Expr.h revision f8ec55a104e55961f8666f773dce99bbc628298f
1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/Stmt.h"
19#include "clang/AST/Type.h"
20#include "llvm/ADT/APSInt.h"
21#include "llvm/ADT/APFloat.h"
22#include "llvm/ADT/SmallVector.h"
23#include <vector>
24
25namespace clang {
26  class ASTContext;
27  class APValue;
28  class Decl;
29  class IdentifierInfo;
30  class ParmVarDecl;
31  class NamedDecl;
32  class ValueDecl;
33  class BlockDecl;
34  class CXXOperatorCallExpr;
35  class CXXMemberCallExpr;
36
37/// Expr - This represents one expression.  Note that Expr's are subclasses of
38/// Stmt.  This allows an expression to be transparently used any place a Stmt
39/// is required.
40///
41class Expr : public Stmt {
42  QualType TR;
43
44protected:
45  /// TypeDependent - Whether this expression is type-dependent
46  /// (C++ [temp.dep.expr]).
47  bool TypeDependent : 1;
48
49  /// ValueDependent - Whether this expression is value-dependent
50  /// (C++ [temp.dep.constexpr]).
51  bool ValueDependent : 1;
52
53  // FIXME: Eventually, this constructor should go away and we should
54  // require every subclass to provide type/value-dependence
55  // information.
56  Expr(StmtClass SC, QualType T)
57    : Stmt(SC), TypeDependent(false), ValueDependent(false) {
58    setType(T);
59  }
60
61  Expr(StmtClass SC, QualType T, bool TD, bool VD)
62    : Stmt(SC), TypeDependent(TD), ValueDependent(VD) {
63    setType(T);
64  }
65
66  /// \brief Construct an empty expression.
67  explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
68
69public:
70  /// \brief Increases the reference count for this expression.
71  ///
72  /// Invoke the Retain() operation when this expression
73  /// is being shared by another owner.
74  Expr *Retain() {
75    Stmt::Retain();
76    return this;
77  }
78
79  QualType getType() const { return TR; }
80  void setType(QualType t) {
81    // In C++, the type of an expression is always adjusted so that it
82    // will not have reference type an expression will never have
83    // reference type (C++ [expr]p6). Use
84    // QualType::getNonReferenceType() to retrieve the non-reference
85    // type. Additionally, inspect Expr::isLvalue to determine whether
86    // an expression that is adjusted in this manner should be
87    // considered an lvalue.
88    assert((TR.isNull() || !TR->isReferenceType()) &&
89           "Expressions can't have reference type");
90
91    TR = t;
92  }
93
94  /// isValueDependent - Determines whether this expression is
95  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
96  /// array bound of "Chars" in the following example is
97  /// value-dependent.
98  /// @code
99  /// template<int Size, char (&Chars)[Size]> struct meta_string;
100  /// @endcode
101  bool isValueDependent() const { return ValueDependent; }
102
103  /// \brief Set whether this expression is value-dependent or not.
104  void setValueDependent(bool VD) { ValueDependent = VD; }
105
106  /// isTypeDependent - Determines whether this expression is
107  /// type-dependent (C++ [temp.dep.expr]), which means that its type
108  /// could change from one template instantiation to the next. For
109  /// example, the expressions "x" and "x + y" are type-dependent in
110  /// the following code, but "y" is not type-dependent:
111  /// @code
112  /// template<typename T>
113  /// void add(T x, int y) {
114  ///   x + y;
115  /// }
116  /// @endcode
117  bool isTypeDependent() const { return TypeDependent; }
118
119  /// \brief Set whether this expression is type-dependent or not.
120  void setTypeDependent(bool TD) { TypeDependent = TD; }
121
122  /// SourceLocation tokens are not useful in isolation - they are low level
123  /// value objects created/interpreted by SourceManager. We assume AST
124  /// clients will have a pointer to the respective SourceManager.
125  virtual SourceRange getSourceRange() const = 0;
126
127  /// getExprLoc - Return the preferred location for the arrow when diagnosing
128  /// a problem with a generic expression.
129  virtual SourceLocation getExprLoc() const { return getLocStart(); }
130
131  /// isUnusedResultAWarning - Return true if this immediate expression should
132  /// be warned about if the result is unused.  If so, fill in Loc and Ranges
133  /// with location to warn on and the source range[s] to report with the
134  /// warning.
135  bool isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
136                              SourceRange &R2) const;
137
138  /// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or
139  /// incomplete type other than void. Nonarray expressions that can be lvalues:
140  ///  - name, where name must be a variable
141  ///  - e[i]
142  ///  - (e), where e must be an lvalue
143  ///  - e.name, where e must be an lvalue
144  ///  - e->name
145  ///  - *e, the type of e cannot be a function type
146  ///  - string-constant
147  ///  - reference type [C++ [expr]]
148  ///  - b ? x : y, where x and y are lvalues of suitable types [C++]
149  ///
150  enum isLvalueResult {
151    LV_Valid,
152    LV_NotObjectType,
153    LV_IncompleteVoidType,
154    LV_DuplicateVectorComponents,
155    LV_InvalidExpression,
156    LV_MemberFunction
157  };
158  isLvalueResult isLvalue(ASTContext &Ctx) const;
159
160  // Same as above, but excluding checks for non-object and void types in C
161  isLvalueResult isLvalueInternal(ASTContext &Ctx) const;
162
163  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
164  /// does not have an incomplete type, does not have a const-qualified type,
165  /// and if it is a structure or union, does not have any member (including,
166  /// recursively, any member or element of all contained aggregates or unions)
167  /// with a const-qualified type.
168  ///
169  /// \param Loc [in] [out] - A source location which *may* be filled
170  /// in with the location of the expression making this a
171  /// non-modifiable lvalue, if specified.
172  enum isModifiableLvalueResult {
173    MLV_Valid,
174    MLV_NotObjectType,
175    MLV_IncompleteVoidType,
176    MLV_DuplicateVectorComponents,
177    MLV_InvalidExpression,
178    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
179    MLV_IncompleteType,
180    MLV_ConstQualified,
181    MLV_ArrayType,
182    MLV_NotBlockQualified,
183    MLV_ReadonlyProperty,
184    MLV_NoSetterProperty,
185    MLV_MemberFunction
186  };
187  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx,
188                                              SourceLocation *Loc = 0) const;
189
190  /// \brief If this expression refers to a bit-field, retrieve the
191  /// declaration of that bit-field.
192  FieldDecl *getBitField();
193
194  const FieldDecl *getBitField() const {
195    return const_cast<Expr*>(this)->getBitField();
196  }
197
198  /// isIntegerConstantExpr - Return true if this expression is a valid integer
199  /// constant expression, and, if so, return its value in Result.  If not a
200  /// valid i-c-e, return false and fill in Loc (if specified) with the location
201  /// of the invalid expression.
202  bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
203                             SourceLocation *Loc = 0,
204                             bool isEvaluated = true) const;
205  bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const {
206    llvm::APSInt X;
207    return isIntegerConstantExpr(X, Ctx, Loc);
208  }
209  /// isConstantInitializer - Returns true if this expression is a constant
210  /// initializer, which can be emitted at compile-time.
211  bool isConstantInitializer(ASTContext &Ctx) const;
212
213  /// EvalResult is a struct with detailed info about an evaluated expression.
214  struct EvalResult {
215    /// Val - This is the value the expression can be folded to.
216    APValue Val;
217
218    /// HasSideEffects - Whether the evaluated expression has side effects.
219    /// For example, (f() && 0) can be folded, but it still has side effects.
220    bool HasSideEffects;
221
222    /// Diag - If the expression is unfoldable, then Diag contains a note
223    /// diagnostic indicating why it's not foldable. DiagLoc indicates a caret
224    /// position for the error, and DiagExpr is the expression that caused
225    /// the error.
226    /// If the expression is foldable, but not an integer constant expression,
227    /// Diag contains a note diagnostic that describes why it isn't an integer
228    /// constant expression. If the expression *is* an integer constant
229    /// expression, then Diag will be zero.
230    unsigned Diag;
231    const Expr *DiagExpr;
232    SourceLocation DiagLoc;
233
234    EvalResult() : HasSideEffects(false), Diag(0), DiagExpr(0) {}
235  };
236
237  /// Evaluate - Return true if this is a constant which we can fold using
238  /// any crazy technique (that has nothing to do with language standards) that
239  /// we want to.  If this function returns true, it returns the folded constant
240  /// in Result.
241  bool Evaluate(EvalResult &Result, ASTContext &Ctx) const;
242
243  /// isEvaluatable - Call Evaluate to see if this expression can be constant
244  /// folded, but discard the result.
245  bool isEvaluatable(ASTContext &Ctx) const;
246
247  /// EvaluateAsInt - Call Evaluate and return the folded integer. This
248  /// must be called on an expression that constant folds to an integer.
249  llvm::APSInt EvaluateAsInt(ASTContext &Ctx) const;
250
251  /// EvaluateAsLValue - Evaluate an expression to see if it's a valid LValue.
252  bool EvaluateAsLValue(EvalResult &Result, ASTContext &Ctx) const;
253
254  /// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
255  /// integer constant expression with the value zero, or if this is one that is
256  /// cast to void*.
257  bool isNullPointerConstant(ASTContext &Ctx) const;
258
259  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
260  /// write barrier.
261  bool isOBJCGCCandidate(ASTContext &Ctx) const;
262
263  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
264  ///  its subexpression.  If that subexpression is also a ParenExpr,
265  ///  then this method recursively returns its subexpression, and so forth.
266  ///  Otherwise, the method returns the current Expr.
267  Expr* IgnoreParens();
268
269  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
270  /// or CastExprs, returning their operand.
271  Expr *IgnoreParenCasts();
272
273  /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
274  /// value (including ptr->int casts of the same size).  Strip off any
275  /// ParenExpr or CastExprs, returning their operand.
276  Expr *IgnoreParenNoopCasts(ASTContext &Ctx);
277
278  const Expr* IgnoreParens() const {
279    return const_cast<Expr*>(this)->IgnoreParens();
280  }
281  const Expr *IgnoreParenCasts() const {
282    return const_cast<Expr*>(this)->IgnoreParenCasts();
283  }
284  const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const {
285    return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
286  }
287
288  static bool hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs);
289  static bool hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs);
290
291  static bool classof(const Stmt *T) {
292    return T->getStmtClass() >= firstExprConstant &&
293           T->getStmtClass() <= lastExprConstant;
294  }
295  static bool classof(const Expr *) { return true; }
296};
297
298
299//===----------------------------------------------------------------------===//
300// Primary Expressions.
301//===----------------------------------------------------------------------===//
302
303/// DeclRefExpr - [C99 6.5.1p2] - A reference to a declared variable, function,
304/// enum, etc.
305class DeclRefExpr : public Expr {
306  NamedDecl *D;
307  SourceLocation Loc;
308
309protected:
310  // FIXME: Eventually, this constructor will go away and all subclasses
311  // will have to provide the type- and value-dependent flags.
312  DeclRefExpr(StmtClass SC, NamedDecl *d, QualType t, SourceLocation l) :
313    Expr(SC, t), D(d), Loc(l) {}
314
315  DeclRefExpr(StmtClass SC, NamedDecl *d, QualType t, SourceLocation l, bool TD,
316              bool VD) :
317    Expr(SC, t, TD, VD), D(d), Loc(l) {}
318
319public:
320  // FIXME: Eventually, this constructor will go away and all clients
321  // will have to provide the type- and value-dependent flags.
322  DeclRefExpr(NamedDecl *d, QualType t, SourceLocation l) :
323    Expr(DeclRefExprClass, t), D(d), Loc(l) {}
324
325  DeclRefExpr(NamedDecl *d, QualType t, SourceLocation l, bool TD, bool VD) :
326    Expr(DeclRefExprClass, t, TD, VD), D(d), Loc(l) {}
327
328  /// \brief Construct an empty declaration reference expression.
329  explicit DeclRefExpr(EmptyShell Empty)
330    : Expr(DeclRefExprClass, Empty) { }
331
332  NamedDecl *getDecl() { return D; }
333  const NamedDecl *getDecl() const { return D; }
334  void setDecl(NamedDecl *NewD) { D = NewD; }
335
336  SourceLocation getLocation() const { return Loc; }
337  void setLocation(SourceLocation L) { Loc = L; }
338  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
339
340  static bool classof(const Stmt *T) {
341    return T->getStmtClass() == DeclRefExprClass ||
342           T->getStmtClass() == CXXConditionDeclExprClass ||
343           T->getStmtClass() == QualifiedDeclRefExprClass;
344  }
345  static bool classof(const DeclRefExpr *) { return true; }
346
347  // Iterators
348  virtual child_iterator child_begin();
349  virtual child_iterator child_end();
350};
351
352/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
353class PredefinedExpr : public Expr {
354public:
355  enum IdentType {
356    Func,
357    Function,
358    PrettyFunction
359  };
360
361private:
362  SourceLocation Loc;
363  IdentType Type;
364public:
365  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
366    : Expr(PredefinedExprClass, type), Loc(l), Type(IT) {}
367
368  /// \brief Construct an empty predefined expression.
369  explicit PredefinedExpr(EmptyShell Empty)
370    : Expr(PredefinedExprClass, Empty) { }
371
372  IdentType getIdentType() const { return Type; }
373  void setIdentType(IdentType IT) { Type = IT; }
374
375  SourceLocation getLocation() const { return Loc; }
376  void setLocation(SourceLocation L) { Loc = L; }
377
378  // FIXME: The logic for computing the value of a predefined expr should go
379  // into a method here that takes the inner-most code decl (a block, function
380  // or objc method) that the expr lives in.  This would allow sema and codegen
381  // to be consistent for things like sizeof(__func__) etc.
