Expr.h revision f595cc41c4d95fe323f8a2b209523de9956f874d
1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/Stmt.h"
19#include "clang/AST/Type.h"
20#include "llvm/ADT/APSInt.h"
21#include "llvm/ADT/APFloat.h"
22#include "llvm/ADT/SmallVector.h"
23#include "llvm/ADT/StringRef.h"
24#include <vector>
25
26namespace clang {
27  class ASTContext;
28  class APValue;
29  class Decl;
30  class IdentifierInfo;
31  class ParmVarDecl;
32  class NamedDecl;
33  class ValueDecl;
34  class BlockDecl;
35  class CXXOperatorCallExpr;
36  class CXXMemberCallExpr;
37  class TemplateArgumentLoc;
38  class TemplateArgumentListInfo;
39
40/// Expr - This represents one expression.  Note that Expr's are subclasses of
41/// Stmt.  This allows an expression to be transparently used any place a Stmt
42/// is required.
43///
44class Expr : public Stmt {
45  QualType TR;
46
47protected:
48  /// TypeDependent - Whether this expression is type-dependent
49  /// (C++ [temp.dep.expr]).
50  bool TypeDependent : 1;
51
52  /// ValueDependent - Whether this expression is value-dependent
53  /// (C++ [temp.dep.constexpr]).
54  bool ValueDependent : 1;
55
56  // FIXME: Eventually, this constructor should go away and we should
57  // require every subclass to provide type/value-dependence
58  // information.
59  Expr(StmtClass SC, QualType T)
60    : Stmt(SC), TypeDependent(false), ValueDependent(false) {
61    setType(T);
62  }
63
64  Expr(StmtClass SC, QualType T, bool TD, bool VD)
65    : Stmt(SC), TypeDependent(TD), ValueDependent(VD) {
66    setType(T);
67  }
68
69  /// \brief Construct an empty expression.
70  explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
71
72public:
73  /// \brief Increases the reference count for this expression.
74  ///
75  /// Invoke the Retain() operation when this expression
76  /// is being shared by another owner.
77  Expr *Retain() {
78    Stmt::Retain();
79    return this;
80  }
81
82  QualType getType() const { return TR; }
83  void setType(QualType t) {
84    // In C++, the type of an expression is always adjusted so that it
85    // will not have reference type an expression will never have
86    // reference type (C++ [expr]p6). Use
87    // QualType::getNonReferenceType() to retrieve the non-reference
88    // type. Additionally, inspect Expr::isLvalue to determine whether
89    // an expression that is adjusted in this manner should be
90    // considered an lvalue.
91    assert((t.isNull() || !t->isReferenceType()) &&
92           "Expressions can't have reference type");
93
94    TR = t;
95  }
96
97  /// isValueDependent - Determines whether this expression is
98  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
99  /// array bound of "Chars" in the following example is
100  /// value-dependent.
101  /// @code
102  /// template<int Size, char (&Chars)[Size]> struct meta_string;
103  /// @endcode
104  bool isValueDependent() const { return ValueDependent; }
105
106  /// \brief Set whether this expression is value-dependent or not.
107  void setValueDependent(bool VD) { ValueDependent = VD; }
108
109  /// isTypeDependent - Determines whether this expression is
110  /// type-dependent (C++ [temp.dep.expr]), which means that its type
111  /// could change from one template instantiation to the next. For
112  /// example, the expressions "x" and "x + y" are type-dependent in
113  /// the following code, but "y" is not type-dependent:
114  /// @code
115  /// template<typename T>
116  /// void add(T x, int y) {
117  ///   x + y;
118  /// }
119  /// @endcode
120  bool isTypeDependent() const { return TypeDependent; }
121
122  /// \brief Set whether this expression is type-dependent or not.
123  void setTypeDependent(bool TD) { TypeDependent = TD; }
124
125  /// SourceLocation tokens are not useful in isolation - they are low level
126  /// value objects created/interpreted by SourceManager. We assume AST
127  /// clients will have a pointer to the respective SourceManager.
128  virtual SourceRange getSourceRange() const = 0;
129
130  /// getExprLoc - Return the preferred location for the arrow when diagnosing
131  /// a problem with a generic expression.
132  virtual SourceLocation getExprLoc() const { return getLocStart(); }
133
134  /// isUnusedResultAWarning - Return true if this immediate expression should
135  /// be warned about if the result is unused.  If so, fill in Loc and Ranges
136  /// with location to warn on and the source range[s] to report with the
137  /// warning.
138  bool isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
139                              SourceRange &R2, ASTContext &Ctx) const;
140
141  /// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or
142  /// incomplete type other than void. Nonarray expressions that can be lvalues:
143  ///  - name, where name must be a variable
144  ///  - e[i]
145  ///  - (e), where e must be an lvalue
146  ///  - e.name, where e must be an lvalue
147  ///  - e->name
148  ///  - *e, the type of e cannot be a function type
149  ///  - string-constant
150  ///  - reference type [C++ [expr]]
151  ///  - b ? x : y, where x and y are lvalues of suitable types [C++]
152  ///
153  enum isLvalueResult {
154    LV_Valid,
155    LV_NotObjectType,
156    LV_IncompleteVoidType,
157    LV_DuplicateVectorComponents,
158    LV_InvalidExpression,
159    LV_MemberFunction
160  };
161  isLvalueResult isLvalue(ASTContext &Ctx) const;
162
163  // Same as above, but excluding checks for non-object and void types in C
164  isLvalueResult isLvalueInternal(ASTContext &Ctx) const;
165
166  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
167  /// does not have an incomplete type, does not have a const-qualified type,
168  /// and if it is a structure or union, does not have any member (including,
169  /// recursively, any member or element of all contained aggregates or unions)
170  /// with a const-qualified type.
171  ///
172  /// \param Loc [in] [out] - A source location which *may* be filled
173  /// in with the location of the expression making this a
174  /// non-modifiable lvalue, if specified.
175  enum isModifiableLvalueResult {
176    MLV_Valid,
177    MLV_NotObjectType,
178    MLV_IncompleteVoidType,
179    MLV_DuplicateVectorComponents,
180    MLV_InvalidExpression,
181    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
182    MLV_IncompleteType,
183    MLV_ConstQualified,
184    MLV_ArrayType,
185    MLV_NotBlockQualified,
186    MLV_ReadonlyProperty,
187    MLV_NoSetterProperty,
188    MLV_MemberFunction
189  };
190  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx,
191                                              SourceLocation *Loc = 0) const;
192
193  /// \brief If this expression refers to a bit-field, retrieve the
194  /// declaration of that bit-field.
195  FieldDecl *getBitField();
196
197  const FieldDecl *getBitField() const {
198    return const_cast<Expr*>(this)->getBitField();
199  }
200
201  /// isIntegerConstantExpr - Return true if this expression is a valid integer
202  /// constant expression, and, if so, return its value in Result.  If not a
203  /// valid i-c-e, return false and fill in Loc (if specified) with the location
204  /// of the invalid expression.
205  bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
206                             SourceLocation *Loc = 0,
207                             bool isEvaluated = true) const;
208  bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const {
209    llvm::APSInt X;
210    return isIntegerConstantExpr(X, Ctx, Loc);
211  }
212  /// isConstantInitializer - Returns true if this expression is a constant
213  /// initializer, which can be emitted at compile-time.
214  bool isConstantInitializer(ASTContext &Ctx) const;
215
216  /// EvalResult is a struct with detailed info about an evaluated expression.
217  struct EvalResult {
218    /// Val - This is the value the expression can be folded to.
219    APValue Val;
220
221    /// HasSideEffects - Whether the evaluated expression has side effects.
222    /// For example, (f() && 0) can be folded, but it still has side effects.
223    bool HasSideEffects;
224
225    /// Diag - If the expression is unfoldable, then Diag contains a note
226    /// diagnostic indicating why it's not foldable. DiagLoc indicates a caret
227    /// position for the error, and DiagExpr is the expression that caused
228    /// the error.
229    /// If the expression is foldable, but not an integer constant expression,
230    /// Diag contains a note diagnostic that describes why it isn't an integer
231    /// constant expression. If the expression *is* an integer constant
232    /// expression, then Diag will be zero.
233    unsigned Diag;
234    const Expr *DiagExpr;
235    SourceLocation DiagLoc;
236
237    EvalResult() : HasSideEffects(false), Diag(0), DiagExpr(0) {}
238  };
239
240  /// Evaluate - Return true if this is a constant which we can fold using
241  /// any crazy technique (that has nothing to do with language standards) that
242  /// we want to.  If this function returns true, it returns the folded constant
243  /// in Result.
244  bool Evaluate(EvalResult &Result, ASTContext &Ctx) const;
245
246  /// EvaluateAsAny - The same as Evaluate, except that it also succeeds on
247  /// stack based objects.
248  bool EvaluateAsAny(EvalResult &Result, ASTContext &Ctx) const;
249
250  /// isEvaluatable - Call Evaluate to see if this expression can be constant
251  /// folded, but discard the result.
252  bool isEvaluatable(ASTContext &Ctx) const;
253
254  /// HasSideEffects - This routine returns true for all those expressions
255  /// which must be evaluated each time and must not be optimization away
256  /// or evaluated at compile time. Example is a function call, volatile
257  /// variable read.
258  bool HasSideEffects(ASTContext &Ctx) const;
259
260  /// EvaluateAsInt - Call Evaluate and return the folded integer. This
261  /// must be called on an expression that constant folds to an integer.
262  llvm::APSInt EvaluateAsInt(ASTContext &Ctx) const;
263
264  /// EvaluateAsLValue - Evaluate an expression to see if it's a lvalue
265  /// with link time known address.
266  bool EvaluateAsLValue(EvalResult &Result, ASTContext &Ctx) const;
267
268  /// EvaluateAsAnyLValue - The same as EvaluateAsLValue, except that it
269  /// also succeeds on stack based, immutable address lvalues.
270  bool EvaluateAsAnyLValue(EvalResult &Result, ASTContext &Ctx) const;
271
272  /// \brief Enumeration used to describe how \c isNullPointerConstant()
273  /// should cope with value-dependent expressions.
274  enum NullPointerConstantValueDependence {
275    /// \brief Specifies that the expression should never be value-dependent.
276    NPC_NeverValueDependent = 0,
277
278    /// \brief Specifies that a value-dependent expression of integral or
279    /// dependent type should be considered a null pointer constant.
280    NPC_ValueDependentIsNull,
281
282    /// \brief Specifies that a value-dependent expression should be considered
283    /// to never be a null pointer constant.
284    NPC_ValueDependentIsNotNull
285  };
286
287  /// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
288  /// integer constant expression with the value zero, or if this is one that is
289  /// cast to void*.
290  bool isNullPointerConstant(ASTContext &Ctx,
291                             NullPointerConstantValueDependence NPC) const;
292
293  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
294  /// write barrier.
295  bool isOBJCGCCandidate(ASTContext &Ctx) const;
296
297  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
298  ///  its subexpression.  If that subexpression is also a ParenExpr,
299  ///  then this method recursively returns its subexpression, and so forth.
300  ///  Otherwise, the method returns the current Expr.
301  Expr* IgnoreParens();
302
303  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
304  /// or CastExprs, returning their operand.
305  Expr *IgnoreParenCasts();
306
307  /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
308  /// value (including ptr->int casts of the same size).  Strip off any
309  /// ParenExpr or CastExprs, returning their operand.
310  Expr *IgnoreParenNoopCasts(ASTContext &Ctx);
311
312  const Expr* IgnoreParens() const {
313    return const_cast<Expr*>(this)->IgnoreParens();
314  }
315  const Expr *IgnoreParenCasts() const {
316    return const_cast<Expr*>(this)->IgnoreParenCasts();
317  }
318  const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const {
319    return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
320  }
321
322  static bool hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs);
323  static bool hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs);
324
325  static bool classof(const Stmt *T) {
326    return T->getStmtClass() >= firstExprConstant &&
327           T->getStmtClass() <= lastExprConstant;
328  }
329  static bool classof(const Expr *) { return true; }
330};
331
332
333//===----------------------------------------------------------------------===//
334// Primary Expressions.
335//===----------------------------------------------------------------------===//
336
337/// \brief Represents the qualifier that may precede a C++ name, e.g., the
338/// "std::" in "std::sort".
339struct NameQualifier {
340  /// \brief The nested name specifier.
341  NestedNameSpecifier *NNS;
342
343  /// \brief The source range covered by the nested name specifier.
344  SourceRange Range;
345};
346
347/// \brief Represents an explicit template argument list in C++, e.g.,
348/// the "<int>" in "sort<int>".
349struct ExplicitTemplateArgumentList {
350  /// \brief The source location of the left angle bracket ('<');
351  SourceLocation LAngleLoc;
352
353  /// \brief The source location of the right angle bracket ('>');
354  SourceLocation RAngleLoc;
355
356  /// \brief The number of template arguments in TemplateArgs.
357  /// The actual template arguments (if any) are stored after the
358  /// ExplicitTemplateArgumentList structure.
359  unsigned NumTemplateArgs;
360
361  /// \brief Retrieve the template arguments
362  TemplateArgumentLoc *getTemplateArgs() {
363    return reinterpret_cast<TemplateArgumentLoc *> (this + 1);
364  }
365
366  /// \brief Retrieve the template arguments
367  const TemplateArgumentLoc *getTemplateArgs() const {
368    return reinterpret_cast<const TemplateArgumentLoc *> (this + 1);
369  }
370
371  void initializeFrom(const TemplateArgumentListInfo &List);
372  void copyInto(TemplateArgumentListInfo &List) const;
373  static std::size_t sizeFor(const TemplateArgumentListInfo &List);
374};
375
376/// DeclRefExpr - [C99 6.5.1p2] - A reference to a declared variable, function,
377/// enum, etc.
378class DeclRefExpr : public Expr {
379  enum {
380    // Flag on DecoratedD that specifies when this declaration reference
381    // expression has a C++ nested-name-specifier.
382    HasQualifierFlag = 0x01,
383    // Flag on DecoratedD that specifies when this declaration reference
384    // expression has an explicit C++ template argument list.
385    HasExplicitTemplateArgumentListFlag = 0x02
386  };
387
388  // DecoratedD - The declaration that we are referencing, plus two bits to
389  // indicate whether (1) the declaration's name was explicitly qualified and
390  // (2) the declaration's name was followed by an explicit template
391  // argument list.
392  llvm::PointerIntPair<NamedDecl *, 2> DecoratedD;
393
394  // Loc - The location of the declaration name itself.
