Expr.h revision f9ff5876289d5228c299b57416a62c8c3b848287
1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/Stmt.h"
19#include "clang/AST/Type.h"
20#include "clang/AST/DeclAccessPair.h"
21#include "clang/AST/OperationKinds.h"
22#include "clang/AST/ASTVector.h"
23#include "clang/AST/TemplateBase.h"
24#include "clang/Basic/TargetInfo.h"
25#include "clang/Basic/TypeTraits.h"
26#include "llvm/ADT/APSInt.h"
27#include "llvm/ADT/APFloat.h"
28#include "llvm/ADT/SmallVector.h"
29#include "llvm/ADT/StringRef.h"
30#include "llvm/Support/Compiler.h"
31#include <cctype>
32
33namespace clang {
34  class ASTContext;
35  class APValue;
36  class Decl;
37  class IdentifierInfo;
38  class ParmVarDecl;
39  class NamedDecl;
40  class ValueDecl;
41  class BlockDecl;
42  class CXXBaseSpecifier;
43  class CXXOperatorCallExpr;
44  class CXXMemberCallExpr;
45  class ObjCPropertyRefExpr;
46  class OpaqueValueExpr;
47
48/// \brief A simple array of base specifiers.
49typedef SmallVector<CXXBaseSpecifier*, 4> CXXCastPath;
50
51/// Expr - This represents one expression.  Note that Expr's are subclasses of
52/// Stmt.  This allows an expression to be transparently used any place a Stmt
53/// is required.
54///
55class Expr : public Stmt {
56  QualType TR;
57
58protected:
59  Expr(StmtClass SC, QualType T, ExprValueKind VK, ExprObjectKind OK,
60       bool TD, bool VD, bool ID, bool ContainsUnexpandedParameterPack)
61    : Stmt(SC)
62  {
63    ExprBits.TypeDependent = TD;
64    ExprBits.ValueDependent = VD;
65    ExprBits.InstantiationDependent = ID;
66    ExprBits.ValueKind = VK;
67    ExprBits.ObjectKind = OK;
68    ExprBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
69    setType(T);
70  }
71
72  /// \brief Construct an empty expression.
73  explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
74
75public:
76  QualType getType() const { return TR; }
77  void setType(QualType t) {
78    // In C++, the type of an expression is always adjusted so that it
79    // will not have reference type an expression will never have
80    // reference type (C++ [expr]p6). Use
81    // QualType::getNonReferenceType() to retrieve the non-reference
82    // type. Additionally, inspect Expr::isLvalue to determine whether
83    // an expression that is adjusted in this manner should be
84    // considered an lvalue.
85    assert((t.isNull() || !t->isReferenceType()) &&
86           "Expressions can't have reference type");
87
88    TR = t;
89  }
90
91  /// isValueDependent - Determines whether this expression is
92  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
93  /// array bound of "Chars" in the following example is
94  /// value-dependent.
95  /// @code
96  /// template<int Size, char (&Chars)[Size]> struct meta_string;
97  /// @endcode
98  bool isValueDependent() const { return ExprBits.ValueDependent; }
99
100  /// \brief Set whether this expression is value-dependent or not.
101  void setValueDependent(bool VD) {
102    ExprBits.ValueDependent = VD;
103    if (VD)
104      ExprBits.InstantiationDependent = true;
105  }
106
107  /// isTypeDependent - Determines whether this expression is
108  /// type-dependent (C++ [temp.dep.expr]), which means that its type
109  /// could change from one template instantiation to the next. For
110  /// example, the expressions "x" and "x + y" are type-dependent in
111  /// the following code, but "y" is not type-dependent:
112  /// @code
113  /// template<typename T>
114  /// void add(T x, int y) {
115  ///   x + y;
116  /// }
117  /// @endcode
118  bool isTypeDependent() const { return ExprBits.TypeDependent; }
119
120  /// \brief Set whether this expression is type-dependent or not.
121  void setTypeDependent(bool TD) {
122    ExprBits.TypeDependent = TD;
123    if (TD)
124      ExprBits.InstantiationDependent = true;
125  }
126
127  /// \brief Whether this expression is instantiation-dependent, meaning that
128  /// it depends in some way on a template parameter, even if neither its type
129  /// nor (constant) value can change due to the template instantiation.
130  ///
131  /// In the following example, the expression \c sizeof(sizeof(T() + T())) is
132  /// instantiation-dependent (since it involves a template parameter \c T), but
133  /// is neither type- nor value-dependent, since the type of the inner
134  /// \c sizeof is known (\c std::size_t) and therefore the size of the outer
135  /// \c sizeof is known.
136  ///
137  /// \code
138  /// template<typename T>
139  /// void f(T x, T y) {
140  ///   sizeof(sizeof(T() + T());
141  /// }
142  /// \endcode
143  ///
144  bool isInstantiationDependent() const {
145    return ExprBits.InstantiationDependent;
146  }
147
148  /// \brief Set whether this expression is instantiation-dependent or not.
149  void setInstantiationDependent(bool ID) {
150    ExprBits.InstantiationDependent = ID;
151  }
152
153  /// \brief Whether this expression contains an unexpanded parameter
154  /// pack (for C++0x variadic templates).
155  ///
156  /// Given the following function template:
157  ///
158  /// \code
159  /// template<typename F, typename ...Types>
160  /// void forward(const F &f, Types &&...args) {
161  ///   f(static_cast<Types&&>(args)...);
162  /// }
163  /// \endcode
164  ///
165  /// The expressions \c args and \c static_cast<Types&&>(args) both
166  /// contain parameter packs.
167  bool containsUnexpandedParameterPack() const {
168    return ExprBits.ContainsUnexpandedParameterPack;
169  }
170
171  /// \brief Set the bit that describes whether this expression
172  /// contains an unexpanded parameter pack.
173  void setContainsUnexpandedParameterPack(bool PP = true) {
174    ExprBits.ContainsUnexpandedParameterPack = PP;
175  }
176
177  /// getExprLoc - Return the preferred location for the arrow when diagnosing
178  /// a problem with a generic expression.
179  SourceLocation getExprLoc() const LLVM_READONLY;
180
181  /// isUnusedResultAWarning - Return true if this immediate expression should
182  /// be warned about if the result is unused.  If so, fill in Loc and Ranges
183  /// with location to warn on and the source range[s] to report with the
184  /// warning.
185  bool isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
186                              SourceRange &R2, ASTContext &Ctx) const;
187
188  /// isLValue - True if this expression is an "l-value" according to
189  /// the rules of the current language.  C and C++ give somewhat
190  /// different rules for this concept, but in general, the result of
191  /// an l-value expression identifies a specific object whereas the
192  /// result of an r-value expression is a value detached from any
193  /// specific storage.
194  ///
195  /// C++0x divides the concept of "r-value" into pure r-values
196  /// ("pr-values") and so-called expiring values ("x-values"), which
197  /// identify specific objects that can be safely cannibalized for
198  /// their resources.  This is an unfortunate abuse of terminology on
199  /// the part of the C++ committee.  In Clang, when we say "r-value",
200  /// we generally mean a pr-value.
201  bool isLValue() const { return getValueKind() == VK_LValue; }
202  bool isRValue() const { return getValueKind() == VK_RValue; }
203  bool isXValue() const { return getValueKind() == VK_XValue; }
204  bool isGLValue() const { return getValueKind() != VK_RValue; }
205
206  enum LValueClassification {
207    LV_Valid,
208    LV_NotObjectType,
209    LV_IncompleteVoidType,
210    LV_DuplicateVectorComponents,
211    LV_InvalidExpression,
212    LV_InvalidMessageExpression,
213    LV_MemberFunction,
214    LV_SubObjCPropertySetting,
215    LV_ClassTemporary
216  };
217  /// Reasons why an expression might not be an l-value.
218  LValueClassification ClassifyLValue(ASTContext &Ctx) const;
219
220  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
221  /// does not have an incomplete type, does not have a const-qualified type,
222  /// and if it is a structure or union, does not have any member (including,
223  /// recursively, any member or element of all contained aggregates or unions)
224  /// with a const-qualified type.
225  ///
226  /// \param Loc [in] [out] - A source location which *may* be filled
227  /// in with the location of the expression making this a
228  /// non-modifiable lvalue, if specified.
229  enum isModifiableLvalueResult {
230    MLV_Valid,
231    MLV_NotObjectType,
232    MLV_IncompleteVoidType,
233    MLV_DuplicateVectorComponents,
234    MLV_InvalidExpression,
235    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
236    MLV_IncompleteType,
237    MLV_ConstQualified,
238    MLV_ArrayType,
239    MLV_NotBlockQualified,
240    MLV_ReadonlyProperty,
241    MLV_NoSetterProperty,
242    MLV_MemberFunction,
243    MLV_SubObjCPropertySetting,
244    MLV_InvalidMessageExpression,
245    MLV_ClassTemporary
246  };
247  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx,
248                                              SourceLocation *Loc = 0) const;
249
250  /// \brief The return type of classify(). Represents the C++0x expression
251  ///        taxonomy.
252  class Classification {
253  public:
254    /// \brief The various classification results. Most of these mean prvalue.
255    enum Kinds {
256      CL_LValue,
257      CL_XValue,
258      CL_Function, // Functions cannot be lvalues in C.
259      CL_Void, // Void cannot be an lvalue in C.
260      CL_AddressableVoid, // Void expression whose address can be taken in C.
261      CL_DuplicateVectorComponents, // A vector shuffle with dupes.
262      CL_MemberFunction, // An expression referring to a member function
263      CL_SubObjCPropertySetting,
264      CL_ClassTemporary, // A prvalue of class type
265      CL_ObjCMessageRValue, // ObjC message is an rvalue
266      CL_PRValue // A prvalue for any other reason, of any other type
267    };
268    /// \brief The results of modification testing.
269    enum ModifiableType {
270      CM_Untested, // testModifiable was false.
271      CM_Modifiable,
272      CM_RValue, // Not modifiable because it's an rvalue
273      CM_Function, // Not modifiable because it's a function; C++ only
274      CM_LValueCast, // Same as CM_RValue, but indicates GCC cast-as-lvalue ext
275      CM_NotBlockQualified, // Not captured in the closure
276      CM_NoSetterProperty,// Implicit assignment to ObjC property without setter
277      CM_ConstQualified,
278      CM_ArrayType,
279      CM_IncompleteType
280    };
281
282  private:
283    friend class Expr;
284
285    unsigned short Kind;
286    unsigned short Modifiable;
287
288    explicit Classification(Kinds k, ModifiableType m)
289      : Kind(k), Modifiable(m)
290    {}
291
292  public:
293    Classification() {}
294
295    Kinds getKind() const { return static_cast<Kinds>(Kind); }
296    ModifiableType getModifiable() const {
297      assert(Modifiable != CM_Untested && "Did not test for modifiability.");
298      return static_cast<ModifiableType>(Modifiable);
299    }
300    bool isLValue() const { return Kind == CL_LValue; }
301    bool isXValue() const { return Kind == CL_XValue; }
302    bool isGLValue() const { return Kind <= CL_XValue; }
303    bool isPRValue() const { return Kind >= CL_Function; }
304    bool isRValue() const { return Kind >= CL_XValue; }
305    bool isModifiable() const { return getModifiable() == CM_Modifiable; }
306
307    /// \brief Create a simple, modifiably lvalue
308    static Classification makeSimpleLValue() {
309      return Classification(CL_LValue, CM_Modifiable);
310    }
311
312  };
313  /// \brief Classify - Classify this expression according to the C++0x
314  ///        expression taxonomy.
315  ///
316  /// C++0x defines ([basic.lval]) a new taxonomy of expressions to replace the
317  /// old lvalue vs rvalue. This function determines the type of expression this
318  /// is. There are three expression types:
319  /// - lvalues are classical lvalues as in C++03.
320  /// - prvalues are equivalent to rvalues in C++03.
321  /// - xvalues are expressions yielding unnamed rvalue references, e.g. a
322  ///   function returning an rvalue reference.
323  /// lvalues and xvalues are collectively referred to as glvalues, while
324  /// prvalues and xvalues together form rvalues.
325  Classification Classify(ASTContext &Ctx) const {
326    return ClassifyImpl(Ctx, 0);
327  }
328
329  /// \brief ClassifyModifiable - Classify this expression according to the
330  ///        C++0x expression taxonomy, and see if it is valid on the left side
331  ///        of an assignment.
332  ///
333  /// This function extends classify in that it also tests whether the
334  /// expression is modifiable (C99 6.3.2.1p1).
335  /// \param Loc A source location that might be filled with a relevant location
336  ///            if the expression is not modifiable.
337  Classification ClassifyModifiable(ASTContext &Ctx, SourceLocation &Loc) const{
338    return ClassifyImpl(Ctx, &Loc);
339  }
340
341  /// getValueKindForType - Given a formal return or parameter type,
342  /// give its value kind.
343  static ExprValueKind getValueKindForType(QualType T) {
344    if (const ReferenceType *RT = T->getAs<ReferenceType>())
345      return (isa<LValueReferenceType>(RT)
346                ? VK_LValue
347                : (RT->getPointeeType()->isFunctionType()
348                     ? VK_LValue : VK_XValue));
349    return VK_RValue;
350  }
351
352  /// getValueKind - The value kind that this expression produces.
353  ExprValueKind getValueKind() const {
354    return static_cast<ExprValueKind>(ExprBits.ValueKind);
355  }
356
357  /// getObjectKind - The object kind that this expression produces.
358  /// Object kinds are meaningful only for expressions that yield an
359  /// l-value or x-value.
360  ExprObjectKind getObjectKind() const {
361    return static_cast<ExprObjectKind>(ExprBits.ObjectKind);
362  }
363
364  bool isOrdinaryOrBitFieldObject() const {
365    ExprObjectKind OK = getObjectKind();
366    return (OK == OK_Ordinary || OK == OK_BitField);
367  }
368
369  /// setValueKind - Set the value kind produced by this expression.
370  void setValueKind(ExprValueKind Cat) { ExprBits.ValueKind = Cat; }
371
372  /// setObjectKind - Set the object kind produced by this expression.
373  void setObjectKind(ExprObjectKind Cat) { ExprBits.ObjectKind = Cat; }
374
375private:
376  Classification ClassifyImpl(ASTContext &Ctx, SourceLocation *Loc) const;
377
378public:
379
380  /// \brief If this expression refers to a bit-field, retrieve the
381  /// declaration of that bit-field.
382  FieldDecl *getBitField();
383
384  const FieldDecl *getBitField() const {
385    return const_cast<Expr*>(this)->getBitField();
386  }
387
388  /// \brief If this expression is an l-value for an Objective C
389  /// property, find the underlying property reference expression.
390  const ObjCPropertyRefExpr *getObjCProperty() const;
391
392  /// \brief Returns whether this expression refers to a vector element.
393  bool refersToVectorElement() const;
394
395  /// \brief Returns whether this expression has a placeholder type.
396  bool hasPlaceholderType() const {
397    return getType()->isPlaceholderType();
398  }
399
400  /// \brief Returns whether this expression has a specific placeholder type.
401  bool hasPlaceholderType(BuiltinType::Kind K) const {
402    assert(BuiltinType::isPlaceholderTypeKind(K));
403    if (const BuiltinType *BT = dyn_cast<BuiltinType>(getType()))
404      return BT->getKind() == K;
405    return false;
406  }
407
408  /// isKnownToHaveBooleanValue - Return true if this is an integer expression
409  /// that is known to return 0 or 1.  This happens for _Bool/bool expressions
410  /// but also int expressions which are produced by things like comparisons in
411  /// C.
412  bool isKnownToHaveBooleanValue() const;
413
414  /// isIntegerConstantExpr - Return true if this expression is a valid integer
415  /// constant expression, and, if so, return its value in Result.  If not a
416  /// valid i-c-e, return false and fill in Loc (if specified) with the location
417  /// of the invalid expression.
418  ///
419  /// Note: This does not perform the implicit conversions required by C++11
420  /// [expr.const]p5.
421  bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
422                             SourceLocation *Loc = 0,
423                             bool isEvaluated = true) const;
424  bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const;
425
426  /// isCXX98IntegralConstantExpr - Return true if this expression is an
427  /// integral constant expression in C++98. Can only be used in C++.
428  bool isCXX98IntegralConstantExpr(ASTContext &Ctx) const;
429
430  /// isCXX11ConstantExpr - Return true if this expression is a constant
431  /// expression in C++11. Can only be used in C++.
432  ///
433  /// Note: This does not perform the implicit conversions required by C++11
434  /// [expr.const]p5.
435  bool isCXX11ConstantExpr(ASTContext &Ctx, APValue *Result = 0,
436                           SourceLocation *Loc = 0) const;
437
438  /// isPotentialConstantExpr - Return true if this function's definition
439  /// might be usable in a constant expression in C++11, if it were marked
440  /// constexpr. Return false if the function can never produce a constant
441  /// expression, along with diagnostics describing why not.
442  static bool isPotentialConstantExpr(const FunctionDecl *FD,
443                                      llvm::SmallVectorImpl<
444                                        PartialDiagnosticAt> &Diags);
445
446  /// isConstantInitializer - Returns true if this expression can be emitted to
447  /// IR as a constant, and thus can be used as a constant initializer in C.
448  bool isConstantInitializer(ASTContext &Ctx, bool ForRef) const;
449
450  /// EvalStatus is a struct with detailed info about an evaluation in progress.
451  struct EvalStatus {
452    /// HasSideEffects - Whether the evaluated expression has side effects.
453    /// For example, (f() && 0) can be folded, but it still has side effects.
454    bool HasSideEffects;
455
456    /// Diag - If this is non-null, it will be filled in with a stack of notes
457    /// indicating why evaluation failed (or why it failed to produce a constant
458    /// expression).
459    /// If the expression is unfoldable, the notes will indicate why it's not
460    /// foldable. If the expression is foldable, but not a constant expression,
461    /// the notes will describes why it isn't a constant expression. If the
462    /// expression *is* a constant expression, no notes will be produced.
463    llvm::SmallVectorImpl<PartialDiagnosticAt> *Diag;
464
465    EvalStatus() : HasSideEffects(false), Diag(0) {}
466
467    // hasSideEffects - Return true if the evaluated expression has
468    // side effects.
469    bool hasSideEffects() const {
470      return HasSideEffects;
471    }
472  };
473
474  /// EvalResult is a struct with detailed info about an evaluated expression.
475  struct EvalResult : EvalStatus {
476    /// Val - This is the value the expression can be folded to.
477    APValue Val;
478
479    // isGlobalLValue - Return true if the evaluated lvalue expression
480    // is global.
481    bool isGlobalLValue() const;
482  };
483
484  /// EvaluateAsRValue - Return true if this is a constant which we can fold to
485  /// an rvalue using any crazy technique (that has nothing to do with language
486  /// standards) that we want to, even if the expression has side-effects. If
487  /// this function returns true, it returns the folded constant in Result. If
488  /// the expression is a glvalue, an lvalue-to-rvalue conversion will be
489  /// applied.
490  bool EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx) const;
491
492  /// EvaluateAsBooleanCondition - Return true if this is a constant
493  /// which we we can fold and convert to a boolean condition using
494  /// any crazy technique that we want to, even if the expression has
495  /// side-effects.
496  bool EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx) const;
497
498  enum SideEffectsKind { SE_NoSideEffects, SE_AllowSideEffects };
499
500  /// EvaluateAsInt - Return true if this is a constant which we can fold and
501  /// convert to an integer, using any crazy technique that we want to.
502  bool EvaluateAsInt(llvm::APSInt &Result, const ASTContext &Ctx,
503                     SideEffectsKind AllowSideEffects = SE_NoSideEffects) const;
504
505  /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
506  /// constant folded without side-effects, but discard the result.
507  bool isEvaluatable(const ASTContext &Ctx) const;
508
509  /// HasSideEffects - This routine returns true for all those expressions
510  /// which must be evaluated each time and must not be optimized away
511  /// or evaluated at compile time. Example is a function call, volatile
512  /// variable read.
513  bool HasSideEffects(const ASTContext &Ctx) const;
514
515  /// \brief Determine whether this expression involves a call to any function
516  /// that is not trivial.
517  bool hasNonTrivialCall(ASTContext &Ctx);
518
519  /// EvaluateKnownConstInt - Call EvaluateAsRValue and return the folded
520  /// integer. This must be called on an expression that constant folds to an
521  /// integer.
522  llvm::APSInt EvaluateKnownConstInt(const ASTContext &Ctx) const;
523
524  /// EvaluateAsLValue - Evaluate an expression to see if we can fold it to an
525  /// lvalue with link time known address, with no side-effects.
526  bool EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const;
527
528  /// EvaluateAsInitializer - Evaluate an expression as if it were the
529  /// initializer of the given declaration. Returns true if the initializer
530  /// can be folded to a constant, and produces any relevant notes. In C++11,
531  /// notes will be produced if the expression is not a constant expression.
532  bool EvaluateAsInitializer(APValue &Result, const ASTContext &Ctx,
533                             const VarDecl *VD,
534                       llvm::SmallVectorImpl<PartialDiagnosticAt> &Notes) const;
535
536  /// \brief Enumeration used to describe the kind of Null pointer constant
537  /// returned from \c isNullPointerConstant().
538  enum NullPointerConstantKind {
539    /// \brief Expression is not a Null pointer constant.
540    NPCK_NotNull = 0,
541
542    /// \brief Expression is a Null pointer constant built from a zero integer.
543    NPCK_ZeroInteger,
544
545    /// \brief Expression is a C++0X nullptr.
546    NPCK_CXX0X_nullptr,
547
548    /// \brief Expression is a GNU-style __null constant.
549    NPCK_GNUNull
550  };
551
552  /// \brief Enumeration used to describe how \c isNullPointerConstant()
553  /// should cope with value-dependent expressions.
554  enum NullPointerConstantValueDependence {
555    /// \brief Specifies that the expression should never be value-dependent.
556    NPC_NeverValueDependent = 0,
557
558    /// \brief Specifies that a value-dependent expression of integral or
559    /// dependent type should be considered a null pointer constant.
560    NPC_ValueDependentIsNull,
561
562    /// \brief Specifies that a value-dependent expression should be considered
563    /// to never be a null pointer constant.
564    NPC_ValueDependentIsNotNull
565  };
566
567  /// isNullPointerConstant - C99 6.3.2.3p3 - Test if this reduces down to
568  /// a Null pointer constant. The return value can further distinguish the
569  /// kind of NULL pointer constant that was detected.
570  NullPointerConstantKind isNullPointerConstant(
571      ASTContext &Ctx,
572      NullPointerConstantValueDependence NPC) const;
573
574  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
575  /// write barrier.
576  bool isOBJCGCCandidate(ASTContext &Ctx) const;
577
578  /// \brief Returns true if this expression is a bound member function.
579  bool isBoundMemberFunction(ASTContext &Ctx) const;
580
581  /// \brief Given an expression of bound-member type, find the type
582  /// of the member.  Returns null if this is an *overloaded* bound
583  /// member expression.
584  static QualType findBoundMemberType(const Expr *expr);
585
586  /// \brief Result type of CanThrow().