382
383  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
384
385  static bool classof(const Stmt *T) {
386    return T->getStmtClass() == PredefinedExprClass;
387  }
388  static bool classof(const PredefinedExpr *) { return true; }
389
390  // Iterators
391  virtual child_iterator child_begin();
392  virtual child_iterator child_end();
393};
394
395class IntegerLiteral : public Expr {
396  llvm::APInt Value;
397  SourceLocation Loc;
398public:
399  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
400  // or UnsignedLongLongTy
401  IntegerLiteral(const llvm::APInt &V, QualType type, SourceLocation l)
402    : Expr(IntegerLiteralClass, type), Value(V), Loc(l) {
403    assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
404  }
405
406  /// \brief Construct an empty integer literal.
407  explicit IntegerLiteral(EmptyShell Empty)
408    : Expr(IntegerLiteralClass, Empty) { }
409
410  const llvm::APInt &getValue() const { return Value; }
411  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
412
413  /// \brief Retrieve the location of the literal.
414  SourceLocation getLocation() const { return Loc; }
415
416  void setValue(const llvm::APInt &Val) { Value = Val; }
417  void setLocation(SourceLocation Location) { Loc = Location; }
418
419  static bool classof(const Stmt *T) {
420    return T->getStmtClass() == IntegerLiteralClass;
421  }
422  static bool classof(const IntegerLiteral *) { return true; }
423
424  // Iterators
425  virtual child_iterator child_begin();
426  virtual child_iterator child_end();
427};
428
429class CharacterLiteral : public Expr {
430  unsigned Value;
431  SourceLocation Loc;
432  bool IsWide;
433public:
434  // type should be IntTy
435  CharacterLiteral(unsigned value, bool iswide, QualType type, SourceLocation l)
436    : Expr(CharacterLiteralClass, type), Value(value), Loc(l), IsWide(iswide) {
437  }
438
439  /// \brief Construct an empty character literal.
440  CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
441
442  SourceLocation getLocation() const { return Loc; }
443  bool isWide() const { return IsWide; }
444
445  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
446
447  unsigned getValue() const { return Value; }
448
449  void setLocation(SourceLocation Location) { Loc = Location; }
450  void setWide(bool W) { IsWide = W; }
451  void setValue(unsigned Val) { Value = Val; }
452
453  static bool classof(const Stmt *T) {
454    return T->getStmtClass() == CharacterLiteralClass;
455  }
456  static bool classof(const CharacterLiteral *) { return true; }
457
458  // Iterators
459  virtual child_iterator child_begin();
460  virtual child_iterator child_end();
461};
462
463class FloatingLiteral : public Expr {
464  llvm::APFloat Value;
465  bool IsExact : 1;
466  SourceLocation Loc;
467public:
468  FloatingLiteral(const llvm::APFloat &V, bool isexact,
469                  QualType Type, SourceLocation L)
470    : Expr(FloatingLiteralClass, Type), Value(V), IsExact(isexact), Loc(L) {}
471
472  /// \brief Construct an empty floating-point literal.
473  explicit FloatingLiteral(EmptyShell Empty)
474    : Expr(FloatingLiteralClass, Empty), Value(0.0) { }
475
476  const llvm::APFloat &getValue() const { return Value; }
477  void setValue(const llvm::APFloat &Val) { Value = Val; }
478
479  bool isExact() const { return IsExact; }
480  void setExact(bool E) { IsExact = E; }
481
482  /// getValueAsApproximateDouble - This returns the value as an inaccurate
483  /// double.  Note that this may cause loss of precision, but is useful for
484  /// debugging dumps, etc.
485  double getValueAsApproximateDouble() const;
486
487  SourceLocation getLocation() const { return Loc; }
488  void setLocation(SourceLocation L) { Loc = L; }
489
490  // FIXME: The logic for computing the value of a predefined expr should go
491  // into a method here that takes the inner-most code decl (a block, function
492  // or objc method) that the expr lives in.  This would allow sema and codegen
493  // to be consistent for things like sizeof(__func__) etc.
494
495  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
496
497  static bool classof(const Stmt *T) {
498    return T->getStmtClass() == FloatingLiteralClass;
499  }
500  static bool classof(const FloatingLiteral *) { return true; }
501
502  // Iterators
503  virtual child_iterator child_begin();
504  virtual child_iterator child_end();
505};
506
507/// ImaginaryLiteral - We support imaginary integer and floating point literals,
508/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
509/// IntegerLiteral classes.  Instances of this class always have a Complex type
510/// whose element type matches the subexpression.
511///
512class ImaginaryLiteral : public Expr {
513  Stmt *Val;
514public:
515  ImaginaryLiteral(Expr *val, QualType Ty)
516    : Expr(ImaginaryLiteralClass, Ty), Val(val) {}
517
518  /// \brief Build an empty imaginary literal.
519  explicit ImaginaryLiteral(EmptyShell Empty)
520    : Expr(ImaginaryLiteralClass, Empty) { }
521
522  const Expr *getSubExpr() const { return cast<Expr>(Val); }
523  Expr *getSubExpr() { return cast<Expr>(Val); }
524  void setSubExpr(Expr *E) { Val = E; }
525
526  virtual SourceRange getSourceRange() const { return Val->getSourceRange(); }
527  static bool classof(const Stmt *T) {
528    return T->getStmtClass() == ImaginaryLiteralClass;
529  }
530  static bool classof(const ImaginaryLiteral *) { return true; }
531
532  // Iterators
533  virtual child_iterator child_begin();
534  virtual child_iterator child_end();
535};
536
537/// StringLiteral - This represents a string literal expression, e.g. "foo"
538/// or L"bar" (wide strings).  The actual string is returned by getStrData()
539/// is NOT null-terminated, and the length of the string is determined by
540/// calling getByteLength().  The C type for a string is always a
541/// ConstantArrayType.  In C++, the char type is const qualified, in C it is
542/// not.
543///
544/// Note that strings in C can be formed by concatenation of multiple string
545/// literal pptokens in translation phase #6.  This keeps track of the locations
546/// of each of these pieces.
547///
548/// Strings in C can also be truncated and extended by assigning into arrays,
549/// e.g. with constructs like:
550///   char X[2] = "foobar";
551/// In this case, getByteLength() will return 6, but the string literal will
552/// have type "char[2]".
553class StringLiteral : public Expr {
554  const char *StrData;
555  unsigned ByteLength;
556  bool IsWide;
557  unsigned NumConcatenated;
558  SourceLocation TokLocs[1];
559
560  StringLiteral(QualType Ty) : Expr(StringLiteralClass, Ty) {}
561
562protected:
563  virtual void DoDestroy(ASTContext &C);
564
565public:
566  /// This is the "fully general" constructor that allows representation of
567  /// strings formed from multiple concatenated tokens.
568  static StringLiteral *Create(ASTContext &C, const char *StrData,
569                               unsigned ByteLength, bool Wide, QualType Ty,
570                               const SourceLocation *Loc, unsigned NumStrs);
571
572  /// Simple constructor for string literals made from one token.
573  static StringLiteral *Create(ASTContext &C, const char *StrData,
574                               unsigned ByteLength,
575                               bool Wide, QualType Ty, SourceLocation Loc) {
576    return Create(C, StrData, ByteLength, Wide, Ty, &Loc, 1);
577  }
578
579  /// \brief Construct an empty string literal.
580  static StringLiteral *CreateEmpty(ASTContext &C, unsigned NumStrs);
581
582  const char *getStrData() const { return StrData; }
583  unsigned getByteLength() const { return ByteLength; }
584
585  /// \brief Sets the string data to the given string data.
586  void setStrData(ASTContext &C, const char *Str, unsigned Len);
587
588  bool isWide() const { return IsWide; }
589  void setWide(bool W) { IsWide = W; }
590
591  bool containsNonAsciiOrNull() const {
592    for (unsigned i = 0; i < getByteLength(); ++i)
593      if (!isascii(getStrData()[i]) || !getStrData()[i])
594        return true;
595    return false;
596  }
597  /// getNumConcatenated - Get the number of string literal tokens that were
598  /// concatenated in translation phase #6 to form this string literal.
599  unsigned getNumConcatenated() const { return NumConcatenated; }
600
601  SourceLocation getStrTokenLoc(unsigned TokNum) const {
602    assert(TokNum < NumConcatenated && "Invalid tok number");
603    return TokLocs[TokNum];
604  }
605  void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
606    assert(TokNum < NumConcatenated && "Invalid tok number");
607    TokLocs[TokNum] = L;
608  }
609
610  typedef const SourceLocation *tokloc_iterator;
611  tokloc_iterator tokloc_begin() const { return TokLocs; }
612  tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; }
613
614  virtual SourceRange getSourceRange() const {
615    return SourceRange(TokLocs[0], TokLocs[NumConcatenated-1]);
616  }
617  static bool classof(const Stmt *T) {
618    return T->getStmtClass() == StringLiteralClass;
619  }
620  static bool classof(const StringLiteral *) { return true; }
621
622  // Iterators
623  virtual child_iterator child_begin();
624  virtual child_iterator child_end();
625};
626
627/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
628/// AST node is only formed if full location information is requested.
629class ParenExpr : public Expr {
630  SourceLocation L, R;
631  Stmt *Val;
632public:
633  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
634    : Expr(ParenExprClass, val->getType(),
635           val->isTypeDependent(), val->isValueDependent()),
636      L(l), R(r), Val(val) {}
637
638  /// \brief Construct an empty parenthesized expression.
639  explicit ParenExpr(EmptyShell Empty)
640    : Expr(ParenExprClass, Empty) { }
641
642  const Expr *getSubExpr() const { return cast<Expr>(Val); }
643  Expr *getSubExpr() { return cast<Expr>(Val); }
644  void setSubExpr(Expr *E) { Val = E; }
645
646  virtual SourceRange getSourceRange() const { return SourceRange(L, R); }
647
648  /// \brief Get the location of the left parentheses '('.
649  SourceLocation getLParen() const { return L; }
650  void setLParen(SourceLocation Loc) { L = Loc; }
651
652  /// \brief Get the location of the right parentheses ')'.
653  SourceLocation getRParen() const { return R; }
654  void setRParen(SourceLocation Loc) { R = Loc; }
655
656  static bool classof(const Stmt *T) {
657    return T->getStmtClass() == ParenExprClass;
658  }
659  static bool classof(const ParenExpr *) { return true; }
660
661  // Iterators
662  virtual child_iterator child_begin();
663  virtual child_iterator child_end();
664};
665
666
667/// UnaryOperator - This represents the unary-expression's (except sizeof and
668/// alignof), the postinc/postdec operators from postfix-expression, and various
669/// extensions.
670///
671/// Notes on various nodes:
672///
673/// Real/Imag - These return the real/imag part of a complex operand.  If
674///   applied to a non-complex value, the former returns its operand and the
675///   later returns zero in the type of the operand.
676///
677/// __builtin_offsetof(type, a.b[10]) is represented as a unary operator whose
678///   subexpression is a compound literal with the various MemberExpr and
679///   ArraySubscriptExpr's applied to it.
680///
681class UnaryOperator : public Expr {
682public:
683  // Note that additions to this should also update the StmtVisitor class.
684  enum Opcode {
685    PostInc, PostDec, // [C99 6.5.2.4] Postfix increment and decrement operators
686    PreInc, PreDec,   // [C99 6.5.3.1] Prefix increment and decrement operators.
687    AddrOf, Deref,    // [C99 6.5.3.2] Address and indirection operators.
688    Plus, Minus,      // [C99 6.5.3.3] Unary arithmetic operators.
689    Not, LNot,        // [C99 6.5.3.3] Unary arithmetic operators.
690    Real, Imag,       // "__real expr"/"__imag expr" Extension.
691    Extension,        // __extension__ marker.
692    OffsetOf          // __builtin_offsetof
693  };
694private:
695  Stmt *Val;
696  Opcode Opc;
697  SourceLocation Loc;
698public:
699
700  UnaryOperator(Expr *input, Opcode opc, QualType type, SourceLocation l)
701    : Expr(UnaryOperatorClass, type,
702           input->isTypeDependent() && opc != OffsetOf,
703           input->isValueDependent()),
704      Val(input), Opc(opc), Loc(l) {}
705
706  /// \brief Build an empty unary operator.
707  explicit UnaryOperator(EmptyShell Empty)
708    : Expr(UnaryOperatorClass, Empty), Opc(AddrOf) { }
709
710  Opcode getOpcode() const { return Opc; }
711  void setOpcode(Opcode O) { Opc = O; }
712
713  Expr *getSubExpr() const { return cast<Expr>(Val); }
714  void setSubExpr(Expr *E) { Val = E; }
715
716  /// getOperatorLoc - Return the location of the operator.
717  SourceLocation getOperatorLoc() const { return Loc; }
718  void setOperatorLoc(SourceLocation L) { Loc = L; }
719
720  /// isPostfix - Return true if this is a postfix operation, like x++.
721  static bool isPostfix(Opcode Op) {
722    return Op == PostInc || Op == PostDec;
723  }
724
725  /// isPostfix - Return true if this is a prefix operation, like --x.