395  SourceLocation Loc;
396
397  /// \brief Retrieve the qualifier that preceded the declaration name, if any.
398  NameQualifier *getNameQualifier() {
399    if ((DecoratedD.getInt() & HasQualifierFlag) == 0)
400      return 0;
401
402    return reinterpret_cast<NameQualifier *> (this + 1);
403  }
404
405  /// \brief Retrieve the qualifier that preceded the member name, if any.
406  const NameQualifier *getNameQualifier() const {
407    return const_cast<DeclRefExpr *>(this)->getNameQualifier();
408  }
409
410  /// \brief Retrieve the explicit template argument list that followed the
411  /// member template name, if any.
412  ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() {
413    if ((DecoratedD.getInt() & HasExplicitTemplateArgumentListFlag) == 0)
414      return 0;
415
416    if ((DecoratedD.getInt() & HasQualifierFlag) == 0)
417      return reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
418
419    return reinterpret_cast<ExplicitTemplateArgumentList *>(
420                                                      getNameQualifier() + 1);
421  }
422
423  /// \brief Retrieve the explicit template argument list that followed the
424  /// member template name, if any.
425  const ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() const {
426    return const_cast<DeclRefExpr *>(this)->getExplicitTemplateArgumentList();
427  }
428
429  DeclRefExpr(NestedNameSpecifier *Qualifier, SourceRange QualifierRange,
430              NamedDecl *D, SourceLocation NameLoc,
431              const TemplateArgumentListInfo *TemplateArgs,
432              QualType T);
433
434protected:
435  /// \brief Computes the type- and value-dependence flags for this
436  /// declaration reference expression.
437  void computeDependence();
438
439  DeclRefExpr(StmtClass SC, NamedDecl *d, QualType t, SourceLocation l) :
440    Expr(SC, t, false, false), DecoratedD(d, 0), Loc(l) {
441    computeDependence();
442  }
443
444public:
445  DeclRefExpr(NamedDecl *d, QualType t, SourceLocation l) :
446    Expr(DeclRefExprClass, t, false, false), DecoratedD(d, 0), Loc(l) {
447    computeDependence();
448  }
449
450  /// \brief Construct an empty declaration reference expression.
451  explicit DeclRefExpr(EmptyShell Empty)
452    : Expr(DeclRefExprClass, Empty) { }
453
454  static DeclRefExpr *Create(ASTContext &Context,
455                             NestedNameSpecifier *Qualifier,
456                             SourceRange QualifierRange,
457                             NamedDecl *D,
458                             SourceLocation NameLoc,
459                             QualType T,
460                             const TemplateArgumentListInfo *TemplateArgs = 0);
461
462  NamedDecl *getDecl() { return DecoratedD.getPointer(); }
463  const NamedDecl *getDecl() const { return DecoratedD.getPointer(); }
464  void setDecl(NamedDecl *NewD) { DecoratedD.setPointer(NewD); }
465
466  SourceLocation getLocation() const { return Loc; }
467  void setLocation(SourceLocation L) { Loc = L; }
468  virtual SourceRange getSourceRange() const;
469
470  /// \brief Determine whether this declaration reference was preceded by a
471  /// C++ nested-name-specifier, e.g., \c N::foo.
472  bool hasQualifier() const { return DecoratedD.getInt() & HasQualifierFlag; }
473
474  /// \brief If the name was qualified, retrieves the source range of
475  /// the nested-name-specifier that precedes the name. Otherwise,
476  /// returns an empty source range.
477  SourceRange getQualifierRange() const {
478    if (!hasQualifier())
479      return SourceRange();
480
481    return getNameQualifier()->Range;
482  }
483
484  /// \brief If the name was qualified, retrieves the nested-name-specifier
485  /// that precedes the name. Otherwise, returns NULL.
486  NestedNameSpecifier *getQualifier() const {
487    if (!hasQualifier())
488      return 0;
489
490    return getNameQualifier()->NNS;
491  }
492
493  /// \brief Determines whether this member expression actually had a C++
494  /// template argument list explicitly specified, e.g., x.f<int>.
495  bool hasExplicitTemplateArgumentList() const {
496    return DecoratedD.getInt() & HasExplicitTemplateArgumentListFlag;
497  }
498
499  /// \brief Copies the template arguments (if present) into the given
500  /// structure.
501  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
502    if (hasExplicitTemplateArgumentList())
503      getExplicitTemplateArgumentList()->copyInto(List);
504  }
505
506  /// \brief Retrieve the location of the left angle bracket following the
507  /// member name ('<'), if any.
508  SourceLocation getLAngleLoc() const {
509    if (!hasExplicitTemplateArgumentList())
510      return SourceLocation();
511
512    return getExplicitTemplateArgumentList()->LAngleLoc;
513  }
514
515  /// \brief Retrieve the template arguments provided as part of this
516  /// template-id.
517  const TemplateArgumentLoc *getTemplateArgs() const {
518    if (!hasExplicitTemplateArgumentList())
519      return 0;
520
521    return getExplicitTemplateArgumentList()->getTemplateArgs();
522  }
523
524  /// \brief Retrieve the number of template arguments provided as part of this
525  /// template-id.
526  unsigned getNumTemplateArgs() const {
527    if (!hasExplicitTemplateArgumentList())
528      return 0;
529
530    return getExplicitTemplateArgumentList()->NumTemplateArgs;
531  }
532
533  /// \brief Retrieve the location of the right angle bracket following the
534  /// template arguments ('>').
535  SourceLocation getRAngleLoc() const {
536    if (!hasExplicitTemplateArgumentList())
537      return SourceLocation();
538
539    return getExplicitTemplateArgumentList()->RAngleLoc;
540  }
541
542  static bool classof(const Stmt *T) {
543    return T->getStmtClass() == DeclRefExprClass;
544  }
545  static bool classof(const DeclRefExpr *) { return true; }
546
547  // Iterators
548  virtual child_iterator child_begin();
549  virtual child_iterator child_end();
550};
551
552/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
553class PredefinedExpr : public Expr {
554public:
555  enum IdentType {
556    Func,
557    Function,
558    PrettyFunction
559  };
560
561private:
562  SourceLocation Loc;
563  IdentType Type;
564public:
565  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
566    : Expr(PredefinedExprClass, type, type->isDependentType(),
567           type->isDependentType()), Loc(l), Type(IT) {}
568
569  /// \brief Construct an empty predefined expression.
570  explicit PredefinedExpr(EmptyShell Empty)
571    : Expr(PredefinedExprClass, Empty) { }
572
573  IdentType getIdentType() const { return Type; }
574  void setIdentType(IdentType IT) { Type = IT; }
575
576  SourceLocation getLocation() const { return Loc; }
577  void setLocation(SourceLocation L) { Loc = L; }
578
579  static std::string ComputeName(ASTContext &Context, IdentType IT,
580                                 const Decl *CurrentDecl);
581
582  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
583
584  static bool classof(const Stmt *T) {
585    return T->getStmtClass() == PredefinedExprClass;
586  }
587  static bool classof(const PredefinedExpr *) { return true; }
588
589  // Iterators
590  virtual child_iterator child_begin();
591  virtual child_iterator child_end();
592};
593
594class IntegerLiteral : public Expr {
595  llvm::APInt Value;
596  SourceLocation Loc;
597public:
598  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
599  // or UnsignedLongLongTy
600  IntegerLiteral(const llvm::APInt &V, QualType type, SourceLocation l)
601    : Expr(IntegerLiteralClass, type), Value(V), Loc(l) {
602    assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
603  }
604
605  /// \brief Construct an empty integer literal.
606  explicit IntegerLiteral(EmptyShell Empty)
607    : Expr(IntegerLiteralClass, Empty) { }
608
609  const llvm::APInt &getValue() const { return Value; }
610  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
611
612  /// \brief Retrieve the location of the literal.
613  SourceLocation getLocation() const { return Loc; }
614
615  void setValue(const llvm::APInt &Val) { Value = Val; }
616  void setLocation(SourceLocation Location) { Loc = Location; }
617
618  static bool classof(const Stmt *T) {
619    return T->getStmtClass() == IntegerLiteralClass;
620  }
621  static bool classof(const IntegerLiteral *) { return true; }
622
623  // Iterators
624  virtual child_iterator child_begin();
625  virtual child_iterator child_end();
626};
627
628class CharacterLiteral : public Expr {
629  unsigned Value;
630  SourceLocation Loc;
631  bool IsWide;
632public:
633  // type should be IntTy
634  CharacterLiteral(unsigned value, bool iswide, QualType type, SourceLocation l)
635    : Expr(CharacterLiteralClass, type), Value(value), Loc(l), IsWide(iswide) {
636  }
637
638  /// \brief Construct an empty character literal.
639  CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
640
641  SourceLocation getLocation() const { return Loc; }
642  bool isWide() const { return IsWide; }
643
644  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
645
646  unsigned getValue() const { return Value; }
647
648  void setLocation(SourceLocation Location) { Loc = Location; }
649  void setWide(bool W) { IsWide = W; }
650  void setValue(unsigned Val) { Value = Val; }
651
652  static bool classof(const Stmt *T) {
653    return T->getStmtClass() == CharacterLiteralClass;
654  }
655  static bool classof(const CharacterLiteral *) { return true; }
656
657  // Iterators
658  virtual child_iterator child_begin();
659  virtual child_iterator child_end();
660};
661
662class FloatingLiteral : public Expr {
663  llvm::APFloat Value;
664  bool IsExact : 1;
665  SourceLocation Loc;
666public:
667  FloatingLiteral(const llvm::APFloat &V, bool isexact,
668                  QualType Type, SourceLocation L)
669    : Expr(FloatingLiteralClass, Type), Value(V), IsExact(isexact), Loc(L) {}
670
671  /// \brief Construct an empty floating-point literal.
672  explicit FloatingLiteral(EmptyShell Empty)
673    : Expr(FloatingLiteralClass, Empty), Value(0.0) { }
674
675  const llvm::APFloat &getValue() const { return Value; }
676  void setValue(const llvm::APFloat &Val) { Value = Val; }
677
678  bool isExact() const { return IsExact; }
679  void setExact(bool E) { IsExact = E; }
680
681  /// getValueAsApproximateDouble - This returns the value as an inaccurate
682  /// double.  Note that this may cause loss of precision, but is useful for
683  /// debugging dumps, etc.
684  double getValueAsApproximateDouble() const;
685
686  SourceLocation getLocation() const { return Loc; }
687  void setLocation(SourceLocation L) { Loc = L; }
688
689  // FIXME: The logic for computing the value of a predefined expr should go
690  // into a method here that takes the inner-most code decl (a block, function
691  // or objc method) that the expr lives in.  This would allow sema and codegen
692  // to be consistent for things like sizeof(__func__) etc.
693
694  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
695
696  static bool classof(const Stmt *T) {
697    return T->getStmtClass() == FloatingLiteralClass;
698  }
699  static bool classof(const FloatingLiteral *) { return true; }
700
701  // Iterators
702  virtual child_iterator child_begin();
703  virtual child_iterator child_end();
704};
705
706/// ImaginaryLiteral - We support imaginary integer and floating point literals,
707/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
708/// IntegerLiteral classes.  Instances of this class always have a Complex type
709/// whose element type matches the subexpression.
710///
711class ImaginaryLiteral : public Expr {
712  Stmt *Val;
713public:
714  ImaginaryLiteral(Expr *val, QualType Ty)
715    : Expr(ImaginaryLiteralClass, Ty), Val(val) {}
716
717  /// \brief Build an empty imaginary literal.
718  explicit ImaginaryLiteral(EmptyShell Empty)
719    : Expr(ImaginaryLiteralClass, Empty) { }
720
721  const Expr *getSubExpr() const { return cast<Expr>(Val); }
722  Expr *getSubExpr() { return cast<Expr>(Val); }
723  void setSubExpr(Expr *E) { Val = E; }
724
725  virtual SourceRange getSourceRange() const { return Val->getSourceRange(); }
726  static bool classof(const Stmt *T) {
727    return T->getStmtClass() == ImaginaryLiteralClass;
728  }
729  static bool classof(const ImaginaryLiteral *) { return true; }
730
731  // Iterators
732  virtual child_iterator child_begin();
733  virtual child_iterator child_end();
734};
735
736/// StringLiteral - This represents a string literal expression, e.g. "foo"
737/// or L"bar" (wide strings).  The actual string is returned by getStrData()
738/// is NOT null-terminated, and the length of the string is determined by
739/// calling getByteLength().  The C type for a string is always a
740/// ConstantArrayType.  In C++, the char type is const qualified, in C it is
741/// not.
742///
743/// Note that strings in C can be formed by concatenation of multiple string
744/// literal pptokens in translation phase #6.  This keeps track of the locations
745/// of each of these pieces.
746///
747/// Strings in C can also be truncated and extended by assigning into arrays,
748/// e.g. with constructs like:
749///   char X[2] = "foobar";
750/// In this case, getByteLength() will return 6, but the string literal will
751/// have type "char[2]".
752class StringLiteral : public Expr {
753  const char *StrData;
754  unsigned ByteLength;
755  bool IsWide;
756  unsigned NumConcatenated;
757  SourceLocation TokLocs[1];
758
759  StringLiteral(QualType Ty) : Expr(StringLiteralClass, Ty) {}
760
761protected:
762  virtual void DoDestroy(ASTContext &C);
763
764public:
765  /// This is the "fully general" constructor that allows representation of
766  /// strings formed from multiple concatenated tokens.
767  static StringLiteral *Create(ASTContext &C, const char *StrData,
768                               unsigned ByteLength, bool Wide, QualType Ty,
769                               const SourceLocation *Loc, unsigned NumStrs);
770
771  /// Simple constructor for string literals made from one token.
772  static StringLiteral *Create(ASTContext &C, const char *StrData,
773                               unsigned ByteLength,
774                               bool Wide, QualType Ty, SourceLocation Loc) {
775    return Create(C, StrData, ByteLength, Wide, Ty, &Loc, 1);
776  }
777
778  /// \brief Construct an empty string literal.
779  static StringLiteral *CreateEmpty(ASTContext &C, unsigned NumStrs);
780
781  llvm::StringRef getString() const {
782    return llvm::StringRef(StrData, ByteLength);
783  }
784  // FIXME: These are deprecated, replace with StringRef.
785  const char *getStrData() const { return StrData; }
786  unsigned getByteLength() const { return ByteLength; }
787
788  /// \brief Sets the string data to the given string data.
