Expr.h revision f7c2aa0b049272d8f318988c1965760dcb852578
1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/Stmt.h"
18#include "clang/AST/Type.h"
19#include "llvm/ADT/APSInt.h"
20#include "llvm/ADT/APFloat.h"
21#include "llvm/ADT/SmallVector.h"
22#include <vector>
23
24namespace clang {
25  class ASTContext;
26  class APValue;
27  class Decl;
28  class IdentifierInfo;
29  class ParmVarDecl;
30  class NamedDecl;
31  class ValueDecl;
32  class BlockDecl;
33
34/// Expr - This represents one expression.  Note that Expr's are subclasses of
35/// Stmt.  This allows an expression to be transparently used any place a Stmt
36/// is required.
37///
38class Expr : public Stmt {
39  QualType TR;
40protected:
41  Expr(StmtClass SC, QualType T) : Stmt(SC) { setType(T); }
42public:
43  QualType getType() const { return TR; }
44  void setType(QualType t) {
45    // In C++, the type of an expression is always adjusted so that it
46    // will not have reference type an expression will never have
47    // reference type (C++ [expr]p6). Use
48    // QualType::getNonReferenceType() to retrieve the non-reference
49    // type. Additionally, inspect Expr::isLvalue to determine whether
50    // an expression that is adjusted in this manner should be
51    // considered an lvalue.
52    assert((TR.isNull() || !TR->isReferenceType()) &&
53           "Expressions can't have reference type");
54
55    TR = t;
56  }
57
58  /// SourceLocation tokens are not useful in isolation - they are low level
59  /// value objects created/interpreted by SourceManager. We assume AST
60  /// clients will have a pointer to the respective SourceManager.
61  virtual SourceRange getSourceRange() const = 0;
62
63  /// getExprLoc - Return the preferred location for the arrow when diagnosing
64  /// a problem with a generic expression.
65  virtual SourceLocation getExprLoc() const { return getLocStart(); }
66
67  /// hasLocalSideEffect - Return true if this immediate expression has side
68  /// effects, not counting any sub-expressions.
69  bool hasLocalSideEffect() const;
70
71  /// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or
72  /// incomplete type other than void. Nonarray expressions that can be lvalues:
73  ///  - name, where name must be a variable
74  ///  - e[i]
75  ///  - (e), where e must be an lvalue
76  ///  - e.name, where e must be an lvalue
77  ///  - e->name
78  ///  - *e, the type of e cannot be a function type
79  ///  - string-constant
80  ///  - reference type [C++ [expr]]
81  ///
82  enum isLvalueResult {
83    LV_Valid,
84    LV_NotObjectType,
85    LV_IncompleteVoidType,
86    LV_DuplicateVectorComponents,
87    LV_InvalidExpression
88  };
89  isLvalueResult isLvalue(ASTContext &Ctx) const;
90
91  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
92  /// does not have an incomplete type, does not have a const-qualified type,
93  /// and if it is a structure or union, does not have any member (including,
94  /// recursively, any member or element of all contained aggregates or unions)
95  /// with a const-qualified type.
96  enum isModifiableLvalueResult {
97    MLV_Valid,
98    MLV_NotObjectType,
99    MLV_IncompleteVoidType,
100    MLV_DuplicateVectorComponents,
101    MLV_InvalidExpression,
102    MLV_IncompleteType,
103    MLV_ConstQualified,
104    MLV_ArrayType,
105    MLV_NotBlockQualified
106  };
107  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx) const;
108
109  bool isNullPointerConstant(ASTContext &Ctx) const;
110  bool isBitField();
111
112  /// getIntegerConstantExprValue() - Return the value of an integer
113  /// constant expression. The expression must be a valid integer
114  /// constant expression as determined by isIntegerConstantExpr.
115  llvm::APSInt getIntegerConstantExprValue(ASTContext &Ctx) const {
116    llvm::APSInt X;
117    bool success = isIntegerConstantExpr(X, Ctx);
118    success = success;
119    assert(success && "Illegal argument to getIntegerConstantExpr");
120    return X;
121  }
122
123  /// isIntegerConstantExpr - Return true if this expression is a valid integer
124  /// constant expression, and, if so, return its value in Result.  If not a
125  /// valid i-c-e, return false and fill in Loc (if specified) with the location
126  /// of the invalid expression.
127  bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
128                             SourceLocation *Loc = 0,
129                             bool isEvaluated = true) const;
130  bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const {
131    llvm::APSInt X;
132    return isIntegerConstantExpr(X, Ctx, Loc);
133  }
134  /// isConstantExpr - Return true if this expression is a valid constant expr.
135  bool isConstantExpr(ASTContext &Ctx, SourceLocation *Loc) const;
136
137  /// tryEvaluate - Return true if this is a constant which we can fold using
138  /// any crazy technique (that has nothing to do with language standards) that
139  /// we want to.  If this function returns true, it returns the folded constant
140  /// in Result.
141  bool tryEvaluate(APValue& Result, ASTContext &Ctx) const;
142
143  /// isEvaluatable - Call tryEvaluate to see if this expression can be constant
144  /// folded, but discard the result.
145  bool isEvaluatable(ASTContext &Ctx) const;
146
147  /// hasGlobalStorage - Return true if this expression has static storage
148  /// duration.  This means that the address of this expression is a link-time
149  /// constant.
150  bool hasGlobalStorage() const;
151
152  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
153  ///  its subexpression.  If that subexpression is also a ParenExpr,
154  ///  then this method recursively returns its subexpression, and so forth.
155  ///  Otherwise, the method returns the current Expr.
156  Expr* IgnoreParens();
157
158  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
159  /// or CastExprs, returning their operand.
160  Expr *IgnoreParenCasts();
161
162  const Expr* IgnoreParens() const {
163    return const_cast<Expr*>(this)->IgnoreParens();
164  }
165  const Expr *IgnoreParenCasts() const {
166    return const_cast<Expr*>(this)->IgnoreParenCasts();
167  }
168
169  static bool classof(const Stmt *T) {
170    return T->getStmtClass() >= firstExprConstant &&
171           T->getStmtClass() <= lastExprConstant;
172  }
173  static bool classof(const Expr *) { return true; }
174
175  static inline Expr* Create(llvm::Deserializer& D, ASTContext& C) {
176    return cast<Expr>(Stmt::Create(D, C));
177  }
178};
179
180
181//===----------------------------------------------------------------------===//
182// Primary Expressions.
183//===----------------------------------------------------------------------===//
184
185/// DeclRefExpr - [C99 6.5.1p2] - A reference to a declared variable, function,
186/// enum, etc.