726  static bool isPrefix(Opcode Op) {
727    return Op == PreInc || Op == PreDec;
728  }
729
730  bool isPrefix() const { return isPrefix(Opc); }
731  bool isPostfix() const { return isPostfix(Opc); }
732  bool isIncrementOp() const {return Opc==PreInc || Opc==PostInc; }
733  bool isIncrementDecrementOp() const { return Opc>=PostInc && Opc<=PreDec; }
734  bool isOffsetOfOp() const { return Opc == OffsetOf; }
735  static bool isArithmeticOp(Opcode Op) { return Op >= Plus && Op <= LNot; }
736  bool isArithmeticOp() const { return isArithmeticOp(Opc); }
737
738  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
739  /// corresponds to, e.g. "sizeof" or "[pre]++"
740  static const char *getOpcodeStr(Opcode Op);
741
742  /// \brief Retrieve the unary opcode that corresponds to the given
743  /// overloaded operator.
744  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
745
746  /// \brief Retrieve the overloaded operator kind that corresponds to
747  /// the given unary opcode.
748  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
749
750  virtual SourceRange getSourceRange() const {
751    if (isPostfix())
752      return SourceRange(Val->getLocStart(), Loc);
753    else
754      return SourceRange(Loc, Val->getLocEnd());
755  }
756  virtual SourceLocation getExprLoc() const { return Loc; }
757
758  static bool classof(const Stmt *T) {
759    return T->getStmtClass() == UnaryOperatorClass;
760  }
761  static bool classof(const UnaryOperator *) { return true; }
762
763  // Iterators
764  virtual child_iterator child_begin();
765  virtual child_iterator child_end();
766};
767
768/// SizeOfAlignOfExpr - [C99 6.5.3.4] - This is for sizeof/alignof, both of
769/// types and expressions.
770class SizeOfAlignOfExpr : public Expr {
771  bool isSizeof : 1;  // true if sizeof, false if alignof.
772  bool isType : 1;    // true if operand is a type, false if an expression
773  union {
774    void *Ty;
775    Stmt *Ex;
776  } Argument;
777  SourceLocation OpLoc, RParenLoc;
778
779protected:
780  virtual void DoDestroy(ASTContext& C);
781
782public:
783  SizeOfAlignOfExpr(bool issizeof, QualType T,
784                    QualType resultType, SourceLocation op,
785                    SourceLocation rp) :
786      Expr(SizeOfAlignOfExprClass, resultType,
787           false, // Never type-dependent (C++ [temp.dep.expr]p3).
788           // Value-dependent if the argument is type-dependent.
789           T->isDependentType()),
790      isSizeof(issizeof), isType(true), OpLoc(op), RParenLoc(rp) {
791    Argument.Ty = T.getAsOpaquePtr();
792  }
793
794  SizeOfAlignOfExpr(bool issizeof, Expr *E,
795                    QualType resultType, SourceLocation op,
796                    SourceLocation rp) :
797      Expr(SizeOfAlignOfExprClass, resultType,
798           false, // Never type-dependent (C++ [temp.dep.expr]p3).
799           // Value-dependent if the argument is type-dependent.
800           E->isTypeDependent()),
801      isSizeof(issizeof), isType(false), OpLoc(op), RParenLoc(rp) {
802    Argument.Ex = E;
803  }
804
805  /// \brief Construct an empty sizeof/alignof expression.
806  explicit SizeOfAlignOfExpr(EmptyShell Empty)
807    : Expr(SizeOfAlignOfExprClass, Empty) { }
808
809  bool isSizeOf() const { return isSizeof; }
810  void setSizeof(bool S) { isSizeof = S; }
811
812  bool isArgumentType() const { return isType; }
813  QualType getArgumentType() const {
814    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
815    return QualType::getFromOpaquePtr(Argument.Ty);
816  }
817  Expr *getArgumentExpr() {
818    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
819    return static_cast<Expr*>(Argument.Ex);
820  }
821  const Expr *getArgumentExpr() const {
822    return const_cast<SizeOfAlignOfExpr*>(this)->getArgumentExpr();
823  }
824
825  void setArgument(Expr *E) { Argument.Ex = E; isType = false; }
826  void setArgument(QualType T) {
827    Argument.Ty = T.getAsOpaquePtr();
828    isType = true;
829  }
830
831  /// Gets the argument type, or the type of the argument expression, whichever
832  /// is appropriate.
833  QualType getTypeOfArgument() const {
834    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
835  }
836
837  SourceLocation getOperatorLoc() const { return OpLoc; }
838  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
839
840  SourceLocation getRParenLoc() const { return RParenLoc; }
841  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
842
843  virtual SourceRange getSourceRange() const {
844    return SourceRange(OpLoc, RParenLoc);
845  }
846
847  static bool classof(const Stmt *T) {
848    return T->getStmtClass() == SizeOfAlignOfExprClass;
849  }
850  static bool classof(const SizeOfAlignOfExpr *) { return true; }
851
852  // Iterators
853  virtual child_iterator child_begin();
854  virtual child_iterator child_end();
855};
856
857//===----------------------------------------------------------------------===//
858// Postfix Operators.
859//===----------------------------------------------------------------------===//
860
861/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
862class ArraySubscriptExpr : public Expr {
863  enum { LHS, RHS, END_EXPR=2 };
864  Stmt* SubExprs[END_EXPR];
865  SourceLocation RBracketLoc;
866public:
867  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
868                     SourceLocation rbracketloc)
869  : Expr(ArraySubscriptExprClass, t,
870         lhs->isTypeDependent() || rhs->isTypeDependent(),
871         lhs->isValueDependent() || rhs->isValueDependent()),
872    RBracketLoc(rbracketloc) {
873    SubExprs[LHS] = lhs;
874    SubExprs[RHS] = rhs;
875  }
876
877  /// \brief Create an empty array subscript expression.
878  explicit ArraySubscriptExpr(EmptyShell Shell)
879    : Expr(ArraySubscriptExprClass, Shell) { }
880
881  /// An array access can be written A[4] or 4[A] (both are equivalent).
882  /// - getBase() and getIdx() always present the normalized view: A[4].
883  ///    In this case getBase() returns "A" and getIdx() returns "4".
884  /// - getLHS() and getRHS() present the syntactic view. e.g. for
885  ///    4[A] getLHS() returns "4".
886  /// Note: Because vector element access is also written A[4] we must
887  /// predicate the format conversion in getBase and getIdx only on the
888  /// the type of the RHS, as it is possible for the LHS to be a vector of
889  /// integer type
890  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
891  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
892  void setLHS(Expr *E) { SubExprs[LHS] = E; }
893
894  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
895  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
896  void setRHS(Expr *E) { SubExprs[RHS] = E; }
897
898  Expr *getBase() {
899    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
900  }
901
902  const Expr *getBase() const {
903    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
904  }
905
906  Expr *getIdx() {
907    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
908  }
909
910  const Expr *getIdx() const {
911    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
912  }
913
914  virtual SourceRange getSourceRange() const {
915    return SourceRange(getLHS()->getLocStart(), RBracketLoc);
916  }
917
918  SourceLocation getRBracketLoc() const { return RBracketLoc; }
919  void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
920
921  virtual SourceLocation getExprLoc() const { return getBase()->getExprLoc(); }
922
923  static bool classof(const Stmt *T) {
924    return T->getStmtClass() == ArraySubscriptExprClass;
925  }
926  static bool classof(const ArraySubscriptExpr *) { return true; }
927
928  // Iterators
929  virtual child_iterator child_begin();
930  virtual child_iterator child_end();
931};
932
933
934/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
935/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
936/// while its subclasses may represent alternative syntax that (semantically)
937/// results in a function call. For example, CXXOperatorCallExpr is
938/// a subclass for overloaded operator calls that use operator syntax, e.g.,
939/// "str1 + str2" to resolve to a function call.
940class CallExpr : public Expr {
941  enum { FN=0, ARGS_START=1 };
942  Stmt **SubExprs;
943  unsigned NumArgs;
944  SourceLocation RParenLoc;
945
946protected:
947  // This version of the constructor is for derived classes.
948  CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args, unsigned numargs,
949           QualType t, SourceLocation rparenloc);
950
951  virtual void DoDestroy(ASTContext& C);
952
953public:
954  CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, QualType t,
955           SourceLocation rparenloc);
956
957  /// \brief Build an empty call expression.
958  CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty);
959
960  ~CallExpr() {}
961
962  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
963  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
964  void setCallee(Expr *F) { SubExprs[FN] = F; }
965
966  /// \brief If the callee is a FunctionDecl, return it. Otherwise return 0.
967  FunctionDecl *getDirectCallee();
968
969  /// getNumArgs - Return the number of actual arguments to this call.
970  ///
971  unsigned getNumArgs() const { return NumArgs; }
972
973  /// getArg - Return the specified argument.
974  Expr *getArg(unsigned Arg) {
975    assert(Arg < NumArgs && "Arg access out of range!");
976    return cast<Expr>(SubExprs[Arg+ARGS_START]);
977  }
978  const Expr *getArg(unsigned Arg) const {
979    assert(Arg < NumArgs && "Arg access out of range!");
980    return cast<Expr>(SubExprs[Arg+ARGS_START]);
981  }
982
983  /// setArg - Set the specified argument.
984  void setArg(unsigned Arg, Expr *ArgExpr) {
985    assert(Arg < NumArgs && "Arg access out of range!");
986    SubExprs[Arg+ARGS_START] = ArgExpr;
987  }
988
989  /// setNumArgs - This changes the number of arguments present in this call.
990  /// Any orphaned expressions are deleted by this, and any new operands are set
991  /// to null.
992  void setNumArgs(ASTContext& C, unsigned NumArgs);
993
994  typedef ExprIterator arg_iterator;
995  typedef ConstExprIterator const_arg_iterator;
996
997  arg_iterator arg_begin() { return SubExprs+ARGS_START; }
998  arg_iterator arg_end() { return SubExprs+ARGS_START+getNumArgs(); }
999  const_arg_iterator arg_begin() const { return SubExprs+ARGS_START; }
1000  const_arg_iterator arg_end() const { return SubExprs+ARGS_START+getNumArgs();}
1001
1002  /// getNumCommas - Return the number of commas that must have been present in
1003  /// this function call.
1004  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
1005
1006  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
1007  /// not, return 0.
1008  unsigned isBuiltinCall(ASTContext &Context) const;
1009
1010  /// getCallReturnType - Get the return type of the call expr. This is not
1011  /// always the type of the expr itself, if the return type is a reference
1012  /// type.
1013  QualType getCallReturnType() const;
1014
1015  SourceLocation getRParenLoc() const { return RParenLoc; }
1016  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1017
1018  virtual SourceRange getSourceRange() const {
1019    return SourceRange(getCallee()->getLocStart(), RParenLoc);
1020  }
1021
1022  static bool classof(const Stmt *T) {
1023    return T->getStmtClass() == CallExprClass ||
1024           T->getStmtClass() == CXXOperatorCallExprClass ||
1025           T->getStmtClass() == CXXMemberCallExprClass;
1026  }
1027  static bool classof(const CallExpr *) { return true; }
1028  static bool classof(const CXXOperatorCallExpr *) { return true; }
1029  static bool classof(const CXXMemberCallExpr *) { return true; }
1030
1031  // Iterators
1032  virtual child_iterator child_begin();
1033  virtual child_iterator child_end();
1034};
1035
1036/// \brief Represents the qualifier that may precede a C++ name, e.g., the
1037/// "std::" in "std::sort".
1038struct NameQualifier {
1039  /// \brief The nested name specifier.
1040  NestedNameSpecifier *NNS;
1041
1042  /// \brief The source range covered by the nested name specifier.
1043  SourceRange Range;
1044};
1045
1046/// \brief Represents an explicit template argument list in C++, e.g.,
1047/// the "<int>" in "sort<int>".
1048struct ExplicitTemplateArgumentList {
1049  /// \brief The source location of the left angle bracket ('<');
1050  SourceLocation LAngleLoc;
1051
1052  /// \brief The source location of the right angle bracket ('>');
1053  SourceLocation RAngleLoc;
1054
1055  /// \brief The number of template arguments in TemplateArgs.
1056  /// The actual template arguments (if any) are stored after the
1057  /// ExplicitTemplateArgumentList structure.
1058  unsigned NumTemplateArgs;
1059
1060  /// \brief Retrieve the template arguments
1061  TemplateArgument *getTemplateArgs() {
1062    return reinterpret_cast<TemplateArgument *> (this + 1);
1063  }
1064
1065  /// \brief Retrieve the template arguments
1066  const TemplateArgument *getTemplateArgs() const {
1067    return reinterpret_cast<const TemplateArgument *> (this + 1);
1068  }
1069};
1070
1071/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.  X->F and X.F.
1072///
1073class MemberExpr : public Expr {
1074  /// Base - the expression for the base pointer or structure references.  In
1075  /// X.F, this is "X".
1076  Stmt *Base;
1077
1078  /// MemberDecl - This is the decl being referenced by the field/member name.
1079  /// In X.F, this is the decl referenced by F.
1080  NamedDecl *MemberDecl;
1081
1082  /// MemberLoc - This is the location of the member name.
1083  SourceLocation MemberLoc;
1084
1085  /// IsArrow - True if this is "X->F", false if this is "X.F".
1086  bool IsArrow : 1;
1087
1088  /// \brief True if this member expression used a nested-name-specifier to
1089  /// refer to the member, e.g., "x->Base::f". When true, a NameQualifier
1090  /// structure is allocated immediately after the MemberExpr.