789  void setString(ASTContext &C, llvm::StringRef Str);
790
791  bool isWide() const { return IsWide; }
792  void setWide(bool W) { IsWide = W; }
793
794  bool containsNonAsciiOrNull() const {
795    llvm::StringRef Str = getString();
796    for (unsigned i = 0, e = Str.size(); i != e; ++i)
797      if (!isascii(Str[i]) || !Str[i])
798        return true;
799    return false;
800  }
801  /// getNumConcatenated - Get the number of string literal tokens that were
802  /// concatenated in translation phase #6 to form this string literal.
803  unsigned getNumConcatenated() const { return NumConcatenated; }
804
805  SourceLocation getStrTokenLoc(unsigned TokNum) const {
806    assert(TokNum < NumConcatenated && "Invalid tok number");
807    return TokLocs[TokNum];
808  }
809  void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
810    assert(TokNum < NumConcatenated && "Invalid tok number");
811    TokLocs[TokNum] = L;
812  }
813
814  typedef const SourceLocation *tokloc_iterator;
815  tokloc_iterator tokloc_begin() const { return TokLocs; }
816  tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; }
817
818  virtual SourceRange getSourceRange() const {
819    return SourceRange(TokLocs[0], TokLocs[NumConcatenated-1]);
820  }
821  static bool classof(const Stmt *T) {
822    return T->getStmtClass() == StringLiteralClass;
823  }
824  static bool classof(const StringLiteral *) { return true; }
825
826  // Iterators
827  virtual child_iterator child_begin();
828  virtual child_iterator child_end();
829};
830
831/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
832/// AST node is only formed if full location information is requested.
833class ParenExpr : public Expr {
834  SourceLocation L, R;
835  Stmt *Val;
836public:
837  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
838    : Expr(ParenExprClass, val->getType(),
839           val->isTypeDependent(), val->isValueDependent()),
840      L(l), R(r), Val(val) {}
841
842  /// \brief Construct an empty parenthesized expression.
843  explicit ParenExpr(EmptyShell Empty)
844    : Expr(ParenExprClass, Empty) { }
845
846  const Expr *getSubExpr() const { return cast<Expr>(Val); }
847  Expr *getSubExpr() { return cast<Expr>(Val); }
848  void setSubExpr(Expr *E) { Val = E; }
849
850  virtual SourceRange getSourceRange() const { return SourceRange(L, R); }
851
852  /// \brief Get the location of the left parentheses '('.
853  SourceLocation getLParen() const { return L; }
854  void setLParen(SourceLocation Loc) { L = Loc; }
855
856  /// \brief Get the location of the right parentheses ')'.
857  SourceLocation getRParen() const { return R; }
858  void setRParen(SourceLocation Loc) { R = Loc; }
859
860  static bool classof(const Stmt *T) {
861    return T->getStmtClass() == ParenExprClass;
862  }
863  static bool classof(const ParenExpr *) { return true; }
864
865  // Iterators
866  virtual child_iterator child_begin();
867  virtual child_iterator child_end();
868};
869
870
871/// UnaryOperator - This represents the unary-expression's (except sizeof and
872/// alignof), the postinc/postdec operators from postfix-expression, and various
873/// extensions.
874///
875/// Notes on various nodes:
876///
877/// Real/Imag - These return the real/imag part of a complex operand.  If
878///   applied to a non-complex value, the former returns its operand and the
879///   later returns zero in the type of the operand.
880///
881/// __builtin_offsetof(type, a.b[10]) is represented as a unary operator whose
882///   subexpression is a compound literal with the various MemberExpr and
883///   ArraySubscriptExpr's applied to it.
884///
885class UnaryOperator : public Expr {
886public:
887  // Note that additions to this should also update the StmtVisitor class.
888  enum Opcode {
889    PostInc, PostDec, // [C99 6.5.2.4] Postfix increment and decrement operators
890    PreInc, PreDec,   // [C99 6.5.3.1] Prefix increment and decrement operators.
891    AddrOf, Deref,    // [C99 6.5.3.2] Address and indirection operators.
892    Plus, Minus,      // [C99 6.5.3.3] Unary arithmetic operators.
893    Not, LNot,        // [C99 6.5.3.3] Unary arithmetic operators.
894    Real, Imag,       // "__real expr"/"__imag expr" Extension.
895    Extension,        // __extension__ marker.
896    OffsetOf          // __builtin_offsetof
897  };
898private:
899  Stmt *Val;
900  Opcode Opc;
901  SourceLocation Loc;
902public:
903
904  UnaryOperator(Expr *input, Opcode opc, QualType type, SourceLocation l)
905    : Expr(UnaryOperatorClass, type,
906           input->isTypeDependent() && opc != OffsetOf,
907           input->isValueDependent()),
908      Val(input), Opc(opc), Loc(l) {}
909
910  /// \brief Build an empty unary operator.
911  explicit UnaryOperator(EmptyShell Empty)
912    : Expr(UnaryOperatorClass, Empty), Opc(AddrOf) { }
913
914  Opcode getOpcode() const { return Opc; }
915  void setOpcode(Opcode O) { Opc = O; }
916
917  Expr *getSubExpr() const { return cast<Expr>(Val); }
918  void setSubExpr(Expr *E) { Val = E; }
919
920  /// getOperatorLoc - Return the location of the operator.
921  SourceLocation getOperatorLoc() const { return Loc; }
922  void setOperatorLoc(SourceLocation L) { Loc = L; }
923
924  /// isPostfix - Return true if this is a postfix operation, like x++.
925  static bool isPostfix(Opcode Op) {
926    return Op == PostInc || Op == PostDec;
927  }
928
929  /// isPostfix - Return true if this is a prefix operation, like --x.
930  static bool isPrefix(Opcode Op) {
931    return Op == PreInc || Op == PreDec;
932  }
933
934  bool isPrefix() const { return isPrefix(Opc); }
935  bool isPostfix() const { return isPostfix(Opc); }
936  bool isIncrementOp() const {return Opc==PreInc || Opc==PostInc; }
937  bool isIncrementDecrementOp() const { return Opc>=PostInc && Opc<=PreDec; }
938  bool isOffsetOfOp() const { return Opc == OffsetOf; }
939  static bool isArithmeticOp(Opcode Op) { return Op >= Plus && Op <= LNot; }
940  bool isArithmeticOp() const { return isArithmeticOp(Opc); }
941
942  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
943  /// corresponds to, e.g. "sizeof" or "[pre]++"
944  static const char *getOpcodeStr(Opcode Op);
945
946  /// \brief Retrieve the unary opcode that corresponds to the given
947  /// overloaded operator.
948  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
949
950  /// \brief Retrieve the overloaded operator kind that corresponds to
951  /// the given unary opcode.
952  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
953
954  virtual SourceRange getSourceRange() const {
955    if (isPostfix())
956      return SourceRange(Val->getLocStart(), Loc);
957    else
958      return SourceRange(Loc, Val->getLocEnd());
959  }
960  virtual SourceLocation getExprLoc() const { return Loc; }
961
962  static bool classof(const Stmt *T) {
963    return T->getStmtClass() == UnaryOperatorClass;
964  }
965  static bool classof(const UnaryOperator *) { return true; }
966
967  // Iterators
968  virtual child_iterator child_begin();
969  virtual child_iterator child_end();
970};
971
972/// SizeOfAlignOfExpr - [C99 6.5.3.4] - This is for sizeof/alignof, both of
973/// types and expressions.
974class SizeOfAlignOfExpr : public Expr {
975  bool isSizeof : 1;  // true if sizeof, false if alignof.
976  bool isType : 1;    // true if operand is a type, false if an expression
977  union {
978    DeclaratorInfo *Ty;
979    Stmt *Ex;
980  } Argument;
981  SourceLocation OpLoc, RParenLoc;
982
983protected:
984  virtual void DoDestroy(ASTContext& C);
985
986public:
987  SizeOfAlignOfExpr(bool issizeof, DeclaratorInfo *DInfo,
988                    QualType resultType, SourceLocation op,
989                    SourceLocation rp) :
990      Expr(SizeOfAlignOfExprClass, resultType,
991           false, // Never type-dependent (C++ [temp.dep.expr]p3).
992           // Value-dependent if the argument is type-dependent.
993           DInfo->getType()->isDependentType()),
994      isSizeof(issizeof), isType(true), OpLoc(op), RParenLoc(rp) {
995    Argument.Ty = DInfo;
996  }
997
998  SizeOfAlignOfExpr(bool issizeof, Expr *E,
999                    QualType resultType, SourceLocation op,
1000                    SourceLocation rp) :
1001      Expr(SizeOfAlignOfExprClass, resultType,
1002           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1003           // Value-dependent if the argument is type-dependent.
1004           E->isTypeDependent()),
1005      isSizeof(issizeof), isType(false), OpLoc(op), RParenLoc(rp) {
1006    Argument.Ex = E;
1007  }
1008
1009  /// \brief Construct an empty sizeof/alignof expression.
1010  explicit SizeOfAlignOfExpr(EmptyShell Empty)
1011    : Expr(SizeOfAlignOfExprClass, Empty) { }
1012
1013  bool isSizeOf() const { return isSizeof; }
1014  void setSizeof(bool S) { isSizeof = S; }
1015
1016  bool isArgumentType() const { return isType; }
1017  QualType getArgumentType() const {
1018    return getArgumentTypeInfo()->getType();
1019  }
1020  DeclaratorInfo *getArgumentTypeInfo() const {
1021    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
1022    return Argument.Ty;
1023  }
1024  Expr *getArgumentExpr() {
1025    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
1026    return static_cast<Expr*>(Argument.Ex);
1027  }
1028  const Expr *getArgumentExpr() const {
1029    return const_cast<SizeOfAlignOfExpr*>(this)->getArgumentExpr();
1030  }
1031
1032  void setArgument(Expr *E) { Argument.Ex = E; isType = false; }
1033  void setArgument(DeclaratorInfo *DInfo) {
1034    Argument.Ty = DInfo;
1035    isType = true;
1036  }
1037
1038  /// Gets the argument type, or the type of the argument expression, whichever
1039  /// is appropriate.
1040  QualType getTypeOfArgument() const {
1041    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
1042  }
1043
1044  SourceLocation getOperatorLoc() const { return OpLoc; }
1045  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
1046
1047  SourceLocation getRParenLoc() const { return RParenLoc; }
1048  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1049
1050  virtual SourceRange getSourceRange() const {
1051    return SourceRange(OpLoc, RParenLoc);
1052  }
1053
1054  static bool classof(const Stmt *T) {
1055    return T->getStmtClass() == SizeOfAlignOfExprClass;
1056  }
1057  static bool classof(const SizeOfAlignOfExpr *) { return true; }
1058
1059  // Iterators
1060  virtual child_iterator child_begin();
1061  virtual child_iterator child_end();
1062};
1063
1064//===----------------------------------------------------------------------===//
1065// Postfix Operators.
1066//===----------------------------------------------------------------------===//
1067
1068/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
1069class ArraySubscriptExpr : public Expr {
1070  enum { LHS, RHS, END_EXPR=2 };
1071  Stmt* SubExprs[END_EXPR];
1072  SourceLocation RBracketLoc;
1073public:
1074  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
1075                     SourceLocation rbracketloc)
1076  : Expr(ArraySubscriptExprClass, t,
1077         lhs->isTypeDependent() || rhs->isTypeDependent(),
1078         lhs->isValueDependent() || rhs->isValueDependent()),
1079    RBracketLoc(rbracketloc) {
1080    SubExprs[LHS] = lhs;
1081    SubExprs[RHS] = rhs;
1082  }
1083
1084  /// \brief Create an empty array subscript expression.
1085  explicit ArraySubscriptExpr(EmptyShell Shell)
1086    : Expr(ArraySubscriptExprClass, Shell) { }
1087
1088  /// An array access can be written A[4] or 4[A] (both are equivalent).
1089  /// - getBase() and getIdx() always present the normalized view: A[4].
1090  ///    In this case getBase() returns "A" and getIdx() returns "4".
1091  /// - getLHS() and getRHS() present the syntactic view. e.g. for
1092  ///    4[A] getLHS() returns "4".
1093  /// Note: Because vector element access is also written A[4] we must
1094  /// predicate the format conversion in getBase and getIdx only on the
1095  /// the type of the RHS, as it is possible for the LHS to be a vector of
1096  /// integer type
1097  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
1098  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1099  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1100
1101  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
1102  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1103  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1104
1105  Expr *getBase() {
1106    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1107  }
1108
1109  const Expr *getBase() const {
1110    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1111  }
1112
1113  Expr *getIdx() {
1114    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1115  }
1116
1117  const Expr *getIdx() const {
1118    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1119  }
1120
1121  virtual SourceRange getSourceRange() const {
1122    return SourceRange(getLHS()->getLocStart(), RBracketLoc);
1123  }
1124
1125  SourceLocation getRBracketLoc() const { return RBracketLoc; }
1126  void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
1127
1128  virtual SourceLocation getExprLoc() const { return getBase()->getExprLoc(); }
1129
1130  static bool classof(const Stmt *T) {
1131    return T->getStmtClass() == ArraySubscriptExprClass;
1132  }
1133  static bool classof(const ArraySubscriptExpr *) { return true; }
1134
1135  // Iterators
1136  virtual child_iterator child_begin();
1137  virtual child_iterator child_end();
1138};
1139
1140
1141/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
1142/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
1143/// while its subclasses may represent alternative syntax that (semantically)
1144/// results in a function call. For example, CXXOperatorCallExpr is
1145/// a subclass for overloaded operator calls that use operator syntax, e.g.,
1146/// "str1 + str2" to resolve to a function call.
1147class CallExpr : public Expr {
1148  enum { FN=0, ARGS_START=1 };
1149  Stmt **SubExprs;
1150  unsigned NumArgs;
1151  SourceLocation RParenLoc;
1152
1153protected:
1154  // This version of the constructor is for derived classes.
1155  CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args, unsigned numargs,
1156           QualType t, SourceLocation rparenloc);
1157
1158  virtual void DoDestroy(ASTContext& C);
1159
1160public:
1161  CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, QualType t,
1162           SourceLocation rparenloc);
1163
1164  /// \brief Build an empty call expression.
1165  CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty);
1166
1167  ~CallExpr() {}
1168
1169  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
1170  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
1171  void setCallee(Expr *F) { SubExprs[FN] = F; }
1172
1173  /// \brief If the callee is a FunctionDecl, return it. Otherwise return 0.
1174  FunctionDecl *getDirectCallee();
1175  const FunctionDecl *getDirectCallee() const {
1176    return const_cast<CallExpr*>(this)->getDirectCallee();
1177  }
1178
1179  /// getNumArgs - Return the number of actual arguments to this call.