587  enum CanThrowResult {
588    CT_Cannot,
589    CT_Dependent,
590    CT_Can
591  };
592  /// \brief Test if this expression, if evaluated, might throw, according to
593  ///        the rules of C++ [expr.unary.noexcept].
594  CanThrowResult CanThrow(ASTContext &C) const;
595
596  /// IgnoreImpCasts - Skip past any implicit casts which might
597  /// surround this expression.  Only skips ImplicitCastExprs.
598  Expr *IgnoreImpCasts() LLVM_READONLY;
599
600  /// IgnoreImplicit - Skip past any implicit AST nodes which might
601  /// surround this expression.
602  Expr *IgnoreImplicit() LLVM_READONLY {
603    return cast<Expr>(Stmt::IgnoreImplicit());
604  }
605
606  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
607  ///  its subexpression.  If that subexpression is also a ParenExpr,
608  ///  then this method recursively returns its subexpression, and so forth.
609  ///  Otherwise, the method returns the current Expr.
610  Expr *IgnoreParens() LLVM_READONLY;
611
612  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
613  /// or CastExprs, returning their operand.
614  Expr *IgnoreParenCasts() LLVM_READONLY;
615
616  /// IgnoreParenImpCasts - Ignore parentheses and implicit casts.  Strip off
617  /// any ParenExpr or ImplicitCastExprs, returning their operand.
618  Expr *IgnoreParenImpCasts() LLVM_READONLY;
619
620  /// IgnoreConversionOperator - Ignore conversion operator. If this Expr is a
621  /// call to a conversion operator, return the argument.
622  Expr *IgnoreConversionOperator() LLVM_READONLY;
623
624  const Expr *IgnoreConversionOperator() const LLVM_READONLY {
625    return const_cast<Expr*>(this)->IgnoreConversionOperator();
626  }
627
628  const Expr *IgnoreParenImpCasts() const LLVM_READONLY {
629    return const_cast<Expr*>(this)->IgnoreParenImpCasts();
630  }
631
632  /// Ignore parentheses and lvalue casts.  Strip off any ParenExpr and
633  /// CastExprs that represent lvalue casts, returning their operand.
634  Expr *IgnoreParenLValueCasts() LLVM_READONLY;
635
636  const Expr *IgnoreParenLValueCasts() const LLVM_READONLY {
637    return const_cast<Expr*>(this)->IgnoreParenLValueCasts();
638  }
639
640  /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
641  /// value (including ptr->int casts of the same size).  Strip off any
642  /// ParenExpr or CastExprs, returning their operand.
643  Expr *IgnoreParenNoopCasts(ASTContext &Ctx) LLVM_READONLY;
644
645  /// \brief Determine whether this expression is a default function argument.
646  ///
647  /// Default arguments are implicitly generated in the abstract syntax tree
648  /// by semantic analysis for function calls, object constructions, etc. in
649  /// C++. Default arguments are represented by \c CXXDefaultArgExpr nodes;
650  /// this routine also looks through any implicit casts to determine whether
651  /// the expression is a default argument.
652  bool isDefaultArgument() const;
653
654  /// \brief Determine whether the result of this expression is a
655  /// temporary object of the given class type.
656  bool isTemporaryObject(ASTContext &Ctx, const CXXRecordDecl *TempTy) const;
657
658  /// \brief Whether this expression is an implicit reference to 'this' in C++.
659  bool isImplicitCXXThis() const;
660
661  const Expr *IgnoreImpCasts() const LLVM_READONLY {
662    return const_cast<Expr*>(this)->IgnoreImpCasts();
663  }
664  const Expr *IgnoreParens() const LLVM_READONLY {
665    return const_cast<Expr*>(this)->IgnoreParens();
666  }
667  const Expr *IgnoreParenCasts() const LLVM_READONLY {
668    return const_cast<Expr*>(this)->IgnoreParenCasts();
669  }
670  const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const LLVM_READONLY {
671    return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
672  }
673
674  static bool hasAnyTypeDependentArguments(llvm::ArrayRef<Expr *> Exprs);
675
676  static bool classof(const Stmt *T) {
677    return T->getStmtClass() >= firstExprConstant &&
678           T->getStmtClass() <= lastExprConstant;
679  }
680  static bool classof(const Expr *) { return true; }
681};
682
683
684//===----------------------------------------------------------------------===//
685// Primary Expressions.
686//===----------------------------------------------------------------------===//
687
688/// OpaqueValueExpr - An expression referring to an opaque object of a
689/// fixed type and value class.  These don't correspond to concrete
690/// syntax; instead they're used to express operations (usually copy
691/// operations) on values whose source is generally obvious from
692/// context.
693class OpaqueValueExpr : public Expr {
694  friend class ASTStmtReader;
695  Expr *SourceExpr;
696  SourceLocation Loc;
697
698public:
699  OpaqueValueExpr(SourceLocation Loc, QualType T, ExprValueKind VK,
700                  ExprObjectKind OK = OK_Ordinary,
701                  Expr *SourceExpr = 0)
702    : Expr(OpaqueValueExprClass, T, VK, OK,
703           T->isDependentType(),
704           T->isDependentType() ||
705           (SourceExpr && SourceExpr->isValueDependent()),
706           T->isInstantiationDependentType(),
707           false),
708      SourceExpr(SourceExpr), Loc(Loc) {
709  }
710
711  /// Given an expression which invokes a copy constructor --- i.e.  a
712  /// CXXConstructExpr, possibly wrapped in an ExprWithCleanups ---
713  /// find the OpaqueValueExpr that's the source of the construction.
714  static const OpaqueValueExpr *findInCopyConstruct(const Expr *expr);
715
716  explicit OpaqueValueExpr(EmptyShell Empty)
717    : Expr(OpaqueValueExprClass, Empty) { }
718
719  /// \brief Retrieve the location of this expression.
720  SourceLocation getLocation() const { return Loc; }
721
722  SourceRange getSourceRange() const LLVM_READONLY {
723    if (SourceExpr) return SourceExpr->getSourceRange();
724    return Loc;
725  }
726  SourceLocation getExprLoc() const LLVM_READONLY {
727    if (SourceExpr) return SourceExpr->getExprLoc();
728    return Loc;
729  }
730
731  child_range children() { return child_range(); }
732
733  /// The source expression of an opaque value expression is the
734  /// expression which originally generated the value.  This is
735  /// provided as a convenience for analyses that don't wish to
736  /// precisely model the execution behavior of the program.
737  ///
738  /// The source expression is typically set when building the
739  /// expression which binds the opaque value expression in the first
740  /// place.
741  Expr *getSourceExpr() const { return SourceExpr; }
742
743  static bool classof(const Stmt *T) {
744    return T->getStmtClass() == OpaqueValueExprClass;
745  }
746  static bool classof(const OpaqueValueExpr *) { return true; }
747};
748
749/// \brief A reference to a declared variable, function, enum, etc.
750/// [C99 6.5.1p2]
751///
752/// This encodes all the information about how a declaration is referenced
753/// within an expression.
754///
755/// There are several optional constructs attached to DeclRefExprs only when
756/// they apply in order to conserve memory. These are laid out past the end of
757/// the object, and flags in the DeclRefExprBitfield track whether they exist:
758///
759///   DeclRefExprBits.HasQualifier:
760///       Specifies when this declaration reference expression has a C++
761///       nested-name-specifier.
762///   DeclRefExprBits.HasFoundDecl:
763///       Specifies when this declaration reference expression has a record of
764///       a NamedDecl (different from the referenced ValueDecl) which was found
765///       during name lookup and/or overload resolution.
766///   DeclRefExprBits.HasTemplateKWAndArgsInfo:
767///       Specifies when this declaration reference expression has an explicit
768///       C++ template keyword and/or template argument list.
769class DeclRefExpr : public Expr {
770  /// \brief The declaration that we are referencing.
771  ValueDecl *D;
772
773  /// \brief The location of the declaration name itself.
774  SourceLocation Loc;
775
776  /// \brief Provides source/type location info for the declaration name
777  /// embedded in D.
778  DeclarationNameLoc DNLoc;
779
780  /// \brief Helper to retrieve the optional NestedNameSpecifierLoc.
781  NestedNameSpecifierLoc &getInternalQualifierLoc() {
782    assert(hasQualifier());
783    return *reinterpret_cast<NestedNameSpecifierLoc *>(this + 1);
784  }
785
786  /// \brief Helper to retrieve the optional NestedNameSpecifierLoc.
787  const NestedNameSpecifierLoc &getInternalQualifierLoc() const {
788    return const_cast<DeclRefExpr *>(this)->getInternalQualifierLoc();
789  }
790
791  /// \brief Test whether there is a distinct FoundDecl attached to the end of
792  /// this DRE.
793  bool hasFoundDecl() const { return DeclRefExprBits.HasFoundDecl; }
794
795  /// \brief Helper to retrieve the optional NamedDecl through which this
796  /// reference occured.
797  NamedDecl *&getInternalFoundDecl() {
798    assert(hasFoundDecl());
799    if (hasQualifier())
800      return *reinterpret_cast<NamedDecl **>(&getInternalQualifierLoc() + 1);
801    return *reinterpret_cast<NamedDecl **>(this + 1);
802  }
803
804  /// \brief Helper to retrieve the optional NamedDecl through which this
805  /// reference occured.
806  NamedDecl *getInternalFoundDecl() const {
807    return const_cast<DeclRefExpr *>(this)->getInternalFoundDecl();
808  }
809
810  DeclRefExpr(ASTContext &Ctx,
811              NestedNameSpecifierLoc QualifierLoc,
812              SourceLocation TemplateKWLoc,
813              ValueDecl *D, const DeclarationNameInfo &NameInfo,
814              NamedDecl *FoundD,
815              const TemplateArgumentListInfo *TemplateArgs,
816              QualType T, ExprValueKind VK);
817
818  /// \brief Construct an empty declaration reference expression.
819  explicit DeclRefExpr(EmptyShell Empty)
820    : Expr(DeclRefExprClass, Empty) { }
821
822  /// \brief Computes the type- and value-dependence flags for this
823  /// declaration reference expression.
824  void computeDependence(ASTContext &C);
825
826public:
827  DeclRefExpr(ValueDecl *D, QualType T, ExprValueKind VK, SourceLocation L,
828              const DeclarationNameLoc &LocInfo = DeclarationNameLoc())
829    : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
830      D(D), Loc(L), DNLoc(LocInfo) {
831    DeclRefExprBits.HasQualifier = 0;
832    DeclRefExprBits.HasTemplateKWAndArgsInfo = 0;
833    DeclRefExprBits.HasFoundDecl = 0;
834    DeclRefExprBits.HadMultipleCandidates = 0;
835    computeDependence(D->getASTContext());
836  }
837
838  static DeclRefExpr *Create(ASTContext &Context,
839                             NestedNameSpecifierLoc QualifierLoc,
840                             SourceLocation TemplateKWLoc,
841                             ValueDecl *D,
842                             SourceLocation NameLoc,
843                             QualType T, ExprValueKind VK,
844                             NamedDecl *FoundD = 0,
845                             const TemplateArgumentListInfo *TemplateArgs = 0);
846
847  static DeclRefExpr *Create(ASTContext &Context,
848                             NestedNameSpecifierLoc QualifierLoc,
849                             SourceLocation TemplateKWLoc,
850                             ValueDecl *D,
851                             const DeclarationNameInfo &NameInfo,
852                             QualType T, ExprValueKind VK,
853                             NamedDecl *FoundD = 0,
854                             const TemplateArgumentListInfo *TemplateArgs = 0);
855
856  /// \brief Construct an empty declaration reference expression.
857  static DeclRefExpr *CreateEmpty(ASTContext &Context,
858                                  bool HasQualifier,
859                                  bool HasFoundDecl,
860                                  bool HasTemplateKWAndArgsInfo,
861                                  unsigned NumTemplateArgs);
862
863  ValueDecl *getDecl() { return D; }
864  const ValueDecl *getDecl() const { return D; }
865  void setDecl(ValueDecl *NewD) { D = NewD; }
866
867  DeclarationNameInfo getNameInfo() const {
868    return DeclarationNameInfo(getDecl()->getDeclName(), Loc, DNLoc);
869  }
870
871  SourceLocation getLocation() const { return Loc; }
872  void setLocation(SourceLocation L) { Loc = L; }
873  SourceRange getSourceRange() const LLVM_READONLY;
874  SourceLocation getLocStart() const LLVM_READONLY;
875  SourceLocation getLocEnd() const LLVM_READONLY;
876
877  /// \brief Determine whether this declaration reference was preceded by a
878  /// C++ nested-name-specifier, e.g., \c N::foo.
879  bool hasQualifier() const { return DeclRefExprBits.HasQualifier; }
880
881  /// \brief If the name was qualified, retrieves the nested-name-specifier
882  /// that precedes the name. Otherwise, returns NULL.
883  NestedNameSpecifier *getQualifier() const {
884    if (!hasQualifier())
885      return 0;
886
887    return getInternalQualifierLoc().getNestedNameSpecifier();
888  }
889
890  /// \brief If the name was qualified, retrieves the nested-name-specifier
891  /// that precedes the name, with source-location information.
892  NestedNameSpecifierLoc getQualifierLoc() const {
893    if (!hasQualifier())
894      return NestedNameSpecifierLoc();
895
896    return getInternalQualifierLoc();
897  }
898
899  /// \brief Get the NamedDecl through which this reference occured.
900  ///
901  /// This Decl may be different from the ValueDecl actually referred to in the
902  /// presence of using declarations, etc. It always returns non-NULL, and may
903  /// simple return the ValueDecl when appropriate.
904  NamedDecl *getFoundDecl() {
905    return hasFoundDecl() ? getInternalFoundDecl() : D;
906  }
907
908  /// \brief Get the NamedDecl through which this reference occurred.
909  /// See non-const variant.
910  const NamedDecl *getFoundDecl() const {
911    return hasFoundDecl() ? getInternalFoundDecl() : D;
912  }
913
914  bool hasTemplateKWAndArgsInfo() const {
915    return DeclRefExprBits.HasTemplateKWAndArgsInfo;
916  }
917
918  /// \brief Return the optional template keyword and arguments info.
919  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
920    if (!hasTemplateKWAndArgsInfo())
921      return 0;
922
923    if (hasFoundDecl())
924      return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(
925        &getInternalFoundDecl() + 1);
926
927    if (hasQualifier())
928      return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(
929        &getInternalQualifierLoc() + 1);
930
931    return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(this + 1);
932  }
933
934  /// \brief Return the optional template keyword and arguments info.
935  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
936    return const_cast<DeclRefExpr*>(this)->getTemplateKWAndArgsInfo();
937  }
938
939  /// \brief Retrieve the location of the template keyword preceding
940  /// this name, if any.
941  SourceLocation getTemplateKeywordLoc() const {
942    if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
943    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
944  }
945
946  /// \brief Retrieve the location of the left angle bracket starting the
947  /// explicit template argument list following the name, if any.
948  SourceLocation getLAngleLoc() const {
949    if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
950    return getTemplateKWAndArgsInfo()->LAngleLoc;
951  }
952
953  /// \brief Retrieve the location of the right angle bracket ending the
954  /// explicit template argument list following the name, if any.
955  SourceLocation getRAngleLoc() const {
956    if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
957    return getTemplateKWAndArgsInfo()->RAngleLoc;
958  }
959
960  /// \brief Determines whether the name in this declaration reference
961  /// was preceded by the template keyword.
962  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
963
964  /// \brief Determines whether this declaration reference was followed by an
965  /// explicit template argument list.
966  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
967
968  /// \brief Retrieve the explicit template argument list that followed the
969  /// member template name.
970  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
971    assert(hasExplicitTemplateArgs());
972    return *getTemplateKWAndArgsInfo();
973  }
974
975  /// \brief Retrieve the explicit template argument list that followed the
976  /// member template name.
977  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
978    return const_cast<DeclRefExpr *>(this)->getExplicitTemplateArgs();
979  }
980
981  /// \brief Retrieves the optional explicit template arguments.
982  /// This points to the same data as getExplicitTemplateArgs(), but
983  /// returns null if there are no explicit template arguments.
984  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() const {
985    if (!hasExplicitTemplateArgs()) return 0;
986    return &getExplicitTemplateArgs();
987  }
988
989  /// \brief Copies the template arguments (if present) into the given
990  /// structure.
991  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
992    if (hasExplicitTemplateArgs())
993      getExplicitTemplateArgs().copyInto(List);
994  }
995
996  /// \brief Retrieve the template arguments provided as part of this
997  /// template-id.
998  const TemplateArgumentLoc *getTemplateArgs() const {
999    if (!hasExplicitTemplateArgs())
1000      return 0;
1001
1002    return getExplicitTemplateArgs().getTemplateArgs();
1003  }
1004
1005  /// \brief Retrieve the number of template arguments provided as part of this
1006  /// template-id.
1007  unsigned getNumTemplateArgs() const {
1008    if (!hasExplicitTemplateArgs())
1009      return 0;
1010
1011    return getExplicitTemplateArgs().NumTemplateArgs;
1012  }
1013
1014  /// \brief Returns true if this expression refers to a function that
1015  /// was resolved from an overloaded set having size greater than 1.
1016  bool hadMultipleCandidates() const {
1017    return DeclRefExprBits.HadMultipleCandidates;
1018  }
1019  /// \brief Sets the flag telling whether this expression refers to
1020  /// a function that was resolved from an overloaded set having size
1021  /// greater than 1.
1022  void setHadMultipleCandidates(bool V = true) {
1023    DeclRefExprBits.HadMultipleCandidates = V;
1024  }
1025
1026  static bool classof(const Stmt *T) {
1027    return T->getStmtClass() == DeclRefExprClass;
1028  }
1029  static bool classof(const DeclRefExpr *) { return true; }
1030
1031  // Iterators
1032  child_range children() { return child_range(); }
1033
1034  friend class ASTStmtReader;
1035  friend class ASTStmtWriter;
1036};
1037
1038/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
1039class PredefinedExpr : public Expr {
1040public:
1041  enum IdentType {
1042    Func,
1043    Function,
1044    PrettyFunction,
1045    /// PrettyFunctionNoVirtual - The same as PrettyFunction, except that the
1046    /// 'virtual' keyword is omitted for virtual member functions.
1047    PrettyFunctionNoVirtual
1048  };
1049
1050private:
1051  SourceLocation Loc;
1052  IdentType Type;
1053public:
1054  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
1055    : Expr(PredefinedExprClass, type, VK_LValue, OK_Ordinary,
1056           type->isDependentType(), type->isDependentType(),
1057           type->isInstantiationDependentType(),
1058           /*ContainsUnexpandedParameterPack=*/false),
1059      Loc(l), Type(IT) {}
1060
1061  /// \brief Construct an empty predefined expression.
1062  explicit PredefinedExpr(EmptyShell Empty)
1063    : Expr(PredefinedExprClass, Empty) { }
1064
1065  IdentType getIdentType() const { return Type; }
1066  void setIdentType(IdentType IT) { Type = IT; }
1067
1068  SourceLocation getLocation() const { return Loc; }
1069  void setLocation(SourceLocation L) { Loc = L; }
1070
1071  static std::string ComputeName(IdentType IT, const Decl *CurrentDecl);
1072
1073  SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(Loc); }
1074
1075  static bool classof(const Stmt *T) {
1076    return T->getStmtClass() == PredefinedExprClass;
1077  }
1078  static bool classof(const PredefinedExpr *) { return true; }
1079
1080  // Iterators
1081  child_range children() { return child_range(); }
1082};
1083
1084/// \brief Used by IntegerLiteral/FloatingLiteral to store the numeric without
1085/// leaking memory.
1086///
1087/// For large floats/integers, APFloat/APInt will allocate memory from the heap
1088/// to represent these numbers.  Unfortunately, when we use a BumpPtrAllocator
1089/// to allocate IntegerLiteral/FloatingLiteral nodes the memory associated with
1090/// the APFloat/APInt values will never get freed. APNumericStorage uses
1091/// ASTContext's allocator for memory allocation.
1092class APNumericStorage {
1093  union {
1094    uint64_t VAL;    ///< Used to store the <= 64 bits integer value.
1095    uint64_t *pVal;  ///< Used to store the >64 bits integer value.
1096  };
1097  unsigned BitWidth;
1098
1099  bool hasAllocation() const { return llvm::APInt::getNumWords(BitWidth) > 1; }
1100
1101  APNumericStorage(const APNumericStorage&); // do not implement
1102  APNumericStorage& operator=(const APNumericStorage&); // do not implement
1103
1104protected:
1105  APNumericStorage() : VAL(0), BitWidth(0) { }
1106
1107  llvm::APInt getIntValue() const {
1108    unsigned NumWords = llvm::APInt::getNumWords(BitWidth);
1109    if (NumWords > 1)
1110      return llvm::APInt(BitWidth, NumWords, pVal);
1111    else
1112      return llvm::APInt(BitWidth, VAL);
1113  }
1114  void setIntValue(ASTContext &C, const llvm::APInt &Val);
1115};
1116
1117class APIntStorage : private APNumericStorage {
1118public:
1119  llvm::APInt getValue() const { return getIntValue(); }
1120  void setValue(ASTContext &C, const llvm::APInt &Val) { setIntValue(C, Val); }
1121};
1122
1123class APFloatStorage : private APNumericStorage {
1124public:
1125  llvm::APFloat getValue(bool IsIEEE) const {
1126    return llvm::APFloat(getIntValue(), IsIEEE);
1127  }
1128  void setValue(ASTContext &C, const llvm::APFloat &Val) {
1129    setIntValue(C, Val.bitcastToAPInt());
1130  }
1131};
1132
1133class IntegerLiteral : public Expr, public APIntStorage {
1134  SourceLocation Loc;
1135
1136  /// \brief Construct an empty integer literal.
1137  explicit IntegerLiteral(EmptyShell Empty)
1138    : Expr(IntegerLiteralClass, Empty) { }
1139
1140public:
1141  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
1142  // or UnsignedLongLongTy
1143  IntegerLiteral(ASTContext &C, const llvm::APInt &V,
1144                 QualType type, SourceLocation l)
1145    : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
1146           false, false),
1147      Loc(l) {
1148    assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
1149    assert(V.getBitWidth() == C.getIntWidth(type) &&
1150           "Integer type is not the correct size for constant.");
1151    setValue(C, V);
1152  }
1153
1154  /// \brief Returns a new integer literal with value 'V' and type 'type'.
1155  /// \param type - either IntTy, LongTy, LongLongTy, UnsignedIntTy,
1156  /// UnsignedLongTy, or UnsignedLongLongTy which should match the size of V
1157  /// \param V - the value that the returned integer literal contains.
1158  static IntegerLiteral *Create(ASTContext &C, const llvm::APInt &V,
1159                                QualType type, SourceLocation l);
1160  /// \brief Returns a new empty integer literal.
1161  static IntegerLiteral *Create(ASTContext &C, EmptyShell Empty);
1162
1163  SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(Loc); }
1164
1165  /// \brief Retrieve the location of the literal.
