(getOpcode());
1580  }
1581
1582  static bool isIncrementDecrementOp(Opcode Op) { return Op <= UO_PreDec; }
1583  bool isIncrementDecrementOp() const {
1584    return isIncrementDecrementOp(getOpcode());
1585  }
1586
1587  static bool isArithmeticOp(Opcode Op) {
1588    return Op >= UO_Plus && Op <= UO_LNot;
1589  }
1590  bool isArithmeticOp() const { return isArithmeticOp(getOpcode()); }
1591
1592  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1593  /// corresponds to, e.g. "sizeof" or "[pre]++"
1594  static const char *getOpcodeStr(Opcode Op);
1595
1596  /// \brief Retrieve the unary opcode that corresponds to the given
1597  /// overloaded operator.
1598  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
1599
1600  /// \brief Retrieve the overloaded operator kind that corresponds to
1601  /// the given unary opcode.
1602  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
1603
1604  SourceRange getSourceRange() const {
1605    if (isPostfix())
1606      return SourceRange(Val->getLocStart(), Loc);
1607    else
1608      return SourceRange(Loc, Val->getLocEnd());
1609  }
1610  SourceLocation getExprLoc() const { return Loc; }
1611
1612  static bool classof(const Stmt *T) {
1613    return T->getStmtClass() == UnaryOperatorClass;
1614  }
1615  static bool classof(const UnaryOperator *) { return true; }
1616
1617  // Iterators
1618  child_range children() { return child_range(&Val, &Val+1); }
1619};
1620
1621/// OffsetOfExpr - [C99 7.17] - This represents an expression of the form
1622/// offsetof(record-type, member-designator). For example, given:
1623/// @code
1624/// struct S {
1625///   float f;
1626///   double d;
1627/// };
1628/// struct T {
1629///   int i;
1630///   struct S s[10];
1631/// };
1632/// @endcode
1633/// we can represent and evaluate the expression @c offsetof(struct T, s[2].d).
1634
1635class OffsetOfExpr : public Expr {
1636public:
1637  // __builtin_offsetof(type, identifier(.identifier|[expr])*)
1638  class OffsetOfNode {
1639  public:
1640    /// \brief The kind of offsetof node we have.
1641    enum Kind {
1642      /// \brief An index into an array.
1643      Array = 0x00,
1644      /// \brief A field.
1645      Field = 0x01,
1646      /// \brief A field in a dependent type, known only by its name.
1647      Identifier = 0x02,
1648      /// \brief An implicit indirection through a C++ base class, when the
1649      /// field found is in a base class.
1650      Base = 0x03
1651    };
1652
1653  private:
1654    enum { MaskBits = 2, Mask = 0x03 };
1655
1656    /// \brief The source range that covers this part of the designator.
1657    SourceRange Range;
1658
1659    /// \brief The data describing the designator, which comes in three
1660    /// different forms, depending on the lower two bits.
1661    ///   - An unsigned index into the array of Expr*'s stored after this node
1662    ///     in memory, for [constant-expression] designators.
1663    ///   - A FieldDecl*, for references to a known field.
1664    ///   - An IdentifierInfo*, for references to a field with a given name
1665    ///     when the class type is dependent.
1666    ///   - A CXXBaseSpecifier*, for references that look at a field in a
1667    ///     base class.
1668    uintptr_t Data;
1669
1670  public:
1671    /// \brief Create an offsetof node that refers to an array element.
1672    OffsetOfNode(SourceLocation LBracketLoc, unsigned Index,
1673                 SourceLocation RBracketLoc)
1674      : Range(LBracketLoc, RBracketLoc), Data((Index << 2) | Array) { }
1675
1676    /// \brief Create an offsetof node that refers to a field.
1677    OffsetOfNode(SourceLocation DotLoc, FieldDecl *Field,
1678                 SourceLocation NameLoc)
1679      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1680        Data(reinterpret_cast<uintptr_t>(Field) | OffsetOfNode::Field) { }
1681
1682    /// \brief Create an offsetof node that refers to an identifier.
1683    OffsetOfNode(SourceLocation DotLoc, IdentifierInfo *Name,
1684                 SourceLocation NameLoc)
1685      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1686        Data(reinterpret_cast<uintptr_t>(Name) | Identifier) { }
1687
1688    /// \brief Create an offsetof node that refers into a C++ base class.
1689    explicit OffsetOfNode(const CXXBaseSpecifier *Base)
1690      : Range(), Data(reinterpret_cast<uintptr_t>(Base) | OffsetOfNode::Base) {}
1691
1692    /// \brief Determine what kind of offsetof node this is.
1693    Kind getKind() const {
1694      return static_cast<Kind>(Data & Mask);
1695    }
1696
1697    /// \brief For an array element node, returns the index into the array
1698    /// of expressions.
1699    unsigned getArrayExprIndex() const {
1700      assert(getKind() == Array);
1701      return Data >> 2;
1702    }
1703
1704    /// \brief For a field offsetof node, returns the field.
1705    FieldDecl *getField() const {
1706      assert(getKind() == Field);
1707      return reinterpret_cast<FieldDecl *>(Data & ~(uintptr_t)Mask);
1708    }
1709
1710    /// \brief For a field or identifier offsetof node, returns the name of
1711    /// the field.
1712    IdentifierInfo *getFieldName() const;
1713
1714    /// \brief For a base class node, returns the base specifier.
1715    CXXBaseSpecifier *getBase() const {
1716      assert(getKind() == Base);
1717      return reinterpret_cast<CXXBaseSpecifier *>(Data & ~(uintptr_t)Mask);
1718    }
1719
1720    /// \brief Retrieve the source range that covers this offsetof node.
1721    ///
1722    /// For an array element node, the source range contains the locations of
1723    /// the square brackets. For a field or identifier node, the source range
1724    /// contains the location of the period (if there is one) and the
1725    /// identifier.
1726    SourceRange getSourceRange() const { return Range; }
1727  };
1728
1729private:
1730
1731  SourceLocation OperatorLoc, RParenLoc;
1732  // Base type;
1733  TypeSourceInfo *TSInfo;
1734  // Number of sub-components (i.e. instances of OffsetOfNode).
1735  unsigned NumComps;
1736  // Number of sub-expressions (i.e. array subscript expressions).
1737  unsigned NumExprs;
1738
1739  OffsetOfExpr(ASTContext &C, QualType type,
1740               SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1741               OffsetOfNode* compsPtr, unsigned numComps,
1742               Expr** exprsPtr, unsigned numExprs,
1743               SourceLocation RParenLoc);
1744
1745  explicit OffsetOfExpr(unsigned numComps, unsigned numExprs)
1746    : Expr(OffsetOfExprClass, EmptyShell()),
1747      TSInfo(0), NumComps(numComps), NumExprs(numExprs) {}
1748
1749public:
1750
1751  static OffsetOfExpr *Create(ASTContext &C, QualType type,
1752                              SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1753                              OffsetOfNode* compsPtr, unsigned numComps,
1754                              Expr** exprsPtr, unsigned numExprs,
1755                              SourceLocation RParenLoc);
1756
1757  static OffsetOfExpr *CreateEmpty(ASTContext &C,
1758                                   unsigned NumComps, unsigned NumExprs);
1759
1760  /// getOperatorLoc - Return the location of the operator.
1761  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1762  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
1763
1764  /// \brief Return the location of the right parentheses.
1765  SourceLocation getRParenLoc() const { return RParenLoc; }
1766  void setRParenLoc(SourceLocation R) { RParenLoc = R; }
1767
1768  TypeSourceInfo *getTypeSourceInfo() const {
1769    return TSInfo;
1770  }
1771  void setTypeSourceInfo(TypeSourceInfo *tsi) {
1772    TSInfo = tsi;
1773  }
1774
1775  const OffsetOfNode &getComponent(unsigned Idx) const {
1776    assert(Idx < NumComps && "Subscript out of range");
1777    return reinterpret_cast<const OffsetOfNode *> (this + 1)[Idx];
1778  }
1779
1780  void setComponent(unsigned Idx, OffsetOfNode ON) {
1781    assert(Idx < NumComps && "Subscript out of range");
1782    reinterpret_cast<OffsetOfNode *> (this + 1)[Idx] = ON;
1783  }
1784
1785  unsigned getNumComponents() const {
1786    return NumComps;
1787  }
1788
1789  Expr* getIndexExpr(unsigned Idx) {
1790    assert(Idx < NumExprs && "Subscript out of range");
1791    return reinterpret_cast<Expr **>(
1792                    reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx];
1793  }
1794  const Expr *getIndexExpr(unsigned Idx) const {
1795    return const_cast<OffsetOfExpr*>(this)->getIndexExpr(Idx);
1796  }
1797
1798  void setIndexExpr(unsigned Idx, Expr* E) {
1799    assert(Idx < NumComps && "Subscript out of range");
1800    reinterpret_cast<Expr **>(
1801                reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx] = E;
1802  }
1803
1804  unsigned getNumExpressions() const {
1805    return NumExprs;
1806  }
1807
1808  SourceRange getSourceRange() const {
1809    return SourceRange(OperatorLoc, RParenLoc);
1810  }
1811
1812  static bool classof(const Stmt *T) {
1813    return T->getStmtClass() == OffsetOfExprClass;
1814  }
1815
1816  static bool classof(const OffsetOfExpr *) { return true; }
1817
1818  // Iterators
1819  child_range children() {
1820    Stmt **begin =
1821      reinterpret_cast<Stmt**>(reinterpret_cast<OffsetOfNode*>(this + 1)
1822                               + NumComps);
1823    return child_range(begin, begin + NumExprs);
1824  }
1825};
1826
1827/// UnaryExprOrTypeTraitExpr - expression with either a type or (unevaluated)
1828/// expression operand.  Used for sizeof/alignof (C99 6.5.3.4) and
1829/// vec_step (OpenCL 1.1 6.11.12).
1830class UnaryExprOrTypeTraitExpr : public Expr {
1831  unsigned Kind : 2;
1832  bool isType : 1;    // true if operand is a type, false if an expression
1833  union {
1834    TypeSourceInfo *Ty;
1835    Stmt *Ex;
1836  } Argument;
1837  SourceLocation OpLoc, RParenLoc;
1838
1839public:
1840  UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, TypeSourceInfo *TInfo,
1841                           QualType resultType, SourceLocation op,
1842                           SourceLocation rp) :
1843      Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
1844           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1845           // Value-dependent if the argument is type-dependent.
1846           TInfo->getType()->isDependentType(),
1847           TInfo->getType()->isInstantiationDependentType(),
1848           TInfo->getType()->containsUnexpandedParameterPack()),
1849      Kind(ExprKind), isType(true), OpLoc(op), RParenLoc(rp) {
1850    Argument.Ty = TInfo;
1851  }
1852
1853  UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, Expr *E,
1854                           QualType resultType, SourceLocation op,
1855                           SourceLocation rp) :
1856      Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
1857           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1858           // Value-dependent if the argument is type-dependent.
1859           E->isTypeDependent(),
1860           E->isInstantiationDependent(),
1861           E->containsUnexpandedParameterPack()),
1862      Kind(ExprKind), isType(false), OpLoc(op), RParenLoc(rp) {
1863    Argument.Ex = E;
1864  }
1865
1866  /// \brief Construct an empty sizeof/alignof expression.
1867  explicit UnaryExprOrTypeTraitExpr(EmptyShell Empty)
1868    : Expr(UnaryExprOrTypeTraitExprClass, Empty) { }
1869
1870  UnaryExprOrTypeTrait getKind() const {
1871    return static_cast<UnaryExprOrTypeTrait>(Kind);
1872  }
1873  void setKind(UnaryExprOrTypeTrait K) { Kind = K; }
1874
1875  bool isArgumentType() const { return isType; }
1876  QualType getArgumentType() const {
1877    return getArgumentTypeInfo()->getType();
1878  }
1879  TypeSourceInfo *getArgumentTypeInfo() const {
1880    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
1881    return Argument.Ty;
1882  }
1883  Expr *getArgumentExpr() {
1884    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
1885    return static_cast<Expr*>(Argument.Ex);
1886  }
1887  const Expr *getArgumentExpr() const {
1888    return const_cast<UnaryExprOrTypeTraitExpr*>(this)->getArgumentExpr();
1889  }
1890
1891  void setArgument(Expr *E) { Argument.Ex = E; isType = false; }
1892  void setArgument(TypeSourceInfo *TInfo) {
1893    Argument.Ty = TInfo;
1894    isType = true;
1895  }
1896
1897  /// Gets the argument type, or the type of the argument expression, whichever
1898  /// is appropriate.
1899  QualType getTypeOfArgument() const {
1900    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
1901  }
1902
1903  SourceLocation getOperatorLoc() const { return OpLoc; }
1904  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
1905
1906  SourceLocation getRParenLoc() const { return RParenLoc; }
1907  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1908
1909  SourceRange getSourceRange() const {
1910    return SourceRange(OpLoc, RParenLoc);
1911  }
1912
1913  static bool classof(const Stmt *T) {
1914    return T->getStmtClass() == UnaryExprOrTypeTraitExprClass;
1915  }
1916  static bool classof(const UnaryExprOrTypeTraitExpr *) { return true; }
1917
1918  // Iterators
1919  child_range children();
1920};
1921
1922//===----------------------------------------------------------------------===//
1923// Postfix Operators.
1924//===----------------------------------------------------------------------===//
1925
1926/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
1927class ArraySubscriptExpr : public Expr {
1928  enum { LHS, RHS, END_EXPR=2 };
1929  Stmt* SubExprs[END_EXPR];
1930  SourceLocation RBracketLoc;
1931public:
1932  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
1933                     ExprValueKind VK, ExprObjectKind OK,
1934                     SourceLocation rbracketloc)
1935  : Expr(ArraySubscriptExprClass, t, VK, OK,
1936         lhs->isTypeDependent() || rhs->isTypeDependent(),
1937         lhs->isValueDependent() || rhs->isValueDependent(),
1938         (lhs->isInstantiationDependent() ||
1939          rhs->isInstantiationDependent()),
1940         (lhs->containsUnexpandedParameterPack() ||
1941          rhs->containsUnexpandedParameterPack())),
1942    RBracketLoc(rbracketloc) {
1943    SubExprs[LHS] = lhs;
1944    SubExprs[RHS] = rhs;
1945  }
1946
1947  /// \brief Create an empty array subscript expression.
1948  explicit ArraySubscriptExpr(EmptyShell Shell)
1949    : Expr(ArraySubscriptExprClass, Shell) { }
1950
1951  /// An array access can be written A[4] or 4[A] (both are equivalent).
1952  /// - getBase() and getIdx() always present the normalized view: A[4].
1953  ///    In this case getBase() returns "A" and getIdx() returns "4".
1954  /// - getLHS() and getRHS() present the syntactic view. e.g. for
1955  ///    4[A] getLHS() returns "4".