1180  ///
1181  unsigned getNumArgs() const { return NumArgs; }
1182
1183  /// getArg - Return the specified argument.
1184  Expr *getArg(unsigned Arg) {
1185    assert(Arg < NumArgs && "Arg access out of range!");
1186    return cast<Expr>(SubExprs[Arg+ARGS_START]);
1187  }
1188  const Expr *getArg(unsigned Arg) const {
1189    assert(Arg < NumArgs && "Arg access out of range!");
1190    return cast<Expr>(SubExprs[Arg+ARGS_START]);
1191  }
1192
1193  /// setArg - Set the specified argument.
1194  void setArg(unsigned Arg, Expr *ArgExpr) {
1195    assert(Arg < NumArgs && "Arg access out of range!");
1196    SubExprs[Arg+ARGS_START] = ArgExpr;
1197  }
1198
1199  /// setNumArgs - This changes the number of arguments present in this call.
1200  /// Any orphaned expressions are deleted by this, and any new operands are set
1201  /// to null.
1202  void setNumArgs(ASTContext& C, unsigned NumArgs);
1203
1204  typedef ExprIterator arg_iterator;
1205  typedef ConstExprIterator const_arg_iterator;
1206
1207  arg_iterator arg_begin() { return SubExprs+ARGS_START; }
1208  arg_iterator arg_end() { return SubExprs+ARGS_START+getNumArgs(); }
1209  const_arg_iterator arg_begin() const { return SubExprs+ARGS_START; }
1210  const_arg_iterator arg_end() const { return SubExprs+ARGS_START+getNumArgs();}
1211
1212  /// getNumCommas - Return the number of commas that must have been present in
1213  /// this function call.
1214  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
1215
1216  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
1217  /// not, return 0.
1218  unsigned isBuiltinCall(ASTContext &Context) const;
1219
1220  /// getCallReturnType - Get the return type of the call expr. This is not
1221  /// always the type of the expr itself, if the return type is a reference
1222  /// type.
1223  QualType getCallReturnType() const;
1224
1225  SourceLocation getRParenLoc() const { return RParenLoc; }
1226  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1227
1228  virtual SourceRange getSourceRange() const {
1229    return SourceRange(getCallee()->getLocStart(), RParenLoc);
1230  }
1231
1232  static bool classof(const Stmt *T) {
1233    return T->getStmtClass() == CallExprClass ||
1234           T->getStmtClass() == CXXOperatorCallExprClass ||
1235           T->getStmtClass() == CXXMemberCallExprClass;
1236  }
1237  static bool classof(const CallExpr *) { return true; }
1238  static bool classof(const CXXOperatorCallExpr *) { return true; }
1239  static bool classof(const CXXMemberCallExpr *) { return true; }
1240
1241  // Iterators
1242  virtual child_iterator child_begin();
1243  virtual child_iterator child_end();
1244};
1245
1246/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.  X->F and X.F.
1247///
1248class MemberExpr : public Expr {
1249  /// Base - the expression for the base pointer or structure references.  In
1250  /// X.F, this is "X".
1251  Stmt *Base;
1252
1253  /// MemberDecl - This is the decl being referenced by the field/member name.
1254  /// In X.F, this is the decl referenced by F.
1255  ValueDecl *MemberDecl;
1256
1257  /// MemberLoc - This is the location of the member name.
1258  SourceLocation MemberLoc;
1259
1260  /// IsArrow - True if this is "X->F", false if this is "X.F".
1261  bool IsArrow : 1;
1262
1263  /// \brief True if this member expression used a nested-name-specifier to
1264  /// refer to the member, e.g., "x->Base::f". When true, a NameQualifier
1265  /// structure is allocated immediately after the MemberExpr.
1266  bool HasQualifier : 1;
1267
1268  /// \brief True if this member expression specified a template argument list
1269  /// explicitly, e.g., x->f<int>. When true, an ExplicitTemplateArgumentList
1270  /// structure (and its TemplateArguments) are allocated immediately after
1271  /// the MemberExpr or, if the member expression also has a qualifier, after
1272  /// the NameQualifier structure.
1273  bool HasExplicitTemplateArgumentList : 1;
1274
1275  /// \brief Retrieve the qualifier that preceded the member name, if any.
1276  NameQualifier *getMemberQualifier() {
1277    if (!HasQualifier)
1278      return 0;
1279
1280    return reinterpret_cast<NameQualifier *> (this + 1);
1281  }
1282
1283  /// \brief Retrieve the qualifier that preceded the member name, if any.
1284  const NameQualifier *getMemberQualifier() const {
1285    return const_cast<MemberExpr *>(this)->getMemberQualifier();
1286  }
1287
1288  /// \brief Retrieve the explicit template argument list that followed the
1289  /// member template name, if any.
1290  ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() {
1291    if (!HasExplicitTemplateArgumentList)
1292      return 0;
1293
1294    if (!HasQualifier)
1295      return reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
1296
1297    return reinterpret_cast<ExplicitTemplateArgumentList *>(
1298                                                      getMemberQualifier() + 1);
1299  }
1300
1301  /// \brief Retrieve the explicit template argument list that followed the
1302  /// member template name, if any.
1303  const ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() const {
1304    return const_cast<MemberExpr *>(this)->getExplicitTemplateArgumentList();
1305  }
1306
1307  MemberExpr(Expr *base, bool isarrow, NestedNameSpecifier *qual,
1308             SourceRange qualrange, ValueDecl *memberdecl, SourceLocation l,
1309             const TemplateArgumentListInfo *targs, QualType ty);
1310
1311public:
1312  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
1313             SourceLocation l, QualType ty)
1314    : Expr(MemberExprClass, ty,
1315           base->isTypeDependent(), base->isValueDependent()),
1316      Base(base), MemberDecl(memberdecl), MemberLoc(l), IsArrow(isarrow),
1317      HasQualifier(false), HasExplicitTemplateArgumentList(false) {}
1318
1319  /// \brief Build an empty member reference expression.
1320  explicit MemberExpr(EmptyShell Empty)
1321    : Expr(MemberExprClass, Empty), HasQualifier(false),
1322      HasExplicitTemplateArgumentList(false) { }
1323
1324  static MemberExpr *Create(ASTContext &C, Expr *base, bool isarrow,
1325                            NestedNameSpecifier *qual, SourceRange qualrange,
1326                            ValueDecl *memberdecl,
1327                            SourceLocation l,
1328                            const TemplateArgumentListInfo *targs,
1329                            QualType ty);
1330
1331  void setBase(Expr *E) { Base = E; }
1332  Expr *getBase() const { return cast<Expr>(Base); }
1333
1334  /// \brief Retrieve the member declaration to which this expression refers.
1335  ///
1336  /// The returned declaration will either be a FieldDecl or (in C++)
1337  /// a CXXMethodDecl.
1338  ValueDecl *getMemberDecl() const { return MemberDecl; }
1339  void setMemberDecl(ValueDecl *D) { MemberDecl = D; }
1340
1341  /// \brief Determines whether this member expression actually had
1342  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
1343  /// x->Base::foo.
1344  bool hasQualifier() const { return HasQualifier; }
1345
1346  /// \brief If the member name was qualified, retrieves the source range of
1347  /// the nested-name-specifier that precedes the member name. Otherwise,
1348  /// returns an empty source range.
1349  SourceRange getQualifierRange() const {
1350    if (!HasQualifier)
1351      return SourceRange();
1352
1353    return getMemberQualifier()->Range;
1354  }
1355
1356  /// \brief If the member name was qualified, retrieves the
1357  /// nested-name-specifier that precedes the member name. Otherwise, returns
1358  /// NULL.
1359  NestedNameSpecifier *getQualifier() const {
1360    if (!HasQualifier)
1361      return 0;
1362
1363    return getMemberQualifier()->NNS;
1364  }
1365
1366  /// \brief Determines whether this member expression actually had a C++
1367  /// template argument list explicitly specified, e.g., x.f<int>.
1368  bool hasExplicitTemplateArgumentList() const {
1369    return HasExplicitTemplateArgumentList;
1370  }
1371
1372  /// \brief Copies the template arguments (if present) into the given
1373  /// structure.
1374  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1375    if (hasExplicitTemplateArgumentList())
1376      getExplicitTemplateArgumentList()->copyInto(List);
1377  }
1378
1379  /// \brief Retrieve the location of the left angle bracket following the
1380  /// member name ('<'), if any.
1381  SourceLocation getLAngleLoc() const {
1382    if (!HasExplicitTemplateArgumentList)
1383      return SourceLocation();
1384
1385    return getExplicitTemplateArgumentList()->LAngleLoc;
1386  }
1387
1388  /// \brief Retrieve the template arguments provided as part of this
1389  /// template-id.
1390  const TemplateArgumentLoc *getTemplateArgs() const {
1391    if (!HasExplicitTemplateArgumentList)
1392      return 0;
1393
1394    return getExplicitTemplateArgumentList()->getTemplateArgs();
1395  }
1396
1397  /// \brief Retrieve the number of template arguments provided as part of this
1398  /// template-id.
1399  unsigned getNumTemplateArgs() const {
1400    if (!HasExplicitTemplateArgumentList)
1401      return 0;
1402
1403    return getExplicitTemplateArgumentList()->NumTemplateArgs;
1404  }
1405
1406  /// \brief Retrieve the location of the right angle bracket following the
1407  /// template arguments ('>').
1408  SourceLocation getRAngleLoc() const {
1409    if (!HasExplicitTemplateArgumentList)
1410      return SourceLocation();
1411
1412    return getExplicitTemplateArgumentList()->RAngleLoc;
1413  }
1414
1415  bool isArrow() const { return IsArrow; }
1416  void setArrow(bool A) { IsArrow = A; }
1417
1418  /// getMemberLoc - Return the location of the "member", in X->F, it is the
1419  /// location of 'F'.
1420  SourceLocation getMemberLoc() const { return MemberLoc; }
1421  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
1422
1423  virtual SourceRange getSourceRange() const {
1424    // If we have an implicit base (like a C++ implicit this),
1425    // make sure not to return its location
1426    SourceLocation EndLoc = MemberLoc;
1427    if (HasExplicitTemplateArgumentList)
1428      EndLoc = getRAngleLoc();
1429
1430    SourceLocation BaseLoc = getBase()->getLocStart();
1431    if (BaseLoc.isInvalid())
1432      return SourceRange(MemberLoc, EndLoc);
1433    return SourceRange(BaseLoc, EndLoc);
1434  }
1435
1436  virtual SourceLocation getExprLoc() const { return MemberLoc; }
1437
1438  static bool classof(const Stmt *T) {
1439    return T->getStmtClass() == MemberExprClass;
1440  }
1441  static bool classof(const MemberExpr *) { return true; }
1442
1443  // Iterators
1444  virtual child_iterator child_begin();
1445  virtual child_iterator child_end();
1446};
1447
1448/// CompoundLiteralExpr - [C99 6.5.2.5]
1449///
1450class CompoundLiteralExpr : public Expr {
1451  /// LParenLoc - If non-null, this is the location of the left paren in a
1452  /// compound literal like "(int){4}".  This can be null if this is a
1453  /// synthesized compound expression.
1454  SourceLocation LParenLoc;
1455  Stmt *Init;
1456  bool FileScope;
1457public:
1458  CompoundLiteralExpr(SourceLocation lparenloc, QualType ty, Expr *init,
1459                      bool fileScope)
1460    : Expr(CompoundLiteralExprClass, ty), LParenLoc(lparenloc), Init(init),
1461      FileScope(fileScope) {}
1462
1463  /// \brief Construct an empty compound literal.
1464  explicit CompoundLiteralExpr(EmptyShell Empty)
1465    : Expr(CompoundLiteralExprClass, Empty) { }
1466
1467  const Expr *getInitializer() const { return cast<Expr>(Init); }
1468  Expr *getInitializer() { return cast<Expr>(Init); }
1469  void setInitializer(Expr *E) { Init = E; }
1470
1471  bool isFileScope() const { return FileScope; }
1472  void setFileScope(bool FS) { FileScope = FS; }
1473
1474  SourceLocation getLParenLoc() const { return LParenLoc; }
1475  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
1476
1477  virtual SourceRange getSourceRange() const {
1478    // FIXME: Init should never be null.
1479    if (!Init)
1480      return SourceRange();
1481    if (LParenLoc.isInvalid())
1482      return Init->getSourceRange();
1483    return SourceRange(LParenLoc, Init->getLocEnd());
1484  }
1485
1486  static bool classof(const Stmt *T) {
1487    return T->getStmtClass() == CompoundLiteralExprClass;
1488  }
1489  static bool classof(const CompoundLiteralExpr *) { return true; }
1490
1491  // Iterators
1492  virtual child_iterator child_begin();
1493  virtual child_iterator child_end();
1494};
1495
1496/// CastExpr - Base class for type casts, including both implicit
1497/// casts (ImplicitCastExpr) and explicit casts that have some
1498/// representation in the source code (ExplicitCastExpr's derived
1499/// classes).
1500class CastExpr : public Expr {
1501public:
1502  /// CastKind - the kind of cast this represents.
1503  enum CastKind {
1504    /// CK_Unknown - Unknown cast kind.
1505    /// FIXME: The goal is to get rid of this and make all casts have a
1506    /// kind so that the AST client doesn't have to try to figure out what's
1507    /// going on.
1508    CK_Unknown,
1509
1510    /// CK_BitCast - Used for reinterpret_cast.
1511    CK_BitCast,
1512
1513    /// CK_NoOp - Used for const_cast.
1514    CK_NoOp,
1515
1516    /// CK_BaseToDerived - Base to derived class casts.
1517    CK_BaseToDerived,
1518
1519    /// CK_DerivedToBase - Derived to base class casts.
1520    CK_DerivedToBase,
1521
1522    /// CK_Dynamic - Dynamic cast.
1523    CK_Dynamic,
1524
1525    /// CK_ToUnion - Cast to union (GCC extension).
1526    CK_ToUnion,
1527
1528    /// CK_ArrayToPointerDecay - Array to pointer decay.
1529    CK_ArrayToPointerDecay,
1530
1531    // CK_FunctionToPointerDecay - Function to pointer decay.
1532    CK_FunctionToPointerDecay,
1533
1534    /// CK_NullToMemberPointer - Null pointer to member pointer.
1535    CK_NullToMemberPointer,
1536
1537    /// CK_BaseToDerivedMemberPointer - Member pointer in base class to
1538    /// member pointer in derived class.