1091  bool HasQualifier : 1;
1092
1093  /// \brief True if this member expression specified a template argument list
1094  /// explicitly, e.g., x->f<int>. When true, an ExplicitTemplateArgumentList
1095  /// structure (and its TemplateArguments) are allocated immediately after
1096  /// the MemberExpr or, if the member expression also has a qualifier, after
1097  /// the NameQualifier structure.
1098  bool HasExplicitTemplateArgumentList : 1;
1099
1100  /// \brief Retrieve the qualifier that preceded the member name, if any.
1101  NameQualifier *getMemberQualifier() {
1102    if (!HasQualifier)
1103      return 0;
1104
1105    return reinterpret_cast<NameQualifier *> (this + 1);
1106  }
1107
1108  /// \brief Retrieve the qualifier that preceded the member name, if any.
1109  const NameQualifier *getMemberQualifier() const {
1110    return const_cast<MemberExpr *>(this)->getMemberQualifier();
1111  }
1112
1113  /// \brief Retrieve the explicit template argument list that followed the
1114  /// member template name, if any.
1115  ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() {
1116    if (!HasExplicitTemplateArgumentList)
1117      return 0;
1118
1119    if (!HasQualifier)
1120      return reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
1121
1122    return reinterpret_cast<ExplicitTemplateArgumentList *>(
1123                                                      getMemberQualifier() + 1);
1124  }
1125
1126  /// \brief Retrieve the explicit template argument list that followed the
1127  /// member template name, if any.
1128  const ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() const {
1129    return const_cast<MemberExpr *>(this)->getExplicitTemplateArgumentList();
1130  }
1131
1132  MemberExpr(Expr *base, bool isarrow, NestedNameSpecifier *qual,
1133             SourceRange qualrange, NamedDecl *memberdecl, SourceLocation l,
1134             bool has_explicit, SourceLocation langle,
1135             const TemplateArgument *targs, unsigned numtargs,
1136             SourceLocation rangle, QualType ty);
1137
1138public:
1139  MemberExpr(Expr *base, bool isarrow, NamedDecl *memberdecl, SourceLocation l,
1140             QualType ty)
1141    : Expr(MemberExprClass, ty,
1142           base->isTypeDependent(), base->isValueDependent()),
1143      Base(base), MemberDecl(memberdecl), MemberLoc(l), IsArrow(isarrow),
1144      HasQualifier(false), HasExplicitTemplateArgumentList(false) {}
1145
1146  /// \brief Build an empty member reference expression.
1147  explicit MemberExpr(EmptyShell Empty) : Expr(MemberExprClass, Empty) { }
1148
1149  static MemberExpr *Create(ASTContext &C, Expr *base, bool isarrow,
1150                            NestedNameSpecifier *qual, SourceRange qualrange,
1151                            NamedDecl *memberdecl,
1152                            SourceLocation l,
1153                            bool has_explicit,
1154                            SourceLocation langle,
1155                            const TemplateArgument *targs,
1156                            unsigned numtargs,
1157                            SourceLocation rangle,
1158                            QualType ty);
1159
1160  void setBase(Expr *E) { Base = E; }
1161  Expr *getBase() const { return cast<Expr>(Base); }
1162
1163  /// \brief Retrieve the member declaration to which this expression refers.
1164  ///
1165  /// The returned declaration will either be a FieldDecl or (in C++)
1166  /// a CXXMethodDecl.
1167  NamedDecl *getMemberDecl() const { return MemberDecl; }
1168  void setMemberDecl(NamedDecl *D) { MemberDecl = D; }
1169
1170  /// \brief Determines whether this member expression actually had
1171  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
1172  /// x->Base::foo.
1173  bool hasQualifier() const { return HasQualifier; }
1174
1175  /// \brief If the member name was qualified, retrieves the source range of
1176  /// the nested-name-specifier that precedes the member name. Otherwise,
1177  /// returns an empty source range.
1178  SourceRange getQualifierRange() const {
1179    if (!HasQualifier)
1180      return SourceRange();
1181
1182    return getMemberQualifier()->Range;
1183  }
1184
1185  /// \brief If the member name was qualified, retrieves the
1186  /// nested-name-specifier that precedes the member name. Otherwise, returns
1187  /// NULL.
1188  NestedNameSpecifier *getQualifier() const {
1189    if (!HasQualifier)
1190      return 0;
1191
1192    return getMemberQualifier()->NNS;
1193  }
1194
1195  /// \brief Determines whether this member expression actually had a C++
1196  /// template argument list explicitly specified, e.g., x.f<int>.
1197  bool hasExplicitTemplateArgumentList() {
1198    return HasExplicitTemplateArgumentList;
1199  }
1200
1201  /// \brief Retrieve the location of the left angle bracket following the
1202  /// member name ('<'), if any.
1203  SourceLocation getLAngleLoc() const {
1204    if (!HasExplicitTemplateArgumentList)
1205      return SourceLocation();
1206
1207    return getExplicitTemplateArgumentList()->LAngleLoc;
1208  }
1209
1210  /// \brief Retrieve the template arguments provided as part of this
1211  /// template-id.
1212  const TemplateArgument *getTemplateArgs() const {
1213    if (!HasExplicitTemplateArgumentList)
1214      return 0;
1215
1216    return getExplicitTemplateArgumentList()->getTemplateArgs();
1217  }
1218
1219  /// \brief Retrieve the number of template arguments provided as part of this
1220  /// template-id.
1221  unsigned getNumTemplateArgs() const {
1222    if (!HasExplicitTemplateArgumentList)
1223      return 0;
1224
1225    return getExplicitTemplateArgumentList()->NumTemplateArgs;
1226  }
1227
1228  /// \brief Retrieve the location of the right angle bracket following the
1229  /// template arguments ('>').
1230  SourceLocation getRAngleLoc() const {
1231    if (!HasExplicitTemplateArgumentList)
1232      return SourceLocation();
1233
1234    return getExplicitTemplateArgumentList()->RAngleLoc;
1235  }
1236
1237  bool isArrow() const { return IsArrow; }
1238  void setArrow(bool A) { IsArrow = A; }
1239
1240  /// getMemberLoc - Return the location of the "member", in X->F, it is the
1241  /// location of 'F'.
1242  SourceLocation getMemberLoc() const { return MemberLoc; }
1243  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
1244
1245  virtual SourceRange getSourceRange() const {
1246    // If we have an implicit base (like a C++ implicit this),
1247    // make sure not to return its location
1248    SourceLocation EndLoc = MemberLoc;
1249    if (HasExplicitTemplateArgumentList)
1250      EndLoc = getRAngleLoc();
1251
1252    SourceLocation BaseLoc = getBase()->getLocStart();
1253    if (BaseLoc.isInvalid())
1254      return SourceRange(MemberLoc, EndLoc);
1255    return SourceRange(BaseLoc, EndLoc);
1256  }
1257
1258  virtual SourceLocation getExprLoc() const { return MemberLoc; }
1259
1260  static bool classof(const Stmt *T) {
1261    return T->getStmtClass() == MemberExprClass;
1262  }
1263  static bool classof(const MemberExpr *) { return true; }
1264
1265  // Iterators
1266  virtual child_iterator child_begin();
1267  virtual child_iterator child_end();
1268};
1269
1270/// CompoundLiteralExpr - [C99 6.5.2.5]
1271///
1272class CompoundLiteralExpr : public Expr {
1273  /// LParenLoc - If non-null, this is the location of the left paren in a
1274  /// compound literal like "(int){4}".  This can be null if this is a
1275  /// synthesized compound expression.
1276  SourceLocation LParenLoc;
1277  Stmt *Init;
1278  bool FileScope;
1279public:
1280  CompoundLiteralExpr(SourceLocation lparenloc, QualType ty, Expr *init,
1281                      bool fileScope)
1282    : Expr(CompoundLiteralExprClass, ty), LParenLoc(lparenloc), Init(init),
1283      FileScope(fileScope) {}
1284
1285  /// \brief Construct an empty compound literal.
1286  explicit CompoundLiteralExpr(EmptyShell Empty)
1287    : Expr(CompoundLiteralExprClass, Empty) { }
1288
1289  const Expr *getInitializer() const { return cast<Expr>(Init); }
1290  Expr *getInitializer() { return cast<Expr>(Init); }
1291  void setInitializer(Expr *E) { Init = E; }
1292
1293  bool isFileScope() const { return FileScope; }
1294  void setFileScope(bool FS) { FileScope = FS; }
1295
1296  SourceLocation getLParenLoc() const { return LParenLoc; }
1297  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
1298
1299  virtual SourceRange getSourceRange() const {
1300    // FIXME: Init should never be null.
1301    if (!Init)
1302      return SourceRange();
1303    if (LParenLoc.isInvalid())
1304      return Init->getSourceRange();
1305    return SourceRange(LParenLoc, Init->getLocEnd());
1306  }
1307
1308  static bool classof(const Stmt *T) {
1309    return T->getStmtClass() == CompoundLiteralExprClass;
1310  }
1311  static bool classof(const CompoundLiteralExpr *) { return true; }
1312
1313  // Iterators
1314  virtual child_iterator child_begin();
1315  virtual child_iterator child_end();
1316};
1317
1318/// CastExpr - Base class for type casts, including both implicit
1319/// casts (ImplicitCastExpr) and explicit casts that have some
1320/// representation in the source code (ExplicitCastExpr's derived
1321/// classes).
1322class CastExpr : public Expr {
1323public:
1324  /// CastKind - the kind of cast this represents.
1325  enum CastKind {
1326    /// CK_Unknown - Unknown cast kind.
1327    /// FIXME: The goal is to get rid of this and make all casts have a
1328    /// kind so that the AST client doesn't have to try to figure out what's
1329    /// going on.
1330    CK_Unknown,
1331
1332    /// CK_BitCast - Used for reinterpret_cast.
1333    CK_BitCast,
1334
1335    /// CK_NoOp - Used for const_cast.
1336    CK_NoOp,
1337
1338    /// CK_DerivedToBase - Derived to base class casts.
1339    CK_DerivedToBase,
1340
1341    /// CK_Dynamic - Dynamic cast.
1342    CK_Dynamic,
1343
1344    /// CK_ToUnion - Cast to union (GCC extension).
1345    CK_ToUnion,
1346
1347    /// CK_ArrayToPointerDecay - Array to pointer decay.
1348    CK_ArrayToPointerDecay,
1349
1350    // CK_FunctionToPointerDecay - Function to pointer decay.
1351    CK_FunctionToPointerDecay,
1352
1353    /// CK_NullToMemberPointer - Null pointer to member pointer.
1354    CK_NullToMemberPointer,
1355
1356    /// CK_BaseToDerivedMemberPointer - Member pointer in base class to
1357    /// member pointer in derived class.
1358    CK_BaseToDerivedMemberPointer,
1359
1360    /// CK_UserDefinedConversion - Conversion using a user defined type
1361    /// conversion function.
1362    CK_UserDefinedConversion,
1363
1364    /// CK_ConstructorConversion - Conversion by constructor
1365    CK_ConstructorConversion
1366  };
1367
1368  struct CastInfo {
1369    const CastKind Kind;
1370
1371    // FIXME: This should assert that the CastKind does not require extra
1372    // information.
1373    CastInfo(CastKind Kind)
1374      : Kind(Kind) { }
1375  };
1376
1377private:
1378  CastKind Kind;
1379  Stmt *Op;
1380protected:
1381  CastExpr(StmtClass SC, QualType ty, const CastInfo &info, Expr *op) :
1382    Expr(SC, ty,
1383         // Cast expressions are type-dependent if the type is
1384         // dependent (C++ [temp.dep.expr]p3).
1385         ty->isDependentType(),
1386         // Cast expressions are value-dependent if the type is
1387         // dependent or if the subexpression is value-dependent.
1388         ty->isDependentType() || (op && op->isValueDependent())),
1389    Kind(info.Kind), Op(op) {}
1390
1391  /// \brief Construct an empty cast.
1392  CastExpr(StmtClass SC, EmptyShell Empty)
1393    : Expr(SC, Empty) { }
1394
1395public:
1396  CastKind getCastKind() const { return Kind; }
1397  void setCastKind(CastKind K) { Kind = K; }
1398  const char *getCastKindName() const;
1399
1400  Expr *getSubExpr() { return cast<Expr>(Op); }
1401  const Expr *getSubExpr() const { return cast<Expr>(Op); }
1402  void setSubExpr(Expr *E) { Op = E; }
1403
1404  static bool classof(const Stmt *T) {
1405    StmtClass SC = T->getStmtClass();
1406    if (SC >= CXXNamedCastExprClass && SC <= CXXFunctionalCastExprClass)
1407      return true;
1408
1409    if (SC >= ImplicitCastExprClass && SC <= CStyleCastExprClass)
1410      return true;
1411
1412    return false;
1413  }
1414  static bool classof(const CastExpr *) { return true; }
1415
1416  // Iterators
1417  virtual child_iterator child_begin();
1418  virtual child_iterator child_end();
1419};
1420
1421/// ImplicitCastExpr - Allows us to explicitly represent implicit type
1422/// conversions, which have no direct representation in the original
1423/// source code. For example: converting T[]->T*, void f()->void
1424/// (*f)(), float->double, short->int, etc.
1425///
1426/// In C, implicit casts always produce rvalues. However, in C++, an
1427/// implicit cast whose result is being bound to a reference will be
1428/// an lvalue. For example:
1429///
1430/// @code
1431/// class Base { };
1432/// class Derived : public Base { };
1433/// void f(Derived d) {
1434///   Base& b = d; // initializer is an ImplicitCastExpr to an lvalue of type Base
1435/// }
1436/// @endcode
1437class ImplicitCastExpr : public CastExpr {
1438  /// LvalueCast - Whether this cast produces an lvalue.
