Expr.h revision f56faa01936b9cf909623d7f06e3c2569ca4a78e
1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/Decl.h"
19#include "clang/AST/Stmt.h"
20#include "clang/AST/Type.h"
21#include "clang/AST/DeclAccessPair.h"
22#include "clang/AST/OperationKinds.h"
23#include "clang/AST/ASTVector.h"
24#include "clang/AST/TemplateBase.h"
25#include "clang/Basic/TargetInfo.h"
26#include "clang/Basic/TypeTraits.h"
27#include "llvm/ADT/APSInt.h"
28#include "llvm/ADT/APFloat.h"
29#include "llvm/ADT/SmallVector.h"
30#include "llvm/ADT/StringRef.h"
31#include "llvm/Support/Compiler.h"
32#include <cctype>
33
34namespace clang {
35  class ASTContext;
36  class APValue;
37  class Decl;
38  class IdentifierInfo;
39  class ParmVarDecl;
40  class NamedDecl;
41  class ValueDecl;
42  class BlockDecl;
43  class CXXBaseSpecifier;
44  class CXXOperatorCallExpr;
45  class CXXMemberCallExpr;
46  class ObjCPropertyRefExpr;
47  class OpaqueValueExpr;
48
49/// \brief A simple array of base specifiers.
50typedef SmallVector<CXXBaseSpecifier*, 4> CXXCastPath;
51
52/// Expr - This represents one expression.  Note that Expr's are subclasses of
53/// Stmt.  This allows an expression to be transparently used any place a Stmt
54/// is required.
55///
56class Expr : public Stmt {
57  QualType TR;
58
59protected:
60  Expr(StmtClass SC, QualType T, ExprValueKind VK, ExprObjectKind OK,
61       bool TD, bool VD, bool ID, bool ContainsUnexpandedParameterPack)
62    : Stmt(SC)
63  {
64    ExprBits.TypeDependent = TD;
65    ExprBits.ValueDependent = VD;
66    ExprBits.InstantiationDependent = ID;
67    ExprBits.ValueKind = VK;
68    ExprBits.ObjectKind = OK;
69    ExprBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
70    setType(T);
71  }
72
73  /// \brief Construct an empty expression.
74  explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
75
76public:
77  QualType getType() const { return TR; }
78  void setType(QualType t) {
79    // In C++, the type of an expression is always adjusted so that it
80    // will not have reference type an expression will never have
81    // reference type (C++ [expr]p6). Use
82    // QualType::getNonReferenceType() to retrieve the non-reference
83    // type. Additionally, inspect Expr::isLvalue to determine whether
84    // an expression that is adjusted in this manner should be
85    // considered an lvalue.
86    assert((t.isNull() || !t->isReferenceType()) &&
87           "Expressions can't have reference type");
88
89    TR = t;
90  }
91
92  /// isValueDependent - Determines whether this expression is
93  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
94  /// array bound of "Chars" in the following example is
95  /// value-dependent.
96  /// @code
97  /// template<int Size, char (&Chars)[Size]> struct meta_string;
98  /// @endcode
99  bool isValueDependent() const { return ExprBits.ValueDependent; }
100
101  /// \brief Set whether this expression is value-dependent or not.
102  void setValueDependent(bool VD) {
103    ExprBits.ValueDependent = VD;
104    if (VD)
105      ExprBits.InstantiationDependent = true;
106  }
107
108  /// isTypeDependent - Determines whether this expression is
109  /// type-dependent (C++ [temp.dep.expr]), which means that its type
110  /// could change from one template instantiation to the next. For
111  /// example, the expressions "x" and "x + y" are type-dependent in
112  /// the following code, but "y" is not type-dependent:
113  /// @code
114  /// template<typename T>
115  /// void add(T x, int y) {
116  ///   x + y;
117  /// }
118  /// @endcode
119  bool isTypeDependent() const { return ExprBits.TypeDependent; }
120
121  /// \brief Set whether this expression is type-dependent or not.
122  void setTypeDependent(bool TD) {
123    ExprBits.TypeDependent = TD;
124    if (TD)
125      ExprBits.InstantiationDependent = true;
126  }
127
128  /// \brief Whether this expression is instantiation-dependent, meaning that
129  /// it depends in some way on a template parameter, even if neither its type
130  /// nor (constant) value can change due to the template instantiation.
131  ///
132  /// In the following example, the expression \c sizeof(sizeof(T() + T())) is
133  /// instantiation-dependent (since it involves a template parameter \c T), but
134  /// is neither type- nor value-dependent, since the type of the inner
135  /// \c sizeof is known (\c std::size_t) and therefore the size of the outer
136  /// \c sizeof is known.
137  ///
138  /// \code
139  /// template<typename T>
140  /// void f(T x, T y) {
141  ///   sizeof(sizeof(T() + T());
142  /// }
143  /// \endcode
144  ///
145  bool isInstantiationDependent() const {
146    return ExprBits.InstantiationDependent;
147  }
148
149  /// \brief Set whether this expression is instantiation-dependent or not.
150  void setInstantiationDependent(bool ID) {
151    ExprBits.InstantiationDependent = ID;
152  }
153
154  /// \brief Whether this expression contains an unexpanded parameter
155  /// pack (for C++0x variadic templates).
156  ///
157  /// Given the following function template:
158  ///
159  /// \code
160  /// template<typename F, typename ...Types>
161  /// void forward(const F &f, Types &&...args) {
162  ///   f(static_cast<Types&&>(args)...);
163  /// }
164  /// \endcode
165  ///
166  /// The expressions \c args and \c static_cast<Types&&>(args) both
167  /// contain parameter packs.
168  bool containsUnexpandedParameterPack() const {
169    return ExprBits.ContainsUnexpandedParameterPack;
170  }
171
172  /// \brief Set the bit that describes whether this expression
173  /// contains an unexpanded parameter pack.
174  void setContainsUnexpandedParameterPack(bool PP = true) {
175    ExprBits.ContainsUnexpandedParameterPack = PP;
176  }
177
178  /// getExprLoc - Return the preferred location for the arrow when diagnosing
179  /// a problem with a generic expression.
180  SourceLocation getExprLoc() const LLVM_READONLY;
181
182  /// isUnusedResultAWarning - Return true if this immediate expression should
183  /// be warned about if the result is unused.  If so, fill in expr, location,
184  /// and ranges with expr to warn on and source locations/ranges appropriate
185  /// for a warning.
186  bool isUnusedResultAWarning(const Expr *&WarnExpr, SourceLocation &Loc,
187                              SourceRange &R1, SourceRange &R2,
188                              ASTContext &Ctx) const;
189
190  /// isLValue - True if this expression is an "l-value" according to
191  /// the rules of the current language.  C and C++ give somewhat
192  /// different rules for this concept, but in general, the result of
193  /// an l-value expression identifies a specific object whereas the
194  /// result of an r-value expression is a value detached from any
195  /// specific storage.
196  ///
197  /// C++0x divides the concept of "r-value" into pure r-values
198  /// ("pr-values") and so-called expiring values ("x-values"), which
199  /// identify specific objects that can be safely cannibalized for
200  /// their resources.  This is an unfortunate abuse of terminology on
201  /// the part of the C++ committee.  In Clang, when we say "r-value",
202  /// we generally mean a pr-value.
203  bool isLValue() const { return getValueKind() == VK_LValue; }
204  bool isRValue() const { return getValueKind() == VK_RValue; }
205  bool isXValue() const { return getValueKind() == VK_XValue; }
206  bool isGLValue() const { return getValueKind() != VK_RValue; }
207
208  enum LValueClassification {
209    LV_Valid,
210    LV_NotObjectType,
211    LV_IncompleteVoidType,
212    LV_DuplicateVectorComponents,
213    LV_InvalidExpression,
214    LV_InvalidMessageExpression,
215    LV_MemberFunction,
216    LV_SubObjCPropertySetting,
217    LV_ClassTemporary,
218    LV_ArrayTemporary
219  };
220  /// Reasons why an expression might not be an l-value.
221  LValueClassification ClassifyLValue(ASTContext &Ctx) const;
222
223  enum isModifiableLvalueResult {
224    MLV_Valid,
225    MLV_NotObjectType,
226    MLV_IncompleteVoidType,
227    MLV_DuplicateVectorComponents,
228    MLV_InvalidExpression,
229    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
230    MLV_IncompleteType,
231    MLV_ConstQualified,
232    MLV_ArrayType,
233    MLV_ReadonlyProperty,
234    MLV_NoSetterProperty,
235    MLV_MemberFunction,
236    MLV_SubObjCPropertySetting,
237    MLV_InvalidMessageExpression,
238    MLV_ClassTemporary,
239    MLV_ArrayTemporary
240  };
241  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
242  /// does not have an incomplete type, does not have a const-qualified type,
243  /// and if it is a structure or union, does not have any member (including,
244  /// recursively, any member or element of all contained aggregates or unions)
245  /// with a const-qualified type.
246  ///
247  /// \param Loc [in,out] - A source location which *may* be filled
248  /// in with the location of the expression making this a
249  /// non-modifiable lvalue, if specified.
250  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx,
251                                              SourceLocation *Loc = 0) const;
252
253  /// \brief The return type of classify(). Represents the C++0x expression
254  ///        taxonomy.
255  class Classification {
256  public:
257    /// \brief The various classification results. Most of these mean prvalue.
258    enum Kinds {
259      CL_LValue,
260      CL_XValue,
261      CL_Function, // Functions cannot be lvalues in C.
262      CL_Void, // Void cannot be an lvalue in C.
263      CL_AddressableVoid, // Void expression whose address can be taken in C.
264      CL_DuplicateVectorComponents, // A vector shuffle with dupes.
265      CL_MemberFunction, // An expression referring to a member function
266      CL_SubObjCPropertySetting,
267      CL_ClassTemporary, // A temporary of class type, or subobject thereof.
268      CL_ArrayTemporary, // A temporary of array type.
269      CL_ObjCMessageRValue, // ObjC message is an rvalue
270      CL_PRValue // A prvalue for any other reason, of any other type
271    };
272    /// \brief The results of modification testing.
273    enum ModifiableType {
274      CM_Untested, // testModifiable was false.
275      CM_Modifiable,
276      CM_RValue, // Not modifiable because it's an rvalue
277      CM_Function, // Not modifiable because it's a function; C++ only
278      CM_LValueCast, // Same as CM_RValue, but indicates GCC cast-as-lvalue ext
279      CM_NoSetterProperty,// Implicit assignment to ObjC property without setter
280      CM_ConstQualified,
281      CM_ArrayType,
282      CM_IncompleteType
283    };
284
285  private:
286    friend class Expr;
287
288    unsigned short Kind;
289    unsigned short Modifiable;
290
291    explicit Classification(Kinds k, ModifiableType m)
292      : Kind(k), Modifiable(m)
293    {}
294
295  public:
296    Classification() {}
297
298    Kinds getKind() const { return static_cast<Kinds>(Kind); }
299    ModifiableType getModifiable() const {
300      assert(Modifiable != CM_Untested && "Did not test for modifiability.");
301      return static_cast<ModifiableType>(Modifiable);
302    }
303    bool isLValue() const { return Kind == CL_LValue; }
304    bool isXValue() const { return Kind == CL_XValue; }
305    bool isGLValue() const { return Kind <= CL_XValue; }
306    bool isPRValue() const { return Kind >= CL_Function; }
307    bool isRValue() const { return Kind >= CL_XValue; }
308    bool isModifiable() const { return getModifiable() == CM_Modifiable; }
309
310    /// \brief Create a simple, modifiably lvalue
311    static Classification makeSimpleLValue() {
312      return Classification(CL_LValue, CM_Modifiable);
313    }
314
315  };
316  /// \brief Classify - Classify this expression according to the C++0x
317  ///        expression taxonomy.
318  ///
319  /// C++0x defines ([basic.lval]) a new taxonomy of expressions to replace the
320  /// old lvalue vs rvalue. This function determines the type of expression this
321  /// is. There are three expression types:
322  /// - lvalues are classical lvalues as in C++03.
323  /// - prvalues are equivalent to rvalues in C++03.
324  /// - xvalues are expressions yielding unnamed rvalue references, e.g. a
325  ///   function returning an rvalue reference.
326  /// lvalues and xvalues are collectively referred to as glvalues, while
327  /// prvalues and xvalues together form rvalues.
328  Classification Classify(ASTContext &Ctx) const {
329    return ClassifyImpl(Ctx, 0);
330  }
331
332  /// \brief ClassifyModifiable - Classify this expression according to the
333  ///        C++0x expression taxonomy, and see if it is valid on the left side
334  ///        of an assignment.
335  ///
336  /// This function extends classify in that it also tests whether the
337  /// expression is modifiable (C99 6.3.2.1p1).
338  /// \param Loc A source location that might be filled with a relevant location
339  ///            if the expression is not modifiable.
340  Classification ClassifyModifiable(ASTContext &Ctx, SourceLocation &Loc) const{
341    return ClassifyImpl(Ctx, &Loc);
342  }
343
344  /// getValueKindForType - Given a formal return or parameter type,
345  /// give its value kind.
346  static ExprValueKind getValueKindForType(QualType T) {
347    if (const ReferenceType *RT = T->getAs<ReferenceType>())
348      return (isa<LValueReferenceType>(RT)
349                ? VK_LValue
350                : (RT->getPointeeType()->isFunctionType()
351                     ? VK_LValue : VK_XValue));
352    return VK_RValue;
353  }
354
355  /// getValueKind - The value kind that this expression produces.
356  ExprValueKind getValueKind() const {
357    return static_cast<ExprValueKind>(ExprBits.ValueKind);
358  }
359
360  /// getObjectKind - The object kind that this expression produces.
361  /// Object kinds are meaningful only for expressions that yield an
362  /// l-value or x-value.
363  ExprObjectKind getObjectKind() const {
364    return static_cast<ExprObjectKind>(ExprBits.ObjectKind);
365  }
366
367  bool isOrdinaryOrBitFieldObject() const {
368    ExprObjectKind OK = getObjectKind();
369    return (OK == OK_Ordinary || OK == OK_BitField);
370  }
371
372  /// setValueKind - Set the value kind produced by this expression.
373  void setValueKind(ExprValueKind Cat) { ExprBits.ValueKind = Cat; }
374
375  /// setObjectKind - Set the object kind produced by this expression.
376  void setObjectKind(ExprObjectKind Cat) { ExprBits.ObjectKind = Cat; }
377
378private:
379  Classification ClassifyImpl(ASTContext &Ctx, SourceLocation *Loc) const;
380
381public:
382
383  /// \brief If this expression refers to a bit-field, retrieve the
384  /// declaration of that bit-field.
385  FieldDecl *getBitField();
386
387  const FieldDecl *getBitField() const {
388    return const_cast<Expr*>(this)->getBitField();
389  }
390
391  /// \brief If this expression is an l-value for an Objective C
392  /// property, find the underlying property reference expression.
393  const ObjCPropertyRefExpr *getObjCProperty() const;
394
395  /// \brief Returns whether this expression refers to a vector element.
396  bool refersToVectorElement() const;
397
398  /// \brief Returns whether this expression has a placeholder type.
399  bool hasPlaceholderType() const {
400    return getType()->isPlaceholderType();
401  }
402
403  /// \brief Returns whether this expression has a specific placeholder type.
404  bool hasPlaceholderType(BuiltinType::Kind K) const {
405    assert(BuiltinType::isPlaceholderTypeKind(K));
406    if (const BuiltinType *BT = dyn_cast<BuiltinType>(getType()))
407      return BT->getKind() == K;
408    return false;
409  }
410
411  /// isKnownToHaveBooleanValue - Return true if this is an integer expression
412  /// that is known to return 0 or 1.  This happens for _Bool/bool expressions
413  /// but also int expressions which are produced by things like comparisons in
414  /// C.
415  bool isKnownToHaveBooleanValue() const;
416
417  /// isIntegerConstantExpr - Return true if this expression is a valid integer
418  /// constant expression, and, if so, return its value in Result.  If not a
419  /// valid i-c-e, return false and fill in Loc (if specified) with the location
420  /// of the invalid expression.
421  ///
422  /// Note: This does not perform the implicit conversions required by C++11
423  /// [expr.const]p5.
424  bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
425                             SourceLocation *Loc = 0,
426                             bool isEvaluated = true) const;
427  bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const;
428
429  /// isCXX98IntegralConstantExpr - Return true if this expression is an
430  /// integral constant expression in C++98. Can only be used in C++.
431  bool isCXX98IntegralConstantExpr(ASTContext &Ctx) const;
432
433  /// isCXX11ConstantExpr - Return true if this expression is a constant
434  /// expression in C++11. Can only be used in C++.
435  ///
436  /// Note: This does not perform the implicit conversions required by C++11
437  /// [expr.const]p5.
438  bool isCXX11ConstantExpr(ASTContext &Ctx, APValue *Result = 0,
439                           SourceLocation *Loc = 0) const;
440
441  /// isPotentialConstantExpr - Return true if this function's definition
442  /// might be usable in a constant expression in C++11, if it were marked
443  /// constexpr. Return false if the function can never produce a constant
444  /// expression, along with diagnostics describing why not.
445  static bool isPotentialConstantExpr(const FunctionDecl *FD,
446                                      llvm::SmallVectorImpl<
447                                        PartialDiagnosticAt> &Diags);
448
449  /// isConstantInitializer - Returns true if this expression can be emitted to
450  /// IR as a constant, and thus can be used as a constant initializer in C.
451  bool isConstantInitializer(ASTContext &Ctx, bool ForRef) const;
452
453  /// EvalStatus is a struct with detailed info about an evaluation in progress.
454  struct EvalStatus {
455    /// HasSideEffects - Whether the evaluated expression has side effects.
456    /// For example, (f() && 0) can be folded, but it still has side effects.
457    bool HasSideEffects;
458
459    /// Diag - If this is non-null, it will be filled in with a stack of notes
460    /// indicating why evaluation failed (or why it failed to produce a constant
461    /// expression).
462    /// If the expression is unfoldable, the notes will indicate why it's not
463    /// foldable. If the expression is foldable, but not a constant expression,
464    /// the notes will describes why it isn't a constant expression. If the
465    /// expression *is* a constant expression, no notes will be produced.
466    llvm::SmallVectorImpl<PartialDiagnosticAt> *Diag;
467
468    EvalStatus() : HasSideEffects(false), Diag(0) {}
469
470    // hasSideEffects - Return true if the evaluated expression has
471    // side effects.
472    bool hasSideEffects() const {
473      return HasSideEffects;
474    }
475  };
476
477  /// EvalResult is a struct with detailed info about an evaluated expression.
478  struct EvalResult : EvalStatus {
479    /// Val - This is the value the expression can be folded to.
480    APValue Val;
481
482    // isGlobalLValue - Return true if the evaluated lvalue expression
483    // is global.
484    bool isGlobalLValue() const;
485  };
486
487  /// EvaluateAsRValue - Return true if this is a constant which we can fold to
488  /// an rvalue using any crazy technique (that has nothing to do with language
489  /// standards) that we want to, even if the expression has side-effects. If
490  /// this function returns true, it returns the folded constant in Result. If
491  /// the expression is a glvalue, an lvalue-to-rvalue conversion will be
492  /// applied.
493  bool EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx) const;
494
495  /// EvaluateAsBooleanCondition - Return true if this is a constant
496  /// which we we can fold and convert to a boolean condition using
497  /// any crazy technique that we want to, even if the expression has
498  /// side-effects.
499  bool EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx) const;
500
501  enum SideEffectsKind { SE_NoSideEffects, SE_AllowSideEffects };
502
503  /// EvaluateAsInt - Return true if this is a constant which we can fold and
504  /// convert to an integer, using any crazy technique that we want to.
505  bool EvaluateAsInt(llvm::APSInt &Result, const ASTContext &Ctx,
506                     SideEffectsKind AllowSideEffects = SE_NoSideEffects) const;
507
508  /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
509  /// constant folded without side-effects, but discard the result.
510  bool isEvaluatable(const ASTContext &Ctx) const;
511
512  /// HasSideEffects - This routine returns true for all those expressions
513  /// which have any effect other than producing a value. Example is a function
514  /// call, volatile variable read, or throwing an exception.
515  bool HasSideEffects(const ASTContext &Ctx) const;
516
517  /// \brief Determine whether this expression involves a call to any function
518  /// that is not trivial.
519  bool hasNonTrivialCall(ASTContext &Ctx);
520
521  /// EvaluateKnownConstInt - Call EvaluateAsRValue and return the folded
522  /// integer. This must be called on an expression that constant folds to an
523  /// integer.
524  llvm::APSInt EvaluateKnownConstInt(const ASTContext &Ctx) const;
525
526  /// EvaluateAsLValue - Evaluate an expression to see if we can fold it to an
527  /// lvalue with link time known address, with no side-effects.
528  bool EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const;
529
530  /// EvaluateAsInitializer - Evaluate an expression as if it were the
531  /// initializer of the given declaration. Returns true if the initializer
532  /// can be folded to a constant, and produces any relevant notes. In C++11,
533  /// notes will be produced if the expression is not a constant expression.
534  bool EvaluateAsInitializer(APValue &Result, const ASTContext &Ctx,
535                             const VarDecl *VD,
536                       llvm::SmallVectorImpl<PartialDiagnosticAt> &Notes) const;
537
538  /// \brief Enumeration used to describe the kind of Null pointer constant
539  /// returned from \c isNullPointerConstant().
540  enum NullPointerConstantKind {
541    /// \brief Expression is not a Null pointer constant.
542    NPCK_NotNull = 0,
543
544    /// \brief Expression is a Null pointer constant built from a zero integer
545    /// expression that is not a simple, possibly parenthesized, zero literal.
546    /// C++ Core Issue 903 will classify these expressions as "not pointers"
547    /// once it is adopted.
548    /// http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
549    NPCK_ZeroExpression,
550
551    /// \brief Expression is a Null pointer constant built from a literal zero.
552    NPCK_ZeroLiteral,
553
554    /// \brief Expression is a C++0X nullptr.
555    NPCK_CXX0X_nullptr,
556
557    /// \brief Expression is a GNU-style __null constant.
558    NPCK_GNUNull
559  };
560
561  /// \brief Enumeration used to describe how \c isNullPointerConstant()
562  /// should cope with value-dependent expressions.
563  enum NullPointerConstantValueDependence {
564    /// \brief Specifies that the expression should never be value-dependent.
565    NPC_NeverValueDependent = 0,
566
567    /// \brief Specifies that a value-dependent expression of integral or
568    /// dependent type should be considered a null pointer constant.
569    NPC_ValueDependentIsNull,
570
571    /// \brief Specifies that a value-dependent expression should be considered
572    /// to never be a null pointer constant.
573    NPC_ValueDependentIsNotNull
574  };
575
576  /// isNullPointerConstant - C99 6.3.2.3p3 - Test if this reduces down to
577  /// a Null pointer constant. The return value can further distinguish the
578  /// kind of NULL pointer constant that was detected.
579  NullPointerConstantKind isNullPointerConstant(
580      ASTContext &Ctx,
581      NullPointerConstantValueDependence NPC) const;
582
583  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
584  /// write barrier.