187class DeclRefExpr : public Expr {
188  NamedDecl *D;
189  SourceLocation Loc;
190
191protected:
192  DeclRefExpr(StmtClass SC, NamedDecl *d, QualType t, SourceLocation l) :
193    Expr(SC, t), D(d), Loc(l) {}
194
195public:
196  DeclRefExpr(NamedDecl *d, QualType t, SourceLocation l) :
197    Expr(DeclRefExprClass, t), D(d), Loc(l) {}
198
199  NamedDecl *getDecl() { return D; }
200  const NamedDecl *getDecl() const { return D; }
201  SourceLocation getLocation() const { return Loc; }
202  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
203
204
205  static bool classof(const Stmt *T) {
206    return T->getStmtClass() == DeclRefExprClass ||
207           T->getStmtClass() == CXXConditionDeclExprClass;
208  }
209  static bool classof(const DeclRefExpr *) { return true; }
210
211  // Iterators
212  virtual child_iterator child_begin();
213  virtual child_iterator child_end();
214
215  virtual void EmitImpl(llvm::Serializer& S) const;
216  static DeclRefExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
217};
218
219/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
220class PredefinedExpr : public Expr {
221public:
222  enum IdentType {
223    Func,
224    Function,
225    PrettyFunction,
226    CXXThis,
227    ObjCSuper // super
228  };
229
230private:
231  SourceLocation Loc;
232  IdentType Type;
233public:
234  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
235    : Expr(PredefinedExprClass, type), Loc(l), Type(IT) {}
236
237  IdentType getIdentType() const { return Type; }
238
239  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
240
241  static bool classof(const Stmt *T) {
242    return T->getStmtClass() == PredefinedExprClass;
243  }
244  static bool classof(const PredefinedExpr *) { return true; }
245
246  // Iterators
247  virtual child_iterator child_begin();
248  virtual child_iterator child_end();
249
250  virtual void EmitImpl(llvm::Serializer& S) const;
251  static PredefinedExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
252};
253
254class IntegerLiteral : public Expr {
255  llvm::APInt Value;
256  SourceLocation Loc;
257public:
258  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
259  // or UnsignedLongLongTy
260  IntegerLiteral(const llvm::APInt &V, QualType type, SourceLocation l)
261    : Expr(IntegerLiteralClass, type), Value(V), Loc(l) {
262    assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
263  }
264  const llvm::APInt &getValue() const { return Value; }
265  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
266
267  static bool classof(const Stmt *T) {
268    return T->getStmtClass() == IntegerLiteralClass;
269  }
270  static bool classof(const IntegerLiteral *) { return true; }
271
272  // Iterators
273  virtual child_iterator child_begin();
274  virtual child_iterator child_end();
275
276  virtual void EmitImpl(llvm::Serializer& S) const;
277  static IntegerLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
278};
279
280class CharacterLiteral : public Expr {
281  unsigned Value;
282  SourceLocation Loc;
283  bool IsWide;
284public:
285  // type should be IntTy
286  CharacterLiteral(unsigned value, bool iswide, QualType type, SourceLocation l)
287    : Expr(CharacterLiteralClass, type), Value(value), Loc(l), IsWide(iswide) {
288  }
289  SourceLocation getLoc() const { return Loc; }
290  bool isWide() const { return IsWide; }
291
292  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
293
294  unsigned getValue() const { return Value; }
295
296  static bool classof(const Stmt *T) {
297    return T->getStmtClass() == CharacterLiteralClass;
298  }
299  static bool classof(const CharacterLiteral *) { return true; }
300
301  // Iterators
302  virtual child_iterator child_begin();
303  virtual child_iterator child_end();
304
305  virtual void EmitImpl(llvm::Serializer& S) const;
306  static CharacterLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
307};
308
309class FloatingLiteral : public Expr {
310  llvm::APFloat Value;
311  bool IsExact : 1;
312  SourceLocation Loc;
313public:
314  FloatingLiteral(const llvm::APFloat &V, bool* isexact,
315                  QualType Type, SourceLocation L)
316    : Expr(FloatingLiteralClass, Type), Value(V), IsExact(*isexact), Loc(L) {}
317
318  const llvm::APFloat &getValue() const { return Value; }
319
320  bool isExact() const { return IsExact; }
321
322  /// getValueAsApproximateDouble - This returns the value as an inaccurate
323  /// double.  Note that this may cause loss of precision, but is useful for
324  /// debugging dumps, etc.
325  double getValueAsApproximateDouble() const;
326
327  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
328
329  static bool classof(const Stmt *T) {
330    return T->getStmtClass() == FloatingLiteralClass;
331  }
332  static bool classof(const FloatingLiteral *) { return true; }
333
334  // Iterators
335  virtual child_iterator child_begin();
336  virtual child_iterator child_end();
337
338  virtual void EmitImpl(llvm::Serializer& S) const;
339  static FloatingLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
340};
341
342/// ImaginaryLiteral - We support imaginary integer and floating point literals,
343/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
344/// IntegerLiteral classes.  Instances of this class always have a Complex type
345/// whose element type matches the subexpression.
346///
347class ImaginaryLiteral : public Expr {
348  Stmt *Val;
349public:
350  ImaginaryLiteral(Expr *val, QualType Ty)
351    : Expr(ImaginaryLiteralClass, Ty), Val(val) {}
352
353  const Expr *getSubExpr() const { return cast<Expr>(Val); }
354  Expr *getSubExpr() { return cast<Expr>(Val); }
355
356  virtual SourceRange getSourceRange() const { return Val->getSourceRange(); }
357  static bool classof(const Stmt *T) {
358    return T->getStmtClass() == ImaginaryLiteralClass;
359  }
360  static bool classof(const ImaginaryLiteral *) { return true; }
361
362  // Iterators
363  virtual child_iterator child_begin();
364  virtual child_iterator child_end();
365
366  virtual void EmitImpl(llvm::Serializer& S) const;
367  static ImaginaryLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
368};
369
370/// StringLiteral - This represents a string literal expression, e.g. "foo"
371/// or L"bar" (wide strings).  The actual string is returned by getStrData()
372/// is NOT null-terminated, and the length of the string is determined by
373/// calling getByteLength().  The C type for a string is always a
374/// ConstantArrayType.
375class StringLiteral : public Expr {
376  const char *StrData;
377  unsigned ByteLength;
378  bool IsWide;
379  // if the StringLiteral was composed using token pasting, both locations
380  // are needed. If not (the common case), firstTokLoc == lastTokLoc.
381  // FIXME: if space becomes an issue, we should create a sub-class.
382  SourceLocation firstTokLoc, lastTokLoc;
383public:
384  StringLiteral(const char *strData, unsigned byteLength, bool Wide,
385                QualType t, SourceLocation b, SourceLocation e);
386  virtual ~StringLiteral();
387
388  const char *getStrData() const { return StrData; }
389  unsigned getByteLength() const { return ByteLength; }
390  bool isWide() const { return IsWide; }
391
392  virtual SourceRange getSourceRange() const {
393    return SourceRange(firstTokLoc,lastTokLoc);
394  }
395  static bool classof(const Stmt *T) {
396    return T->getStmtClass() == StringLiteralClass;
397  }
398  static bool classof(const StringLiteral *) { return true; }
399
400  // Iterators
401  virtual child_iterator child_begin();
402  virtual child_iterator child_end();
403
404  virtual void EmitImpl(llvm::Serializer& S) const;
405  static StringLiteral* CreateImpl(llvm::Deserializer& D, ASTContext& C);
406};
407
408/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
409/// AST node is only formed if full location information is requested.
410class ParenExpr : public Expr {
411  SourceLocation L, R;
412  Stmt *Val;
413public:
414  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
415    : Expr(ParenExprClass, val->getType()), L(l), R(r), Val(val) {}
416
417  const Expr *getSubExpr() const { return cast<Expr>(Val); }
418  Expr *getSubExpr() { return cast<Expr>(Val); }
419  virtual SourceRange getSourceRange() const { return SourceRange(L, R); }
420
421  static bool classof(const Stmt *T) {
422    return T->getStmtClass() == ParenExprClass;
423  }
424  static bool classof(const ParenExpr *) { return true; }
425
426  // Iterators
427  virtual child_iterator child_begin();
428  virtual child_iterator child_end();
429
430  virtual void EmitImpl(llvm::Serializer& S) const;
431  static ParenExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
432};
433
434
435/// UnaryOperator - This represents the unary-expression's (except sizeof of
436/// types), the postinc/postdec operators from postfix-expression, and various
437/// extensions.
438///
439/// Notes on various nodes:
440///
441/// Real/Imag - These return the real/imag part of a complex operand.  If
442///   applied to a non-complex value, the former returns its operand and the
443///   later returns zero in the type of the operand.