1439  bool LvalueCast;
1440
1441public:
1442  ImplicitCastExpr(QualType ty, const CastInfo &info, Expr *op, bool Lvalue) :
1443    CastExpr(ImplicitCastExprClass, ty, info, op), LvalueCast(Lvalue) { }
1444
1445  /// \brief Construct an empty implicit cast.
1446  explicit ImplicitCastExpr(EmptyShell Shell)
1447    : CastExpr(ImplicitCastExprClass, Shell) { }
1448
1449
1450  virtual SourceRange getSourceRange() const {
1451    return getSubExpr()->getSourceRange();
1452  }
1453
1454  /// isLvalueCast - Whether this cast produces an lvalue.
1455  bool isLvalueCast() const { return LvalueCast; }
1456
1457  /// setLvalueCast - Set whether this cast produces an lvalue.
1458  void setLvalueCast(bool Lvalue) { LvalueCast = Lvalue; }
1459
1460  static bool classof(const Stmt *T) {
1461    return T->getStmtClass() == ImplicitCastExprClass;
1462  }
1463  static bool classof(const ImplicitCastExpr *) { return true; }
1464};
1465
1466/// ExplicitCastExpr - An explicit cast written in the source
1467/// code.
1468///
1469/// This class is effectively an abstract class, because it provides
1470/// the basic representation of an explicitly-written cast without
1471/// specifying which kind of cast (C cast, functional cast, static
1472/// cast, etc.) was written; specific derived classes represent the
1473/// particular style of cast and its location information.
1474///
1475/// Unlike implicit casts, explicit cast nodes have two different
1476/// types: the type that was written into the source code, and the
1477/// actual type of the expression as determined by semantic
1478/// analysis. These types may differ slightly. For example, in C++ one
1479/// can cast to a reference type, which indicates that the resulting
1480/// expression will be an lvalue. The reference type, however, will
1481/// not be used as the type of the expression.
1482class ExplicitCastExpr : public CastExpr {
1483  /// TypeAsWritten - The type that this expression is casting to, as
1484  /// written in the source code.
1485  QualType TypeAsWritten;
1486
1487protected:
1488  ExplicitCastExpr(StmtClass SC, QualType exprTy, const CastInfo &info,
1489                   Expr *op, QualType writtenTy)
1490    : CastExpr(SC, exprTy, info, op), TypeAsWritten(writtenTy) {}
1491
1492  /// \brief Construct an empty explicit cast.
1493  ExplicitCastExpr(StmtClass SC, EmptyShell Shell)
1494    : CastExpr(SC, Shell) { }
1495
1496public:
1497  /// getTypeAsWritten - Returns the type that this expression is
1498  /// casting to, as written in the source code.
1499  QualType getTypeAsWritten() const { return TypeAsWritten; }
1500  void setTypeAsWritten(QualType T) { TypeAsWritten = T; }
1501
1502  static bool classof(const Stmt *T) {
1503    StmtClass SC = T->getStmtClass();
1504    if (SC >= ExplicitCastExprClass && SC <= CStyleCastExprClass)
1505      return true;
1506    if (SC >= CXXNamedCastExprClass && SC <= CXXFunctionalCastExprClass)
1507      return true;
1508
1509    return false;
1510  }
1511  static bool classof(const ExplicitCastExpr *) { return true; }
1512};
1513
1514/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
1515/// cast in C++ (C++ [expr.cast]), which uses the syntax
1516/// (Type)expr. For example: @c (int)f.
1517class CStyleCastExpr : public ExplicitCastExpr {
1518  SourceLocation LPLoc; // the location of the left paren
1519  SourceLocation RPLoc; // the location of the right paren
1520public:
1521  CStyleCastExpr(QualType exprTy, CastKind kind, Expr *op, QualType writtenTy,
1522                    SourceLocation l, SourceLocation r) :
1523    ExplicitCastExpr(CStyleCastExprClass, exprTy, kind, op, writtenTy),
1524    LPLoc(l), RPLoc(r) {}
1525
1526  /// \brief Construct an empty C-style explicit cast.
1527  explicit CStyleCastExpr(EmptyShell Shell)
1528    : ExplicitCastExpr(CStyleCastExprClass, Shell) { }
1529
1530  SourceLocation getLParenLoc() const { return LPLoc; }
1531  void setLParenLoc(SourceLocation L) { LPLoc = L; }
1532
1533  SourceLocation getRParenLoc() const { return RPLoc; }
1534  void setRParenLoc(SourceLocation L) { RPLoc = L; }
1535
1536  virtual SourceRange getSourceRange() const {
1537    return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd());
1538  }
1539  static bool classof(const Stmt *T) {
1540    return T->getStmtClass() == CStyleCastExprClass;
1541  }
1542  static bool classof(const CStyleCastExpr *) { return true; }
1543};
1544
1545/// \brief A builtin binary operation expression such as "x + y" or "x <= y".
1546///
1547/// This expression node kind describes a builtin binary operation,
1548/// such as "x + y" for integer values "x" and "y". The operands will
1549/// already have been converted to appropriate types (e.g., by
1550/// performing promotions or conversions).
1551///
1552/// In C++, where operators may be overloaded, a different kind of
1553/// expression node (CXXOperatorCallExpr) is used to express the
1554/// invocation of an overloaded operator with operator syntax. Within
1555/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
1556/// used to store an expression "x + y" depends on the subexpressions
1557/// for x and y. If neither x or y is type-dependent, and the "+"
1558/// operator resolves to a built-in operation, BinaryOperator will be
1559/// used to express the computation (x and y may still be
1560/// value-dependent). If either x or y is type-dependent, or if the
1561/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
1562/// be used to express the computation.
1563class BinaryOperator : public Expr {
1564public:
1565  enum Opcode {
1566    // Operators listed in order of precedence.
1567    // Note that additions to this should also update the StmtVisitor class.
1568    PtrMemD, PtrMemI, // [C++ 5.5] Pointer-to-member operators.
1569    Mul, Div, Rem,    // [C99 6.5.5] Multiplicative operators.
1570    Add, Sub,         // [C99 6.5.6] Additive operators.
1571    Shl, Shr,         // [C99 6.5.7] Bitwise shift operators.
1572    LT, GT, LE, GE,   // [C99 6.5.8] Relational operators.
1573    EQ, NE,           // [C99 6.5.9] Equality operators.
1574    And,              // [C99 6.5.10] Bitwise AND operator.
1575    Xor,              // [C99 6.5.11] Bitwise XOR operator.
1576    Or,               // [C99 6.5.12] Bitwise OR operator.
1577    LAnd,             // [C99 6.5.13] Logical AND operator.
1578    LOr,              // [C99 6.5.14] Logical OR operator.
1579    Assign, MulAssign,// [C99 6.5.16] Assignment operators.
1580    DivAssign, RemAssign,
1581    AddAssign, SubAssign,
1582    ShlAssign, ShrAssign,
1583    AndAssign, XorAssign,
1584    OrAssign,
1585    Comma             // [C99 6.5.17] Comma operator.
1586  };
1587private:
1588  enum { LHS, RHS, END_EXPR };
1589  Stmt* SubExprs[END_EXPR];
1590  Opcode Opc;
1591  SourceLocation OpLoc;
1592public:
1593
1594  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
1595                 SourceLocation opLoc)
1596    : Expr(BinaryOperatorClass, ResTy,
1597           lhs->isTypeDependent() || rhs->isTypeDependent(),
1598           lhs->isValueDependent() || rhs->isValueDependent()),
1599      Opc(opc), OpLoc(opLoc) {
1600    SubExprs[LHS] = lhs;
1601    SubExprs[RHS] = rhs;
1602    assert(!isCompoundAssignmentOp() &&
1603           "Use ArithAssignBinaryOperator for compound assignments");
1604  }
1605
1606  /// \brief Construct an empty binary operator.
1607  explicit BinaryOperator(EmptyShell Empty)
1608    : Expr(BinaryOperatorClass, Empty), Opc(Comma) { }
1609
1610  SourceLocation getOperatorLoc() const { return OpLoc; }
1611  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
1612
1613  Opcode getOpcode() const { return Opc; }
1614  void setOpcode(Opcode O) { Opc = O; }
1615
1616  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1617  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1618  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1619  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1620
1621  virtual SourceRange getSourceRange() const {
1622    return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
1623  }
1624
1625  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1626  /// corresponds to, e.g. "<<=".
1627  static const char *getOpcodeStr(Opcode Op);
1628
1629  /// \brief Retrieve the binary opcode that corresponds to the given
1630  /// overloaded operator.
1631  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
1632
1633  /// \brief Retrieve the overloaded operator kind that corresponds to
1634  /// the given binary opcode.
1635  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
1636
1637  /// predicates to categorize the respective opcodes.
1638  bool isMultiplicativeOp() const { return Opc >= Mul && Opc <= Rem; }
1639  bool isAdditiveOp() const { return Opc == Add || Opc == Sub; }
1640  bool isShiftOp() const { return Opc == Shl || Opc == Shr; }
1641  bool isBitwiseOp() const { return Opc >= And && Opc <= Or; }
1642
1643  static bool isRelationalOp(Opcode Opc) { return Opc >= LT && Opc <= GE; }
1644  bool isRelationalOp() const { return isRelationalOp(Opc); }
1645
1646  static bool isEqualityOp(Opcode Opc) { return Opc == EQ || Opc == NE; }
1647  bool isEqualityOp() const { return isEqualityOp(Opc); }
1648
1649  static bool isLogicalOp(Opcode Opc) { return Opc == LAnd || Opc == LOr; }
1650  bool isLogicalOp() const { return isLogicalOp(Opc); }
1651
1652  bool isAssignmentOp() const { return Opc >= Assign && Opc <= OrAssign; }
1653  bool isCompoundAssignmentOp() const { return Opc > Assign && Opc <= OrAssign;}
1654  bool isShiftAssignOp() const { return Opc == ShlAssign || Opc == ShrAssign; }
1655
1656  static bool classof(const Stmt *S) {
1657    return S->getStmtClass() == BinaryOperatorClass ||
1658           S->getStmtClass() == CompoundAssignOperatorClass;
1659  }
1660  static bool classof(const BinaryOperator *) { return true; }
1661
1662  // Iterators
1663  virtual child_iterator child_begin();
1664  virtual child_iterator child_end();
1665
1666protected:
1667  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
1668                 SourceLocation oploc, bool dead)
1669    : Expr(CompoundAssignOperatorClass, ResTy), Opc(opc), OpLoc(oploc) {
1670    SubExprs[LHS] = lhs;
1671    SubExprs[RHS] = rhs;
1672  }
1673
1674  BinaryOperator(StmtClass SC, EmptyShell Empty)
1675    : Expr(SC, Empty), Opc(MulAssign) { }
1676};
1677
1678/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
1679/// track of the type the operation is performed in.  Due to the semantics of
1680/// these operators, the operands are promoted, the aritmetic performed, an
1681/// implicit conversion back to the result type done, then the assignment takes
1682/// place.  This captures the intermediate type which the computation is done
1683/// in.
1684class CompoundAssignOperator : public BinaryOperator {
1685  QualType ComputationLHSType;
1686  QualType ComputationResultType;
1687public:
1688  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc,
1689                         QualType ResType, QualType CompLHSType,
1690                         QualType CompResultType,
1691                         SourceLocation OpLoc)
1692    : BinaryOperator(lhs, rhs, opc, ResType, OpLoc, true),
1693      ComputationLHSType(CompLHSType),
1694      ComputationResultType(CompResultType) {
1695    assert(isCompoundAssignmentOp() &&
1696           "Only should be used for compound assignments");
1697  }
1698
1699  /// \brief Build an empty compound assignment operator expression.
1700  explicit CompoundAssignOperator(EmptyShell Empty)
1701    : BinaryOperator(CompoundAssignOperatorClass, Empty) { }
1702
1703  // The two computation types are the type the LHS is converted
1704  // to for the computation and the type of the result; the two are
1705  // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
1706  QualType getComputationLHSType() const { return ComputationLHSType; }
1707  void setComputationLHSType(QualType T) { ComputationLHSType = T; }
1708
1709  QualType getComputationResultType() const { return ComputationResultType; }
1710  void setComputationResultType(QualType T) { ComputationResultType = T; }
1711
1712  static bool classof(const CompoundAssignOperator *) { return true; }
1713  static bool classof(const Stmt *S) {
1714    return S->getStmtClass() == CompoundAssignOperatorClass;
1715  }
1716};
1717
1718/// ConditionalOperator - The ?: operator.  Note that LHS may be null when the
1719/// GNU "missing LHS" extension is in use.
1720///
1721class ConditionalOperator : public Expr {
1722  enum { COND, LHS, RHS, END_EXPR };
1723  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
1724  SourceLocation QuestionLoc, ColonLoc;
1725public:
1726  ConditionalOperator(Expr *cond, SourceLocation QLoc, Expr *lhs,
1727                      SourceLocation CLoc, Expr *rhs, QualType t)
1728    : Expr(ConditionalOperatorClass, t,
1729           // FIXME: the type of the conditional operator doesn't
1730           // depend on the type of the conditional, but the standard
1731           // seems to imply that it could. File a bug!