585  bool isOBJCGCCandidate(ASTContext &Ctx) const;
586
587  /// \brief Returns true if this expression is a bound member function.
588  bool isBoundMemberFunction(ASTContext &Ctx) const;
589
590  /// \brief Given an expression of bound-member type, find the type
591  /// of the member.  Returns null if this is an *overloaded* bound
592  /// member expression.
593  static QualType findBoundMemberType(const Expr *expr);
594
595  /// IgnoreImpCasts - Skip past any implicit casts which might
596  /// surround this expression.  Only skips ImplicitCastExprs.
597  Expr *IgnoreImpCasts() LLVM_READONLY;
598
599  /// IgnoreImplicit - Skip past any implicit AST nodes which might
600  /// surround this expression.
601  Expr *IgnoreImplicit() LLVM_READONLY {
602    return cast<Expr>(Stmt::IgnoreImplicit());
603  }
604
605  const Expr *IgnoreImplicit() const LLVM_READONLY {
606    return const_cast<Expr*>(this)->IgnoreImplicit();
607  }
608
609  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
610  ///  its subexpression.  If that subexpression is also a ParenExpr,
611  ///  then this method recursively returns its subexpression, and so forth.
612  ///  Otherwise, the method returns the current Expr.
613  Expr *IgnoreParens() LLVM_READONLY;
614
615  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
616  /// or CastExprs, returning their operand.
617  Expr *IgnoreParenCasts() LLVM_READONLY;
618
619  /// IgnoreParenImpCasts - Ignore parentheses and implicit casts.  Strip off
620  /// any ParenExpr or ImplicitCastExprs, returning their operand.
621  Expr *IgnoreParenImpCasts() LLVM_READONLY;
622
623  /// IgnoreConversionOperator - Ignore conversion operator. If this Expr is a
624  /// call to a conversion operator, return the argument.
625  Expr *IgnoreConversionOperator() LLVM_READONLY;
626
627  const Expr *IgnoreConversionOperator() const LLVM_READONLY {
628    return const_cast<Expr*>(this)->IgnoreConversionOperator();
629  }
630
631  const Expr *IgnoreParenImpCasts() const LLVM_READONLY {
632    return const_cast<Expr*>(this)->IgnoreParenImpCasts();
633  }
634
635  /// Ignore parentheses and lvalue casts.  Strip off any ParenExpr and
636  /// CastExprs that represent lvalue casts, returning their operand.
637  Expr *IgnoreParenLValueCasts() LLVM_READONLY;
638
639  const Expr *IgnoreParenLValueCasts() const LLVM_READONLY {
640    return const_cast<Expr*>(this)->IgnoreParenLValueCasts();
641  }
642
643  /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
644  /// value (including ptr->int casts of the same size).  Strip off any
645  /// ParenExpr or CastExprs, returning their operand.
646  Expr *IgnoreParenNoopCasts(ASTContext &Ctx) LLVM_READONLY;
647
648  /// Ignore parentheses and derived-to-base casts.
649  Expr *ignoreParenBaseCasts() LLVM_READONLY;
650
651  const Expr *ignoreParenBaseCasts() const LLVM_READONLY {
652    return const_cast<Expr*>(this)->ignoreParenBaseCasts();
653  }
654
655  /// \brief Determine whether this expression is a default function argument.
656  ///
657  /// Default arguments are implicitly generated in the abstract syntax tree
658  /// by semantic analysis for function calls, object constructions, etc. in
659  /// C++. Default arguments are represented by \c CXXDefaultArgExpr nodes;
660  /// this routine also looks through any implicit casts to determine whether
661  /// the expression is a default argument.
662  bool isDefaultArgument() const;
663
664  /// \brief Determine whether the result of this expression is a
665  /// temporary object of the given class type.
666  bool isTemporaryObject(ASTContext &Ctx, const CXXRecordDecl *TempTy) const;
667
668  /// \brief Whether this expression is an implicit reference to 'this' in C++.
669  bool isImplicitCXXThis() const;
670
671  const Expr *IgnoreImpCasts() const LLVM_READONLY {
672    return const_cast<Expr*>(this)->IgnoreImpCasts();
673  }
674  const Expr *IgnoreParens() const LLVM_READONLY {
675    return const_cast<Expr*>(this)->IgnoreParens();
676  }
677  const Expr *IgnoreParenCasts() const LLVM_READONLY {
678    return const_cast<Expr*>(this)->IgnoreParenCasts();
679  }
680  const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const LLVM_READONLY {
681    return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
682  }
683
684  static bool hasAnyTypeDependentArguments(llvm::ArrayRef<Expr *> Exprs);
685
686  /// \brief For an expression of class type or pointer to class type,
687  /// return the most derived class decl the expression is known to refer to.
688  ///
689  /// If this expression is a cast, this method looks through it to find the
690  /// most derived decl that can be inferred from the expression.
691  /// This is valid because derived-to-base conversions have undefined
692  /// behavior if the object isn't dynamically of the derived type.
693  const CXXRecordDecl *getBestDynamicClassType() const;
694
695  static bool classof(const Stmt *T) {
696    return T->getStmtClass() >= firstExprConstant &&
697           T->getStmtClass() <= lastExprConstant;
698  }
699  static bool classof(const Expr *) { return true; }
700};
701
702
703//===----------------------------------------------------------------------===//
704// Primary Expressions.
705//===----------------------------------------------------------------------===//
706
707/// OpaqueValueExpr - An expression referring to an opaque object of a
708/// fixed type and value class.  These don't correspond to concrete
709/// syntax; instead they're used to express operations (usually copy
710/// operations) on values whose source is generally obvious from
711/// context.
712class OpaqueValueExpr : public Expr {
713  friend class ASTStmtReader;
714  Expr *SourceExpr;
715  SourceLocation Loc;
716
717public:
718  OpaqueValueExpr(SourceLocation Loc, QualType T, ExprValueKind VK,
719                  ExprObjectKind OK = OK_Ordinary,
720                  Expr *SourceExpr = 0)
721    : Expr(OpaqueValueExprClass, T, VK, OK,
722           T->isDependentType(),
723           T->isDependentType() ||
724           (SourceExpr && SourceExpr->isValueDependent()),
725           T->isInstantiationDependentType(),
726           false),
727      SourceExpr(SourceExpr), Loc(Loc) {
728  }
729
730  /// Given an expression which invokes a copy constructor --- i.e.  a
731  /// CXXConstructExpr, possibly wrapped in an ExprWithCleanups ---
732  /// find the OpaqueValueExpr that's the source of the construction.
733  static const OpaqueValueExpr *findInCopyConstruct(const Expr *expr);
734
735  explicit OpaqueValueExpr(EmptyShell Empty)
736    : Expr(OpaqueValueExprClass, Empty) { }
737
738  /// \brief Retrieve the location of this expression.
739  SourceLocation getLocation() const { return Loc; }
740
741  SourceRange getSourceRange() const LLVM_READONLY {
742    if (SourceExpr) return SourceExpr->getSourceRange();
743    return Loc;
744  }
745  SourceLocation getExprLoc() const LLVM_READONLY {
746    if (SourceExpr) return SourceExpr->getExprLoc();
747    return Loc;
748  }
749
750  child_range children() { return child_range(); }
751
752  /// The source expression of an opaque value expression is the
753  /// expression which originally generated the value.  This is
754  /// provided as a convenience for analyses that don't wish to
755  /// precisely model the execution behavior of the program.
756  ///
757  /// The source expression is typically set when building the
758  /// expression which binds the opaque value expression in the first
759  /// place.
760  Expr *getSourceExpr() const { return SourceExpr; }
761
762  static bool classof(const Stmt *T) {
763    return T->getStmtClass() == OpaqueValueExprClass;
764  }
765  static bool classof(const OpaqueValueExpr *) { return true; }
766};
767
768/// \brief A reference to a declared variable, function, enum, etc.
769/// [C99 6.5.1p2]
770///
771/// This encodes all the information about how a declaration is referenced
772/// within an expression.
773///
774/// There are several optional constructs attached to DeclRefExprs only when
775/// they apply in order to conserve memory. These are laid out past the end of
776/// the object, and flags in the DeclRefExprBitfield track whether they exist:
777///
778///   DeclRefExprBits.HasQualifier:
779///       Specifies when this declaration reference expression has a C++
780///       nested-name-specifier.
781///   DeclRefExprBits.HasFoundDecl:
782///       Specifies when this declaration reference expression has a record of
783///       a NamedDecl (different from the referenced ValueDecl) which was found
784///       during name lookup and/or overload resolution.
785///   DeclRefExprBits.HasTemplateKWAndArgsInfo:
786///       Specifies when this declaration reference expression has an explicit
787///       C++ template keyword and/or template argument list.
788///   DeclRefExprBits.RefersToEnclosingLocal
789///       Specifies when this declaration reference expression (validly)
790///       refers to a local variable from a different function.
791class DeclRefExpr : public Expr {
792  /// \brief The declaration that we are referencing.
793  ValueDecl *D;
794
795  /// \brief The location of the declaration name itself.
796  SourceLocation Loc;
797
798  /// \brief Provides source/type location info for the declaration name
799  /// embedded in D.
800  DeclarationNameLoc DNLoc;
801
802  /// \brief Helper to retrieve the optional NestedNameSpecifierLoc.
803  NestedNameSpecifierLoc &getInternalQualifierLoc() {
804    assert(hasQualifier());
805    return *reinterpret_cast<NestedNameSpecifierLoc *>(this + 1);
806  }
807
808  /// \brief Helper to retrieve the optional NestedNameSpecifierLoc.
809  const NestedNameSpecifierLoc &getInternalQualifierLoc() const {
810    return const_cast<DeclRefExpr *>(this)->getInternalQualifierLoc();
811  }
812
813  /// \brief Test whether there is a distinct FoundDecl attached to the end of
814  /// this DRE.
815  bool hasFoundDecl() const { return DeclRefExprBits.HasFoundDecl; }
816
817  /// \brief Helper to retrieve the optional NamedDecl through which this
818  /// reference occured.
819  NamedDecl *&getInternalFoundDecl() {
820    assert(hasFoundDecl());
821    if (hasQualifier())
822      return *reinterpret_cast<NamedDecl **>(&getInternalQualifierLoc() + 1);
823    return *reinterpret_cast<NamedDecl **>(this + 1);
824  }
825
826  /// \brief Helper to retrieve the optional NamedDecl through which this
827  /// reference occured.
828  NamedDecl *getInternalFoundDecl() const {
829    return const_cast<DeclRefExpr *>(this)->getInternalFoundDecl();
830  }
831
832  DeclRefExpr(ASTContext &Ctx,
833              NestedNameSpecifierLoc QualifierLoc,
834              SourceLocation TemplateKWLoc,
835              ValueDecl *D, bool refersToEnclosingLocal,
836              const DeclarationNameInfo &NameInfo,
837              NamedDecl *FoundD,
838              const TemplateArgumentListInfo *TemplateArgs,
839              QualType T, ExprValueKind VK);
840
841  /// \brief Construct an empty declaration reference expression.
842  explicit DeclRefExpr(EmptyShell Empty)
843    : Expr(DeclRefExprClass, Empty) { }
844
845  /// \brief Computes the type- and value-dependence flags for this
846  /// declaration reference expression.
847  void computeDependence(ASTContext &C);
848
849public:
850  DeclRefExpr(ValueDecl *D, bool refersToEnclosingLocal, QualType T,
851              ExprValueKind VK, SourceLocation L,
852              const DeclarationNameLoc &LocInfo = DeclarationNameLoc())
853    : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
854      D(D), Loc(L), DNLoc(LocInfo) {
855    DeclRefExprBits.HasQualifier = 0;
856    DeclRefExprBits.HasTemplateKWAndArgsInfo = 0;
857    DeclRefExprBits.HasFoundDecl = 0;
858    DeclRefExprBits.HadMultipleCandidates = 0;
859    DeclRefExprBits.RefersToEnclosingLocal = refersToEnclosingLocal;
860    computeDependence(D->getASTContext());
861  }
862
863  static DeclRefExpr *Create(ASTContext &Context,
864                             NestedNameSpecifierLoc QualifierLoc,
865                             SourceLocation TemplateKWLoc,
866                             ValueDecl *D,
867                             bool isEnclosingLocal,
868                             SourceLocation NameLoc,
869                             QualType T, ExprValueKind VK,
870                             NamedDecl *FoundD = 0,
871                             const TemplateArgumentListInfo *TemplateArgs = 0);
872
873  static DeclRefExpr *Create(ASTContext &Context,
874                             NestedNameSpecifierLoc QualifierLoc,
875                             SourceLocation TemplateKWLoc,
876                             ValueDecl *D,
877                             bool isEnclosingLocal,
878                             const DeclarationNameInfo &NameInfo,
879                             QualType T, ExprValueKind VK,
880                             NamedDecl *FoundD = 0,
881                             const TemplateArgumentListInfo *TemplateArgs = 0);
882
883  /// \brief Construct an empty declaration reference expression.
884  static DeclRefExpr *CreateEmpty(ASTContext &Context,
885                                  bool HasQualifier,
886                                  bool HasFoundDecl,
887                                  bool HasTemplateKWAndArgsInfo,
888                                  unsigned NumTemplateArgs);
889
890  ValueDecl *getDecl() { return D; }
891  const ValueDecl *getDecl() const { return D; }
892  void setDecl(ValueDecl *NewD) { D = NewD; }
893
894  DeclarationNameInfo getNameInfo() const {
895    return DeclarationNameInfo(getDecl()->getDeclName(), Loc, DNLoc);
896  }
897
898  SourceLocation getLocation() const { return Loc; }
899  void setLocation(SourceLocation L) { Loc = L; }
900  SourceRange getSourceRange() const LLVM_READONLY;
901  SourceLocation getLocStart() const LLVM_READONLY;
902  SourceLocation getLocEnd() const LLVM_READONLY;
903
904  /// \brief Determine whether this declaration reference was preceded by a
905  /// C++ nested-name-specifier, e.g., \c N::foo.
906  bool hasQualifier() const { return DeclRefExprBits.HasQualifier; }
907
908  /// \brief If the name was qualified, retrieves the nested-name-specifier
909  /// that precedes the name. Otherwise, returns NULL.
910  NestedNameSpecifier *getQualifier() const {
911    if (!hasQualifier())
912      return 0;
913
914    return getInternalQualifierLoc().getNestedNameSpecifier();
915  }
916
917  /// \brief If the name was qualified, retrieves the nested-name-specifier
918  /// that precedes the name, with source-location information.
919  NestedNameSpecifierLoc getQualifierLoc() const {
920    if (!hasQualifier())
921      return NestedNameSpecifierLoc();
922
923    return getInternalQualifierLoc();
924  }
925
926  /// \brief Get the NamedDecl through which this reference occured.
927  ///
928  /// This Decl may be different from the ValueDecl actually referred to in the
929  /// presence of using declarations, etc. It always returns non-NULL, and may
930  /// simple return the ValueDecl when appropriate.
931  NamedDecl *getFoundDecl() {
932    return hasFoundDecl() ? getInternalFoundDecl() : D;
933  }
934
935  /// \brief Get the NamedDecl through which this reference occurred.
936  /// See non-const variant.
937  const NamedDecl *getFoundDecl() const {
938    return hasFoundDecl() ? getInternalFoundDecl() : D;
939  }
940
941  bool hasTemplateKWAndArgsInfo() const {
942    return DeclRefExprBits.HasTemplateKWAndArgsInfo;
943  }
944
945  /// \brief Return the optional template keyword and arguments info.
946  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
947    if (!hasTemplateKWAndArgsInfo())
948      return 0;
949
950    if (hasFoundDecl())
951      return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(
952        &getInternalFoundDecl() + 1);
953
954    if (hasQualifier())
955      return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(
956        &getInternalQualifierLoc() + 1);
957
958    return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(this + 1);
959  }
960
961  /// \brief Return the optional template keyword and arguments info.
962  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
963    return const_cast<DeclRefExpr*>(this)->getTemplateKWAndArgsInfo();
964  }
965
966  /// \brief Retrieve the location of the template keyword preceding
967  /// this name, if any.
968  SourceLocation getTemplateKeywordLoc() const {
969    if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
970    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
971  }
972
973  /// \brief Retrieve the location of the left angle bracket starting the
974  /// explicit template argument list following the name, if any.
975  SourceLocation getLAngleLoc() const {
976    if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
977    return getTemplateKWAndArgsInfo()->LAngleLoc;
978  }
979
980  /// \brief Retrieve the location of the right angle bracket ending the
981  /// explicit template argument list following the name, if any.
982  SourceLocation getRAngleLoc() const {
983    if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
984    return getTemplateKWAndArgsInfo()->RAngleLoc;
985  }
986
987  /// \brief Determines whether the name in this declaration reference
988  /// was preceded by the template keyword.
989  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
990
991  /// \brief Determines whether this declaration reference was followed by an
992  /// explicit template argument list.
993  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
994
995  /// \brief Retrieve the explicit template argument list that followed the
996  /// member template name.
997  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
998    assert(hasExplicitTemplateArgs());
999    return *getTemplateKWAndArgsInfo();
1000  }
1001
1002  /// \brief Retrieve the explicit template argument list that followed the
1003  /// member template name.
1004  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
1005    return const_cast<DeclRefExpr *>(this)->getExplicitTemplateArgs();
1006  }
1007
1008  /// \brief Retrieves the optional explicit template arguments.
1009  /// This points to the same data as getExplicitTemplateArgs(), but
1010  /// returns null if there are no explicit template arguments.
1011  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() const {
1012    if (!hasExplicitTemplateArgs()) return 0;
1013    return &getExplicitTemplateArgs();
1014  }
1015
1016  /// \brief Copies the template arguments (if present) into the given
1017  /// structure.
1018  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1019    if (hasExplicitTemplateArgs())
1020      getExplicitTemplateArgs().copyInto(List);
1021  }
1022
1023  /// \brief Retrieve the template arguments provided as part of this
1024  /// template-id.
1025  const TemplateArgumentLoc *getTemplateArgs() const {
1026    if (!hasExplicitTemplateArgs())
1027      return 0;
1028
1029    return getExplicitTemplateArgs().getTemplateArgs();
1030  }
1031
1032  /// \brief Retrieve the number of template arguments provided as part of this
1033  /// template-id.
1034  unsigned getNumTemplateArgs() const {
1035    if (!hasExplicitTemplateArgs())
1036      return 0;
1037
1038    return getExplicitTemplateArgs().NumTemplateArgs;
1039  }
1040
1041  /// \brief Returns true if this expression refers to a function that
1042  /// was resolved from an overloaded set having size greater than 1.
1043  bool hadMultipleCandidates() const {
1044    return DeclRefExprBits.HadMultipleCandidates;
1045  }
1046  /// \brief Sets the flag telling whether this expression refers to
1047  /// a function that was resolved from an overloaded set having size
1048  /// greater than 1.
1049  void setHadMultipleCandidates(bool V = true) {
1050    DeclRefExprBits.HadMultipleCandidates = V;
1051  }
1052
1053  /// Does this DeclRefExpr refer to a local declaration from an
1054  /// enclosing function scope?
1055  bool refersToEnclosingLocal() const {
1056    return DeclRefExprBits.RefersToEnclosingLocal;
1057  }
1058
1059  static bool classof(const Stmt *T) {
1060    return T->getStmtClass() == DeclRefExprClass;
1061  }
1062  static bool classof(const DeclRefExpr *) { return true; }
1063
1064  // Iterators
1065  child_range children() { return child_range(); }
1066
1067  friend class ASTStmtReader;
1068  friend class ASTStmtWriter;
1069};
1070
1071/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
1072class PredefinedExpr : public Expr {
1073public:
1074  enum IdentType {
1075    Func,
1076    Function,
1077    LFunction,  // Same as Function, but as wide string.
1078    PrettyFunction,
1079    /// PrettyFunctionNoVirtual - The same as PrettyFunction, except that the
1080    /// 'virtual' keyword is omitted for virtual member functions.
1081    PrettyFunctionNoVirtual
1082  };
1083
1084private:
1085  SourceLocation Loc;
1086  IdentType Type;
1087public:
1088  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
1089    : Expr(PredefinedExprClass, type, VK_LValue, OK_Ordinary,
1090           type->isDependentType(), type->isDependentType(),
1091           type->isInstantiationDependentType(),
1092           /*ContainsUnexpandedParameterPack=*/false),
1093      Loc(l), Type(IT) {}
1094
1095  /// \brief Construct an empty predefined expression.
1096  explicit PredefinedExpr(EmptyShell Empty)
1097    : Expr(PredefinedExprClass, Empty) { }
1098
1099  IdentType getIdentType() const { return Type; }
1100  void setIdentType(IdentType IT) { Type = IT; }
1101
1102  SourceLocation getLocation() const { return Loc; }
1103  void setLocation(SourceLocation L) { Loc = L; }
1104
1105  static std::string ComputeName(IdentType IT, const Decl *CurrentDecl);
1106
1107  SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(Loc); }
1108
1109  static bool classof(const Stmt *T) {
1110    return T->getStmtClass() == PredefinedExprClass;
1111  }
1112  static bool classof(const PredefinedExpr *) { return true; }
1113
1114  // Iterators
1115  child_range children() { return child_range(); }
1116};
1117
1118/// \brief Used by IntegerLiteral/FloatingLiteral to store the numeric without
1119/// leaking memory.
1120///
1121/// For large floats/integers, APFloat/APInt will allocate memory from the heap
1122/// to represent these numbers.  Unfortunately, when we use a BumpPtrAllocator
1123/// to allocate IntegerLiteral/FloatingLiteral nodes the memory associated with
1124/// the APFloat/APInt values will never get freed. APNumericStorage uses
1125/// ASTContext's allocator for memory allocation.
1126class APNumericStorage {
1127  union {
1128    uint64_t VAL;    ///< Used to store the <= 64 bits integer value.
1129    uint64_t *pVal;  ///< Used to store the >64 bits integer value.
1130  };
1131  unsigned BitWidth;
1132
1133  bool hasAllocation() const { return llvm::APInt::getNumWords(BitWidth) > 1; }
1134
1135  APNumericStorage(const APNumericStorage &) LLVM_DELETED_FUNCTION;
1136  void operator=(const APNumericStorage &) LLVM_DELETED_FUNCTION;
1137
1138protected:
1139  APNumericStorage() : VAL(0), BitWidth(0) { }
1140
1141  llvm::APInt getIntValue() const {
1142    unsigned NumWords = llvm::APInt::getNumWords(BitWidth);
1143    if (NumWords > 1)
1144      return llvm::APInt(BitWidth, NumWords, pVal);
1145    else
1146      return llvm::APInt(BitWidth, VAL);
1147  }
1148  void setIntValue(ASTContext &C, const llvm::APInt &Val);
1149};
1150
1151class APIntStorage : private APNumericStorage {
1152public:
1153  llvm::APInt getValue() const { return getIntValue(); }
1154  void setValue(ASTContext &C, const llvm::APInt &Val) { setIntValue(C, Val); }
1155};
1156
1157class APFloatStorage : private APNumericStorage {
1158public:
1159  llvm::APFloat getValue(bool IsIEEE) const {
1160    return llvm::APFloat(getIntValue(), IsIEEE);
1161  }
1162  void setValue(ASTContext &C, const llvm::APFloat &Val) {
1163    setIntValue(C, Val.bitcastToAPInt());
1164  }
1165};
1166
1167class IntegerLiteral : public Expr, public APIntStorage {
1168  SourceLocation Loc;
1169
1170  /// \brief Construct an empty integer literal.