1956  /// Note: Because vector element access is also written A[4] we must
1957  /// predicate the format conversion in getBase and getIdx only on the
1958  /// the type of the RHS, as it is possible for the LHS to be a vector of
1959  /// integer type
1960  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
1961  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1962  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1963
1964  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
1965  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1966  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1967
1968  Expr *getBase() {
1969    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1970  }
1971
1972  const Expr *getBase() const {
1973    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1974  }
1975
1976  Expr *getIdx() {
1977    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1978  }
1979
1980  const Expr *getIdx() const {
1981    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1982  }
1983
1984  SourceRange getSourceRange() const {
1985    return SourceRange(getLHS()->getLocStart(), RBracketLoc);
1986  }
1987
1988  SourceLocation getRBracketLoc() const { return RBracketLoc; }
1989  void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
1990
1991  SourceLocation getExprLoc() const { return getBase()->getExprLoc(); }
1992
1993  static bool classof(const Stmt *T) {
1994    return T->getStmtClass() == ArraySubscriptExprClass;
1995  }
1996  static bool classof(const ArraySubscriptExpr *) { return true; }
1997
1998  // Iterators
1999  child_range children() {
2000    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
2001  }
2002};
2003
2004
2005/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
2006/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
2007/// while its subclasses may represent alternative syntax that (semantically)
2008/// results in a function call. For example, CXXOperatorCallExpr is
2009/// a subclass for overloaded operator calls that use operator syntax, e.g.,
2010/// "str1 + str2" to resolve to a function call.
2011class CallExpr : public Expr {
2012  enum { FN=0, PREARGS_START=1 };
2013  Stmt **SubExprs;
2014  unsigned NumArgs;
2015  SourceLocation RParenLoc;
2016
2017protected:
2018  // These versions of the constructor are for derived classes.
2019  CallExpr(ASTContext& C, StmtClass SC, Expr *fn, unsigned NumPreArgs,
2020           Expr **args, unsigned numargs, QualType t, ExprValueKind VK,
2021           SourceLocation rparenloc);
2022  CallExpr(ASTContext &C, StmtClass SC, unsigned NumPreArgs, EmptyShell Empty);
2023
2024  Stmt *getPreArg(unsigned i) {
2025    assert(i < getNumPreArgs() && "Prearg access out of range!");
2026    return SubExprs[PREARGS_START+i];
2027  }
2028  const Stmt *getPreArg(unsigned i) const {
2029    assert(i < getNumPreArgs() && "Prearg access out of range!");
2030    return SubExprs[PREARGS_START+i];
2031  }
2032  void setPreArg(unsigned i, Stmt *PreArg) {
2033    assert(i < getNumPreArgs() && "Prearg access out of range!");
2034    SubExprs[PREARGS_START+i] = PreArg;
2035  }
2036
2037  unsigned getNumPreArgs() const { return CallExprBits.NumPreArgs; }
2038
2039public:
2040  CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, QualType t,
2041           ExprValueKind VK, SourceLocation rparenloc);
2042
2043  /// \brief Build an empty call expression.
2044  CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty);
2045
2046  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
2047  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
2048  void setCallee(Expr *F) { SubExprs[FN] = F; }
2049
2050  Decl *getCalleeDecl();
2051  const Decl *getCalleeDecl() const {
2052    return const_cast<CallExpr*>(this)->getCalleeDecl();
2053  }
2054
2055  /// \brief If the callee is a FunctionDecl, return it. Otherwise return 0.
2056  FunctionDecl *getDirectCallee();
2057  const FunctionDecl *getDirectCallee() const {
2058    return const_cast<CallExpr*>(this)->getDirectCallee();
2059  }
2060
2061  /// getNumArgs - Return the number of actual arguments to this call.
2062  ///
2063  unsigned getNumArgs() const { return NumArgs; }
2064
2065  /// \brief Retrieve the call arguments.
2066  Expr **getArgs() {
2067    return reinterpret_cast<Expr **>(SubExprs+getNumPreArgs()+PREARGS_START);
2068  }
2069  const Expr *const *getArgs() const {
2070    return const_cast<CallExpr*>(this)->getArgs();
2071  }
2072
2073  /// getArg - Return the specified argument.
2074  Expr *getArg(unsigned Arg) {
2075    assert(Arg < NumArgs && "Arg access out of range!");
2076    return cast<Expr>(SubExprs[Arg+getNumPreArgs()+PREARGS_START]);
2077  }
2078  const Expr *getArg(unsigned Arg) const {
2079    assert(Arg < NumArgs && "Arg access out of range!");
2080    return cast<Expr>(SubExprs[Arg+getNumPreArgs()+PREARGS_START]);
2081  }
2082
2083  /// setArg - Set the specified argument.
2084  void setArg(unsigned Arg, Expr *ArgExpr) {
2085    assert(Arg < NumArgs && "Arg access out of range!");
2086    SubExprs[Arg+getNumPreArgs()+PREARGS_START] = ArgExpr;
2087  }
2088
2089  /// setNumArgs - This changes the number of arguments present in this call.
2090  /// Any orphaned expressions are deleted by this, and any new operands are set
2091  /// to null.
2092  void setNumArgs(ASTContext& C, unsigned NumArgs);
2093
2094  typedef ExprIterator arg_iterator;
2095  typedef ConstExprIterator const_arg_iterator;
2096
2097  arg_iterator arg_begin() { return SubExprs+PREARGS_START+getNumPreArgs(); }
2098  arg_iterator arg_end() {
2099    return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
2100  }
2101  const_arg_iterator arg_begin() const {
2102    return SubExprs+PREARGS_START+getNumPreArgs();
2103  }
2104  const_arg_iterator arg_end() const {
2105    return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
2106  }
2107
2108  /// getNumCommas - Return the number of commas that must have been present in
2109  /// this function call.
2110  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
2111
2112  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
2113  /// not, return 0.
2114  unsigned isBuiltinCall() const;
2115
2116  /// getCallReturnType - Get the return type of the call expr. This is not
2117  /// always the type of the expr itself, if the return type is a reference
2118  /// type.
2119  QualType getCallReturnType() const;
2120
2121  SourceLocation getRParenLoc() const { return RParenLoc; }
2122  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2123
2124  SourceRange getSourceRange() const;
2125
2126  static bool classof(const Stmt *T) {
2127    return T->getStmtClass() >= firstCallExprConstant &&
2128           T->getStmtClass() <= lastCallExprConstant;
2129  }
2130  static bool classof(const CallExpr *) { return true; }
2131
2132  // Iterators
2133  child_range children() {
2134    return child_range(&SubExprs[0],
2135                       &SubExprs[0]+NumArgs+getNumPreArgs()+PREARGS_START);
2136  }
2137};
2138
2139/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.  X->F and X.F.
2140///
2141class MemberExpr : public Expr {
2142  /// Extra data stored in some member expressions.
2143  struct MemberNameQualifier {
2144    /// \brief The nested-name-specifier that qualifies the name, including
2145    /// source-location information.
2146    NestedNameSpecifierLoc QualifierLoc;
2147
2148    /// \brief The DeclAccessPair through which the MemberDecl was found due to
2149    /// name qualifiers.
2150    DeclAccessPair FoundDecl;
2151  };
2152
2153  /// Base - the expression for the base pointer or structure references.  In
2154  /// X.F, this is "X".
2155  Stmt *Base;
2156
2157  /// MemberDecl - This is the decl being referenced by the field/member name.
2158  /// In X.F, this is the decl referenced by F.
2159  ValueDecl *MemberDecl;
2160
2161  /// MemberLoc - This is the location of the member name.
2162  SourceLocation MemberLoc;
2163
2164  /// MemberDNLoc - Provides source/type location info for the
2165  /// declaration name embedded in MemberDecl.
2166  DeclarationNameLoc MemberDNLoc;
2167
2168  /// IsArrow - True if this is "X->F", false if this is "X.F".
2169  bool IsArrow : 1;
2170
2171  /// \brief True if this member expression used a nested-name-specifier to
2172  /// refer to the member, e.g., "x->Base::f", or found its member via a using
2173  /// declaration.  When true, a MemberNameQualifier
2174  /// structure is allocated immediately after the MemberExpr.
2175  bool HasQualifierOrFoundDecl : 1;
2176
2177  /// \brief True if this member expression specified a template keyword
2178  /// and/or a template argument list explicitly, e.g., x->f<int>,
2179  /// x->template f, x->template f<int>.
2180  /// When true, an ASTTemplateKWAndArgsInfo structure and its
2181  /// TemplateArguments (if any) are allocated immediately after
2182  /// the MemberExpr or, if the member expression also has a qualifier,
2183  /// after the MemberNameQualifier structure.
2184  bool HasTemplateKWAndArgsInfo : 1;
2185
2186  /// \brief True if this member expression refers to a method that
2187  /// was resolved from an overloaded set having size greater than 1.
2188  bool HadMultipleCandidates : 1;
2189
2190  /// \brief Retrieve the qualifier that preceded the member name, if any.
2191  MemberNameQualifier *getMemberQualifier() {
2192    assert(HasQualifierOrFoundDecl);
2193    return reinterpret_cast<MemberNameQualifier *> (this + 1);
2194  }
2195
2196  /// \brief Retrieve the qualifier that preceded the member name, if any.
2197  const MemberNameQualifier *getMemberQualifier() const {
2198    return const_cast<MemberExpr *>(this)->getMemberQualifier();
2199  }
2200
2201public:
2202  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
2203             const DeclarationNameInfo &NameInfo, QualType ty,
2204             ExprValueKind VK, ExprObjectKind OK)
2205    : Expr(MemberExprClass, ty, VK, OK,
2206           base->isTypeDependent(),
2207           base->isValueDependent(),
2208           base->isInstantiationDependent(),
2209           base->containsUnexpandedParameterPack()),
2210      Base(base), MemberDecl(memberdecl), MemberLoc(NameInfo.getLoc()),
2211      MemberDNLoc(NameInfo.getInfo()), IsArrow(isarrow),
2212      HasQualifierOrFoundDecl(false), HasTemplateKWAndArgsInfo(false),
2213      HadMultipleCandidates(false) {
2214    assert(memberdecl->getDeclName() == NameInfo.getName());
2215  }
2216
2217  // NOTE: this constructor should be used only when it is known that
2218  // the member name can not provide additional syntactic info
2219  // (i.e., source locations for C++ operator names or type source info
2220  // for constructors, destructors and conversion operators).
2221  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
2222             SourceLocation l, QualType ty,
2223             ExprValueKind VK, ExprObjectKind OK)
2224    : Expr(MemberExprClass, ty, VK, OK,
2225           base->isTypeDependent(), base->isValueDependent(),
2226           base->isInstantiationDependent(),
2227           base->containsUnexpandedParameterPack()),
2228      Base(base), MemberDecl(memberdecl), MemberLoc(l), MemberDNLoc(),
2229      IsArrow(isarrow),
2230      HasQualifierOrFoundDecl(false), HasTemplateKWAndArgsInfo(false),
2231      HadMultipleCandidates(false) {}
2232
2233  static MemberExpr *Create(ASTContext &C, Expr *base, bool isarrow,
2234                            NestedNameSpecifierLoc QualifierLoc,
2235                            SourceLocation TemplateKWLoc,
2236                            ValueDecl *memberdecl, DeclAccessPair founddecl,
2237                            DeclarationNameInfo MemberNameInfo,
2238                            const TemplateArgumentListInfo *targs,
2239                            QualType ty, ExprValueKind VK, ExprObjectKind OK);
2240
2241  void setBase(Expr *E) { Base = E; }
2242  Expr *getBase() const { return cast<Expr>(Base); }
2243
2244  /// \brief Retrieve the member declaration to which this expression refers.
2245  ///
2246  /// The returned declaration will either be a FieldDecl or (in C++)
2247  /// a CXXMethodDecl.
2248  ValueDecl *getMemberDecl() const { return MemberDecl; }
2249  void setMemberDecl(ValueDecl *D) { MemberDecl = D; }
2250
2251  /// \brief Retrieves the declaration found by lookup.
2252  DeclAccessPair getFoundDecl() const {
2253    if (!HasQualifierOrFoundDecl)
2254      return DeclAccessPair::make(getMemberDecl(),
2255                                  getMemberDecl()->getAccess());
2256    return getMemberQualifier()->FoundDecl;
2257  }
2258
2259  /// \brief Determines whether this member expression actually had
2260  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
2261  /// x->Base::foo.
2262  bool hasQualifier() const { return getQualifier() != 0; }
2263
2264  /// \brief If the member name was qualified, retrieves the
2265  /// nested-name-specifier that precedes the member name. Otherwise, returns
2266  /// NULL.
2267  NestedNameSpecifier *getQualifier() const {
2268    if (!HasQualifierOrFoundDecl)
2269      return 0;
2270
2271    return getMemberQualifier()->QualifierLoc.getNestedNameSpecifier();
2272  }
2273
2274  /// \brief If the member name was qualified, retrieves the
2275  /// nested-name-specifier that precedes the member name, with source-location
2276  /// information.
2277  NestedNameSpecifierLoc getQualifierLoc() const {
2278    if (!hasQualifier())
2279      return NestedNameSpecifierLoc();
2280
2281    return getMemberQualifier()->QualifierLoc;
2282  }
2283
2284  /// \brief Return the optional template keyword and arguments info.
2285  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
2286    if (!HasTemplateKWAndArgsInfo)
2287      return 0;
2288
2289    if (!HasQualifierOrFoundDecl)
2290      return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(this + 1);
2291
2292    return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(
2293                                                      getMemberQualifier() + 1);
2294  }
2295
2296  /// \brief Return the optional template keyword and arguments info.
2297  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
2298    return const_cast<MemberExpr*>(this)->getTemplateKWAndArgsInfo();
2299  }
2300
2301  /// \brief Retrieve the location of the template keyword preceding
2302  /// the member name, if any.
2303  SourceLocation getTemplateKeywordLoc() const {
2304    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2305    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
2306  }
2307
2308  /// \brief Retrieve the location of the left angle bracket starting the
2309  /// explicit template argument list following the member name, if any.
2310  SourceLocation getLAngleLoc() const {
2311    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2312    return getTemplateKWAndArgsInfo()->LAngleLoc;
2313  }
2314
2315  /// \brief Retrieve the location of the right angle bracket ending the
2316  /// explicit template argument list following the member name, if any.
2317  SourceLocation getRAngleLoc() const {
2318    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2319    return getTemplateKWAndArgsInfo()->RAngleLoc;
2320  }
2321
2322  /// Determines whether the member name was preceded by the template keyword.
2323  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
2324
2325  /// \brief Determines whether the member name was followed by an
2326  /// explicit template argument list.
2327  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
2328
2329  /// \brief Copies the template arguments (if present) into the given
2330  /// structure.
2331  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2332    if (hasExplicitTemplateArgs())
2333      getExplicitTemplateArgs().copyInto(List);
2334  }
2335
2336  /// \brief Retrieve the explicit template argument list that
2337  /// follow the member template name.  This must only be called on an
2338  /// expression with explicit template arguments.
2339  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
2340    assert(hasExplicitTemplateArgs());
2341    return *getTemplateKWAndArgsInfo();
2342  }
2343
2344  /// \brief Retrieve the explicit template argument list that
2345  /// followed the member template name.  This must only be called on
2346  /// an expression with explicit template arguments.
2347  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2348    return const_cast<MemberExpr *>(this)->getExplicitTemplateArgs();
2349  }
2350
2351  /// \brief Retrieves the optional explicit template arguments.
2352  /// This points to the same data as getExplicitTemplateArgs(), but
2353  /// returns null if there are no explicit template arguments.