1732           ((lhs && lhs->isTypeDependent()) || (rhs && rhs->isTypeDependent())),
1733           (cond->isValueDependent() ||
1734            (lhs && lhs->isValueDependent()) ||
1735            (rhs && rhs->isValueDependent()))),
1736      QuestionLoc(QLoc),
1737      ColonLoc(CLoc) {
1738    SubExprs[COND] = cond;
1739    SubExprs[LHS] = lhs;
1740    SubExprs[RHS] = rhs;
1741  }
1742
1743  /// \brief Build an empty conditional operator.
1744  explicit ConditionalOperator(EmptyShell Empty)
1745    : Expr(ConditionalOperatorClass, Empty) { }
1746
1747  // getCond - Return the expression representing the condition for
1748  //  the ?: operator.
1749  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
1750  void setCond(Expr *E) { SubExprs[COND] = E; }
1751
1752  // getTrueExpr - Return the subexpression representing the value of the ?:
1753  //  expression if the condition evaluates to true.  In most cases this value
1754  //  will be the same as getLHS() except a GCC extension allows the left
1755  //  subexpression to be omitted, and instead of the condition be returned.
1756  //  e.g: x ?: y is shorthand for x ? x : y, except that the expression "x"
1757  //  is only evaluated once.
1758  Expr *getTrueExpr() const {
1759    return cast<Expr>(SubExprs[LHS] ? SubExprs[LHS] : SubExprs[COND]);
1760  }
1761
1762  // getTrueExpr - Return the subexpression representing the value of the ?:
1763  // expression if the condition evaluates to false. This is the same as getRHS.
1764  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
1765
1766  Expr *getLHS() const { return cast_or_null<Expr>(SubExprs[LHS]); }
1767  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1768
1769  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1770  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1771
1772  SourceLocation getQuestionLoc() const { return QuestionLoc; }
1773  void setQuestionLoc(SourceLocation L) { QuestionLoc = L; }
1774
1775  SourceLocation getColonLoc() const { return ColonLoc; }
1776  void setColonLoc(SourceLocation L) { ColonLoc = L; }
1777
1778  virtual SourceRange getSourceRange() const {
1779    return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
1780  }
1781  static bool classof(const Stmt *T) {
1782    return T->getStmtClass() == ConditionalOperatorClass;
1783  }
1784  static bool classof(const ConditionalOperator *) { return true; }
1785
1786  // Iterators
1787  virtual child_iterator child_begin();
1788  virtual child_iterator child_end();
1789};
1790
1791/// AddrLabelExpr - The GNU address of label extension, representing &&label.
1792class AddrLabelExpr : public Expr {
1793  SourceLocation AmpAmpLoc, LabelLoc;
1794  LabelStmt *Label;
1795public:
1796  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelStmt *L,
1797                QualType t)
1798    : Expr(AddrLabelExprClass, t), AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
1799
1800  /// \brief Build an empty address of a label expression.
1801  explicit AddrLabelExpr(EmptyShell Empty)
1802    : Expr(AddrLabelExprClass, Empty) { }
1803
1804  SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
1805  void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
1806  SourceLocation getLabelLoc() const { return LabelLoc; }
1807  void setLabelLoc(SourceLocation L) { LabelLoc = L; }
1808
1809  virtual SourceRange getSourceRange() const {
1810    return SourceRange(AmpAmpLoc, LabelLoc);
1811  }
1812
1813  LabelStmt *getLabel() const { return Label; }
1814  void setLabel(LabelStmt *S) { Label = S; }
1815
1816  static bool classof(const Stmt *T) {
1817    return T->getStmtClass() == AddrLabelExprClass;
1818  }
1819  static bool classof(const AddrLabelExpr *) { return true; }
1820
1821  // Iterators
1822  virtual child_iterator child_begin();
1823  virtual child_iterator child_end();
1824};
1825
1826/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
1827/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
1828/// takes the value of the last subexpression.
1829class StmtExpr : public Expr {
1830  Stmt *SubStmt;
1831  SourceLocation LParenLoc, RParenLoc;
1832public:
1833  StmtExpr(CompoundStmt *substmt, QualType T,
1834           SourceLocation lp, SourceLocation rp) :
1835    Expr(StmtExprClass, T), SubStmt(substmt),  LParenLoc(lp), RParenLoc(rp) { }
1836
1837  /// \brief Build an empty statement expression.
1838  explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
1839
1840  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
1841  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
1842  void setSubStmt(CompoundStmt *S) { SubStmt = S; }
1843
1844  virtual SourceRange getSourceRange() const {
1845    return SourceRange(LParenLoc, RParenLoc);
1846  }
1847
1848  SourceLocation getLParenLoc() const { return LParenLoc; }
1849  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
1850  SourceLocation getRParenLoc() const { return RParenLoc; }
1851  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1852
1853  static bool classof(const Stmt *T) {
1854    return T->getStmtClass() == StmtExprClass;
1855  }
1856  static bool classof(const StmtExpr *) { return true; }
1857
1858  // Iterators
1859  virtual child_iterator child_begin();
1860  virtual child_iterator child_end();
1861};
1862
1863/// TypesCompatibleExpr - GNU builtin-in function __builtin_types_compatible_p.
1864/// This AST node represents a function that returns 1 if two *types* (not
1865/// expressions) are compatible. The result of this built-in function can be
1866/// used in integer constant expressions.
1867class TypesCompatibleExpr : public Expr {
1868  QualType Type1;
1869  QualType Type2;
1870  SourceLocation BuiltinLoc, RParenLoc;
1871public:
1872  TypesCompatibleExpr(QualType ReturnType, SourceLocation BLoc,
1873                      QualType t1, QualType t2, SourceLocation RP) :
1874    Expr(TypesCompatibleExprClass, ReturnType), Type1(t1), Type2(t2),
1875    BuiltinLoc(BLoc), RParenLoc(RP) {}
1876
1877  /// \brief Build an empty __builtin_type_compatible_p expression.
1878  explicit TypesCompatibleExpr(EmptyShell Empty)
1879    : Expr(TypesCompatibleExprClass, Empty) { }
1880
1881  QualType getArgType1() const { return Type1; }
1882  void setArgType1(QualType T) { Type1 = T; }
1883  QualType getArgType2() const { return Type2; }
1884  void setArgType2(QualType T) { Type2 = T; }
1885
1886  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
1887  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
1888
1889  SourceLocation getRParenLoc() const { return RParenLoc; }
1890  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1891
1892  virtual SourceRange getSourceRange() const {
1893    return SourceRange(BuiltinLoc, RParenLoc);
1894  }
1895  static bool classof(const Stmt *T) {
1896    return T->getStmtClass() == TypesCompatibleExprClass;
1897  }
1898  static bool classof(const TypesCompatibleExpr *) { return true; }
1899
1900  // Iterators
1901  virtual child_iterator child_begin();
1902  virtual child_iterator child_end();
1903};
1904
1905/// ShuffleVectorExpr - clang-specific builtin-in function
1906/// __builtin_shufflevector.
1907/// This AST node represents a operator that does a constant
1908/// shuffle, similar to LLVM's shufflevector instruction. It takes
1909/// two vectors and a variable number of constant indices,
1910/// and returns the appropriately shuffled vector.
1911class ShuffleVectorExpr : public Expr {
1912  SourceLocation BuiltinLoc, RParenLoc;
1913
1914  // SubExprs - the list of values passed to the __builtin_shufflevector
1915  // function. The first two are vectors, and the rest are constant
1916  // indices.  The number of values in this list is always
1917  // 2+the number of indices in the vector type.
1918  Stmt **SubExprs;
1919  unsigned NumExprs;
1920
1921protected:
1922  virtual void DoDestroy(ASTContext &C);
1923
1924public:
1925  ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr,
1926                    QualType Type, SourceLocation BLoc,
1927                    SourceLocation RP) :
1928    Expr(ShuffleVectorExprClass, Type), BuiltinLoc(BLoc),
1929    RParenLoc(RP), NumExprs(nexpr) {
1930
1931    SubExprs = new (C) Stmt*[nexpr];
1932    for (unsigned i = 0; i < nexpr; i++)
1933      SubExprs[i] = args[i];
1934  }
1935
1936  /// \brief Build an empty vector-shuffle expression.
1937  explicit ShuffleVectorExpr(EmptyShell Empty)
1938    : Expr(ShuffleVectorExprClass, Empty), SubExprs(0) { }
1939
1940  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
1941  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
1942
1943  SourceLocation getRParenLoc() const { return RParenLoc; }
1944  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1945
1946  virtual SourceRange getSourceRange() const {
1947    return SourceRange(BuiltinLoc, RParenLoc);
1948  }
1949  static bool classof(const Stmt *T) {
1950    return T->getStmtClass() == ShuffleVectorExprClass;
1951  }
1952  static bool classof(const ShuffleVectorExpr *) { return true; }
1953
1954  ~ShuffleVectorExpr() {}
1955
1956  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
1957  /// constant expression, the actual arguments passed in, and the function
1958  /// pointers.
1959  unsigned getNumSubExprs() const { return NumExprs; }
1960
1961  /// getExpr - Return the Expr at the specified index.
1962  Expr *getExpr(unsigned Index) {
1963    assert((Index < NumExprs) && "Arg access out of range!");
1964    return cast<Expr>(SubExprs[Index]);
1965  }
1966  const Expr *getExpr(unsigned Index) const {
1967    assert((Index < NumExprs) && "Arg access out of range!");
1968    return cast<Expr>(SubExprs[Index]);
1969  }
1970
1971  void setExprs(ASTContext &C, Expr ** Exprs, unsigned NumExprs);
1972
1973  unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) {
1974    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
1975    return getExpr(N+2)->EvaluateAsInt(Ctx).getZExtValue();
1976  }
1977
1978  // Iterators
1979  virtual child_iterator child_begin();
1980  virtual child_iterator child_end();
1981};
1982
1983/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
1984/// This AST node is similar to the conditional operator (?:) in C, with
1985/// the following exceptions:
1986/// - the test expression must be a integer constant expression.
1987/// - the expression returned acts like the chosen subexpression in every
1988///   visible way: the type is the same as that of the chosen subexpression,
1989///   and all predicates (whether it's an l-value, whether it's an integer
1990///   constant expression, etc.) return the same result as for the chosen
1991///   sub-expression.
1992class ChooseExpr : public Expr {
1993  enum { COND, LHS, RHS, END_EXPR };
1994  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
1995  SourceLocation BuiltinLoc, RParenLoc;
1996public:
1997  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs, QualType t,
1998             SourceLocation RP)
1999    : Expr(ChooseExprClass, t),
2000      BuiltinLoc(BLoc), RParenLoc(RP) {
2001      SubExprs[COND] = cond;
2002      SubExprs[LHS] = lhs;
2003      SubExprs[RHS] = rhs;
2004    }
2005
2006  /// \brief Build an empty __builtin_choose_expr.
2007  explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
2008
2009  /// isConditionTrue - Return whether the condition is true (i.e. not
2010  /// equal to zero).
2011  bool isConditionTrue(ASTContext &C) const;
2012
2013  /// getChosenSubExpr - Return the subexpression chosen according to the
2014  /// condition.
2015  Expr *getChosenSubExpr(ASTContext &C) const {
2016    return isConditionTrue(C) ? getLHS() : getRHS();
2017  }
2018
2019  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
2020  void setCond(Expr *E) { SubExprs[COND] = E; }
2021  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2022  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2023  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2024  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2025
2026  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2027  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2028
2029  SourceLocation getRParenLoc() const { return RParenLoc; }
2030  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2031
2032  virtual SourceRange getSourceRange() const {
2033    return SourceRange(BuiltinLoc, RParenLoc);
2034  }
2035  static bool classof(const Stmt *T) {
2036    return T->getStmtClass() == ChooseExprClass;
2037  }
2038  static bool classof(const ChooseExpr *) { return true; }
2039
2040  // Iterators
2041  virtual child_iterator child_begin();
2042  virtual child_iterator child_end();
2043};
2044
2045/// GNUNullExpr - Implements the GNU __null extension, which is a name
2046/// for a null pointer constant that has integral type (e.g., int or
2047/// long) and is the same size and alignment as a pointer. The __null
2048/// extension is typically only used by system headers, which define
2049/// NULL as __null in C++ rather than using 0 (which is an integer
2050/// that may not match the size of a pointer).
2051class GNUNullExpr : public Expr {
2052  /// TokenLoc - The location of the __null keyword.
2053  SourceLocation TokenLoc;
2054
2055public:
2056  GNUNullExpr(QualType Ty, SourceLocation Loc)
2057    : Expr(GNUNullExprClass, Ty), TokenLoc(Loc) { }
2058
2059  /// \brief Build an empty GNU __null expression.
2060  explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
2061
2062  /// getTokenLocation - The location of the __null token.
2063  SourceLocation getTokenLocation() const { return TokenLoc; }
2064  void setTokenLocation(SourceLocation L) { TokenLoc = L; }
2065
2066  virtual SourceRange getSourceRange() const {
2067    return SourceRange(TokenLoc);
2068  }
2069  static bool classof(const Stmt *T) {
2070    return T->getStmtClass() == GNUNullExprClass;
2071  }
2072  static bool classof(const GNUNullExpr *) { return true; }
2073
2074  // Iterators
2075  virtual child_iterator child_begin();
2076  virtual child_iterator child_end();
2077};
2078
2079/// VAArgExpr, used for the builtin function __builtin_va_start.