1171  explicit IntegerLiteral(EmptyShell Empty)
1172    : Expr(IntegerLiteralClass, Empty) { }
1173
1174public:
1175  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
1176  // or UnsignedLongLongTy
1177  IntegerLiteral(ASTContext &C, const llvm::APInt &V, QualType type,
1178                 SourceLocation l);
1179
1180  /// \brief Returns a new integer literal with value 'V' and type 'type'.
1181  /// \param type - either IntTy, LongTy, LongLongTy, UnsignedIntTy,
1182  /// UnsignedLongTy, or UnsignedLongLongTy which should match the size of V
1183  /// \param V - the value that the returned integer literal contains.
1184  static IntegerLiteral *Create(ASTContext &C, const llvm::APInt &V,
1185                                QualType type, SourceLocation l);
1186  /// \brief Returns a new empty integer literal.
1187  static IntegerLiteral *Create(ASTContext &C, EmptyShell Empty);
1188
1189  SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(Loc); }
1190
1191  /// \brief Retrieve the location of the literal.
1192  SourceLocation getLocation() const { return Loc; }
1193
1194  void setLocation(SourceLocation Location) { Loc = Location; }
1195
1196  static bool classof(const Stmt *T) {
1197    return T->getStmtClass() == IntegerLiteralClass;
1198  }
1199  static bool classof(const IntegerLiteral *) { return true; }
1200
1201  // Iterators
1202  child_range children() { return child_range(); }
1203};
1204
1205class CharacterLiteral : public Expr {
1206public:
1207  enum CharacterKind {
1208    Ascii,
1209    Wide,
1210    UTF16,
1211    UTF32
1212  };
1213
1214private:
1215  unsigned Value;
1216  SourceLocation Loc;
1217public:
1218  // type should be IntTy
1219  CharacterLiteral(unsigned value, CharacterKind kind, QualType type,
1220                   SourceLocation l)
1221    : Expr(CharacterLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
1222           false, false),
1223      Value(value), Loc(l) {
1224    CharacterLiteralBits.Kind = kind;
1225  }
1226
1227  /// \brief Construct an empty character literal.
1228  CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
1229
1230  SourceLocation getLocation() const { return Loc; }
1231  CharacterKind getKind() const {
1232    return static_cast<CharacterKind>(CharacterLiteralBits.Kind);
1233  }
1234
1235  SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(Loc); }
1236
1237  unsigned getValue() const { return Value; }
1238
1239  void setLocation(SourceLocation Location) { Loc = Location; }
1240  void setKind(CharacterKind kind) { CharacterLiteralBits.Kind = kind; }
1241  void setValue(unsigned Val) { Value = Val; }
1242
1243  static bool classof(const Stmt *T) {
1244    return T->getStmtClass() == CharacterLiteralClass;
1245  }
1246  static bool classof(const CharacterLiteral *) { return true; }
1247
1248  // Iterators
1249  child_range children() { return child_range(); }
1250};
1251
1252class FloatingLiteral : public Expr, private APFloatStorage {
1253  SourceLocation Loc;
1254
1255  FloatingLiteral(ASTContext &C, const llvm::APFloat &V, bool isexact,
1256                  QualType Type, SourceLocation L);
1257
1258  /// \brief Construct an empty floating-point literal.
1259  explicit FloatingLiteral(ASTContext &C, EmptyShell Empty);
1260
1261public:
1262  static FloatingLiteral *Create(ASTContext &C, const llvm::APFloat &V,
1263                                 bool isexact, QualType Type, SourceLocation L);
1264  static FloatingLiteral *Create(ASTContext &C, EmptyShell Empty);
1265
1266  llvm::APFloat getValue() const {
1267    return APFloatStorage::getValue(FloatingLiteralBits.IsIEEE);
1268  }
1269  void setValue(ASTContext &C, const llvm::APFloat &Val) {
1270    APFloatStorage::setValue(C, Val);
1271  }
1272
1273  bool isExact() const { return FloatingLiteralBits.IsExact; }
1274  void setExact(bool E) { FloatingLiteralBits.IsExact = E; }
1275
1276  /// getValueAsApproximateDouble - This returns the value as an inaccurate
1277  /// double.  Note that this may cause loss of precision, but is useful for
1278  /// debugging dumps, etc.
1279  double getValueAsApproximateDouble() const;
1280
1281  SourceLocation getLocation() const { return Loc; }
1282  void setLocation(SourceLocation L) { Loc = L; }
1283
1284  SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(Loc); }
1285
1286  static bool classof(const Stmt *T) {
1287    return T->getStmtClass() == FloatingLiteralClass;
1288  }
1289  static bool classof(const FloatingLiteral *) { return true; }
1290
1291  // Iterators
1292  child_range children() { return child_range(); }
1293};
1294
1295/// ImaginaryLiteral - We support imaginary integer and floating point literals,
1296/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
1297/// IntegerLiteral classes.  Instances of this class always have a Complex type
1298/// whose element type matches the subexpression.
1299///
1300class ImaginaryLiteral : public Expr {
1301  Stmt *Val;
1302public:
1303  ImaginaryLiteral(Expr *val, QualType Ty)
1304    : Expr(ImaginaryLiteralClass, Ty, VK_RValue, OK_Ordinary, false, false,
1305           false, false),
1306      Val(val) {}
1307
1308  /// \brief Build an empty imaginary literal.
1309  explicit ImaginaryLiteral(EmptyShell Empty)
1310    : Expr(ImaginaryLiteralClass, Empty) { }
1311
1312  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1313  Expr *getSubExpr() { return cast<Expr>(Val); }
1314  void setSubExpr(Expr *E) { Val = E; }
1315
1316  SourceRange getSourceRange() const LLVM_READONLY { return Val->getSourceRange(); }
1317  static bool classof(const Stmt *T) {
1318    return T->getStmtClass() == ImaginaryLiteralClass;
1319  }
1320  static bool classof(const ImaginaryLiteral *) { return true; }
1321
1322  // Iterators
1323  child_range children() { return child_range(&Val, &Val+1); }
1324};
1325
1326/// StringLiteral - This represents a string literal expression, e.g. "foo"
1327/// or L"bar" (wide strings).  The actual string is returned by getStrData()
1328/// is NOT null-terminated, and the length of the string is determined by
1329/// calling getByteLength().  The C type for a string is always a
1330/// ConstantArrayType.  In C++, the char type is const qualified, in C it is
1331/// not.
1332///
1333/// Note that strings in C can be formed by concatenation of multiple string
1334/// literal pptokens in translation phase #6.  This keeps track of the locations
1335/// of each of these pieces.
1336///
1337/// Strings in C can also be truncated and extended by assigning into arrays,
1338/// e.g. with constructs like:
1339///   char X[2] = "foobar";
1340/// In this case, getByteLength() will return 6, but the string literal will
1341/// have type "char[2]".
1342class StringLiteral : public Expr {
1343public:
1344  enum StringKind {
1345    Ascii,
1346    Wide,
1347    UTF8,
1348    UTF16,
1349    UTF32
1350  };
1351
1352private:
1353  friend class ASTStmtReader;
1354
1355  union {
1356    const char *asChar;
1357    const uint16_t *asUInt16;
1358    const uint32_t *asUInt32;
1359  } StrData;
1360  unsigned Length;
1361  unsigned CharByteWidth : 4;
1362  unsigned Kind : 3;
1363  unsigned IsPascal : 1;
1364  unsigned NumConcatenated;
1365  SourceLocation TokLocs[1];
1366
1367  StringLiteral(QualType Ty) :
1368    Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary, false, false, false,
1369         false) {}
1370
1371  static int mapCharByteWidth(TargetInfo const &target,StringKind k);
1372
1373public:
1374  /// This is the "fully general" constructor that allows representation of
1375  /// strings formed from multiple concatenated tokens.
1376  static StringLiteral *Create(ASTContext &C, StringRef Str, StringKind Kind,
1377                               bool Pascal, QualType Ty,
1378                               const SourceLocation *Loc, unsigned NumStrs);
1379
1380  /// Simple constructor for string literals made from one token.
1381  static StringLiteral *Create(ASTContext &C, StringRef Str, StringKind Kind,
1382                               bool Pascal, QualType Ty,
1383                               SourceLocation Loc) {
1384    return Create(C, Str, Kind, Pascal, Ty, &Loc, 1);
1385  }
1386
1387  /// \brief Construct an empty string literal.
1388  static StringLiteral *CreateEmpty(ASTContext &C, unsigned NumStrs);
1389
1390  StringRef getString() const {
1391    assert(CharByteWidth==1
1392           && "This function is used in places that assume strings use char");
1393    return StringRef(StrData.asChar, getByteLength());
1394  }
1395
1396  /// Allow access to clients that need the byte representation, such as
1397  /// ASTWriterStmt::VisitStringLiteral().
1398  StringRef getBytes() const {
1399    // FIXME: StringRef may not be the right type to use as a result for this.
1400    if (CharByteWidth == 1)
1401      return StringRef(StrData.asChar, getByteLength());
1402    if (CharByteWidth == 4)
1403      return StringRef(reinterpret_cast<const char*>(StrData.asUInt32),
1404                       getByteLength());
1405    assert(CharByteWidth == 2 && "unsupported CharByteWidth");
1406    return StringRef(reinterpret_cast<const char*>(StrData.asUInt16),
1407                     getByteLength());
1408  }
1409
1410  void outputString(raw_ostream &OS);
1411
1412  uint32_t getCodeUnit(size_t i) const {
1413    assert(i < Length && "out of bounds access");
1414    if (CharByteWidth == 1)
1415      return static_cast<unsigned char>(StrData.asChar[i]);
1416    if (CharByteWidth == 4)
1417      return StrData.asUInt32[i];
1418    assert(CharByteWidth == 2 && "unsupported CharByteWidth");
1419    return StrData.asUInt16[i];
1420  }
1421
1422  unsigned getByteLength() const { return CharByteWidth*Length; }
1423  unsigned getLength() const { return Length; }
1424  unsigned getCharByteWidth() const { return CharByteWidth; }
1425
1426  /// \brief Sets the string data to the given string data.
1427  void setString(ASTContext &C, StringRef Str,
1428                 StringKind Kind, bool IsPascal);
1429
1430  StringKind getKind() const { return static_cast<StringKind>(Kind); }
1431
1432
1433  bool isAscii() const { return Kind == Ascii; }
1434  bool isWide() const { return Kind == Wide; }
1435  bool isUTF8() const { return Kind == UTF8; }
1436  bool isUTF16() const { return Kind == UTF16; }
1437  bool isUTF32() const { return Kind == UTF32; }
1438  bool isPascal() const { return IsPascal; }
1439
1440  bool containsNonAsciiOrNull() const {
1441    StringRef Str = getString();
1442    for (unsigned i = 0, e = Str.size(); i != e; ++i)
1443      if (!isascii(Str[i]) || !Str[i])
1444        return true;
1445    return false;
1446  }
1447
1448  /// getNumConcatenated - Get the number of string literal tokens that were
1449  /// concatenated in translation phase #6 to form this string literal.
1450  unsigned getNumConcatenated() const { return NumConcatenated; }
1451
1452  SourceLocation getStrTokenLoc(unsigned TokNum) const {
1453    assert(TokNum < NumConcatenated && "Invalid tok number");
1454    return TokLocs[TokNum];
1455  }
1456  void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
1457    assert(TokNum < NumConcatenated && "Invalid tok number");
1458    TokLocs[TokNum] = L;
1459  }
1460
1461  /// getLocationOfByte - Return a source location that points to the specified
1462  /// byte of this string literal.
1463  ///
1464  /// Strings are amazingly complex.  They can be formed from multiple tokens
1465  /// and can have escape sequences in them in addition to the usual trigraph
1466  /// and escaped newline business.  This routine handles this complexity.
1467  ///
1468  SourceLocation getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
1469                                   const LangOptions &Features,
1470                                   const TargetInfo &Target) const;
1471
1472  typedef const SourceLocation *tokloc_iterator;
1473  tokloc_iterator tokloc_begin() const { return TokLocs; }
1474  tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; }
1475
1476  SourceRange getSourceRange() const LLVM_READONLY {
1477    return SourceRange(TokLocs[0], TokLocs[NumConcatenated-1]);
1478  }
1479  static bool classof(const Stmt *T) {
1480    return T->getStmtClass() == StringLiteralClass;
1481  }
1482  static bool classof(const StringLiteral *) { return true; }
1483
1484  // Iterators
1485  child_range children() { return child_range(); }
1486};
1487
1488/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
1489/// AST node is only formed if full location information is requested.
1490class ParenExpr : public Expr {
1491  SourceLocation L, R;
1492  Stmt *Val;
1493public:
1494  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
1495    : Expr(ParenExprClass, val->getType(),
1496           val->getValueKind(), val->getObjectKind(),
1497           val->isTypeDependent(), val->isValueDependent(),
1498           val->isInstantiationDependent(),
1499           val->containsUnexpandedParameterPack()),
1500      L(l), R(r), Val(val) {}
1501
1502  /// \brief Construct an empty parenthesized expression.
1503  explicit ParenExpr(EmptyShell Empty)
1504    : Expr(ParenExprClass, Empty) { }
1505
1506  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1507  Expr *getSubExpr() { return cast<Expr>(Val); }
1508  void setSubExpr(Expr *E) { Val = E; }
1509
1510  SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(L, R); }
1511
1512  /// \brief Get the location of the left parentheses '('.
1513  SourceLocation getLParen() const { return L; }
1514  void setLParen(SourceLocation Loc) { L = Loc; }
1515
1516  /// \brief Get the location of the right parentheses ')'.
1517  SourceLocation getRParen() const { return R; }
1518  void setRParen(SourceLocation Loc) { R = Loc; }
1519
1520  static bool classof(const Stmt *T) {
1521    return T->getStmtClass() == ParenExprClass;
1522  }
1523  static bool classof(const ParenExpr *) { return true; }
1524
1525  // Iterators
1526  child_range children() { return child_range(&Val, &Val+1); }
1527};
1528
1529
1530/// UnaryOperator - This represents the unary-expression's (except sizeof and
1531/// alignof), the postinc/postdec operators from postfix-expression, and various
1532/// extensions.
1533///
1534/// Notes on various nodes:
1535///
1536/// Real/Imag - These return the real/imag part of a complex operand.  If
1537///   applied to a non-complex value, the former returns its operand and the
1538///   later returns zero in the type of the operand.
1539///
1540class UnaryOperator : public Expr {
1541public:
1542  typedef UnaryOperatorKind Opcode;
1543
1544private:
1545  unsigned Opc : 5;
1546  SourceLocation Loc;
1547  Stmt *Val;
1548public:
1549
1550  UnaryOperator(Expr *input, Opcode opc, QualType type,
1551                ExprValueKind VK, ExprObjectKind OK, SourceLocation l)
1552    : Expr(UnaryOperatorClass, type, VK, OK,
1553           input->isTypeDependent() || type->isDependentType(),
1554           input->isValueDependent(),
1555           (input->isInstantiationDependent() ||
1556            type->isInstantiationDependentType()),
1557           input->containsUnexpandedParameterPack()),
1558      Opc(opc), Loc(l), Val(input) {}
1559
1560  /// \brief Build an empty unary operator.
1561  explicit UnaryOperator(EmptyShell Empty)
1562    : Expr(UnaryOperatorClass, Empty), Opc(UO_AddrOf) { }
1563
1564  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
1565  void setOpcode(Opcode O) { Opc = O; }
1566
1567  Expr *getSubExpr() const { return cast<Expr>(Val); }
1568  void setSubExpr(Expr *E) { Val = E; }
1569
1570  /// getOperatorLoc - Return the location of the operator.
1571  SourceLocation getOperatorLoc() const { return Loc; }
1572  void setOperatorLoc(SourceLocation L) { Loc = L; }
1573
1574  /// isPostfix - Return true if this is a postfix operation, like x++.
1575  static bool isPostfix(Opcode Op) {
1576    return Op == UO_PostInc || Op == UO_PostDec;
1577  }
1578
1579  /// isPrefix - Return true if this is a prefix operation, like --x.
1580  static bool isPrefix(Opcode Op) {
1581    return Op == UO_PreInc || Op == UO_PreDec;
1582  }
1583
1584  bool isPrefix() const { return isPrefix(getOpcode()); }
1585  bool isPostfix() const { return isPostfix(getOpcode()); }
1586
1587  static bool isIncrementOp(Opcode Op) {
1588    return Op == UO_PreInc || Op == UO_PostInc;
1589  }
1590  bool isIncrementOp() const {
1591    return isIncrementOp(getOpcode());
1592  }
1593
1594  static bool isDecrementOp(Opcode Op) {
1595    return Op == UO_PreDec || Op == UO_PostDec;
1596  }
1597  bool isDecrementOp() const {
1598    return isDecrementOp(getOpcode());
1599  }
1600
1601  static bool isIncrementDecrementOp(Opcode Op) { return Op <= UO_PreDec; }
1602  bool isIncrementDecrementOp() const {
1603    return isIncrementDecrementOp(getOpcode());
1604  }
1605
1606  static bool isArithmeticOp(Opcode Op) {
1607    return Op >= UO_Plus && Op <= UO_LNot;
1608  }
1609  bool isArithmeticOp() const { return isArithmeticOp(getOpcode()); }
1610
1611  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1612  /// corresponds to, e.g. "sizeof" or "[pre]++"
1613  static const char *getOpcodeStr(Opcode Op);
1614
1615  /// \brief Retrieve the unary opcode that corresponds to the given
1616  /// overloaded operator.
1617  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
1618
1619  /// \brief Retrieve the overloaded operator kind that corresponds to
1620  /// the given unary opcode.
1621  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
1622
1623  SourceRange getSourceRange() const LLVM_READONLY {
1624    if (isPostfix())
1625      return SourceRange(Val->getLocStart(), Loc);
1626    else
1627      return SourceRange(Loc, Val->getLocEnd());
1628  }
1629  SourceLocation getExprLoc() const LLVM_READONLY { return Loc; }
1630
1631  static bool classof(const Stmt *T) {
1632    return T->getStmtClass() == UnaryOperatorClass;
1633  }
1634  static bool classof(const UnaryOperator *) { return true; }
1635
1636  // Iterators
1637  child_range children() { return child_range(&Val, &Val+1); }
1638};
1639
1640/// OffsetOfExpr - [C99 7.17] - This represents an expression of the form
1641/// offsetof(record-type, member-designator). For example, given:
1642/// @code
1643/// struct S {
1644///   float f;
1645///   double d;
1646/// };
1647/// struct T {
1648///   int i;
1649///   struct S s[10];
1650/// };
1651/// @endcode
1652/// we can represent and evaluate the expression @c offsetof(struct T, s[2].d).
1653
1654class OffsetOfExpr : public Expr {
1655public:
1656  // __builtin_offsetof(type, identifier(.identifier|[expr])*)
1657  class OffsetOfNode {
1658  public:
1659    /// \brief The kind of offsetof node we have.
1660    enum Kind {
1661      /// \brief An index into an array.
1662      Array = 0x00,
1663      /// \brief A field.
1664      Field = 0x01,
1665      /// \brief A field in a dependent type, known only by its name.
1666      Identifier = 0x02,
1667      /// \brief An implicit indirection through a C++ base class, when the
1668      /// field found is in a base class.
1669      Base = 0x03
1670    };
1671
1672  private:
1673    enum { MaskBits = 2, Mask = 0x03 };
1674
1675    /// \brief The source range that covers this part of the designator.
1676    SourceRange Range;
1677
1678    /// \brief The data describing the designator, which comes in three
1679    /// different forms, depending on the lower two bits.
1680    ///   - An unsigned index into the array of Expr*'s stored after this node
1681    ///     in memory, for [constant-expression] designators.
1682    ///   - A FieldDecl*, for references to a known field.
1683    ///   - An IdentifierInfo*, for references to a field with a given name
1684    ///     when the class type is dependent.
1685    ///   - A CXXBaseSpecifier*, for references that look at a field in a
1686    ///     base class.
1687    uintptr_t Data;
1688
1689  public:
1690    /// \brief Create an offsetof node that refers to an array element.
1691    OffsetOfNode(SourceLocation LBracketLoc, unsigned Index,
1692                 SourceLocation RBracketLoc)
1693      : Range(LBracketLoc, RBracketLoc), Data((Index << 2) | Array) { }
1694
1695    /// \brief Create an offsetof node that refers to a field.
1696    OffsetOfNode(SourceLocation DotLoc, FieldDecl *Field,
1697                 SourceLocation NameLoc)
1698      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1699        Data(reinterpret_cast<uintptr_t>(Field) | OffsetOfNode::Field) { }
1700
1701    /// \brief Create an offsetof node that refers to an identifier.
1702    OffsetOfNode(SourceLocation DotLoc, IdentifierInfo *Name,
1703                 SourceLocation NameLoc)
1704      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1705        Data(reinterpret_cast<uintptr_t>(Name) | Identifier) { }
1706
1707    /// \brief Create an offsetof node that refers into a C++ base class.
1708    explicit OffsetOfNode(const CXXBaseSpecifier *Base)
1709      : Range(), Data(reinterpret_cast<uintptr_t>(Base) | OffsetOfNode::Base) {}
1710
1711    /// \brief Determine what kind of offsetof node this is.
1712    Kind getKind() const {
1713      return static_cast<Kind>(Data & Mask);
1714    }
1715
1716    /// \brief For an array element node, returns the index into the array
1717    /// of expressions.
1718    unsigned getArrayExprIndex() const {
1719      assert(getKind() == Array);
1720      return Data >> 2;
1721    }
1722
1723    /// \brief For a field offsetof node, returns the field.
1724    FieldDecl *getField() const {
1725      assert(getKind() == Field);
1726      return reinterpret_cast<FieldDecl *>(Data & ~(uintptr_t)Mask);
1727    }
1728
1729    /// \brief For a field or identifier offsetof node, returns the name of
1730    /// the field.
1731    IdentifierInfo *getFieldName() const;
1732
1733    /// \brief For a base class node, returns the base specifier.
1734    CXXBaseSpecifier *getBase() const {
1735      assert(getKind() == Base);
1736      return reinterpret_cast<CXXBaseSpecifier *>(Data & ~(uintptr_t)Mask);
1737    }
1738
1739    /// \brief Retrieve the source range that covers this offsetof node.
1740    ///
1741    /// For an array element node, the source range contains the locations of
1742    /// the square brackets. For a field or identifier node, the source range
1743    /// contains the location of the period (if there is one) and the
1744    /// identifier.