444///
445/// __builtin_offsetof(type, a.b[10]) is represented as a unary operator whose
446///   subexpression is a compound literal with the various MemberExpr and
447///   ArraySubscriptExpr's applied to it.
448///
449class UnaryOperator : public Expr {
450public:
451  // Note that additions to this should also update the StmtVisitor class.
452  enum Opcode {
453    PostInc, PostDec, // [C99 6.5.2.4] Postfix increment and decrement operators
454    PreInc, PreDec,   // [C99 6.5.3.1] Prefix increment and decrement operators.
455    AddrOf, Deref,    // [C99 6.5.3.2] Address and indirection operators.
456    Plus, Minus,      // [C99 6.5.3.3] Unary arithmetic operators.
457    Not, LNot,        // [C99 6.5.3.3] Unary arithmetic operators.
458    SizeOf, AlignOf,  // [C99 6.5.3.4] Sizeof (expr, not type) operator.
459    Real, Imag,       // "__real expr"/"__imag expr" Extension.
460    Extension,        // __extension__ marker.
461    OffsetOf          // __builtin_offsetof
462  };
463private:
464  Stmt *Val;
465  Opcode Opc;
466  SourceLocation Loc;
467public:
468
469  UnaryOperator(Expr *input, Opcode opc, QualType type, SourceLocation l)
470    : Expr(UnaryOperatorClass, type), Val(input), Opc(opc), Loc(l) {}
471
472  Opcode getOpcode() const { return Opc; }
473  Expr *getSubExpr() const { return cast<Expr>(Val); }
474
475  /// getOperatorLoc - Return the location of the operator.
476  SourceLocation getOperatorLoc() const { return Loc; }
477
478  /// isPostfix - Return true if this is a postfix operation, like x++.
479  static bool isPostfix(Opcode Op);
480
481  /// isPostfix - Return true if this is a prefix operation, like --x.
482  static bool isPrefix(Opcode Op);
483
484  bool isPrefix() const { return isPrefix(Opc); }
485  bool isPostfix() const { return isPostfix(Opc); }
486  bool isIncrementOp() const {return Opc==PreInc || Opc==PostInc; }
487  bool isIncrementDecrementOp() const { return Opc>=PostInc && Opc<=PreDec; }
488  bool isSizeOfAlignOfOp() const { return Opc == SizeOf || Opc == AlignOf; }
489  bool isOffsetOfOp() const { return Opc == OffsetOf; }
490  static bool isArithmeticOp(Opcode Op) { return Op >= Plus && Op <= LNot; }
491
492  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
493  /// corresponds to, e.g. "sizeof" or "[pre]++"
494  static const char *getOpcodeStr(Opcode Op);
495
496  virtual SourceRange getSourceRange() const {
497    if (isPostfix())
498      return SourceRange(Val->getLocStart(), Loc);
499    else
500      return SourceRange(Loc, Val->getLocEnd());
501  }
502  virtual SourceLocation getExprLoc() const { return Loc; }
503
504  static bool classof(const Stmt *T) {
505    return T->getStmtClass() == UnaryOperatorClass;
506  }
507  static bool classof(const UnaryOperator *) { return true; }
508
509  int64_t evaluateOffsetOf(ASTContext& C) const;
510
511  // Iterators
512  virtual child_iterator child_begin();
513  virtual child_iterator child_end();
514
515  virtual void EmitImpl(llvm::Serializer& S) const;
516  static UnaryOperator* CreateImpl(llvm::Deserializer& D, ASTContext& C);
517};
518
519/// SizeOfAlignOfTypeExpr - [C99 6.5.3.4] - This is only for sizeof/alignof of
520/// *types*.  sizeof(expr) is handled by UnaryOperator.
521class SizeOfAlignOfTypeExpr : public Expr {
522  bool isSizeof;  // true if sizeof, false if alignof.
523  QualType Ty;
524  SourceLocation OpLoc, RParenLoc;
525public:
526  SizeOfAlignOfTypeExpr(bool issizeof, QualType argType, QualType resultType,
527                        SourceLocation op, SourceLocation rp) :
528    Expr(SizeOfAlignOfTypeExprClass, resultType),
529    isSizeof(issizeof), Ty(argType), OpLoc(op), RParenLoc(rp) {}
530
531  virtual void Destroy(ASTContext& C);
532
533  bool isSizeOf() const { return isSizeof; }
534  QualType getArgumentType() const { return Ty; }
535
536  SourceLocation getOperatorLoc() const { return OpLoc; }
537
538  virtual SourceRange getSourceRange() const {
539    return SourceRange(OpLoc, RParenLoc);
540  }
541
542  static bool classof(const Stmt *T) {
543    return T->getStmtClass() == SizeOfAlignOfTypeExprClass;
544  }
545  static bool classof(const SizeOfAlignOfTypeExpr *) { return true; }
546
547  // Iterators
548  virtual child_iterator child_begin();
549  virtual child_iterator child_end();
550
551  virtual void EmitImpl(llvm::Serializer& S) const;
552  static SizeOfAlignOfTypeExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
553};
554
555//===----------------------------------------------------------------------===//
556// Postfix Operators.
557//===----------------------------------------------------------------------===//
558
559/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
560class ArraySubscriptExpr : public Expr {
561  enum { LHS, RHS, END_EXPR=2 };
562  Stmt* SubExprs[END_EXPR];
563  SourceLocation RBracketLoc;
564public:
565  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
566                     SourceLocation rbracketloc)
567  : Expr(ArraySubscriptExprClass, t), RBracketLoc(rbracketloc) {
568    SubExprs[LHS] = lhs;
569    SubExprs[RHS] = rhs;
570  }
571
572  /// An array access can be written A[4] or 4[A] (both are equivalent).
573  /// - getBase() and getIdx() always present the normalized view: A[4].
574  ///    In this case getBase() returns "A" and getIdx() returns "4".
575  /// - getLHS() and getRHS() present the syntactic view. e.g. for
576  ///    4[A] getLHS() returns "4".
577  /// Note: Because vector element access is also written A[4] we must
578  /// predicate the format conversion in getBase and getIdx only on the
579  /// the type of the RHS, as it is possible for the LHS to be a vector of
580  /// integer type
581  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
582  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
583
584  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
585  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
586
587  Expr *getBase() {
588    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
589  }
590
591  const Expr *getBase() const {
592    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
593  }
594
595  Expr *getIdx() {
596    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
597  }
598
599  const Expr *getIdx() const {
600    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
601  }
602
603  virtual SourceRange getSourceRange() const {
604    return SourceRange(getLHS()->getLocStart(), RBracketLoc);
605  }
606
607  virtual SourceLocation getExprLoc() const { return RBracketLoc; }
608
609  static bool classof(const Stmt *T) {
610    return T->getStmtClass() == ArraySubscriptExprClass;
611  }
612  static bool classof(const ArraySubscriptExpr *) { return true; }
613
614  // Iterators
615  virtual child_iterator child_begin();
616  virtual child_iterator child_end();
617
618  virtual void EmitImpl(llvm::Serializer& S) const;
619  static ArraySubscriptExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
620};
621
622
623/// CallExpr - [C99 6.5.2.2] Function Calls.
624///
625class CallExpr : public Expr {
626  enum { FN=0, ARGS_START=1 };
627  Stmt **SubExprs;
628  unsigned NumArgs;
629  SourceLocation RParenLoc;
630
631  // This version of the ctor is for deserialization.
632  CallExpr(Stmt** subexprs, unsigned numargs, QualType t,
633           SourceLocation rparenloc)
634  : Expr(CallExprClass,t), SubExprs(subexprs),
635    NumArgs(numargs), RParenLoc(rparenloc) {}
636
637public:
638  CallExpr(Expr *fn, Expr **args, unsigned numargs, QualType t,
639           SourceLocation rparenloc);
640  ~CallExpr() {
641    delete [] SubExprs;
642  }
643
644  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
645  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
646  void setCallee(Expr *F) { SubExprs[FN] = F; }
647
648  /// getNumArgs - Return the number of actual arguments to this call.