2354  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() const {
2355    if (!hasExplicitTemplateArgs()) return 0;
2356    return &getExplicitTemplateArgs();
2357  }
2358
2359  /// \brief Retrieve the template arguments provided as part of this
2360  /// template-id.
2361  const TemplateArgumentLoc *getTemplateArgs() const {
2362    if (!hasExplicitTemplateArgs())
2363      return 0;
2364
2365    return getExplicitTemplateArgs().getTemplateArgs();
2366  }
2367
2368  /// \brief Retrieve the number of template arguments provided as part of this
2369  /// template-id.
2370  unsigned getNumTemplateArgs() const {
2371    if (!hasExplicitTemplateArgs())
2372      return 0;
2373
2374    return getExplicitTemplateArgs().NumTemplateArgs;
2375  }
2376
2377  /// \brief Retrieve the member declaration name info.
2378  DeclarationNameInfo getMemberNameInfo() const {
2379    return DeclarationNameInfo(MemberDecl->getDeclName(),
2380                               MemberLoc, MemberDNLoc);
2381  }
2382
2383  bool isArrow() const { return IsArrow; }
2384  void setArrow(bool A) { IsArrow = A; }
2385
2386  /// getMemberLoc - Return the location of the "member", in X->F, it is the
2387  /// location of 'F'.
2388  SourceLocation getMemberLoc() const { return MemberLoc; }
2389  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
2390
2391  SourceRange getSourceRange() const;
2392
2393  SourceLocation getExprLoc() const { return MemberLoc; }
2394
2395  /// \brief Determine whether the base of this explicit is implicit.
2396  bool isImplicitAccess() const {
2397    return getBase() && getBase()->isImplicitCXXThis();
2398  }
2399
2400  /// \brief Returns true if this member expression refers to a method that
2401  /// was resolved from an overloaded set having size greater than 1.
2402  bool hadMultipleCandidates() const {
2403    return HadMultipleCandidates;
2404  }
2405  /// \brief Sets the flag telling whether this expression refers to
2406  /// a method that was resolved from an overloaded set having size
2407  /// greater than 1.
2408  void setHadMultipleCandidates(bool V = true) {
2409    HadMultipleCandidates = V;
2410  }
2411
2412  static bool classof(const Stmt *T) {
2413    return T->getStmtClass() == MemberExprClass;
2414  }
2415  static bool classof(const MemberExpr *) { return true; }
2416
2417  // Iterators
2418  child_range children() { return child_range(&Base, &Base+1); }
2419
2420  friend class ASTReader;
2421  friend class ASTStmtWriter;
2422};
2423
2424/// CompoundLiteralExpr - [C99 6.5.2.5]
2425///
2426class CompoundLiteralExpr : public Expr {
2427  /// LParenLoc - If non-null, this is the location of the left paren in a
2428  /// compound literal like "(int){4}".  This can be null if this is a
2429  /// synthesized compound expression.
2430  SourceLocation LParenLoc;
2431
2432  /// The type as written.  This can be an incomplete array type, in
2433  /// which case the actual expression type will be different.
2434  TypeSourceInfo *TInfo;
2435  Stmt *Init;
2436  bool FileScope;
2437public:
2438  CompoundLiteralExpr(SourceLocation lparenloc, TypeSourceInfo *tinfo,
2439                      QualType T, ExprValueKind VK, Expr *init, bool fileScope)
2440    : Expr(CompoundLiteralExprClass, T, VK, OK_Ordinary,
2441           tinfo->getType()->isDependentType(),
2442           init->isValueDependent(),
2443           (init->isInstantiationDependent() ||
2444            tinfo->getType()->isInstantiationDependentType()),
2445           init->containsUnexpandedParameterPack()),
2446      LParenLoc(lparenloc), TInfo(tinfo), Init(init), FileScope(fileScope) {}
2447
2448  /// \brief Construct an empty compound literal.
2449  explicit CompoundLiteralExpr(EmptyShell Empty)
2450    : Expr(CompoundLiteralExprClass, Empty) { }
2451
2452  const Expr *getInitializer() const { return cast<Expr>(Init); }
2453  Expr *getInitializer() { return cast<Expr>(Init); }
2454  void setInitializer(Expr *E) { Init = E; }
2455
2456  bool isFileScope() const { return FileScope; }
2457  void setFileScope(bool FS) { FileScope = FS; }
2458
2459  SourceLocation getLParenLoc() const { return LParenLoc; }
2460  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2461
2462  TypeSourceInfo *getTypeSourceInfo() const { return TInfo; }
2463  void setTypeSourceInfo(TypeSourceInfo* tinfo) { TInfo = tinfo; }
2464
2465  SourceRange getSourceRange() const {
2466    // FIXME: Init should never be null.
2467    if (!Init)
2468      return SourceRange();
2469    if (LParenLoc.isInvalid())
2470      return Init->getSourceRange();
2471    return SourceRange(LParenLoc, Init->getLocEnd());
2472  }
2473
2474  static bool classof(const Stmt *T) {
2475    return T->getStmtClass() == CompoundLiteralExprClass;
2476  }
2477  static bool classof(const CompoundLiteralExpr *) { return true; }
2478
2479  // Iterators
2480  child_range children() { return child_range(&Init, &Init+1); }
2481};
2482
2483/// CastExpr - Base class for type casts, including both implicit
2484/// casts (ImplicitCastExpr) and explicit casts that have some
2485/// representation in the source code (ExplicitCastExpr's derived
2486/// classes).
2487class CastExpr : public Expr {
2488public:
2489  typedef clang::CastKind CastKind;
2490
2491private:
2492  Stmt *Op;
2493
2494  void CheckCastConsistency() const;
2495
2496  const CXXBaseSpecifier * const *path_buffer() const {
2497    return const_cast<CastExpr*>(this)->path_buffer();
2498  }
2499  CXXBaseSpecifier **path_buffer();
2500
2501  void setBasePathSize(unsigned basePathSize) {
2502    CastExprBits.BasePathSize = basePathSize;
2503    assert(CastExprBits.BasePathSize == basePathSize &&
2504           "basePathSize doesn't fit in bits of CastExprBits.BasePathSize!");
2505  }
2506
2507protected:
2508  CastExpr(StmtClass SC, QualType ty, ExprValueKind VK,
2509           const CastKind kind, Expr *op, unsigned BasePathSize) :
2510    Expr(SC, ty, VK, OK_Ordinary,
2511         // Cast expressions are type-dependent if the type is
2512         // dependent (C++ [temp.dep.expr]p3).
2513         ty->isDependentType(),
2514         // Cast expressions are value-dependent if the type is
2515         // dependent or if the subexpression is value-dependent.
2516         ty->isDependentType() || (op && op->isValueDependent()),
2517         (ty->isInstantiationDependentType() ||
2518          (op && op->isInstantiationDependent())),
2519         (ty->containsUnexpandedParameterPack() ||
2520          op->containsUnexpandedParameterPack())),
2521    Op(op) {
2522    assert(kind != CK_Invalid && "creating cast with invalid cast kind");
2523    CastExprBits.Kind = kind;
2524    setBasePathSize(BasePathSize);
2525#ifndef NDEBUG
2526    CheckCastConsistency();
2527#endif
2528  }
2529
2530  /// \brief Construct an empty cast.
2531  CastExpr(StmtClass SC, EmptyShell Empty, unsigned BasePathSize)
2532    : Expr(SC, Empty) {
2533    setBasePathSize(BasePathSize);
2534  }
2535
2536public:
2537  CastKind getCastKind() const { return (CastKind) CastExprBits.Kind; }
2538  void setCastKind(CastKind K) { CastExprBits.Kind = K; }
2539  const char *getCastKindName() const;
2540
2541  Expr *getSubExpr() { return cast<Expr>(Op); }
2542  const Expr *getSubExpr() const { return cast<Expr>(Op); }
2543  void setSubExpr(Expr *E) { Op = E; }
2544
2545  /// \brief Retrieve the cast subexpression as it was written in the source
2546  /// code, looking through any implicit casts or other intermediate nodes
2547  /// introduced by semantic analysis.
2548  Expr *getSubExprAsWritten();
2549  const Expr *getSubExprAsWritten() const {
2550    return const_cast<CastExpr *>(this)->getSubExprAsWritten();
2551  }
2552
2553  typedef CXXBaseSpecifier **path_iterator;
2554  typedef const CXXBaseSpecifier * const *path_const_iterator;
2555  bool path_empty() const { return CastExprBits.BasePathSize == 0; }
2556  unsigned path_size() const { return CastExprBits.BasePathSize; }
2557  path_iterator path_begin() { return path_buffer(); }
2558  path_iterator path_end() { return path_buffer() + path_size(); }
2559  path_const_iterator path_begin() const { return path_buffer(); }
2560  path_const_iterator path_end() const { return path_buffer() + path_size(); }
2561
2562  void setCastPath(const CXXCastPath &Path);
2563
2564  static bool classof(const Stmt *T) {
2565    return T->getStmtClass() >= firstCastExprConstant &&
2566           T->getStmtClass() <= lastCastExprConstant;
2567  }
2568  static bool classof(const CastExpr *) { return true; }
2569
2570  // Iterators
2571  child_range children() { return child_range(&Op, &Op+1); }
2572};
2573
2574/// ImplicitCastExpr - Allows us to explicitly represent implicit type
2575/// conversions, which have no direct representation in the original
2576/// source code. For example: converting T[]->T*, void f()->void
2577/// (*f)(), float->double, short->int, etc.
2578///
2579/// In C, implicit casts always produce rvalues. However, in C++, an
2580/// implicit cast whose result is being bound to a reference will be
2581/// an lvalue or xvalue. For example:
2582///
2583/// @code
2584/// class Base { };
2585/// class Derived : public Base { };
2586/// Derived &&ref();
2587/// void f(Derived d) {
2588///   Base& b = d; // initializer is an ImplicitCastExpr
2589///                // to an lvalue of type Base
2590///   Base&& r = ref(); // initializer is an ImplicitCastExpr
2591///                     // to an xvalue of type Base
2592/// }
2593/// @endcode
2594class ImplicitCastExpr : public CastExpr {
2595private:
2596  ImplicitCastExpr(QualType ty, CastKind kind, Expr *op,
2597                   unsigned BasePathLength, ExprValueKind VK)
2598    : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, BasePathLength) {
2599  }
2600
2601  /// \brief Construct an empty implicit cast.
2602  explicit ImplicitCastExpr(EmptyShell Shell, unsigned PathSize)
2603    : CastExpr(ImplicitCastExprClass, Shell, PathSize) { }
2604
2605public:
2606  enum OnStack_t { OnStack };
2607  ImplicitCastExpr(OnStack_t _, QualType ty, CastKind kind, Expr *op,
2608                   ExprValueKind VK)
2609    : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, 0) {
2610  }
2611
2612  static ImplicitCastExpr *Create(ASTContext &Context, QualType T,
2613                                  CastKind Kind, Expr *Operand,
2614                                  const CXXCastPath *BasePath,
2615                                  ExprValueKind Cat);
2616
2617  static ImplicitCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize);
2618
2619  SourceRange getSourceRange() const {
2620    return getSubExpr()->getSourceRange();
2621  }
2622
2623  static bool classof(const Stmt *T) {
2624    return T->getStmtClass() == ImplicitCastExprClass;
2625  }
2626  static bool classof(const ImplicitCastExpr *) { return true; }
2627};
2628
2629inline Expr *Expr::IgnoreImpCasts() {
2630  Expr *e = this;
2631  while (ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
2632    e = ice->getSubExpr();
2633  return e;
2634}
2635
2636/// ExplicitCastExpr - An explicit cast written in the source
2637/// code.
2638///
2639/// This class is effectively an abstract class, because it provides
2640/// the basic representation of an explicitly-written cast without
2641/// specifying which kind of cast (C cast, functional cast, static
2642/// cast, etc.) was written; specific derived classes represent the
2643/// particular style of cast and its location information.
2644///
2645/// Unlike implicit casts, explicit cast nodes have two different
2646/// types: the type that was written into the source code, and the
2647/// actual type of the expression as determined by semantic
2648/// analysis. These types may differ slightly. For example, in C++ one
2649/// can cast to a reference type, which indicates that the resulting
2650/// expression will be an lvalue or xvalue. The reference type, however,
2651/// will not be used as the type of the expression.
2652class ExplicitCastExpr : public CastExpr {
2653  /// TInfo - Source type info for the (written) type
2654  /// this expression is casting to.
2655  TypeSourceInfo *TInfo;
2656
2657protected:
2658  ExplicitCastExpr(StmtClass SC, QualType exprTy, ExprValueKind VK,
2659                   CastKind kind, Expr *op, unsigned PathSize,
2660                   TypeSourceInfo *writtenTy)
2661    : CastExpr(SC, exprTy, VK, kind, op, PathSize), TInfo(writtenTy) {}
2662
2663  /// \brief Construct an empty explicit cast.
2664  ExplicitCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
2665    : CastExpr(SC, Shell, PathSize) { }
2666
2667public:
2668  /// getTypeInfoAsWritten - Returns the type source info for the type
2669  /// that this expression is casting to.
2670  TypeSourceInfo *getTypeInfoAsWritten() const { return TInfo; }
2671  void setTypeInfoAsWritten(TypeSourceInfo *writtenTy) { TInfo = writtenTy; }
2672
2673  /// getTypeAsWritten - Returns the type that this expression is
2674  /// casting to, as written in the source code.
2675  QualType getTypeAsWritten() const { return TInfo->getType(); }
2676
2677  static bool classof(const Stmt *T) {
2678     return T->getStmtClass() >= firstExplicitCastExprConstant &&
2679            T->getStmtClass() <= lastExplicitCastExprConstant;
2680  }
2681  static bool classof(const ExplicitCastExpr *) { return true; }
2682};
2683
2684/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
2685/// cast in C++ (C++ [expr.cast]), which uses the syntax
2686/// (Type)expr. For example: @c (int)f.
2687class CStyleCastExpr : public ExplicitCastExpr {
2688  SourceLocation LPLoc; // the location of the left paren
2689  SourceLocation RPLoc; // the location of the right paren
2690
2691  CStyleCastExpr(QualType exprTy, ExprValueKind vk, CastKind kind, Expr *op,
2692                 unsigned PathSize, TypeSourceInfo *writtenTy,
2693                 SourceLocation l, SourceLocation r)
2694    : ExplicitCastExpr(CStyleCastExprClass, exprTy, vk, kind, op, PathSize,
2695                       writtenTy), LPLoc(l), RPLoc(r) {}
2696
2697  /// \brief Construct an empty C-style explicit cast.
2698  explicit CStyleCastExpr(EmptyShell Shell, unsigned PathSize)
2699    : ExplicitCastExpr(CStyleCastExprClass, Shell, PathSize) { }
2700
2701public:
2702  static CStyleCastExpr *Create(ASTContext &Context, QualType T,
2703                                ExprValueKind VK, CastKind K,
2704                                Expr *Op, const CXXCastPath *BasePath,
2705                                TypeSourceInfo *WrittenTy, SourceLocation L,
2706                                SourceLocation R);
2707
2708  static CStyleCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize);
2709
2710  SourceLocation getLParenLoc() const { return LPLoc; }
2711  void setLParenLoc(SourceLocation L) { LPLoc = L; }
2712
2713  SourceLocation getRParenLoc() const { return RPLoc; }
2714  void setRParenLoc(SourceLocation L) { RPLoc = L; }
2715
2716  SourceRange getSourceRange() const {
2717    return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd());
2718  }
2719  static bool classof(const Stmt *T) {
2720    return T->getStmtClass() == CStyleCastExprClass;
2721  }
2722  static bool classof(const CStyleCastExpr *) { return true; }
2723};
2724
2725/// \brief A builtin binary operation expression such as "x + y" or "x <= y".