1745    SourceRange getSourceRange() const LLVM_READONLY { return Range; }
1746  };
1747
1748private:
1749
1750  SourceLocation OperatorLoc, RParenLoc;
1751  // Base type;
1752  TypeSourceInfo *TSInfo;
1753  // Number of sub-components (i.e. instances of OffsetOfNode).
1754  unsigned NumComps;
1755  // Number of sub-expressions (i.e. array subscript expressions).
1756  unsigned NumExprs;
1757
1758  OffsetOfExpr(ASTContext &C, QualType type,
1759               SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1760               ArrayRef<OffsetOfNode> comps, ArrayRef<Expr*> exprs,
1761               SourceLocation RParenLoc);
1762
1763  explicit OffsetOfExpr(unsigned numComps, unsigned numExprs)
1764    : Expr(OffsetOfExprClass, EmptyShell()),
1765      TSInfo(0), NumComps(numComps), NumExprs(numExprs) {}
1766
1767public:
1768
1769  static OffsetOfExpr *Create(ASTContext &C, QualType type,
1770                              SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1771                              ArrayRef<OffsetOfNode> comps,
1772                              ArrayRef<Expr*> exprs, SourceLocation RParenLoc);
1773
1774  static OffsetOfExpr *CreateEmpty(ASTContext &C,
1775                                   unsigned NumComps, unsigned NumExprs);
1776
1777  /// getOperatorLoc - Return the location of the operator.
1778  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1779  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
1780
1781  /// \brief Return the location of the right parentheses.
1782  SourceLocation getRParenLoc() const { return RParenLoc; }
1783  void setRParenLoc(SourceLocation R) { RParenLoc = R; }
1784
1785  TypeSourceInfo *getTypeSourceInfo() const {
1786    return TSInfo;
1787  }
1788  void setTypeSourceInfo(TypeSourceInfo *tsi) {
1789    TSInfo = tsi;
1790  }
1791
1792  const OffsetOfNode &getComponent(unsigned Idx) const {
1793    assert(Idx < NumComps && "Subscript out of range");
1794    return reinterpret_cast<const OffsetOfNode *> (this + 1)[Idx];
1795  }
1796
1797  void setComponent(unsigned Idx, OffsetOfNode ON) {
1798    assert(Idx < NumComps && "Subscript out of range");
1799    reinterpret_cast<OffsetOfNode *> (this + 1)[Idx] = ON;
1800  }
1801
1802  unsigned getNumComponents() const {
1803    return NumComps;
1804  }
1805
1806  Expr* getIndexExpr(unsigned Idx) {
1807    assert(Idx < NumExprs && "Subscript out of range");
1808    return reinterpret_cast<Expr **>(
1809                    reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx];
1810  }
1811  const Expr *getIndexExpr(unsigned Idx) const {
1812    return const_cast<OffsetOfExpr*>(this)->getIndexExpr(Idx);
1813  }
1814
1815  void setIndexExpr(unsigned Idx, Expr* E) {
1816    assert(Idx < NumComps && "Subscript out of range");
1817    reinterpret_cast<Expr **>(
1818                reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx] = E;
1819  }
1820
1821  unsigned getNumExpressions() const {
1822    return NumExprs;
1823  }
1824
1825  SourceRange getSourceRange() const LLVM_READONLY {
1826    return SourceRange(OperatorLoc, RParenLoc);
1827  }
1828
1829  static bool classof(const Stmt *T) {
1830    return T->getStmtClass() == OffsetOfExprClass;
1831  }
1832
1833  static bool classof(const OffsetOfExpr *) { return true; }
1834
1835  // Iterators
1836  child_range children() {
1837    Stmt **begin =
1838      reinterpret_cast<Stmt**>(reinterpret_cast<OffsetOfNode*>(this + 1)
1839                               + NumComps);
1840    return child_range(begin, begin + NumExprs);
1841  }
1842};
1843
1844/// UnaryExprOrTypeTraitExpr - expression with either a type or (unevaluated)
1845/// expression operand.  Used for sizeof/alignof (C99 6.5.3.4) and
1846/// vec_step (OpenCL 1.1 6.11.12).
1847class UnaryExprOrTypeTraitExpr : public Expr {
1848  union {
1849    TypeSourceInfo *Ty;
1850    Stmt *Ex;
1851  } Argument;
1852  SourceLocation OpLoc, RParenLoc;
1853
1854public:
1855  UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, TypeSourceInfo *TInfo,
1856                           QualType resultType, SourceLocation op,
1857                           SourceLocation rp) :
1858      Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
1859           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1860           // Value-dependent if the argument is type-dependent.
1861           TInfo->getType()->isDependentType(),
1862           TInfo->getType()->isInstantiationDependentType(),
1863           TInfo->getType()->containsUnexpandedParameterPack()),
1864      OpLoc(op), RParenLoc(rp) {
1865    UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
1866    UnaryExprOrTypeTraitExprBits.IsType = true;
1867    Argument.Ty = TInfo;
1868  }
1869
1870  UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, Expr *E,
1871                           QualType resultType, SourceLocation op,
1872                           SourceLocation rp) :
1873      Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
1874           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1875           // Value-dependent if the argument is type-dependent.
1876           E->isTypeDependent(),
1877           E->isInstantiationDependent(),
1878           E->containsUnexpandedParameterPack()),
1879      OpLoc(op), RParenLoc(rp) {
1880    UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
1881    UnaryExprOrTypeTraitExprBits.IsType = false;
1882    Argument.Ex = E;
1883  }
1884
1885  /// \brief Construct an empty sizeof/alignof expression.
1886  explicit UnaryExprOrTypeTraitExpr(EmptyShell Empty)
1887    : Expr(UnaryExprOrTypeTraitExprClass, Empty) { }
1888
1889  UnaryExprOrTypeTrait getKind() const {
1890    return static_cast<UnaryExprOrTypeTrait>(UnaryExprOrTypeTraitExprBits.Kind);
1891  }
1892  void setKind(UnaryExprOrTypeTrait K) { UnaryExprOrTypeTraitExprBits.Kind = K;}
1893
1894  bool isArgumentType() const { return UnaryExprOrTypeTraitExprBits.IsType; }
1895  QualType getArgumentType() const {
1896    return getArgumentTypeInfo()->getType();
1897  }
1898  TypeSourceInfo *getArgumentTypeInfo() const {
1899    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
1900    return Argument.Ty;
1901  }
1902  Expr *getArgumentExpr() {
1903    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
1904    return static_cast<Expr*>(Argument.Ex);
1905  }
1906  const Expr *getArgumentExpr() const {
1907    return const_cast<UnaryExprOrTypeTraitExpr*>(this)->getArgumentExpr();
1908  }
1909
1910  void setArgument(Expr *E) {
1911    Argument.Ex = E;
1912    UnaryExprOrTypeTraitExprBits.IsType = false;
1913  }
1914  void setArgument(TypeSourceInfo *TInfo) {
1915    Argument.Ty = TInfo;
1916    UnaryExprOrTypeTraitExprBits.IsType = true;
1917  }
1918
1919  /// Gets the argument type, or the type of the argument expression, whichever
1920  /// is appropriate.
1921  QualType getTypeOfArgument() const {
1922    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
1923  }
1924
1925  SourceLocation getOperatorLoc() const { return OpLoc; }
1926  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
1927
1928  SourceLocation getRParenLoc() const { return RParenLoc; }
1929  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1930
1931  SourceRange getSourceRange() const LLVM_READONLY {
1932    return SourceRange(OpLoc, RParenLoc);
1933  }
1934
1935  static bool classof(const Stmt *T) {
1936    return T->getStmtClass() == UnaryExprOrTypeTraitExprClass;
1937  }
1938  static bool classof(const UnaryExprOrTypeTraitExpr *) { return true; }
1939
1940  // Iterators
1941  child_range children();
1942};
1943
1944//===----------------------------------------------------------------------===//
1945// Postfix Operators.
1946//===----------------------------------------------------------------------===//
1947
1948/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
1949class ArraySubscriptExpr : public Expr {
1950  enum { LHS, RHS, END_EXPR=2 };
1951  Stmt* SubExprs[END_EXPR];
1952  SourceLocation RBracketLoc;
1953public:
1954  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
1955                     ExprValueKind VK, ExprObjectKind OK,
1956                     SourceLocation rbracketloc)
1957  : Expr(ArraySubscriptExprClass, t, VK, OK,
1958         lhs->isTypeDependent() || rhs->isTypeDependent(),
1959         lhs->isValueDependent() || rhs->isValueDependent(),
1960         (lhs->isInstantiationDependent() ||
1961          rhs->isInstantiationDependent()),
1962         (lhs->containsUnexpandedParameterPack() ||
1963          rhs->containsUnexpandedParameterPack())),
1964    RBracketLoc(rbracketloc) {
1965    SubExprs[LHS] = lhs;
1966    SubExprs[RHS] = rhs;
1967  }
1968
1969  /// \brief Create an empty array subscript expression.
1970  explicit ArraySubscriptExpr(EmptyShell Shell)
1971    : Expr(ArraySubscriptExprClass, Shell) { }
1972
1973  /// An array access can be written A[4] or 4[A] (both are equivalent).
1974  /// - getBase() and getIdx() always present the normalized view: A[4].
1975  ///    In this case getBase() returns "A" and getIdx() returns "4".
1976  /// - getLHS() and getRHS() present the syntactic view. e.g. for
1977  ///    4[A] getLHS() returns "4".
1978  /// Note: Because vector element access is also written A[4] we must
1979  /// predicate the format conversion in getBase and getIdx only on the
1980  /// the type of the RHS, as it is possible for the LHS to be a vector of
1981  /// integer type
1982  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
1983  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1984  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1985
1986  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
1987  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1988  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1989
1990  Expr *getBase() {
1991    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1992  }
1993
1994  const Expr *getBase() const {
1995    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1996  }
1997
1998  Expr *getIdx() {
1999    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
2000  }
2001
2002  const Expr *getIdx() const {
2003    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
2004  }
2005
2006  SourceRange getSourceRange() const LLVM_READONLY {
2007    return SourceRange(getLHS()->getLocStart(), RBracketLoc);
2008  }
2009
2010  SourceLocation getRBracketLoc() const { return RBracketLoc; }
2011  void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
2012
2013  SourceLocation getExprLoc() const LLVM_READONLY { return getBase()->getExprLoc(); }
2014
2015  static bool classof(const Stmt *T) {
2016    return T->getStmtClass() == ArraySubscriptExprClass;
2017  }
2018  static bool classof(const ArraySubscriptExpr *) { return true; }
2019
2020  // Iterators
2021  child_range children() {
2022    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
2023  }
2024};
2025
2026
2027/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
2028/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
2029/// while its subclasses may represent alternative syntax that (semantically)
2030/// results in a function call. For example, CXXOperatorCallExpr is
2031/// a subclass for overloaded operator calls that use operator syntax, e.g.,
2032/// "str1 + str2" to resolve to a function call.
2033class CallExpr : public Expr {
2034  enum { FN=0, PREARGS_START=1 };
2035  Stmt **SubExprs;
2036  unsigned NumArgs;
2037  SourceLocation RParenLoc;
2038
2039protected:
2040  // These versions of the constructor are for derived classes.
2041  CallExpr(ASTContext& C, StmtClass SC, Expr *fn, unsigned NumPreArgs,
2042           ArrayRef<Expr*> args, QualType t, ExprValueKind VK,
2043           SourceLocation rparenloc);
2044  CallExpr(ASTContext &C, StmtClass SC, unsigned NumPreArgs, EmptyShell Empty);
2045
2046  Stmt *getPreArg(unsigned i) {
2047    assert(i < getNumPreArgs() && "Prearg access out of range!");
2048    return SubExprs[PREARGS_START+i];
2049  }
2050  const Stmt *getPreArg(unsigned i) const {
2051    assert(i < getNumPreArgs() && "Prearg access out of range!");
2052    return SubExprs[PREARGS_START+i];
2053  }
2054  void setPreArg(unsigned i, Stmt *PreArg) {
2055    assert(i < getNumPreArgs() && "Prearg access out of range!");
2056    SubExprs[PREARGS_START+i] = PreArg;
2057  }
2058
2059  unsigned getNumPreArgs() const { return CallExprBits.NumPreArgs; }
2060
2061public:
2062  CallExpr(ASTContext& C, Expr *fn, ArrayRef<Expr*> args, QualType t,
2063           ExprValueKind VK, SourceLocation rparenloc);
2064
2065  /// \brief Build an empty call expression.
2066  CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty);
2067
2068  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
2069  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
2070  void setCallee(Expr *F) { SubExprs[FN] = F; }
2071
2072  Decl *getCalleeDecl();
2073  const Decl *getCalleeDecl() const {
2074    return const_cast<CallExpr*>(this)->getCalleeDecl();
2075  }
2076
2077  /// \brief If the callee is a FunctionDecl, return it. Otherwise return 0.
2078  FunctionDecl *getDirectCallee();
2079  const FunctionDecl *getDirectCallee() const {
2080    return const_cast<CallExpr*>(this)->getDirectCallee();
2081  }
2082
2083  /// getNumArgs - Return the number of actual arguments to this call.
2084  ///
2085  unsigned getNumArgs() const { return NumArgs; }
2086
2087  /// \brief Retrieve the call arguments.
2088  Expr **getArgs() {
2089    return reinterpret_cast<Expr **>(SubExprs+getNumPreArgs()+PREARGS_START);
2090  }
2091  const Expr *const *getArgs() const {
2092    return const_cast<CallExpr*>(this)->getArgs();
2093  }
2094
2095  /// getArg - Return the specified argument.
2096  Expr *getArg(unsigned Arg) {
2097    assert(Arg < NumArgs && "Arg access out of range!");
2098    return cast<Expr>(SubExprs[Arg+getNumPreArgs()+PREARGS_START]);
2099  }
2100  const Expr *getArg(unsigned Arg) const {
2101    assert(Arg < NumArgs && "Arg access out of range!");
2102    return cast<Expr>(SubExprs[Arg+getNumPreArgs()+PREARGS_START]);
2103  }
2104
2105  /// setArg - Set the specified argument.
2106  void setArg(unsigned Arg, Expr *ArgExpr) {
2107    assert(Arg < NumArgs && "Arg access out of range!");
2108    SubExprs[Arg+getNumPreArgs()+PREARGS_START] = ArgExpr;
2109  }
2110
2111  /// setNumArgs - This changes the number of arguments present in this call.
2112  /// Any orphaned expressions are deleted by this, and any new operands are set
2113  /// to null.
2114  void setNumArgs(ASTContext& C, unsigned NumArgs);
2115
2116  typedef ExprIterator arg_iterator;
2117  typedef ConstExprIterator const_arg_iterator;
2118
2119  arg_iterator arg_begin() { return SubExprs+PREARGS_START+getNumPreArgs(); }
2120  arg_iterator arg_end() {
2121    return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
2122  }
2123  const_arg_iterator arg_begin() const {
2124    return SubExprs+PREARGS_START+getNumPreArgs();
2125  }
2126  const_arg_iterator arg_end() const {
2127    return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
2128  }
2129
2130  /// getNumCommas - Return the number of commas that must have been present in
2131  /// this function call.
2132  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
2133
2134  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
2135  /// not, return 0.
2136  unsigned isBuiltinCall() const;
2137
2138  /// getCallReturnType - Get the return type of the call expr. This is not
2139  /// always the type of the expr itself, if the return type is a reference
2140  /// type.
2141  QualType getCallReturnType() const;
2142
2143  SourceLocation getRParenLoc() const { return RParenLoc; }
2144  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2145
2146  SourceRange getSourceRange() const LLVM_READONLY;
2147  SourceLocation getLocStart() const LLVM_READONLY;
2148  SourceLocation getLocEnd() const LLVM_READONLY;
2149
2150  static bool classof(const Stmt *T) {
2151    return T->getStmtClass() >= firstCallExprConstant &&
2152           T->getStmtClass() <= lastCallExprConstant;
2153  }
2154  static bool classof(const CallExpr *) { return true; }
2155
2156  // Iterators
2157  child_range children() {
2158    return child_range(&SubExprs[0],
2159                       &SubExprs[0]+NumArgs+getNumPreArgs()+PREARGS_START);
2160  }
2161};
2162
2163/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.  X->F and X.F.
2164///
2165class MemberExpr : public Expr {
2166  /// Extra data stored in some member expressions.
2167  struct MemberNameQualifier {
2168    /// \brief The nested-name-specifier that qualifies the name, including
2169    /// source-location information.
2170    NestedNameSpecifierLoc QualifierLoc;
2171
2172    /// \brief The DeclAccessPair through which the MemberDecl was found due to
2173    /// name qualifiers.
2174    DeclAccessPair FoundDecl;
2175  };
2176
2177  /// Base - the expression for the base pointer or structure references.  In
2178  /// X.F, this is "X".
2179  Stmt *Base;
2180
2181  /// MemberDecl - This is the decl being referenced by the field/member name.
2182  /// In X.F, this is the decl referenced by F.
2183  ValueDecl *MemberDecl;
2184
2185  /// MemberDNLoc - Provides source/type location info for the
2186  /// declaration name embedded in MemberDecl.
2187  DeclarationNameLoc MemberDNLoc;
2188
2189  /// MemberLoc - This is the location of the member name.
2190  SourceLocation MemberLoc;
2191
2192  /// IsArrow - True if this is "X->F", false if this is "X.F".
2193  bool IsArrow : 1;
2194
2195  /// \brief True if this member expression used a nested-name-specifier to
2196  /// refer to the member, e.g., "x->Base::f", or found its member via a using
2197  /// declaration.  When true, a MemberNameQualifier
2198  /// structure is allocated immediately after the MemberExpr.
2199  bool HasQualifierOrFoundDecl : 1;
2200
2201  /// \brief True if this member expression specified a template keyword
2202  /// and/or a template argument list explicitly, e.g., x->f<int>,
2203  /// x->template f, x->template f<int>.
2204  /// When true, an ASTTemplateKWAndArgsInfo structure and its
2205  /// TemplateArguments (if any) are allocated immediately after
2206  /// the MemberExpr or, if the member expression also has a qualifier,
2207  /// after the MemberNameQualifier structure.
2208  bool HasTemplateKWAndArgsInfo : 1;
2209
2210  /// \brief True if this member expression refers to a method that
2211  /// was resolved from an overloaded set having size greater than 1.
2212  bool HadMultipleCandidates : 1;
2213
2214  /// \brief Retrieve the qualifier that preceded the member name, if any.
2215  MemberNameQualifier *getMemberQualifier() {
2216    assert(HasQualifierOrFoundDecl);
2217    return reinterpret_cast<MemberNameQualifier *> (this + 1);
2218  }
2219
2220  /// \brief Retrieve the qualifier that preceded the member name, if any.
2221  const MemberNameQualifier *getMemberQualifier() const {
2222    return const_cast<MemberExpr *>(this)->getMemberQualifier();
2223  }
2224
2225public:
2226  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
2227             const DeclarationNameInfo &NameInfo, QualType ty,
2228             ExprValueKind VK, ExprObjectKind OK)
2229    : Expr(MemberExprClass, ty, VK, OK,
2230           base->isTypeDependent(),
2231           base->isValueDependent(),
2232           base->isInstantiationDependent(),
2233           base->containsUnexpandedParameterPack()),
2234      Base(base), MemberDecl(memberdecl), MemberDNLoc(NameInfo.getInfo()),
2235      MemberLoc(NameInfo.getLoc()), IsArrow(isarrow),
2236      HasQualifierOrFoundDecl(false), HasTemplateKWAndArgsInfo(false),
2237      HadMultipleCandidates(false) {
2238    assert(memberdecl->getDeclName() == NameInfo.getName());
2239  }
2240
2241  // NOTE: this constructor should be used only when it is known that
2242  // the member name can not provide additional syntactic info
2243  // (i.e., source locations for C++ operator names or type source info
2244  // for constructors, destructors and conversion operators).
2245  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
2246             SourceLocation l, QualType ty,
2247             ExprValueKind VK, ExprObjectKind OK)
2248    : Expr(MemberExprClass, ty, VK, OK,
2249           base->isTypeDependent(), base->isValueDependent(),
2250           base->isInstantiationDependent(),
2251           base->containsUnexpandedParameterPack()),
2252      Base(base), MemberDecl(memberdecl), MemberDNLoc(), MemberLoc(l),
2253      IsArrow(isarrow),
2254      HasQualifierOrFoundDecl(false), HasTemplateKWAndArgsInfo(false),
2255      HadMultipleCandidates(false) {}
2256
2257  static MemberExpr *Create(ASTContext &C, Expr *base, bool isarrow,
2258                            NestedNameSpecifierLoc QualifierLoc,
2259                            SourceLocation TemplateKWLoc,
2260                            ValueDecl *memberdecl, DeclAccessPair founddecl,
2261                            DeclarationNameInfo MemberNameInfo,
2262                            const TemplateArgumentListInfo *targs,
2263                            QualType ty, ExprValueKind VK, ExprObjectKind OK);
2264
2265  void setBase(Expr *E) { Base = E; }
2266  Expr *getBase() const { return cast<Expr>(Base); }
2267
2268  /// \brief Retrieve the member declaration to which this expression refers.
2269  ///
2270  /// The returned declaration will either be a FieldDecl or (in C++)
2271  /// a CXXMethodDecl.
2272  ValueDecl *getMemberDecl() const { return MemberDecl; }
2273  void setMemberDecl(ValueDecl *D) { MemberDecl = D; }
2274
2275  /// \brief Retrieves the declaration found by lookup.
2276  DeclAccessPair getFoundDecl() const {
2277    if (!HasQualifierOrFoundDecl)
2278      return DeclAccessPair::make(getMemberDecl(),
2279                                  getMemberDecl()->getAccess());
2280    return getMemberQualifier()->FoundDecl;
2281  }
2282
2283  /// \brief Determines whether this member expression actually had
2284  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
2285  /// x->Base::foo.
2286  bool hasQualifier() const { return getQualifier() != 0; }
2287
2288  /// \brief If the member name was qualified, retrieves the
2289  /// nested-name-specifier that precedes the member name. Otherwise, returns
2290  /// NULL.
2291  NestedNameSpecifier *getQualifier() const {
2292    if (!HasQualifierOrFoundDecl)
2293      return 0;
2294
2295    return getMemberQualifier()->QualifierLoc.getNestedNameSpecifier();
2296  }
2297
2298  /// \brief If the member name was qualified, retrieves the
2299  /// nested-name-specifier that precedes the member name, with source-location
2300  /// information.
2301  NestedNameSpecifierLoc getQualifierLoc() const {
2302    if (!hasQualifier())
2303      return NestedNameSpecifierLoc();
2304
2305    return getMemberQualifier()->QualifierLoc;
2306  }
2307
2308  /// \brief Return the optional template keyword and arguments info.
2309  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
2310    if (!HasTemplateKWAndArgsInfo)
2311      return 0;
2312
2313    if (!HasQualifierOrFoundDecl)
2314      return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(this + 1);
2315
2316    return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(
2317                                                      getMemberQualifier() + 1);
2318  }
2319
2320  /// \brief Return the optional template keyword and arguments info.