1166  SourceLocation getLocation() const { return Loc; }
1167
1168  void setLocation(SourceLocation Location) { Loc = Location; }
1169
1170  static bool classof(const Stmt *T) {
1171    return T->getStmtClass() == IntegerLiteralClass;
1172  }
1173  static bool classof(const IntegerLiteral *) { return true; }
1174
1175  // Iterators
1176  child_range children() { return child_range(); }
1177};
1178
1179class CharacterLiteral : public Expr {
1180public:
1181  enum CharacterKind {
1182    Ascii,
1183    Wide,
1184    UTF16,
1185    UTF32
1186  };
1187
1188private:
1189  unsigned Value;
1190  SourceLocation Loc;
1191public:
1192  // type should be IntTy
1193  CharacterLiteral(unsigned value, CharacterKind kind, QualType type,
1194                   SourceLocation l)
1195    : Expr(CharacterLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
1196           false, false),
1197      Value(value), Loc(l) {
1198    CharacterLiteralBits.Kind = kind;
1199  }
1200
1201  /// \brief Construct an empty character literal.
1202  CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
1203
1204  SourceLocation getLocation() const { return Loc; }
1205  CharacterKind getKind() const {
1206    return static_cast<CharacterKind>(CharacterLiteralBits.Kind);
1207  }
1208
1209  SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(Loc); }
1210
1211  unsigned getValue() const { return Value; }
1212
1213  void setLocation(SourceLocation Location) { Loc = Location; }
1214  void setKind(CharacterKind kind) { CharacterLiteralBits.Kind = kind; }
1215  void setValue(unsigned Val) { Value = Val; }
1216
1217  static bool classof(const Stmt *T) {
1218    return T->getStmtClass() == CharacterLiteralClass;
1219  }
1220  static bool classof(const CharacterLiteral *) { return true; }
1221
1222  // Iterators
1223  child_range children() { return child_range(); }
1224};
1225
1226class FloatingLiteral : public Expr, private APFloatStorage {
1227  SourceLocation Loc;
1228
1229  FloatingLiteral(ASTContext &C, const llvm::APFloat &V, bool isexact,
1230                  QualType Type, SourceLocation L)
1231    : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false,
1232           false, false), Loc(L) {
1233    FloatingLiteralBits.IsIEEE =
1234      &C.getTargetInfo().getLongDoubleFormat() == &llvm::APFloat::IEEEquad;
1235    FloatingLiteralBits.IsExact = isexact;
1236    setValue(C, V);
1237  }
1238
1239  /// \brief Construct an empty floating-point literal.
1240  explicit FloatingLiteral(ASTContext &C, EmptyShell Empty)
1241    : Expr(FloatingLiteralClass, Empty) {
1242    FloatingLiteralBits.IsIEEE =
1243      &C.getTargetInfo().getLongDoubleFormat() == &llvm::APFloat::IEEEquad;
1244    FloatingLiteralBits.IsExact = false;
1245  }
1246
1247public:
1248  static FloatingLiteral *Create(ASTContext &C, const llvm::APFloat &V,
1249                                 bool isexact, QualType Type, SourceLocation L);
1250  static FloatingLiteral *Create(ASTContext &C, EmptyShell Empty);
1251
1252  llvm::APFloat getValue() const {
1253    return APFloatStorage::getValue(FloatingLiteralBits.IsIEEE);
1254  }
1255  void setValue(ASTContext &C, const llvm::APFloat &Val) {
1256    APFloatStorage::setValue(C, Val);
1257  }
1258
1259  bool isExact() const { return FloatingLiteralBits.IsExact; }
1260  void setExact(bool E) { FloatingLiteralBits.IsExact = E; }
1261
1262  /// getValueAsApproximateDouble - This returns the value as an inaccurate
1263  /// double.  Note that this may cause loss of precision, but is useful for
1264  /// debugging dumps, etc.
1265  double getValueAsApproximateDouble() const;
1266
1267  SourceLocation getLocation() const { return Loc; }
1268  void setLocation(SourceLocation L) { Loc = L; }
1269
1270  SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(Loc); }
1271
1272  static bool classof(const Stmt *T) {
1273    return T->getStmtClass() == FloatingLiteralClass;
1274  }
1275  static bool classof(const FloatingLiteral *) { return true; }
1276
1277  // Iterators
1278  child_range children() { return child_range(); }
1279};
1280
1281/// ImaginaryLiteral - We support imaginary integer and floating point literals,
1282/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
1283/// IntegerLiteral classes.  Instances of this class always have a Complex type
1284/// whose element type matches the subexpression.
1285///
1286class ImaginaryLiteral : public Expr {
1287  Stmt *Val;
1288public:
1289  ImaginaryLiteral(Expr *val, QualType Ty)
1290    : Expr(ImaginaryLiteralClass, Ty, VK_RValue, OK_Ordinary, false, false,
1291           false, false),
1292      Val(val) {}
1293
1294  /// \brief Build an empty imaginary literal.
1295  explicit ImaginaryLiteral(EmptyShell Empty)
1296    : Expr(ImaginaryLiteralClass, Empty) { }
1297
1298  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1299  Expr *getSubExpr() { return cast<Expr>(Val); }
1300  void setSubExpr(Expr *E) { Val = E; }
1301
1302  SourceRange getSourceRange() const LLVM_READONLY { return Val->getSourceRange(); }
1303  static bool classof(const Stmt *T) {
1304    return T->getStmtClass() == ImaginaryLiteralClass;
1305  }
1306  static bool classof(const ImaginaryLiteral *) { return true; }
1307
1308  // Iterators
1309  child_range children() { return child_range(&Val, &Val+1); }
1310};
1311
1312/// StringLiteral - This represents a string literal expression, e.g. "foo"
1313/// or L"bar" (wide strings).  The actual string is returned by getStrData()
1314/// is NOT null-terminated, and the length of the string is determined by
1315/// calling getByteLength().  The C type for a string is always a
1316/// ConstantArrayType.  In C++, the char type is const qualified, in C it is
1317/// not.
1318///
1319/// Note that strings in C can be formed by concatenation of multiple string
1320/// literal pptokens in translation phase #6.  This keeps track of the locations
1321/// of each of these pieces.
1322///
1323/// Strings in C can also be truncated and extended by assigning into arrays,
1324/// e.g. with constructs like:
1325///   char X[2] = "foobar";
1326/// In this case, getByteLength() will return 6, but the string literal will
1327/// have type "char[2]".
1328class StringLiteral : public Expr {
1329public:
1330  enum StringKind {
1331    Ascii,
1332    Wide,
1333    UTF8,
1334    UTF16,
1335    UTF32
1336  };
1337
1338private:
1339  friend class ASTStmtReader;
1340
1341  union {
1342    const char *asChar;
1343    const uint16_t *asUInt16;
1344    const uint32_t *asUInt32;
1345  } StrData;
1346  unsigned Length;
1347  unsigned CharByteWidth : 4;
1348  unsigned Kind : 3;
1349  unsigned IsPascal : 1;
1350  unsigned NumConcatenated;
1351  SourceLocation TokLocs[1];
1352
1353  StringLiteral(QualType Ty) :
1354    Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary, false, false, false,
1355         false) {}
1356
1357  static int mapCharByteWidth(TargetInfo const &target,StringKind k);
1358
1359public:
1360  /// This is the "fully general" constructor that allows representation of
1361  /// strings formed from multiple concatenated tokens.
1362  static StringLiteral *Create(ASTContext &C, StringRef Str, StringKind Kind,
1363                               bool Pascal, QualType Ty,
1364                               const SourceLocation *Loc, unsigned NumStrs);
1365
1366  /// Simple constructor for string literals made from one token.
1367  static StringLiteral *Create(ASTContext &C, StringRef Str, StringKind Kind,
1368                               bool Pascal, QualType Ty,
1369                               SourceLocation Loc) {
1370    return Create(C, Str, Kind, Pascal, Ty, &Loc, 1);
1371  }
1372
1373  /// \brief Construct an empty string literal.
1374  static StringLiteral *CreateEmpty(ASTContext &C, unsigned NumStrs);
1375
1376  StringRef getString() const {
1377    assert(CharByteWidth==1
1378           && "This function is used in places that assume strings use char");
1379    return StringRef(StrData.asChar, getByteLength());
1380  }
1381
1382  /// Allow clients that need the byte representation, such as ASTWriterStmt
1383  /// ::VisitStringLiteral(), access.
1384  StringRef getBytes() const {
1385    // FIXME: StringRef may not be the right type to use as a result for this.
1386    if (CharByteWidth == 1)
1387      return StringRef(StrData.asChar, getByteLength());
1388    if (CharByteWidth == 4)
1389      return StringRef(reinterpret_cast<const char*>(StrData.asUInt32),
1390                       getByteLength());
1391    assert(CharByteWidth == 2 && "unsupported CharByteWidth");
1392    return StringRef(reinterpret_cast<const char*>(StrData.asUInt16),
1393                     getByteLength());
1394  }
1395
1396  uint32_t getCodeUnit(size_t i) const {
1397    assert(i < Length && "out of bounds access");
1398    if (CharByteWidth == 1)
1399      return static_cast<unsigned char>(StrData.asChar[i]);
1400    if (CharByteWidth == 4)
1401      return StrData.asUInt32[i];
1402    assert(CharByteWidth == 2 && "unsupported CharByteWidth");
1403    return StrData.asUInt16[i];
1404  }
1405
1406  unsigned getByteLength() const { return CharByteWidth*Length; }
1407  unsigned getLength() const { return Length; }
1408  unsigned getCharByteWidth() const { return CharByteWidth; }
1409
1410  /// \brief Sets the string data to the given string data.
1411  void setString(ASTContext &C, StringRef Str,
1412                 StringKind Kind, bool IsPascal);
1413
1414  StringKind getKind() const { return static_cast<StringKind>(Kind); }
1415
1416
1417  bool isAscii() const { return Kind == Ascii; }
1418  bool isWide() const { return Kind == Wide; }
1419  bool isUTF8() const { return Kind == UTF8; }
1420  bool isUTF16() const { return Kind == UTF16; }
1421  bool isUTF32() const { return Kind == UTF32; }
1422  bool isPascal() const { return IsPascal; }
1423
1424  bool containsNonAsciiOrNull() const {
1425    StringRef Str = getString();
1426    for (unsigned i = 0, e = Str.size(); i != e; ++i)
1427      if (!isascii(Str[i]) || !Str[i])
1428        return true;
1429    return false;
1430  }
1431
1432  /// getNumConcatenated - Get the number of string literal tokens that were
1433  /// concatenated in translation phase #6 to form this string literal.
1434  unsigned getNumConcatenated() const { return NumConcatenated; }
1435
1436  SourceLocation getStrTokenLoc(unsigned TokNum) const {
1437    assert(TokNum < NumConcatenated && "Invalid tok number");
1438    return TokLocs[TokNum];
1439  }
1440  void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
1441    assert(TokNum < NumConcatenated && "Invalid tok number");
1442    TokLocs[TokNum] = L;
1443  }
1444
1445  /// getLocationOfByte - Return a source location that points to the specified
1446  /// byte of this string literal.
1447  ///
1448  /// Strings are amazingly complex.  They can be formed from multiple tokens
1449  /// and can have escape sequences in them in addition to the usual trigraph
1450  /// and escaped newline business.  This routine handles this complexity.
1451  ///
1452  SourceLocation getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
1453                                   const LangOptions &Features,
1454                                   const TargetInfo &Target) const;
1455
1456  typedef const SourceLocation *tokloc_iterator;
1457  tokloc_iterator tokloc_begin() const { return TokLocs; }
1458  tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; }
1459
1460  SourceRange getSourceRange() const LLVM_READONLY {
1461    return SourceRange(TokLocs[0], TokLocs[NumConcatenated-1]);
1462  }
1463  static bool classof(const Stmt *T) {
1464    return T->getStmtClass() == StringLiteralClass;
1465  }
1466  static bool classof(const StringLiteral *) { return true; }
1467
1468  // Iterators
1469  child_range children() { return child_range(); }
1470};
1471
1472/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
1473/// AST node is only formed if full location information is requested.
1474class ParenExpr : public Expr {
1475  SourceLocation L, R;
1476  Stmt *Val;
1477public:
1478  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
1479    : Expr(ParenExprClass, val->getType(),
1480           val->getValueKind(), val->getObjectKind(),
1481           val->isTypeDependent(), val->isValueDependent(),
1482           val->isInstantiationDependent(),
1483           val->containsUnexpandedParameterPack()),
1484      L(l), R(r), Val(val) {}
1485
1486  /// \brief Construct an empty parenthesized expression.
1487  explicit ParenExpr(EmptyShell Empty)
1488    : Expr(ParenExprClass, Empty) { }
1489
1490  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1491  Expr *getSubExpr() { return cast<Expr>(Val); }
1492  void setSubExpr(Expr *E) { Val = E; }
1493
1494  SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(L, R); }
1495
1496  /// \brief Get the location of the left parentheses '('.
1497  SourceLocation getLParen() const { return L; }
1498  void setLParen(SourceLocation Loc) { L = Loc; }
1499
1500  /// \brief Get the location of the right parentheses ')'.
1501  SourceLocation getRParen() const { return R; }
1502  void setRParen(SourceLocation Loc) { R = Loc; }
1503
1504  static bool classof(const Stmt *T) {
1505    return T->getStmtClass() == ParenExprClass;
1506  }
1507  static bool classof(const ParenExpr *) { return true; }
1508
1509  // Iterators
1510  child_range children() { return child_range(&Val, &Val+1); }
1511};
1512
1513
1514/// UnaryOperator - This represents the unary-expression's (except sizeof and
1515/// alignof), the postinc/postdec operators from postfix-expression, and various
1516/// extensions.
1517///
1518/// Notes on various nodes:
1519///
1520/// Real/Imag - These return the real/imag part of a complex operand.  If
1521///   applied to a non-complex value, the former returns its operand and the
1522///   later returns zero in the type of the operand.
1523///
1524class UnaryOperator : public Expr {
1525public:
1526  typedef UnaryOperatorKind Opcode;
1527
1528private:
1529  unsigned Opc : 5;
1530  SourceLocation Loc;
1531  Stmt *Val;
1532public:
1533
1534  UnaryOperator(Expr *input, Opcode opc, QualType type,
1535                ExprValueKind VK, ExprObjectKind OK, SourceLocation l)
1536    : Expr(UnaryOperatorClass, type, VK, OK,
1537           input->isTypeDependent() || type->isDependentType(),
1538           input->isValueDependent(),
1539           (input->isInstantiationDependent() ||
1540            type->isInstantiationDependentType()),
1541           input->containsUnexpandedParameterPack()),
1542      Opc(opc), Loc(l), Val(input) {}
1543
1544  /// \brief Build an empty unary operator.
1545  explicit UnaryOperator(EmptyShell Empty)
1546    : Expr(UnaryOperatorClass, Empty), Opc(UO_AddrOf) { }
1547
1548  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
1549  void setOpcode(Opcode O) { Opc = O; }
1550
1551  Expr *getSubExpr() const { return cast<Expr>(Val); }
1552  void setSubExpr(Expr *E) { Val = E; }
1553
1554  /// getOperatorLoc - Return the location of the operator.
1555  SourceLocation getOperatorLoc() const { return Loc; }
1556  void setOperatorLoc(SourceLocation L) { Loc = L; }
1557
1558  /// isPostfix - Return true if this is a postfix operation, like x++.
1559  static bool isPostfix(Opcode Op) {
1560    return Op == UO_PostInc || Op == UO_PostDec;
1561  }
1562
1563  /// isPrefix - Return true if this is a prefix operation, like --x.
1564  static bool isPrefix(Opcode Op) {
1565    return Op == UO_PreInc || Op == UO_PreDec;
1566  }
1567
1568  bool isPrefix() const { return isPrefix(getOpcode()); }
1569  bool isPostfix() const { return isPostfix(getOpcode()); }
1570
1571  static bool isIncrementOp(Opcode Op) {
1572    return Op == UO_PreInc || Op == UO_PostInc;
1573  }
1574  bool isIncrementOp() const {
1575    return isIncrementOp(getOpcode());
1576  }
1577
1578  static bool isDecrementOp(Opcode Op) {
1579    return Op == UO_PreDec || Op == UO_PostDec;
1580  }
1581  bool isDecrementOp() const {
1582    return isDecrementOp(getOpcode());
1583  }
1584
1585  static bool isIncrementDecrementOp(Opcode Op) { return Op <= UO_PreDec; }
1586  bool isIncrementDecrementOp() const {
1587    return isIncrementDecrementOp(getOpcode());
1588  }
1589
1590  static bool isArithmeticOp(Opcode Op) {
1591    return Op >= UO_Plus && Op <= UO_LNot;
1592  }
1593  bool isArithmeticOp() const { return isArithmeticOp(getOpcode()); }
1594
1595  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1596  /// corresponds to, e.g. "sizeof" or "[pre]++"
1597  static const char *getOpcodeStr(Opcode Op);
1598
1599  /// \brief Retrieve the unary opcode that corresponds to the given
1600  /// overloaded operator.
1601  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
1602
1603  /// \brief Retrieve the overloaded operator kind that corresponds to
1604  /// the given unary opcode.
1605  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
1606
1607  SourceRange getSourceRange() const LLVM_READONLY {
1608    if (isPostfix())
1609      return SourceRange(Val->getLocStart(), Loc);
1610    else
1611      return SourceRange(Loc, Val->getLocEnd());
1612  }
1613  SourceLocation getExprLoc() const LLVM_READONLY { return Loc; }
1614
1615  static bool classof(const Stmt *T) {
1616    return T->getStmtClass() == UnaryOperatorClass;
1617  }
1618  static bool classof(const UnaryOperator *) { return true; }
1619
1620  // Iterators
1621  child_range children() { return child_range(&Val, &Val+1); }
1622};
1623
1624/// OffsetOfExpr - [C99 7.17] - This represents an expression of the form
1625/// offsetof(record-type, member-designator). For example, given:
1626/// @code
1627/// struct S {
1628///   float f;
1629///   double d;
1630/// };
1631/// struct T {
1632///   int i;
1633///   struct S s[10];
1634/// };
1635/// @endcode
1636/// we can represent and evaluate the expression @c offsetof(struct T, s[2].d).
1637
1638class OffsetOfExpr : public Expr {
1639public:
1640  // __builtin_offsetof(type, identifier(.identifier|[expr])*)
1641  class OffsetOfNode {
1642  public:
1643    /// \brief The kind of offsetof node we have.
1644    enum Kind {
1645      /// \brief An index into an array.
1646      Array = 0x00,
1647      /// \brief A field.
1648      Field = 0x01,
1649      /// \brief A field in a dependent type, known only by its name.
1650      Identifier = 0x02,
1651      /// \brief An implicit indirection through a C++ base class, when the
1652      /// field found is in a base class.
1653      Base = 0x03
1654    };
1655
1656  private:
1657    enum { MaskBits = 2, Mask = 0x03 };
1658
1659    /// \brief The source range that covers this part of the designator.
1660    SourceRange Range;
1661
1662    /// \brief The data describing the designator, which comes in three
1663    /// different forms, depending on the lower two bits.
1664    ///   - An unsigned index into the array of Expr*'s stored after this node
1665    ///     in memory, for [constant-expression] designators.
1666    ///   - A FieldDecl*, for references to a known field.
1667    ///   - An IdentifierInfo*, for references to a field with a given name
1668    ///     when the class type is dependent.
1669    ///   - A CXXBaseSpecifier*, for references that look at a field in a
1670    ///     base class.
1671    uintptr_t Data;
1672
1673  public:
1674    /// \brief Create an offsetof node that refers to an array element.
1675    OffsetOfNode(SourceLocation LBracketLoc, unsigned Index,
1676                 SourceLocation RBracketLoc)
1677      : Range(LBracketLoc, RBracketLoc), Data((Index << 2) | Array) { }
1678
1679    /// \brief Create an offsetof node that refers to a field.
1680    OffsetOfNode(SourceLocation DotLoc, FieldDecl *Field,
1681                 SourceLocation NameLoc)
1682      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1683        Data(reinterpret_cast<uintptr_t>(Field) | OffsetOfNode::Field) { }
1684
1685    /// \brief Create an offsetof node that refers to an identifier.
1686    OffsetOfNode(SourceLocation DotLoc, IdentifierInfo *Name,
1687                 SourceLocation NameLoc)
1688      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1689        Data(reinterpret_cast<uintptr_t>(Name) | Identifier) { }
1690
1691    /// \brief Create an offsetof node that refers into a C++ base class.
1692    explicit OffsetOfNode(const CXXBaseSpecifier *Base)
1693      : Range(), Data(reinterpret_cast<uintptr_t>(Base) | OffsetOfNode::Base) {}
1694
1695    /// \brief Determine what kind of offsetof node this is.
1696    Kind getKind() const {
1697      return static_cast<Kind>(Data & Mask);
1698    }
1699
1700    /// \brief For an array element node, returns the index into the array
1701    /// of expressions.
1702    unsigned getArrayExprIndex() const {
1703      assert(getKind() == Array);
1704      return Data >> 2;
1705    }
1706
1707    /// \brief For a field offsetof node, returns the field.
1708    FieldDecl *getField() const {
1709      assert(getKind() == Field);
1710      return reinterpret_cast<FieldDecl *>(Data & ~(uintptr_t)Mask);
1711    }
1712
1713    /// \brief For a field or identifier offsetof node, returns the name of
1714    /// the field.
1715    IdentifierInfo *getFieldName() const;
1716
1717    /// \brief For a base class node, returns the base specifier.
1718    CXXBaseSpecifier *getBase() const {
1719      assert(getKind() == Base);
1720      return reinterpret_cast<CXXBaseSpecifier *>(Data & ~(uintptr_t)Mask);
1721    }
1722
1723    /// \brief Retrieve the source range that covers this offsetof node.
1724    ///
1725    /// For an array element node, the source range contains the locations of
1726    /// the square brackets. For a field or identifier node, the source range
1727    /// contains the location of the period (if there is one) and the
1728    /// identifier.
1729    SourceRange getSourceRange() const LLVM_READONLY { return Range; }
1730  };
1731
1732private:
1733
1734  SourceLocation OperatorLoc, RParenLoc;
1735  // Base type;
1736  TypeSourceInfo *TSInfo;
1737  // Number of sub-components (i.e. instances of OffsetOfNode).
1738  unsigned NumComps;
1739  // Number of sub-expressions (i.e. array subscript expressions).
1740  unsigned NumExprs;
1741
1742  OffsetOfExpr(ASTContext &C, QualType type,
1743               SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1744               OffsetOfNode* compsPtr, unsigned numComps,
1745               Expr** exprsPtr, unsigned numExprs,
1746               SourceLocation RParenLoc);
1747
1748  explicit OffsetOfExpr(unsigned numComps, unsigned numExprs)
1749    : Expr(OffsetOfExprClass, EmptyShell()),
1750      TSInfo(0), NumComps(numComps), NumExprs(numExprs) {}
1751
1752public:
1753
1754  static OffsetOfExpr *Create(ASTContext &C, QualType type,
1755                              SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1756                              OffsetOfNode* compsPtr, unsigned numComps,
1757                              Expr** exprsPtr, unsigned numExprs,
1758                              SourceLocation RParenLoc);
1759
1760  static OffsetOfExpr *CreateEmpty(ASTContext &C,
1761                                   unsigned NumComps, unsigned NumExprs);
1762
1763  /// getOperatorLoc - Return the location of the operator.