2726///
2727/// This expression node kind describes a builtin binary operation,
2728/// such as "x + y" for integer values "x" and "y". The operands will
2729/// already have been converted to appropriate types (e.g., by
2730/// performing promotions or conversions).
2731///
2732/// In C++, where operators may be overloaded, a different kind of
2733/// expression node (CXXOperatorCallExpr) is used to express the
2734/// invocation of an overloaded operator with operator syntax. Within
2735/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
2736/// used to store an expression "x + y" depends on the subexpressions
2737/// for x and y. If neither x or y is type-dependent, and the "+"
2738/// operator resolves to a built-in operation, BinaryOperator will be
2739/// used to express the computation (x and y may still be
2740/// value-dependent). If either x or y is type-dependent, or if the
2741/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
2742/// be used to express the computation.
2743class BinaryOperator : public Expr {
2744public:
2745  typedef BinaryOperatorKind Opcode;
2746
2747private:
2748  unsigned Opc : 6;
2749  SourceLocation OpLoc;
2750
2751  enum { LHS, RHS, END_EXPR };
2752  Stmt* SubExprs[END_EXPR];
2753public:
2754
2755  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2756                 ExprValueKind VK, ExprObjectKind OK,
2757                 SourceLocation opLoc)
2758    : Expr(BinaryOperatorClass, ResTy, VK, OK,
2759           lhs->isTypeDependent() || rhs->isTypeDependent(),
2760           lhs->isValueDependent() || rhs->isValueDependent(),
2761           (lhs->isInstantiationDependent() ||
2762            rhs->isInstantiationDependent()),
2763           (lhs->containsUnexpandedParameterPack() ||
2764            rhs->containsUnexpandedParameterPack())),
2765      Opc(opc), OpLoc(opLoc) {
2766    SubExprs[LHS] = lhs;
2767    SubExprs[RHS] = rhs;
2768    assert(!isCompoundAssignmentOp() &&
2769           "Use ArithAssignBinaryOperator for compound assignments");
2770  }
2771
2772  /// \brief Construct an empty binary operator.
2773  explicit BinaryOperator(EmptyShell Empty)
2774    : Expr(BinaryOperatorClass, Empty), Opc(BO_Comma) { }
2775
2776  SourceLocation getExprLoc() const { return OpLoc; }
2777  SourceLocation getOperatorLoc() const { return OpLoc; }
2778  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
2779
2780  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
2781  void setOpcode(Opcode O) { Opc = O; }
2782
2783  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2784  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2785  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2786  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2787
2788  SourceRange getSourceRange() const {
2789    return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
2790  }
2791
2792  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
2793  /// corresponds to, e.g. "<<=".
2794  static const char *getOpcodeStr(Opcode Op);
2795
2796  const char *getOpcodeStr() const { return getOpcodeStr(getOpcode()); }
2797
2798  /// \brief Retrieve the binary opcode that corresponds to the given
2799  /// overloaded operator.
2800  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
2801
2802  /// \brief Retrieve the overloaded operator kind that corresponds to
2803  /// the given binary opcode.
2804  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
2805
2806  /// predicates to categorize the respective opcodes.
2807  bool isPtrMemOp() const { return Opc == BO_PtrMemD || Opc == BO_PtrMemI; }
2808  bool isMultiplicativeOp() const { return Opc >= BO_Mul && Opc <= BO_Rem; }
2809  static bool isAdditiveOp(Opcode Opc) { return Opc == BO_Add || Opc==BO_Sub; }
2810  bool isAdditiveOp() const { return isAdditiveOp(getOpcode()); }
2811  static bool isShiftOp(Opcode Opc) { return Opc == BO_Shl || Opc == BO_Shr; }
2812  bool isShiftOp() const { return isShiftOp(getOpcode()); }
2813
2814  static bool isBitwiseOp(Opcode Opc) { return Opc >= BO_And && Opc <= BO_Or; }
2815  bool isBitwiseOp() const { return isBitwiseOp(getOpcode()); }
2816
2817  static bool isRelationalOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_GE; }
2818  bool isRelationalOp() const { return isRelationalOp(getOpcode()); }
2819
2820  static bool isEqualityOp(Opcode Opc) { return Opc == BO_EQ || Opc == BO_NE; }
2821  bool isEqualityOp() const { return isEqualityOp(getOpcode()); }
2822
2823  static bool isComparisonOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_NE; }
2824  bool isComparisonOp() const { return isComparisonOp(getOpcode()); }
2825
2826  static bool isLogicalOp(Opcode Opc) { return Opc == BO_LAnd || Opc==BO_LOr; }
2827  bool isLogicalOp() const { return isLogicalOp(getOpcode()); }
2828
2829  static bool isAssignmentOp(Opcode Opc) {
2830    return Opc >= BO_Assign && Opc <= BO_OrAssign;
2831  }
2832  bool isAssignmentOp() const { return isAssignmentOp(getOpcode()); }
2833
2834  static bool isCompoundAssignmentOp(Opcode Opc) {
2835    return Opc > BO_Assign && Opc <= BO_OrAssign;
2836  }
2837  bool isCompoundAssignmentOp() const {
2838    return isCompoundAssignmentOp(getOpcode());
2839  }
2840  static Opcode getOpForCompoundAssignment(Opcode Opc) {
2841    assert(isCompoundAssignmentOp(Opc));
2842    if (Opc >= BO_AndAssign)
2843      return Opcode(unsigned(Opc) - BO_AndAssign + BO_And);
2844    else
2845      return Opcode(unsigned(Opc) - BO_MulAssign + BO_Mul);
2846  }
2847
2848  static bool isShiftAssignOp(Opcode Opc) {
2849    return Opc == BO_ShlAssign || Opc == BO_ShrAssign;
2850  }
2851  bool isShiftAssignOp() const {
2852    return isShiftAssignOp(getOpcode());
2853  }
2854
2855  static bool classof(const Stmt *S) {
2856    return S->getStmtClass() >= firstBinaryOperatorConstant &&
2857           S->getStmtClass() <= lastBinaryOperatorConstant;
2858  }
2859  static bool classof(const BinaryOperator *) { return true; }
2860
2861  // Iterators
2862  child_range children() {
2863    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
2864  }
2865
2866protected:
2867  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2868                 ExprValueKind VK, ExprObjectKind OK,
2869                 SourceLocation opLoc, bool dead)
2870    : Expr(CompoundAssignOperatorClass, ResTy, VK, OK,
2871           lhs->isTypeDependent() || rhs->isTypeDependent(),
2872           lhs->isValueDependent() || rhs->isValueDependent(),
2873           (lhs->isInstantiationDependent() ||
2874            rhs->isInstantiationDependent()),
2875           (lhs->containsUnexpandedParameterPack() ||
2876            rhs->containsUnexpandedParameterPack())),
2877      Opc(opc), OpLoc(opLoc) {
2878    SubExprs[LHS] = lhs;
2879    SubExprs[RHS] = rhs;
2880  }
2881
2882  BinaryOperator(StmtClass SC, EmptyShell Empty)
2883    : Expr(SC, Empty), Opc(BO_MulAssign) { }
2884};
2885
2886/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
2887/// track of the type the operation is performed in.  Due to the semantics of
2888/// these operators, the operands are promoted, the arithmetic performed, an
2889/// implicit conversion back to the result type done, then the assignment takes
2890/// place.  This captures the intermediate type which the computation is done
2891/// in.
2892class CompoundAssignOperator : public BinaryOperator {
2893  QualType ComputationLHSType;
2894  QualType ComputationResultType;
2895public:
2896  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResType,
2897                         ExprValueKind VK, ExprObjectKind OK,
2898                         QualType CompLHSType, QualType CompResultType,
2899                         SourceLocation OpLoc)
2900    : BinaryOperator(lhs, rhs, opc, ResType, VK, OK, OpLoc, true),
2901      ComputationLHSType(CompLHSType),
2902      ComputationResultType(CompResultType) {
2903    assert(isCompoundAssignmentOp() &&
2904           "Only should be used for compound assignments");
2905  }
2906
2907  /// \brief Build an empty compound assignment operator expression.
2908  explicit CompoundAssignOperator(EmptyShell Empty)
2909    : BinaryOperator(CompoundAssignOperatorClass, Empty) { }
2910
2911  // The two computation types are the type the LHS is converted
2912  // to for the computation and the type of the result; the two are
2913  // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
2914  QualType getComputationLHSType() const { return ComputationLHSType; }
2915  void setComputationLHSType(QualType T) { ComputationLHSType = T; }
2916
2917  QualType getComputationResultType() const { return ComputationResultType; }
2918  void setComputationResultType(QualType T) { ComputationResultType = T; }
2919
2920  static bool classof(const CompoundAssignOperator *) { return true; }
2921  static bool classof(const Stmt *S) {
2922    return S->getStmtClass() == CompoundAssignOperatorClass;
2923  }
2924};
2925
2926/// AbstractConditionalOperator - An abstract base class for
2927/// ConditionalOperator and BinaryConditionalOperator.
2928class AbstractConditionalOperator : public Expr {
2929  SourceLocation QuestionLoc, ColonLoc;
2930  friend class ASTStmtReader;
2931
2932protected:
2933  AbstractConditionalOperator(StmtClass SC, QualType T,
2934                              ExprValueKind VK, ExprObjectKind OK,
2935                              bool TD, bool VD, bool ID,
2936                              bool ContainsUnexpandedParameterPack,
2937                              SourceLocation qloc,
2938                              SourceLocation cloc)
2939    : Expr(SC, T, VK, OK, TD, VD, ID, ContainsUnexpandedParameterPack),
2940      QuestionLoc(qloc), ColonLoc(cloc) {}
2941
2942  AbstractConditionalOperator(StmtClass SC, EmptyShell Empty)
2943    : Expr(SC, Empty) { }
2944
2945public:
2946  // getCond - Return the expression representing the condition for
2947  //   the ?: operator.
2948  Expr *getCond() const;
2949
2950  // getTrueExpr - Return the subexpression representing the value of
2951  //   the expression if the condition evaluates to true.
2952  Expr *getTrueExpr() const;
2953
2954  // getFalseExpr - Return the subexpression representing the value of
2955  //   the expression if the condition evaluates to false.  This is
2956  //   the same as getRHS.
2957  Expr *getFalseExpr() const;
2958
2959  SourceLocation getQuestionLoc() const { return QuestionLoc; }
2960  SourceLocation getColonLoc() const { return ColonLoc; }
2961
2962  static bool classof(const Stmt *T) {
2963    return T->getStmtClass() == ConditionalOperatorClass ||
2964           T->getStmtClass() == BinaryConditionalOperatorClass;
2965  }
2966  static bool classof(const AbstractConditionalOperator *) { return true; }
2967};
2968
2969/// ConditionalOperator - The ?: ternary operator.  The GNU "missing
2970/// middle" extension is a BinaryConditionalOperator.
2971class ConditionalOperator : public AbstractConditionalOperator {
2972  enum { COND, LHS, RHS, END_EXPR };
2973  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
2974
2975  friend class ASTStmtReader;
2976public:
2977  ConditionalOperator(Expr *cond, SourceLocation QLoc, Expr *lhs,
2978                      SourceLocation CLoc, Expr *rhs,
2979                      QualType t, ExprValueKind VK, ExprObjectKind OK)
2980    : AbstractConditionalOperator(ConditionalOperatorClass, t, VK, OK,
2981           // FIXME: the type of the conditional operator doesn't
2982           // depend on the type of the conditional, but the standard
2983           // seems to imply that it could. File a bug!
2984           (lhs->isTypeDependent() || rhs->isTypeDependent()),
2985           (cond->isValueDependent() || lhs->isValueDependent() ||
2986            rhs->isValueDependent()),
2987           (cond->isInstantiationDependent() ||
2988            lhs->isInstantiationDependent() ||
2989            rhs->isInstantiationDependent()),
2990           (cond->containsUnexpandedParameterPack() ||
2991            lhs->containsUnexpandedParameterPack() ||
2992            rhs->containsUnexpandedParameterPack()),
2993                                  QLoc, CLoc) {
2994    SubExprs[COND] = cond;
2995    SubExprs[LHS] = lhs;
2996    SubExprs[RHS] = rhs;
2997  }
2998
2999  /// \brief Build an empty conditional operator.
3000  explicit ConditionalOperator(EmptyShell Empty)
3001    : AbstractConditionalOperator(ConditionalOperatorClass, Empty) { }
3002
3003  // getCond - Return the expression representing the condition for
3004  //   the ?: operator.
3005  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3006
3007  // getTrueExpr - Return the subexpression representing the value of
3008  //   the expression if the condition evaluates to true.
3009  Expr *getTrueExpr() const { return cast<Expr>(SubExprs[LHS]); }
3010
3011  // getFalseExpr - Return the subexpression representing the value of
3012  //   the expression if the condition evaluates to false.  This is
3013  //   the same as getRHS.
3014  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
3015
3016  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
3017  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
3018
3019  SourceRange getSourceRange() const {
3020    return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
3021  }
3022  static bool classof(const Stmt *T) {
3023    return T->getStmtClass() == ConditionalOperatorClass;
3024  }
3025  static bool classof(const ConditionalOperator *) { return true; }
3026
3027  // Iterators
3028  child_range children() {
3029    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
3030  }
3031};
3032
3033/// BinaryConditionalOperator - The GNU extension to the conditional
3034/// operator which allows the middle operand to be omitted.
3035///
3036/// This is a different expression kind on the assumption that almost
3037/// every client ends up needing to know that these are different.
3038class BinaryConditionalOperator : public AbstractConditionalOperator {
3039  enum { COMMON, COND, LHS, RHS, NUM_SUBEXPRS };
3040
3041  /// - the common condition/left-hand-side expression, which will be
3042  ///   evaluated as the opaque value
3043  /// - the condition, expressed in terms of the opaque value
3044  /// - the left-hand-side, expressed in terms of the opaque value
3045  /// - the right-hand-side
3046  Stmt *SubExprs[NUM_SUBEXPRS];
3047  OpaqueValueExpr *OpaqueValue;
3048
3049  friend class ASTStmtReader;
3050public:
3051  BinaryConditionalOperator(Expr *common, OpaqueValueExpr *opaqueValue,
3052                            Expr *cond, Expr *lhs, Expr *rhs,
3053                            SourceLocation qloc, SourceLocation cloc,
3054                            QualType t, ExprValueKind VK, ExprObjectKind OK)
3055    : AbstractConditionalOperator(BinaryConditionalOperatorClass, t, VK, OK,
3056           (common->isTypeDependent() || rhs->isTypeDependent()),
3057           (common->isValueDependent() || rhs->isValueDependent()),
3058           (common->isInstantiationDependent() ||
3059            rhs->isInstantiationDependent()),
3060           (common->containsUnexpandedParameterPack() ||
3061            rhs->containsUnexpandedParameterPack()),
3062                                  qloc, cloc),
3063      OpaqueValue(opaqueValue) {
3064    SubExprs[COMMON] = common;
3065    SubExprs[COND] = cond;
3066    SubExprs[LHS] = lhs;
3067    SubExprs[RHS] = rhs;
3068    assert(OpaqueValue->getSourceExpr() == common && "Wrong opaque value");
3069  }
3070
3071  /// \brief Build an empty conditional operator.