1539    CK_BaseToDerivedMemberPointer,
1540
1541    /// CK_DerivedToBaseMemberPointer - Member pointer in derived class to
1542    /// member pointer in base class.
1543    CK_DerivedToBaseMemberPointer,
1544
1545    /// CK_UserDefinedConversion - Conversion using a user defined type
1546    /// conversion function.
1547    CK_UserDefinedConversion,
1548
1549    /// CK_ConstructorConversion - Conversion by constructor
1550    CK_ConstructorConversion,
1551
1552    /// CK_IntegralToPointer - Integral to pointer
1553    CK_IntegralToPointer,
1554
1555    /// CK_PointerToIntegral - Pointer to integral
1556    CK_PointerToIntegral,
1557
1558    /// CK_ToVoid - Cast to void.
1559    CK_ToVoid,
1560
1561    /// CK_VectorSplat - Casting from an integer/floating type to an extended
1562    /// vector type with the same element type as the src type. Splats the
1563    /// src expression into the destination expression.
1564    CK_VectorSplat,
1565
1566    /// CK_IntegralCast - Casting between integral types of different size.
1567    CK_IntegralCast,
1568
1569    /// CK_IntegralToFloating - Integral to floating point.
1570    CK_IntegralToFloating,
1571
1572    /// CK_FloatingToIntegral - Floating point to integral.
1573    CK_FloatingToIntegral,
1574
1575    /// CK_FloatingCast - Casting between floating types of different size.
1576    CK_FloatingCast,
1577
1578    /// CK_MemberPointerToBoolean - Member pointer to boolean
1579    CK_MemberPointerToBoolean
1580
1581  };
1582
1583private:
1584  CastKind Kind;
1585  Stmt *Op;
1586protected:
1587  CastExpr(StmtClass SC, QualType ty, const CastKind kind, Expr *op) :
1588    Expr(SC, ty,
1589         // Cast expressions are type-dependent if the type is
1590         // dependent (C++ [temp.dep.expr]p3).
1591         ty->isDependentType(),
1592         // Cast expressions are value-dependent if the type is
1593         // dependent or if the subexpression is value-dependent.
1594         ty->isDependentType() || (op && op->isValueDependent())),
1595    Kind(kind), Op(op) {}
1596
1597  /// \brief Construct an empty cast.
1598  CastExpr(StmtClass SC, EmptyShell Empty)
1599    : Expr(SC, Empty) { }
1600
1601public:
1602  CastKind getCastKind() const { return Kind; }
1603  void setCastKind(CastKind K) { Kind = K; }
1604  const char *getCastKindName() const;
1605
1606  Expr *getSubExpr() { return cast<Expr>(Op); }
1607  const Expr *getSubExpr() const { return cast<Expr>(Op); }
1608  void setSubExpr(Expr *E) { Op = E; }
1609
1610  static bool classof(const Stmt *T) {
1611    StmtClass SC = T->getStmtClass();
1612    if (SC >= CXXNamedCastExprClass && SC <= CXXFunctionalCastExprClass)
1613      return true;
1614
1615    if (SC >= ImplicitCastExprClass && SC <= CStyleCastExprClass)
1616      return true;
1617
1618    return false;
1619  }
1620  static bool classof(const CastExpr *) { return true; }
1621
1622  // Iterators
1623  virtual child_iterator child_begin();
1624  virtual child_iterator child_end();
1625};
1626
1627/// ImplicitCastExpr - Allows us to explicitly represent implicit type
1628/// conversions, which have no direct representation in the original
1629/// source code. For example: converting T[]->T*, void f()->void
1630/// (*f)(), float->double, short->int, etc.
1631///
1632/// In C, implicit casts always produce rvalues. However, in C++, an
1633/// implicit cast whose result is being bound to a reference will be
1634/// an lvalue. For example:
1635///
1636/// @code
1637/// class Base { };
1638/// class Derived : public Base { };
1639/// void f(Derived d) {
1640///   Base& b = d; // initializer is an ImplicitCastExpr to an lvalue of type Base
1641/// }
1642/// @endcode
1643class ImplicitCastExpr : public CastExpr {
1644  /// LvalueCast - Whether this cast produces an lvalue.
1645  bool LvalueCast;
1646
1647public:
1648  ImplicitCastExpr(QualType ty, CastKind kind, Expr *op, bool Lvalue) :
1649    CastExpr(ImplicitCastExprClass, ty, kind, op), LvalueCast(Lvalue) { }
1650
1651  /// \brief Construct an empty implicit cast.
1652  explicit ImplicitCastExpr(EmptyShell Shell)
1653    : CastExpr(ImplicitCastExprClass, Shell) { }
1654
1655
1656  virtual SourceRange getSourceRange() const {
1657    return getSubExpr()->getSourceRange();
1658  }
1659
1660  /// isLvalueCast - Whether this cast produces an lvalue.
1661  bool isLvalueCast() const { return LvalueCast; }
1662
1663  /// setLvalueCast - Set whether this cast produces an lvalue.
1664  void setLvalueCast(bool Lvalue) { LvalueCast = Lvalue; }
1665
1666  static bool classof(const Stmt *T) {
1667    return T->getStmtClass() == ImplicitCastExprClass;
1668  }
1669  static bool classof(const ImplicitCastExpr *) { return true; }
1670};
1671
1672/// ExplicitCastExpr - An explicit cast written in the source
1673/// code.
1674///
1675/// This class is effectively an abstract class, because it provides
1676/// the basic representation of an explicitly-written cast without
1677/// specifying which kind of cast (C cast, functional cast, static
1678/// cast, etc.) was written; specific derived classes represent the
1679/// particular style of cast and its location information.
1680///
1681/// Unlike implicit casts, explicit cast nodes have two different
1682/// types: the type that was written into the source code, and the
1683/// actual type of the expression as determined by semantic
1684/// analysis. These types may differ slightly. For example, in C++ one
1685/// can cast to a reference type, which indicates that the resulting
1686/// expression will be an lvalue. The reference type, however, will
1687/// not be used as the type of the expression.
1688class ExplicitCastExpr : public CastExpr {
1689  /// TypeAsWritten - The type that this expression is casting to, as
1690  /// written in the source code.
1691  QualType TypeAsWritten;
1692
1693protected:
1694  ExplicitCastExpr(StmtClass SC, QualType exprTy, CastKind kind,
1695                   Expr *op, QualType writtenTy)
1696    : CastExpr(SC, exprTy, kind, op), TypeAsWritten(writtenTy) {}
1697
1698  /// \brief Construct an empty explicit cast.
1699  ExplicitCastExpr(StmtClass SC, EmptyShell Shell)
1700    : CastExpr(SC, Shell) { }
1701
1702public:
1703  /// getTypeAsWritten - Returns the type that this expression is
1704  /// casting to, as written in the source code.
1705  QualType getTypeAsWritten() const { return TypeAsWritten; }
1706  void setTypeAsWritten(QualType T) { TypeAsWritten = T; }
1707
1708  static bool classof(const Stmt *T) {
1709    StmtClass SC = T->getStmtClass();
1710    if (SC >= ExplicitCastExprClass && SC <= CStyleCastExprClass)
1711      return true;
1712    if (SC >= CXXNamedCastExprClass && SC <= CXXFunctionalCastExprClass)
1713      return true;
1714
1715    return false;
1716  }
1717  static bool classof(const ExplicitCastExpr *) { return true; }
1718};
1719
1720/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
1721/// cast in C++ (C++ [expr.cast]), which uses the syntax
1722/// (Type)expr. For example: @c (int)f.
1723class CStyleCastExpr : public ExplicitCastExpr {
1724  SourceLocation LPLoc; // the location of the left paren
1725  SourceLocation RPLoc; // the location of the right paren
1726public:
1727  CStyleCastExpr(QualType exprTy, CastKind kind, Expr *op, QualType writtenTy,
1728                    SourceLocation l, SourceLocation r) :
1729    ExplicitCastExpr(CStyleCastExprClass, exprTy, kind, op, writtenTy),
1730    LPLoc(l), RPLoc(r) {}
1731
1732  /// \brief Construct an empty C-style explicit cast.
1733  explicit CStyleCastExpr(EmptyShell Shell)
1734    : ExplicitCastExpr(CStyleCastExprClass, Shell) { }
1735
1736  SourceLocation getLParenLoc() const { return LPLoc; }
1737  void setLParenLoc(SourceLocation L) { LPLoc = L; }
1738
1739  SourceLocation getRParenLoc() const { return RPLoc; }
1740  void setRParenLoc(SourceLocation L) { RPLoc = L; }
1741
1742  virtual SourceRange getSourceRange() const {
1743    return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd());
1744  }
1745  static bool classof(const Stmt *T) {
1746    return T->getStmtClass() == CStyleCastExprClass;
1747  }
1748  static bool classof(const CStyleCastExpr *) { return true; }
1749};
1750
1751/// \brief A builtin binary operation expression such as "x + y" or "x <= y".
1752///
1753/// This expression node kind describes a builtin binary operation,
1754/// such as "x + y" for integer values "x" and "y". The operands will
1755/// already have been converted to appropriate types (e.g., by
1756/// performing promotions or conversions).
1757///
1758/// In C++, where operators may be overloaded, a different kind of
1759/// expression node (CXXOperatorCallExpr) is used to express the
1760/// invocation of an overloaded operator with operator syntax. Within
1761/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
1762/// used to store an expression "x + y" depends on the subexpressions
1763/// for x and y. If neither x or y is type-dependent, and the "+"
1764/// operator resolves to a built-in operation, BinaryOperator will be
1765/// used to express the computation (x and y may still be
1766/// value-dependent). If either x or y is type-dependent, or if the
1767/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
1768/// be used to express the computation.
1769class BinaryOperator : public Expr {
1770public:
1771  enum Opcode {
1772    // Operators listed in order of precedence.
1773    // Note that additions to this should also update the StmtVisitor class.
1774    PtrMemD, PtrMemI, // [C++ 5.5] Pointer-to-member operators.
1775    Mul, Div, Rem,    // [C99 6.5.5] Multiplicative operators.
1776    Add, Sub,         // [C99 6.5.6] Additive operators.
1777    Shl, Shr,         // [C99 6.5.7] Bitwise shift operators.
1778    LT, GT, LE, GE,   // [C99 6.5.8] Relational operators.
1779    EQ, NE,           // [C99 6.5.9] Equality operators.
1780    And,              // [C99 6.5.10] Bitwise AND operator.
1781    Xor,              // [C99 6.5.11] Bitwise XOR operator.
1782    Or,               // [C99 6.5.12] Bitwise OR operator.
1783    LAnd,             // [C99 6.5.13] Logical AND operator.
1784    LOr,              // [C99 6.5.14] Logical OR operator.
1785    Assign, MulAssign,// [C99 6.5.16] Assignment operators.
1786    DivAssign, RemAssign,
1787    AddAssign, SubAssign,
1788    ShlAssign, ShrAssign,
1789    AndAssign, XorAssign,
1790    OrAssign,
1791    Comma             // [C99 6.5.17] Comma operator.
1792  };
1793private:
1794  enum { LHS, RHS, END_EXPR };
1795  Stmt* SubExprs[END_EXPR];
1796  Opcode Opc;
1797  SourceLocation OpLoc;
1798public:
1799
1800  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
1801                 SourceLocation opLoc)
1802    : Expr(BinaryOperatorClass, ResTy,
1803           lhs->isTypeDependent() || rhs->isTypeDependent(),
1804           lhs->isValueDependent() || rhs->isValueDependent()),
1805      Opc(opc), OpLoc(opLoc) {
1806    SubExprs[LHS] = lhs;
1807    SubExprs[RHS] = rhs;
1808    assert(!isCompoundAssignmentOp() &&
1809           "Use ArithAssignBinaryOperator for compound assignments");
1810  }
1811
1812  /// \brief Construct an empty binary operator.
1813  explicit BinaryOperator(EmptyShell Empty)
1814    : Expr(BinaryOperatorClass, Empty), Opc(Comma) { }
1815
1816  SourceLocation getOperatorLoc() const { return OpLoc; }
1817  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
1818
1819  Opcode getOpcode() const { return Opc; }
1820  void setOpcode(Opcode O) { Opc = O; }
1821
1822  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1823  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1824  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1825  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1826
1827  virtual SourceRange getSourceRange() const {
1828    return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
1829  }
1830
1831  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1832  /// corresponds to, e.g. "<<=".
1833  static const char *getOpcodeStr(Opcode Op);
1834
1835  /// \brief Retrieve the binary opcode that corresponds to the given
1836  /// overloaded operator.
1837  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
1838
1839  /// \brief Retrieve the overloaded operator kind that corresponds to
1840  /// the given binary opcode.
1841  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
1842
1843  /// predicates to categorize the respective opcodes.
1844  bool isMultiplicativeOp() const { return Opc >= Mul && Opc <= Rem; }
1845  bool isAdditiveOp() const { return Opc == Add || Opc == Sub; }
1846  static bool isShiftOp(Opcode Opc) { return Opc == Shl || Opc == Shr; }
1847  bool isShiftOp() const { return isShiftOp(Opc); }
1848
1849  static bool isBitwiseOp(Opcode Opc) { return Opc >= And && Opc <= Or; }
1850  bool isBitwiseOp() const { return isBitwiseOp(Opc); }
1851
1852  static bool isRelationalOp(Opcode Opc) { return Opc >= LT && Opc <= GE; }
1853  bool isRelationalOp() const { return isRelationalOp(Opc); }
1854
1855  static bool isEqualityOp(Opcode Opc) { return Opc == EQ || Opc == NE; }
1856  bool isEqualityOp() const { return isEqualityOp(Opc); }
1857
1858  static bool isComparisonOp(Opcode Opc) { return Opc >= LT && Opc <= NE; }
1859  bool isComparisonOp() const { return isComparisonOp(Opc); }
1860
1861  static bool isLogicalOp(Opcode Opc) { return Opc == LAnd || Opc == LOr; }
1862  bool isLogicalOp() const { return isLogicalOp(Opc); }
1863
1864  bool isAssignmentOp() const { return Opc >= Assign && Opc <= OrAssign; }
1865  bool isCompoundAssignmentOp() const { return Opc > Assign && Opc <= OrAssign;}
1866  bool isShiftAssignOp() const { return Opc == ShlAssign || Opc == ShrAssign; }
1867
1868  static bool classof(const Stmt *S) {
1869    return S->getStmtClass() == BinaryOperatorClass ||
1870           S->getStmtClass() == CompoundAssignOperatorClass;
1871  }
1872  static bool classof(const BinaryOperator *) { return true; }
1873
1874  // Iterators
1875  virtual child_iterator child_begin();
1876  virtual child_iterator child_end();
1877
1878protected:
1879  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
1880                 SourceLocation oploc, bool dead)
1881    : Expr(CompoundAssignOperatorClass, ResTy), Opc(opc), OpLoc(oploc) {
1882    SubExprs[LHS] = lhs;
1883    SubExprs[RHS] = rhs;
1884  }
1885
1886  BinaryOperator(StmtClass SC, EmptyShell Empty)
1887    : Expr(SC, Empty), Opc(MulAssign) { }
1888};
1889
1890/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
1891/// track of the type the operation is performed in.  Due to the semantics of
1892/// these operators, the operands are promoted, the aritmetic performed, an
1893/// implicit conversion back to the result type done, then the assignment takes
1894/// place.  This captures the intermediate type which the computation is done
1895/// in.