649  ///
650  unsigned getNumArgs() const { return NumArgs; }
651
652  /// getArg - Return the specified argument.
653  Expr *getArg(unsigned Arg) {
654    assert(Arg < NumArgs && "Arg access out of range!");
655    return cast<Expr>(SubExprs[Arg+ARGS_START]);
656  }
657  const Expr *getArg(unsigned Arg) const {
658    assert(Arg < NumArgs && "Arg access out of range!");
659    return cast<Expr>(SubExprs[Arg+ARGS_START]);
660  }
661  /// setArg - Set the specified argument.
662  void setArg(unsigned Arg, Expr *ArgExpr) {
663    assert(Arg < NumArgs && "Arg access out of range!");
664    SubExprs[Arg+ARGS_START] = ArgExpr;
665  }
666
667  /// setNumArgs - This changes the number of arguments present in this call.
668  /// Any orphaned expressions are deleted by this, and any new operands are set
669  /// to null.
670  void setNumArgs(unsigned NumArgs);
671
672  typedef ExprIterator arg_iterator;
673  typedef ConstExprIterator const_arg_iterator;
674
675  arg_iterator arg_begin() { return SubExprs+ARGS_START; }
676  arg_iterator arg_end() { return SubExprs+ARGS_START+getNumArgs(); }
677  const_arg_iterator arg_begin() const { return SubExprs+ARGS_START; }
678  const_arg_iterator arg_end() const { return SubExprs+ARGS_START+getNumArgs();}
679
680  /// getNumCommas - Return the number of commas that must have been present in
681  /// this function call.
682  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
683
684  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
685  /// not, return 0.
686  unsigned isBuiltinCall() const;
687
688  SourceLocation getRParenLoc() const { return RParenLoc; }
689
690  virtual SourceRange getSourceRange() const {
691    return SourceRange(getCallee()->getLocStart(), RParenLoc);
692  }
693
694  static bool classof(const Stmt *T) {
695    return T->getStmtClass() == CallExprClass;
696  }
697  static bool classof(const CallExpr *) { return true; }
698
699  // Iterators
700  virtual child_iterator child_begin();
701  virtual child_iterator child_end();
702
703  virtual void EmitImpl(llvm::Serializer& S) const;
704  static CallExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
705};
706
707/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.
708///
709class MemberExpr : public Expr {
710  Stmt *Base;
711  FieldDecl *MemberDecl;
712  SourceLocation MemberLoc;
713  bool IsArrow;      // True if this is "X->F", false if this is "X.F".
714public:
715  MemberExpr(Expr *base, bool isarrow, FieldDecl *memberdecl, SourceLocation l,
716             QualType ty)
717    : Expr(MemberExprClass, ty),
718      Base(base), MemberDecl(memberdecl), MemberLoc(l), IsArrow(isarrow) {}
719
720  Expr *getBase() const { return cast<Expr>(Base); }
721  FieldDecl *getMemberDecl() const { return MemberDecl; }
722  bool isArrow() const { return IsArrow; }
723
724  virtual SourceRange getSourceRange() const {
725    return SourceRange(getBase()->getLocStart(), MemberLoc);
726  }
727
728  virtual SourceLocation getExprLoc() const { return MemberLoc; }
729
730  static bool classof(const Stmt *T) {
731    return T->getStmtClass() == MemberExprClass;
732  }
733  static bool classof(const MemberExpr *) { return true; }
734
735  // Iterators
736  virtual child_iterator child_begin();
737  virtual child_iterator child_end();
738
739  virtual void EmitImpl(llvm::Serializer& S) const;
740  static MemberExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
741};
742
743/// CompoundLiteralExpr - [C99 6.5.2.5]
744///
745class CompoundLiteralExpr : public Expr {
746  /// LParenLoc - If non-null, this is the location of the left paren in a
747  /// compound literal like "(int){4}".  This can be null if this is a
748  /// synthesized compound expression.
749  SourceLocation LParenLoc;
750  Stmt *Init;
751  bool FileScope;
752public:
753  CompoundLiteralExpr(SourceLocation lparenloc, QualType ty, Expr *init,
754                      bool fileScope)
755    : Expr(CompoundLiteralExprClass, ty), LParenLoc(lparenloc), Init(init),
756      FileScope(fileScope) {}
757
758  const Expr *getInitializer() const { return cast<Expr>(Init); }
759  Expr *getInitializer() { return cast<Expr>(Init); }
760
761  bool isFileScope() const { return FileScope; }
762
763  SourceLocation getLParenLoc() const { return LParenLoc; }
764
765  virtual SourceRange getSourceRange() const {
766    // FIXME: Init should never be null.
767    if (!Init)
768      return SourceRange();
769    if (LParenLoc.isInvalid())
770      return Init->getSourceRange();
771    return SourceRange(LParenLoc, Init->getLocEnd());
772  }
773
774  static bool classof(const Stmt *T) {
775    return T->getStmtClass() == CompoundLiteralExprClass;
776  }
777  static bool classof(const CompoundLiteralExpr *) { return true; }
778
779  // Iterators
780  virtual child_iterator child_begin();
781  virtual child_iterator child_end();
782
783  virtual void EmitImpl(llvm::Serializer& S) const;
784  static CompoundLiteralExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
785};
786
787/// CastExpr - Base class for type casts, including both implicit
788/// casts (ImplicitCastExpr) and explicit casts that have some
789/// representation in the source code (ExplicitCastExpr's derived
790/// classes).
791class CastExpr : public Expr {
792  Stmt *Op;
793protected:
794  CastExpr(StmtClass SC, QualType ty, Expr *op) :
795    Expr(SC, ty), Op(op) {}
796
797public:
798  Expr *getSubExpr() { return cast<Expr>(Op); }
799  const Expr *getSubExpr() const { return cast<Expr>(Op); }
800
801  static bool classof(const Stmt *T) {
802    StmtClass SC = T->getStmtClass();
803    if (SC >= CXXNamedCastExprClass && SC <= CXXFunctionalCastExprClass)
804      return true;
805
806    if (SC >= ImplicitCastExprClass && SC <= CStyleCastExprClass)
807      return true;
808
809    return false;
810  }
811  static bool classof(const CastExpr *) { return true; }
812
813  // Iterators
814  virtual child_iterator child_begin();
815  virtual child_iterator child_end();
816};
817
818/// ImplicitCastExpr - Allows us to explicitly represent implicit type
819/// conversions, which have no direct representation in the original
820/// source code. For example: converting T[]->T*, void f()->void
821/// (*f)(), float->double, short->int, etc.
822///
823class ImplicitCastExpr : public CastExpr {
824public:
825  ImplicitCastExpr(QualType ty, Expr *op) :
826    CastExpr(ImplicitCastExprClass, ty, op) {}
827
828  virtual SourceRange getSourceRange() const {
829    return getSubExpr()->getSourceRange();
830  }
831
832  static bool classof(const Stmt *T) {
833    return T->getStmtClass() == ImplicitCastExprClass;
834  }
835  static bool classof(const ImplicitCastExpr *) { return true; }
836
837  virtual void EmitImpl(llvm::Serializer& S) const;
838  static ImplicitCastExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
839};
840
841/// ExplicitCastExpr - An explicit cast written in the source
842/// code.
843///
844/// This class is effectively an abstract class, because it provides
845/// the basic representation of an explicitly-written cast without
846/// specifying which kind of cast (C cast, functional cast, static
847/// cast, etc.) was written; specific derived classes represent the
848/// particular style of cast and its location information.