2321  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
2322    return const_cast<MemberExpr*>(this)->getTemplateKWAndArgsInfo();
2323  }
2324
2325  /// \brief Retrieve the location of the template keyword preceding
2326  /// the member name, if any.
2327  SourceLocation getTemplateKeywordLoc() const {
2328    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2329    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
2330  }
2331
2332  /// \brief Retrieve the location of the left angle bracket starting the
2333  /// explicit template argument list following the member name, if any.
2334  SourceLocation getLAngleLoc() const {
2335    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2336    return getTemplateKWAndArgsInfo()->LAngleLoc;
2337  }
2338
2339  /// \brief Retrieve the location of the right angle bracket ending the
2340  /// explicit template argument list following the member name, if any.
2341  SourceLocation getRAngleLoc() const {
2342    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2343    return getTemplateKWAndArgsInfo()->RAngleLoc;
2344  }
2345
2346  /// Determines whether the member name was preceded by the template keyword.
2347  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
2348
2349  /// \brief Determines whether the member name was followed by an
2350  /// explicit template argument list.
2351  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
2352
2353  /// \brief Copies the template arguments (if present) into the given
2354  /// structure.
2355  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2356    if (hasExplicitTemplateArgs())
2357      getExplicitTemplateArgs().copyInto(List);
2358  }
2359
2360  /// \brief Retrieve the explicit template argument list that
2361  /// follow the member template name.  This must only be called on an
2362  /// expression with explicit template arguments.
2363  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
2364    assert(hasExplicitTemplateArgs());
2365    return *getTemplateKWAndArgsInfo();
2366  }
2367
2368  /// \brief Retrieve the explicit template argument list that
2369  /// followed the member template name.  This must only be called on
2370  /// an expression with explicit template arguments.
2371  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2372    return const_cast<MemberExpr *>(this)->getExplicitTemplateArgs();
2373  }
2374
2375  /// \brief Retrieves the optional explicit template arguments.
2376  /// This points to the same data as getExplicitTemplateArgs(), but
2377  /// returns null if there are no explicit template arguments.
2378  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() const {
2379    if (!hasExplicitTemplateArgs()) return 0;
2380    return &getExplicitTemplateArgs();
2381  }
2382
2383  /// \brief Retrieve the template arguments provided as part of this
2384  /// template-id.
2385  const TemplateArgumentLoc *getTemplateArgs() const {
2386    if (!hasExplicitTemplateArgs())
2387      return 0;
2388
2389    return getExplicitTemplateArgs().getTemplateArgs();
2390  }
2391
2392  /// \brief Retrieve the number of template arguments provided as part of this
2393  /// template-id.
2394  unsigned getNumTemplateArgs() const {
2395    if (!hasExplicitTemplateArgs())
2396      return 0;
2397
2398    return getExplicitTemplateArgs().NumTemplateArgs;
2399  }
2400
2401  /// \brief Retrieve the member declaration name info.
2402  DeclarationNameInfo getMemberNameInfo() const {
2403    return DeclarationNameInfo(MemberDecl->getDeclName(),
2404                               MemberLoc, MemberDNLoc);
2405  }
2406
2407  bool isArrow() const { return IsArrow; }
2408  void setArrow(bool A) { IsArrow = A; }
2409
2410  /// getMemberLoc - Return the location of the "member", in X->F, it is the
2411  /// location of 'F'.
2412  SourceLocation getMemberLoc() const { return MemberLoc; }
2413  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
2414
2415  SourceRange getSourceRange() const LLVM_READONLY;
2416  SourceLocation getLocStart() const LLVM_READONLY;
2417  SourceLocation getLocEnd() const LLVM_READONLY;
2418
2419  SourceLocation getExprLoc() const LLVM_READONLY { return MemberLoc; }
2420
2421  /// \brief Determine whether the base of this explicit is implicit.
2422  bool isImplicitAccess() const {
2423    return getBase() && getBase()->isImplicitCXXThis();
2424  }
2425
2426  /// \brief Returns true if this member expression refers to a method that
2427  /// was resolved from an overloaded set having size greater than 1.
2428  bool hadMultipleCandidates() const {
2429    return HadMultipleCandidates;
2430  }
2431  /// \brief Sets the flag telling whether this expression refers to
2432  /// a method that was resolved from an overloaded set having size
2433  /// greater than 1.
2434  void setHadMultipleCandidates(bool V = true) {
2435    HadMultipleCandidates = V;
2436  }
2437
2438  static bool classof(const Stmt *T) {
2439    return T->getStmtClass() == MemberExprClass;
2440  }
2441  static bool classof(const MemberExpr *) { return true; }
2442
2443  // Iterators
2444  child_range children() { return child_range(&Base, &Base+1); }
2445
2446  friend class ASTReader;
2447  friend class ASTStmtWriter;
2448};
2449
2450/// CompoundLiteralExpr - [C99 6.5.2.5]
2451///
2452class CompoundLiteralExpr : public Expr {
2453  /// LParenLoc - If non-null, this is the location of the left paren in a
2454  /// compound literal like "(int){4}".  This can be null if this is a
2455  /// synthesized compound expression.
2456  SourceLocation LParenLoc;
2457
2458  /// The type as written.  This can be an incomplete array type, in
2459  /// which case the actual expression type will be different.
2460  /// The int part of the pair stores whether this expr is file scope.
2461  llvm::PointerIntPair<TypeSourceInfo *, 1, bool> TInfoAndScope;
2462  Stmt *Init;
2463public:
2464  CompoundLiteralExpr(SourceLocation lparenloc, TypeSourceInfo *tinfo,
2465                      QualType T, ExprValueKind VK, Expr *init, bool fileScope)
2466    : Expr(CompoundLiteralExprClass, T, VK, OK_Ordinary,
2467           tinfo->getType()->isDependentType(),
2468           init->isValueDependent(),
2469           (init->isInstantiationDependent() ||
2470            tinfo->getType()->isInstantiationDependentType()),
2471           init->containsUnexpandedParameterPack()),
2472      LParenLoc(lparenloc), TInfoAndScope(tinfo, fileScope), Init(init) {}
2473
2474  /// \brief Construct an empty compound literal.
2475  explicit CompoundLiteralExpr(EmptyShell Empty)
2476    : Expr(CompoundLiteralExprClass, Empty) { }
2477
2478  const Expr *getInitializer() const { return cast<Expr>(Init); }
2479  Expr *getInitializer() { return cast<Expr>(Init); }
2480  void setInitializer(Expr *E) { Init = E; }
2481
2482  bool isFileScope() const { return TInfoAndScope.getInt(); }
2483  void setFileScope(bool FS) { TInfoAndScope.setInt(FS); }
2484
2485  SourceLocation getLParenLoc() const { return LParenLoc; }
2486  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2487
2488  TypeSourceInfo *getTypeSourceInfo() const {
2489    return TInfoAndScope.getPointer();
2490  }
2491  void setTypeSourceInfo(TypeSourceInfo *tinfo) {
2492    TInfoAndScope.setPointer(tinfo);
2493  }
2494
2495  SourceRange getSourceRange() const LLVM_READONLY {
2496    // FIXME: Init should never be null.
2497    if (!Init)
2498      return SourceRange();
2499    if (LParenLoc.isInvalid())
2500      return Init->getSourceRange();
2501    return SourceRange(LParenLoc, Init->getLocEnd());
2502  }
2503
2504  static bool classof(const Stmt *T) {
2505    return T->getStmtClass() == CompoundLiteralExprClass;
2506  }
2507  static bool classof(const CompoundLiteralExpr *) { return true; }
2508
2509  // Iterators
2510  child_range children() { return child_range(&Init, &Init+1); }
2511};
2512
2513/// CastExpr - Base class for type casts, including both implicit
2514/// casts (ImplicitCastExpr) and explicit casts that have some
2515/// representation in the source code (ExplicitCastExpr's derived
2516/// classes).
2517class CastExpr : public Expr {
2518public:
2519  typedef clang::CastKind CastKind;
2520
2521private:
2522  Stmt *Op;
2523
2524  void CheckCastConsistency() const;
2525
2526  const CXXBaseSpecifier * const *path_buffer() const {
2527    return const_cast<CastExpr*>(this)->path_buffer();
2528  }
2529  CXXBaseSpecifier **path_buffer();
2530
2531  void setBasePathSize(unsigned basePathSize) {
2532    CastExprBits.BasePathSize = basePathSize;
2533    assert(CastExprBits.BasePathSize == basePathSize &&
2534           "basePathSize doesn't fit in bits of CastExprBits.BasePathSize!");
2535  }
2536
2537protected:
2538  CastExpr(StmtClass SC, QualType ty, ExprValueKind VK,
2539           const CastKind kind, Expr *op, unsigned BasePathSize) :
2540    Expr(SC, ty, VK, OK_Ordinary,
2541         // Cast expressions are type-dependent if the type is
2542         // dependent (C++ [temp.dep.expr]p3).
2543         ty->isDependentType(),
2544         // Cast expressions are value-dependent if the type is
2545         // dependent or if the subexpression is value-dependent.
2546         ty->isDependentType() || (op && op->isValueDependent()),
2547         (ty->isInstantiationDependentType() ||
2548          (op && op->isInstantiationDependent())),
2549         (ty->containsUnexpandedParameterPack() ||
2550          op->containsUnexpandedParameterPack())),
2551    Op(op) {
2552    assert(kind != CK_Invalid && "creating cast with invalid cast kind");
2553    CastExprBits.Kind = kind;
2554    setBasePathSize(BasePathSize);
2555#ifndef NDEBUG
2556    CheckCastConsistency();
2557#endif
2558  }
2559
2560  /// \brief Construct an empty cast.
2561  CastExpr(StmtClass SC, EmptyShell Empty, unsigned BasePathSize)
2562    : Expr(SC, Empty) {
2563    setBasePathSize(BasePathSize);
2564  }
2565
2566public:
2567  CastKind getCastKind() const { return (CastKind) CastExprBits.Kind; }
2568  void setCastKind(CastKind K) { CastExprBits.Kind = K; }
2569  const char *getCastKindName() const;
2570
2571  Expr *getSubExpr() { return cast<Expr>(Op); }
2572  const Expr *getSubExpr() const { return cast<Expr>(Op); }
2573  void setSubExpr(Expr *E) { Op = E; }
2574
2575  /// \brief Retrieve the cast subexpression as it was written in the source
2576  /// code, looking through any implicit casts or other intermediate nodes
2577  /// introduced by semantic analysis.
2578  Expr *getSubExprAsWritten();
2579  const Expr *getSubExprAsWritten() const {
2580    return const_cast<CastExpr *>(this)->getSubExprAsWritten();
2581  }
2582
2583  typedef CXXBaseSpecifier **path_iterator;
2584  typedef const CXXBaseSpecifier * const *path_const_iterator;
2585  bool path_empty() const { return CastExprBits.BasePathSize == 0; }
2586  unsigned path_size() const { return CastExprBits.BasePathSize; }
2587  path_iterator path_begin() { return path_buffer(); }
2588  path_iterator path_end() { return path_buffer() + path_size(); }
2589  path_const_iterator path_begin() const { return path_buffer(); }
2590  path_const_iterator path_end() const { return path_buffer() + path_size(); }
2591
2592  void setCastPath(const CXXCastPath &Path);
2593
2594  static bool classof(const Stmt *T) {
2595    return T->getStmtClass() >= firstCastExprConstant &&
2596           T->getStmtClass() <= lastCastExprConstant;
2597  }
2598  static bool classof(const CastExpr *) { return true; }
2599
2600  // Iterators
2601  child_range children() { return child_range(&Op, &Op+1); }
2602};
2603
2604/// ImplicitCastExpr - Allows us to explicitly represent implicit type
2605/// conversions, which have no direct representation in the original
2606/// source code. For example: converting T[]->T*, void f()->void
2607/// (*f)(), float->double, short->int, etc.
2608///
2609/// In C, implicit casts always produce rvalues. However, in C++, an
2610/// implicit cast whose result is being bound to a reference will be
2611/// an lvalue or xvalue. For example:
2612///
2613/// @code
2614/// class Base { };
2615/// class Derived : public Base { };
2616/// Derived &&ref();
2617/// void f(Derived d) {
2618///   Base& b = d; // initializer is an ImplicitCastExpr
2619///                // to an lvalue of type Base
2620///   Base&& r = ref(); // initializer is an ImplicitCastExpr
2621///                     // to an xvalue of type Base
2622/// }
2623/// @endcode
2624class ImplicitCastExpr : public CastExpr {
2625private:
2626  ImplicitCastExpr(QualType ty, CastKind kind, Expr *op,
2627                   unsigned BasePathLength, ExprValueKind VK)
2628    : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, BasePathLength) {
2629  }
2630
2631  /// \brief Construct an empty implicit cast.
2632  explicit ImplicitCastExpr(EmptyShell Shell, unsigned PathSize)
2633    : CastExpr(ImplicitCastExprClass, Shell, PathSize) { }
2634
2635public:
2636  enum OnStack_t { OnStack };
2637  ImplicitCastExpr(OnStack_t _, QualType ty, CastKind kind, Expr *op,
2638                   ExprValueKind VK)
2639    : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, 0) {
2640  }
2641
2642  static ImplicitCastExpr *Create(ASTContext &Context, QualType T,
2643                                  CastKind Kind, Expr *Operand,
2644                                  const CXXCastPath *BasePath,
2645                                  ExprValueKind Cat);
2646
2647  static ImplicitCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize);
2648
2649  SourceRange getSourceRange() const LLVM_READONLY {
2650    return getSubExpr()->getSourceRange();
2651  }
2652  SourceLocation getLocStart() const LLVM_READONLY {
2653    return getSubExpr()->getLocStart();
2654  }
2655  SourceLocation getLocEnd() const LLVM_READONLY {
2656    return getSubExpr()->getLocEnd();
2657  }
2658
2659  static bool classof(const Stmt *T) {
2660    return T->getStmtClass() == ImplicitCastExprClass;
2661  }
2662  static bool classof(const ImplicitCastExpr *) { return true; }
2663};
2664
2665inline Expr *Expr::IgnoreImpCasts() {
2666  Expr *e = this;
2667  while (ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
2668    e = ice->getSubExpr();
2669  return e;
2670}
2671
2672/// ExplicitCastExpr - An explicit cast written in the source
2673/// code.
2674///
2675/// This class is effectively an abstract class, because it provides
2676/// the basic representation of an explicitly-written cast without
2677/// specifying which kind of cast (C cast, functional cast, static
2678/// cast, etc.) was written; specific derived classes represent the
2679/// particular style of cast and its location information.
2680///
2681/// Unlike implicit casts, explicit cast nodes have two different
2682/// types: the type that was written into the source code, and the
2683/// actual type of the expression as determined by semantic
2684/// analysis. These types may differ slightly. For example, in C++ one
2685/// can cast to a reference type, which indicates that the resulting
2686/// expression will be an lvalue or xvalue. The reference type, however,
2687/// will not be used as the type of the expression.
2688class ExplicitCastExpr : public CastExpr {
2689  /// TInfo - Source type info for the (written) type
2690  /// this expression is casting to.
2691  TypeSourceInfo *TInfo;
2692
2693protected:
2694  ExplicitCastExpr(StmtClass SC, QualType exprTy, ExprValueKind VK,
2695                   CastKind kind, Expr *op, unsigned PathSize,
2696                   TypeSourceInfo *writtenTy)
2697    : CastExpr(SC, exprTy, VK, kind, op, PathSize), TInfo(writtenTy) {}
2698
2699  /// \brief Construct an empty explicit cast.
2700  ExplicitCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
2701    : CastExpr(SC, Shell, PathSize) { }
2702
2703public:
2704  /// getTypeInfoAsWritten - Returns the type source info for the type
2705  /// that this expression is casting to.
2706  TypeSourceInfo *getTypeInfoAsWritten() const { return TInfo; }
2707  void setTypeInfoAsWritten(TypeSourceInfo *writtenTy) { TInfo = writtenTy; }
2708
2709  /// getTypeAsWritten - Returns the type that this expression is
2710  /// casting to, as written in the source code.
2711  QualType getTypeAsWritten() const { return TInfo->getType(); }
2712
2713  static bool classof(const Stmt *T) {
2714     return T->getStmtClass() >= firstExplicitCastExprConstant &&
2715            T->getStmtClass() <= lastExplicitCastExprConstant;
2716  }
2717  static bool classof(const ExplicitCastExpr *) { return true; }
2718};
2719
2720/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
2721/// cast in C++ (C++ [expr.cast]), which uses the syntax
2722/// (Type)expr. For example: @c (int)f.
2723class CStyleCastExpr : public ExplicitCastExpr {
2724  SourceLocation LPLoc; // the location of the left paren
2725  SourceLocation RPLoc; // the location of the right paren
2726
2727  CStyleCastExpr(QualType exprTy, ExprValueKind vk, CastKind kind, Expr *op,
2728                 unsigned PathSize, TypeSourceInfo *writtenTy,
2729                 SourceLocation l, SourceLocation r)
2730    : ExplicitCastExpr(CStyleCastExprClass, exprTy, vk, kind, op, PathSize,
2731                       writtenTy), LPLoc(l), RPLoc(r) {}
2732
2733  /// \brief Construct an empty C-style explicit cast.
2734  explicit CStyleCastExpr(EmptyShell Shell, unsigned PathSize)
2735    : ExplicitCastExpr(CStyleCastExprClass, Shell, PathSize) { }
2736
2737public:
2738  static CStyleCastExpr *Create(ASTContext &Context, QualType T,
2739                                ExprValueKind VK, CastKind K,
2740                                Expr *Op, const CXXCastPath *BasePath,
2741                                TypeSourceInfo *WrittenTy, SourceLocation L,
2742                                SourceLocation R);
2743
2744  static CStyleCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize);
2745
2746  SourceLocation getLParenLoc() const { return LPLoc; }
2747  void setLParenLoc(SourceLocation L) { LPLoc = L; }
2748
2749  SourceLocation getRParenLoc() const { return RPLoc; }
2750  void setRParenLoc(SourceLocation L) { RPLoc = L; }
2751
2752  SourceRange getSourceRange() const LLVM_READONLY {
2753    return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd());
2754  }
2755  static bool classof(const Stmt *T) {
2756    return T->getStmtClass() == CStyleCastExprClass;
2757  }
2758  static bool classof(const CStyleCastExpr *) { return true; }
2759};
2760
2761/// \brief A builtin binary operation expression such as "x + y" or "x <= y".
2762///
2763/// This expression node kind describes a builtin binary operation,
2764/// such as "x + y" for integer values "x" and "y". The operands will
2765/// already have been converted to appropriate types (e.g., by
2766/// performing promotions or conversions).
2767///
2768/// In C++, where operators may be overloaded, a different kind of
2769/// expression node (CXXOperatorCallExpr) is used to express the
2770/// invocation of an overloaded operator with operator syntax. Within
2771/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
2772/// used to store an expression "x + y" depends on the subexpressions
2773/// for x and y. If neither x or y is type-dependent, and the "+"
2774/// operator resolves to a built-in operation, BinaryOperator will be
2775/// used to express the computation (x and y may still be
2776/// value-dependent). If either x or y is type-dependent, or if the
2777/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
2778/// be used to express the computation.
2779class BinaryOperator : public Expr {
2780public:
2781  typedef BinaryOperatorKind Opcode;
2782
2783private:
2784  unsigned Opc : 6;
2785  SourceLocation OpLoc;
2786
2787  enum { LHS, RHS, END_EXPR };
2788  Stmt* SubExprs[END_EXPR];
2789public:
2790
2791  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2792                 ExprValueKind VK, ExprObjectKind OK,
2793                 SourceLocation opLoc)
2794    : Expr(BinaryOperatorClass, ResTy, VK, OK,
2795           lhs->isTypeDependent() || rhs->isTypeDependent(),
2796           lhs->isValueDependent() || rhs->isValueDependent(),
2797           (lhs->isInstantiationDependent() ||
2798            rhs->isInstantiationDependent()),
2799           (lhs->containsUnexpandedParameterPack() ||
2800            rhs->containsUnexpandedParameterPack())),
2801      Opc(opc), OpLoc(opLoc) {
2802    SubExprs[LHS] = lhs;
2803    SubExprs[RHS] = rhs;
2804    assert(!isCompoundAssignmentOp() &&
2805           "Use ArithAssignBinaryOperator for compound assignments");
2806  }
2807
2808  /// \brief Construct an empty binary operator.
2809  explicit BinaryOperator(EmptyShell Empty)
2810    : Expr(BinaryOperatorClass, Empty), Opc(BO_Comma) { }
2811
2812  SourceLocation getExprLoc() const LLVM_READONLY { return OpLoc; }
2813  SourceLocation getOperatorLoc() const { return OpLoc; }
2814  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
2815
2816  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
2817  void setOpcode(Opcode O) { Opc = O; }
2818
2819  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2820  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2821  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2822  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2823
2824  SourceRange getSourceRange() const LLVM_READONLY {
2825    return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
2826  }
2827
2828  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
2829  /// corresponds to, e.g. "<<=".
2830  static const char *getOpcodeStr(Opcode Op);
2831
2832  const char *getOpcodeStr() const { return getOpcodeStr(getOpcode()); }
2833
2834  /// \brief Retrieve the binary opcode that corresponds to the given
2835  /// overloaded operator.
2836  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
2837
2838  /// \brief Retrieve the overloaded operator kind that corresponds to
2839  /// the given binary opcode.
2840  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
2841
2842  /// predicates to categorize the respective opcodes.