1896class CompoundAssignOperator : public BinaryOperator {
1897  QualType ComputationLHSType;
1898  QualType ComputationResultType;
1899public:
1900  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc,
1901                         QualType ResType, QualType CompLHSType,
1902                         QualType CompResultType,
1903                         SourceLocation OpLoc)
1904    : BinaryOperator(lhs, rhs, opc, ResType, OpLoc, true),
1905      ComputationLHSType(CompLHSType),
1906      ComputationResultType(CompResultType) {
1907    assert(isCompoundAssignmentOp() &&
1908           "Only should be used for compound assignments");
1909  }
1910
1911  /// \brief Build an empty compound assignment operator expression.
1912  explicit CompoundAssignOperator(EmptyShell Empty)
1913    : BinaryOperator(CompoundAssignOperatorClass, Empty) { }
1914
1915  // The two computation types are the type the LHS is converted
1916  // to for the computation and the type of the result; the two are
1917  // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
1918  QualType getComputationLHSType() const { return ComputationLHSType; }
1919  void setComputationLHSType(QualType T) { ComputationLHSType = T; }
1920
1921  QualType getComputationResultType() const { return ComputationResultType; }
1922  void setComputationResultType(QualType T) { ComputationResultType = T; }
1923
1924  static bool classof(const CompoundAssignOperator *) { return true; }
1925  static bool classof(const Stmt *S) {
1926    return S->getStmtClass() == CompoundAssignOperatorClass;
1927  }
1928};
1929
1930/// ConditionalOperator - The ?: operator.  Note that LHS may be null when the
1931/// GNU "missing LHS" extension is in use.
1932///
1933class ConditionalOperator : public Expr {
1934  enum { COND, LHS, RHS, END_EXPR };
1935  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
1936  SourceLocation QuestionLoc, ColonLoc;
1937public:
1938  ConditionalOperator(Expr *cond, SourceLocation QLoc, Expr *lhs,
1939                      SourceLocation CLoc, Expr *rhs, QualType t)
1940    : Expr(ConditionalOperatorClass, t,
1941           // FIXME: the type of the conditional operator doesn't
1942           // depend on the type of the conditional, but the standard
1943           // seems to imply that it could. File a bug!
1944           ((lhs && lhs->isTypeDependent()) || (rhs && rhs->isTypeDependent())),
1945           (cond->isValueDependent() ||
1946            (lhs && lhs->isValueDependent()) ||
1947            (rhs && rhs->isValueDependent()))),
1948      QuestionLoc(QLoc),
1949      ColonLoc(CLoc) {
1950    SubExprs[COND] = cond;
1951    SubExprs[LHS] = lhs;
1952    SubExprs[RHS] = rhs;
1953  }
1954
1955  /// \brief Build an empty conditional operator.
1956  explicit ConditionalOperator(EmptyShell Empty)
1957    : Expr(ConditionalOperatorClass, Empty) { }
1958
1959  // getCond - Return the expression representing the condition for
1960  //  the ?: operator.
1961  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
1962  void setCond(Expr *E) { SubExprs[COND] = E; }
1963
1964  // getTrueExpr - Return the subexpression representing the value of the ?:
1965  //  expression if the condition evaluates to true.  In most cases this value
1966  //  will be the same as getLHS() except a GCC extension allows the left
1967  //  subexpression to be omitted, and instead of the condition be returned.
1968  //  e.g: x ?: y is shorthand for x ? x : y, except that the expression "x"
1969  //  is only evaluated once.
1970  Expr *getTrueExpr() const {
1971    return cast<Expr>(SubExprs[LHS] ? SubExprs[LHS] : SubExprs[COND]);
1972  }
1973
1974  // getTrueExpr - Return the subexpression representing the value of the ?:
1975  // expression if the condition evaluates to false. This is the same as getRHS.
1976  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
1977
1978  Expr *getLHS() const { return cast_or_null<Expr>(SubExprs[LHS]); }
1979  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1980
1981  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1982  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1983
1984  SourceLocation getQuestionLoc() const { return QuestionLoc; }
1985  void setQuestionLoc(SourceLocation L) { QuestionLoc = L; }
1986
1987  SourceLocation getColonLoc() const { return ColonLoc; }
1988  void setColonLoc(SourceLocation L) { ColonLoc = L; }
1989
1990  virtual SourceRange getSourceRange() const {
1991    return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
1992  }
1993  static bool classof(const Stmt *T) {
1994    return T->getStmtClass() == ConditionalOperatorClass;
1995  }
1996  static bool classof(const ConditionalOperator *) { return true; }
1997
1998  // Iterators
1999  virtual child_iterator child_begin();
2000  virtual child_iterator child_end();
2001};
2002
2003/// AddrLabelExpr - The GNU address of label extension, representing &&label.
2004class AddrLabelExpr : public Expr {
2005  SourceLocation AmpAmpLoc, LabelLoc;
2006  LabelStmt *Label;
2007public:
2008  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelStmt *L,
2009                QualType t)
2010    : Expr(AddrLabelExprClass, t), AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
2011
2012  /// \brief Build an empty address of a label expression.
2013  explicit AddrLabelExpr(EmptyShell Empty)
2014    : Expr(AddrLabelExprClass, Empty) { }
2015
2016  SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
2017  void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
2018  SourceLocation getLabelLoc() const { return LabelLoc; }
2019  void setLabelLoc(SourceLocation L) { LabelLoc = L; }
2020
2021  virtual SourceRange getSourceRange() const {
2022    return SourceRange(AmpAmpLoc, LabelLoc);
2023  }
2024
2025  LabelStmt *getLabel() const { return Label; }
2026  void setLabel(LabelStmt *S) { Label = S; }
2027
2028  static bool classof(const Stmt *T) {
2029    return T->getStmtClass() == AddrLabelExprClass;
2030  }
2031  static bool classof(const AddrLabelExpr *) { return true; }
2032
2033  // Iterators
2034  virtual child_iterator child_begin();
2035  virtual child_iterator child_end();
2036};
2037
2038/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
2039/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
2040/// takes the value of the last subexpression.
2041class StmtExpr : public Expr {
2042  Stmt *SubStmt;
2043  SourceLocation LParenLoc, RParenLoc;
2044public:
2045  StmtExpr(CompoundStmt *substmt, QualType T,
2046           SourceLocation lp, SourceLocation rp) :
2047    Expr(StmtExprClass, T), SubStmt(substmt),  LParenLoc(lp), RParenLoc(rp) { }
2048
2049  /// \brief Build an empty statement expression.
2050  explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
2051
2052  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
2053  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
2054  void setSubStmt(CompoundStmt *S) { SubStmt = S; }
2055
2056  virtual SourceRange getSourceRange() const {
2057    return SourceRange(LParenLoc, RParenLoc);
2058  }
2059
2060  SourceLocation getLParenLoc() const { return LParenLoc; }
2061  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2062  SourceLocation getRParenLoc() const { return RParenLoc; }
2063  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2064
2065  static bool classof(const Stmt *T) {
2066    return T->getStmtClass() == StmtExprClass;
2067  }
2068  static bool classof(const StmtExpr *) { return true; }
2069
2070  // Iterators
2071  virtual child_iterator child_begin();
2072  virtual child_iterator child_end();
2073};
2074
2075/// TypesCompatibleExpr - GNU builtin-in function __builtin_types_compatible_p.
2076/// This AST node represents a function that returns 1 if two *types* (not
2077/// expressions) are compatible. The result of this built-in function can be
2078/// used in integer constant expressions.
2079class TypesCompatibleExpr : public Expr {
2080  QualType Type1;
2081  QualType Type2;
2082  SourceLocation BuiltinLoc, RParenLoc;
2083public:
2084  TypesCompatibleExpr(QualType ReturnType, SourceLocation BLoc,
2085                      QualType t1, QualType t2, SourceLocation RP) :
2086    Expr(TypesCompatibleExprClass, ReturnType), Type1(t1), Type2(t2),
2087    BuiltinLoc(BLoc), RParenLoc(RP) {}
2088
2089  /// \brief Build an empty __builtin_type_compatible_p expression.
2090  explicit TypesCompatibleExpr(EmptyShell Empty)
2091    : Expr(TypesCompatibleExprClass, Empty) { }
2092
2093  QualType getArgType1() const { return Type1; }
2094  void setArgType1(QualType T) { Type1 = T; }
2095  QualType getArgType2() const { return Type2; }
2096  void setArgType2(QualType T) { Type2 = T; }
2097
2098  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2099  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2100
2101  SourceLocation getRParenLoc() const { return RParenLoc; }
2102  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2103
2104  virtual SourceRange getSourceRange() const {
2105    return SourceRange(BuiltinLoc, RParenLoc);
2106  }
2107  static bool classof(const Stmt *T) {
2108    return T->getStmtClass() == TypesCompatibleExprClass;
2109  }
2110  static bool classof(const TypesCompatibleExpr *) { return true; }
2111
2112  // Iterators
2113  virtual child_iterator child_begin();
2114  virtual child_iterator child_end();
2115};
2116
2117/// ShuffleVectorExpr - clang-specific builtin-in function
2118/// __builtin_shufflevector.
2119/// This AST node represents a operator that does a constant
2120/// shuffle, similar to LLVM's shufflevector instruction. It takes
2121/// two vectors and a variable number of constant indices,
2122/// and returns the appropriately shuffled vector.
2123class ShuffleVectorExpr : public Expr {
2124  SourceLocation BuiltinLoc, RParenLoc;
2125
2126  // SubExprs - the list of values passed to the __builtin_shufflevector
2127  // function. The first two are vectors, and the rest are constant
2128  // indices.  The number of values in this list is always
2129  // 2+the number of indices in the vector type.
2130  Stmt **SubExprs;
2131  unsigned NumExprs;
2132
2133protected:
2134  virtual void DoDestroy(ASTContext &C);
2135
2136public:
2137  ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr,
2138                    QualType Type, SourceLocation BLoc,
2139                    SourceLocation RP) :
2140    Expr(ShuffleVectorExprClass, Type), BuiltinLoc(BLoc),
2141    RParenLoc(RP), NumExprs(nexpr) {
2142
2143    SubExprs = new (C) Stmt*[nexpr];
2144    for (unsigned i = 0; i < nexpr; i++)
2145      SubExprs[i] = args[i];
2146  }
2147
2148  /// \brief Build an empty vector-shuffle expression.
2149  explicit ShuffleVectorExpr(EmptyShell Empty)
2150    : Expr(ShuffleVectorExprClass, Empty), SubExprs(0) { }
2151
2152  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2153  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2154
2155  SourceLocation getRParenLoc() const { return RParenLoc; }
2156  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2157
2158  virtual SourceRange getSourceRange() const {
2159    return SourceRange(BuiltinLoc, RParenLoc);
2160  }
2161  static bool classof(const Stmt *T) {
2162    return T->getStmtClass() == ShuffleVectorExprClass;
2163  }
2164  static bool classof(const ShuffleVectorExpr *) { return true; }
2165
2166  ~ShuffleVectorExpr() {}
2167
2168  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
2169  /// constant expression, the actual arguments passed in, and the function
2170  /// pointers.
2171  unsigned getNumSubExprs() const { return NumExprs; }
2172
2173  /// getExpr - Return the Expr at the specified index.
2174  Expr *getExpr(unsigned Index) {
2175    assert((Index < NumExprs) && "Arg access out of range!");
2176    return cast<Expr>(SubExprs[Index]);
2177  }
2178  const Expr *getExpr(unsigned Index) const {
2179    assert((Index < NumExprs) && "Arg access out of range!");
2180    return cast<Expr>(SubExprs[Index]);
2181  }
2182
2183  void setExprs(ASTContext &C, Expr ** Exprs, unsigned NumExprs);
2184
2185  unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) {
2186    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
2187    return getExpr(N+2)->EvaluateAsInt(Ctx).getZExtValue();
2188  }
2189
2190  // Iterators
2191  virtual child_iterator child_begin();
2192  virtual child_iterator child_end();
2193};
2194
2195/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
2196/// This AST node is similar to the conditional operator (?:) in C, with
2197/// the following exceptions:
2198/// - the test expression must be a integer constant expression.
2199/// - the expression returned acts like the chosen subexpression in every
2200///   visible way: the type is the same as that of the chosen subexpression,
2201///   and all predicates (whether it's an l-value, whether it's an integer
2202///   constant expression, etc.) return the same result as for the chosen
2203///   sub-expression.
2204class ChooseExpr : public Expr {
2205  enum { COND, LHS, RHS, END_EXPR };
2206  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
2207  SourceLocation BuiltinLoc, RParenLoc;
2208public:
2209  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs, QualType t,
2210             SourceLocation RP, bool TypeDependent, bool ValueDependent)
2211    : Expr(ChooseExprClass, t, TypeDependent, ValueDependent),
2212      BuiltinLoc(BLoc), RParenLoc(RP) {
2213      SubExprs[COND] = cond;
2214      SubExprs[LHS] = lhs;
2215      SubExprs[RHS] = rhs;
2216    }
2217
2218  /// \brief Build an empty __builtin_choose_expr.
2219  explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
2220
2221  /// isConditionTrue - Return whether the condition is true (i.e. not
2222  /// equal to zero).
2223  bool isConditionTrue(ASTContext &C) const;
2224
2225  /// getChosenSubExpr - Return the subexpression chosen according to the
2226  /// condition.