1764  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1765  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
1766
1767  /// \brief Return the location of the right parentheses.
1768  SourceLocation getRParenLoc() const { return RParenLoc; }
1769  void setRParenLoc(SourceLocation R) { RParenLoc = R; }
1770
1771  TypeSourceInfo *getTypeSourceInfo() const {
1772    return TSInfo;
1773  }
1774  void setTypeSourceInfo(TypeSourceInfo *tsi) {
1775    TSInfo = tsi;
1776  }
1777
1778  const OffsetOfNode &getComponent(unsigned Idx) const {
1779    assert(Idx < NumComps && "Subscript out of range");
1780    return reinterpret_cast<const OffsetOfNode *> (this + 1)[Idx];
1781  }
1782
1783  void setComponent(unsigned Idx, OffsetOfNode ON) {
1784    assert(Idx < NumComps && "Subscript out of range");
1785    reinterpret_cast<OffsetOfNode *> (this + 1)[Idx] = ON;
1786  }
1787
1788  unsigned getNumComponents() const {
1789    return NumComps;
1790  }
1791
1792  Expr* getIndexExpr(unsigned Idx) {
1793    assert(Idx < NumExprs && "Subscript out of range");
1794    return reinterpret_cast<Expr **>(
1795                    reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx];
1796  }
1797  const Expr *getIndexExpr(unsigned Idx) const {
1798    return const_cast<OffsetOfExpr*>(this)->getIndexExpr(Idx);
1799  }
1800
1801  void setIndexExpr(unsigned Idx, Expr* E) {
1802    assert(Idx < NumComps && "Subscript out of range");
1803    reinterpret_cast<Expr **>(
1804                reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx] = E;
1805  }
1806
1807  unsigned getNumExpressions() const {
1808    return NumExprs;
1809  }
1810
1811  SourceRange getSourceRange() const LLVM_READONLY {
1812    return SourceRange(OperatorLoc, RParenLoc);
1813  }
1814
1815  static bool classof(const Stmt *T) {
1816    return T->getStmtClass() == OffsetOfExprClass;
1817  }
1818
1819  static bool classof(const OffsetOfExpr *) { return true; }
1820
1821  // Iterators
1822  child_range children() {
1823    Stmt **begin =
1824      reinterpret_cast<Stmt**>(reinterpret_cast<OffsetOfNode*>(this + 1)
1825                               + NumComps);
1826    return child_range(begin, begin + NumExprs);
1827  }
1828};
1829
1830/// UnaryExprOrTypeTraitExpr - expression with either a type or (unevaluated)
1831/// expression operand.  Used for sizeof/alignof (C99 6.5.3.4) and
1832/// vec_step (OpenCL 1.1 6.11.12).
1833class UnaryExprOrTypeTraitExpr : public Expr {
1834  union {
1835    TypeSourceInfo *Ty;
1836    Stmt *Ex;
1837  } Argument;
1838  SourceLocation OpLoc, RParenLoc;
1839
1840public:
1841  UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, TypeSourceInfo *TInfo,
1842                           QualType resultType, SourceLocation op,
1843                           SourceLocation rp) :
1844      Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
1845           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1846           // Value-dependent if the argument is type-dependent.
1847           TInfo->getType()->isDependentType(),
1848           TInfo->getType()->isInstantiationDependentType(),
1849           TInfo->getType()->containsUnexpandedParameterPack()),
1850      OpLoc(op), RParenLoc(rp) {
1851    UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
1852    UnaryExprOrTypeTraitExprBits.IsType = true;
1853    Argument.Ty = TInfo;
1854  }
1855
1856  UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, Expr *E,
1857                           QualType resultType, SourceLocation op,
1858                           SourceLocation rp) :
1859      Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
1860           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1861           // Value-dependent if the argument is type-dependent.
1862           E->isTypeDependent(),
1863           E->isInstantiationDependent(),
1864           E->containsUnexpandedParameterPack()),
1865      OpLoc(op), RParenLoc(rp) {
1866    UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
1867    UnaryExprOrTypeTraitExprBits.IsType = false;
1868    Argument.Ex = E;
1869  }
1870
1871  /// \brief Construct an empty sizeof/alignof expression.
1872  explicit UnaryExprOrTypeTraitExpr(EmptyShell Empty)
1873    : Expr(UnaryExprOrTypeTraitExprClass, Empty) { }
1874
1875  UnaryExprOrTypeTrait getKind() const {
1876    return static_cast<UnaryExprOrTypeTrait>(UnaryExprOrTypeTraitExprBits.Kind);
1877  }
1878  void setKind(UnaryExprOrTypeTrait K) { UnaryExprOrTypeTraitExprBits.Kind = K;}
1879
1880  bool isArgumentType() const { return UnaryExprOrTypeTraitExprBits.IsType; }
1881  QualType getArgumentType() const {
1882    return getArgumentTypeInfo()->getType();
1883  }
1884  TypeSourceInfo *getArgumentTypeInfo() const {
1885    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
1886    return Argument.Ty;
1887  }
1888  Expr *getArgumentExpr() {
1889    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
1890    return static_cast<Expr*>(Argument.Ex);
1891  }
1892  const Expr *getArgumentExpr() const {
1893    return const_cast<UnaryExprOrTypeTraitExpr*>(this)->getArgumentExpr();
1894  }
1895
1896  void setArgument(Expr *E) {
1897    Argument.Ex = E;
1898    UnaryExprOrTypeTraitExprBits.IsType = false;
1899  }
1900  void setArgument(TypeSourceInfo *TInfo) {
1901    Argument.Ty = TInfo;
1902    UnaryExprOrTypeTraitExprBits.IsType = true;
1903  }
1904
1905  /// Gets the argument type, or the type of the argument expression, whichever
1906  /// is appropriate.
1907  QualType getTypeOfArgument() const {
1908    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
1909  }
1910
1911  SourceLocation getOperatorLoc() const { return OpLoc; }
1912  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
1913
1914  SourceLocation getRParenLoc() const { return RParenLoc; }
1915  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1916
1917  SourceRange getSourceRange() const LLVM_READONLY {
1918    return SourceRange(OpLoc, RParenLoc);
1919  }
1920
1921  static bool classof(const Stmt *T) {
1922    return T->getStmtClass() == UnaryExprOrTypeTraitExprClass;
1923  }
1924  static bool classof(const UnaryExprOrTypeTraitExpr *) { return true; }
1925
1926  // Iterators
1927  child_range children();
1928};
1929
1930//===----------------------------------------------------------------------===//
1931// Postfix Operators.
1932//===----------------------------------------------------------------------===//
1933
1934/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
1935class ArraySubscriptExpr : public Expr {
1936  enum { LHS, RHS, END_EXPR=2 };
1937  Stmt* SubExprs[END_EXPR];
1938  SourceLocation RBracketLoc;
1939public:
1940  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
1941                     ExprValueKind VK, ExprObjectKind OK,
1942                     SourceLocation rbracketloc)
1943  : Expr(ArraySubscriptExprClass, t, VK, OK,
1944         lhs->isTypeDependent() || rhs->isTypeDependent(),
1945         lhs->isValueDependent() || rhs->isValueDependent(),
1946         (lhs->isInstantiationDependent() ||
1947          rhs->isInstantiationDependent()),
1948         (lhs->containsUnexpandedParameterPack() ||
1949          rhs->containsUnexpandedParameterPack())),
1950    RBracketLoc(rbracketloc) {
1951    SubExprs[LHS] = lhs;
1952    SubExprs[RHS] = rhs;
1953  }
1954
1955  /// \brief Create an empty array subscript expression.
1956  explicit ArraySubscriptExpr(EmptyShell Shell)
1957    : Expr(ArraySubscriptExprClass, Shell) { }
1958
1959  /// An array access can be written A[4] or 4[A] (both are equivalent).
1960  /// - getBase() and getIdx() always present the normalized view: A[4].
1961  ///    In this case getBase() returns "A" and getIdx() returns "4".
1962  /// - getLHS() and getRHS() present the syntactic view. e.g. for
1963  ///    4[A] getLHS() returns "4".
1964  /// Note: Because vector element access is also written A[4] we must
1965  /// predicate the format conversion in getBase and getIdx only on the
1966  /// the type of the RHS, as it is possible for the LHS to be a vector of
1967  /// integer type
1968  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
1969  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1970  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1971
1972  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
1973  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1974  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1975
1976  Expr *getBase() {
1977    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1978  }
1979
1980  const Expr *getBase() const {
1981    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1982  }
1983
1984  Expr *getIdx() {
1985    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1986  }
1987
1988  const Expr *getIdx() const {
1989    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1990  }
1991
1992  SourceRange getSourceRange() const LLVM_READONLY {
1993    return SourceRange(getLHS()->getLocStart(), RBracketLoc);
1994  }
1995
1996  SourceLocation getRBracketLoc() const { return RBracketLoc; }
1997  void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
1998
1999  SourceLocation getExprLoc() const LLVM_READONLY { return getBase()->getExprLoc(); }
2000
2001  static bool classof(const Stmt *T) {
2002    return T->getStmtClass() == ArraySubscriptExprClass;
2003  }
2004  static bool classof(const ArraySubscriptExpr *) { return true; }
2005
2006  // Iterators
2007  child_range children() {
2008    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
2009  }
2010};
2011
2012
2013/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
2014/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
2015/// while its subclasses may represent alternative syntax that (semantically)
2016/// results in a function call. For example, CXXOperatorCallExpr is
2017/// a subclass for overloaded operator calls that use operator syntax, e.g.,
2018/// "str1 + str2" to resolve to a function call.
2019class CallExpr : public Expr {
2020  enum { FN=0, PREARGS_START=1 };
2021  Stmt **SubExprs;
2022  unsigned NumArgs;
2023  SourceLocation RParenLoc;
2024
2025protected:
2026  // These versions of the constructor are for derived classes.
2027  CallExpr(ASTContext& C, StmtClass SC, Expr *fn, unsigned NumPreArgs,
2028           Expr **args, unsigned numargs, QualType t, ExprValueKind VK,
2029           SourceLocation rparenloc);
2030  CallExpr(ASTContext &C, StmtClass SC, unsigned NumPreArgs, EmptyShell Empty);
2031
2032  Stmt *getPreArg(unsigned i) {
2033    assert(i < getNumPreArgs() && "Prearg access out of range!");
2034    return SubExprs[PREARGS_START+i];
2035  }
2036  const Stmt *getPreArg(unsigned i) const {
2037    assert(i < getNumPreArgs() && "Prearg access out of range!");
2038    return SubExprs[PREARGS_START+i];
2039  }
2040  void setPreArg(unsigned i, Stmt *PreArg) {
2041    assert(i < getNumPreArgs() && "Prearg access out of range!");
2042    SubExprs[PREARGS_START+i] = PreArg;
2043  }
2044
2045  unsigned getNumPreArgs() const { return CallExprBits.NumPreArgs; }
2046
2047public:
2048  CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, QualType t,
2049           ExprValueKind VK, SourceLocation rparenloc);
2050
2051  /// \brief Build an empty call expression.
2052  CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty);
2053
2054  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
2055  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
2056  void setCallee(Expr *F) { SubExprs[FN] = F; }
2057
2058  Decl *getCalleeDecl();
2059  const Decl *getCalleeDecl() const {
2060    return const_cast<CallExpr*>(this)->getCalleeDecl();
2061  }
2062
2063  /// \brief If the callee is a FunctionDecl, return it. Otherwise return 0.
2064  FunctionDecl *getDirectCallee();
2065  const FunctionDecl *getDirectCallee() const {
2066    return const_cast<CallExpr*>(this)->getDirectCallee();
2067  }
2068
2069  /// getNumArgs - Return the number of actual arguments to this call.
2070  ///
2071  unsigned getNumArgs() const { return NumArgs; }
2072
2073  /// \brief Retrieve the call arguments.
2074  Expr **getArgs() {
2075    return reinterpret_cast<Expr **>(SubExprs+getNumPreArgs()+PREARGS_START);
2076  }
2077  const Expr *const *getArgs() const {
2078    return const_cast<CallExpr*>(this)->getArgs();
2079  }
2080
2081  /// getArg - Return the specified argument.
2082  Expr *getArg(unsigned Arg) {
2083    assert(Arg < NumArgs && "Arg access out of range!");
2084    return cast<Expr>(SubExprs[Arg+getNumPreArgs()+PREARGS_START]);
2085  }
2086  const Expr *getArg(unsigned Arg) const {
2087    assert(Arg < NumArgs && "Arg access out of range!");
2088    return cast<Expr>(SubExprs[Arg+getNumPreArgs()+PREARGS_START]);
2089  }
2090
2091  /// setArg - Set the specified argument.
2092  void setArg(unsigned Arg, Expr *ArgExpr) {
2093    assert(Arg < NumArgs && "Arg access out of range!");
2094    SubExprs[Arg+getNumPreArgs()+PREARGS_START] = ArgExpr;
2095  }
2096
2097  /// setNumArgs - This changes the number of arguments present in this call.
2098  /// Any orphaned expressions are deleted by this, and any new operands are set
2099  /// to null.
2100  void setNumArgs(ASTContext& C, unsigned NumArgs);
2101
2102  typedef ExprIterator arg_iterator;
2103  typedef ConstExprIterator const_arg_iterator;
2104
2105  arg_iterator arg_begin() { return SubExprs+PREARGS_START+getNumPreArgs(); }
2106  arg_iterator arg_end() {
2107    return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
2108  }
2109  const_arg_iterator arg_begin() const {
2110    return SubExprs+PREARGS_START+getNumPreArgs();
2111  }
2112  const_arg_iterator arg_end() const {
2113    return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
2114  }
2115
2116  /// getNumCommas - Return the number of commas that must have been present in
2117  /// this function call.
2118  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
2119
2120  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
2121  /// not, return 0.
2122  unsigned isBuiltinCall() const;
2123
2124  /// getCallReturnType - Get the return type of the call expr. This is not
2125  /// always the type of the expr itself, if the return type is a reference
2126  /// type.
2127  QualType getCallReturnType() const;
2128
2129  SourceLocation getRParenLoc() const { return RParenLoc; }
2130  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2131
2132  SourceRange getSourceRange() const LLVM_READONLY;
2133  SourceLocation getLocStart() const LLVM_READONLY;
2134  SourceLocation getLocEnd() const LLVM_READONLY;
2135
2136  static bool classof(const Stmt *T) {
2137    return T->getStmtClass() >= firstCallExprConstant &&
2138           T->getStmtClass() <= lastCallExprConstant;
2139  }
2140  static bool classof(const CallExpr *) { return true; }
2141
2142  // Iterators
2143  child_range children() {
2144    return child_range(&SubExprs[0],
2145                       &SubExprs[0]+NumArgs+getNumPreArgs()+PREARGS_START);
2146  }
2147};
2148
2149/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.  X->F and X.F.
2150///
2151class MemberExpr : public Expr {
2152  /// Extra data stored in some member expressions.
2153  struct MemberNameQualifier {
2154    /// \brief The nested-name-specifier that qualifies the name, including
2155    /// source-location information.
2156    NestedNameSpecifierLoc QualifierLoc;
2157
2158    /// \brief The DeclAccessPair through which the MemberDecl was found due to
2159    /// name qualifiers.
2160    DeclAccessPair FoundDecl;
2161  };
2162
2163  /// Base - the expression for the base pointer or structure references.  In
2164  /// X.F, this is "X".
2165  Stmt *Base;
2166
2167  /// MemberDecl - This is the decl being referenced by the field/member name.
2168  /// In X.F, this is the decl referenced by F.
2169  ValueDecl *MemberDecl;
2170
2171  /// MemberDNLoc - Provides source/type location info for the
2172  /// declaration name embedded in MemberDecl.
2173  DeclarationNameLoc MemberDNLoc;
2174
2175  /// MemberLoc - This is the location of the member name.
2176  SourceLocation MemberLoc;
2177
2178  /// IsArrow - True if this is "X->F", false if this is "X.F".
2179  bool IsArrow : 1;
2180
2181  /// \brief True if this member expression used a nested-name-specifier to
2182  /// refer to the member, e.g., "x->Base::f", or found its member via a using
2183  /// declaration.  When true, a MemberNameQualifier
2184  /// structure is allocated immediately after the MemberExpr.
2185  bool HasQualifierOrFoundDecl : 1;
2186
2187  /// \brief True if this member expression specified a template keyword
2188  /// and/or a template argument list explicitly, e.g., x->f<int>,
2189  /// x->template f, x->template f<int>.
2190  /// When true, an ASTTemplateKWAndArgsInfo structure and its
2191  /// TemplateArguments (if any) are allocated immediately after
2192  /// the MemberExpr or, if the member expression also has a qualifier,
2193  /// after the MemberNameQualifier structure.
2194  bool HasTemplateKWAndArgsInfo : 1;
2195
2196  /// \brief True if this member expression refers to a method that
2197  /// was resolved from an overloaded set having size greater than 1.
2198  bool HadMultipleCandidates : 1;
2199
2200  /// \brief Retrieve the qualifier that preceded the member name, if any.
2201  MemberNameQualifier *getMemberQualifier() {
2202    assert(HasQualifierOrFoundDecl);
2203    return reinterpret_cast<MemberNameQualifier *> (this + 1);
2204  }
2205
2206  /// \brief Retrieve the qualifier that preceded the member name, if any.
2207  const MemberNameQualifier *getMemberQualifier() const {
2208    return const_cast<MemberExpr *>(this)->getMemberQualifier();
2209  }
2210
2211public:
2212  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
2213             const DeclarationNameInfo &NameInfo, QualType ty,
2214             ExprValueKind VK, ExprObjectKind OK)
2215    : Expr(MemberExprClass, ty, VK, OK,
2216           base->isTypeDependent(),
2217           base->isValueDependent(),
2218           base->isInstantiationDependent(),
2219           base->containsUnexpandedParameterPack()),
2220      Base(base), MemberDecl(memberdecl), MemberDNLoc(NameInfo.getInfo()),
2221      MemberLoc(NameInfo.getLoc()), IsArrow(isarrow),
2222      HasQualifierOrFoundDecl(false), HasTemplateKWAndArgsInfo(false),
2223      HadMultipleCandidates(false) {
2224    assert(memberdecl->getDeclName() == NameInfo.getName());
2225  }
2226
2227  // NOTE: this constructor should be used only when it is known that
2228  // the member name can not provide additional syntactic info
2229  // (i.e., source locations for C++ operator names or type source info
2230  // for constructors, destructors and conversion operators).
2231  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
2232             SourceLocation l, QualType ty,
2233             ExprValueKind VK, ExprObjectKind OK)
2234    : Expr(MemberExprClass, ty, VK, OK,
2235           base->isTypeDependent(), base->isValueDependent(),
2236           base->isInstantiationDependent(),
2237           base->containsUnexpandedParameterPack()),
2238      Base(base), MemberDecl(memberdecl), MemberDNLoc(), MemberLoc(l),
2239      IsArrow(isarrow),
2240      HasQualifierOrFoundDecl(false), HasTemplateKWAndArgsInfo(false),
2241      HadMultipleCandidates(false) {}
2242
2243  static MemberExpr *Create(ASTContext &C, Expr *base, bool isarrow,
2244                            NestedNameSpecifierLoc QualifierLoc,
2245                            SourceLocation TemplateKWLoc,
2246                            ValueDecl *memberdecl, DeclAccessPair founddecl,
2247                            DeclarationNameInfo MemberNameInfo,
2248                            const TemplateArgumentListInfo *targs,
2249                            QualType ty, ExprValueKind VK, ExprObjectKind OK);
2250
2251  void setBase(Expr *E) { Base = E; }
2252  Expr *getBase() const { return cast<Expr>(Base); }
2253
2254  /// \brief Retrieve the member declaration to which this expression refers.
2255  ///
2256  /// The returned declaration will either be a FieldDecl or (in C++)
2257  /// a CXXMethodDecl.
2258  ValueDecl *getMemberDecl() const { return MemberDecl; }
2259  void setMemberDecl(ValueDecl *D) { MemberDecl = D; }
2260
2261  /// \brief Retrieves the declaration found by lookup.
2262  DeclAccessPair getFoundDecl() const {
2263    if (!HasQualifierOrFoundDecl)
2264      return DeclAccessPair::make(getMemberDecl(),
2265                                  getMemberDecl()->getAccess());
2266    return getMemberQualifier()->FoundDecl;
2267  }
2268
2269  /// \brief Determines whether this member expression actually had
2270  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
2271  /// x->Base::foo.
2272  bool hasQualifier() const { return getQualifier() != 0; }
2273
2274  /// \brief If the member name was qualified, retrieves the
2275  /// nested-name-specifier that precedes the member name. Otherwise, returns
2276  /// NULL.
2277  NestedNameSpecifier *getQualifier() const {
2278    if (!HasQualifierOrFoundDecl)
2279      return 0;
2280
2281    return getMemberQualifier()->QualifierLoc.getNestedNameSpecifier();
2282  }
2283
2284  /// \brief If the member name was qualified, retrieves the
2285  /// nested-name-specifier that precedes the member name, with source-location
2286  /// information.
2287  NestedNameSpecifierLoc getQualifierLoc() const {
2288    if (!hasQualifier())
2289      return NestedNameSpecifierLoc();
2290
2291    return getMemberQualifier()->QualifierLoc;
2292  }
2293
2294  /// \brief Return the optional template keyword and arguments info.
2295  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
2296    if (!HasTemplateKWAndArgsInfo)
2297      return 0;
2298
2299    if (!HasQualifierOrFoundDecl)
2300      return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(this + 1);
2301
2302    return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(
2303                                                      getMemberQualifier() + 1);
2304  }
2305
2306  /// \brief Return the optional template keyword and arguments info.
2307  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
2308    return const_cast<MemberExpr*>(this)->getTemplateKWAndArgsInfo();
2309  }
2310
2311  /// \brief Retrieve the location of the template keyword preceding
2312  /// the member name, if any.
2313  SourceLocation getTemplateKeywordLoc() const {
2314    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2315    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
2316  }
2317
2318  /// \brief Retrieve the location of the left angle bracket starting the
2319  /// explicit template argument list following the member name, if any.
2320  SourceLocation getLAngleLoc() const {
2321    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2322    return getTemplateKWAndArgsInfo()->LAngleLoc;
2323  }
2324
2325  /// \brief Retrieve the location of the right angle bracket ending the
2326  /// explicit template argument list following the member name, if any.
2327  SourceLocation getRAngleLoc() const {
2328    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2329    return getTemplateKWAndArgsInfo()->RAngleLoc;
2330  }
2331
2332  /// Determines whether the member name was preceded by the template keyword.
2333  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
2334
2335  /// \brief Determines whether the member name was followed by an
2336  /// explicit template argument list.
2337  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
2338
2339  /// \brief Copies the template arguments (if present) into the given
2340  /// structure.
2341  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2342    if (hasExplicitTemplateArgs())
2343      getExplicitTemplateArgs().copyInto(List);
2344  }
2345
2346  /// \brief Retrieve the explicit template argument list that
2347  /// follow the member template name.  This must only be called on an
2348  /// expression with explicit template arguments.