2080class VAArgExpr : public Expr {
2081  Stmt *Val;
2082  SourceLocation BuiltinLoc, RParenLoc;
2083public:
2084  VAArgExpr(SourceLocation BLoc, Expr* e, QualType t, SourceLocation RPLoc)
2085    : Expr(VAArgExprClass, t),
2086      Val(e),
2087      BuiltinLoc(BLoc),
2088      RParenLoc(RPLoc) { }
2089
2090  /// \brief Create an empty __builtin_va_start expression.
2091  explicit VAArgExpr(EmptyShell Empty) : Expr(VAArgExprClass, Empty) { }
2092
2093  const Expr *getSubExpr() const { return cast<Expr>(Val); }
2094  Expr *getSubExpr() { return cast<Expr>(Val); }
2095  void setSubExpr(Expr *E) { Val = E; }
2096
2097  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
2098  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
2099
2100  SourceLocation getRParenLoc() const { return RParenLoc; }
2101  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2102
2103  virtual SourceRange getSourceRange() const {
2104    return SourceRange(BuiltinLoc, RParenLoc);
2105  }
2106  static bool classof(const Stmt *T) {
2107    return T->getStmtClass() == VAArgExprClass;
2108  }
2109  static bool classof(const VAArgExpr *) { return true; }
2110
2111  // Iterators
2112  virtual child_iterator child_begin();
2113  virtual child_iterator child_end();
2114};
2115
2116/// @brief Describes an C or C++ initializer list.
2117///
2118/// InitListExpr describes an initializer list, which can be used to
2119/// initialize objects of different types, including
2120/// struct/class/union types, arrays, and vectors. For example:
2121///
2122/// @code
2123/// struct foo x = { 1, { 2, 3 } };
2124/// @endcode
2125///
2126/// Prior to semantic analysis, an initializer list will represent the
2127/// initializer list as written by the user, but will have the
2128/// placeholder type "void". This initializer list is called the
2129/// syntactic form of the initializer, and may contain C99 designated
2130/// initializers (represented as DesignatedInitExprs), initializations
2131/// of subobject members without explicit braces, and so on. Clients
2132/// interested in the original syntax of the initializer list should
2133/// use the syntactic form of the initializer list.
2134///
2135/// After semantic analysis, the initializer list will represent the
2136/// semantic form of the initializer, where the initializations of all
2137/// subobjects are made explicit with nested InitListExpr nodes and
2138/// C99 designators have been eliminated by placing the designated
2139/// initializations into the subobject they initialize. Additionally,
2140/// any "holes" in the initialization, where no initializer has been
2141/// specified for a particular subobject, will be replaced with
2142/// implicitly-generated ImplicitValueInitExpr expressions that
2143/// value-initialize the subobjects. Note, however, that the
2144/// initializer lists may still have fewer initializers than there are
2145/// elements to initialize within the object.
2146///
2147/// Given the semantic form of the initializer list, one can retrieve
2148/// the original syntactic form of that initializer list (if it
2149/// exists) using getSyntacticForm(). Since many initializer lists
2150/// have the same syntactic and semantic forms, getSyntacticForm() may
2151/// return NULL, indicating that the current initializer list also
2152/// serves as its syntactic form.
2153class InitListExpr : public Expr {
2154  // FIXME: Eliminate this vector in favor of ASTContext allocation
2155  std::vector<Stmt *> InitExprs;
2156  SourceLocation LBraceLoc, RBraceLoc;
2157
2158  /// Contains the initializer list that describes the syntactic form
2159  /// written in the source code.
2160  InitListExpr *SyntacticForm;
2161
2162  /// If this initializer list initializes a union, specifies which
2163  /// field within the union will be initialized.
2164  FieldDecl *UnionFieldInit;
2165
2166  /// Whether this initializer list originally had a GNU array-range
2167  /// designator in it. This is a temporary marker used by CodeGen.
2168  bool HadArrayRangeDesignator;
2169
2170public:
2171  InitListExpr(SourceLocation lbraceloc, Expr **initexprs, unsigned numinits,
2172               SourceLocation rbraceloc);
2173
2174  /// \brief Build an empty initializer list.
2175  explicit InitListExpr(EmptyShell Empty) : Expr(InitListExprClass, Empty) { }
2176
2177  unsigned getNumInits() const { return InitExprs.size(); }
2178
2179  const Expr* getInit(unsigned Init) const {
2180    assert(Init < getNumInits() && "Initializer access out of range!");
2181    return cast_or_null<Expr>(InitExprs[Init]);
2182  }
2183
2184  Expr* getInit(unsigned Init) {
2185    assert(Init < getNumInits() && "Initializer access out of range!");
2186    return cast_or_null<Expr>(InitExprs[Init]);
2187  }
2188
2189  void setInit(unsigned Init, Expr *expr) {
2190    assert(Init < getNumInits() && "Initializer access out of range!");
2191    InitExprs[Init] = expr;
2192  }
2193
2194  /// \brief Reserve space for some number of initializers.
2195  void reserveInits(unsigned NumInits);
2196
2197  /// @brief Specify the number of initializers
2198  ///
2199  /// If there are more than @p NumInits initializers, the remaining
2200  /// initializers will be destroyed. If there are fewer than @p
2201  /// NumInits initializers, NULL expressions will be added for the
2202  /// unknown initializers.
2203  void resizeInits(ASTContext &Context, unsigned NumInits);
2204
2205  /// @brief Updates the initializer at index @p Init with the new
2206  /// expression @p expr, and returns the old expression at that
2207  /// location.
2208  ///
2209  /// When @p Init is out of range for this initializer list, the
2210  /// initializer list will be extended with NULL expressions to
2211  /// accomodate the new entry.
2212  Expr *updateInit(unsigned Init, Expr *expr);
2213
2214  /// \brief If this initializes a union, specifies which field in the
2215  /// union to initialize.
2216  ///
2217  /// Typically, this field is the first named field within the
2218  /// union. However, a designated initializer can specify the
2219  /// initialization of a different field within the union.
2220  FieldDecl *getInitializedFieldInUnion() { return UnionFieldInit; }
2221  void setInitializedFieldInUnion(FieldDecl *FD) { UnionFieldInit = FD; }
2222
2223  // Explicit InitListExpr's originate from source code (and have valid source
2224  // locations). Implicit InitListExpr's are created by the semantic analyzer.
2225  bool isExplicit() {
2226    return LBraceLoc.isValid() && RBraceLoc.isValid();
2227  }
2228
2229  SourceLocation getLBraceLoc() const { return LBraceLoc; }
2230  void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
2231  SourceLocation getRBraceLoc() const { return RBraceLoc; }
2232  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
2233
2234  /// @brief Retrieve the initializer list that describes the
2235  /// syntactic form of the initializer.
2236  ///
2237  ///
2238  InitListExpr *getSyntacticForm() const { return SyntacticForm; }
2239  void setSyntacticForm(InitListExpr *Init) { SyntacticForm = Init; }
2240
2241  bool hadArrayRangeDesignator() const { return HadArrayRangeDesignator; }
2242  void sawArrayRangeDesignator(bool ARD = true) {
2243    HadArrayRangeDesignator = ARD;
2244  }
2245
2246  virtual SourceRange getSourceRange() const {
2247    return SourceRange(LBraceLoc, RBraceLoc);
2248  }
2249  static bool classof(const Stmt *T) {
2250    return T->getStmtClass() == InitListExprClass;
2251  }
2252  static bool classof(const InitListExpr *) { return true; }
2253
2254  // Iterators
2255  virtual child_iterator child_begin();
2256  virtual child_iterator child_end();
2257
2258  typedef std::vector<Stmt *>::iterator iterator;
2259  typedef std::vector<Stmt *>::reverse_iterator reverse_iterator;
2260
2261  iterator begin() { return InitExprs.begin(); }
2262  iterator end() { return InitExprs.end(); }
2263  reverse_iterator rbegin() { return InitExprs.rbegin(); }
2264  reverse_iterator rend() { return InitExprs.rend(); }
2265};
2266
2267/// @brief Represents a C99 designated initializer expression.
2268///
2269/// A designated initializer expression (C99 6.7.8) contains one or
2270/// more designators (which can be field designators, array
2271/// designators, or GNU array-range designators) followed by an
2272/// expression that initializes the field or element(s) that the
2273/// designators refer to. For example, given:
2274///
2275/// @code
2276/// struct point {
2277///   double x;
2278///   double y;
2279/// };
2280/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
2281/// @endcode
2282///
2283/// The InitListExpr contains three DesignatedInitExprs, the first of
2284/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
2285/// designators, one array designator for @c [2] followed by one field
2286/// designator for @c .y. The initalization expression will be 1.0.
2287class DesignatedInitExpr : public Expr {
2288public:
2289  /// \brief Forward declaration of the Designator class.
2290  class Designator;
2291
2292private:
2293  /// The location of the '=' or ':' prior to the actual initializer
2294  /// expression.
2295  SourceLocation EqualOrColonLoc;
2296
2297  /// Whether this designated initializer used the GNU deprecated
2298  /// syntax rather than the C99 '=' syntax.
2299  bool GNUSyntax : 1;
2300
2301  /// The number of designators in this initializer expression.
2302  unsigned NumDesignators : 15;
2303
2304  /// \brief The designators in this designated initialization
2305  /// expression.
2306  Designator *Designators;
2307
2308  /// The number of subexpressions of this initializer expression,
2309  /// which contains both the initializer and any additional
2310  /// expressions used by array and array-range designators.
2311  unsigned NumSubExprs : 16;
2312
2313
2314  DesignatedInitExpr(QualType Ty, unsigned NumDesignators,
2315                     const Designator *Designators,
2316                     SourceLocation EqualOrColonLoc, bool GNUSyntax,
2317                     Expr **IndexExprs, unsigned NumIndexExprs,
2318                     Expr *Init);
2319
2320  explicit DesignatedInitExpr(unsigned NumSubExprs)
2321    : Expr(DesignatedInitExprClass, EmptyShell()),
2322      NumDesignators(0), Designators(0), NumSubExprs(NumSubExprs) { }
2323
2324protected:
2325  virtual void DoDestroy(ASTContext &C);
2326
2327public:
2328  /// A field designator, e.g., ".x".
2329  struct FieldDesignator {
2330    /// Refers to the field that is being initialized. The low bit
2331    /// of this field determines whether this is actually a pointer
2332    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
2333    /// initially constructed, a field designator will store an
2334    /// IdentifierInfo*. After semantic analysis has resolved that
2335    /// name, the field designator will instead store a FieldDecl*.
2336    uintptr_t NameOrField;
2337
2338    /// The location of the '.' in the designated initializer.
2339    unsigned DotLoc;
2340
2341    /// The location of the field name in the designated initializer.
2342    unsigned FieldLoc;
2343  };
2344
2345  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
2346  struct ArrayOrRangeDesignator {
2347    /// Location of the first index expression within the designated
2348    /// initializer expression's list of subexpressions.
2349    unsigned Index;
2350    /// The location of the '[' starting the array range designator.
2351    unsigned LBracketLoc;
2352    /// The location of the ellipsis separating the start and end
2353    /// indices. Only valid for GNU array-range designators.
2354    unsigned EllipsisLoc;
2355    /// The location of the ']' terminating the array range designator.
2356    unsigned RBracketLoc;
2357  };
2358
2359  /// @brief Represents a single C99 designator.
2360  ///
2361  /// @todo This class is infuriatingly similar to clang::Designator,
2362  /// but minor differences (storing indices vs. storing pointers)
2363  /// keep us from reusing it. Try harder, later, to rectify these
2364  /// differences.
2365  class Designator {
2366    /// @brief The kind of designator this describes.
2367    enum {
2368      FieldDesignator,
2369      ArrayDesignator,
2370      ArrayRangeDesignator
2371    } Kind;
2372
2373    union {
2374      /// A field designator, e.g., ".x".
2375      struct FieldDesignator Field;
2376      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
2377      struct ArrayOrRangeDesignator ArrayOrRange;
2378    };
2379    friend class DesignatedInitExpr;
2380
2381  public:
2382    Designator() {}
2383
2384    /// @brief Initializes a field designator.
2385    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
2386               SourceLocation FieldLoc)
2387      : Kind(FieldDesignator) {
2388      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
2389      Field.DotLoc = DotLoc.getRawEncoding();
2390      Field.FieldLoc = FieldLoc.getRawEncoding();
2391    }
2392
2393    /// @brief Initializes an array designator.
2394    Designator(unsigned Index, SourceLocation LBracketLoc,
2395               SourceLocation RBracketLoc)
2396      : Kind(ArrayDesignator) {
2397      ArrayOrRange.Index = Index;
2398      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
2399      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
2400      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
2401    }
2402
2403    /// @brief Initializes a GNU array-range designator.