2227  Expr *getChosenSubExpr(ASTContext &C) const {
2228    return isConditionTrue(C) ? getLHS() : getRHS();
2229  }
2230
2231  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
2232  void setCond(Expr *E) { SubExprs[COND] = E; }
2233  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2234  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2235  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2236  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2237
2238  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2239  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2240
2241  SourceLocation getRParenLoc() const { return RParenLoc; }
2242  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2243
2244  virtual SourceRange getSourceRange() const {
2245    return SourceRange(BuiltinLoc, RParenLoc);
2246  }
2247  static bool classof(const Stmt *T) {
2248    return T->getStmtClass() == ChooseExprClass;
2249  }
2250  static bool classof(const ChooseExpr *) { return true; }
2251
2252  // Iterators
2253  virtual child_iterator child_begin();
2254  virtual child_iterator child_end();
2255};
2256
2257/// GNUNullExpr - Implements the GNU __null extension, which is a name
2258/// for a null pointer constant that has integral type (e.g., int or
2259/// long) and is the same size and alignment as a pointer. The __null
2260/// extension is typically only used by system headers, which define
2261/// NULL as __null in C++ rather than using 0 (which is an integer
2262/// that may not match the size of a pointer).
2263class GNUNullExpr : public Expr {
2264  /// TokenLoc - The location of the __null keyword.
2265  SourceLocation TokenLoc;
2266
2267public:
2268  GNUNullExpr(QualType Ty, SourceLocation Loc)
2269    : Expr(GNUNullExprClass, Ty), TokenLoc(Loc) { }
2270
2271  /// \brief Build an empty GNU __null expression.
2272  explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
2273
2274  /// getTokenLocation - The location of the __null token.
2275  SourceLocation getTokenLocation() const { return TokenLoc; }
2276  void setTokenLocation(SourceLocation L) { TokenLoc = L; }
2277
2278  virtual SourceRange getSourceRange() const {
2279    return SourceRange(TokenLoc);
2280  }
2281  static bool classof(const Stmt *T) {
2282    return T->getStmtClass() == GNUNullExprClass;
2283  }
2284  static bool classof(const GNUNullExpr *) { return true; }
2285
2286  // Iterators
2287  virtual child_iterator child_begin();
2288  virtual child_iterator child_end();
2289};
2290
2291/// VAArgExpr, used for the builtin function __builtin_va_start.
2292class VAArgExpr : public Expr {
2293  Stmt *Val;
2294  SourceLocation BuiltinLoc, RParenLoc;
2295public:
2296  VAArgExpr(SourceLocation BLoc, Expr* e, QualType t, SourceLocation RPLoc)
2297    : Expr(VAArgExprClass, t),
2298      Val(e),
2299      BuiltinLoc(BLoc),
2300      RParenLoc(RPLoc) { }
2301
2302  /// \brief Create an empty __builtin_va_start expression.
2303  explicit VAArgExpr(EmptyShell Empty) : Expr(VAArgExprClass, Empty) { }
2304
2305  const Expr *getSubExpr() const { return cast<Expr>(Val); }
2306  Expr *getSubExpr() { return cast<Expr>(Val); }
2307  void setSubExpr(Expr *E) { Val = E; }
2308
2309  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2310  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2311
2312  SourceLocation getRParenLoc() const { return RParenLoc; }
2313  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2314
2315  virtual SourceRange getSourceRange() const {
2316    return SourceRange(BuiltinLoc, RParenLoc);
2317  }
2318  static bool classof(const Stmt *T) {
2319    return T->getStmtClass() == VAArgExprClass;
2320  }
2321  static bool classof(const VAArgExpr *) { return true; }
2322
2323  // Iterators
2324  virtual child_iterator child_begin();
2325  virtual child_iterator child_end();
2326};
2327
2328/// @brief Describes an C or C++ initializer list.
2329///
2330/// InitListExpr describes an initializer list, which can be used to
2331/// initialize objects of different types, including
2332/// struct/class/union types, arrays, and vectors. For example:
2333///
2334/// @code
2335/// struct foo x = { 1, { 2, 3 } };
2336/// @endcode
2337///
2338/// Prior to semantic analysis, an initializer list will represent the
2339/// initializer list as written by the user, but will have the
2340/// placeholder type "void". This initializer list is called the
2341/// syntactic form of the initializer, and may contain C99 designated
2342/// initializers (represented as DesignatedInitExprs), initializations
2343/// of subobject members without explicit braces, and so on. Clients
2344/// interested in the original syntax of the initializer list should
2345/// use the syntactic form of the initializer list.
2346///
2347/// After semantic analysis, the initializer list will represent the
2348/// semantic form of the initializer, where the initializations of all
2349/// subobjects are made explicit with nested InitListExpr nodes and
2350/// C99 designators have been eliminated by placing the designated
2351/// initializations into the subobject they initialize. Additionally,
2352/// any "holes" in the initialization, where no initializer has been
2353/// specified for a particular subobject, will be replaced with
2354/// implicitly-generated ImplicitValueInitExpr expressions that
2355/// value-initialize the subobjects. Note, however, that the
2356/// initializer lists may still have fewer initializers than there are
2357/// elements to initialize within the object.
2358///
2359/// Given the semantic form of the initializer list, one can retrieve
2360/// the original syntactic form of that initializer list (if it
2361/// exists) using getSyntacticForm(). Since many initializer lists
2362/// have the same syntactic and semantic forms, getSyntacticForm() may
2363/// return NULL, indicating that the current initializer list also
2364/// serves as its syntactic form.
2365class InitListExpr : public Expr {
2366  // FIXME: Eliminate this vector in favor of ASTContext allocation
2367  std::vector<Stmt *> InitExprs;
2368  SourceLocation LBraceLoc, RBraceLoc;
2369
2370  /// Contains the initializer list that describes the syntactic form
2371  /// written in the source code.
2372  InitListExpr *SyntacticForm;
2373
2374  /// If this initializer list initializes a union, specifies which
2375  /// field within the union will be initialized.
2376  FieldDecl *UnionFieldInit;
2377
2378  /// Whether this initializer list originally had a GNU array-range
2379  /// designator in it. This is a temporary marker used by CodeGen.
2380  bool HadArrayRangeDesignator;
2381
2382public:
2383  InitListExpr(SourceLocation lbraceloc, Expr **initexprs, unsigned numinits,
2384               SourceLocation rbraceloc);
2385
2386  /// \brief Build an empty initializer list.
2387  explicit InitListExpr(EmptyShell Empty) : Expr(InitListExprClass, Empty) { }
2388
2389  unsigned getNumInits() const { return InitExprs.size(); }
2390
2391  const Expr* getInit(unsigned Init) const {
2392    assert(Init < getNumInits() && "Initializer access out of range!");
2393    return cast_or_null<Expr>(InitExprs[Init]);
2394  }
2395
2396  Expr* getInit(unsigned Init) {
2397    assert(Init < getNumInits() && "Initializer access out of range!");
2398    return cast_or_null<Expr>(InitExprs[Init]);
2399  }
2400
2401  void setInit(unsigned Init, Expr *expr) {
2402    assert(Init < getNumInits() && "Initializer access out of range!");
2403    InitExprs[Init] = expr;
2404  }
2405
2406  /// \brief Reserve space for some number of initializers.
2407  void reserveInits(unsigned NumInits);
2408
2409  /// @brief Specify the number of initializers
2410  ///
2411  /// If there are more than @p NumInits initializers, the remaining
2412  /// initializers will be destroyed. If there are fewer than @p
2413  /// NumInits initializers, NULL expressions will be added for the
2414  /// unknown initializers.
2415  void resizeInits(ASTContext &Context, unsigned NumInits);
2416
2417  /// @brief Updates the initializer at index @p Init with the new
2418  /// expression @p expr, and returns the old expression at that
2419  /// location.
2420  ///
2421  /// When @p Init is out of range for this initializer list, the
2422  /// initializer list will be extended with NULL expressions to
2423  /// accomodate the new entry.
2424  Expr *updateInit(unsigned Init, Expr *expr);
2425
2426  /// \brief If this initializes a union, specifies which field in the
2427  /// union to initialize.
2428  ///
2429  /// Typically, this field is the first named field within the
2430  /// union. However, a designated initializer can specify the
2431  /// initialization of a different field within the union.
2432  FieldDecl *getInitializedFieldInUnion() { return UnionFieldInit; }
2433  void setInitializedFieldInUnion(FieldDecl *FD) { UnionFieldInit = FD; }
2434
2435  // Explicit InitListExpr's originate from source code (and have valid source
2436  // locations). Implicit InitListExpr's are created by the semantic analyzer.
2437  bool isExplicit() {
2438    return LBraceLoc.isValid() && RBraceLoc.isValid();
2439  }
2440
2441  SourceLocation getLBraceLoc() const { return LBraceLoc; }
2442  void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
2443  SourceLocation getRBraceLoc() const { return RBraceLoc; }
2444  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
2445
2446  /// @brief Retrieve the initializer list that describes the
2447  /// syntactic form of the initializer.
2448  ///
2449  ///
2450  InitListExpr *getSyntacticForm() const { return SyntacticForm; }
2451  void setSyntacticForm(InitListExpr *Init) { SyntacticForm = Init; }
2452
2453  bool hadArrayRangeDesignator() const { return HadArrayRangeDesignator; }
2454  void sawArrayRangeDesignator(bool ARD = true) {
2455    HadArrayRangeDesignator = ARD;
2456  }
2457
2458  virtual SourceRange getSourceRange() const {
2459    return SourceRange(LBraceLoc, RBraceLoc);
2460  }
2461  static bool classof(const Stmt *T) {
2462    return T->getStmtClass() == InitListExprClass;
2463  }
2464  static bool classof(const InitListExpr *) { return true; }
2465
2466  // Iterators
2467  virtual child_iterator child_begin();
2468  virtual child_iterator child_end();
2469
2470  typedef std::vector<Stmt *>::iterator iterator;
2471  typedef std::vector<Stmt *>::reverse_iterator reverse_iterator;
2472
2473  iterator begin() { return InitExprs.begin(); }
2474  iterator end() { return InitExprs.end(); }
2475  reverse_iterator rbegin() { return InitExprs.rbegin(); }
2476  reverse_iterator rend() { return InitExprs.rend(); }
2477};
2478
2479/// @brief Represents a C99 designated initializer expression.
2480///
2481/// A designated initializer expression (C99 6.7.8) contains one or
2482/// more designators (which can be field designators, array
2483/// designators, or GNU array-range designators) followed by an
2484/// expression that initializes the field or element(s) that the
2485/// designators refer to. For example, given:
2486///
2487/// @code
2488/// struct point {
2489///   double x;
2490///   double y;
2491/// };
2492/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
2493/// @endcode
2494///
2495/// The InitListExpr contains three DesignatedInitExprs, the first of
2496/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
2497/// designators, one array designator for @c [2] followed by one field
2498/// designator for @c .y. The initalization expression will be 1.0.
2499class DesignatedInitExpr : public Expr {
2500public:
2501  /// \brief Forward declaration of the Designator class.
2502  class Designator;
2503
2504private:
2505  /// The location of the '=' or ':' prior to the actual initializer
2506  /// expression.
2507  SourceLocation EqualOrColonLoc;
2508
2509  /// Whether this designated initializer used the GNU deprecated
2510  /// syntax rather than the C99 '=' syntax.
2511  bool GNUSyntax : 1;
2512
2513  /// The number of designators in this initializer expression.
2514  unsigned NumDesignators : 15;
2515
2516  /// \brief The designators in this designated initialization
2517  /// expression.
2518  Designator *Designators;
2519
2520  /// The number of subexpressions of this initializer expression,
2521  /// which contains both the initializer and any additional
2522  /// expressions used by array and array-range designators.
2523  unsigned NumSubExprs : 16;
2524
2525
2526  DesignatedInitExpr(QualType Ty, unsigned NumDesignators,
2527                     const Designator *Designators,
2528                     SourceLocation EqualOrColonLoc, bool GNUSyntax,
2529                     Expr **IndexExprs, unsigned NumIndexExprs,
2530                     Expr *Init);
2531
2532  explicit DesignatedInitExpr(unsigned NumSubExprs)
2533    : Expr(DesignatedInitExprClass, EmptyShell()),
2534      NumDesignators(0), Designators(0), NumSubExprs(NumSubExprs) { }
2535
2536protected:
2537  virtual void DoDestroy(ASTContext &C);
2538
2539public:
2540  /// A field designator, e.g., ".x".
2541  struct FieldDesignator {
2542    /// Refers to the field that is being initialized. The low bit
2543    /// of this field determines whether this is actually a pointer
2544    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
2545    /// initially constructed, a field designator will store an
2546    /// IdentifierInfo*. After semantic analysis has resolved that
2547    /// name, the field designator will instead store a FieldDecl*.
2548    uintptr_t NameOrField;
2549
2550    /// The location of the '.' in the designated initializer.
2551    unsigned DotLoc;
2552
2553    /// The location of the field name in the designated initializer.
2554    unsigned FieldLoc;
2555  };
2556
2557  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
2558  struct ArrayOrRangeDesignator {
2559    /// Location of the first index expression within the designated
2560    /// initializer expression's list of subexpressions.
2561    unsigned Index;
2562    /// The location of the '[' starting the array range designator.
2563    unsigned LBracketLoc;
2564    /// The location of the ellipsis separating the start and end
2565    /// indices. Only valid for GNU array-range designators.
2566    unsigned EllipsisLoc;
2567    /// The location of the ']' terminating the array range designator.
2568    unsigned RBracketLoc;
2569  };
2570
2571  /// @brief Represents a single C99 designator.
2572  ///
2573  /// @todo This class is infuriatingly similar to clang::Designator,
2574  /// but minor differences (storing indices vs. storing pointers)
2575  /// keep us from reusing it. Try harder, later, to rectify these
2576  /// differences.
2577  class Designator {
2578    /// @brief The kind of designator this describes.
2579    enum {
2580      FieldDesignator,
2581      ArrayDesignator,
2582      ArrayRangeDesignator
2583    } Kind;
2584
2585    union {
2586      /// A field designator, e.g., ".x".
2587      struct FieldDesignator Field;
2588      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
2589      struct ArrayOrRangeDesignator ArrayOrRange;
2590    };
2591    friend class DesignatedInitExpr;
2592
2593  public:
2594    Designator() {}
2595
2596    /// @brief Initializes a field designator.
2597    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
2598               SourceLocation FieldLoc)
2599      : Kind(FieldDesignator) {
2600      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
2601      Field.DotLoc = DotLoc.getRawEncoding();
2602      Field.FieldLoc = FieldLoc.getRawEncoding();
2603    }
2604
2605    /// @brief Initializes an array designator.
2606    Designator(unsigned Index, SourceLocation LBracketLoc,
2607               SourceLocation RBracketLoc)
2608      : Kind(ArrayDesignator) {
2609      ArrayOrRange.Index = Index;
2610      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
2611      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
2612      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
2613    }
2614
2615    /// @brief Initializes a GNU array-range designator.