2349  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
2350    assert(hasExplicitTemplateArgs());
2351    return *getTemplateKWAndArgsInfo();
2352  }
2353
2354  /// \brief Retrieve the explicit template argument list that
2355  /// followed the member template name.  This must only be called on
2356  /// an expression with explicit template arguments.
2357  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2358    return const_cast<MemberExpr *>(this)->getExplicitTemplateArgs();
2359  }
2360
2361  /// \brief Retrieves the optional explicit template arguments.
2362  /// This points to the same data as getExplicitTemplateArgs(), but
2363  /// returns null if there are no explicit template arguments.
2364  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() const {
2365    if (!hasExplicitTemplateArgs()) return 0;
2366    return &getExplicitTemplateArgs();
2367  }
2368
2369  /// \brief Retrieve the template arguments provided as part of this
2370  /// template-id.
2371  const TemplateArgumentLoc *getTemplateArgs() const {
2372    if (!hasExplicitTemplateArgs())
2373      return 0;
2374
2375    return getExplicitTemplateArgs().getTemplateArgs();
2376  }
2377
2378  /// \brief Retrieve the number of template arguments provided as part of this
2379  /// template-id.
2380  unsigned getNumTemplateArgs() const {
2381    if (!hasExplicitTemplateArgs())
2382      return 0;
2383
2384    return getExplicitTemplateArgs().NumTemplateArgs;
2385  }
2386
2387  /// \brief Retrieve the member declaration name info.
2388  DeclarationNameInfo getMemberNameInfo() const {
2389    return DeclarationNameInfo(MemberDecl->getDeclName(),
2390                               MemberLoc, MemberDNLoc);
2391  }
2392
2393  bool isArrow() const { return IsArrow; }
2394  void setArrow(bool A) { IsArrow = A; }
2395
2396  /// getMemberLoc - Return the location of the "member", in X->F, it is the
2397  /// location of 'F'.
2398  SourceLocation getMemberLoc() const { return MemberLoc; }
2399  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
2400
2401  SourceRange getSourceRange() const LLVM_READONLY;
2402  SourceLocation getLocStart() const LLVM_READONLY;
2403  SourceLocation getLocEnd() const LLVM_READONLY;
2404
2405  SourceLocation getExprLoc() const LLVM_READONLY { return MemberLoc; }
2406
2407  /// \brief Determine whether the base of this explicit is implicit.
2408  bool isImplicitAccess() const {
2409    return getBase() && getBase()->isImplicitCXXThis();
2410  }
2411
2412  /// \brief Returns true if this member expression refers to a method that
2413  /// was resolved from an overloaded set having size greater than 1.
2414  bool hadMultipleCandidates() const {
2415    return HadMultipleCandidates;
2416  }
2417  /// \brief Sets the flag telling whether this expression refers to
2418  /// a method that was resolved from an overloaded set having size
2419  /// greater than 1.
2420  void setHadMultipleCandidates(bool V = true) {
2421    HadMultipleCandidates = V;
2422  }
2423
2424  static bool classof(const Stmt *T) {
2425    return T->getStmtClass() == MemberExprClass;
2426  }
2427  static bool classof(const MemberExpr *) { return true; }
2428
2429  // Iterators
2430  child_range children() { return child_range(&Base, &Base+1); }
2431
2432  friend class ASTReader;
2433  friend class ASTStmtWriter;
2434};
2435
2436/// CompoundLiteralExpr - [C99 6.5.2.5]
2437///
2438class CompoundLiteralExpr : public Expr {
2439  /// LParenLoc - If non-null, this is the location of the left paren in a
2440  /// compound literal like "(int){4}".  This can be null if this is a
2441  /// synthesized compound expression.
2442  SourceLocation LParenLoc;
2443
2444  /// The type as written.  This can be an incomplete array type, in
2445  /// which case the actual expression type will be different.
2446  /// The int part of the pair stores whether this expr is file scope.
2447  llvm::PointerIntPair<TypeSourceInfo *, 1, bool> TInfoAndScope;
2448  Stmt *Init;
2449public:
2450  CompoundLiteralExpr(SourceLocation lparenloc, TypeSourceInfo *tinfo,
2451                      QualType T, ExprValueKind VK, Expr *init, bool fileScope)
2452    : Expr(CompoundLiteralExprClass, T, VK, OK_Ordinary,
2453           tinfo->getType()->isDependentType(),
2454           init->isValueDependent(),
2455           (init->isInstantiationDependent() ||
2456            tinfo->getType()->isInstantiationDependentType()),
2457           init->containsUnexpandedParameterPack()),
2458      LParenLoc(lparenloc), TInfoAndScope(tinfo, fileScope), Init(init) {}
2459
2460  /// \brief Construct an empty compound literal.
2461  explicit CompoundLiteralExpr(EmptyShell Empty)
2462    : Expr(CompoundLiteralExprClass, Empty) { }
2463
2464  const Expr *getInitializer() const { return cast<Expr>(Init); }
2465  Expr *getInitializer() { return cast<Expr>(Init); }
2466  void setInitializer(Expr *E) { Init = E; }
2467
2468  bool isFileScope() const { return TInfoAndScope.getInt(); }
2469  void setFileScope(bool FS) { TInfoAndScope.setInt(FS); }
2470
2471  SourceLocation getLParenLoc() const { return LParenLoc; }
2472  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2473
2474  TypeSourceInfo *getTypeSourceInfo() const {
2475    return TInfoAndScope.getPointer();
2476  }
2477  void setTypeSourceInfo(TypeSourceInfo *tinfo) {
2478    TInfoAndScope.setPointer(tinfo);
2479  }
2480
2481  SourceRange getSourceRange() const LLVM_READONLY {
2482    // FIXME: Init should never be null.
2483    if (!Init)
2484      return SourceRange();
2485    if (LParenLoc.isInvalid())
2486      return Init->getSourceRange();
2487    return SourceRange(LParenLoc, Init->getLocEnd());
2488  }
2489
2490  static bool classof(const Stmt *T) {
2491    return T->getStmtClass() == CompoundLiteralExprClass;
2492  }
2493  static bool classof(const CompoundLiteralExpr *) { return true; }
2494
2495  // Iterators
2496  child_range children() { return child_range(&Init, &Init+1); }
2497};
2498
2499/// CastExpr - Base class for type casts, including both implicit
2500/// casts (ImplicitCastExpr) and explicit casts that have some
2501/// representation in the source code (ExplicitCastExpr's derived
2502/// classes).
2503class CastExpr : public Expr {
2504public:
2505  typedef clang::CastKind CastKind;
2506
2507private:
2508  Stmt *Op;
2509
2510  void CheckCastConsistency() const;
2511
2512  const CXXBaseSpecifier * const *path_buffer() const {
2513    return const_cast<CastExpr*>(this)->path_buffer();
2514  }
2515  CXXBaseSpecifier **path_buffer();
2516
2517  void setBasePathSize(unsigned basePathSize) {
2518    CastExprBits.BasePathSize = basePathSize;
2519    assert(CastExprBits.BasePathSize == basePathSize &&
2520           "basePathSize doesn't fit in bits of CastExprBits.BasePathSize!");
2521  }
2522
2523protected:
2524  CastExpr(StmtClass SC, QualType ty, ExprValueKind VK,
2525           const CastKind kind, Expr *op, unsigned BasePathSize) :
2526    Expr(SC, ty, VK, OK_Ordinary,
2527         // Cast expressions are type-dependent if the type is
2528         // dependent (C++ [temp.dep.expr]p3).
2529         ty->isDependentType(),
2530         // Cast expressions are value-dependent if the type is
2531         // dependent or if the subexpression is value-dependent.
2532         ty->isDependentType() || (op && op->isValueDependent()),
2533         (ty->isInstantiationDependentType() ||
2534          (op && op->isInstantiationDependent())),
2535         (ty->containsUnexpandedParameterPack() ||
2536          op->containsUnexpandedParameterPack())),
2537    Op(op) {
2538    assert(kind != CK_Invalid && "creating cast with invalid cast kind");
2539    CastExprBits.Kind = kind;
2540    setBasePathSize(BasePathSize);
2541#ifndef NDEBUG
2542    CheckCastConsistency();
2543#endif
2544  }
2545
2546  /// \brief Construct an empty cast.
2547  CastExpr(StmtClass SC, EmptyShell Empty, unsigned BasePathSize)
2548    : Expr(SC, Empty) {
2549    setBasePathSize(BasePathSize);
2550  }
2551
2552public:
2553  CastKind getCastKind() const { return (CastKind) CastExprBits.Kind; }
2554  void setCastKind(CastKind K) { CastExprBits.Kind = K; }
2555  const char *getCastKindName() const;
2556
2557  Expr *getSubExpr() { return cast<Expr>(Op); }
2558  const Expr *getSubExpr() const { return cast<Expr>(Op); }
2559  void setSubExpr(Expr *E) { Op = E; }
2560
2561  /// \brief Retrieve the cast subexpression as it was written in the source
2562  /// code, looking through any implicit casts or other intermediate nodes
2563  /// introduced by semantic analysis.
2564  Expr *getSubExprAsWritten();
2565  const Expr *getSubExprAsWritten() const {
2566    return const_cast<CastExpr *>(this)->getSubExprAsWritten();
2567  }
2568
2569  typedef CXXBaseSpecifier **path_iterator;
2570  typedef const CXXBaseSpecifier * const *path_const_iterator;
2571  bool path_empty() const { return CastExprBits.BasePathSize == 0; }
2572  unsigned path_size() const { return CastExprBits.BasePathSize; }
2573  path_iterator path_begin() { return path_buffer(); }
2574  path_iterator path_end() { return path_buffer() + path_size(); }
2575  path_const_iterator path_begin() const { return path_buffer(); }
2576  path_const_iterator path_end() const { return path_buffer() + path_size(); }
2577
2578  void setCastPath(const CXXCastPath &Path);
2579
2580  static bool classof(const Stmt *T) {
2581    return T->getStmtClass() >= firstCastExprConstant &&
2582           T->getStmtClass() <= lastCastExprConstant;
2583  }
2584  static bool classof(const CastExpr *) { return true; }
2585
2586  // Iterators
2587  child_range children() { return child_range(&Op, &Op+1); }
2588};
2589
2590/// ImplicitCastExpr - Allows us to explicitly represent implicit type
2591/// conversions, which have no direct representation in the original
2592/// source code. For example: converting T[]->T*, void f()->void
2593/// (*f)(), float->double, short->int, etc.
2594///
2595/// In C, implicit casts always produce rvalues. However, in C++, an
2596/// implicit cast whose result is being bound to a reference will be
2597/// an lvalue or xvalue. For example:
2598///
2599/// @code
2600/// class Base { };
2601/// class Derived : public Base { };
2602/// Derived &&ref();
2603/// void f(Derived d) {
2604///   Base& b = d; // initializer is an ImplicitCastExpr
2605///                // to an lvalue of type Base
2606///   Base&& r = ref(); // initializer is an ImplicitCastExpr
2607///                     // to an xvalue of type Base
2608/// }
2609/// @endcode
2610class ImplicitCastExpr : public CastExpr {
2611private:
2612  ImplicitCastExpr(QualType ty, CastKind kind, Expr *op,
2613                   unsigned BasePathLength, ExprValueKind VK)
2614    : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, BasePathLength) {
2615  }
2616
2617  /// \brief Construct an empty implicit cast.
2618  explicit ImplicitCastExpr(EmptyShell Shell, unsigned PathSize)
2619    : CastExpr(ImplicitCastExprClass, Shell, PathSize) { }
2620
2621public:
2622  enum OnStack_t { OnStack };
2623  ImplicitCastExpr(OnStack_t _, QualType ty, CastKind kind, Expr *op,
2624                   ExprValueKind VK)
2625    : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, 0) {
2626  }
2627
2628  static ImplicitCastExpr *Create(ASTContext &Context, QualType T,
2629                                  CastKind Kind, Expr *Operand,
2630                                  const CXXCastPath *BasePath,
2631                                  ExprValueKind Cat);
2632
2633  static ImplicitCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize);
2634
2635  SourceRange getSourceRange() const LLVM_READONLY {
2636    return getSubExpr()->getSourceRange();
2637  }
2638  SourceLocation getLocStart() const LLVM_READONLY {
2639    return getSubExpr()->getLocStart();
2640  }
2641  SourceLocation getLocEnd() const LLVM_READONLY {
2642    return getSubExpr()->getLocEnd();
2643  }
2644
2645  static bool classof(const Stmt *T) {
2646    return T->getStmtClass() == ImplicitCastExprClass;
2647  }
2648  static bool classof(const ImplicitCastExpr *) { return true; }
2649};
2650
2651inline Expr *Expr::IgnoreImpCasts() {
2652  Expr *e = this;
2653  while (ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
2654    e = ice->getSubExpr();
2655  return e;
2656}
2657
2658/// ExplicitCastExpr - An explicit cast written in the source
2659/// code.
2660///
2661/// This class is effectively an abstract class, because it provides
2662/// the basic representation of an explicitly-written cast without
2663/// specifying which kind of cast (C cast, functional cast, static
2664/// cast, etc.) was written; specific derived classes represent the
2665/// particular style of cast and its location information.
2666///
2667/// Unlike implicit casts, explicit cast nodes have two different
2668/// types: the type that was written into the source code, and the
2669/// actual type of the expression as determined by semantic
2670/// analysis. These types may differ slightly. For example, in C++ one
2671/// can cast to a reference type, which indicates that the resulting
2672/// expression will be an lvalue or xvalue. The reference type, however,
2673/// will not be used as the type of the expression.
2674class ExplicitCastExpr : public CastExpr {
2675  /// TInfo - Source type info for the (written) type
2676  /// this expression is casting to.
2677  TypeSourceInfo *TInfo;
2678
2679protected:
2680  ExplicitCastExpr(StmtClass SC, QualType exprTy, ExprValueKind VK,
2681                   CastKind kind, Expr *op, unsigned PathSize,
2682                   TypeSourceInfo *writtenTy)
2683    : CastExpr(SC, exprTy, VK, kind, op, PathSize), TInfo(writtenTy) {}
2684
2685  /// \brief Construct an empty explicit cast.
2686  ExplicitCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
2687    : CastExpr(SC, Shell, PathSize) { }
2688
2689public:
2690  /// getTypeInfoAsWritten - Returns the type source info for the type
2691  /// that this expression is casting to.
2692  TypeSourceInfo *getTypeInfoAsWritten() const { return TInfo; }
2693  void setTypeInfoAsWritten(TypeSourceInfo *writtenTy) { TInfo = writtenTy; }
2694
2695  /// getTypeAsWritten - Returns the type that this expression is
2696  /// casting to, as written in the source code.
2697  QualType getTypeAsWritten() const { return TInfo->getType(); }
2698
2699  static bool classof(const Stmt *T) {
2700     return T->getStmtClass() >= firstExplicitCastExprConstant &&
2701            T->getStmtClass() <= lastExplicitCastExprConstant;
2702  }
2703  static bool classof(const ExplicitCastExpr *) { return true; }
2704};
2705
2706/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
2707/// cast in C++ (C++ [expr.cast]), which uses the syntax
2708/// (Type)expr. For example: @c (int)f.
2709class CStyleCastExpr : public ExplicitCastExpr {
2710  SourceLocation LPLoc; // the location of the left paren
2711  SourceLocation RPLoc; // the location of the right paren
2712
2713  CStyleCastExpr(QualType exprTy, ExprValueKind vk, CastKind kind, Expr *op,
2714                 unsigned PathSize, TypeSourceInfo *writtenTy,
2715                 SourceLocation l, SourceLocation r)
2716    : ExplicitCastExpr(CStyleCastExprClass, exprTy, vk, kind, op, PathSize,
2717                       writtenTy), LPLoc(l), RPLoc(r) {}
2718
2719  /// \brief Construct an empty C-style explicit cast.
2720  explicit CStyleCastExpr(EmptyShell Shell, unsigned PathSize)
2721    : ExplicitCastExpr(CStyleCastExprClass, Shell, PathSize) { }
2722
2723public:
2724  static CStyleCastExpr *Create(ASTContext &Context, QualType T,
2725                                ExprValueKind VK, CastKind K,
2726                                Expr *Op, const CXXCastPath *BasePath,
2727                                TypeSourceInfo *WrittenTy, SourceLocation L,
2728                                SourceLocation R);
2729
2730  static CStyleCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize);
2731
2732  SourceLocation getLParenLoc() const { return LPLoc; }
2733  void setLParenLoc(SourceLocation L) { LPLoc = L; }
2734
2735  SourceLocation getRParenLoc() const { return RPLoc; }
2736  void setRParenLoc(SourceLocation L) { RPLoc = L; }
2737
2738  SourceRange getSourceRange() const LLVM_READONLY {
2739    return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd());
2740  }
2741  static bool classof(const Stmt *T) {
2742    return T->getStmtClass() == CStyleCastExprClass;
2743  }
2744  static bool classof(const CStyleCastExpr *) { return true; }
2745};
2746
2747/// \brief A builtin binary operation expression such as "x + y" or "x <= y".
2748///
2749/// This expression node kind describes a builtin binary operation,
2750/// such as "x + y" for integer values "x" and "y". The operands will
2751/// already have been converted to appropriate types (e.g., by
2752/// performing promotions or conversions).
2753///
2754/// In C++, where operators may be overloaded, a different kind of
2755/// expression node (CXXOperatorCallExpr) is used to express the
2756/// invocation of an overloaded operator with operator syntax. Within
2757/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
2758/// used to store an expression "x + y" depends on the subexpressions
2759/// for x and y. If neither x or y is type-dependent, and the "+"
2760/// operator resolves to a built-in operation, BinaryOperator will be
2761/// used to express the computation (x and y may still be
2762/// value-dependent). If either x or y is type-dependent, or if the
2763/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
2764/// be used to express the computation.
2765class BinaryOperator : public Expr {
2766public:
2767  typedef BinaryOperatorKind Opcode;
2768
2769private:
2770  unsigned Opc : 6;
2771  SourceLocation OpLoc;
2772
2773  enum { LHS, RHS, END_EXPR };
2774  Stmt* SubExprs[END_EXPR];
2775public:
2776
2777  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2778                 ExprValueKind VK, ExprObjectKind OK,
2779                 SourceLocation opLoc)
2780    : Expr(BinaryOperatorClass, ResTy, VK, OK,
2781           lhs->isTypeDependent() || rhs->isTypeDependent(),
2782           lhs->isValueDependent() || rhs->isValueDependent(),
2783           (lhs->isInstantiationDependent() ||
2784            rhs->isInstantiationDependent()),
2785           (lhs->containsUnexpandedParameterPack() ||
2786            rhs->containsUnexpandedParameterPack())),
2787      Opc(opc), OpLoc(opLoc) {
2788    SubExprs[LHS] = lhs;
2789    SubExprs[RHS] = rhs;
2790    assert(!isCompoundAssignmentOp() &&
2791           "Use ArithAssignBinaryOperator for compound assignments");
2792  }
2793
2794  /// \brief Construct an empty binary operator.
2795  explicit BinaryOperator(EmptyShell Empty)
2796    : Expr(BinaryOperatorClass, Empty), Opc(BO_Comma) { }
2797
2798  SourceLocation getExprLoc() const LLVM_READONLY { return OpLoc; }
2799  SourceLocation getOperatorLoc() const { return OpLoc; }
2800  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
2801
2802  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
2803  void setOpcode(Opcode O) { Opc = O; }
2804
2805  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2806  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2807  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2808  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2809
2810  SourceRange getSourceRange() const LLVM_READONLY {
2811    return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
2812  }
2813
2814  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
2815  /// corresponds to, e.g. "<<=".
2816  static const char *getOpcodeStr(Opcode Op);
2817
2818  const char *getOpcodeStr() const { return getOpcodeStr(getOpcode()); }
2819
2820  /// \brief Retrieve the binary opcode that corresponds to the given
2821  /// overloaded operator.
2822  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
2823
2824  /// \brief Retrieve the overloaded operator kind that corresponds to
2825  /// the given binary opcode.
2826  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
2827
2828  /// predicates to categorize the respective opcodes.
2829  bool isPtrMemOp() const { return Opc == BO_PtrMemD || Opc == BO_PtrMemI; }
2830  bool isMultiplicativeOp() const { return Opc >= BO_Mul && Opc <= BO_Rem; }
2831  static bool isAdditiveOp(Opcode Opc) { return Opc == BO_Add || Opc==BO_Sub; }
2832  bool isAdditiveOp() const { return isAdditiveOp(getOpcode()); }
2833  static bool isShiftOp(Opcode Opc) { return Opc == BO_Shl || Opc == BO_Shr; }
2834  bool isShiftOp() const { return isShiftOp(getOpcode()); }
2835
2836  static bool isBitwiseOp(Opcode Opc) { return Opc >= BO_And && Opc <= BO_Or; }
2837  bool isBitwiseOp() const { return isBitwiseOp(getOpcode()); }
2838
2839  static bool isRelationalOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_GE; }
2840  bool isRelationalOp() const { return isRelationalOp(getOpcode()); }
2841
2842  static bool isEqualityOp(Opcode Opc) { return Opc == BO_EQ || Opc == BO_NE; }
2843  bool isEqualityOp() const { return isEqualityOp(getOpcode()); }
2844
2845  static bool isComparisonOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_NE; }
2846  bool isComparisonOp() const { return isComparisonOp(getOpcode()); }
2847
2848  static bool isLogicalOp(Opcode Opc) { return Opc == BO_LAnd || Opc==BO_LOr; }
2849  bool isLogicalOp() const { return isLogicalOp(getOpcode()); }
2850
2851  static bool isAssignmentOp(Opcode Opc) {
2852    return Opc >= BO_Assign && Opc <= BO_OrAssign;
2853  }
2854  bool isAssignmentOp() const { return isAssignmentOp(getOpcode()); }
2855
2856  static bool isCompoundAssignmentOp(Opcode Opc) {
2857    return Opc > BO_Assign && Opc <= BO_OrAssign;
2858  }
2859  bool isCompoundAssignmentOp() const {
2860    return isCompoundAssignmentOp(getOpcode());
2861  }
2862  static Opcode getOpForCompoundAssignment(Opcode Opc) {
2863    assert(isCompoundAssignmentOp(Opc));
2864    if (Opc >= BO_AndAssign)
2865      return Opcode(unsigned(Opc) - BO_AndAssign + BO_And);
2866    else
2867      return Opcode(unsigned(Opc) - BO_MulAssign + BO_Mul);
2868  }
2869
2870  static bool isShiftAssignOp(Opcode Opc) {
2871    return Opc == BO_ShlAssign || Opc == BO_ShrAssign;
2872  }
2873  bool isShiftAssignOp() const {
2874    return isShiftAssignOp(getOpcode());
2875  }
2876
2877  static bool classof(const Stmt *S) {
2878    return S->getStmtClass() >= firstBinaryOperatorConstant &&
2879           S->getStmtClass() <= lastBinaryOperatorConstant;
2880  }
2881  static bool classof(const BinaryOperator *) { return true; }
2882
2883  // Iterators
2884  child_range children() {
2885    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
2886  }
2887
2888protected:
2889  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2890                 ExprValueKind VK, ExprObjectKind OK,
2891                 SourceLocation opLoc, bool dead)
2892    : Expr(CompoundAssignOperatorClass, ResTy, VK, OK,
2893           lhs->isTypeDependent() || rhs->isTypeDependent(),
2894           lhs->isValueDependent() || rhs->isValueDependent(),
2895           (lhs->isInstantiationDependent() ||
2896            rhs->isInstantiationDependent()),
2897           (lhs->containsUnexpandedParameterPack() ||
2898            rhs->containsUnexpandedParameterPack())),
2899      Opc(opc), OpLoc(opLoc) {
2900    SubExprs[LHS] = lhs;
2901    SubExprs[RHS] = rhs;
2902  }
2903
2904  BinaryOperator(StmtClass SC, EmptyShell Empty)
2905    : Expr(SC, Empty), Opc(BO_MulAssign) { }
2906};
2907
2908/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
2909/// track of the type the operation is performed in.  Due to the semantics of
2910/// these operators, the operands are promoted, the arithmetic performed, an
2911/// implicit conversion back to the result type done, then the assignment takes
2912/// place.  This captures the intermediate type which the computation is done
2913/// in.