2843  bool isPtrMemOp() const { return Opc == BO_PtrMemD || Opc == BO_PtrMemI; }
2844  bool isMultiplicativeOp() const { return Opc >= BO_Mul && Opc <= BO_Rem; }
2845  static bool isAdditiveOp(Opcode Opc) { return Opc == BO_Add || Opc==BO_Sub; }
2846  bool isAdditiveOp() const { return isAdditiveOp(getOpcode()); }
2847  static bool isShiftOp(Opcode Opc) { return Opc == BO_Shl || Opc == BO_Shr; }
2848  bool isShiftOp() const { return isShiftOp(getOpcode()); }
2849
2850  static bool isBitwiseOp(Opcode Opc) { return Opc >= BO_And && Opc <= BO_Or; }
2851  bool isBitwiseOp() const { return isBitwiseOp(getOpcode()); }
2852
2853  static bool isRelationalOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_GE; }
2854  bool isRelationalOp() const { return isRelationalOp(getOpcode()); }
2855
2856  static bool isEqualityOp(Opcode Opc) { return Opc == BO_EQ || Opc == BO_NE; }
2857  bool isEqualityOp() const { return isEqualityOp(getOpcode()); }
2858
2859  static bool isComparisonOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_NE; }
2860  bool isComparisonOp() const { return isComparisonOp(getOpcode()); }
2861
2862  static bool isLogicalOp(Opcode Opc) { return Opc == BO_LAnd || Opc==BO_LOr; }
2863  bool isLogicalOp() const { return isLogicalOp(getOpcode()); }
2864
2865  static bool isAssignmentOp(Opcode Opc) {
2866    return Opc >= BO_Assign && Opc <= BO_OrAssign;
2867  }
2868  bool isAssignmentOp() const { return isAssignmentOp(getOpcode()); }
2869
2870  static bool isCompoundAssignmentOp(Opcode Opc) {
2871    return Opc > BO_Assign && Opc <= BO_OrAssign;
2872  }
2873  bool isCompoundAssignmentOp() const {
2874    return isCompoundAssignmentOp(getOpcode());
2875  }
2876  static Opcode getOpForCompoundAssignment(Opcode Opc) {
2877    assert(isCompoundAssignmentOp(Opc));
2878    if (Opc >= BO_AndAssign)
2879      return Opcode(unsigned(Opc) - BO_AndAssign + BO_And);
2880    else
2881      return Opcode(unsigned(Opc) - BO_MulAssign + BO_Mul);
2882  }
2883
2884  static bool isShiftAssignOp(Opcode Opc) {
2885    return Opc == BO_ShlAssign || Opc == BO_ShrAssign;
2886  }
2887  bool isShiftAssignOp() const {
2888    return isShiftAssignOp(getOpcode());
2889  }
2890
2891  static bool classof(const Stmt *S) {
2892    return S->getStmtClass() >= firstBinaryOperatorConstant &&
2893           S->getStmtClass() <= lastBinaryOperatorConstant;
2894  }
2895  static bool classof(const BinaryOperator *) { return true; }
2896
2897  // Iterators
2898  child_range children() {
2899    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
2900  }
2901
2902protected:
2903  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2904                 ExprValueKind VK, ExprObjectKind OK,
2905                 SourceLocation opLoc, bool dead)
2906    : Expr(CompoundAssignOperatorClass, ResTy, VK, OK,
2907           lhs->isTypeDependent() || rhs->isTypeDependent(),
2908           lhs->isValueDependent() || rhs->isValueDependent(),
2909           (lhs->isInstantiationDependent() ||
2910            rhs->isInstantiationDependent()),
2911           (lhs->containsUnexpandedParameterPack() ||
2912            rhs->containsUnexpandedParameterPack())),
2913      Opc(opc), OpLoc(opLoc) {
2914    SubExprs[LHS] = lhs;
2915    SubExprs[RHS] = rhs;
2916  }
2917
2918  BinaryOperator(StmtClass SC, EmptyShell Empty)
2919    : Expr(SC, Empty), Opc(BO_MulAssign) { }
2920};
2921
2922/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
2923/// track of the type the operation is performed in.  Due to the semantics of
2924/// these operators, the operands are promoted, the arithmetic performed, an
2925/// implicit conversion back to the result type done, then the assignment takes
2926/// place.  This captures the intermediate type which the computation is done
2927/// in.
2928class CompoundAssignOperator : public BinaryOperator {
2929  QualType ComputationLHSType;
2930  QualType ComputationResultType;
2931public:
2932  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResType,
2933                         ExprValueKind VK, ExprObjectKind OK,
2934                         QualType CompLHSType, QualType CompResultType,
2935                         SourceLocation OpLoc)
2936    : BinaryOperator(lhs, rhs, opc, ResType, VK, OK, OpLoc, true),
2937      ComputationLHSType(CompLHSType),
2938      ComputationResultType(CompResultType) {
2939    assert(isCompoundAssignmentOp() &&
2940           "Only should be used for compound assignments");
2941  }
2942
2943  /// \brief Build an empty compound assignment operator expression.
2944  explicit CompoundAssignOperator(EmptyShell Empty)
2945    : BinaryOperator(CompoundAssignOperatorClass, Empty) { }
2946
2947  // The two computation types are the type the LHS is converted
2948  // to for the computation and the type of the result; the two are
2949  // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
2950  QualType getComputationLHSType() const { return ComputationLHSType; }
2951  void setComputationLHSType(QualType T) { ComputationLHSType = T; }
2952
2953  QualType getComputationResultType() const { return ComputationResultType; }
2954  void setComputationResultType(QualType T) { ComputationResultType = T; }
2955
2956  static bool classof(const CompoundAssignOperator *) { return true; }
2957  static bool classof(const Stmt *S) {
2958    return S->getStmtClass() == CompoundAssignOperatorClass;
2959  }
2960};
2961
2962/// AbstractConditionalOperator - An abstract base class for
2963/// ConditionalOperator and BinaryConditionalOperator.
2964class AbstractConditionalOperator : public Expr {
2965  SourceLocation QuestionLoc, ColonLoc;
2966  friend class ASTStmtReader;
2967
2968protected:
2969  AbstractConditionalOperator(StmtClass SC, QualType T,
2970                              ExprValueKind VK, ExprObjectKind OK,
2971                              bool TD, bool VD, bool ID,
2972                              bool ContainsUnexpandedParameterPack,
2973                              SourceLocation qloc,
2974                              SourceLocation cloc)
2975    : Expr(SC, T, VK, OK, TD, VD, ID, ContainsUnexpandedParameterPack),
2976      QuestionLoc(qloc), ColonLoc(cloc) {}
2977
2978  AbstractConditionalOperator(StmtClass SC, EmptyShell Empty)
2979    : Expr(SC, Empty) { }
2980
2981public:
2982  // getCond - Return the expression representing the condition for
2983  //   the ?: operator.
2984  Expr *getCond() const;
2985
2986  // getTrueExpr - Return the subexpression representing the value of
2987  //   the expression if the condition evaluates to true.
2988  Expr *getTrueExpr() const;
2989
2990  // getFalseExpr - Return the subexpression representing the value of
2991  //   the expression if the condition evaluates to false.  This is
2992  //   the same as getRHS.
2993  Expr *getFalseExpr() const;
2994
2995  SourceLocation getQuestionLoc() const { return QuestionLoc; }
2996  SourceLocation getColonLoc() const { return ColonLoc; }
2997
2998  static bool classof(const Stmt *T) {
2999    return T->getStmtClass() == ConditionalOperatorClass ||
3000           T->getStmtClass() == BinaryConditionalOperatorClass;
3001  }
3002  static bool classof(const AbstractConditionalOperator *) { return true; }
3003};
3004
3005/// ConditionalOperator - The ?: ternary operator.  The GNU "missing
3006/// middle" extension is a BinaryConditionalOperator.
3007class ConditionalOperator : public AbstractConditionalOperator {
3008  enum { COND, LHS, RHS, END_EXPR };
3009  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
3010
3011  friend class ASTStmtReader;
3012public:
3013  ConditionalOperator(Expr *cond, SourceLocation QLoc, Expr *lhs,
3014                      SourceLocation CLoc, Expr *rhs,
3015                      QualType t, ExprValueKind VK, ExprObjectKind OK)
3016    : AbstractConditionalOperator(ConditionalOperatorClass, t, VK, OK,
3017           // FIXME: the type of the conditional operator doesn't
3018           // depend on the type of the conditional, but the standard
3019           // seems to imply that it could. File a bug!
3020           (lhs->isTypeDependent() || rhs->isTypeDependent()),
3021           (cond->isValueDependent() || lhs->isValueDependent() ||
3022            rhs->isValueDependent()),
3023           (cond->isInstantiationDependent() ||
3024            lhs->isInstantiationDependent() ||
3025            rhs->isInstantiationDependent()),
3026           (cond->containsUnexpandedParameterPack() ||
3027            lhs->containsUnexpandedParameterPack() ||
3028            rhs->containsUnexpandedParameterPack()),
3029                                  QLoc, CLoc) {
3030    SubExprs[COND] = cond;
3031    SubExprs[LHS] = lhs;
3032    SubExprs[RHS] = rhs;
3033  }
3034
3035  /// \brief Build an empty conditional operator.
3036  explicit ConditionalOperator(EmptyShell Empty)
3037    : AbstractConditionalOperator(ConditionalOperatorClass, Empty) { }
3038
3039  // getCond - Return the expression representing the condition for
3040  //   the ?: operator.
3041  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3042
3043  // getTrueExpr - Return the subexpression representing the value of
3044  //   the expression if the condition evaluates to true.
3045  Expr *getTrueExpr() const { return cast<Expr>(SubExprs[LHS]); }
3046
3047  // getFalseExpr - Return the subexpression representing the value of
3048  //   the expression if the condition evaluates to false.  This is
3049  //   the same as getRHS.
3050  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
3051
3052  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
3053  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
3054
3055  SourceRange getSourceRange() const LLVM_READONLY {
3056    return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
3057  }
3058  static bool classof(const Stmt *T) {
3059    return T->getStmtClass() == ConditionalOperatorClass;
3060  }
3061  static bool classof(const ConditionalOperator *) { return true; }
3062
3063  // Iterators
3064  child_range children() {
3065    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
3066  }
3067};
3068
3069/// BinaryConditionalOperator - The GNU extension to the conditional
3070/// operator which allows the middle operand to be omitted.
3071///
3072/// This is a different expression kind on the assumption that almost
3073/// every client ends up needing to know that these are different.
3074class BinaryConditionalOperator : public AbstractConditionalOperator {
3075  enum { COMMON, COND, LHS, RHS, NUM_SUBEXPRS };
3076
3077  /// - the common condition/left-hand-side expression, which will be
3078  ///   evaluated as the opaque value
3079  /// - the condition, expressed in terms of the opaque value
3080  /// - the left-hand-side, expressed in terms of the opaque value
3081  /// - the right-hand-side
3082  Stmt *SubExprs[NUM_SUBEXPRS];
3083  OpaqueValueExpr *OpaqueValue;
3084
3085  friend class ASTStmtReader;
3086public:
3087  BinaryConditionalOperator(Expr *common, OpaqueValueExpr *opaqueValue,
3088                            Expr *cond, Expr *lhs, Expr *rhs,
3089                            SourceLocation qloc, SourceLocation cloc,
3090                            QualType t, ExprValueKind VK, ExprObjectKind OK)
3091    : AbstractConditionalOperator(BinaryConditionalOperatorClass, t, VK, OK,
3092           (common->isTypeDependent() || rhs->isTypeDependent()),
3093           (common->isValueDependent() || rhs->isValueDependent()),
3094           (common->isInstantiationDependent() ||
3095            rhs->isInstantiationDependent()),
3096           (common->containsUnexpandedParameterPack() ||
3097            rhs->containsUnexpandedParameterPack()),
3098                                  qloc, cloc),
3099      OpaqueValue(opaqueValue) {
3100    SubExprs[COMMON] = common;
3101    SubExprs[COND] = cond;
3102    SubExprs[LHS] = lhs;
3103    SubExprs[RHS] = rhs;
3104    assert(OpaqueValue->getSourceExpr() == common && "Wrong opaque value");
3105  }
3106
3107  /// \brief Build an empty conditional operator.
3108  explicit BinaryConditionalOperator(EmptyShell Empty)
3109    : AbstractConditionalOperator(BinaryConditionalOperatorClass, Empty) { }
3110
3111  /// \brief getCommon - Return the common expression, written to the
3112  ///   left of the condition.  The opaque value will be bound to the
3113  ///   result of this expression.
3114  Expr *getCommon() const { return cast<Expr>(SubExprs[COMMON]); }
3115
3116  /// \brief getOpaqueValue - Return the opaque value placeholder.
3117  OpaqueValueExpr *getOpaqueValue() const { return OpaqueValue; }
3118
3119  /// \brief getCond - Return the condition expression; this is defined
3120  ///   in terms of the opaque value.
3121  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3122
3123  /// \brief getTrueExpr - Return the subexpression which will be
3124  ///   evaluated if the condition evaluates to true;  this is defined
3125  ///   in terms of the opaque value.
3126  Expr *getTrueExpr() const {
3127    return cast<Expr>(SubExprs[LHS]);
3128  }
3129
3130  /// \brief getFalseExpr - Return the subexpression which will be
3131  ///   evaluated if the condnition evaluates to false; this is
3132  ///   defined in terms of the opaque value.
3133  Expr *getFalseExpr() const {
3134    return cast<Expr>(SubExprs[RHS]);
3135  }
3136
3137  SourceRange getSourceRange() const LLVM_READONLY {
3138    return SourceRange(getCommon()->getLocStart(), getFalseExpr()->getLocEnd());
3139  }
3140  static bool classof(const Stmt *T) {
3141    return T->getStmtClass() == BinaryConditionalOperatorClass;
3142  }
3143  static bool classof(const BinaryConditionalOperator *) { return true; }
3144
3145  // Iterators
3146  child_range children() {
3147    return child_range(SubExprs, SubExprs + NUM_SUBEXPRS);
3148  }
3149};
3150
3151inline Expr *AbstractConditionalOperator::getCond() const {
3152  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3153    return co->getCond();
3154  return cast<BinaryConditionalOperator>(this)->getCond();
3155}
3156
3157inline Expr *AbstractConditionalOperator::getTrueExpr() const {
3158  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3159    return co->getTrueExpr();
3160  return cast<BinaryConditionalOperator>(this)->getTrueExpr();
3161}
3162
3163inline Expr *AbstractConditionalOperator::getFalseExpr() const {
3164  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3165    return co->getFalseExpr();
3166  return cast<BinaryConditionalOperator>(this)->getFalseExpr();
3167}
3168
3169/// AddrLabelExpr - The GNU address of label extension, representing &&label.
3170class AddrLabelExpr : public Expr {
3171  SourceLocation AmpAmpLoc, LabelLoc;
3172  LabelDecl *Label;
3173public:
3174  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelDecl *L,
3175                QualType t)
3176    : Expr(AddrLabelExprClass, t, VK_RValue, OK_Ordinary, false, false, false,
3177           false),
3178      AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
3179
3180  /// \brief Build an empty address of a label expression.
3181  explicit AddrLabelExpr(EmptyShell Empty)
3182    : Expr(AddrLabelExprClass, Empty) { }
3183
3184  SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
3185  void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
3186  SourceLocation getLabelLoc() const { return LabelLoc; }
3187  void setLabelLoc(SourceLocation L) { LabelLoc = L; }
3188
3189  SourceRange getSourceRange() const LLVM_READONLY {
3190    return SourceRange(AmpAmpLoc, LabelLoc);
3191  }
3192
3193  LabelDecl *getLabel() const { return Label; }
3194  void setLabel(LabelDecl *L) { Label = L; }
3195
3196  static bool classof(const Stmt *T) {
3197    return T->getStmtClass() == AddrLabelExprClass;
3198  }
3199  static bool classof(const AddrLabelExpr *) { return true; }
3200
3201  // Iterators
3202  child_range children() { return child_range(); }
3203};
3204
3205/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
3206/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
3207/// takes the value of the last subexpression.
3208///
3209/// A StmtExpr is always an r-value; values "returned" out of a
3210/// StmtExpr will be copied.
3211class StmtExpr : public Expr {
3212  Stmt *SubStmt;
3213  SourceLocation LParenLoc, RParenLoc;
3214public:
3215  // FIXME: Does type-dependence need to be computed differently?
3216  // FIXME: Do we need to compute instantiation instantiation-dependence for
3217  // statements? (ugh!)
3218  StmtExpr(CompoundStmt *substmt, QualType T,
3219           SourceLocation lp, SourceLocation rp) :
3220    Expr(StmtExprClass, T, VK_RValue, OK_Ordinary,
3221         T->isDependentType(), false, false, false),
3222    SubStmt(substmt), LParenLoc(lp), RParenLoc(rp) { }
3223
3224  /// \brief Build an empty statement expression.
3225  explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
3226
3227  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
3228  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
3229  void setSubStmt(CompoundStmt *S) { SubStmt = S; }
3230
3231  SourceRange getSourceRange() const LLVM_READONLY {
3232    return SourceRange(LParenLoc, RParenLoc);
3233  }
3234
3235  SourceLocation getLParenLoc() const { return LParenLoc; }
3236  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
3237  SourceLocation getRParenLoc() const { return RParenLoc; }
3238  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3239
3240  static bool classof(const Stmt *T) {
3241    return T->getStmtClass() == StmtExprClass;
3242  }
3243  static bool classof(const StmtExpr *) { return true; }
3244
3245  // Iterators
3246  child_range children() { return child_range(&SubStmt, &SubStmt+1); }
3247};
3248
3249
3250/// ShuffleVectorExpr - clang-specific builtin-in function
3251/// __builtin_shufflevector.
3252/// This AST node represents a operator that does a constant
3253/// shuffle, similar to LLVM's shufflevector instruction. It takes
3254/// two vectors and a variable number of constant indices,
3255/// and returns the appropriately shuffled vector.
3256class ShuffleVectorExpr : public Expr {
3257  SourceLocation BuiltinLoc, RParenLoc;
3258
3259  // SubExprs - the list of values passed to the __builtin_shufflevector
3260  // function. The first two are vectors, and the rest are constant
3261  // indices.  The number of values in this list is always
3262  // 2+the number of indices in the vector type.
3263  Stmt **SubExprs;
3264  unsigned NumExprs;
3265
3266public:
3267  ShuffleVectorExpr(ASTContext &C, ArrayRef<Expr*> args, QualType Type,
3268                    SourceLocation BLoc, SourceLocation RP);
3269
3270  /// \brief Build an empty vector-shuffle expression.
3271  explicit ShuffleVectorExpr(EmptyShell Empty)
3272    : Expr(ShuffleVectorExprClass, Empty), SubExprs(0) { }
3273
3274  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3275  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3276
3277  SourceLocation getRParenLoc() const { return RParenLoc; }
3278  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3279
3280  SourceRange getSourceRange() const LLVM_READONLY {
3281    return SourceRange(BuiltinLoc, RParenLoc);
3282  }
3283  static bool classof(const Stmt *T) {
3284    return T->getStmtClass() == ShuffleVectorExprClass;
3285  }
3286  static bool classof(const ShuffleVectorExpr *) { return true; }
3287
3288  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
3289  /// constant expression, the actual arguments passed in, and the function
3290  /// pointers.
3291  unsigned getNumSubExprs() const { return NumExprs; }
3292
3293  /// \brief Retrieve the array of expressions.
3294  Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
3295
3296  /// getExpr - Return the Expr at the specified index.
3297  Expr *getExpr(unsigned Index) {
3298    assert((Index < NumExprs) && "Arg access out of range!");
3299    return cast<Expr>(SubExprs[Index]);
3300  }
3301  const Expr *getExpr(unsigned Index) const {
3302    assert((Index < NumExprs) && "Arg access out of range!");
3303    return cast<Expr>(SubExprs[Index]);
3304  }
3305
3306  void setExprs(ASTContext &C, Expr ** Exprs, unsigned NumExprs);
3307
3308  unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) const {
3309    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
3310    return getExpr(N+2)->EvaluateKnownConstInt(Ctx).getZExtValue();
3311  }
3312
3313  // Iterators
3314  child_range children() {
3315    return child_range(&SubExprs[0], &SubExprs[0]+NumExprs);
3316  }
3317};
3318
3319/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
3320/// This AST node is similar to the conditional operator (?:) in C, with
3321/// the following exceptions:
3322/// - the test expression must be a integer constant expression.
3323/// - the expression returned acts like the chosen subexpression in every
3324///   visible way: the type is the same as that of the chosen subexpression,
3325///   and all predicates (whether it's an l-value, whether it's an integer
3326///   constant expression, etc.) return the same result as for the chosen
3327///   sub-expression.
3328class ChooseExpr : public Expr {
3329  enum { COND, LHS, RHS, END_EXPR };
3330  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
3331  SourceLocation BuiltinLoc, RParenLoc;
3332public:
3333  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs,
3334             QualType t, ExprValueKind VK, ExprObjectKind OK,
3335             SourceLocation RP, bool TypeDependent, bool ValueDependent)
3336    : Expr(ChooseExprClass, t, VK, OK, TypeDependent, ValueDependent,
3337           (cond->isInstantiationDependent() ||
3338            lhs->isInstantiationDependent() ||
3339            rhs->isInstantiationDependent()),
3340           (cond->containsUnexpandedParameterPack() ||
3341            lhs->containsUnexpandedParameterPack() ||
3342            rhs->containsUnexpandedParameterPack())),
3343      BuiltinLoc(BLoc), RParenLoc(RP) {
3344      SubExprs[COND] = cond;
3345      SubExprs[LHS] = lhs;
3346      SubExprs[RHS] = rhs;
3347    }
3348
3349  /// \brief Build an empty __builtin_choose_expr.
3350  explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
3351
3352  /// isConditionTrue - Return whether the condition is true (i.e. not
3353  /// equal to zero).
3354  bool isConditionTrue(const ASTContext &C) const;
3355
3356  /// getChosenSubExpr - Return the subexpression chosen according to the
3357  /// condition.
3358  Expr *getChosenSubExpr(const ASTContext &C) const {
3359    return isConditionTrue(C) ? getLHS() : getRHS();
3360  }
3361
3362  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3363  void setCond(Expr *E) { SubExprs[COND] = E; }
3364  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
3365  void setLHS(Expr *E) { SubExprs[LHS] = E; }
3366  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
3367  void setRHS(Expr *E) { SubExprs[RHS] = E; }
3368
3369  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3370  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3371
3372  SourceLocation getRParenLoc() const { return RParenLoc; }
3373  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3374
3375  SourceRange getSourceRange() const LLVM_READONLY {
3376    return SourceRange(BuiltinLoc, RParenLoc);
3377  }
3378  static bool classof(const Stmt *T) {
3379    return T->getStmtClass() == ChooseExprClass;
3380  }
3381  static bool classof(const ChooseExpr *) { return true; }
3382
3383  // Iterators
3384  child_range children() {
3385    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
3386  }
3387};
3388
3389/// GNUNullExpr - Implements the GNU __null extension, which is a name
3390/// for a null pointer constant that has integral type (e.g., int or
3391/// long) and is the same size and alignment as a pointer. The __null
3392/// extension is typically only used by system headers, which define
3393/// NULL as __null in C++ rather than using 0 (which is an integer
3394/// that may not match the size of a pointer).
3395class GNUNullExpr : public Expr {
3396  /// TokenLoc - The location of the __null keyword.
3397  SourceLocation TokenLoc;
3398
3399public:
3400  GNUNullExpr(QualType Ty, SourceLocation Loc)
3401    : Expr(GNUNullExprClass, Ty, VK_RValue, OK_Ordinary, false, false, false,
3402           false),
3403      TokenLoc(Loc) { }
3404
3405  /// \brief Build an empty GNU __null expression.
3406  explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
3407
3408  /// getTokenLocation - The location of the __null token.
3409  SourceLocation getTokenLocation() const { return TokenLoc; }
3410  void setTokenLocation(SourceLocation L) { TokenLoc = L; }
3411
3412  SourceRange getSourceRange() const LLVM_READONLY {
3413    return SourceRange(TokenLoc);
3414  }
3415  static bool classof(const Stmt *T) {
3416    return T->getStmtClass() == GNUNullExprClass;
3417  }
3418  static bool classof(const GNUNullExpr *) { return true; }
3419
3420  // Iterators
3421  child_range children() { return child_range(); }
3422};
3423
3424/// VAArgExpr, used for the builtin function __builtin_va_arg.