849///
850/// Unlike implicit casts, explicit cast nodes have two different
851/// types: the type that was written into the source code, and the
852/// actual type of the expression as determined by semantic
853/// analysis. These types may differ slightly. For example, in C++ one
854/// can cast to a reference type, which indicates that the resulting
855/// expression will be an lvalue. The reference type, however, will
856/// not be used as the type of the expression.
857class ExplicitCastExpr : public CastExpr {
858  /// TypeAsWritten - The type that this expression is casting to, as
859  /// written in the source code.
860  QualType TypeAsWritten;
861
862protected:
863  ExplicitCastExpr(StmtClass SC, QualType exprTy, Expr *op, QualType writtenTy)
864    : CastExpr(SC, exprTy, op), TypeAsWritten(writtenTy) {}
865
866public:
867  /// getTypeAsWritten - Returns the type that this expression is
868  /// casting to, as written in the source code.
869  QualType getTypeAsWritten() const { return TypeAsWritten; }
870
871  static bool classof(const Stmt *T) {
872    StmtClass SC = T->getStmtClass();
873    if (SC >= ExplicitCastExprClass && SC <= CStyleCastExprClass)
874      return true;
875    if (SC >= CXXNamedCastExprClass && SC <= CXXFunctionalCastExprClass)
876      return true;
877
878    return false;
879  }
880  static bool classof(const ExplicitCastExpr *) { return true; }
881};
882
883/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
884/// cast in C++ (C++ [expr.cast]), which uses the syntax
885/// (Type)expr. For example: @c (int)f.
886class CStyleCastExpr : public ExplicitCastExpr {
887  SourceLocation Loc; // the location of the left paren
888public:
889  CStyleCastExpr(QualType exprTy, Expr *op, QualType writtenTy,
890                    SourceLocation l) :
891    ExplicitCastExpr(CStyleCastExprClass, exprTy, op, writtenTy), Loc(l) {}
892
893  SourceLocation getLParenLoc() const { return Loc; }
894
895  virtual SourceRange getSourceRange() const {
896    return SourceRange(Loc, getSubExpr()->getSourceRange().getEnd());
897  }
898  static bool classof(const Stmt *T) {
899    return T->getStmtClass() == CStyleCastExprClass;
900  }
901  static bool classof(const CStyleCastExpr *) { return true; }
902
903  virtual void EmitImpl(llvm::Serializer& S) const;
904  static CStyleCastExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
905};
906
907class BinaryOperator : public Expr {
908public:
909  enum Opcode {
910    // Operators listed in order of precedence.
911    // Note that additions to this should also update the StmtVisitor class.
912    Mul, Div, Rem,    // [C99 6.5.5] Multiplicative operators.
913    Add, Sub,         // [C99 6.5.6] Additive operators.
914    Shl, Shr,         // [C99 6.5.7] Bitwise shift operators.
915    LT, GT, LE, GE,   // [C99 6.5.8] Relational operators.
916    EQ, NE,           // [C99 6.5.9] Equality operators.
917    And,              // [C99 6.5.10] Bitwise AND operator.
918    Xor,              // [C99 6.5.11] Bitwise XOR operator.
919    Or,               // [C99 6.5.12] Bitwise OR operator.
920    LAnd,             // [C99 6.5.13] Logical AND operator.
921    LOr,              // [C99 6.5.14] Logical OR operator.
922    Assign, MulAssign,// [C99 6.5.16] Assignment operators.
923    DivAssign, RemAssign,
924    AddAssign, SubAssign,
925    ShlAssign, ShrAssign,
926    AndAssign, XorAssign,
927    OrAssign,
928    Comma             // [C99 6.5.17] Comma operator.
929  };
930private:
931  enum { LHS, RHS, END_EXPR };
932  Stmt* SubExprs[END_EXPR];
933  Opcode Opc;
934  SourceLocation OpLoc;
935public:
936
937  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
938                 SourceLocation opLoc)
939    : Expr(BinaryOperatorClass, ResTy), Opc(opc), OpLoc(opLoc) {
940    SubExprs[LHS] = lhs;
941    SubExprs[RHS] = rhs;
942    assert(!isCompoundAssignmentOp() &&
943           "Use ArithAssignBinaryOperator for compound assignments");
944  }
945
946  SourceLocation getOperatorLoc() const { return OpLoc; }
947  Opcode getOpcode() const { return Opc; }
948  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
949  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
950  virtual SourceRange getSourceRange() const {
951    return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
952  }
953
954  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
955  /// corresponds to, e.g. "<<=".
956  static const char *getOpcodeStr(Opcode Op);
957
958  /// predicates to categorize the respective opcodes.
959  bool isMultiplicativeOp() const { return Opc >= Mul && Opc <= Rem; }
960  bool isAdditiveOp() const { return Opc == Add || Opc == Sub; }
961  bool isShiftOp() const { return Opc == Shl || Opc == Shr; }
962  bool isBitwiseOp() const { return Opc >= And && Opc <= Or; }
963
964  static bool isRelationalOp(Opcode Opc) { return Opc >= LT && Opc <= GE; }
965  bool isRelationalOp() const { return isRelationalOp(Opc); }
966
967  static bool isEqualityOp(Opcode Opc) { return Opc == EQ || Opc == NE; }
968  bool isEqualityOp() const { return isEqualityOp(Opc); }
969
970  static bool isLogicalOp(Opcode Opc) { return Opc == LAnd || Opc == LOr; }
971  bool isLogicalOp() const { return isLogicalOp(Opc); }
972
973  bool isAssignmentOp() const { return Opc >= Assign && Opc <= OrAssign; }
974  bool isCompoundAssignmentOp() const { return Opc > Assign && Opc <= OrAssign;}
975  bool isShiftAssignOp() const { return Opc == ShlAssign || Opc == ShrAssign; }
976
977  static bool classof(const Stmt *S) {
978    return S->getStmtClass() == BinaryOperatorClass ||
979           S->getStmtClass() == CompoundAssignOperatorClass;
980  }
981  static bool classof(const BinaryOperator *) { return true; }
982
983  // Iterators
984  virtual child_iterator child_begin();
985  virtual child_iterator child_end();
986
987  virtual void EmitImpl(llvm::Serializer& S) const;
988  static BinaryOperator* CreateImpl(llvm::Deserializer& D, ASTContext& C);
989
990protected:
991  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
992                 SourceLocation oploc, bool dead)
993    : Expr(CompoundAssignOperatorClass, ResTy), Opc(opc), OpLoc(oploc) {
994    SubExprs[LHS] = lhs;
995    SubExprs[RHS] = rhs;
996  }
997};
998
999/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
1000/// track of the type the operation is performed in.  Due to the semantics of
1001/// these operators, the operands are promoted, the aritmetic performed, an
1002/// implicit conversion back to the result type done, then the assignment takes
1003/// place.  This captures the intermediate type which the computation is done
1004/// in.
1005class CompoundAssignOperator : public BinaryOperator {
1006  QualType ComputationType;
1007public:
1008  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc,
1009                         QualType ResType, QualType CompType,
1010                         SourceLocation OpLoc)
1011    : BinaryOperator(lhs, rhs, opc, ResType, OpLoc, true),
1012      ComputationType(CompType) {
1013    assert(isCompoundAssignmentOp() &&
1014           "Only should be used for compound assignments");
1015  }
1016
1017  QualType getComputationType() const { return ComputationType; }
1018
1019  static bool classof(const CompoundAssignOperator *) { return true; }
1020  static bool classof(const Stmt *S) {
1021    return S->getStmtClass() == CompoundAssignOperatorClass;
1022  }
1023
1024  virtual void EmitImpl(llvm::Serializer& S) const;
1025  static CompoundAssignOperator* CreateImpl(llvm::Deserializer& D,
1026                                            ASTContext& C);
1027};
1028
1029/// ConditionalOperator - The ?: operator.  Note that LHS may be null when the
1030/// GNU "missing LHS" extension is in use.