2914class CompoundAssignOperator : public BinaryOperator {
2915  QualType ComputationLHSType;
2916  QualType ComputationResultType;
2917public:
2918  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResType,
2919                         ExprValueKind VK, ExprObjectKind OK,
2920                         QualType CompLHSType, QualType CompResultType,
2921                         SourceLocation OpLoc)
2922    : BinaryOperator(lhs, rhs, opc, ResType, VK, OK, OpLoc, true),
2923      ComputationLHSType(CompLHSType),
2924      ComputationResultType(CompResultType) {
2925    assert(isCompoundAssignmentOp() &&
2926           "Only should be used for compound assignments");
2927  }
2928
2929  /// \brief Build an empty compound assignment operator expression.
2930  explicit CompoundAssignOperator(EmptyShell Empty)
2931    : BinaryOperator(CompoundAssignOperatorClass, Empty) { }
2932
2933  // The two computation types are the type the LHS is converted
2934  // to for the computation and the type of the result; the two are
2935  // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
2936  QualType getComputationLHSType() const { return ComputationLHSType; }
2937  void setComputationLHSType(QualType T) { ComputationLHSType = T; }
2938
2939  QualType getComputationResultType() const { return ComputationResultType; }
2940  void setComputationResultType(QualType T) { ComputationResultType = T; }
2941
2942  static bool classof(const CompoundAssignOperator *) { return true; }
2943  static bool classof(const Stmt *S) {
2944    return S->getStmtClass() == CompoundAssignOperatorClass;
2945  }
2946};
2947
2948/// AbstractConditionalOperator - An abstract base class for
2949/// ConditionalOperator and BinaryConditionalOperator.
2950class AbstractConditionalOperator : public Expr {
2951  SourceLocation QuestionLoc, ColonLoc;
2952  friend class ASTStmtReader;
2953
2954protected:
2955  AbstractConditionalOperator(StmtClass SC, QualType T,
2956                              ExprValueKind VK, ExprObjectKind OK,
2957                              bool TD, bool VD, bool ID,
2958                              bool ContainsUnexpandedParameterPack,
2959                              SourceLocation qloc,
2960                              SourceLocation cloc)
2961    : Expr(SC, T, VK, OK, TD, VD, ID, ContainsUnexpandedParameterPack),
2962      QuestionLoc(qloc), ColonLoc(cloc) {}
2963
2964  AbstractConditionalOperator(StmtClass SC, EmptyShell Empty)
2965    : Expr(SC, Empty) { }
2966
2967public:
2968  // getCond - Return the expression representing the condition for
2969  //   the ?: operator.
2970  Expr *getCond() const;
2971
2972  // getTrueExpr - Return the subexpression representing the value of
2973  //   the expression if the condition evaluates to true.
2974  Expr *getTrueExpr() const;
2975
2976  // getFalseExpr - Return the subexpression representing the value of
2977  //   the expression if the condition evaluates to false.  This is
2978  //   the same as getRHS.
2979  Expr *getFalseExpr() const;
2980
2981  SourceLocation getQuestionLoc() const { return QuestionLoc; }
2982  SourceLocation getColonLoc() const { return ColonLoc; }
2983
2984  static bool classof(const Stmt *T) {
2985    return T->getStmtClass() == ConditionalOperatorClass ||
2986           T->getStmtClass() == BinaryConditionalOperatorClass;
2987  }
2988  static bool classof(const AbstractConditionalOperator *) { return true; }
2989};
2990
2991/// ConditionalOperator - The ?: ternary operator.  The GNU "missing
2992/// middle" extension is a BinaryConditionalOperator.
2993class ConditionalOperator : public AbstractConditionalOperator {
2994  enum { COND, LHS, RHS, END_EXPR };
2995  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
2996
2997  friend class ASTStmtReader;
2998public:
2999  ConditionalOperator(Expr *cond, SourceLocation QLoc, Expr *lhs,
3000                      SourceLocation CLoc, Expr *rhs,
3001                      QualType t, ExprValueKind VK, ExprObjectKind OK)
3002    : AbstractConditionalOperator(ConditionalOperatorClass, t, VK, OK,
3003           // FIXME: the type of the conditional operator doesn't
3004           // depend on the type of the conditional, but the standard
3005           // seems to imply that it could. File a bug!
3006           (lhs->isTypeDependent() || rhs->isTypeDependent()),
3007           (cond->isValueDependent() || lhs->isValueDependent() ||
3008            rhs->isValueDependent()),
3009           (cond->isInstantiationDependent() ||
3010            lhs->isInstantiationDependent() ||
3011            rhs->isInstantiationDependent()),
3012           (cond->containsUnexpandedParameterPack() ||
3013            lhs->containsUnexpandedParameterPack() ||
3014            rhs->containsUnexpandedParameterPack()),
3015                                  QLoc, CLoc) {
3016    SubExprs[COND] = cond;
3017    SubExprs[LHS] = lhs;
3018    SubExprs[RHS] = rhs;
3019  }
3020
3021  /// \brief Build an empty conditional operator.
3022  explicit ConditionalOperator(EmptyShell Empty)
3023    : AbstractConditionalOperator(ConditionalOperatorClass, Empty) { }
3024
3025  // getCond - Return the expression representing the condition for
3026  //   the ?: operator.
3027  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3028
3029  // getTrueExpr - Return the subexpression representing the value of
3030  //   the expression if the condition evaluates to true.
3031  Expr *getTrueExpr() const { return cast<Expr>(SubExprs[LHS]); }
3032
3033  // getFalseExpr - Return the subexpression representing the value of
3034  //   the expression if the condition evaluates to false.  This is
3035  //   the same as getRHS.
3036  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
3037
3038  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
3039  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
3040
3041  SourceRange getSourceRange() const LLVM_READONLY {
3042    return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
3043  }
3044  static bool classof(const Stmt *T) {
3045    return T->getStmtClass() == ConditionalOperatorClass;
3046  }
3047  static bool classof(const ConditionalOperator *) { return true; }
3048
3049  // Iterators
3050  child_range children() {
3051    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
3052  }
3053};
3054
3055/// BinaryConditionalOperator - The GNU extension to the conditional
3056/// operator which allows the middle operand to be omitted.
3057///
3058/// This is a different expression kind on the assumption that almost
3059/// every client ends up needing to know that these are different.
3060class BinaryConditionalOperator : public AbstractConditionalOperator {
3061  enum { COMMON, COND, LHS, RHS, NUM_SUBEXPRS };
3062
3063  /// - the common condition/left-hand-side expression, which will be
3064  ///   evaluated as the opaque value
3065  /// - the condition, expressed in terms of the opaque value
3066  /// - the left-hand-side, expressed in terms of the opaque value
3067  /// - the right-hand-side
3068  Stmt *SubExprs[NUM_SUBEXPRS];
3069  OpaqueValueExpr *OpaqueValue;
3070
3071  friend class ASTStmtReader;
3072public:
3073  BinaryConditionalOperator(Expr *common, OpaqueValueExpr *opaqueValue,
3074                            Expr *cond, Expr *lhs, Expr *rhs,
3075                            SourceLocation qloc, SourceLocation cloc,
3076                            QualType t, ExprValueKind VK, ExprObjectKind OK)
3077    : AbstractConditionalOperator(BinaryConditionalOperatorClass, t, VK, OK,
3078           (common->isTypeDependent() || rhs->isTypeDependent()),
3079           (common->isValueDependent() || rhs->isValueDependent()),
3080           (common->isInstantiationDependent() ||
3081            rhs->isInstantiationDependent()),
3082           (common->containsUnexpandedParameterPack() ||
3083            rhs->containsUnexpandedParameterPack()),
3084                                  qloc, cloc),
3085      OpaqueValue(opaqueValue) {
3086    SubExprs[COMMON] = common;
3087    SubExprs[COND] = cond;
3088    SubExprs[LHS] = lhs;
3089    SubExprs[RHS] = rhs;
3090    assert(OpaqueValue->getSourceExpr() == common && "Wrong opaque value");
3091  }
3092
3093  /// \brief Build an empty conditional operator.
3094  explicit BinaryConditionalOperator(EmptyShell Empty)
3095    : AbstractConditionalOperator(BinaryConditionalOperatorClass, Empty) { }
3096
3097  /// \brief getCommon - Return the common expression, written to the
3098  ///   left of the condition.  The opaque value will be bound to the
3099  ///   result of this expression.
3100  Expr *getCommon() const { return cast<Expr>(SubExprs[COMMON]); }
3101
3102  /// \brief getOpaqueValue - Return the opaque value placeholder.
3103  OpaqueValueExpr *getOpaqueValue() const { return OpaqueValue; }
3104
3105  /// \brief getCond - Return the condition expression; this is defined
3106  ///   in terms of the opaque value.
3107  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3108
3109  /// \brief getTrueExpr - Return the subexpression which will be
3110  ///   evaluated if the condition evaluates to true;  this is defined
3111  ///   in terms of the opaque value.
3112  Expr *getTrueExpr() const {
3113    return cast<Expr>(SubExprs[LHS]);
3114  }
3115
3116  /// \brief getFalseExpr - Return the subexpression which will be
3117  ///   evaluated if the condnition evaluates to false; this is
3118  ///   defined in terms of the opaque value.
3119  Expr *getFalseExpr() const {
3120    return cast<Expr>(SubExprs[RHS]);
3121  }
3122
3123  SourceRange getSourceRange() const LLVM_READONLY {
3124    return SourceRange(getCommon()->getLocStart(), getFalseExpr()->getLocEnd());
3125  }
3126  static bool classof(const Stmt *T) {
3127    return T->getStmtClass() == BinaryConditionalOperatorClass;
3128  }
3129  static bool classof(const BinaryConditionalOperator *) { return true; }
3130
3131  // Iterators
3132  child_range children() {
3133    return child_range(SubExprs, SubExprs + NUM_SUBEXPRS);
3134  }
3135};
3136
3137inline Expr *AbstractConditionalOperator::getCond() const {
3138  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3139    return co->getCond();
3140  return cast<BinaryConditionalOperator>(this)->getCond();
3141}
3142
3143inline Expr *AbstractConditionalOperator::getTrueExpr() const {
3144  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3145    return co->getTrueExpr();
3146  return cast<BinaryConditionalOperator>(this)->getTrueExpr();
3147}
3148
3149inline Expr *AbstractConditionalOperator::getFalseExpr() const {
3150  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3151    return co->getFalseExpr();
3152  return cast<BinaryConditionalOperator>(this)->getFalseExpr();
3153}
3154
3155/// AddrLabelExpr - The GNU address of label extension, representing &&label.
3156class AddrLabelExpr : public Expr {
3157  SourceLocation AmpAmpLoc, LabelLoc;
3158  LabelDecl *Label;
3159public:
3160  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelDecl *L,
3161                QualType t)
3162    : Expr(AddrLabelExprClass, t, VK_RValue, OK_Ordinary, false, false, false,
3163           false),
3164      AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
3165
3166  /// \brief Build an empty address of a label expression.
3167  explicit AddrLabelExpr(EmptyShell Empty)
3168    : Expr(AddrLabelExprClass, Empty) { }
3169
3170  SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
3171  void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
3172  SourceLocation getLabelLoc() const { return LabelLoc; }
3173  void setLabelLoc(SourceLocation L) { LabelLoc = L; }
3174
3175  SourceRange getSourceRange() const LLVM_READONLY {
3176    return SourceRange(AmpAmpLoc, LabelLoc);
3177  }
3178
3179  LabelDecl *getLabel() const { return Label; }
3180  void setLabel(LabelDecl *L) { Label = L; }
3181
3182  static bool classof(const Stmt *T) {
3183    return T->getStmtClass() == AddrLabelExprClass;
3184  }
3185  static bool classof(const AddrLabelExpr *) { return true; }
3186
3187  // Iterators
3188  child_range children() { return child_range(); }
3189};
3190
3191/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
3192/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
3193/// takes the value of the last subexpression.
3194///
3195/// A StmtExpr is always an r-value; values "returned" out of a
3196/// StmtExpr will be copied.
3197class StmtExpr : public Expr {
3198  Stmt *SubStmt;
3199  SourceLocation LParenLoc, RParenLoc;
3200public:
3201  // FIXME: Does type-dependence need to be computed differently?
3202  // FIXME: Do we need to compute instantiation instantiation-dependence for
3203  // statements? (ugh!)
3204  StmtExpr(CompoundStmt *substmt, QualType T,
3205           SourceLocation lp, SourceLocation rp) :
3206    Expr(StmtExprClass, T, VK_RValue, OK_Ordinary,
3207         T->isDependentType(), false, false, false),
3208    SubStmt(substmt), LParenLoc(lp), RParenLoc(rp) { }
3209
3210  /// \brief Build an empty statement expression.
3211  explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
3212
3213  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
3214  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
3215  void setSubStmt(CompoundStmt *S) { SubStmt = S; }
3216
3217  SourceRange getSourceRange() const LLVM_READONLY {
3218    return SourceRange(LParenLoc, RParenLoc);
3219  }
3220
3221  SourceLocation getLParenLoc() const { return LParenLoc; }
3222  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
3223  SourceLocation getRParenLoc() const { return RParenLoc; }
3224  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3225
3226  static bool classof(const Stmt *T) {
3227    return T->getStmtClass() == StmtExprClass;
3228  }
3229  static bool classof(const StmtExpr *) { return true; }
3230
3231  // Iterators
3232  child_range children() { return child_range(&SubStmt, &SubStmt+1); }
3233};
3234
3235
3236/// ShuffleVectorExpr - clang-specific builtin-in function
3237/// __builtin_shufflevector.
3238/// This AST node represents a operator that does a constant
3239/// shuffle, similar to LLVM's shufflevector instruction. It takes
3240/// two vectors and a variable number of constant indices,
3241/// and returns the appropriately shuffled vector.
3242class ShuffleVectorExpr : public Expr {
3243  SourceLocation BuiltinLoc, RParenLoc;
3244
3245  // SubExprs - the list of values passed to the __builtin_shufflevector
3246  // function. The first two are vectors, and the rest are constant
3247  // indices.  The number of values in this list is always
3248  // 2+the number of indices in the vector type.
3249  Stmt **SubExprs;
3250  unsigned NumExprs;
3251
3252public:
3253  ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr,
3254                    QualType Type, SourceLocation BLoc,
3255                    SourceLocation RP);
3256
3257  /// \brief Build an empty vector-shuffle expression.
3258  explicit ShuffleVectorExpr(EmptyShell Empty)
3259    : Expr(ShuffleVectorExprClass, Empty), SubExprs(0) { }
3260
3261  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3262  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3263
3264  SourceLocation getRParenLoc() const { return RParenLoc; }
3265  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3266
3267  SourceRange getSourceRange() const LLVM_READONLY {
3268    return SourceRange(BuiltinLoc, RParenLoc);
3269  }
3270  static bool classof(const Stmt *T) {
3271    return T->getStmtClass() == ShuffleVectorExprClass;
3272  }
3273  static bool classof(const ShuffleVectorExpr *) { return true; }
3274
3275  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
3276  /// constant expression, the actual arguments passed in, and the function
3277  /// pointers.
3278  unsigned getNumSubExprs() const { return NumExprs; }
3279
3280  /// \brief Retrieve the array of expressions.
3281  Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
3282
3283  /// getExpr - Return the Expr at the specified index.
3284  Expr *getExpr(unsigned Index) {
3285    assert((Index < NumExprs) && "Arg access out of range!");
3286    return cast<Expr>(SubExprs[Index]);
3287  }
3288  const Expr *getExpr(unsigned Index) const {
3289    assert((Index < NumExprs) && "Arg access out of range!");
3290    return cast<Expr>(SubExprs[Index]);
3291  }
3292
3293  void setExprs(ASTContext &C, Expr ** Exprs, unsigned NumExprs);
3294
3295  unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) {
3296    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
3297    return getExpr(N+2)->EvaluateKnownConstInt(Ctx).getZExtValue();
3298  }
3299
3300  // Iterators
3301  child_range children() {
3302    return child_range(&SubExprs[0], &SubExprs[0]+NumExprs);
3303  }
3304};
3305
3306/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
3307/// This AST node is similar to the conditional operator (?:) in C, with
3308/// the following exceptions:
3309/// - the test expression must be a integer constant expression.
3310/// - the expression returned acts like the chosen subexpression in every
3311///   visible way: the type is the same as that of the chosen subexpression,
3312///   and all predicates (whether it's an l-value, whether it's an integer
3313///   constant expression, etc.) return the same result as for the chosen
3314///   sub-expression.
3315class ChooseExpr : public Expr {
3316  enum { COND, LHS, RHS, END_EXPR };
3317  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
3318  SourceLocation BuiltinLoc, RParenLoc;
3319public:
3320  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs,
3321             QualType t, ExprValueKind VK, ExprObjectKind OK,
3322             SourceLocation RP, bool TypeDependent, bool ValueDependent)
3323    : Expr(ChooseExprClass, t, VK, OK, TypeDependent, ValueDependent,
3324           (cond->isInstantiationDependent() ||
3325            lhs->isInstantiationDependent() ||
3326            rhs->isInstantiationDependent()),
3327           (cond->containsUnexpandedParameterPack() ||
3328            lhs->containsUnexpandedParameterPack() ||
3329            rhs->containsUnexpandedParameterPack())),
3330      BuiltinLoc(BLoc), RParenLoc(RP) {
3331      SubExprs[COND] = cond;
3332      SubExprs[LHS] = lhs;
3333      SubExprs[RHS] = rhs;
3334    }
3335
3336  /// \brief Build an empty __builtin_choose_expr.
3337  explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
3338
3339  /// isConditionTrue - Return whether the condition is true (i.e. not
3340  /// equal to zero).
3341  bool isConditionTrue(const ASTContext &C) const;
3342
3343  /// getChosenSubExpr - Return the subexpression chosen according to the
3344  /// condition.
3345  Expr *getChosenSubExpr(const ASTContext &C) const {
3346    return isConditionTrue(C) ? getLHS() : getRHS();
3347  }
3348
3349  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3350  void setCond(Expr *E) { SubExprs[COND] = E; }
3351  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
3352  void setLHS(Expr *E) { SubExprs[LHS] = E; }
3353  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
3354  void setRHS(Expr *E) { SubExprs[RHS] = E; }
3355
3356  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3357  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3358
3359  SourceLocation getRParenLoc() const { return RParenLoc; }
3360  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3361
3362  SourceRange getSourceRange() const LLVM_READONLY {
3363    return SourceRange(BuiltinLoc, RParenLoc);
3364  }
3365  static bool classof(const Stmt *T) {
3366    return T->getStmtClass() == ChooseExprClass;
3367  }
3368  static bool classof(const ChooseExpr *) { return true; }
3369
3370  // Iterators
3371  child_range children() {
3372    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
3373  }
3374};
3375
3376/// GNUNullExpr - Implements the GNU __null extension, which is a name
3377/// for a null pointer constant that has integral type (e.g., int or
3378/// long) and is the same size and alignment as a pointer. The __null
3379/// extension is typically only used by system headers, which define
3380/// NULL as __null in C++ rather than using 0 (which is an integer
3381/// that may not match the size of a pointer).
3382class GNUNullExpr : public Expr {
3383  /// TokenLoc - The location of the __null keyword.
3384  SourceLocation TokenLoc;
3385
3386public:
3387  GNUNullExpr(QualType Ty, SourceLocation Loc)
3388    : Expr(GNUNullExprClass, Ty, VK_RValue, OK_Ordinary, false, false, false,
3389           false),
3390      TokenLoc(Loc) { }
3391
3392  /// \brief Build an empty GNU __null expression.
3393  explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
3394
3395  /// getTokenLocation - The location of the __null token.
3396  SourceLocation getTokenLocation() const { return TokenLoc; }
3397  void setTokenLocation(SourceLocation L) { TokenLoc = L; }
3398
3399  SourceRange getSourceRange() const LLVM_READONLY {
3400    return SourceRange(TokenLoc);
3401  }
3402  static bool classof(const Stmt *T) {
3403    return T->getStmtClass() == GNUNullExprClass;
3404  }
3405  static bool classof(const GNUNullExpr *) { return true; }
3406
3407  // Iterators
3408  child_range children() { return child_range(); }
3409};
3410
3411/// VAArgExpr, used for the builtin function __builtin_va_arg.
3412class VAArgExpr : public Expr {
3413  Stmt *Val;
3414  TypeSourceInfo *TInfo;
3415  SourceLocation BuiltinLoc, RParenLoc;
3416public:
3417  VAArgExpr(SourceLocation BLoc, Expr* e, TypeSourceInfo *TInfo,
3418            SourceLocation RPLoc, QualType t)
3419    : Expr(VAArgExprClass, t, VK_RValue, OK_Ordinary,
3420           t->isDependentType(), false,
3421           (TInfo->getType()->isInstantiationDependentType() ||
3422            e->isInstantiationDependent()),
3423           (TInfo->getType()->containsUnexpandedParameterPack() ||
3424            e->containsUnexpandedParameterPack())),
3425      Val(e), TInfo(TInfo),
3426      BuiltinLoc(BLoc),
3427      RParenLoc(RPLoc) { }
3428
3429  /// \brief Create an empty __builtin_va_arg expression.
3430  explicit VAArgExpr(EmptyShell Empty) : Expr(VAArgExprClass, Empty) { }
3431
3432  const Expr *getSubExpr() const { return cast<Expr>(Val); }
3433  Expr *getSubExpr() { return cast<Expr>(Val); }
3434  void setSubExpr(Expr *E) { Val = E; }
3435
3436  TypeSourceInfo *getWrittenTypeInfo() const { return TInfo; }
3437  void setWrittenTypeInfo(TypeSourceInfo *TI) { TInfo = TI; }
3438
3439  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3440  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3441
3442  SourceLocation getRParenLoc() const { return RParenLoc; }
3443  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3444
3445  SourceRange getSourceRange() const LLVM_READONLY {
3446    return SourceRange(BuiltinLoc, RParenLoc);
3447  }
3448  static bool classof(const Stmt *T) {
3449    return T->getStmtClass() == VAArgExprClass;
3450  }
3451  static bool classof(const VAArgExpr *) { return true; }
3452
3453  // Iterators
3454  child_range children() { return child_range(&Val, &Val+1); }
3455};
3456
3457/// @brief Describes an C or C++ initializer list.