3072  explicit BinaryConditionalOperator(EmptyShell Empty)
3073    : AbstractConditionalOperator(BinaryConditionalOperatorClass, Empty) { }
3074
3075  /// \brief getCommon - Return the common expression, written to the
3076  ///   left of the condition.  The opaque value will be bound to the
3077  ///   result of this expression.
3078  Expr *getCommon() const { return cast<Expr>(SubExprs[COMMON]); }
3079
3080  /// \brief getOpaqueValue - Return the opaque value placeholder.
3081  OpaqueValueExpr *getOpaqueValue() const { return OpaqueValue; }
3082
3083  /// \brief getCond - Return the condition expression; this is defined
3084  ///   in terms of the opaque value.
3085  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3086
3087  /// \brief getTrueExpr - Return the subexpression which will be
3088  ///   evaluated if the condition evaluates to true;  this is defined
3089  ///   in terms of the opaque value.
3090  Expr *getTrueExpr() const {
3091    return cast<Expr>(SubExprs[LHS]);
3092  }
3093
3094  /// \brief getFalseExpr - Return the subexpression which will be
3095  ///   evaluated if the condnition evaluates to false; this is
3096  ///   defined in terms of the opaque value.
3097  Expr *getFalseExpr() const {
3098    return cast<Expr>(SubExprs[RHS]);
3099  }
3100
3101  SourceRange getSourceRange() const {
3102    return SourceRange(getCommon()->getLocStart(), getFalseExpr()->getLocEnd());
3103  }
3104  static bool classof(const Stmt *T) {
3105    return T->getStmtClass() == BinaryConditionalOperatorClass;
3106  }
3107  static bool classof(const BinaryConditionalOperator *) { return true; }
3108
3109  // Iterators
3110  child_range children() {
3111    return child_range(SubExprs, SubExprs + NUM_SUBEXPRS);
3112  }
3113};
3114
3115inline Expr *AbstractConditionalOperator::getCond() const {
3116  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3117    return co->getCond();
3118  return cast<BinaryConditionalOperator>(this)->getCond();
3119}
3120
3121inline Expr *AbstractConditionalOperator::getTrueExpr() const {
3122  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3123    return co->getTrueExpr();
3124  return cast<BinaryConditionalOperator>(this)->getTrueExpr();
3125}
3126
3127inline Expr *AbstractConditionalOperator::getFalseExpr() const {
3128  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3129    return co->getFalseExpr();
3130  return cast<BinaryConditionalOperator>(this)->getFalseExpr();
3131}
3132
3133/// AddrLabelExpr - The GNU address of label extension, representing &&label.
3134class AddrLabelExpr : public Expr {
3135  SourceLocation AmpAmpLoc, LabelLoc;
3136  LabelDecl *Label;
3137public:
3138  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelDecl *L,
3139                QualType t)
3140    : Expr(AddrLabelExprClass, t, VK_RValue, OK_Ordinary, false, false, false,
3141           false),
3142      AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
3143
3144  /// \brief Build an empty address of a label expression.
3145  explicit AddrLabelExpr(EmptyShell Empty)
3146    : Expr(AddrLabelExprClass, Empty) { }
3147
3148  SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
3149  void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
3150  SourceLocation getLabelLoc() const { return LabelLoc; }
3151  void setLabelLoc(SourceLocation L) { LabelLoc = L; }
3152
3153  SourceRange getSourceRange() const {
3154    return SourceRange(AmpAmpLoc, LabelLoc);
3155  }
3156
3157  LabelDecl *getLabel() const { return Label; }
3158  void setLabel(LabelDecl *L) { Label = L; }
3159
3160  static bool classof(const Stmt *T) {
3161    return T->getStmtClass() == AddrLabelExprClass;
3162  }
3163  static bool classof(const AddrLabelExpr *) { return true; }
3164
3165  // Iterators
3166  child_range children() { return child_range(); }
3167};
3168
3169/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
3170/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
3171/// takes the value of the last subexpression.
3172///
3173/// A StmtExpr is always an r-value; values "returned" out of a
3174/// StmtExpr will be copied.
3175class StmtExpr : public Expr {
3176  Stmt *SubStmt;
3177  SourceLocation LParenLoc, RParenLoc;
3178public:
3179  // FIXME: Does type-dependence need to be computed differently?
3180  // FIXME: Do we need to compute instantiation instantiation-dependence for
3181  // statements? (ugh!)
3182  StmtExpr(CompoundStmt *substmt, QualType T,
3183           SourceLocation lp, SourceLocation rp) :
3184    Expr(StmtExprClass, T, VK_RValue, OK_Ordinary,
3185         T->isDependentType(), false, false, false),
3186    SubStmt(substmt), LParenLoc(lp), RParenLoc(rp) { }
3187
3188  /// \brief Build an empty statement expression.
3189  explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
3190
3191  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
3192  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
3193  void setSubStmt(CompoundStmt *S) { SubStmt = S; }
3194
3195  SourceRange getSourceRange() const {
3196    return SourceRange(LParenLoc, RParenLoc);
3197  }
3198
3199  SourceLocation getLParenLoc() const { return LParenLoc; }
3200  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
3201  SourceLocation getRParenLoc() const { return RParenLoc; }
3202  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3203
3204  static bool classof(const Stmt *T) {
3205    return T->getStmtClass() == StmtExprClass;
3206  }
3207  static bool classof(const StmtExpr *) { return true; }
3208
3209  // Iterators
3210  child_range children() { return child_range(&SubStmt, &SubStmt+1); }
3211};
3212
3213
3214/// ShuffleVectorExpr - clang-specific builtin-in function
3215/// __builtin_shufflevector.
3216/// This AST node represents a operator that does a constant
3217/// shuffle, similar to LLVM's shufflevector instruction. It takes
3218/// two vectors and a variable number of constant indices,
3219/// and returns the appropriately shuffled vector.
3220class ShuffleVectorExpr : public Expr {
3221  SourceLocation BuiltinLoc, RParenLoc;
3222
3223  // SubExprs - the list of values passed to the __builtin_shufflevector
3224  // function. The first two are vectors, and the rest are constant
3225  // indices.  The number of values in this list is always
3226  // 2+the number of indices in the vector type.
3227  Stmt **SubExprs;
3228  unsigned NumExprs;
3229
3230public:
3231  ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr,
3232                    QualType Type, SourceLocation BLoc,
3233                    SourceLocation RP);
3234
3235  /// \brief Build an empty vector-shuffle expression.
3236  explicit ShuffleVectorExpr(EmptyShell Empty)
3237    : Expr(ShuffleVectorExprClass, Empty), SubExprs(0) { }
3238
3239  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3240  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3241
3242  SourceLocation getRParenLoc() const { return RParenLoc; }
3243  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3244
3245  SourceRange getSourceRange() const {
3246    return SourceRange(BuiltinLoc, RParenLoc);
3247  }
3248  static bool classof(const Stmt *T) {
3249    return T->getStmtClass() == ShuffleVectorExprClass;
3250  }
3251  static bool classof(const ShuffleVectorExpr *) { return true; }
3252
3253  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
3254  /// constant expression, the actual arguments passed in, and the function
3255  /// pointers.
3256  unsigned getNumSubExprs() const { return NumExprs; }
3257
3258  /// \brief Retrieve the array of expressions.
3259  Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
3260
3261  /// getExpr - Return the Expr at the specified index.
3262  Expr *getExpr(unsigned Index) {
3263    assert((Index < NumExprs) && "Arg access out of range!");
3264    return cast<Expr>(SubExprs[Index]);
3265  }
3266  const Expr *getExpr(unsigned Index) const {
3267    assert((Index < NumExprs) && "Arg access out of range!");
3268    return cast<Expr>(SubExprs[Index]);
3269  }
3270
3271  void setExprs(ASTContext &C, Expr ** Exprs, unsigned NumExprs);
3272
3273  unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) {
3274    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
3275    return getExpr(N+2)->EvaluateKnownConstInt(Ctx).getZExtValue();
3276  }
3277
3278  // Iterators
3279  child_range children() {
3280    return child_range(&SubExprs[0], &SubExprs[0]+NumExprs);
3281  }
3282};
3283
3284/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
3285/// This AST node is similar to the conditional operator (?:) in C, with
3286/// the following exceptions:
3287/// - the test expression must be a integer constant expression.
3288/// - the expression returned acts like the chosen subexpression in every
3289///   visible way: the type is the same as that of the chosen subexpression,
3290///   and all predicates (whether it's an l-value, whether it's an integer
3291///   constant expression, etc.) return the same result as for the chosen
3292///   sub-expression.
3293class ChooseExpr : public Expr {
3294  enum { COND, LHS, RHS, END_EXPR };
3295  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
3296  SourceLocation BuiltinLoc, RParenLoc;
3297public:
3298  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs,
3299             QualType t, ExprValueKind VK, ExprObjectKind OK,
3300             SourceLocation RP, bool TypeDependent, bool ValueDependent)
3301    : Expr(ChooseExprClass, t, VK, OK, TypeDependent, ValueDependent,
3302           (cond->isInstantiationDependent() ||
3303            lhs->isInstantiationDependent() ||
3304            rhs->isInstantiationDependent()),
3305           (cond->containsUnexpandedParameterPack() ||
3306            lhs->containsUnexpandedParameterPack() ||
3307            rhs->containsUnexpandedParameterPack())),
3308      BuiltinLoc(BLoc), RParenLoc(RP) {
3309      SubExprs[COND] = cond;
3310      SubExprs[LHS] = lhs;
3311      SubExprs[RHS] = rhs;
3312    }
3313
3314  /// \brief Build an empty __builtin_choose_expr.
3315  explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
3316
3317  /// isConditionTrue - Return whether the condition is true (i.e. not
3318  /// equal to zero).
3319  bool isConditionTrue(const ASTContext &C) const;
3320
3321  /// getChosenSubExpr - Return the subexpression chosen according to the
3322  /// condition.
3323  Expr *getChosenSubExpr(const ASTContext &C) const {
3324    return isConditionTrue(C) ? getLHS() : getRHS();
3325  }
3326
3327  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3328  void setCond(Expr *E) { SubExprs[COND] = E; }
3329  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
3330  void setLHS(Expr *E) { SubExprs[LHS] = E; }
3331  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
3332  void setRHS(Expr *E) { SubExprs[RHS] = E; }
3333
3334  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3335  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3336
3337  SourceLocation getRParenLoc() const { return RParenLoc; }
3338  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3339
3340  SourceRange getSourceRange() const {
3341    return SourceRange(BuiltinLoc, RParenLoc);
3342  }
3343  static bool classof(const Stmt *T) {
3344    return T->getStmtClass() == ChooseExprClass;
3345  }
3346  static bool classof(const ChooseExpr *) { return true; }
3347
3348  // Iterators
3349  child_range children() {
3350    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
3351  }
3352};
3353
3354/// GNUNullExpr - Implements the GNU __null extension, which is a name
3355/// for a null pointer constant that has integral type (e.g., int or
3356/// long) and is the same size and alignment as a pointer. The __null
3357/// extension is typically only used by system headers, which define
3358/// NULL as __null in C++ rather than using 0 (which is an integer
3359/// that may not match the size of a pointer).
3360class GNUNullExpr : public Expr {
3361  /// TokenLoc - The location of the __null keyword.
3362  SourceLocation TokenLoc;
3363
3364public:
3365  GNUNullExpr(QualType Ty, SourceLocation Loc)
3366    : Expr(GNUNullExprClass, Ty, VK_RValue, OK_Ordinary, false, false, false,
3367           false),
3368      TokenLoc(Loc) { }
3369
3370  /// \brief Build an empty GNU __null expression.
3371  explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
3372
3373  /// getTokenLocation - The location of the __null token.
3374  SourceLocation getTokenLocation() const { return TokenLoc; }
3375  void setTokenLocation(SourceLocation L) { TokenLoc = L; }
3376
3377  SourceRange getSourceRange() const {
3378    return SourceRange(TokenLoc);
3379  }
3380  static bool classof(const Stmt *T) {
3381    return T->getStmtClass() == GNUNullExprClass;
3382  }
3383  static bool classof(const GNUNullExpr *) { return true; }
3384
3385  // Iterators
3386  child_range children() { return child_range(); }
3387};
3388
3389/// VAArgExpr, used for the builtin function __builtin_va_arg.
3390class VAArgExpr : public Expr {
3391  Stmt *Val;
3392  TypeSourceInfo *TInfo;
3393  SourceLocation BuiltinLoc, RParenLoc;
3394public:
3395  VAArgExpr(SourceLocation BLoc, Expr* e, TypeSourceInfo *TInfo,
3396            SourceLocation RPLoc, QualType t)
3397    : Expr(VAArgExprClass, t, VK_RValue, OK_Ordinary,
3398           t->isDependentType(), false,
3399           (TInfo->getType()->isInstantiationDependentType() ||
3400            e->isInstantiationDependent()),
3401           (TInfo->getType()->containsUnexpandedParameterPack() ||
3402            e->containsUnexpandedParameterPack())),
3403      Val(e), TInfo(TInfo),
3404      BuiltinLoc(BLoc),
3405      RParenLoc(RPLoc) { }
3406
3407  /// \brief Create an empty __builtin_va_arg expression.
3408  explicit VAArgExpr(EmptyShell Empty) : Expr(VAArgExprClass, Empty) { }
3409
3410  const Expr *getSubExpr() const { return cast<Expr>(Val); }
3411  Expr *getSubExpr() { return cast<Expr>(Val); }
3412  void setSubExpr(Expr *E) { Val = E; }
3413
3414  TypeSourceInfo *getWrittenTypeInfo() const { return TInfo; }
3415  void setWrittenTypeInfo(TypeSourceInfo *TI) { TInfo = TI; }
3416
3417  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3418  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3419
3420  SourceLocation getRParenLoc() const { return RParenLoc; }
3421  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3422
3423  SourceRange getSourceRange() const {
3424    return SourceRange(BuiltinLoc, RParenLoc);
3425  }
3426  static bool classof(const Stmt *T) {
3427    return T->getStmtClass() == VAArgExprClass;
3428  }
3429  static bool classof(const VAArgExpr *) { return true; }
3430
3431  // Iterators
3432  child_range children() { return child_range(&Val, &Val+1); }
3433};
3434
3435/// @brief Describes an C or C++ initializer list.