1031///
1032class ConditionalOperator : public Expr {
1033  enum { COND, LHS, RHS, END_EXPR };
1034  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
1035public:
1036  ConditionalOperator(Expr *cond, Expr *lhs, Expr *rhs, QualType t)
1037    : Expr(ConditionalOperatorClass, t) {
1038    SubExprs[COND] = cond;
1039    SubExprs[LHS] = lhs;
1040    SubExprs[RHS] = rhs;
1041  }
1042
1043  // getCond - Return the expression representing the condition for
1044  //  the ?: operator.
1045  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
1046
1047  // getTrueExpr - Return the subexpression representing the value of the ?:
1048  //  expression if the condition evaluates to true.  In most cases this value
1049  //  will be the same as getLHS() except a GCC extension allows the left
1050  //  subexpression to be omitted, and instead of the condition be returned.
1051  //  e.g: x ?: y is shorthand for x ? x : y, except that the expression "x"
1052  //  is only evaluated once.
1053  Expr *getTrueExpr() const {
1054    return cast<Expr>(SubExprs[LHS] ? SubExprs[LHS] : SubExprs[COND]);
1055  }
1056
1057  // getTrueExpr - Return the subexpression representing the value of the ?:
1058  // expression if the condition evaluates to false. This is the same as getRHS.
1059  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
1060
1061  Expr *getLHS() const { return cast_or_null<Expr>(SubExprs[LHS]); }
1062  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1063
1064  virtual SourceRange getSourceRange() const {
1065    return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
1066  }
1067  static bool classof(const Stmt *T) {
1068    return T->getStmtClass() == ConditionalOperatorClass;
1069  }
1070  static bool classof(const ConditionalOperator *) { return true; }
1071
1072  // Iterators
1073  virtual child_iterator child_begin();
1074  virtual child_iterator child_end();
1075
1076  virtual void EmitImpl(llvm::Serializer& S) const;
1077  static ConditionalOperator* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1078};
1079
1080/// AddrLabelExpr - The GNU address of label extension, representing &&label.
1081class AddrLabelExpr : public Expr {
1082  SourceLocation AmpAmpLoc, LabelLoc;
1083  LabelStmt *Label;
1084public:
1085  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelStmt *L,
1086                QualType t)
1087    : Expr(AddrLabelExprClass, t), AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
1088
1089  virtual SourceRange getSourceRange() const {
1090    return SourceRange(AmpAmpLoc, LabelLoc);
1091  }
1092
1093  LabelStmt *getLabel() const { return Label; }
1094
1095  static bool classof(const Stmt *T) {
1096    return T->getStmtClass() == AddrLabelExprClass;
1097  }
1098  static bool classof(const AddrLabelExpr *) { return true; }
1099
1100  // Iterators
1101  virtual child_iterator child_begin();
1102  virtual child_iterator child_end();
1103
1104  virtual void EmitImpl(llvm::Serializer& S) const;
1105  static AddrLabelExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1106};
1107
1108/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
1109/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
1110/// takes the value of the last subexpression.
1111class StmtExpr : public Expr {
1112  Stmt *SubStmt;
1113  SourceLocation LParenLoc, RParenLoc;
1114public:
1115  StmtExpr(CompoundStmt *substmt, QualType T,
1116           SourceLocation lp, SourceLocation rp) :
1117    Expr(StmtExprClass, T), SubStmt(substmt),  LParenLoc(lp), RParenLoc(rp) { }
1118
1119  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
1120  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
1121
1122  virtual SourceRange getSourceRange() const {
1123    return SourceRange(LParenLoc, RParenLoc);
1124  }
1125
1126  static bool classof(const Stmt *T) {
1127    return T->getStmtClass() == StmtExprClass;
1128  }
1129  static bool classof(const StmtExpr *) { return true; }
1130
1131  // Iterators
1132  virtual child_iterator child_begin();
1133  virtual child_iterator child_end();
1134
1135  virtual void EmitImpl(llvm::Serializer& S) const;
1136  static StmtExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1137};
1138
1139/// TypesCompatibleExpr - GNU builtin-in function __builtin_type_compatible_p.
1140/// This AST node represents a function that returns 1 if two *types* (not
1141/// expressions) are compatible. The result of this built-in function can be
1142/// used in integer constant expressions.
1143class TypesCompatibleExpr : public Expr {
1144  QualType Type1;
1145  QualType Type2;
1146  SourceLocation BuiltinLoc, RParenLoc;
1147public:
1148  TypesCompatibleExpr(QualType ReturnType, SourceLocation BLoc,
1149                      QualType t1, QualType t2, SourceLocation RP) :
1150    Expr(TypesCompatibleExprClass, ReturnType), Type1(t1), Type2(t2),
1151    BuiltinLoc(BLoc), RParenLoc(RP) {}
1152
1153  QualType getArgType1() const { return Type1; }
1154  QualType getArgType2() const { return Type2; }
1155
1156  virtual SourceRange getSourceRange() const {
1157    return SourceRange(BuiltinLoc, RParenLoc);
1158  }
1159  static bool classof(const Stmt *T) {
1160    return T->getStmtClass() == TypesCompatibleExprClass;
1161  }
1162  static bool classof(const TypesCompatibleExpr *) { return true; }
1163
1164  // Iterators
1165  virtual child_iterator child_begin();
1166  virtual child_iterator child_end();
1167
1168  virtual void EmitImpl(llvm::Serializer& S) const;
1169  static TypesCompatibleExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1170};
1171
1172/// ShuffleVectorExpr - clang-specific builtin-in function
1173/// __builtin_shufflevector.
1174/// This AST node represents a operator that does a constant
1175/// shuffle, similar to LLVM's shufflevector instruction. It takes
1176/// two vectors and a variable number of constant indices,
1177/// and returns the appropriately shuffled vector.
1178class ShuffleVectorExpr : public Expr {
1179  SourceLocation BuiltinLoc, RParenLoc;
1180
1181  // SubExprs - the list of values passed to the __builtin_shufflevector
1182  // function. The first two are vectors, and the rest are constant
1183  // indices.  The number of values in this list is always
1184  // 2+the number of indices in the vector type.
1185  Stmt **SubExprs;
1186  unsigned NumExprs;
1187
1188public:
1189  ShuffleVectorExpr(Expr **args, unsigned nexpr,
1190                    QualType Type, SourceLocation BLoc,
1191                    SourceLocation RP) :
1192    Expr(ShuffleVectorExprClass, Type), BuiltinLoc(BLoc),
1193    RParenLoc(RP), NumExprs(nexpr) {
1194
1195    SubExprs = new Stmt*[nexpr];
1196    for (unsigned i = 0; i < nexpr; i++)
1197      SubExprs[i] = args[i];
1198  }
1199
1200  virtual SourceRange getSourceRange() const {
1201    return SourceRange(BuiltinLoc, RParenLoc);
1202  }
1203  static bool classof(const Stmt *T) {
1204    return T->getStmtClass() == ShuffleVectorExprClass;
1205  }
1206  static bool classof(const ShuffleVectorExpr *) { return true; }
1207
1208  ~ShuffleVectorExpr() {
1209    delete [] SubExprs;
1210  }
1211
1212  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
1213  /// constant expression, the actual arguments passed in, and the function
1214  /// pointers.
1215  unsigned getNumSubExprs() const { return NumExprs; }
1216
1217  /// getExpr - Return the Expr at the specified index.