3458///
3459/// InitListExpr describes an initializer list, which can be used to
3460/// initialize objects of different types, including
3461/// struct/class/union types, arrays, and vectors. For example:
3462///
3463/// @code
3464/// struct foo x = { 1, { 2, 3 } };
3465/// @endcode
3466///
3467/// Prior to semantic analysis, an initializer list will represent the
3468/// initializer list as written by the user, but will have the
3469/// placeholder type "void". This initializer list is called the
3470/// syntactic form of the initializer, and may contain C99 designated
3471/// initializers (represented as DesignatedInitExprs), initializations
3472/// of subobject members without explicit braces, and so on. Clients
3473/// interested in the original syntax of the initializer list should
3474/// use the syntactic form of the initializer list.
3475///
3476/// After semantic analysis, the initializer list will represent the
3477/// semantic form of the initializer, where the initializations of all
3478/// subobjects are made explicit with nested InitListExpr nodes and
3479/// C99 designators have been eliminated by placing the designated
3480/// initializations into the subobject they initialize. Additionally,
3481/// any "holes" in the initialization, where no initializer has been
3482/// specified for a particular subobject, will be replaced with
3483/// implicitly-generated ImplicitValueInitExpr expressions that
3484/// value-initialize the subobjects. Note, however, that the
3485/// initializer lists may still have fewer initializers than there are
3486/// elements to initialize within the object.
3487///
3488/// Given the semantic form of the initializer list, one can retrieve
3489/// the original syntactic form of that initializer list (if it
3490/// exists) using getSyntacticForm(). Since many initializer lists
3491/// have the same syntactic and semantic forms, getSyntacticForm() may
3492/// return NULL, indicating that the current initializer list also
3493/// serves as its syntactic form.
3494class InitListExpr : public Expr {
3495  // FIXME: Eliminate this vector in favor of ASTContext allocation
3496  typedef ASTVector<Stmt *> InitExprsTy;
3497  InitExprsTy InitExprs;
3498  SourceLocation LBraceLoc, RBraceLoc;
3499
3500  /// Contains the initializer list that describes the syntactic form
3501  /// written in the source code.
3502  InitListExpr *SyntacticForm;
3503
3504  /// \brief Either:
3505  ///  If this initializer list initializes an array with more elements than
3506  ///  there are initializers in the list, specifies an expression to be used
3507  ///  for value initialization of the rest of the elements.
3508  /// Or
3509  ///  If this initializer list initializes a union, specifies which
3510  ///  field within the union will be initialized.
3511  llvm::PointerUnion<Expr *, FieldDecl *> ArrayFillerOrUnionFieldInit;
3512
3513public:
3514  InitListExpr(ASTContext &C, SourceLocation lbraceloc,
3515               Expr **initexprs, unsigned numinits,
3516               SourceLocation rbraceloc);
3517
3518  /// \brief Build an empty initializer list.
3519  explicit InitListExpr(ASTContext &C, EmptyShell Empty)
3520    : Expr(InitListExprClass, Empty), InitExprs(C) { }
3521
3522  unsigned getNumInits() const { return InitExprs.size(); }
3523
3524  /// \brief Retrieve the set of initializers.
3525  Expr **getInits() { return reinterpret_cast<Expr **>(InitExprs.data()); }
3526
3527  const Expr *getInit(unsigned Init) const {
3528    assert(Init < getNumInits() && "Initializer access out of range!");
3529    return cast_or_null<Expr>(InitExprs[Init]);
3530  }
3531
3532  Expr *getInit(unsigned Init) {
3533    assert(Init < getNumInits() && "Initializer access out of range!");
3534    return cast_or_null<Expr>(InitExprs[Init]);
3535  }
3536
3537  void setInit(unsigned Init, Expr *expr) {
3538    assert(Init < getNumInits() && "Initializer access out of range!");
3539    InitExprs[Init] = expr;
3540  }
3541
3542  /// \brief Reserve space for some number of initializers.
3543  void reserveInits(ASTContext &C, unsigned NumInits);
3544
3545  /// @brief Specify the number of initializers
3546  ///
3547  /// If there are more than @p NumInits initializers, the remaining
3548  /// initializers will be destroyed. If there are fewer than @p
3549  /// NumInits initializers, NULL expressions will be added for the
3550  /// unknown initializers.
3551  void resizeInits(ASTContext &Context, unsigned NumInits);
3552
3553  /// @brief Updates the initializer at index @p Init with the new
3554  /// expression @p expr, and returns the old expression at that
3555  /// location.
3556  ///
3557  /// When @p Init is out of range for this initializer list, the
3558  /// initializer list will be extended with NULL expressions to
3559  /// accommodate the new entry.
3560  Expr *updateInit(ASTContext &C, unsigned Init, Expr *expr);
3561
3562  /// \brief If this initializer list initializes an array with more elements
3563  /// than there are initializers in the list, specifies an expression to be
3564  /// used for value initialization of the rest of the elements.
3565  Expr *getArrayFiller() {
3566    return ArrayFillerOrUnionFieldInit.dyn_cast<Expr *>();
3567  }
3568  const Expr *getArrayFiller() const {
3569    return const_cast<InitListExpr *>(this)->getArrayFiller();
3570  }
3571  void setArrayFiller(Expr *filler);
3572
3573  /// \brief Return true if this is an array initializer and its array "filler"
3574  /// has been set.
3575  bool hasArrayFiller() const { return getArrayFiller(); }
3576
3577  /// \brief If this initializes a union, specifies which field in the
3578  /// union to initialize.
3579  ///
3580  /// Typically, this field is the first named field within the
3581  /// union. However, a designated initializer can specify the
3582  /// initialization of a different field within the union.
3583  FieldDecl *getInitializedFieldInUnion() {
3584    return ArrayFillerOrUnionFieldInit.dyn_cast<FieldDecl *>();
3585  }
3586  const FieldDecl *getInitializedFieldInUnion() const {
3587    return const_cast<InitListExpr *>(this)->getInitializedFieldInUnion();
3588  }
3589  void setInitializedFieldInUnion(FieldDecl *FD) {
3590    ArrayFillerOrUnionFieldInit = FD;
3591  }
3592
3593  // Explicit InitListExpr's originate from source code (and have valid source
3594  // locations). Implicit InitListExpr's are created by the semantic analyzer.
3595  bool isExplicit() {
3596    return LBraceLoc.isValid() && RBraceLoc.isValid();
3597  }
3598
3599  SourceLocation getLBraceLoc() const { return LBraceLoc; }
3600  void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
3601  SourceLocation getRBraceLoc() const { return RBraceLoc; }
3602  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
3603
3604  /// @brief Retrieve the initializer list that describes the
3605  /// syntactic form of the initializer.
3606  ///
3607  ///
3608  InitListExpr *getSyntacticForm() const { return SyntacticForm; }
3609  void setSyntacticForm(InitListExpr *Init) { SyntacticForm = Init; }
3610
3611  bool hadArrayRangeDesignator() const {
3612    return InitListExprBits.HadArrayRangeDesignator != 0;
3613  }
3614  void sawArrayRangeDesignator(bool ARD = true) {
3615    InitListExprBits.HadArrayRangeDesignator = ARD;
3616  }
3617
3618  bool initializesStdInitializerList() const {
3619    return InitListExprBits.InitializesStdInitializerList != 0;
3620  }
3621  void setInitializesStdInitializerList(bool ISIL = true) {
3622    InitListExprBits.InitializesStdInitializerList = ISIL;
3623  }
3624
3625  SourceRange getSourceRange() const LLVM_READONLY;
3626
3627  static bool classof(const Stmt *T) {
3628    return T->getStmtClass() == InitListExprClass;
3629  }
3630  static bool classof(const InitListExpr *) { return true; }
3631
3632  // Iterators
3633  child_range children() {
3634    if (InitExprs.empty()) return child_range();
3635    return child_range(&InitExprs[0], &InitExprs[0] + InitExprs.size());
3636  }
3637
3638  typedef InitExprsTy::iterator iterator;
3639  typedef InitExprsTy::const_iterator const_iterator;
3640  typedef InitExprsTy::reverse_iterator reverse_iterator;
3641  typedef InitExprsTy::const_reverse_iterator const_reverse_iterator;
3642
3643  iterator begin() { return InitExprs.begin(); }
3644  const_iterator begin() const { return InitExprs.begin(); }
3645  iterator end() { return InitExprs.end(); }
3646  const_iterator end() const { return InitExprs.end(); }
3647  reverse_iterator rbegin() { return InitExprs.rbegin(); }
3648  const_reverse_iterator rbegin() const { return InitExprs.rbegin(); }
3649  reverse_iterator rend() { return InitExprs.rend(); }
3650  const_reverse_iterator rend() const { return InitExprs.rend(); }
3651
3652  friend class ASTStmtReader;
3653  friend class ASTStmtWriter;
3654};
3655
3656/// @brief Represents a C99 designated initializer expression.
3657///
3658/// A designated initializer expression (C99 6.7.8) contains one or
3659/// more designators (which can be field designators, array
3660/// designators, or GNU array-range designators) followed by an
3661/// expression that initializes the field or element(s) that the
3662/// designators refer to. For example, given:
3663///
3664/// @code
3665/// struct point {
3666///   double x;
3667///   double y;
3668/// };
3669/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
3670/// @endcode
3671///
3672/// The InitListExpr contains three DesignatedInitExprs, the first of
3673/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
3674/// designators, one array designator for @c [2] followed by one field
3675/// designator for @c .y. The initalization expression will be 1.0.
3676class DesignatedInitExpr : public Expr {
3677public:
3678  /// \brief Forward declaration of the Designator class.
3679  class Designator;
3680
3681private:
3682  /// The location of the '=' or ':' prior to the actual initializer
3683  /// expression.
3684  SourceLocation EqualOrColonLoc;
3685
3686  /// Whether this designated initializer used the GNU deprecated
3687  /// syntax rather than the C99 '=' syntax.
3688  bool GNUSyntax : 1;
3689
3690  /// The number of designators in this initializer expression.
3691  unsigned NumDesignators : 15;
3692
3693  /// The number of subexpressions of this initializer expression,
3694  /// which contains both the initializer and any additional
3695  /// expressions used by array and array-range designators.
3696  unsigned NumSubExprs : 16;
3697
3698  /// \brief The designators in this designated initialization
3699  /// expression.
3700  Designator *Designators;
3701
3702
3703  DesignatedInitExpr(ASTContext &C, QualType Ty, unsigned NumDesignators,
3704                     const Designator *Designators,
3705                     SourceLocation EqualOrColonLoc, bool GNUSyntax,
3706                     Expr **IndexExprs, unsigned NumIndexExprs,
3707                     Expr *Init);
3708
3709  explicit DesignatedInitExpr(unsigned NumSubExprs)
3710    : Expr(DesignatedInitExprClass, EmptyShell()),
3711      NumDesignators(0), NumSubExprs(NumSubExprs), Designators(0) { }
3712
3713public:
3714  /// A field designator, e.g., ".x".
3715  struct FieldDesignator {
3716    /// Refers to the field that is being initialized. The low bit
3717    /// of this field determines whether this is actually a pointer
3718    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
3719    /// initially constructed, a field designator will store an
3720    /// IdentifierInfo*. After semantic analysis has resolved that
3721    /// name, the field designator will instead store a FieldDecl*.
3722    uintptr_t NameOrField;
3723
3724    /// The location of the '.' in the designated initializer.
3725    unsigned DotLoc;
3726
3727    /// The location of the field name in the designated initializer.
3728    unsigned FieldLoc;
3729  };
3730
3731  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
3732  struct ArrayOrRangeDesignator {
3733    /// Location of the first index expression within the designated
3734    /// initializer expression's list of subexpressions.
3735    unsigned Index;
3736    /// The location of the '[' starting the array range designator.
3737    unsigned LBracketLoc;
3738    /// The location of the ellipsis separating the start and end
3739    /// indices. Only valid for GNU array-range designators.
3740    unsigned EllipsisLoc;
3741    /// The location of the ']' terminating the array range designator.
3742    unsigned RBracketLoc;
3743  };
3744
3745  /// @brief Represents a single C99 designator.
3746  ///
3747  /// @todo This class is infuriatingly similar to clang::Designator,
3748  /// but minor differences (storing indices vs. storing pointers)
3749  /// keep us from reusing it. Try harder, later, to rectify these
3750  /// differences.
3751  class Designator {
3752    /// @brief The kind of designator this describes.
3753    enum {
3754      FieldDesignator,
3755      ArrayDesignator,
3756      ArrayRangeDesignator
3757    } Kind;
3758
3759    union {
3760      /// A field designator, e.g., ".x".
3761      struct FieldDesignator Field;
3762      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
3763      struct ArrayOrRangeDesignator ArrayOrRange;
3764    };
3765    friend class DesignatedInitExpr;
3766
3767  public:
3768    Designator() {}
3769
3770    /// @brief Initializes a field designator.
3771    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
3772               SourceLocation FieldLoc)
3773      : Kind(FieldDesignator) {
3774      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
3775      Field.DotLoc = DotLoc.getRawEncoding();
3776      Field.FieldLoc = FieldLoc.getRawEncoding();
3777    }
3778
3779    /// @brief Initializes an array designator.
3780    Designator(unsigned Index, SourceLocation LBracketLoc,
3781               SourceLocation RBracketLoc)
3782      : Kind(ArrayDesignator) {
3783      ArrayOrRange.Index = Index;
3784      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3785      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
3786      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3787    }
3788
3789    /// @brief Initializes a GNU array-range designator.
3790    Designator(unsigned Index, SourceLocation LBracketLoc,
3791               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
3792      : Kind(ArrayRangeDesignator) {
3793      ArrayOrRange.Index = Index;
3794      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3795      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
3796      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3797    }
3798
3799    bool isFieldDesignator() const { return Kind == FieldDesignator; }
3800    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
3801    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
3802
3803    IdentifierInfo *getFieldName() const;
3804
3805    FieldDecl *getField() const {
3806      assert(Kind == FieldDesignator && "Only valid on a field designator");
3807      if (Field.NameOrField & 0x01)
3808        return 0;
3809      else
3810        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
3811    }
3812
3813    void setField(FieldDecl *FD) {
3814      assert(Kind == FieldDesignator && "Only valid on a field designator");
3815      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
3816    }
3817
3818    SourceLocation getDotLoc() const {
3819      assert(Kind == FieldDesignator && "Only valid on a field designator");
3820      return SourceLocation::getFromRawEncoding(Field.DotLoc);
3821    }
3822
3823    SourceLocation getFieldLoc() const {
3824      assert(Kind == FieldDesignator && "Only valid on a field designator");
3825      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
3826    }
3827
3828    SourceLocation getLBracketLoc() const {
3829      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3830             "Only valid on an array or array-range designator");
3831      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
3832    }
3833
3834    SourceLocation getRBracketLoc() const {
3835      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3836             "Only valid on an array or array-range designator");
3837      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
3838    }
3839
3840    SourceLocation getEllipsisLoc() const {
3841      assert(Kind == ArrayRangeDesignator &&
3842             "Only valid on an array-range designator");
3843      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
3844    }
3845
3846    unsigned getFirstExprIndex() const {
3847      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3848             "Only valid on an array or array-range designator");
3849      return ArrayOrRange.Index;
3850    }
3851
3852    SourceLocation getStartLocation() const {
3853      if (Kind == FieldDesignator)
3854        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
3855      else
3856        return getLBracketLoc();
3857    }
3858    SourceLocation getEndLocation() const {
3859      return Kind == FieldDesignator ? getFieldLoc() : getRBracketLoc();
3860    }
3861    SourceRange getSourceRange() const LLVM_READONLY {
3862      return SourceRange(getStartLocation(), getEndLocation());
3863    }
3864  };
3865
3866  static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators,
3867                                    unsigned NumDesignators,
3868                                    Expr **IndexExprs, unsigned NumIndexExprs,
3869                                    SourceLocation EqualOrColonLoc,
3870                                    bool GNUSyntax, Expr *Init);
3871
3872  static DesignatedInitExpr *CreateEmpty(ASTContext &C, unsigned NumIndexExprs);
3873
3874  /// @brief Returns the number of designators in this initializer.
3875  unsigned size() const { return NumDesignators; }
3876
3877  // Iterator access to the designators.
3878  typedef Designator *designators_iterator;
3879  designators_iterator designators_begin() { return Designators; }
3880  designators_iterator designators_end() {
3881    return Designators + NumDesignators;
3882  }
3883
3884  typedef const Designator *const_designators_iterator;
3885  const_designators_iterator designators_begin() const { return Designators; }
3886  const_designators_iterator designators_end() const {
3887    return Designators + NumDesignators;
3888  }
3889
3890  typedef std::reverse_iterator<designators_iterator>
3891          reverse_designators_iterator;
3892  reverse_designators_iterator designators_rbegin() {
3893    return reverse_designators_iterator(designators_end());
3894  }
3895  reverse_designators_iterator designators_rend() {
3896    return reverse_designators_iterator(designators_begin());
3897  }
3898
3899  typedef std::reverse_iterator<const_designators_iterator>
3900          const_reverse_designators_iterator;
3901  const_reverse_designators_iterator designators_rbegin() const {
3902    return const_reverse_designators_iterator(designators_end());
3903  }
3904  const_reverse_designators_iterator designators_rend() const {
3905    return const_reverse_designators_iterator(designators_begin());
3906  }
3907
3908  Designator *getDesignator(unsigned Idx) { return &designators_begin()[Idx]; }
3909
3910  void setDesignators(ASTContext &C, const Designator *Desigs,
3911                      unsigned NumDesigs);
3912
3913  Expr *getArrayIndex(const Designator& D);
3914  Expr *getArrayRangeStart(const Designator& D);
3915  Expr *getArrayRangeEnd(const Designator& D);
3916
3917  /// @brief Retrieve the location of the '=' that precedes the
3918  /// initializer value itself, if present.
3919  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
3920  void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
3921
3922  /// @brief Determines whether this designated initializer used the
3923  /// deprecated GNU syntax for designated initializers.
3924  bool usesGNUSyntax() const { return GNUSyntax; }
3925  void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
3926
3927  /// @brief Retrieve the initializer value.
3928  Expr *getInit() const {
3929    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
3930  }
3931
3932  void setInit(Expr *init) {
3933    *child_begin() = init;
3934  }
3935
3936  /// \brief Retrieve the total number of subexpressions in this
3937  /// designated initializer expression, including the actual
3938  /// initialized value and any expressions that occur within array
3939  /// and array-range designators.
3940  unsigned getNumSubExprs() const { return NumSubExprs; }
3941
3942  Expr *getSubExpr(unsigned Idx) {
3943    assert(Idx < NumSubExprs && "Subscript out of range");
3944    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3945    Ptr += sizeof(DesignatedInitExpr);
3946    return reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx];
3947  }
3948
3949  void setSubExpr(unsigned Idx, Expr *E) {
3950    assert(Idx < NumSubExprs && "Subscript out of range");
3951    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3952    Ptr += sizeof(DesignatedInitExpr);
3953    reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx] = E;
3954  }
3955
3956  /// \brief Replaces the designator at index @p Idx with the series
3957  /// of designators in [First, Last).
3958  void ExpandDesignator(ASTContext &C, unsigned Idx, const Designator *First,
3959                        const Designator *Last);
3960
3961  SourceRange getDesignatorsSourceRange() const;
3962
3963  SourceRange getSourceRange() const LLVM_READONLY;
3964
3965  static bool classof(const Stmt *T) {
3966    return T->getStmtClass() == DesignatedInitExprClass;
3967  }
3968  static bool classof(const DesignatedInitExpr *) { return true; }
3969
3970  // Iterators
3971  child_range children() {
3972    Stmt **begin = reinterpret_cast<Stmt**>(this + 1);
3973    return child_range(begin, begin + NumSubExprs);
3974  }
3975};
3976
3977/// \brief Represents an implicitly-generated value initialization of
3978/// an object of a given type.
3979///
3980/// Implicit value initializations occur within semantic initializer
3981/// list expressions (InitListExpr) as placeholders for subobject
3982/// initializations not explicitly specified by the user.
3983///
3984/// \see InitListExpr
3985class ImplicitValueInitExpr : public Expr {
3986public:
3987  explicit ImplicitValueInitExpr(QualType ty)
3988    : Expr(ImplicitValueInitExprClass, ty, VK_RValue, OK_Ordinary,
3989           false, false, ty->isInstantiationDependentType(), false) { }
3990
3991  /// \brief Construct an empty implicit value initialization.
3992  explicit ImplicitValueInitExpr(EmptyShell Empty)
3993    : Expr(ImplicitValueInitExprClass, Empty) { }
3994
3995  static bool classof(const Stmt *T) {
3996    return T->getStmtClass() == ImplicitValueInitExprClass;
3997  }
3998  static bool classof(const ImplicitValueInitExpr *) { return true; }
3999
4000  SourceRange getSourceRange() const LLVM_READONLY {
4001    return SourceRange();
4002  }
4003
4004  // Iterators
4005  child_range children() { return child_range(); }
4006};
4007
4008
4009class ParenListExpr : public Expr {
4010  Stmt **Exprs;
4011  unsigned NumExprs;
4012  SourceLocation LParenLoc, RParenLoc;
4013
4014public:
4015  ParenListExpr(ASTContext& C, SourceLocation lparenloc, Expr **exprs,
4016                unsigned numexprs, SourceLocation rparenloc);
4017
4018  /// \brief Build an empty paren list.
4019  explicit ParenListExpr(EmptyShell Empty) : Expr(ParenListExprClass, Empty) { }
4020
4021  unsigned getNumExprs() const { return NumExprs; }
4022
4023  const Expr* getExpr(unsigned Init) const {
4024    assert(Init < getNumExprs() && "Initializer access out of range!");
4025    return cast_or_null<Expr>(Exprs[Init]);
4026  }
4027
4028  Expr* getExpr(unsigned Init) {
4029    assert(Init < getNumExprs() && "Initializer access out of range!");
4030    return cast_or_null<Expr>(Exprs[Init]);
4031  }
4032
4033  Expr **getExprs() { return reinterpret_cast<Expr **>(Exprs); }
4034
4035  SourceLocation getLParenLoc() const { return LParenLoc; }
4036  SourceLocation getRParenLoc() const { return RParenLoc; }
4037
4038  SourceRange getSourceRange() const LLVM_READONLY {
4039    return SourceRange(LParenLoc, RParenLoc);
4040  }
4041  static bool classof(const Stmt *T) {
4042    return T->getStmtClass() == ParenListExprClass;
4043  }
4044  static bool classof(const ParenListExpr *) { return true; }
4045
4046  // Iterators
4047  child_range children() {
4048    return child_range(&Exprs[0], &Exprs[0]+NumExprs);
4049  }
4050
4051  friend class ASTStmtReader;
4052  friend class ASTStmtWriter;
4053};
4054
4055
4056/// \brief Represents a C11 generic selection.