2404    Designator(unsigned Index, SourceLocation LBracketLoc,
2405               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
2406      : Kind(ArrayRangeDesignator) {
2407      ArrayOrRange.Index = Index;
2408      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
2409      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
2410      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
2411    }
2412
2413    bool isFieldDesignator() const { return Kind == FieldDesignator; }
2414    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
2415    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
2416
2417    IdentifierInfo * getFieldName();
2418
2419    FieldDecl *getField() {
2420      assert(Kind == FieldDesignator && "Only valid on a field designator");
2421      if (Field.NameOrField & 0x01)
2422        return 0;
2423      else
2424        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
2425    }
2426
2427    void setField(FieldDecl *FD) {
2428      assert(Kind == FieldDesignator && "Only valid on a field designator");
2429      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
2430    }
2431
2432    SourceLocation getDotLoc() const {
2433      assert(Kind == FieldDesignator && "Only valid on a field designator");
2434      return SourceLocation::getFromRawEncoding(Field.DotLoc);
2435    }
2436
2437    SourceLocation getFieldLoc() const {
2438      assert(Kind == FieldDesignator && "Only valid on a field designator");
2439      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
2440    }
2441
2442    SourceLocation getLBracketLoc() const {
2443      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
2444             "Only valid on an array or array-range designator");
2445      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
2446    }
2447
2448    SourceLocation getRBracketLoc() const {
2449      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
2450             "Only valid on an array or array-range designator");
2451      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
2452    }
2453
2454    SourceLocation getEllipsisLoc() const {
2455      assert(Kind == ArrayRangeDesignator &&
2456             "Only valid on an array-range designator");
2457      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
2458    }
2459
2460    unsigned getFirstExprIndex() const {
2461      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
2462             "Only valid on an array or array-range designator");
2463      return ArrayOrRange.Index;
2464    }
2465
2466    SourceLocation getStartLocation() const {
2467      if (Kind == FieldDesignator)
2468        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
2469      else
2470        return getLBracketLoc();
2471    }
2472  };
2473
2474  static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators,
2475                                    unsigned NumDesignators,
2476                                    Expr **IndexExprs, unsigned NumIndexExprs,
2477                                    SourceLocation EqualOrColonLoc,
2478                                    bool GNUSyntax, Expr *Init);
2479
2480  static DesignatedInitExpr *CreateEmpty(ASTContext &C, unsigned NumIndexExprs);
2481
2482  /// @brief Returns the number of designators in this initializer.
2483  unsigned size() const { return NumDesignators; }
2484
2485  // Iterator access to the designators.
2486  typedef Designator* designators_iterator;
2487  designators_iterator designators_begin() { return Designators; }
2488  designators_iterator designators_end() {
2489    return Designators + NumDesignators;
2490  }
2491
2492  Designator *getDesignator(unsigned Idx) { return &designators_begin()[Idx]; }
2493
2494  void setDesignators(const Designator *Desigs, unsigned NumDesigs);
2495
2496  Expr *getArrayIndex(const Designator& D);
2497  Expr *getArrayRangeStart(const Designator& D);
2498  Expr *getArrayRangeEnd(const Designator& D);
2499
2500  /// @brief Retrieve the location of the '=' that precedes the
2501  /// initializer value itself, if present.
2502  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
2503  void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
2504
2505  /// @brief Determines whether this designated initializer used the
2506  /// deprecated GNU syntax for designated initializers.
2507  bool usesGNUSyntax() const { return GNUSyntax; }
2508  void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
2509
2510  /// @brief Retrieve the initializer value.
2511  Expr *getInit() const {
2512    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
2513  }
2514
2515  void setInit(Expr *init) {
2516    *child_begin() = init;
2517  }
2518
2519  /// \brief Retrieve the total number of subexpressions in this
2520  /// designated initializer expression, including the actual
2521  /// initialized value and any expressions that occur within array
2522  /// and array-range designators.
2523  unsigned getNumSubExprs() const { return NumSubExprs; }
2524
2525  Expr *getSubExpr(unsigned Idx) {
2526    assert(Idx < NumSubExprs && "Subscript out of range");
2527    char* Ptr = static_cast<char*>(static_cast<void *>(this));
2528    Ptr += sizeof(DesignatedInitExpr);
2529    return reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx];
2530  }
2531
2532  void setSubExpr(unsigned Idx, Expr *E) {
2533    assert(Idx < NumSubExprs && "Subscript out of range");
2534    char* Ptr = static_cast<char*>(static_cast<void *>(this));
2535    Ptr += sizeof(DesignatedInitExpr);
2536    reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx] = E;
2537  }
2538
2539  /// \brief Replaces the designator at index @p Idx with the series
2540  /// of designators in [First, Last).
2541  void ExpandDesignator(unsigned Idx, const Designator *First,
2542                        const Designator *Last);
2543
2544  virtual SourceRange getSourceRange() const;
2545
2546  static bool classof(const Stmt *T) {
2547    return T->getStmtClass() == DesignatedInitExprClass;
2548  }
2549  static bool classof(const DesignatedInitExpr *) { return true; }
2550
2551  // Iterators
2552  virtual child_iterator child_begin();
2553  virtual child_iterator child_end();
2554};
2555
2556/// \brief Represents an implicitly-generated value initialization of
2557/// an object of a given type.
2558///
2559/// Implicit value initializations occur within semantic initializer
2560/// list expressions (InitListExpr) as placeholders for subobject
2561/// initializations not explicitly specified by the user.
2562///
2563/// \see InitListExpr
2564class ImplicitValueInitExpr : public Expr {
2565public:
2566  explicit ImplicitValueInitExpr(QualType ty)
2567    : Expr(ImplicitValueInitExprClass, ty) { }
2568
2569  /// \brief Construct an empty implicit value initialization.
2570  explicit ImplicitValueInitExpr(EmptyShell Empty)
2571    : Expr(ImplicitValueInitExprClass, Empty) { }
2572
2573  static bool classof(const Stmt *T) {
2574    return T->getStmtClass() == ImplicitValueInitExprClass;
2575  }
2576  static bool classof(const ImplicitValueInitExpr *) { return true; }
2577
2578  virtual SourceRange getSourceRange() const {
2579    return SourceRange();
2580  }
2581
2582  // Iterators
2583  virtual child_iterator child_begin();
2584  virtual child_iterator child_end();
2585};
2586
2587
2588class ParenListExpr : public Expr {
2589  Stmt **Exprs;
2590  unsigned NumExprs;
2591  SourceLocation LParenLoc, RParenLoc;
2592
2593protected:
2594  virtual void DoDestroy(ASTContext& C);
2595
2596public:
2597  ParenListExpr(ASTContext& C, SourceLocation lparenloc, Expr **exprs,
2598                unsigned numexprs, SourceLocation rparenloc);
2599
2600  ~ParenListExpr() {}
2601
2602  /// \brief Build an empty paren list.
2603  //explicit ParenListExpr(EmptyShell Empty) : Expr(ParenListExprClass, Empty) { }
2604
2605  unsigned getNumExprs() const { return NumExprs; }
2606
2607  const Expr* getExpr(unsigned Init) const {
2608    assert(Init < getNumExprs() && "Initializer access out of range!");
2609    return cast_or_null<Expr>(Exprs[Init]);
2610  }
2611
2612  Expr* getExpr(unsigned Init) {
2613    assert(Init < getNumExprs() && "Initializer access out of range!");
2614    return cast_or_null<Expr>(Exprs[Init]);
2615  }
2616
2617  Expr **getExprs() { return reinterpret_cast<Expr **>(Exprs); }
2618
2619  SourceLocation getLParenLoc() const { return LParenLoc; }
2620  SourceLocation getRParenLoc() const { return RParenLoc; }
2621
2622  virtual SourceRange getSourceRange() const {
2623    return SourceRange(LParenLoc, RParenLoc);
2624  }
2625  static bool classof(const Stmt *T) {
2626    return T->getStmtClass() == ParenListExprClass;
2627  }
2628  static bool classof(const ParenListExpr *) { return true; }
2629
2630  // Iterators
2631  virtual child_iterator child_begin();
2632  virtual child_iterator child_end();
2633};
2634
2635
2636//===----------------------------------------------------------------------===//
2637// Clang Extensions
2638//===----------------------------------------------------------------------===//
2639
2640
2641/// ExtVectorElementExpr - This represents access to specific elements of a
2642/// vector, and may occur on the left hand side or right hand side.  For example
2643/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
2644///
2645/// Note that the base may have either vector or pointer to vector type, just
2646/// like a struct field reference.
2647///
2648class ExtVectorElementExpr : public Expr {
2649  Stmt *Base;
2650  IdentifierInfo *Accessor;
2651  SourceLocation AccessorLoc;
2652public:
2653  ExtVectorElementExpr(QualType ty, Expr *base, IdentifierInfo &accessor,
2654                       SourceLocation loc)
2655    : Expr(ExtVectorElementExprClass, ty),
2656      Base(base), Accessor(&accessor), AccessorLoc(loc) {}
2657
2658  /// \brief Build an empty vector element expression.
2659  explicit ExtVectorElementExpr(EmptyShell Empty)
2660    : Expr(ExtVectorElementExprClass, Empty) { }
2661
2662  const Expr *getBase() const { return cast<Expr>(Base); }
2663  Expr *getBase() { return cast<Expr>(Base); }
2664  void setBase(Expr *E) { Base = E; }
2665
2666  IdentifierInfo &getAccessor() const { return *Accessor; }
2667  void setAccessor(IdentifierInfo *II) { Accessor = II; }
2668
2669  SourceLocation getAccessorLoc() const { return AccessorLoc; }
2670  void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
2671
2672  /// getNumElements - Get the number of components being selected.
2673  unsigned getNumElements() const;
2674
2675  /// containsDuplicateElements - Return true if any element access is
2676  /// repeated.
2677  bool containsDuplicateElements() const;
2678
2679  /// getEncodedElementAccess - Encode the elements accessed into an llvm
2680  /// aggregate Constant of ConstantInt(s).
2681  void getEncodedElementAccess(llvm::SmallVectorImpl<unsigned> &Elts) const;
2682
2683  virtual SourceRange getSourceRange() const {
2684    return SourceRange(getBase()->getLocStart(), AccessorLoc);
2685  }
2686
2687  /// isArrow - Return true if the base expression is a pointer to vector,
2688  /// return false if the base expression is a vector.
2689  bool isArrow() const;
2690
2691  static bool classof(const Stmt *T) {
2692    return T->getStmtClass() == ExtVectorElementExprClass;
2693  }
2694  static bool classof(const ExtVectorElementExpr *) { return true; }
2695
2696  // Iterators
2697  virtual child_iterator child_begin();
2698  virtual child_iterator child_end();
2699};
2700
2701
2702/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
2703/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
2704class BlockExpr : public Expr {
2705protected:
2706  BlockDecl *TheBlock;
2707  bool HasBlockDeclRefExprs;
2708public:
2709  BlockExpr(BlockDecl *BD, QualType ty, bool hasBlockDeclRefExprs)
2710    : Expr(BlockExprClass, ty),
2711      TheBlock(BD), HasBlockDeclRefExprs(hasBlockDeclRefExprs) {}
2712
2713  /// \brief Build an empty block expression.
2714  explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { }
2715
2716  const BlockDecl *getBlockDecl() const { return TheBlock; }
2717  BlockDecl *getBlockDecl() { return TheBlock; }
2718  void setBlockDecl(BlockDecl *BD) { TheBlock = BD; }
2719
2720  // Convenience functions for probing the underlying BlockDecl.
2721  SourceLocation getCaretLocation() const;
2722  const Stmt *getBody() const;
2723  Stmt *getBody();
2724
2725  virtual SourceRange getSourceRange() const {
2726    return SourceRange(getCaretLocation(), getBody()->getLocEnd());
2727  }
2728
2729  /// getFunctionType - Return the underlying function type for this block.
2730  const FunctionType *getFunctionType() const;
2731
2732  /// hasBlockDeclRefExprs - Return true iff the block has BlockDeclRefExpr
2733  /// inside of the block that reference values outside the block.
2734  bool hasBlockDeclRefExprs() const { return HasBlockDeclRefExprs; }
2735  void setHasBlockDeclRefExprs(bool BDRE) { HasBlockDeclRefExprs = BDRE; }
2736
2737  static bool classof(const Stmt *T) {
2738    return T->getStmtClass() == BlockExprClass;
2739  }
2740  static bool classof(const BlockExpr *) { return true; }
2741
2742  // Iterators
2743  virtual child_iterator child_begin();
2744  virtual child_iterator child_end();
2745};
2746
2747/// BlockDeclRefExpr - A reference to a declared variable, function,
2748/// enum, etc.
2749class BlockDeclRefExpr : public Expr {
2750  ValueDecl *D;
2751  SourceLocation Loc;
2752  bool IsByRef : 1;
2753  bool ConstQualAdded : 1;
2754public:
2755  BlockDeclRefExpr(ValueDecl *d, QualType t, SourceLocation l, bool ByRef,
2756                   bool constAdded = false) :
2757       Expr(BlockDeclRefExprClass, t), D(d), Loc(l), IsByRef(ByRef),
2758                                       ConstQualAdded(constAdded) {}
2759
2760  // \brief Build an empty reference to a declared variable in a
2761  // block.
2762  explicit BlockDeclRefExpr(EmptyShell Empty)
2763    : Expr(BlockDeclRefExprClass, Empty) { }
2764
2765  ValueDecl *getDecl() { return D; }
2766  const ValueDecl *getDecl() const { return D; }
2767  void setDecl(ValueDecl *VD) { D = VD; }
2768
2769  SourceLocation getLocation() const { return Loc; }
2770  void setLocation(SourceLocation L) { Loc = L; }
2771
2772  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
2773
2774  bool isByRef() const { return IsByRef; }
2775  void setByRef(bool BR) { IsByRef = BR; }
2776
2777  bool isConstQualAdded() const { return ConstQualAdded; }
2778  void setConstQualAdded(bool C) { ConstQualAdded = C; }
2779
2780  static bool classof(const Stmt *T) {
2781    return T->getStmtClass() == BlockDeclRefExprClass;
2782  }
2783  static bool classof(const BlockDeclRefExpr *) { return true; }
2784
2785  // Iterators
2786  virtual child_iterator child_begin();
2787  virtual child_iterator child_end();
2788};
2789
2790}  // end namespace clang
2791
2792#endif
2793