3436///
3437/// InitListExpr describes an initializer list, which can be used to
3438/// initialize objects of different types, including
3439/// struct/class/union types, arrays, and vectors. For example:
3440///
3441/// @code
3442/// struct foo x = { 1, { 2, 3 } };
3443/// @endcode
3444///
3445/// Prior to semantic analysis, an initializer list will represent the
3446/// initializer list as written by the user, but will have the
3447/// placeholder type "void". This initializer list is called the
3448/// syntactic form of the initializer, and may contain C99 designated
3449/// initializers (represented as DesignatedInitExprs), initializations
3450/// of subobject members without explicit braces, and so on. Clients
3451/// interested in the original syntax of the initializer list should
3452/// use the syntactic form of the initializer list.
3453///
3454/// After semantic analysis, the initializer list will represent the
3455/// semantic form of the initializer, where the initializations of all
3456/// subobjects are made explicit with nested InitListExpr nodes and
3457/// C99 designators have been eliminated by placing the designated
3458/// initializations into the subobject they initialize. Additionally,
3459/// any "holes" in the initialization, where no initializer has been
3460/// specified for a particular subobject, will be replaced with
3461/// implicitly-generated ImplicitValueInitExpr expressions that
3462/// value-initialize the subobjects. Note, however, that the
3463/// initializer lists may still have fewer initializers than there are
3464/// elements to initialize within the object.
3465///
3466/// Given the semantic form of the initializer list, one can retrieve
3467/// the original syntactic form of that initializer list (if it
3468/// exists) using getSyntacticForm(). Since many initializer lists
3469/// have the same syntactic and semantic forms, getSyntacticForm() may
3470/// return NULL, indicating that the current initializer list also
3471/// serves as its syntactic form.
3472class InitListExpr : public Expr {
3473  // FIXME: Eliminate this vector in favor of ASTContext allocation
3474  typedef ASTVector<Stmt *> InitExprsTy;
3475  InitExprsTy InitExprs;
3476  SourceLocation LBraceLoc, RBraceLoc;
3477
3478  /// Contains the initializer list that describes the syntactic form
3479  /// written in the source code.
3480  InitListExpr *SyntacticForm;
3481
3482  /// \brief Either:
3483  ///  If this initializer list initializes an array with more elements than
3484  ///  there are initializers in the list, specifies an expression to be used
3485  ///  for value initialization of the rest of the elements.
3486  /// Or
3487  ///  If this initializer list initializes a union, specifies which
3488  ///  field within the union will be initialized.
3489  llvm::PointerUnion<Expr *, FieldDecl *> ArrayFillerOrUnionFieldInit;
3490
3491public:
3492  InitListExpr(ASTContext &C, SourceLocation lbraceloc,
3493               Expr **initexprs, unsigned numinits,
3494               SourceLocation rbraceloc);
3495
3496  /// \brief Build an empty initializer list.
3497  explicit InitListExpr(ASTContext &C, EmptyShell Empty)
3498    : Expr(InitListExprClass, Empty), InitExprs(C) { }
3499
3500  unsigned getNumInits() const { return InitExprs.size(); }
3501
3502  /// \brief Retrieve the set of initializers.
3503  Expr **getInits() { return reinterpret_cast<Expr **>(InitExprs.data()); }
3504
3505  const Expr *getInit(unsigned Init) const {
3506    assert(Init < getNumInits() && "Initializer access out of range!");
3507    return cast_or_null<Expr>(InitExprs[Init]);
3508  }
3509
3510  Expr *getInit(unsigned Init) {
3511    assert(Init < getNumInits() && "Initializer access out of range!");
3512    return cast_or_null<Expr>(InitExprs[Init]);
3513  }
3514
3515  void setInit(unsigned Init, Expr *expr) {
3516    assert(Init < getNumInits() && "Initializer access out of range!");
3517    InitExprs[Init] = expr;
3518  }
3519
3520  /// \brief Reserve space for some number of initializers.
3521  void reserveInits(ASTContext &C, unsigned NumInits);
3522
3523  /// @brief Specify the number of initializers
3524  ///
3525  /// If there are more than @p NumInits initializers, the remaining
3526  /// initializers will be destroyed. If there are fewer than @p
3527  /// NumInits initializers, NULL expressions will be added for the
3528  /// unknown initializers.
3529  void resizeInits(ASTContext &Context, unsigned NumInits);
3530
3531  /// @brief Updates the initializer at index @p Init with the new
3532  /// expression @p expr, and returns the old expression at that
3533  /// location.
3534  ///
3535  /// When @p Init is out of range for this initializer list, the
3536  /// initializer list will be extended with NULL expressions to
3537  /// accommodate the new entry.
3538  Expr *updateInit(ASTContext &C, unsigned Init, Expr *expr);
3539
3540  /// \brief If this initializer list initializes an array with more elements
3541  /// than there are initializers in the list, specifies an expression to be
3542  /// used for value initialization of the rest of the elements.
3543  Expr *getArrayFiller() {
3544    return ArrayFillerOrUnionFieldInit.dyn_cast<Expr *>();
3545  }
3546  const Expr *getArrayFiller() const {
3547    return const_cast<InitListExpr *>(this)->getArrayFiller();
3548  }
3549  void setArrayFiller(Expr *filler);
3550
3551  /// \brief Return true if this is an array initializer and its array "filler"
3552  /// has been set.
3553  bool hasArrayFiller() const { return getArrayFiller(); }
3554
3555  /// \brief If this initializes a union, specifies which field in the
3556  /// union to initialize.
3557  ///
3558  /// Typically, this field is the first named field within the
3559  /// union. However, a designated initializer can specify the
3560  /// initialization of a different field within the union.
3561  FieldDecl *getInitializedFieldInUnion() {
3562    return ArrayFillerOrUnionFieldInit.dyn_cast<FieldDecl *>();
3563  }
3564  const FieldDecl *getInitializedFieldInUnion() const {
3565    return const_cast<InitListExpr *>(this)->getInitializedFieldInUnion();
3566  }
3567  void setInitializedFieldInUnion(FieldDecl *FD) {
3568    ArrayFillerOrUnionFieldInit = FD;
3569  }
3570
3571  // Explicit InitListExpr's originate from source code (and have valid source
3572  // locations). Implicit InitListExpr's are created by the semantic analyzer.
3573  bool isExplicit() {
3574    return LBraceLoc.isValid() && RBraceLoc.isValid();
3575  }
3576
3577  SourceLocation getLBraceLoc() const { return LBraceLoc; }
3578  void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
3579  SourceLocation getRBraceLoc() const { return RBraceLoc; }
3580  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
3581
3582  /// @brief Retrieve the initializer list that describes the
3583  /// syntactic form of the initializer.
3584  ///
3585  ///
3586  InitListExpr *getSyntacticForm() const { return SyntacticForm; }
3587  void setSyntacticForm(InitListExpr *Init) { SyntacticForm = Init; }
3588
3589  bool hadArrayRangeDesignator() const {
3590    return InitListExprBits.HadArrayRangeDesignator != 0;
3591  }
3592  void sawArrayRangeDesignator(bool ARD = true) {
3593    InitListExprBits.HadArrayRangeDesignator = ARD;
3594  }
3595
3596  bool initializesStdInitializerList() const {
3597    return InitListExprBits.InitializesStdInitializerList != 0;
3598  }
3599  void setInitializesStdInitializerList(bool ISIL = true) {
3600    InitListExprBits.InitializesStdInitializerList = ISIL;
3601  }
3602
3603  SourceRange getSourceRange() const;
3604
3605  static bool classof(const Stmt *T) {
3606    return T->getStmtClass() == InitListExprClass;
3607  }
3608  static bool classof(const InitListExpr *) { return true; }
3609
3610  // Iterators
3611  child_range children() {
3612    if (InitExprs.empty()) return child_range();
3613    return child_range(&InitExprs[0], &InitExprs[0] + InitExprs.size());
3614  }
3615
3616  typedef InitExprsTy::iterator iterator;
3617  typedef InitExprsTy::const_iterator const_iterator;
3618  typedef InitExprsTy::reverse_iterator reverse_iterator;
3619  typedef InitExprsTy::const_reverse_iterator const_reverse_iterator;
3620
3621  iterator begin() { return InitExprs.begin(); }
3622  const_iterator begin() const { return InitExprs.begin(); }
3623  iterator end() { return InitExprs.end(); }
3624  const_iterator end() const { return InitExprs.end(); }
3625  reverse_iterator rbegin() { return InitExprs.rbegin(); }
3626  const_reverse_iterator rbegin() const { return InitExprs.rbegin(); }
3627  reverse_iterator rend() { return InitExprs.rend(); }
3628  const_reverse_iterator rend() const { return InitExprs.rend(); }
3629
3630  friend class ASTStmtReader;
3631  friend class ASTStmtWriter;
3632};
3633
3634/// @brief Represents a C99 designated initializer expression.
3635///
3636/// A designated initializer expression (C99 6.7.8) contains one or
3637/// more designators (which can be field designators, array
3638/// designators, or GNU array-range designators) followed by an
3639/// expression that initializes the field or element(s) that the
3640/// designators refer to. For example, given:
3641///
3642/// @code
3643/// struct point {
3644///   double x;
3645///   double y;
3646/// };
3647/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
3648/// @endcode
3649///
3650/// The InitListExpr contains three DesignatedInitExprs, the first of
3651/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
3652/// designators, one array designator for @c [2] followed by one field
3653/// designator for @c .y. The initalization expression will be 1.0.
3654class DesignatedInitExpr : public Expr {
3655public:
3656  /// \brief Forward declaration of the Designator class.
3657  class Designator;
3658
3659private:
3660  /// The location of the '=' or ':' prior to the actual initializer
3661  /// expression.
3662  SourceLocation EqualOrColonLoc;
3663
3664  /// Whether this designated initializer used the GNU deprecated
3665  /// syntax rather than the C99 '=' syntax.
3666  bool GNUSyntax : 1;
3667
3668  /// The number of designators in this initializer expression.
3669  unsigned NumDesignators : 15;
3670
3671  /// \brief The designators in this designated initialization
3672  /// expression.
3673  Designator *Designators;
3674
3675  /// The number of subexpressions of this initializer expression,
3676  /// which contains both the initializer and any additional
3677  /// expressions used by array and array-range designators.
3678  unsigned NumSubExprs : 16;
3679
3680
3681  DesignatedInitExpr(ASTContext &C, QualType Ty, unsigned NumDesignators,
3682                     const Designator *Designators,
3683                     SourceLocation EqualOrColonLoc, bool GNUSyntax,
3684                     Expr **IndexExprs, unsigned NumIndexExprs,
3685                     Expr *Init);
3686
3687  explicit DesignatedInitExpr(unsigned NumSubExprs)
3688    : Expr(DesignatedInitExprClass, EmptyShell()),
3689      NumDesignators(0), Designators(0), NumSubExprs(NumSubExprs) { }
3690
3691public:
3692  /// A field designator, e.g., ".x".
3693  struct FieldDesignator {
3694    /// Refers to the field that is being initialized. The low bit
3695    /// of this field determines whether this is actually a pointer
3696    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
3697    /// initially constructed, a field designator will store an
3698    /// IdentifierInfo*. After semantic analysis has resolved that
3699    /// name, the field designator will instead store a FieldDecl*.
3700    uintptr_t NameOrField;
3701
3702    /// The location of the '.' in the designated initializer.
3703    unsigned DotLoc;
3704
3705    /// The location of the field name in the designated initializer.
3706    unsigned FieldLoc;
3707  };
3708
3709  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
3710  struct ArrayOrRangeDesignator {
3711    /// Location of the first index expression within the designated
3712    /// initializer expression's list of subexpressions.
3713    unsigned Index;
3714    /// The location of the '[' starting the array range designator.
3715    unsigned LBracketLoc;
3716    /// The location of the ellipsis separating the start and end
3717    /// indices. Only valid for GNU array-range designators.
3718    unsigned EllipsisLoc;
3719    /// The location of the ']' terminating the array range designator.
3720    unsigned RBracketLoc;
3721  };
3722
3723  /// @brief Represents a single C99 designator.
3724  ///
3725  /// @todo This class is infuriatingly similar to clang::Designator,
3726  /// but minor differences (storing indices vs. storing pointers)
3727  /// keep us from reusing it. Try harder, later, to rectify these
3728  /// differences.
3729  class Designator {
3730    /// @brief The kind of designator this describes.
3731    enum {
3732      FieldDesignator,
3733      ArrayDesignator,
3734      ArrayRangeDesignator
3735    } Kind;
3736
3737    union {
3738      /// A field designator, e.g., ".x".
3739      struct FieldDesignator Field;
3740      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
3741      struct ArrayOrRangeDesignator ArrayOrRange;
3742    };
3743    friend class DesignatedInitExpr;
3744
3745  public:
3746    Designator() {}
3747
3748    /// @brief Initializes a field designator.
3749    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
3750               SourceLocation FieldLoc)
3751      : Kind(FieldDesignator) {
3752      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
3753      Field.DotLoc = DotLoc.getRawEncoding();
3754      Field.FieldLoc = FieldLoc.getRawEncoding();
3755    }
3756
3757    /// @brief Initializes an array designator.
3758    Designator(unsigned Index, SourceLocation LBracketLoc,
3759               SourceLocation RBracketLoc)
3760      : Kind(ArrayDesignator) {
3761      ArrayOrRange.Index = Index;
3762      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3763      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
3764      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3765    }
3766
3767    /// @brief Initializes a GNU array-range designator.
3768    Designator(unsigned Index, SourceLocation LBracketLoc,
3769               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
3770      : Kind(ArrayRangeDesignator) {
3771      ArrayOrRange.Index = Index;
3772      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3773      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
3774      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3775    }
3776
3777    bool isFieldDesignator() const { return Kind == FieldDesignator; }
3778    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
3779    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
3780
3781    IdentifierInfo *getFieldName() const;
3782
3783    FieldDecl *getField() const {
3784      assert(Kind == FieldDesignator && "Only valid on a field designator");
3785      if (Field.NameOrField & 0x01)
3786        return 0;
3787      else
3788        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
3789    }
3790
3791    void setField(FieldDecl *FD) {
3792      assert(Kind == FieldDesignator && "Only valid on a field designator");
3793      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
3794    }
3795
3796    SourceLocation getDotLoc() const {
3797      assert(Kind == FieldDesignator && "Only valid on a field designator");
3798      return SourceLocation::getFromRawEncoding(Field.DotLoc);
3799    }
3800
3801    SourceLocation getFieldLoc() const {
3802      assert(Kind == FieldDesignator && "Only valid on a field designator");
3803      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
3804    }
3805
3806    SourceLocation getLBracketLoc() const {
3807      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3808             "Only valid on an array or array-range designator");
3809      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
3810    }
3811
3812    SourceLocation getRBracketLoc() const {
3813      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3814             "Only valid on an array or array-range designator");
3815      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
3816    }
3817
3818    SourceLocation getEllipsisLoc() const {
3819      assert(Kind == ArrayRangeDesignator &&
3820             "Only valid on an array-range designator");
3821      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
3822    }
3823
3824    unsigned getFirstExprIndex() const {
3825      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3826             "Only valid on an array or array-range designator");
3827      return ArrayOrRange.Index;
3828    }
3829
3830    SourceLocation getStartLocation() const {
3831      if (Kind == FieldDesignator)
3832        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
3833      else
3834        return getLBracketLoc();
3835    }
3836    SourceLocation getEndLocation() const {
3837      return Kind == FieldDesignator ? getFieldLoc() : getRBracketLoc();
3838    }
3839    SourceRange getSourceRange() const {
3840      return SourceRange(getStartLocation(), getEndLocation());
3841    }
3842  };
3843
3844  static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators,
3845                                    unsigned NumDesignators,
3846                                    Expr **IndexExprs, unsigned NumIndexExprs,
3847                                    SourceLocation EqualOrColonLoc,
3848                                    bool GNUSyntax, Expr *Init);
3849
3850  static DesignatedInitExpr *CreateEmpty(ASTContext &C, unsigned NumIndexExprs);
3851
3852  /// @brief Returns the number of designators in this initializer.