4057///
4058/// A generic selection (C11 6.5.1.1) contains an unevaluated controlling
4059/// expression, followed by one or more generic associations.  Each generic
4060/// association specifies a type name and an expression, or "default" and an
4061/// expression (in which case it is known as a default generic association).
4062/// The type and value of the generic selection are identical to those of its
4063/// result expression, which is defined as the expression in the generic
4064/// association with a type name that is compatible with the type of the
4065/// controlling expression, or the expression in the default generic association
4066/// if no types are compatible.  For example:
4067///
4068/// @code
4069/// _Generic(X, double: 1, float: 2, default: 3)
4070/// @endcode
4071///
4072/// The above expression evaluates to 1 if 1.0 is substituted for X, 2 if 1.0f
4073/// or 3 if "hello".
4074///
4075/// As an extension, generic selections are allowed in C++, where the following
4076/// additional semantics apply:
4077///
4078/// Any generic selection whose controlling expression is type-dependent or
4079/// which names a dependent type in its association list is result-dependent,
4080/// which means that the choice of result expression is dependent.
4081/// Result-dependent generic associations are both type- and value-dependent.
4082class GenericSelectionExpr : public Expr {
4083  enum { CONTROLLING, END_EXPR };
4084  TypeSourceInfo **AssocTypes;
4085  Stmt **SubExprs;
4086  unsigned NumAssocs, ResultIndex;
4087  SourceLocation GenericLoc, DefaultLoc, RParenLoc;
4088
4089public:
4090  GenericSelectionExpr(ASTContext &Context,
4091                       SourceLocation GenericLoc, Expr *ControllingExpr,
4092                       TypeSourceInfo **AssocTypes, Expr **AssocExprs,
4093                       unsigned NumAssocs, SourceLocation DefaultLoc,
4094                       SourceLocation RParenLoc,
4095                       bool ContainsUnexpandedParameterPack,
4096                       unsigned ResultIndex);
4097
4098  /// This constructor is used in the result-dependent case.
4099  GenericSelectionExpr(ASTContext &Context,
4100                       SourceLocation GenericLoc, Expr *ControllingExpr,
4101                       TypeSourceInfo **AssocTypes, Expr **AssocExprs,
4102                       unsigned NumAssocs, SourceLocation DefaultLoc,
4103                       SourceLocation RParenLoc,
4104                       bool ContainsUnexpandedParameterPack);
4105
4106  explicit GenericSelectionExpr(EmptyShell Empty)
4107    : Expr(GenericSelectionExprClass, Empty) { }
4108
4109  unsigned getNumAssocs() const { return NumAssocs; }
4110
4111  SourceLocation getGenericLoc() const { return GenericLoc; }
4112  SourceLocation getDefaultLoc() const { return DefaultLoc; }
4113  SourceLocation getRParenLoc() const { return RParenLoc; }
4114
4115  const Expr *getAssocExpr(unsigned i) const {
4116    return cast<Expr>(SubExprs[END_EXPR+i]);
4117  }
4118  Expr *getAssocExpr(unsigned i) { return cast<Expr>(SubExprs[END_EXPR+i]); }
4119
4120  const TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) const {
4121    return AssocTypes[i];
4122  }
4123  TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) { return AssocTypes[i]; }
4124
4125  QualType getAssocType(unsigned i) const {
4126    if (const TypeSourceInfo *TS = getAssocTypeSourceInfo(i))
4127      return TS->getType();
4128    else
4129      return QualType();
4130  }
4131
4132  const Expr *getControllingExpr() const {
4133    return cast<Expr>(SubExprs[CONTROLLING]);
4134  }
4135  Expr *getControllingExpr() { return cast<Expr>(SubExprs[CONTROLLING]); }
4136
4137  /// Whether this generic selection is result-dependent.
4138  bool isResultDependent() const { return ResultIndex == -1U; }
4139
4140  /// The zero-based index of the result expression's generic association in
4141  /// the generic selection's association list.  Defined only if the
4142  /// generic selection is not result-dependent.
4143  unsigned getResultIndex() const {
4144    assert(!isResultDependent() && "Generic selection is result-dependent");
4145    return ResultIndex;
4146  }
4147
4148  /// The generic selection's result expression.  Defined only if the
4149  /// generic selection is not result-dependent.
4150  const Expr *getResultExpr() const { return getAssocExpr(getResultIndex()); }
4151  Expr *getResultExpr() { return getAssocExpr(getResultIndex()); }
4152
4153  SourceRange getSourceRange() const LLVM_READONLY {
4154    return SourceRange(GenericLoc, RParenLoc);
4155  }
4156  static bool classof(const Stmt *T) {
4157    return T->getStmtClass() == GenericSelectionExprClass;
4158  }
4159  static bool classof(const GenericSelectionExpr *) { return true; }
4160
4161  child_range children() {
4162    return child_range(SubExprs, SubExprs+END_EXPR+NumAssocs);
4163  }
4164
4165  friend class ASTStmtReader;
4166};
4167
4168//===----------------------------------------------------------------------===//
4169// Clang Extensions
4170//===----------------------------------------------------------------------===//
4171
4172
4173/// ExtVectorElementExpr - This represents access to specific elements of a
4174/// vector, and may occur on the left hand side or right hand side.  For example
4175/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
4176///
4177/// Note that the base may have either vector or pointer to vector type, just
4178/// like a struct field reference.
4179///
4180class ExtVectorElementExpr : public Expr {
4181  Stmt *Base;
4182  IdentifierInfo *Accessor;
4183  SourceLocation AccessorLoc;
4184public:
4185  ExtVectorElementExpr(QualType ty, ExprValueKind VK, Expr *base,
4186                       IdentifierInfo &accessor, SourceLocation loc)
4187    : Expr(ExtVectorElementExprClass, ty, VK,
4188           (VK == VK_RValue ? OK_Ordinary : OK_VectorComponent),
4189           base->isTypeDependent(), base->isValueDependent(),
4190           base->isInstantiationDependent(),
4191           base->containsUnexpandedParameterPack()),
4192      Base(base), Accessor(&accessor), AccessorLoc(loc) {}
4193
4194  /// \brief Build an empty vector element expression.
4195  explicit ExtVectorElementExpr(EmptyShell Empty)
4196    : Expr(ExtVectorElementExprClass, Empty) { }
4197
4198  const Expr *getBase() const { return cast<Expr>(Base); }
4199  Expr *getBase() { return cast<Expr>(Base); }
4200  void setBase(Expr *E) { Base = E; }
4201
4202  IdentifierInfo &getAccessor() const { return *Accessor; }
4203  void setAccessor(IdentifierInfo *II) { Accessor = II; }
4204
4205  SourceLocation getAccessorLoc() const { return AccessorLoc; }
4206  void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
4207
4208  /// getNumElements - Get the number of components being selected.
4209  unsigned getNumElements() const;
4210
4211  /// containsDuplicateElements - Return true if any element access is
4212  /// repeated.
4213  bool containsDuplicateElements() const;
4214
4215  /// getEncodedElementAccess - Encode the elements accessed into an llvm
4216  /// aggregate Constant of ConstantInt(s).
4217  void getEncodedElementAccess(SmallVectorImpl<unsigned> &Elts) const;
4218
4219  SourceRange getSourceRange() const LLVM_READONLY {
4220    return SourceRange(getBase()->getLocStart(), AccessorLoc);
4221  }
4222
4223  /// isArrow - Return true if the base expression is a pointer to vector,
4224  /// return false if the base expression is a vector.
4225  bool isArrow() const;
4226
4227  static bool classof(const Stmt *T) {
4228    return T->getStmtClass() == ExtVectorElementExprClass;
4229  }
4230  static bool classof(const ExtVectorElementExpr *) { return true; }
4231
4232  // Iterators
4233  child_range children() { return child_range(&Base, &Base+1); }
4234};
4235
4236
4237/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
4238/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
4239class BlockExpr : public Expr {
4240protected:
4241  BlockDecl *TheBlock;
4242public:
4243  BlockExpr(BlockDecl *BD, QualType ty)
4244    : Expr(BlockExprClass, ty, VK_RValue, OK_Ordinary,
4245           ty->isDependentType(), ty->isDependentType(),
4246           ty->isInstantiationDependentType() || BD->isDependentContext(),
4247           false),
4248      TheBlock(BD) {}
4249
4250  /// \brief Build an empty block expression.
4251  explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { }
4252
4253  const BlockDecl *getBlockDecl() const { return TheBlock; }
4254  BlockDecl *getBlockDecl() { return TheBlock; }
4255  void setBlockDecl(BlockDecl *BD) { TheBlock = BD; }
4256
4257  // Convenience functions for probing the underlying BlockDecl.
4258  SourceLocation getCaretLocation() const;
4259  const Stmt *getBody() const;
4260  Stmt *getBody();
4261
4262  SourceRange getSourceRange() const LLVM_READONLY {
4263    return SourceRange(getCaretLocation(), getBody()->getLocEnd());
4264  }
4265
4266  /// getFunctionType - Return the underlying function type for this block.
4267  const FunctionProtoType *getFunctionType() const;
4268
4269  static bool classof(const Stmt *T) {
4270    return T->getStmtClass() == BlockExprClass;
4271  }
4272  static bool classof(const BlockExpr *) { return true; }
4273
4274  // Iterators
4275  child_range children() { return child_range(); }
4276};
4277
4278/// BlockDeclRefExpr - A reference to a local variable declared in an
4279/// enclosing scope.
4280class BlockDeclRefExpr : public Expr {
4281  VarDecl *D;
4282  SourceLocation Loc;
4283  bool IsByRef : 1;
4284  bool ConstQualAdded : 1;
4285public:
4286  BlockDeclRefExpr(VarDecl *d, QualType t, ExprValueKind VK,
4287                   SourceLocation l, bool ByRef, bool constAdded = false);
4288
4289  // \brief Build an empty reference to a declared variable in a
4290  // block.
4291  explicit BlockDeclRefExpr(EmptyShell Empty)
4292    : Expr(BlockDeclRefExprClass, Empty) { }
4293
4294  VarDecl *getDecl() { return D; }
4295  const VarDecl *getDecl() const { return D; }
4296  void setDecl(VarDecl *VD) { D = VD; }
4297
4298  SourceLocation getLocation() const { return Loc; }
4299  void setLocation(SourceLocation L) { Loc = L; }
4300
4301  SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(Loc); }
4302
4303  bool isByRef() const { return IsByRef; }
4304  void setByRef(bool BR) { IsByRef = BR; }
4305
4306  bool isConstQualAdded() const { return ConstQualAdded; }
4307  void setConstQualAdded(bool C) { ConstQualAdded = C; }
4308
4309  static bool classof(const Stmt *T) {
4310    return T->getStmtClass() == BlockDeclRefExprClass;
4311  }
4312  static bool classof(const BlockDeclRefExpr *) { return true; }
4313
4314  // Iterators
4315  child_range children() { return child_range(); }
4316};
4317
4318/// AsTypeExpr - Clang builtin function __builtin_astype [OpenCL 6.2.4.2]
4319/// This AST node provides support for reinterpreting a type to another
4320/// type of the same size.
4321class AsTypeExpr : public Expr { // Should this be an ExplicitCastExpr?
4322private:
4323  Stmt *SrcExpr;
4324  SourceLocation BuiltinLoc, RParenLoc;
4325
4326  friend class ASTReader;
4327  friend class ASTStmtReader;
4328  explicit AsTypeExpr(EmptyShell Empty) : Expr(AsTypeExprClass, Empty) {}
4329
4330public:
4331  AsTypeExpr(Expr* SrcExpr, QualType DstType,
4332             ExprValueKind VK, ExprObjectKind OK,
4333             SourceLocation BuiltinLoc, SourceLocation RParenLoc)
4334    : Expr(AsTypeExprClass, DstType, VK, OK,
4335           DstType->isDependentType(),
4336           DstType->isDependentType() || SrcExpr->isValueDependent(),
4337           (DstType->isInstantiationDependentType() ||
4338            SrcExpr->isInstantiationDependent()),
4339           (DstType->containsUnexpandedParameterPack() ||
4340            SrcExpr->containsUnexpandedParameterPack())),
4341  SrcExpr(SrcExpr), BuiltinLoc(BuiltinLoc), RParenLoc(RParenLoc) {}
4342
4343  /// getSrcExpr - Return the Expr to be converted.
4344  Expr *getSrcExpr() const { return cast<Expr>(SrcExpr); }
4345
4346  /// getBuiltinLoc - Return the location of the __builtin_astype token.
4347  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
4348
4349  /// getRParenLoc - Return the location of final right parenthesis.
4350  SourceLocation getRParenLoc() const { return RParenLoc; }
4351
4352  SourceRange getSourceRange() const LLVM_READONLY {
4353    return SourceRange(BuiltinLoc, RParenLoc);
4354  }
4355
4356  static bool classof(const Stmt *T) {
4357    return T->getStmtClass() == AsTypeExprClass;
4358  }
4359  static bool classof(const AsTypeExpr *) { return true; }
4360
4361  // Iterators
4362  child_range children() { return child_range(&SrcExpr, &SrcExpr+1); }
4363};
4364
4365/// PseudoObjectExpr - An expression which accesses a pseudo-object
4366/// l-value.  A pseudo-object is an abstract object, accesses to which
4367/// are translated to calls.  The pseudo-object expression has a
4368/// syntactic form, which shows how the expression was actually
4369/// written in the source code, and a semantic form, which is a series
4370/// of expressions to be executed in order which detail how the
4371/// operation is actually evaluated.  Optionally, one of the semantic
4372/// forms may also provide a result value for the expression.
4373///
4374/// If any of the semantic-form expressions is an OpaqueValueExpr,
4375/// that OVE is required to have a source expression, and it is bound
4376/// to the result of that source expression.  Such OVEs may appear
4377/// only in subsequent semantic-form expressions and as
4378/// sub-expressions of the syntactic form.
4379///
4380/// PseudoObjectExpr should be used only when an operation can be
4381/// usefully described in terms of fairly simple rewrite rules on
4382/// objects and functions that are meant to be used by end-developers.
4383/// For example, under the Itanium ABI, dynamic casts are implemented
4384/// as a call to a runtime function called __dynamic_cast; using this
4385/// class to describe that would be inappropriate because that call is
4386/// not really part of the user-visible semantics, and instead the
4387/// cast is properly reflected in the AST and IR-generation has been
4388/// taught to generate the call as necessary.  In contrast, an
4389/// Objective-C property access is semantically defined to be
4390/// equivalent to a particular message send, and this is very much
4391/// part of the user model.  The name of this class encourages this
4392/// modelling design.
4393class PseudoObjectExpr : public Expr {
4394  // PseudoObjectExprBits.NumSubExprs - The number of sub-expressions.
4395  // Always at least two, because the first sub-expression is the
4396  // syntactic form.
4397
4398  // PseudoObjectExprBits.ResultIndex - The index of the
4399  // sub-expression holding the result.  0 means the result is void,
4400  // which is unambiguous because it's the index of the syntactic
4401  // form.  Note that this is therefore 1 higher than the value passed
4402  // in to Create, which is an index within the semantic forms.
4403  // Note also that ASTStmtWriter assumes this encoding.
4404
4405  Expr **getSubExprsBuffer() { return reinterpret_cast<Expr**>(this + 1); }
4406  const Expr * const *getSubExprsBuffer() const {
4407    return reinterpret_cast<const Expr * const *>(this + 1);
4408  }
4409
4410  friend class ASTStmtReader;
4411
4412  PseudoObjectExpr(QualType type, ExprValueKind VK,
4413                   Expr *syntactic, ArrayRef<Expr*> semantic,
4414                   unsigned resultIndex);
4415
4416  PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs);
4417
4418  unsigned getNumSubExprs() const {
4419    return PseudoObjectExprBits.NumSubExprs;
4420  }
4421
4422public:
4423  /// NoResult - A value for the result index indicating that there is
4424  /// no semantic result.
4425  enum { NoResult = ~0U };
4426
4427  static PseudoObjectExpr *Create(ASTContext &Context, Expr *syntactic,
4428                                  ArrayRef<Expr*> semantic,
4429                                  unsigned resultIndex);
4430
4431  static PseudoObjectExpr *Create(ASTContext &Context, EmptyShell shell,
4432                                  unsigned numSemanticExprs);
4433
4434  /// Return the syntactic form of this expression, i.e. the
4435  /// expression it actually looks like.  Likely to be expressed in
4436  /// terms of OpaqueValueExprs bound in the semantic form.
4437  Expr *getSyntacticForm() { return getSubExprsBuffer()[0]; }
4438  const Expr *getSyntacticForm() const { return getSubExprsBuffer()[0]; }
4439
4440  /// Return the index of the result-bearing expression into the semantics
4441  /// expressions, or PseudoObjectExpr::NoResult if there is none.
4442  unsigned getResultExprIndex() const {
4443    if (PseudoObjectExprBits.ResultIndex == 0) return NoResult;
4444    return PseudoObjectExprBits.ResultIndex - 1;
4445  }
4446
4447  /// Return the result-bearing expression, or null if there is none.
4448  Expr *getResultExpr() {
4449    if (PseudoObjectExprBits.ResultIndex == 0)
4450      return 0;
4451    return getSubExprsBuffer()[PseudoObjectExprBits.ResultIndex];
4452  }
4453  const Expr *getResultExpr() const {
4454    return const_cast<PseudoObjectExpr*>(this)->getResultExpr();
4455  }
4456
4457  unsigned getNumSemanticExprs() const { return getNumSubExprs() - 1; }
4458
4459  typedef Expr * const *semantics_iterator;
4460  typedef const Expr * const *const_semantics_iterator;
4461  semantics_iterator semantics_begin() {
4462    return getSubExprsBuffer() + 1;
4463  }
4464  const_semantics_iterator semantics_begin() const {
4465    return getSubExprsBuffer() + 1;
4466  }
4467  semantics_iterator semantics_end() {
4468    return getSubExprsBuffer() + getNumSubExprs();
4469  }
4470  const_semantics_iterator semantics_end() const {
4471    return getSubExprsBuffer() + getNumSubExprs();
4472  }
4473  Expr *getSemanticExpr(unsigned index) {
4474    assert(index + 1 < getNumSubExprs());
4475    return getSubExprsBuffer()[index + 1];
4476  }
4477  const Expr *getSemanticExpr(unsigned index) const {
4478    return const_cast<PseudoObjectExpr*>(this)->getSemanticExpr(index);
4479  }
4480
4481  SourceLocation getExprLoc() const LLVM_READONLY {
4482    return getSyntacticForm()->getExprLoc();
4483  }
4484  SourceRange getSourceRange() const LLVM_READONLY {
4485    return getSyntacticForm()->getSourceRange();
4486  }
4487
4488  child_range children() {
4489    Stmt **cs = reinterpret_cast<Stmt**>(getSubExprsBuffer());
4490    return child_range(cs, cs + getNumSubExprs());
4491  }
4492
4493  static bool classof(const Stmt *T) {
4494    return T->getStmtClass() == PseudoObjectExprClass;
4495  }
4496  static bool classof(const PseudoObjectExpr *) { return true; }
4497};
4498
4499/// AtomicExpr - Variadic atomic builtins: __atomic_exchange, __atomic_fetch_*,
4500/// __atomic_load, __atomic_store, and __atomic_compare_exchange_*, for the
4501/// similarly-named C++0x instructions.  All of these instructions take one
4502/// primary pointer and at least one memory order.
4503class AtomicExpr : public Expr {
4504public:
4505  enum AtomicOp { Load, Store, CmpXchgStrong, CmpXchgWeak, Xchg,
4506                  Add, Sub, And, Or, Xor, Init };
4507private:
4508  enum { PTR, ORDER, VAL1, ORDER_FAIL, VAL2, END_EXPR };
4509  Stmt* SubExprs[END_EXPR];
4510  unsigned NumSubExprs;
4511  SourceLocation BuiltinLoc, RParenLoc;
4512  AtomicOp Op;
4513
4514public:
4515  AtomicExpr(SourceLocation BLoc, Expr **args, unsigned nexpr, QualType t,
4516             AtomicOp op, SourceLocation RP);
4517
4518  /// \brief Build an empty AtomicExpr.
4519  explicit AtomicExpr(EmptyShell Empty) : Expr(AtomicExprClass, Empty) { }
4520
4521  Expr *getPtr() const {
4522    return cast<Expr>(SubExprs[PTR]);
4523  }
4524  void setPtr(Expr *E) {
4525    SubExprs[PTR] = E;
4526  }
4527  Expr *getOrder() const {
4528    return cast<Expr>(SubExprs[ORDER]);
4529  }
4530  void setOrder(Expr *E) {
4531    SubExprs[ORDER] = E;
4532  }
4533  Expr *getVal1() const {
4534    if (Op == Init)
4535      return cast<Expr>(SubExprs[ORDER]);
4536    assert(NumSubExprs >= 3);
4537    return cast<Expr>(SubExprs[VAL1]);
4538  }
4539  void setVal1(Expr *E) {
4540    if (Op == Init) {
4541      SubExprs[ORDER] = E;
4542      return;
4543    }
4544    assert(NumSubExprs >= 3);
4545    SubExprs[VAL1] = E;
4546  }
4547  Expr *getOrderFail() const {
4548    assert(NumSubExprs == 5);
4549    return cast<Expr>(SubExprs[ORDER_FAIL]);
4550  }
4551  void setOrderFail(Expr *E) {
4552    assert(NumSubExprs == 5);
4553    SubExprs[ORDER_FAIL] = E;
4554  }
4555  Expr *getVal2() const {
4556    assert(NumSubExprs == 5);
4557    return cast<Expr>(SubExprs[VAL2]);
4558  }
4559  void setVal2(Expr *E) {
4560    assert(NumSubExprs == 5);
4561    SubExprs[VAL2] = E;
4562  }
4563
4564  AtomicOp getOp() const { return Op; }
4565  void setOp(AtomicOp op) { Op = op; }
4566  unsigned getNumSubExprs() { return NumSubExprs; }
4567  void setNumSubExprs(unsigned num) { NumSubExprs = num; }
4568
4569  Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
4570
4571  bool isVolatile() const {
4572    return getPtr()->getType()->getPointeeType().isVolatileQualified();
4573  }
4574
4575  bool isCmpXChg() const {
4576    return getOp() == AtomicExpr::CmpXchgStrong ||
4577           getOp() == AtomicExpr::CmpXchgWeak;
4578  }
4579
4580  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
4581  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
4582
4583  SourceLocation getRParenLoc() const { return RParenLoc; }
4584  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
4585
4586  SourceRange getSourceRange() const LLVM_READONLY {
4587    return SourceRange(BuiltinLoc, RParenLoc);
4588  }
4589  static bool classof(const Stmt *T) {
4590    return T->getStmtClass() == AtomicExprClass;
4591  }
4592  static bool classof(const AtomicExpr *) { return true; }
4593
4594  // Iterators
4595  child_range children() {
4596    return child_range(SubExprs, SubExprs+NumSubExprs);
4597  }
4598};
4599}  // end namespace clang
4600
4601#endif
4602