1218  Expr *getExpr(unsigned Index) {
1219    assert((Index < NumExprs) && "Arg access out of range!");
1220    return cast<Expr>(SubExprs[Index]);
1221  }
1222  const Expr *getExpr(unsigned Index) const {
1223    assert((Index < NumExprs) && "Arg access out of range!");
1224    return cast<Expr>(SubExprs[Index]);
1225  }
1226
1227  unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) {
1228    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
1229    return getExpr(N+2)->getIntegerConstantExprValue(Ctx).getZExtValue();
1230  }
1231
1232  // Iterators
1233  virtual child_iterator child_begin();
1234  virtual child_iterator child_end();
1235
1236  virtual void EmitImpl(llvm::Serializer& S) const;
1237  static ShuffleVectorExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1238};
1239
1240/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
1241/// This AST node is similar to the conditional operator (?:) in C, with
1242/// the following exceptions:
1243/// - the test expression much be a constant expression.
1244/// - the expression returned has it's type unaltered by promotion rules.
1245/// - does not evaluate the expression that was not chosen.
1246class ChooseExpr : public Expr {
1247  enum { COND, LHS, RHS, END_EXPR };
1248  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
1249  SourceLocation BuiltinLoc, RParenLoc;
1250public:
1251  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs, QualType t,
1252             SourceLocation RP)
1253    : Expr(ChooseExprClass, t),
1254      BuiltinLoc(BLoc), RParenLoc(RP) {
1255      SubExprs[COND] = cond;
1256      SubExprs[LHS] = lhs;
1257      SubExprs[RHS] = rhs;
1258    }
1259
1260  /// isConditionTrue - Return true if the condition is true.  This is always
1261  /// statically knowable for a well-formed choosexpr.
1262  bool isConditionTrue(ASTContext &C) const;
1263
1264  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
1265  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1266  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1267
1268  virtual SourceRange getSourceRange() const {
1269    return SourceRange(BuiltinLoc, RParenLoc);
1270  }
1271  static bool classof(const Stmt *T) {
1272    return T->getStmtClass() == ChooseExprClass;
1273  }
1274  static bool classof(const ChooseExpr *) { return true; }
1275
1276  // Iterators
1277  virtual child_iterator child_begin();
1278  virtual child_iterator child_end();
1279
1280  virtual void EmitImpl(llvm::Serializer& S) const;
1281  static ChooseExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1282};
1283
1284/// OverloadExpr - Clang builtin function __builtin_overload.
1285/// This AST node provides a way to overload functions in C.
1286///
1287/// The first argument is required to be a constant expression, for the number
1288/// of arguments passed to each candidate function.
1289///
1290/// The next N arguments, where N is the value of the constant expression,
1291/// are the values to be passed as arguments.
1292///
1293/// The rest of the arguments are values of pointer to function type, which
1294/// are the candidate functions for overloading.
1295///
1296/// The result is a equivalent to a CallExpr taking N arguments to the
1297/// candidate function whose parameter types match the types of the N arguments.
1298///
1299/// example: float Z = __builtin_overload(2, X, Y, modf, mod, modl);
1300/// If X and Y are long doubles, Z will assigned the result of modl(X, Y);
1301/// If X and Y are floats, Z will be assigned the result of modf(X, Y);
1302class OverloadExpr : public Expr {
1303  // SubExprs - the list of values passed to the __builtin_overload function.
1304  // SubExpr[0] is a constant expression
1305  // SubExpr[1-N] are the parameters to pass to the matching function call
1306  // SubExpr[N-...] are the candidate functions, of type pointer to function.
1307  Stmt **SubExprs;
1308
1309  // NumExprs - the size of the SubExprs array
1310  unsigned NumExprs;
1311
1312  // The index of the matching candidate function
1313  unsigned FnIndex;
1314
1315  SourceLocation BuiltinLoc;
1316  SourceLocation RParenLoc;
1317public:
1318  OverloadExpr(Expr **args, unsigned nexprs, unsigned idx, QualType t,
1319               SourceLocation bloc, SourceLocation rploc)
1320    : Expr(OverloadExprClass, t), NumExprs(nexprs), FnIndex(idx),
1321      BuiltinLoc(bloc), RParenLoc(rploc) {
1322    SubExprs = new Stmt*[nexprs];
1323    for (unsigned i = 0; i != nexprs; ++i)
1324      SubExprs[i] = args[i];
1325  }
1326  ~OverloadExpr() {
1327    delete [] SubExprs;
1328  }
1329
1330  /// arg_begin - Return a pointer to the list of arguments that will be passed
1331  /// to the matching candidate function, skipping over the initial constant
1332  /// expression.
1333  typedef ConstExprIterator const_arg_iterator;
1334  const_arg_iterator arg_begin() const { return &SubExprs[0]+1; }
1335  const_arg_iterator arg_end(ASTContext& Ctx) const {
1336    return &SubExprs[0]+1+getNumArgs(Ctx);
1337  }
1338
1339  /// getNumArgs - Return the number of arguments to pass to the candidate
1340  /// functions.
1341  unsigned getNumArgs(ASTContext &Ctx) const {
1342    return getExpr(0)->getIntegerConstantExprValue(Ctx).getZExtValue();
1343  }
1344
1345  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
1346  /// constant expression, the actual arguments passed in, and the function
1347  /// pointers.
1348  unsigned getNumSubExprs() const { return NumExprs; }
1349
1350  /// getExpr - Return the Expr at the specified index.
1351  Expr *getExpr(unsigned Index) const {
1352    assert((Index < NumExprs) && "Arg access out of range!");
1353    return cast<Expr>(SubExprs[Index]);
1354  }
1355
1356  /// getFn - Return the matching candidate function for this OverloadExpr.
1357  Expr *getFn() const { return cast<Expr>(SubExprs[FnIndex]); }
1358
1359  virtual SourceRange getSourceRange() const {
1360    return SourceRange(BuiltinLoc, RParenLoc);
1361  }
1362  static bool classof(const Stmt *T) {
1363    return T->getStmtClass() == OverloadExprClass;
1364  }
1365  static bool classof(const OverloadExpr *) { return true; }
1366
1367  // Iterators
1368  virtual child_iterator child_begin();
1369  virtual child_iterator child_end();
1370
1371  virtual void EmitImpl(llvm::Serializer& S) const;
1372  static OverloadExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1373};
1374
1375/// VAArgExpr, used for the builtin function __builtin_va_start.
1376class VAArgExpr : public Expr {
1377  Stmt *Val;
1378  SourceLocation BuiltinLoc, RParenLoc;
1379public:
1380  VAArgExpr(SourceLocation BLoc, Expr* e, QualType t, SourceLocation RPLoc)
1381    : Expr(VAArgExprClass, t),
1382      Val(e),
1383      BuiltinLoc(BLoc),
1384      RParenLoc(RPLoc) { }
1385
1386  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1387  Expr *getSubExpr() { return cast<Expr>(Val); }
1388  virtual SourceRange getSourceRange() const {
1389    return SourceRange(BuiltinLoc, RParenLoc);
1390  }
1391  static bool classof(const Stmt *T) {
1392    return T->getStmtClass() == VAArgExprClass;
1393  }
1394  static bool classof(const VAArgExpr *) { return true; }
1395
1396  // Iterators
1397  virtual child_iterator child_begin();
1398  virtual child_iterator child_end();
1399
1400  virtual void EmitImpl(llvm::Serializer& S) const;
1401  static VAArgExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1402};
1403
1404/// InitListExpr - used for struct and array initializers, such as:
1405///    struct foo x = { 1, { 2, 3 } };
1406///
1407/// Because C is somewhat loose with braces, the AST does not necessarily
1408/// directly model the C source.  Instead, the semantic analyzer aims to make
1409/// the InitListExprs match up with the type of the decl being initialized.  We
1410/// have the following exceptions:
1411///
1412///  1. Elements at the end of the list may be dropped from the initializer.