3853  unsigned size() const { return NumDesignators; }
3854
3855  // Iterator access to the designators.
3856  typedef Designator *designators_iterator;
3857  designators_iterator designators_begin() { return Designators; }
3858  designators_iterator designators_end() {
3859    return Designators + NumDesignators;
3860  }
3861
3862  typedef const Designator *const_designators_iterator;
3863  const_designators_iterator designators_begin() const { return Designators; }
3864  const_designators_iterator designators_end() const {
3865    return Designators + NumDesignators;
3866  }
3867
3868  typedef std::reverse_iterator<designators_iterator>
3869          reverse_designators_iterator;
3870  reverse_designators_iterator designators_rbegin() {
3871    return reverse_designators_iterator(designators_end());
3872  }
3873  reverse_designators_iterator designators_rend() {
3874    return reverse_designators_iterator(designators_begin());
3875  }
3876
3877  typedef std::reverse_iterator<const_designators_iterator>
3878          const_reverse_designators_iterator;
3879  const_reverse_designators_iterator designators_rbegin() const {
3880    return const_reverse_designators_iterator(designators_end());
3881  }
3882  const_reverse_designators_iterator designators_rend() const {
3883    return const_reverse_designators_iterator(designators_begin());
3884  }
3885
3886  Designator *getDesignator(unsigned Idx) { return &designators_begin()[Idx]; }
3887
3888  void setDesignators(ASTContext &C, const Designator *Desigs,
3889                      unsigned NumDesigs);
3890
3891  Expr *getArrayIndex(const Designator& D);
3892  Expr *getArrayRangeStart(const Designator& D);
3893  Expr *getArrayRangeEnd(const Designator& D);
3894
3895  /// @brief Retrieve the location of the '=' that precedes the
3896  /// initializer value itself, if present.
3897  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
3898  void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
3899
3900  /// @brief Determines whether this designated initializer used the
3901  /// deprecated GNU syntax for designated initializers.
3902  bool usesGNUSyntax() const { return GNUSyntax; }
3903  void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
3904
3905  /// @brief Retrieve the initializer value.
3906  Expr *getInit() const {
3907    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
3908  }
3909
3910  void setInit(Expr *init) {
3911    *child_begin() = init;
3912  }
3913
3914  /// \brief Retrieve the total number of subexpressions in this
3915  /// designated initializer expression, including the actual
3916  /// initialized value and any expressions that occur within array
3917  /// and array-range designators.
3918  unsigned getNumSubExprs() const { return NumSubExprs; }
3919
3920  Expr *getSubExpr(unsigned Idx) {
3921    assert(Idx < NumSubExprs && "Subscript out of range");
3922    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3923    Ptr += sizeof(DesignatedInitExpr);
3924    return reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx];
3925  }
3926
3927  void setSubExpr(unsigned Idx, Expr *E) {
3928    assert(Idx < NumSubExprs && "Subscript out of range");
3929    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3930    Ptr += sizeof(DesignatedInitExpr);
3931    reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx] = E;
3932  }
3933
3934  /// \brief Replaces the designator at index @p Idx with the series
3935  /// of designators in [First, Last).
3936  void ExpandDesignator(ASTContext &C, unsigned Idx, const Designator *First,
3937                        const Designator *Last);
3938
3939  SourceRange getDesignatorsSourceRange() const;
3940
3941  SourceRange getSourceRange() const;
3942
3943  static bool classof(const Stmt *T) {
3944    return T->getStmtClass() == DesignatedInitExprClass;
3945  }
3946  static bool classof(const DesignatedInitExpr *) { return true; }
3947
3948  // Iterators
3949  child_range children() {
3950    Stmt **begin = reinterpret_cast<Stmt**>(this + 1);
3951    return child_range(begin, begin + NumSubExprs);
3952  }
3953};
3954
3955/// \brief Represents an implicitly-generated value initialization of
3956/// an object of a given type.
3957///
3958/// Implicit value initializations occur within semantic initializer
3959/// list expressions (InitListExpr) as placeholders for subobject
3960/// initializations not explicitly specified by the user.
3961///
3962/// \see InitListExpr
3963class ImplicitValueInitExpr : public Expr {
3964public:
3965  explicit ImplicitValueInitExpr(QualType ty)
3966    : Expr(ImplicitValueInitExprClass, ty, VK_RValue, OK_Ordinary,
3967           false, false, ty->isInstantiationDependentType(), false) { }
3968
3969  /// \brief Construct an empty implicit value initialization.
3970  explicit ImplicitValueInitExpr(EmptyShell Empty)
3971    : Expr(ImplicitValueInitExprClass, Empty) { }
3972
3973  static bool classof(const Stmt *T) {
3974    return T->getStmtClass() == ImplicitValueInitExprClass;
3975  }
3976  static bool classof(const ImplicitValueInitExpr *) { return true; }
3977
3978  SourceRange getSourceRange() const {
3979    return SourceRange();
3980  }
3981
3982  // Iterators
3983  child_range children() { return child_range(); }
3984};
3985
3986
3987class ParenListExpr : public Expr {
3988  Stmt **Exprs;
3989  unsigned NumExprs;
3990  SourceLocation LParenLoc, RParenLoc;
3991
3992public:
3993  ParenListExpr(ASTContext& C, SourceLocation lparenloc, Expr **exprs,
3994                unsigned numexprs, SourceLocation rparenloc);
3995
3996  /// \brief Build an empty paren list.
3997  explicit ParenListExpr(EmptyShell Empty) : Expr(ParenListExprClass, Empty) { }
3998
3999  unsigned getNumExprs() const { return NumExprs; }
4000
4001  const Expr* getExpr(unsigned Init) const {
4002    assert(Init < getNumExprs() && "Initializer access out of range!");
4003    return cast_or_null<Expr>(Exprs[Init]);
4004  }
4005
4006  Expr* getExpr(unsigned Init) {
4007    assert(Init < getNumExprs() && "Initializer access out of range!");
4008    return cast_or_null<Expr>(Exprs[Init]);
4009  }
4010
4011  Expr **getExprs() { return reinterpret_cast<Expr **>(Exprs); }
4012
4013  SourceLocation getLParenLoc() const { return LParenLoc; }
4014  SourceLocation getRParenLoc() const { return RParenLoc; }
4015
4016  SourceRange getSourceRange() const {
4017    return SourceRange(LParenLoc, RParenLoc);
4018  }
4019  static bool classof(const Stmt *T) {
4020    return T->getStmtClass() == ParenListExprClass;
4021  }
4022  static bool classof(const ParenListExpr *) { return true; }
4023
4024  // Iterators
4025  child_range children() {
4026    return child_range(&Exprs[0], &Exprs[0]+NumExprs);
4027  }
4028
4029  friend class ASTStmtReader;
4030  friend class ASTStmtWriter;
4031};
4032
4033
4034/// \brief Represents a C11 generic selection.
4035///
4036/// A generic selection (C11 6.5.1.1) contains an unevaluated controlling
4037/// expression, followed by one or more generic associations.  Each generic
4038/// association specifies a type name and an expression, or "default" and an
4039/// expression (in which case it is known as a default generic association).
4040/// The type and value of the generic selection are identical to those of its
4041/// result expression, which is defined as the expression in the generic
4042/// association with a type name that is compatible with the type of the
4043/// controlling expression, or the expression in the default generic association
4044/// if no types are compatible.  For example:
4045///
4046/// @code
4047/// _Generic(X, double: 1, float: 2, default: 3)
4048/// @endcode
4049///
4050/// The above expression evaluates to 1 if 1.0 is substituted for X, 2 if 1.0f
4051/// or 3 if "hello".
4052///
4053/// As an extension, generic selections are allowed in C++, where the following
4054/// additional semantics apply:
4055///
4056/// Any generic selection whose controlling expression is type-dependent or
4057/// which names a dependent type in its association list is result-dependent,
4058/// which means that the choice of result expression is dependent.
4059/// Result-dependent generic associations are both type- and value-dependent.
4060class GenericSelectionExpr : public Expr {
4061  enum { CONTROLLING, END_EXPR };
4062  TypeSourceInfo **AssocTypes;
4063  Stmt **SubExprs;
4064  unsigned NumAssocs, ResultIndex;
4065  SourceLocation GenericLoc, DefaultLoc, RParenLoc;
4066
4067public:
4068  GenericSelectionExpr(ASTContext &Context,
4069                       SourceLocation GenericLoc, Expr *ControllingExpr,
4070                       TypeSourceInfo **AssocTypes, Expr **AssocExprs,
4071                       unsigned NumAssocs, SourceLocation DefaultLoc,
4072                       SourceLocation RParenLoc,
4073                       bool ContainsUnexpandedParameterPack,
4074                       unsigned ResultIndex);
4075
4076  /// This constructor is used in the result-dependent case.
4077  GenericSelectionExpr(ASTContext &Context,
4078                       SourceLocation GenericLoc, Expr *ControllingExpr,
4079                       TypeSourceInfo **AssocTypes, Expr **AssocExprs,
4080                       unsigned NumAssocs, SourceLocation DefaultLoc,
4081                       SourceLocation RParenLoc,
4082                       bool ContainsUnexpandedParameterPack);
4083
4084  explicit GenericSelectionExpr(EmptyShell Empty)
4085    : Expr(GenericSelectionExprClass, Empty) { }
4086
4087  unsigned getNumAssocs() const { return NumAssocs; }
4088
4089  SourceLocation getGenericLoc() const { return GenericLoc; }
4090  SourceLocation getDefaultLoc() const { return DefaultLoc; }
4091  SourceLocation getRParenLoc() const { return RParenLoc; }
4092
4093  const Expr *getAssocExpr(unsigned i) const {
4094    return cast<Expr>(SubExprs[END_EXPR+i]);
4095  }
4096  Expr *getAssocExpr(unsigned i) { return cast<Expr>(SubExprs[END_EXPR+i]); }
4097
4098  const TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) const {
4099    return AssocTypes[i];
4100  }
4101  TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) { return AssocTypes[i]; }
4102
4103  QualType getAssocType(unsigned i) const {
4104    if (const TypeSourceInfo *TS = getAssocTypeSourceInfo(i))
4105      return TS->getType();
4106    else
4107      return QualType();
4108  }
4109
4110  const Expr *getControllingExpr() const {
4111    return cast<Expr>(SubExprs[CONTROLLING]);
4112  }
4113  Expr *getControllingExpr() { return cast<Expr>(SubExprs[CONTROLLING]); }
4114
4115  /// Whether this generic selection is result-dependent.
4116  bool isResultDependent() const { return ResultIndex == -1U; }
4117
4118  /// The zero-based index of the result expression's generic association in
4119  /// the generic selection's association list.  Defined only if the
4120  /// generic selection is not result-dependent.
4121  unsigned getResultIndex() const {
4122    assert(!isResultDependent() && "Generic selection is result-dependent");
4123    return ResultIndex;
4124  }
4125
4126  /// The generic selection's result expression.  Defined only if the
4127  /// generic selection is not result-dependent.
4128  const Expr *getResultExpr() const { return getAssocExpr(getResultIndex()); }
4129  Expr *getResultExpr() { return getAssocExpr(getResultIndex()); }
4130
4131  SourceRange getSourceRange() const {
4132    return SourceRange(GenericLoc, RParenLoc);
4133  }
4134  static bool classof(const Stmt *T) {
4135    return T->getStmtClass() == GenericSelectionExprClass;
4136  }
4137  static bool classof(const GenericSelectionExpr *) { return true; }
4138
4139  child_range children() {
4140    return child_range(SubExprs, SubExprs+END_EXPR+NumAssocs);
4141  }
4142
4143  friend class ASTStmtReader;
4144};
4145
4146//===----------------------------------------------------------------------===//
4147// Clang Extensions
4148//===----------------------------------------------------------------------===//
4149
4150
4151/// ExtVectorElementExpr - This represents access to specific elements of a
4152/// vector, and may occur on the left hand side or right hand side.  For example
4153/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
4154///
4155/// Note that the base may have either vector or pointer to vector type, just
4156/// like a struct field reference.
4157///
4158class ExtVectorElementExpr : public Expr {
4159  Stmt *Base;
4160  IdentifierInfo *Accessor;
4161  SourceLocation AccessorLoc;
4162public:
4163  ExtVectorElementExpr(QualType ty, ExprValueKind VK, Expr *base,
4164                       IdentifierInfo &accessor, SourceLocation loc)
4165    : Expr(ExtVectorElementExprClass, ty, VK,
4166           (VK == VK_RValue ? OK_Ordinary : OK_VectorComponent),
4167           base->isTypeDependent(), base->isValueDependent(),
4168           base->isInstantiationDependent(),
4169           base->containsUnexpandedParameterPack()),
4170      Base(base), Accessor(&accessor), AccessorLoc(loc) {}
4171
4172  /// \brief Build an empty vector element expression.
4173  explicit ExtVectorElementExpr(EmptyShell Empty)
4174    : Expr(ExtVectorElementExprClass, Empty) { }
4175
4176  const Expr *getBase() const { return cast<Expr>(Base); }
4177  Expr *getBase() { return cast<Expr>(Base); }
4178  void setBase(Expr *E) { Base = E; }
4179
4180  IdentifierInfo &getAccessor() const { return *Accessor; }
4181  void setAccessor(IdentifierInfo *II) { Accessor = II; }
4182
4183  SourceLocation getAccessorLoc() const { return AccessorLoc; }
4184  void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
4185
4186  /// getNumElements - Get the number of components being selected.
4187  unsigned getNumElements() const;
4188
4189  /// containsDuplicateElements - Return true if any element access is
4190  /// repeated.
4191  bool containsDuplicateElements() const;
4192
4193  /// getEncodedElementAccess - Encode the elements accessed into an llvm
4194  /// aggregate Constant of ConstantInt(s).
4195  void getEncodedElementAccess(SmallVectorImpl<unsigned> &Elts) const;
4196
4197  SourceRange getSourceRange() const {
4198    return SourceRange(getBase()->getLocStart(), AccessorLoc);
4199  }
4200
4201  /// isArrow - Return true if the base expression is a pointer to vector,
4202  /// return false if the base expression is a vector.
4203  bool isArrow() const;
4204
4205  static bool classof(const Stmt *T) {
4206    return T->getStmtClass() == ExtVectorElementExprClass;
4207  }
4208  static bool classof(const ExtVectorElementExpr *) { return true; }
4209
4210  // Iterators
4211  child_range children() { return child_range(&Base, &Base+1); }
4212};
4213
4214
4215/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
4216/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
4217class BlockExpr : public Expr {
4218protected:
4219  BlockDecl *TheBlock;
4220public:
4221  BlockExpr(BlockDecl *BD, QualType ty)
4222    : Expr(BlockExprClass, ty, VK_RValue, OK_Ordinary,
4223           ty->isDependentType(), ty->isDependentType(),
4224           ty->isInstantiationDependentType() || BD->isDependentContext(),
4225           false),
4226      TheBlock(BD) {}
4227
4228  /// \brief Build an empty block expression.