3425class VAArgExpr : public Expr {
3426  Stmt *Val;
3427  TypeSourceInfo *TInfo;
3428  SourceLocation BuiltinLoc, RParenLoc;
3429public:
3430  VAArgExpr(SourceLocation BLoc, Expr* e, TypeSourceInfo *TInfo,
3431            SourceLocation RPLoc, QualType t)
3432    : Expr(VAArgExprClass, t, VK_RValue, OK_Ordinary,
3433           t->isDependentType(), false,
3434           (TInfo->getType()->isInstantiationDependentType() ||
3435            e->isInstantiationDependent()),
3436           (TInfo->getType()->containsUnexpandedParameterPack() ||
3437            e->containsUnexpandedParameterPack())),
3438      Val(e), TInfo(TInfo),
3439      BuiltinLoc(BLoc),
3440      RParenLoc(RPLoc) { }
3441
3442  /// \brief Create an empty __builtin_va_arg expression.
3443  explicit VAArgExpr(EmptyShell Empty) : Expr(VAArgExprClass, Empty) { }
3444
3445  const Expr *getSubExpr() const { return cast<Expr>(Val); }
3446  Expr *getSubExpr() { return cast<Expr>(Val); }
3447  void setSubExpr(Expr *E) { Val = E; }
3448
3449  TypeSourceInfo *getWrittenTypeInfo() const { return TInfo; }
3450  void setWrittenTypeInfo(TypeSourceInfo *TI) { TInfo = TI; }
3451
3452  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3453  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3454
3455  SourceLocation getRParenLoc() const { return RParenLoc; }
3456  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3457
3458  SourceRange getSourceRange() const LLVM_READONLY {
3459    return SourceRange(BuiltinLoc, RParenLoc);
3460  }
3461  static bool classof(const Stmt *T) {
3462    return T->getStmtClass() == VAArgExprClass;
3463  }
3464  static bool classof(const VAArgExpr *) { return true; }
3465
3466  // Iterators
3467  child_range children() { return child_range(&Val, &Val+1); }
3468};
3469
3470/// @brief Describes an C or C++ initializer list.
3471///
3472/// InitListExpr describes an initializer list, which can be used to
3473/// initialize objects of different types, including
3474/// struct/class/union types, arrays, and vectors. For example:
3475///
3476/// @code
3477/// struct foo x = { 1, { 2, 3 } };
3478/// @endcode
3479///
3480/// Prior to semantic analysis, an initializer list will represent the
3481/// initializer list as written by the user, but will have the
3482/// placeholder type "void". This initializer list is called the
3483/// syntactic form of the initializer, and may contain C99 designated
3484/// initializers (represented as DesignatedInitExprs), initializations
3485/// of subobject members without explicit braces, and so on. Clients
3486/// interested in the original syntax of the initializer list should
3487/// use the syntactic form of the initializer list.
3488///
3489/// After semantic analysis, the initializer list will represent the
3490/// semantic form of the initializer, where the initializations of all
3491/// subobjects are made explicit with nested InitListExpr nodes and
3492/// C99 designators have been eliminated by placing the designated
3493/// initializations into the subobject they initialize. Additionally,
3494/// any "holes" in the initialization, where no initializer has been
3495/// specified for a particular subobject, will be replaced with
3496/// implicitly-generated ImplicitValueInitExpr expressions that
3497/// value-initialize the subobjects. Note, however, that the
3498/// initializer lists may still have fewer initializers than there are
3499/// elements to initialize within the object.
3500///
3501/// Given the semantic form of the initializer list, one can retrieve
3502/// the original syntactic form of that initializer list (if it
3503/// exists) using getSyntacticForm(). Since many initializer lists
3504/// have the same syntactic and semantic forms, getSyntacticForm() may
3505/// return NULL, indicating that the current initializer list also
3506/// serves as its syntactic form.
3507class InitListExpr : public Expr {
3508  // FIXME: Eliminate this vector in favor of ASTContext allocation
3509  typedef ASTVector<Stmt *> InitExprsTy;
3510  InitExprsTy InitExprs;
3511  SourceLocation LBraceLoc, RBraceLoc;
3512
3513  /// Contains the initializer list that describes the syntactic form
3514  /// written in the source code.
3515  InitListExpr *SyntacticForm;
3516
3517  /// \brief Either:
3518  ///  If this initializer list initializes an array with more elements than
3519  ///  there are initializers in the list, specifies an expression to be used
3520  ///  for value initialization of the rest of the elements.
3521  /// Or
3522  ///  If this initializer list initializes a union, specifies which
3523  ///  field within the union will be initialized.
3524  llvm::PointerUnion<Expr *, FieldDecl *> ArrayFillerOrUnionFieldInit;
3525
3526public:
3527  InitListExpr(ASTContext &C, SourceLocation lbraceloc,
3528               ArrayRef<Expr*> initExprs, SourceLocation rbraceloc);
3529
3530  /// \brief Build an empty initializer list.
3531  explicit InitListExpr(ASTContext &C, EmptyShell Empty)
3532    : Expr(InitListExprClass, Empty), InitExprs(C) { }
3533
3534  unsigned getNumInits() const { return InitExprs.size(); }
3535
3536  /// \brief Retrieve the set of initializers.
3537  Expr **getInits() { return reinterpret_cast<Expr **>(InitExprs.data()); }
3538
3539  const Expr *getInit(unsigned Init) const {
3540    assert(Init < getNumInits() && "Initializer access out of range!");
3541    return cast_or_null<Expr>(InitExprs[Init]);
3542  }
3543
3544  Expr *getInit(unsigned Init) {
3545    assert(Init < getNumInits() && "Initializer access out of range!");
3546    return cast_or_null<Expr>(InitExprs[Init]);
3547  }
3548
3549  void setInit(unsigned Init, Expr *expr) {
3550    assert(Init < getNumInits() && "Initializer access out of range!");
3551    InitExprs[Init] = expr;
3552  }
3553
3554  /// \brief Reserve space for some number of initializers.
3555  void reserveInits(ASTContext &C, unsigned NumInits);
3556
3557  /// @brief Specify the number of initializers
3558  ///
3559  /// If there are more than @p NumInits initializers, the remaining
3560  /// initializers will be destroyed. If there are fewer than @p
3561  /// NumInits initializers, NULL expressions will be added for the
3562  /// unknown initializers.
3563  void resizeInits(ASTContext &Context, unsigned NumInits);
3564
3565  /// @brief Updates the initializer at index @p Init with the new
3566  /// expression @p expr, and returns the old expression at that
3567  /// location.
3568  ///
3569  /// When @p Init is out of range for this initializer list, the
3570  /// initializer list will be extended with NULL expressions to
3571  /// accommodate the new entry.
3572  Expr *updateInit(ASTContext &C, unsigned Init, Expr *expr);
3573
3574  /// \brief If this initializer list initializes an array with more elements
3575  /// than there are initializers in the list, specifies an expression to be
3576  /// used for value initialization of the rest of the elements.
3577  Expr *getArrayFiller() {
3578    return ArrayFillerOrUnionFieldInit.dyn_cast<Expr *>();
3579  }
3580  const Expr *getArrayFiller() const {
3581    return const_cast<InitListExpr *>(this)->getArrayFiller();
3582  }
3583  void setArrayFiller(Expr *filler);
3584
3585  /// \brief Return true if this is an array initializer and its array "filler"
3586  /// has been set.
3587  bool hasArrayFiller() const { return getArrayFiller(); }
3588
3589  /// \brief If this initializes a union, specifies which field in the
3590  /// union to initialize.
3591  ///
3592  /// Typically, this field is the first named field within the
3593  /// union. However, a designated initializer can specify the
3594  /// initialization of a different field within the union.
3595  FieldDecl *getInitializedFieldInUnion() {
3596    return ArrayFillerOrUnionFieldInit.dyn_cast<FieldDecl *>();
3597  }
3598  const FieldDecl *getInitializedFieldInUnion() const {
3599    return const_cast<InitListExpr *>(this)->getInitializedFieldInUnion();
3600  }
3601  void setInitializedFieldInUnion(FieldDecl *FD) {
3602    ArrayFillerOrUnionFieldInit = FD;
3603  }
3604
3605  // Explicit InitListExpr's originate from source code (and have valid source
3606  // locations). Implicit InitListExpr's are created by the semantic analyzer.
3607  bool isExplicit() {
3608    return LBraceLoc.isValid() && RBraceLoc.isValid();
3609  }
3610
3611  // Is this an initializer for an array of characters, initialized by a string
3612  // literal or an @encode?
3613  bool isStringLiteralInit() const;
3614
3615  SourceLocation getLBraceLoc() const { return LBraceLoc; }
3616  void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
3617  SourceLocation getRBraceLoc() const { return RBraceLoc; }
3618  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
3619
3620  /// @brief Retrieve the initializer list that describes the
3621  /// syntactic form of the initializer.
3622  ///
3623  ///
3624  InitListExpr *getSyntacticForm() const { return SyntacticForm; }
3625  void setSyntacticForm(InitListExpr *Init) { SyntacticForm = Init; }
3626
3627  bool hadArrayRangeDesignator() const {
3628    return InitListExprBits.HadArrayRangeDesignator != 0;
3629  }
3630  void sawArrayRangeDesignator(bool ARD = true) {
3631    InitListExprBits.HadArrayRangeDesignator = ARD;
3632  }
3633
3634  bool initializesStdInitializerList() const {
3635    return InitListExprBits.InitializesStdInitializerList != 0;
3636  }
3637  void setInitializesStdInitializerList(bool ISIL = true) {
3638    InitListExprBits.InitializesStdInitializerList = ISIL;
3639  }
3640
3641  SourceRange getSourceRange() const LLVM_READONLY;
3642
3643  static bool classof(const Stmt *T) {
3644    return T->getStmtClass() == InitListExprClass;
3645  }
3646  static bool classof(const InitListExpr *) { return true; }
3647
3648  // Iterators
3649  child_range children() {
3650    if (InitExprs.empty()) return child_range();
3651    return child_range(&InitExprs[0], &InitExprs[0] + InitExprs.size());
3652  }
3653
3654  typedef InitExprsTy::iterator iterator;
3655  typedef InitExprsTy::const_iterator const_iterator;
3656  typedef InitExprsTy::reverse_iterator reverse_iterator;
3657  typedef InitExprsTy::const_reverse_iterator const_reverse_iterator;
3658
3659  iterator begin() { return InitExprs.begin(); }
3660  const_iterator begin() const { return InitExprs.begin(); }
3661  iterator end() { return InitExprs.end(); }
3662  const_iterator end() const { return InitExprs.end(); }
3663  reverse_iterator rbegin() { return InitExprs.rbegin(); }
3664  const_reverse_iterator rbegin() const { return InitExprs.rbegin(); }
3665  reverse_iterator rend() { return InitExprs.rend(); }
3666  const_reverse_iterator rend() const { return InitExprs.rend(); }
3667
3668  friend class ASTStmtReader;
3669  friend class ASTStmtWriter;
3670};
3671
3672/// @brief Represents a C99 designated initializer expression.
3673///
3674/// A designated initializer expression (C99 6.7.8) contains one or
3675/// more designators (which can be field designators, array
3676/// designators, or GNU array-range designators) followed by an
3677/// expression that initializes the field or element(s) that the
3678/// designators refer to. For example, given:
3679///
3680/// @code
3681/// struct point {
3682///   double x;
3683///   double y;
3684/// };
3685/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
3686/// @endcode
3687///
3688/// The InitListExpr contains three DesignatedInitExprs, the first of
3689/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
3690/// designators, one array designator for @c [2] followed by one field
3691/// designator for @c .y. The initalization expression will be 1.0.
3692class DesignatedInitExpr : public Expr {
3693public:
3694  /// \brief Forward declaration of the Designator class.
3695  class Designator;
3696
3697private:
3698  /// The location of the '=' or ':' prior to the actual initializer
3699  /// expression.
3700  SourceLocation EqualOrColonLoc;
3701
3702  /// Whether this designated initializer used the GNU deprecated
3703  /// syntax rather than the C99 '=' syntax.
3704  bool GNUSyntax : 1;
3705
3706  /// The number of designators in this initializer expression.
3707  unsigned NumDesignators : 15;
3708
3709  /// The number of subexpressions of this initializer expression,
3710  /// which contains both the initializer and any additional
3711  /// expressions used by array and array-range designators.
3712  unsigned NumSubExprs : 16;
3713
3714  /// \brief The designators in this designated initialization
3715  /// expression.
3716  Designator *Designators;
3717
3718
3719  DesignatedInitExpr(ASTContext &C, QualType Ty, unsigned NumDesignators,
3720                     const Designator *Designators,
3721                     SourceLocation EqualOrColonLoc, bool GNUSyntax,
3722                     ArrayRef<Expr*> IndexExprs, Expr *Init);
3723
3724  explicit DesignatedInitExpr(unsigned NumSubExprs)
3725    : Expr(DesignatedInitExprClass, EmptyShell()),
3726      NumDesignators(0), NumSubExprs(NumSubExprs), Designators(0) { }
3727
3728public:
3729  /// A field designator, e.g., ".x".
3730  struct FieldDesignator {
3731    /// Refers to the field that is being initialized. The low bit
3732    /// of this field determines whether this is actually a pointer
3733    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
3734    /// initially constructed, a field designator will store an
3735    /// IdentifierInfo*. After semantic analysis has resolved that
3736    /// name, the field designator will instead store a FieldDecl*.
3737    uintptr_t NameOrField;
3738
3739    /// The location of the '.' in the designated initializer.
3740    unsigned DotLoc;
3741
3742    /// The location of the field name in the designated initializer.
3743    unsigned FieldLoc;
3744  };
3745
3746  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
3747  struct ArrayOrRangeDesignator {
3748    /// Location of the first index expression within the designated
3749    /// initializer expression's list of subexpressions.
3750    unsigned Index;
3751    /// The location of the '[' starting the array range designator.
3752    unsigned LBracketLoc;
3753    /// The location of the ellipsis separating the start and end
3754    /// indices. Only valid for GNU array-range designators.
3755    unsigned EllipsisLoc;
3756    /// The location of the ']' terminating the array range designator.
3757    unsigned RBracketLoc;
3758  };
3759
3760  /// @brief Represents a single C99 designator.
3761  ///
3762  /// @todo This class is infuriatingly similar to clang::Designator,
3763  /// but minor differences (storing indices vs. storing pointers)
3764  /// keep us from reusing it. Try harder, later, to rectify these
3765  /// differences.
3766  class Designator {
3767    /// @brief The kind of designator this describes.
3768    enum {
3769      FieldDesignator,
3770      ArrayDesignator,
3771      ArrayRangeDesignator
3772    } Kind;
3773
3774    union {
3775      /// A field designator, e.g., ".x".
3776      struct FieldDesignator Field;
3777      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
3778      struct ArrayOrRangeDesignator ArrayOrRange;
3779    };
3780    friend class DesignatedInitExpr;
3781
3782  public:
3783    Designator() {}
3784
3785    /// @brief Initializes a field designator.
3786    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
3787               SourceLocation FieldLoc)
3788      : Kind(FieldDesignator) {
3789      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
3790      Field.DotLoc = DotLoc.getRawEncoding();
3791      Field.FieldLoc = FieldLoc.getRawEncoding();
3792    }
3793
3794    /// @brief Initializes an array designator.
3795    Designator(unsigned Index, SourceLocation LBracketLoc,
3796               SourceLocation RBracketLoc)
3797      : Kind(ArrayDesignator) {
3798      ArrayOrRange.Index = Index;
3799      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3800      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
3801      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3802    }
3803
3804    /// @brief Initializes a GNU array-range designator.
3805    Designator(unsigned Index, SourceLocation LBracketLoc,
3806               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
3807      : Kind(ArrayRangeDesignator) {
3808      ArrayOrRange.Index = Index;
3809      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3810      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
3811      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3812    }
3813
3814    bool isFieldDesignator() const { return Kind == FieldDesignator; }
3815    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
3816    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
3817
3818    IdentifierInfo *getFieldName() const;
3819
3820    FieldDecl *getField() const {
3821      assert(Kind == FieldDesignator && "Only valid on a field designator");
3822      if (Field.NameOrField & 0x01)
3823        return 0;
3824      else
3825        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
3826    }
3827
3828    void setField(FieldDecl *FD) {
3829      assert(Kind == FieldDesignator && "Only valid on a field designator");
3830      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
3831    }
3832
3833    SourceLocation getDotLoc() const {
3834      assert(Kind == FieldDesignator && "Only valid on a field designator");
3835      return SourceLocation::getFromRawEncoding(Field.DotLoc);
3836    }
3837
3838    SourceLocation getFieldLoc() const {
3839      assert(Kind == FieldDesignator && "Only valid on a field designator");
3840      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
3841    }
3842
3843    SourceLocation getLBracketLoc() const {
3844      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3845             "Only valid on an array or array-range designator");
3846      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
3847    }
3848
3849    SourceLocation getRBracketLoc() const {
3850      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3851             "Only valid on an array or array-range designator");
3852      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
3853    }
3854
3855    SourceLocation getEllipsisLoc() const {
3856      assert(Kind == ArrayRangeDesignator &&
3857             "Only valid on an array-range designator");
3858      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
3859    }
3860
3861    unsigned getFirstExprIndex() const {
3862      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3863             "Only valid on an array or array-range designator");
3864      return ArrayOrRange.Index;
3865    }
3866
3867    SourceLocation getStartLocation() const {
3868      if (Kind == FieldDesignator)
3869        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
3870      else
3871        return getLBracketLoc();
3872    }
3873    SourceLocation getEndLocation() const {
3874      return Kind == FieldDesignator ? getFieldLoc() : getRBracketLoc();
3875    }
3876    SourceRange getSourceRange() const LLVM_READONLY {
3877      return SourceRange(getStartLocation(), getEndLocation());
3878    }
3879  };
3880
3881  static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators,
3882                                    unsigned NumDesignators,
3883                                    ArrayRef<Expr*> IndexExprs,
3884                                    SourceLocation EqualOrColonLoc,
3885                                    bool GNUSyntax, Expr *Init);
3886
3887  static DesignatedInitExpr *CreateEmpty(ASTContext &C, unsigned NumIndexExprs);
3888
3889  /// @brief Returns the number of designators in this initializer.
3890  unsigned size() const { return NumDesignators; }
3891
3892  // Iterator access to the designators.
3893  typedef Designator *designators_iterator;
3894  designators_iterator designators_begin() { return Designators; }
3895  designators_iterator designators_end() {
3896    return Designators + NumDesignators;
3897  }
3898
3899  typedef const Designator *const_designators_iterator;
3900  const_designators_iterator designators_begin() const { return Designators; }
3901  const_designators_iterator designators_end() const {
3902    return Designators + NumDesignators;
3903  }
3904
3905  typedef std::reverse_iterator<designators_iterator>
3906          reverse_designators_iterator;
3907  reverse_designators_iterator designators_rbegin() {
3908    return reverse_designators_iterator(designators_end());
3909  }
3910  reverse_designators_iterator designators_rend() {
3911    return reverse_designators_iterator(designators_begin());
3912  }
3913
3914  typedef std::reverse_iterator<const_designators_iterator>
3915          const_reverse_designators_iterator;
3916  const_reverse_designators_iterator designators_rbegin() const {
3917    return const_reverse_designators_iterator(designators_end());
3918  }
3919  const_reverse_designators_iterator designators_rend() const {
3920    return const_reverse_designators_iterator(designators_begin());
3921  }
3922
3923  Designator *getDesignator(unsigned Idx) { return &designators_begin()[Idx]; }
3924
3925  void setDesignators(ASTContext &C, const Designator *Desigs,
3926                      unsigned NumDesigs);
3927
3928  Expr *getArrayIndex(const Designator& D);
3929  Expr *getArrayRangeStart(const Designator& D);
3930  Expr *getArrayRangeEnd(const Designator& D);
3931
3932  /// @brief Retrieve the location of the '=' that precedes the
3933  /// initializer value itself, if present.
3934  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
3935  void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
3936
3937  /// @brief Determines whether this designated initializer used the
3938  /// deprecated GNU syntax for designated initializers.
3939  bool usesGNUSyntax() const { return GNUSyntax; }
3940  void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
3941
3942  /// @brief Retrieve the initializer value.
3943  Expr *getInit() const {
3944    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
3945  }
3946
3947  void setInit(Expr *init) {
3948    *child_begin() = init;
3949  }
3950
3951  /// \brief Retrieve the total number of subexpressions in this
3952  /// designated initializer expression, including the actual
3953  /// initialized value and any expressions that occur within array
3954  /// and array-range designators.
3955  unsigned getNumSubExprs() const { return NumSubExprs; }
3956
3957  Expr *getSubExpr(unsigned Idx) {
3958    assert(Idx < NumSubExprs && "Subscript out of range");
3959    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3960    Ptr += sizeof(DesignatedInitExpr);
3961    return reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx];
3962  }
3963
3964  void setSubExpr(unsigned Idx, Expr *E) {
3965    assert(Idx < NumSubExprs && "Subscript out of range");
3966    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3967    Ptr += sizeof(DesignatedInitExpr);
3968    reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx] = E;
3969  }
3970
3971  /// \brief Replaces the designator at index @p Idx with the series
3972  /// of designators in [First, Last).
3973  void ExpandDesignator(ASTContext &C, unsigned Idx, const Designator *First,
3974                        const Designator *Last);
3975
3976  SourceRange getDesignatorsSourceRange() const;
3977
3978  SourceRange getSourceRange() const LLVM_READONLY;
3979
3980  static bool classof(const Stmt *T) {
3981    return T->getStmtClass() == DesignatedInitExprClass;
3982  }
3983  static bool classof(const DesignatedInitExpr *) { return true; }
3984
3985  // Iterators
3986  child_range children() {
3987    Stmt **begin = reinterpret_cast<Stmt**>(this + 1);
3988    return child_range(begin, begin + NumSubExprs);
3989  }
3990};
3991
3992/// \brief Represents an implicitly-generated value initialization of
3993/// an object of a given type.
3994///
3995/// Implicit value initializations occur within semantic initializer
3996/// list expressions (InitListExpr) as placeholders for subobject
3997/// initializations not explicitly specified by the user.
3998///
3999/// \see InitListExpr
4000class ImplicitValueInitExpr : public Expr {
4001public:
4002  explicit ImplicitValueInitExpr(QualType ty)
4003    : Expr(ImplicitValueInitExprClass, ty, VK_RValue, OK_Ordinary,
4004           false, false, ty->isInstantiationDependentType(), false) { }
4005
4006  /// \brief Construct an empty implicit value initialization.
4007  explicit ImplicitValueInitExpr(EmptyShell Empty)
4008    : Expr(ImplicitValueInitExprClass, Empty) { }
4009
4010  static bool classof(const Stmt *T) {
4011    return T->getStmtClass() == ImplicitValueInitExprClass;
4012  }
4013  static bool classof(const ImplicitValueInitExpr *) { return true; }
4014
4015  SourceRange getSourceRange() const LLVM_READONLY {
4016    return SourceRange();
4017  }
4018
4019  // Iterators
4020  child_range children() { return child_range(); }
4021};
4022
4023
4024class ParenListExpr : public Expr {
4025  Stmt **Exprs;
4026  unsigned NumExprs;
4027  SourceLocation LParenLoc, RParenLoc;
4028
4029public:
4030  ParenListExpr(ASTContext& C, SourceLocation lparenloc, ArrayRef<Expr*> exprs,
4031                SourceLocation rparenloc);
4032
4033  /// \brief Build an empty paren list.