1413///     These elements are defined to be initialized to zero.  For example:
1414///         int x[20] = { 1 };
1415///  2. Initializers may have excess initializers which are to be ignored by the
1416///     compiler.  For example:
1417///         int x[1] = { 1, 2 };
1418///  3. Redundant InitListExprs may be present around scalar elements.  These
1419///     always have a single element whose type is the same as the InitListExpr.
1420///     this can only happen for Type::isScalarType() types.
1421///         int x = { 1 };  int y[2] = { {1}, {2} };
1422///
1423class InitListExpr : public Expr {
1424  std::vector<Stmt *> InitExprs;
1425  SourceLocation LBraceLoc, RBraceLoc;
1426
1427  /// HadDesignators - Return true if there were any designators in this
1428  /// init list expr.  FIXME: this should be replaced by storing the designators
1429  /// somehow and updating codegen.
1430  bool HadDesignators;
1431public:
1432  InitListExpr(SourceLocation lbraceloc, Expr **initexprs, unsigned numinits,
1433               SourceLocation rbraceloc, bool HadDesignators);
1434
1435  unsigned getNumInits() const { return InitExprs.size(); }
1436  bool hadDesignators() const { return HadDesignators; }
1437
1438  const Expr* getInit(unsigned Init) const {
1439    assert(Init < getNumInits() && "Initializer access out of range!");
1440    return cast<Expr>(InitExprs[Init]);
1441  }
1442
1443  Expr* getInit(unsigned Init) {
1444    assert(Init < getNumInits() && "Initializer access out of range!");
1445    return cast<Expr>(InitExprs[Init]);
1446  }
1447
1448  void setInit(unsigned Init, Expr *expr) {
1449    assert(Init < getNumInits() && "Initializer access out of range!");
1450    InitExprs[Init] = expr;
1451  }
1452
1453  // Dynamic removal/addition (for constructing implicit InitExpr's).
1454  void removeInit(unsigned Init) {
1455    InitExprs.erase(InitExprs.begin()+Init);
1456  }
1457  void addInit(unsigned Init, Expr *expr) {
1458    InitExprs.insert(InitExprs.begin()+Init, expr);
1459  }
1460
1461  // Explicit InitListExpr's originate from source code (and have valid source
1462  // locations). Implicit InitListExpr's are created by the semantic analyzer.
1463  bool isExplicit() {
1464    return LBraceLoc.isValid() && RBraceLoc.isValid();
1465  }
1466
1467  virtual SourceRange getSourceRange() const {
1468    return SourceRange(LBraceLoc, RBraceLoc);
1469  }
1470  static bool classof(const Stmt *T) {
1471    return T->getStmtClass() == InitListExprClass;
1472  }
1473  static bool classof(const InitListExpr *) { return true; }
1474
1475  // Iterators
1476  virtual child_iterator child_begin();
1477  virtual child_iterator child_end();
1478
1479  virtual void EmitImpl(llvm::Serializer& S) const;
1480  static InitListExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1481
1482private:
1483  // Used by serializer.
1484  InitListExpr() : Expr(InitListExprClass, QualType()) {}
1485};
1486
1487//===----------------------------------------------------------------------===//
1488// Clang Extensions
1489//===----------------------------------------------------------------------===//
1490
1491
1492/// ExtVectorElementExpr - This represents access to specific elements of a
1493/// vector, and may occur on the left hand side or right hand side.  For example
1494/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
1495///
1496class ExtVectorElementExpr : public Expr {
1497  Stmt *Base;
1498  IdentifierInfo &Accessor;
1499  SourceLocation AccessorLoc;
1500public:
1501  ExtVectorElementExpr(QualType ty, Expr *base, IdentifierInfo &accessor,
1502                       SourceLocation loc)
1503    : Expr(ExtVectorElementExprClass, ty),
1504      Base(base), Accessor(accessor), AccessorLoc(loc) {}
1505
1506  const Expr *getBase() const { return cast<Expr>(Base); }
1507  Expr *getBase() { return cast<Expr>(Base); }
1508
1509  IdentifierInfo &getAccessor() const { return Accessor; }
1510
1511  /// getNumElements - Get the number of components being selected.
1512  unsigned getNumElements() const;
1513
1514  /// containsDuplicateElements - Return true if any element access is
1515  /// repeated.
1516  bool containsDuplicateElements() const;
1517
1518  /// getEncodedElementAccess - Encode the elements accessed into an llvm
1519  /// aggregate Constant of ConstantInt(s).
1520  void getEncodedElementAccess(llvm::SmallVectorImpl<unsigned> &Elts) const;
1521
1522  virtual SourceRange getSourceRange() const {
1523    return SourceRange(getBase()->getLocStart(), AccessorLoc);
1524  }
1525
1526  static bool classof(const Stmt *T) {
1527    return T->getStmtClass() == ExtVectorElementExprClass;
1528  }
1529  static bool classof(const ExtVectorElementExpr *) { return true; }
1530
1531  // Iterators
1532  virtual child_iterator child_begin();
1533  virtual child_iterator child_end();
1534
1535  virtual void EmitImpl(llvm::Serializer& S) const;
1536  static ExtVectorElementExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1537};
1538
1539
1540/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
1541/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
1542class BlockExpr : public Expr {
1543protected:
1544  BlockDecl *TheBlock;
1545public:
1546  BlockExpr(BlockDecl *BD, QualType ty) : Expr(BlockExprClass, ty),
1547            TheBlock(BD) {}
1548
1549  BlockDecl *getBlockDecl() { return TheBlock; }
1550
1551  // Convenience functions for probing the underlying BlockDecl.
1552  SourceLocation getCaretLocation() const;
1553  const Stmt *getBody() const;
1554  Stmt *getBody();
1555
1556  virtual SourceRange getSourceRange() const {
1557    return SourceRange(getCaretLocation(), getBody()->getLocEnd());
1558  }
1559
1560  /// getFunctionType - Return the underlying function type for this block.
1561  const FunctionType *getFunctionType() const;
1562
1563  static bool classof(const Stmt *T) {
1564    return T->getStmtClass() == BlockExprClass;
1565  }
1566  static bool classof(const BlockExpr *) { return true; }
1567
1568  // Iterators
1569  virtual child_iterator child_begin();
1570  virtual child_iterator child_end();
1571
1572  virtual void EmitImpl(llvm::Serializer& S) const;
1573  static BlockExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1574};
1575
1576/// BlockDeclRefExpr - A reference to a declared variable, function,
1577/// enum, etc.
1578class BlockDeclRefExpr : public Expr {
1579  ValueDecl *D;
1580  SourceLocation Loc;
1581  bool IsByRef;
1582public:
1583  BlockDeclRefExpr(ValueDecl *d, QualType t, SourceLocation l, bool ByRef) :
1584       Expr(BlockDeclRefExprClass, t), D(d), Loc(l), IsByRef(ByRef) {}
1585
1586  ValueDecl *getDecl() { return D; }
1587  const ValueDecl *getDecl() const { return D; }
1588  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
1589
1590  bool isByRef() const { return IsByRef; }
1591
1592  static bool classof(const Stmt *T) {
1593    return T->getStmtClass() == BlockDeclRefExprClass;
1594  }
1595  static bool classof(const BlockDeclRefExpr *) { return true; }
1596
1597  // Iterators
1598  virtual child_iterator child_begin();
1599  virtual child_iterator child_end();
1600
1601  virtual void EmitImpl(llvm::Serializer& S) const;
1602  static BlockDeclRefExpr* CreateImpl(llvm::Deserializer& D, ASTContext& C);
1603};
1604
1605}  // end namespace clang
1606
1607#endif
1608