4229  explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { }
4230
4231  const BlockDecl *getBlockDecl() const { return TheBlock; }
4232  BlockDecl *getBlockDecl() { return TheBlock; }
4233  void setBlockDecl(BlockDecl *BD) { TheBlock = BD; }
4234
4235  // Convenience functions for probing the underlying BlockDecl.
4236  SourceLocation getCaretLocation() const;
4237  const Stmt *getBody() const;
4238  Stmt *getBody();
4239
4240  SourceRange getSourceRange() const {
4241    return SourceRange(getCaretLocation(), getBody()->getLocEnd());
4242  }
4243
4244  /// getFunctionType - Return the underlying function type for this block.
4245  const FunctionProtoType *getFunctionType() const;
4246
4247  static bool classof(const Stmt *T) {
4248    return T->getStmtClass() == BlockExprClass;
4249  }
4250  static bool classof(const BlockExpr *) { return true; }
4251
4252  // Iterators
4253  child_range children() { return child_range(); }
4254};
4255
4256/// BlockDeclRefExpr - A reference to a local variable declared in an
4257/// enclosing scope.
4258class BlockDeclRefExpr : public Expr {
4259  VarDecl *D;
4260  SourceLocation Loc;
4261  bool IsByRef : 1;
4262  bool ConstQualAdded : 1;
4263public:
4264  BlockDeclRefExpr(VarDecl *d, QualType t, ExprValueKind VK,
4265                   SourceLocation l, bool ByRef, bool constAdded = false);
4266
4267  // \brief Build an empty reference to a declared variable in a
4268  // block.
4269  explicit BlockDeclRefExpr(EmptyShell Empty)
4270    : Expr(BlockDeclRefExprClass, Empty) { }
4271
4272  VarDecl *getDecl() { return D; }
4273  const VarDecl *getDecl() const { return D; }
4274  void setDecl(VarDecl *VD) { D = VD; }
4275
4276  SourceLocation getLocation() const { return Loc; }
4277  void setLocation(SourceLocation L) { Loc = L; }
4278
4279  SourceRange getSourceRange() const { return SourceRange(Loc); }
4280
4281  bool isByRef() const { return IsByRef; }
4282  void setByRef(bool BR) { IsByRef = BR; }
4283
4284  bool isConstQualAdded() const { return ConstQualAdded; }
4285  void setConstQualAdded(bool C) { ConstQualAdded = C; }
4286
4287  static bool classof(const Stmt *T) {
4288    return T->getStmtClass() == BlockDeclRefExprClass;
4289  }
4290  static bool classof(const BlockDeclRefExpr *) { return true; }
4291
4292  // Iterators
4293  child_range children() { return child_range(); }
4294};
4295
4296/// AsTypeExpr - Clang builtin function __builtin_astype [OpenCL 6.2.4.2]
4297/// This AST node provides support for reinterpreting a type to another
4298/// type of the same size.
4299class AsTypeExpr : public Expr { // Should this be an ExplicitCastExpr?
4300private:
4301  Stmt *SrcExpr;
4302  SourceLocation BuiltinLoc, RParenLoc;
4303
4304  friend class ASTReader;
4305  friend class ASTStmtReader;
4306  explicit AsTypeExpr(EmptyShell Empty) : Expr(AsTypeExprClass, Empty) {}
4307
4308public:
4309  AsTypeExpr(Expr* SrcExpr, QualType DstType,
4310             ExprValueKind VK, ExprObjectKind OK,
4311             SourceLocation BuiltinLoc, SourceLocation RParenLoc)
4312    : Expr(AsTypeExprClass, DstType, VK, OK,
4313           DstType->isDependentType(),
4314           DstType->isDependentType() || SrcExpr->isValueDependent(),
4315           (DstType->isInstantiationDependentType() ||
4316            SrcExpr->isInstantiationDependent()),
4317           (DstType->containsUnexpandedParameterPack() ||
4318            SrcExpr->containsUnexpandedParameterPack())),
4319  SrcExpr(SrcExpr), BuiltinLoc(BuiltinLoc), RParenLoc(RParenLoc) {}
4320
4321  /// getSrcExpr - Return the Expr to be converted.
4322  Expr *getSrcExpr() const { return cast<Expr>(SrcExpr); }
4323
4324  /// getBuiltinLoc - Return the location of the __builtin_astype token.
4325  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
4326
4327  /// getRParenLoc - Return the location of final right parenthesis.
4328  SourceLocation getRParenLoc() const { return RParenLoc; }
4329
4330  SourceRange getSourceRange() const {
4331    return SourceRange(BuiltinLoc, RParenLoc);
4332  }
4333
4334  static bool classof(const Stmt *T) {
4335    return T->getStmtClass() == AsTypeExprClass;
4336  }
4337  static bool classof(const AsTypeExpr *) { return true; }
4338
4339  // Iterators
4340  child_range children() { return child_range(&SrcExpr, &SrcExpr+1); }
4341};
4342
4343/// PseudoObjectExpr - An expression which accesses a pseudo-object
4344/// l-value.  A pseudo-object is an abstract object, accesses to which
4345/// are translated to calls.  The pseudo-object expression has a
4346/// syntactic form, which shows how the expression was actually
4347/// written in the source code, and a semantic form, which is a series
4348/// of expressions to be executed in order which detail how the
4349/// operation is actually evaluated.  Optionally, one of the semantic
4350/// forms may also provide a result value for the expression.
4351///
4352/// If any of the semantic-form expressions is an OpaqueValueExpr,
4353/// that OVE is required to have a source expression, and it is bound
4354/// to the result of that source expression.  Such OVEs may appear
4355/// only in subsequent semantic-form expressions and as
4356/// sub-expressions of the syntactic form.
4357///
4358/// PseudoObjectExpr should be used only when an operation can be
4359/// usefully described in terms of fairly simple rewrite rules on
4360/// objects and functions that are meant to be used by end-developers.
4361/// For example, under the Itanium ABI, dynamic casts are implemented
4362/// as a call to a runtime function called __dynamic_cast; using this
4363/// class to describe that would be inappropriate because that call is
4364/// not really part of the user-visible semantics, and instead the
4365/// cast is properly reflected in the AST and IR-generation has been
4366/// taught to generate the call as necessary.  In contrast, an
4367/// Objective-C property access is semantically defined to be
4368/// equivalent to a particular message send, and this is very much
4369/// part of the user model.  The name of this class encourages this
4370/// modelling design.
4371class PseudoObjectExpr : public Expr {
4372  // PseudoObjectExprBits.NumSubExprs - The number of sub-expressions.
4373  // Always at least two, because the first sub-expression is the
4374  // syntactic form.
4375
4376  // PseudoObjectExprBits.ResultIndex - The index of the
4377  // sub-expression holding the result.  0 means the result is void,
4378  // which is unambiguous because it's the index of the syntactic
4379  // form.  Note that this is therefore 1 higher than the value passed
4380  // in to Create, which is an index within the semantic forms.
4381  // Note also that ASTStmtWriter assumes this encoding.
4382
4383  Expr **getSubExprsBuffer() { return reinterpret_cast<Expr**>(this + 1); }
4384  const Expr * const *getSubExprsBuffer() const {
4385    return reinterpret_cast<const Expr * const *>(this + 1);
4386  }
4387
4388  friend class ASTStmtReader;
4389
4390  PseudoObjectExpr(QualType type, ExprValueKind VK,
4391                   Expr *syntactic, ArrayRef<Expr*> semantic,
4392                   unsigned resultIndex);
4393
4394  PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs);
4395
4396  unsigned getNumSubExprs() const {
4397    return PseudoObjectExprBits.NumSubExprs;
4398  }
4399
4400public:
4401  /// NoResult - A value for the result index indicating that there is
4402  /// no semantic result.
4403  enum { NoResult = ~0U };
4404
4405  static PseudoObjectExpr *Create(ASTContext &Context, Expr *syntactic,
4406                                  ArrayRef<Expr*> semantic,
4407                                  unsigned resultIndex);
4408
4409  static PseudoObjectExpr *Create(ASTContext &Context, EmptyShell shell,
4410                                  unsigned numSemanticExprs);
4411
4412  /// Return the syntactic form of this expression, i.e. the
4413  /// expression it actually looks like.  Likely to be expressed in
4414  /// terms of OpaqueValueExprs bound in the semantic form.
4415  Expr *getSyntacticForm() { return getSubExprsBuffer()[0]; }
4416  const Expr *getSyntacticForm() const { return getSubExprsBuffer()[0]; }
4417
4418  /// Return the index of the result-bearing expression into the semantics
4419  /// expressions, or PseudoObjectExpr::NoResult if there is none.
4420  unsigned getResultExprIndex() const {
4421    if (PseudoObjectExprBits.ResultIndex == 0) return NoResult;
4422    return PseudoObjectExprBits.ResultIndex - 1;
4423  }
4424
4425  /// Return the result-bearing expression, or null if there is none.
4426  Expr *getResultExpr() {
4427    if (PseudoObjectExprBits.ResultIndex == 0)
4428      return 0;
4429    return getSubExprsBuffer()[PseudoObjectExprBits.ResultIndex];
4430  }
4431  const Expr *getResultExpr() const {
4432    return const_cast<PseudoObjectExpr*>(this)->getResultExpr();
4433  }
4434
4435  unsigned getNumSemanticExprs() const { return getNumSubExprs() - 1; }
4436
4437  typedef Expr * const *semantics_iterator;
4438  typedef const Expr * const *const_semantics_iterator;
4439  semantics_iterator semantics_begin() {
4440    return getSubExprsBuffer() + 1;
4441  }
4442  const_semantics_iterator semantics_begin() const {
4443    return getSubExprsBuffer() + 1;
4444  }
4445  semantics_iterator semantics_end() {
4446    return getSubExprsBuffer() + getNumSubExprs();
4447  }
4448  const_semantics_iterator semantics_end() const {
4449    return getSubExprsBuffer() + getNumSubExprs();
4450  }
4451  Expr *getSemanticExpr(unsigned index) {
4452    assert(index + 1 < getNumSubExprs());
4453    return getSubExprsBuffer()[index + 1];
4454  }
4455  const Expr *getSemanticExpr(unsigned index) const {
4456    return const_cast<PseudoObjectExpr*>(this)->getSemanticExpr(index);
4457  }
4458
4459  SourceLocation getExprLoc() const {
4460    return getSyntacticForm()->getExprLoc();
4461  }
4462  SourceRange getSourceRange() const {
4463    return getSyntacticForm()->getSourceRange();
4464  }
4465
4466  child_range children() {
4467    Stmt **cs = reinterpret_cast<Stmt**>(getSubExprsBuffer());
4468    return child_range(cs, cs + getNumSubExprs());
4469  }
4470
4471  static bool classof(const Stmt *T) {
4472    return T->getStmtClass() == PseudoObjectExprClass;
4473  }
4474  static bool classof(const PseudoObjectExpr *) { return true; }
4475};
4476
4477/// AtomicExpr - Variadic atomic builtins: __atomic_exchange, __atomic_fetch_*,
4478/// __atomic_load, __atomic_store, and __atomic_compare_exchange_*, for the
4479/// similarly-named C++0x instructions.  All of these instructions take one
4480/// primary pointer and at least one memory order.
4481class AtomicExpr : public Expr {
4482public:
4483  enum AtomicOp { Load, Store, CmpXchgStrong, CmpXchgWeak, Xchg,
4484                  Add, Sub, And, Or, Xor, Init };
4485private:
4486  enum { PTR, ORDER, VAL1, ORDER_FAIL, VAL2, END_EXPR };
4487  Stmt* SubExprs[END_EXPR];
4488  unsigned NumSubExprs;
4489  SourceLocation BuiltinLoc, RParenLoc;
4490  AtomicOp Op;
4491
4492public:
4493  AtomicExpr(SourceLocation BLoc, Expr **args, unsigned nexpr, QualType t,
4494             AtomicOp op, SourceLocation RP);
4495
4496  /// \brief Build an empty AtomicExpr.
4497  explicit AtomicExpr(EmptyShell Empty) : Expr(AtomicExprClass, Empty) { }
4498
4499  Expr *getPtr() const {
4500    return cast<Expr>(SubExprs[PTR]);
4501  }
4502  void setPtr(Expr *E) {
4503    SubExprs[PTR] = E;
4504  }
4505  Expr *getOrder() const {
4506    return cast<Expr>(SubExprs[ORDER]);
4507  }
4508  void setOrder(Expr *E) {
4509    SubExprs[ORDER] = E;
4510  }
4511  Expr *getVal1() const {
4512    if (Op == Init)
4513      return cast<Expr>(SubExprs[ORDER]);
4514    assert(NumSubExprs >= 3);
4515    return cast<Expr>(SubExprs[VAL1]);
4516  }
4517  void setVal1(Expr *E) {
4518    if (Op == Init) {
4519      SubExprs[ORDER] = E;
4520      return;
4521    }
4522    assert(NumSubExprs >= 3);
4523    SubExprs[VAL1] = E;
4524  }
4525  Expr *getOrderFail() const {
4526    assert(NumSubExprs == 5);
4527    return cast<Expr>(SubExprs[ORDER_FAIL]);
4528  }
4529  void setOrderFail(Expr *E) {
4530    assert(NumSubExprs == 5);
4531    SubExprs[ORDER_FAIL] = E;
4532  }
4533  Expr *getVal2() const {
4534    assert(NumSubExprs == 5);
4535    return cast<Expr>(SubExprs[VAL2]);
4536  }
4537  void setVal2(Expr *E) {
4538    assert(NumSubExprs == 5);
4539    SubExprs[VAL2] = E;
4540  }
4541
4542  AtomicOp getOp() const { return Op; }
4543  void setOp(AtomicOp op) { Op = op; }
4544  unsigned getNumSubExprs() { return NumSubExprs; }
4545  void setNumSubExprs(unsigned num) { NumSubExprs = num; }
4546
4547  Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
4548
4549  bool isVolatile() const {
4550    return getPtr()->getType()->getPointeeType().isVolatileQualified();
4551  }
4552
4553  bool isCmpXChg() const {
4554    return getOp() == AtomicExpr::CmpXchgStrong ||
4555           getOp() == AtomicExpr::CmpXchgWeak;
4556  }
4557
4558  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
4559  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
4560
4561  SourceLocation getRParenLoc() const { return RParenLoc; }
4562  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
4563
4564  SourceRange getSourceRange() const {
4565    return SourceRange(BuiltinLoc, RParenLoc);
4566  }
4567  static bool classof(const Stmt *T) {
4568    return T->getStmtClass() == AtomicExprClass;
4569  }
4570  static bool classof(const AtomicExpr *) { return true; }
4571
4572  // Iterators
4573  child_range children() {
4574    return child_range(SubExprs, SubExprs+NumSubExprs);
4575  }
4576};
4577}  // end namespace clang
4578
4579#endif
4580