4034  explicit ParenListExpr(EmptyShell Empty) : Expr(ParenListExprClass, Empty) { }
4035
4036  unsigned getNumExprs() const { return NumExprs; }
4037
4038  const Expr* getExpr(unsigned Init) const {
4039    assert(Init < getNumExprs() && "Initializer access out of range!");
4040    return cast_or_null<Expr>(Exprs[Init]);
4041  }
4042
4043  Expr* getExpr(unsigned Init) {
4044    assert(Init < getNumExprs() && "Initializer access out of range!");
4045    return cast_or_null<Expr>(Exprs[Init]);
4046  }
4047
4048  Expr **getExprs() { return reinterpret_cast<Expr **>(Exprs); }
4049
4050  SourceLocation getLParenLoc() const { return LParenLoc; }
4051  SourceLocation getRParenLoc() const { return RParenLoc; }
4052
4053  SourceRange getSourceRange() const LLVM_READONLY {
4054    return SourceRange(LParenLoc, RParenLoc);
4055  }
4056  static bool classof(const Stmt *T) {
4057    return T->getStmtClass() == ParenListExprClass;
4058  }
4059  static bool classof(const ParenListExpr *) { return true; }
4060
4061  // Iterators
4062  child_range children() {
4063    return child_range(&Exprs[0], &Exprs[0]+NumExprs);
4064  }
4065
4066  friend class ASTStmtReader;
4067  friend class ASTStmtWriter;
4068};
4069
4070
4071/// \brief Represents a C11 generic selection.
4072///
4073/// A generic selection (C11 6.5.1.1) contains an unevaluated controlling
4074/// expression, followed by one or more generic associations.  Each generic
4075/// association specifies a type name and an expression, or "default" and an
4076/// expression (in which case it is known as a default generic association).
4077/// The type and value of the generic selection are identical to those of its
4078/// result expression, which is defined as the expression in the generic
4079/// association with a type name that is compatible with the type of the
4080/// controlling expression, or the expression in the default generic association
4081/// if no types are compatible.  For example:
4082///
4083/// @code
4084/// _Generic(X, double: 1, float: 2, default: 3)
4085/// @endcode
4086///
4087/// The above expression evaluates to 1 if 1.0 is substituted for X, 2 if 1.0f
4088/// or 3 if "hello".
4089///
4090/// As an extension, generic selections are allowed in C++, where the following
4091/// additional semantics apply:
4092///
4093/// Any generic selection whose controlling expression is type-dependent or
4094/// which names a dependent type in its association list is result-dependent,
4095/// which means that the choice of result expression is dependent.
4096/// Result-dependent generic associations are both type- and value-dependent.
4097class GenericSelectionExpr : public Expr {
4098  enum { CONTROLLING, END_EXPR };
4099  TypeSourceInfo **AssocTypes;
4100  Stmt **SubExprs;
4101  unsigned NumAssocs, ResultIndex;
4102  SourceLocation GenericLoc, DefaultLoc, RParenLoc;
4103
4104public:
4105  GenericSelectionExpr(ASTContext &Context,
4106                       SourceLocation GenericLoc, Expr *ControllingExpr,
4107                       ArrayRef<TypeSourceInfo*> AssocTypes,
4108                       ArrayRef<Expr*> AssocExprs,
4109                       SourceLocation DefaultLoc, SourceLocation RParenLoc,
4110                       bool ContainsUnexpandedParameterPack,
4111                       unsigned ResultIndex);
4112
4113  /// This constructor is used in the result-dependent case.
4114  GenericSelectionExpr(ASTContext &Context,
4115                       SourceLocation GenericLoc, Expr *ControllingExpr,
4116                       ArrayRef<TypeSourceInfo*> AssocTypes,
4117                       ArrayRef<Expr*> AssocExprs,
4118                       SourceLocation DefaultLoc, SourceLocation RParenLoc,
4119                       bool ContainsUnexpandedParameterPack);
4120
4121  explicit GenericSelectionExpr(EmptyShell Empty)
4122    : Expr(GenericSelectionExprClass, Empty) { }
4123
4124  unsigned getNumAssocs() const { return NumAssocs; }
4125
4126  SourceLocation getGenericLoc() const { return GenericLoc; }
4127  SourceLocation getDefaultLoc() const { return DefaultLoc; }
4128  SourceLocation getRParenLoc() const { return RParenLoc; }
4129
4130  const Expr *getAssocExpr(unsigned i) const {
4131    return cast<Expr>(SubExprs[END_EXPR+i]);
4132  }
4133  Expr *getAssocExpr(unsigned i) { return cast<Expr>(SubExprs[END_EXPR+i]); }
4134
4135  const TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) const {
4136    return AssocTypes[i];
4137  }
4138  TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) { return AssocTypes[i]; }
4139
4140  QualType getAssocType(unsigned i) const {
4141    if (const TypeSourceInfo *TS = getAssocTypeSourceInfo(i))
4142      return TS->getType();
4143    else
4144      return QualType();
4145  }
4146
4147  const Expr *getControllingExpr() const {
4148    return cast<Expr>(SubExprs[CONTROLLING]);
4149  }
4150  Expr *getControllingExpr() { return cast<Expr>(SubExprs[CONTROLLING]); }
4151
4152  /// Whether this generic selection is result-dependent.
4153  bool isResultDependent() const { return ResultIndex == -1U; }
4154
4155  /// The zero-based index of the result expression's generic association in
4156  /// the generic selection's association list.  Defined only if the
4157  /// generic selection is not result-dependent.
4158  unsigned getResultIndex() const {
4159    assert(!isResultDependent() && "Generic selection is result-dependent");
4160    return ResultIndex;
4161  }
4162
4163  /// The generic selection's result expression.  Defined only if the
4164  /// generic selection is not result-dependent.
4165  const Expr *getResultExpr() const { return getAssocExpr(getResultIndex()); }
4166  Expr *getResultExpr() { return getAssocExpr(getResultIndex()); }
4167
4168  SourceRange getSourceRange() const LLVM_READONLY {
4169    return SourceRange(GenericLoc, RParenLoc);
4170  }
4171  static bool classof(const Stmt *T) {
4172    return T->getStmtClass() == GenericSelectionExprClass;
4173  }
4174  static bool classof(const GenericSelectionExpr *) { return true; }
4175
4176  child_range children() {
4177    return child_range(SubExprs, SubExprs+END_EXPR+NumAssocs);
4178  }
4179
4180  friend class ASTStmtReader;
4181};
4182
4183//===----------------------------------------------------------------------===//
4184// Clang Extensions
4185//===----------------------------------------------------------------------===//
4186
4187
4188/// ExtVectorElementExpr - This represents access to specific elements of a
4189/// vector, and may occur on the left hand side or right hand side.  For example
4190/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
4191///
4192/// Note that the base may have either vector or pointer to vector type, just
4193/// like a struct field reference.
4194///
4195class ExtVectorElementExpr : public Expr {
4196  Stmt *Base;
4197  IdentifierInfo *Accessor;
4198  SourceLocation AccessorLoc;
4199public:
4200  ExtVectorElementExpr(QualType ty, ExprValueKind VK, Expr *base,
4201                       IdentifierInfo &accessor, SourceLocation loc)
4202    : Expr(ExtVectorElementExprClass, ty, VK,
4203           (VK == VK_RValue ? OK_Ordinary : OK_VectorComponent),
4204           base->isTypeDependent(), base->isValueDependent(),
4205           base->isInstantiationDependent(),
4206           base->containsUnexpandedParameterPack()),
4207      Base(base), Accessor(&accessor), AccessorLoc(loc) {}
4208
4209  /// \brief Build an empty vector element expression.
4210  explicit ExtVectorElementExpr(EmptyShell Empty)
4211    : Expr(ExtVectorElementExprClass, Empty) { }
4212
4213  const Expr *getBase() const { return cast<Expr>(Base); }
4214  Expr *getBase() { return cast<Expr>(Base); }
4215  void setBase(Expr *E) { Base = E; }
4216
4217  IdentifierInfo &getAccessor() const { return *Accessor; }
4218  void setAccessor(IdentifierInfo *II) { Accessor = II; }
4219
4220  SourceLocation getAccessorLoc() const { return AccessorLoc; }
4221  void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
4222
4223  /// getNumElements - Get the number of components being selected.
4224  unsigned getNumElements() const;
4225
4226  /// containsDuplicateElements - Return true if any element access is
4227  /// repeated.
4228  bool containsDuplicateElements() const;
4229
4230  /// getEncodedElementAccess - Encode the elements accessed into an llvm
4231  /// aggregate Constant of ConstantInt(s).
4232  void getEncodedElementAccess(SmallVectorImpl<unsigned> &Elts) const;
4233
4234  SourceRange getSourceRange() const LLVM_READONLY {
4235    return SourceRange(getBase()->getLocStart(), AccessorLoc);
4236  }
4237
4238  /// isArrow - Return true if the base expression is a pointer to vector,
4239  /// return false if the base expression is a vector.
4240  bool isArrow() const;
4241
4242  static bool classof(const Stmt *T) {
4243    return T->getStmtClass() == ExtVectorElementExprClass;
4244  }
4245  static bool classof(const ExtVectorElementExpr *) { return true; }
4246
4247  // Iterators
4248  child_range children() { return child_range(&Base, &Base+1); }
4249};
4250
4251
4252/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
4253/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
4254class BlockExpr : public Expr {
4255protected:
4256  BlockDecl *TheBlock;
4257public:
4258  BlockExpr(BlockDecl *BD, QualType ty)
4259    : Expr(BlockExprClass, ty, VK_RValue, OK_Ordinary,
4260           ty->isDependentType(), ty->isDependentType(),
4261           ty->isInstantiationDependentType() || BD->isDependentContext(),
4262           false),
4263      TheBlock(BD) {}
4264
4265  /// \brief Build an empty block expression.
4266  explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { }
4267
4268  const BlockDecl *getBlockDecl() const { return TheBlock; }
4269  BlockDecl *getBlockDecl() { return TheBlock; }
4270  void setBlockDecl(BlockDecl *BD) { TheBlock = BD; }
4271
4272  // Convenience functions for probing the underlying BlockDecl.
4273  SourceLocation getCaretLocation() const;
4274  const Stmt *getBody() const;
4275  Stmt *getBody();
4276
4277  SourceRange getSourceRange() const LLVM_READONLY {
4278    return SourceRange(getCaretLocation(), getBody()->getLocEnd());
4279  }
4280
4281  /// getFunctionType - Return the underlying function type for this block.
4282  const FunctionProtoType *getFunctionType() const;
4283
4284  static bool classof(const Stmt *T) {
4285    return T->getStmtClass() == BlockExprClass;
4286  }
4287  static bool classof(const BlockExpr *) { return true; }
4288
4289  // Iterators
4290  child_range children() { return child_range(); }
4291};
4292
4293/// AsTypeExpr - Clang builtin function __builtin_astype [OpenCL 6.2.4.2]
4294/// This AST node provides support for reinterpreting a type to another
4295/// type of the same size.
4296class AsTypeExpr : public Expr { // Should this be an ExplicitCastExpr?
4297private:
4298  Stmt *SrcExpr;
4299  SourceLocation BuiltinLoc, RParenLoc;
4300
4301  friend class ASTReader;
4302  friend class ASTStmtReader;
4303  explicit AsTypeExpr(EmptyShell Empty) : Expr(AsTypeExprClass, Empty) {}
4304
4305public:
4306  AsTypeExpr(Expr* SrcExpr, QualType DstType,
4307             ExprValueKind VK, ExprObjectKind OK,
4308             SourceLocation BuiltinLoc, SourceLocation RParenLoc)
4309    : Expr(AsTypeExprClass, DstType, VK, OK,
4310           DstType->isDependentType(),
4311           DstType->isDependentType() || SrcExpr->isValueDependent(),
4312           (DstType->isInstantiationDependentType() ||
4313            SrcExpr->isInstantiationDependent()),
4314           (DstType->containsUnexpandedParameterPack() ||
4315            SrcExpr->containsUnexpandedParameterPack())),
4316  SrcExpr(SrcExpr), BuiltinLoc(BuiltinLoc), RParenLoc(RParenLoc) {}
4317
4318  /// getSrcExpr - Return the Expr to be converted.
4319  Expr *getSrcExpr() const { return cast<Expr>(SrcExpr); }
4320
4321  /// getBuiltinLoc - Return the location of the __builtin_astype token.
4322  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
4323
4324  /// getRParenLoc - Return the location of final right parenthesis.
4325  SourceLocation getRParenLoc() const { return RParenLoc; }
4326
4327  SourceRange getSourceRange() const LLVM_READONLY {
4328    return SourceRange(BuiltinLoc, RParenLoc);
4329  }
4330
4331  static bool classof(const Stmt *T) {
4332    return T->getStmtClass() == AsTypeExprClass;
4333  }
4334  static bool classof(const AsTypeExpr *) { return true; }
4335
4336  // Iterators
4337  child_range children() { return child_range(&SrcExpr, &SrcExpr+1); }
4338};
4339
4340/// PseudoObjectExpr - An expression which accesses a pseudo-object
4341/// l-value.  A pseudo-object is an abstract object, accesses to which
4342/// are translated to calls.  The pseudo-object expression has a
4343/// syntactic form, which shows how the expression was actually
4344/// written in the source code, and a semantic form, which is a series
4345/// of expressions to be executed in order which detail how the
4346/// operation is actually evaluated.  Optionally, one of the semantic
4347/// forms may also provide a result value for the expression.
4348///
4349/// If any of the semantic-form expressions is an OpaqueValueExpr,
4350/// that OVE is required to have a source expression, and it is bound
4351/// to the result of that source expression.  Such OVEs may appear
4352/// only in subsequent semantic-form expressions and as
4353/// sub-expressions of the syntactic form.
4354///
4355/// PseudoObjectExpr should be used only when an operation can be
4356/// usefully described in terms of fairly simple rewrite rules on
4357/// objects and functions that are meant to be used by end-developers.
4358/// For example, under the Itanium ABI, dynamic casts are implemented
4359/// as a call to a runtime function called __dynamic_cast; using this
4360/// class to describe that would be inappropriate because that call is
4361/// not really part of the user-visible semantics, and instead the
4362/// cast is properly reflected in the AST and IR-generation has been
4363/// taught to generate the call as necessary.  In contrast, an
4364/// Objective-C property access is semantically defined to be
4365/// equivalent to a particular message send, and this is very much
4366/// part of the user model.  The name of this class encourages this
4367/// modelling design.
4368class PseudoObjectExpr : public Expr {
4369  // PseudoObjectExprBits.NumSubExprs - The number of sub-expressions.
4370  // Always at least two, because the first sub-expression is the
4371  // syntactic form.
4372
4373  // PseudoObjectExprBits.ResultIndex - The index of the
4374  // sub-expression holding the result.  0 means the result is void,
4375  // which is unambiguous because it's the index of the syntactic
4376  // form.  Note that this is therefore 1 higher than the value passed
4377  // in to Create, which is an index within the semantic forms.
4378  // Note also that ASTStmtWriter assumes this encoding.
4379
4380  Expr **getSubExprsBuffer() { return reinterpret_cast<Expr**>(this + 1); }
4381  const Expr * const *getSubExprsBuffer() const {
4382    return reinterpret_cast<const Expr * const *>(this + 1);
4383  }
4384
4385  friend class ASTStmtReader;
4386
4387  PseudoObjectExpr(QualType type, ExprValueKind VK,
4388                   Expr *syntactic, ArrayRef<Expr*> semantic,
4389                   unsigned resultIndex);
4390
4391  PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs);
4392
4393  unsigned getNumSubExprs() const {
4394    return PseudoObjectExprBits.NumSubExprs;
4395  }
4396
4397public:
4398  /// NoResult - A value for the result index indicating that there is
4399  /// no semantic result.
4400  enum { NoResult = ~0U };
4401
4402  static PseudoObjectExpr *Create(ASTContext &Context, Expr *syntactic,
4403                                  ArrayRef<Expr*> semantic,
4404                                  unsigned resultIndex);
4405
4406  static PseudoObjectExpr *Create(ASTContext &Context, EmptyShell shell,
4407                                  unsigned numSemanticExprs);
4408
4409  /// Return the syntactic form of this expression, i.e. the
4410  /// expression it actually looks like.  Likely to be expressed in
4411  /// terms of OpaqueValueExprs bound in the semantic form.
4412  Expr *getSyntacticForm() { return getSubExprsBuffer()[0]; }
4413  const Expr *getSyntacticForm() const { return getSubExprsBuffer()[0]; }
4414
4415  /// Return the index of the result-bearing expression into the semantics
4416  /// expressions, or PseudoObjectExpr::NoResult if there is none.
4417  unsigned getResultExprIndex() const {
4418    if (PseudoObjectExprBits.ResultIndex == 0) return NoResult;
4419    return PseudoObjectExprBits.ResultIndex - 1;
4420  }
4421
4422  /// Return the result-bearing expression, or null if there is none.
4423  Expr *getResultExpr() {
4424    if (PseudoObjectExprBits.ResultIndex == 0)
4425      return 0;
4426    return getSubExprsBuffer()[PseudoObjectExprBits.ResultIndex];
4427  }
4428  const Expr *getResultExpr() const {
4429    return const_cast<PseudoObjectExpr*>(this)->getResultExpr();
4430  }
4431
4432  unsigned getNumSemanticExprs() const { return getNumSubExprs() - 1; }
4433
4434  typedef Expr * const *semantics_iterator;
4435  typedef const Expr * const *const_semantics_iterator;
4436  semantics_iterator semantics_begin() {
4437    return getSubExprsBuffer() + 1;
4438  }
4439  const_semantics_iterator semantics_begin() const {
4440    return getSubExprsBuffer() + 1;
4441  }
4442  semantics_iterator semantics_end() {
4443    return getSubExprsBuffer() + getNumSubExprs();
4444  }
4445  const_semantics_iterator semantics_end() const {
4446    return getSubExprsBuffer() + getNumSubExprs();
4447  }
4448  Expr *getSemanticExpr(unsigned index) {
4449    assert(index + 1 < getNumSubExprs());
4450    return getSubExprsBuffer()[index + 1];
4451  }
4452  const Expr *getSemanticExpr(unsigned index) const {
4453    return const_cast<PseudoObjectExpr*>(this)->getSemanticExpr(index);
4454  }
4455
4456  SourceLocation getExprLoc() const LLVM_READONLY {
4457    return getSyntacticForm()->getExprLoc();
4458  }
4459  SourceRange getSourceRange() const LLVM_READONLY {
4460    return getSyntacticForm()->getSourceRange();
4461  }
4462
4463  child_range children() {
4464    Stmt **cs = reinterpret_cast<Stmt**>(getSubExprsBuffer());
4465    return child_range(cs, cs + getNumSubExprs());
4466  }
4467
4468  static bool classof(const Stmt *T) {
4469    return T->getStmtClass() == PseudoObjectExprClass;
4470  }
4471  static bool classof(const PseudoObjectExpr *) { return true; }
4472};
4473
4474/// AtomicExpr - Variadic atomic builtins: __atomic_exchange, __atomic_fetch_*,
4475/// __atomic_load, __atomic_store, and __atomic_compare_exchange_*, for the
4476/// similarly-named C++11 instructions, and __c11 variants for <stdatomic.h>.
4477/// All of these instructions take one primary pointer and at least one memory
4478/// order.
4479class AtomicExpr : public Expr {
4480public:
4481  enum AtomicOp {
4482#define BUILTIN(ID, TYPE, ATTRS)
4483#define ATOMIC_BUILTIN(ID, TYPE, ATTRS) AO ## ID,
4484#include "clang/Basic/Builtins.def"
4485    // Avoid trailing comma
4486    BI_First = 0
4487  };
4488
4489private:
4490  enum { PTR, ORDER, VAL1, ORDER_FAIL, VAL2, WEAK, END_EXPR };
4491  Stmt* SubExprs[END_EXPR];
4492  unsigned NumSubExprs;
4493  SourceLocation BuiltinLoc, RParenLoc;
4494  AtomicOp Op;
4495
4496  friend class ASTStmtReader;
4497
4498public:
4499  AtomicExpr(SourceLocation BLoc, ArrayRef<Expr*> args, QualType t,
4500             AtomicOp op, SourceLocation RP);
4501
4502  /// \brief Determine the number of arguments the specified atomic builtin
4503  /// should have.
4504  static unsigned getNumSubExprs(AtomicOp Op);
4505
4506  /// \brief Build an empty AtomicExpr.
4507  explicit AtomicExpr(EmptyShell Empty) : Expr(AtomicExprClass, Empty) { }
4508
4509  Expr *getPtr() const {
4510    return cast<Expr>(SubExprs[PTR]);
4511  }
4512  Expr *getOrder() const {
4513    return cast<Expr>(SubExprs[ORDER]);
4514  }
4515  Expr *getVal1() const {
4516    if (Op == AO__c11_atomic_init)
4517      return cast<Expr>(SubExprs[ORDER]);
4518    assert(NumSubExprs > VAL1);
4519    return cast<Expr>(SubExprs[VAL1]);
4520  }
4521  Expr *getOrderFail() const {
4522    assert(NumSubExprs > ORDER_FAIL);
4523    return cast<Expr>(SubExprs[ORDER_FAIL]);
4524  }
4525  Expr *getVal2() const {
4526    if (Op == AO__atomic_exchange)
4527      return cast<Expr>(SubExprs[ORDER_FAIL]);
4528    assert(NumSubExprs > VAL2);
4529    return cast<Expr>(SubExprs[VAL2]);
4530  }
4531  Expr *getWeak() const {
4532    assert(NumSubExprs > WEAK);
4533    return cast<Expr>(SubExprs[WEAK]);
4534  }
4535
4536  AtomicOp getOp() const { return Op; }
4537  unsigned getNumSubExprs() { return NumSubExprs; }
4538
4539  Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
4540
4541  bool isVolatile() const {
4542    return getPtr()->getType()->getPointeeType().isVolatileQualified();
4543  }
4544
4545  bool isCmpXChg() const {
4546    return getOp() == AO__c11_atomic_compare_exchange_strong ||
4547           getOp() == AO__c11_atomic_compare_exchange_weak ||
4548           getOp() == AO__atomic_compare_exchange ||
4549           getOp() == AO__atomic_compare_exchange_n;
4550  }
4551
4552  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
4553  SourceLocation getRParenLoc() const { return RParenLoc; }
4554
4555  SourceRange getSourceRange() const LLVM_READONLY {
4556    return SourceRange(BuiltinLoc, RParenLoc);
4557  }
4558  static bool classof(const Stmt *T) {
4559    return T->getStmtClass() == AtomicExprClass;
4560  }
4561  static bool classof(const AtomicExpr *) { return true; }
4562
4563  // Iterators
4564  child_range children() {
4565    return child_range(SubExprs, SubExprs+NumSubExprs);
4566  }
4567};
4568}  // end namespace clang
4569
4570#endif
4571