2616    Designator(unsigned Index, SourceLocation LBracketLoc,
2617               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
2618      : Kind(ArrayRangeDesignator) {
2619      ArrayOrRange.Index = Index;
2620      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
2621      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
2622      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
2623    }
2624
2625    bool isFieldDesignator() const { return Kind == FieldDesignator; }
2626    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
2627    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
2628
2629    IdentifierInfo * getFieldName();
2630
2631    FieldDecl *getField() {
2632      assert(Kind == FieldDesignator && "Only valid on a field designator");
2633      if (Field.NameOrField & 0x01)
2634        return 0;
2635      else
2636        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
2637    }
2638
2639    void setField(FieldDecl *FD) {
2640      assert(Kind == FieldDesignator && "Only valid on a field designator");
2641      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
2642    }
2643
2644    SourceLocation getDotLoc() const {
2645      assert(Kind == FieldDesignator && "Only valid on a field designator");
2646      return SourceLocation::getFromRawEncoding(Field.DotLoc);
2647    }
2648
2649    SourceLocation getFieldLoc() const {
2650      assert(Kind == FieldDesignator && "Only valid on a field designator");
2651      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
2652    }
2653
2654    SourceLocation getLBracketLoc() const {
2655      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
2656             "Only valid on an array or array-range designator");
2657      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
2658    }
2659
2660    SourceLocation getRBracketLoc() const {
2661      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
2662             "Only valid on an array or array-range designator");
2663      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
2664    }
2665
2666    SourceLocation getEllipsisLoc() const {
2667      assert(Kind == ArrayRangeDesignator &&
2668             "Only valid on an array-range designator");
2669      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
2670    }
2671
2672    unsigned getFirstExprIndex() const {
2673      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
2674             "Only valid on an array or array-range designator");
2675      return ArrayOrRange.Index;
2676    }
2677
2678    SourceLocation getStartLocation() const {
2679      if (Kind == FieldDesignator)
2680        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
2681      else
2682        return getLBracketLoc();
2683    }
2684  };
2685
2686  static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators,
2687                                    unsigned NumDesignators,
2688                                    Expr **IndexExprs, unsigned NumIndexExprs,
2689                                    SourceLocation EqualOrColonLoc,
2690                                    bool GNUSyntax, Expr *Init);
2691
2692  static DesignatedInitExpr *CreateEmpty(ASTContext &C, unsigned NumIndexExprs);
2693
2694  /// @brief Returns the number of designators in this initializer.
2695  unsigned size() const { return NumDesignators; }
2696
2697  // Iterator access to the designators.
2698  typedef Designator* designators_iterator;
2699  designators_iterator designators_begin() { return Designators; }
2700  designators_iterator designators_end() {
2701    return Designators + NumDesignators;
2702  }
2703
2704  Designator *getDesignator(unsigned Idx) { return &designators_begin()[Idx]; }
2705
2706  void setDesignators(const Designator *Desigs, unsigned NumDesigs);
2707
2708  Expr *getArrayIndex(const Designator& D);
2709  Expr *getArrayRangeStart(const Designator& D);
2710  Expr *getArrayRangeEnd(const Designator& D);
2711
2712  /// @brief Retrieve the location of the '=' that precedes the
2713  /// initializer value itself, if present.
2714  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
2715  void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
2716
2717  /// @brief Determines whether this designated initializer used the
2718  /// deprecated GNU syntax for designated initializers.
2719  bool usesGNUSyntax() const { return GNUSyntax; }
2720  void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
2721
2722  /// @brief Retrieve the initializer value.
2723  Expr *getInit() const {
2724    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
2725  }
2726
2727  void setInit(Expr *init) {
2728    *child_begin() = init;
2729  }
2730
2731  /// \brief Retrieve the total number of subexpressions in this
2732  /// designated initializer expression, including the actual
2733  /// initialized value and any expressions that occur within array
2734  /// and array-range designators.
2735  unsigned getNumSubExprs() const { return NumSubExprs; }
2736
2737  Expr *getSubExpr(unsigned Idx) {
2738    assert(Idx < NumSubExprs && "Subscript out of range");
2739    char* Ptr = static_cast<char*>(static_cast<void *>(this));
2740    Ptr += sizeof(DesignatedInitExpr);
2741    return reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx];
2742  }
2743
2744  void setSubExpr(unsigned Idx, Expr *E) {
2745    assert(Idx < NumSubExprs && "Subscript out of range");
2746    char* Ptr = static_cast<char*>(static_cast<void *>(this));
2747    Ptr += sizeof(DesignatedInitExpr);
2748    reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx] = E;
2749  }
2750
2751  /// \brief Replaces the designator at index @p Idx with the series
2752  /// of designators in [First, Last).
2753  void ExpandDesignator(unsigned Idx, const Designator *First,
2754                        const Designator *Last);
2755
2756  virtual SourceRange getSourceRange() const;
2757
2758  static bool classof(const Stmt *T) {
2759    return T->getStmtClass() == DesignatedInitExprClass;
2760  }
2761  static bool classof(const DesignatedInitExpr *) { return true; }
2762
2763  // Iterators
2764  virtual child_iterator child_begin();
2765  virtual child_iterator child_end();
2766};
2767
2768/// \brief Represents an implicitly-generated value initialization of
2769/// an object of a given type.
2770///
2771/// Implicit value initializations occur within semantic initializer
2772/// list expressions (InitListExpr) as placeholders for subobject
2773/// initializations not explicitly specified by the user.
2774///
2775/// \see InitListExpr
2776class ImplicitValueInitExpr : public Expr {
2777public:
2778  explicit ImplicitValueInitExpr(QualType ty)
2779    : Expr(ImplicitValueInitExprClass, ty) { }
2780
2781  /// \brief Construct an empty implicit value initialization.
2782  explicit ImplicitValueInitExpr(EmptyShell Empty)
2783    : Expr(ImplicitValueInitExprClass, Empty) { }
2784
2785  static bool classof(const Stmt *T) {
2786    return T->getStmtClass() == ImplicitValueInitExprClass;
2787  }
2788  static bool classof(const ImplicitValueInitExpr *) { return true; }
2789
2790  virtual SourceRange getSourceRange() const {
2791    return SourceRange();
2792  }
2793
2794  // Iterators
2795  virtual child_iterator child_begin();
2796  virtual child_iterator child_end();
2797};
2798
2799
2800class ParenListExpr : public Expr {
2801  Stmt **Exprs;
2802  unsigned NumExprs;
2803  SourceLocation LParenLoc, RParenLoc;
2804
2805protected:
2806  virtual void DoDestroy(ASTContext& C);
2807
2808public:
2809  ParenListExpr(ASTContext& C, SourceLocation lparenloc, Expr **exprs,
2810                unsigned numexprs, SourceLocation rparenloc);
2811
2812  ~ParenListExpr() {}
2813
2814  /// \brief Build an empty paren list.
2815  //explicit ParenListExpr(EmptyShell Empty) : Expr(ParenListExprClass, Empty) { }
2816
2817  unsigned getNumExprs() const { return NumExprs; }
2818
2819  const Expr* getExpr(unsigned Init) const {
2820    assert(Init < getNumExprs() && "Initializer access out of range!");
2821    return cast_or_null<Expr>(Exprs[Init]);
2822  }
2823
2824  Expr* getExpr(unsigned Init) {
2825    assert(Init < getNumExprs() && "Initializer access out of range!");
2826    return cast_or_null<Expr>(Exprs[Init]);
2827  }
2828
2829  Expr **getExprs() { return reinterpret_cast<Expr **>(Exprs); }
2830
2831  SourceLocation getLParenLoc() const { return LParenLoc; }
2832  SourceLocation getRParenLoc() const { return RParenLoc; }
2833
2834  virtual SourceRange getSourceRange() const {
2835    return SourceRange(LParenLoc, RParenLoc);
2836  }
2837  static bool classof(const Stmt *T) {
2838    return T->getStmtClass() == ParenListExprClass;
2839  }
2840  static bool classof(const ParenListExpr *) { return true; }
2841
2842  // Iterators
2843  virtual child_iterator child_begin();
2844  virtual child_iterator child_end();
2845};
2846
2847
2848//===----------------------------------------------------------------------===//
2849// Clang Extensions
2850//===----------------------------------------------------------------------===//
2851
2852
2853/// ExtVectorElementExpr - This represents access to specific elements of a
2854/// vector, and may occur on the left hand side or right hand side.  For example
2855/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
2856///
2857/// Note that the base may have either vector or pointer to vector type, just
2858/// like a struct field reference.
2859///
2860class ExtVectorElementExpr : public Expr {
2861  Stmt *Base;
2862  IdentifierInfo *Accessor;
2863  SourceLocation AccessorLoc;
2864public:
2865  ExtVectorElementExpr(QualType ty, Expr *base, IdentifierInfo &accessor,
2866                       SourceLocation loc)
2867    : Expr(ExtVectorElementExprClass, ty),
2868      Base(base), Accessor(&accessor), AccessorLoc(loc) {}
2869
2870  /// \brief Build an empty vector element expression.
2871  explicit ExtVectorElementExpr(EmptyShell Empty)
2872    : Expr(ExtVectorElementExprClass, Empty) { }
2873
2874  const Expr *getBase() const { return cast<Expr>(Base); }
2875  Expr *getBase() { return cast<Expr>(Base); }
2876  void setBase(Expr *E) { Base = E; }
2877
2878  IdentifierInfo &getAccessor() const { return *Accessor; }
2879  void setAccessor(IdentifierInfo *II) { Accessor = II; }
2880
2881  SourceLocation getAccessorLoc() const { return AccessorLoc; }
2882  void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
2883
2884  /// getNumElements - Get the number of components being selected.
2885  unsigned getNumElements() const;
2886
2887  /// containsDuplicateElements - Return true if any element access is
2888  /// repeated.
2889  bool containsDuplicateElements() const;
2890
2891  /// getEncodedElementAccess - Encode the elements accessed into an llvm
2892  /// aggregate Constant of ConstantInt(s).
2893  void getEncodedElementAccess(llvm::SmallVectorImpl<unsigned> &Elts) const;
2894
2895  virtual SourceRange getSourceRange() const {
2896    return SourceRange(getBase()->getLocStart(), AccessorLoc);
2897  }
2898
2899  /// isArrow - Return true if the base expression is a pointer to vector,
2900  /// return false if the base expression is a vector.
2901  bool isArrow() const;
2902
2903  static bool classof(const Stmt *T) {
2904    return T->getStmtClass() == ExtVectorElementExprClass;
2905  }
2906  static bool classof(const ExtVectorElementExpr *) { return true; }
2907
2908  // Iterators
2909  virtual child_iterator child_begin();
2910  virtual child_iterator child_end();
2911};
2912
2913
2914/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
2915/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
2916class BlockExpr : public Expr {
2917protected:
2918  BlockDecl *TheBlock;
2919  bool HasBlockDeclRefExprs;
2920public:
2921  BlockExpr(BlockDecl *BD, QualType ty, bool hasBlockDeclRefExprs)
2922    : Expr(BlockExprClass, ty),
2923      TheBlock(BD), HasBlockDeclRefExprs(hasBlockDeclRefExprs) {}
2924
2925  /// \brief Build an empty block expression.
2926  explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { }
2927
2928  const BlockDecl *getBlockDecl() const { return TheBlock; }
2929  BlockDecl *getBlockDecl() { return TheBlock; }
2930  void setBlockDecl(BlockDecl *BD) { TheBlock = BD; }
2931
2932  // Convenience functions for probing the underlying BlockDecl.
2933  SourceLocation getCaretLocation() const;
2934  const Stmt *getBody() const;
2935  Stmt *getBody();
2936
2937  virtual SourceRange getSourceRange() const {
2938    return SourceRange(getCaretLocation(), getBody()->getLocEnd());
2939  }
2940
2941  /// getFunctionType - Return the underlying function type for this block.
2942  const FunctionType *getFunctionType() const;
2943
2944  /// hasBlockDeclRefExprs - Return true iff the block has BlockDeclRefExpr
2945  /// inside of the block that reference values outside the block.
2946  bool hasBlockDeclRefExprs() const { return HasBlockDeclRefExprs; }
2947  void setHasBlockDeclRefExprs(bool BDRE) { HasBlockDeclRefExprs = BDRE; }
2948
2949  static bool classof(const Stmt *T) {
2950    return T->getStmtClass() == BlockExprClass;
2951  }
2952  static bool classof(const BlockExpr *) { return true; }
2953
2954  // Iterators
2955  virtual child_iterator child_begin();
2956  virtual child_iterator child_end();
2957};
2958
2959/// BlockDeclRefExpr - A reference to a declared variable, function,
2960/// enum, etc.
2961class BlockDeclRefExpr : public Expr {
2962  ValueDecl *D;
2963  SourceLocation Loc;
2964  bool IsByRef : 1;
2965  bool ConstQualAdded : 1;
2966public:
2967  BlockDeclRefExpr(ValueDecl *d, QualType t, SourceLocation l, bool ByRef,
2968                   bool constAdded = false) :
2969       Expr(BlockDeclRefExprClass, t), D(d), Loc(l), IsByRef(ByRef),
2970                                       ConstQualAdded(constAdded) {}
2971
2972  // \brief Build an empty reference to a declared variable in a
2973  // block.
2974  explicit BlockDeclRefExpr(EmptyShell Empty)
2975    : Expr(BlockDeclRefExprClass, Empty) { }
2976
2977  ValueDecl *getDecl() { return D; }
2978  const ValueDecl *getDecl() const { return D; }
2979  void setDecl(ValueDecl *VD) { D = VD; }
2980
2981  SourceLocation getLocation() const { return Loc; }
2982  void setLocation(SourceLocation L) { Loc = L; }
2983
2984  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
2985
2986  bool isByRef() const { return IsByRef; }
2987  void setByRef(bool BR) { IsByRef = BR; }
2988
2989  bool isConstQualAdded() const { return ConstQualAdded; }
2990  void setConstQualAdded(bool C) { ConstQualAdded = C; }
2991
2992  static bool classof(const Stmt *T) {
2993    return T->getStmtClass() == BlockDeclRefExprClass;
2994  }
2995  static bool classof(const BlockDeclRefExpr *) { return true; }
2996
2997  // Iterators
2998  virtual child_iterator child_begin();
2999  virtual child_iterator child_end();
3000};
3001
3002}  // end namespace clang
3003
3004#endif
3005