Expr.h revision ff34d401ff385ef7173ca612432b4ea717fff690
1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/Stmt.h"
19#include "clang/AST/Type.h"
20#include "clang/AST/DeclAccessPair.h"
21#include "clang/AST/OperationKinds.h"
22#include "clang/AST/ASTVector.h"
23#include "clang/AST/TemplateBase.h"
24#include "clang/Basic/TargetInfo.h"
25#include "clang/Basic/TypeTraits.h"
26#include "llvm/ADT/APSInt.h"
27#include "llvm/ADT/APFloat.h"
28#include "llvm/ADT/SmallVector.h"
29#include "llvm/ADT/StringRef.h"
30#include "llvm/Support/Compiler.h"
31#include <cctype>
32
33namespace clang {
34  class ASTContext;
35  class APValue;
36  class Decl;
37  class IdentifierInfo;
38  class ParmVarDecl;
39  class NamedDecl;
40  class ValueDecl;
41  class BlockDecl;
42  class CXXBaseSpecifier;
43  class CXXOperatorCallExpr;
44  class CXXMemberCallExpr;
45  class ObjCPropertyRefExpr;
46  class OpaqueValueExpr;
47
48/// \brief A simple array of base specifiers.
49typedef SmallVector<CXXBaseSpecifier*, 4> CXXCastPath;
50
51/// Expr - This represents one expression.  Note that Expr's are subclasses of
52/// Stmt.  This allows an expression to be transparently used any place a Stmt
53/// is required.
54///
55class Expr : public Stmt {
56  QualType TR;
57
58protected:
59  Expr(StmtClass SC, QualType T, ExprValueKind VK, ExprObjectKind OK,
60       bool TD, bool VD, bool ID, bool ContainsUnexpandedParameterPack)
61    : Stmt(SC)
62  {
63    ExprBits.TypeDependent = TD;
64    ExprBits.ValueDependent = VD;
65    ExprBits.InstantiationDependent = ID;
66    ExprBits.ValueKind = VK;
67    ExprBits.ObjectKind = OK;
68    ExprBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
69    setType(T);
70  }
71
72  /// \brief Construct an empty expression.
73  explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
74
75public:
76  QualType getType() const { return TR; }
77  void setType(QualType t) {
78    // In C++, the type of an expression is always adjusted so that it
79    // will not have reference type an expression will never have
80    // reference type (C++ [expr]p6). Use
81    // QualType::getNonReferenceType() to retrieve the non-reference
82    // type. Additionally, inspect Expr::isLvalue to determine whether
83    // an expression that is adjusted in this manner should be
84    // considered an lvalue.
85    assert((t.isNull() || !t->isReferenceType()) &&
86           "Expressions can't have reference type");
87
88    TR = t;
89  }
90
91  /// isValueDependent - Determines whether this expression is
92  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
93  /// array bound of "Chars" in the following example is
94  /// value-dependent.
95  /// @code
96  /// template<int Size, char (&Chars)[Size]> struct meta_string;
97  /// @endcode
98  bool isValueDependent() const { return ExprBits.ValueDependent; }
99
100  /// \brief Set whether this expression is value-dependent or not.
101  void setValueDependent(bool VD) {
102    ExprBits.ValueDependent = VD;
103    if (VD)
104      ExprBits.InstantiationDependent = true;
105  }
106
107  /// isTypeDependent - Determines whether this expression is
108  /// type-dependent (C++ [temp.dep.expr]), which means that its type
109  /// could change from one template instantiation to the next. For
110  /// example, the expressions "x" and "x + y" are type-dependent in
111  /// the following code, but "y" is not type-dependent:
112  /// @code
113  /// template<typename T>
114  /// void add(T x, int y) {
115  ///   x + y;
116  /// }
117  /// @endcode
118  bool isTypeDependent() const { return ExprBits.TypeDependent; }
119
120  /// \brief Set whether this expression is type-dependent or not.
121  void setTypeDependent(bool TD) {
122    ExprBits.TypeDependent = TD;
123    if (TD)
124      ExprBits.InstantiationDependent = true;
125  }
126
127  /// \brief Whether this expression is instantiation-dependent, meaning that
128  /// it depends in some way on a template parameter, even if neither its type
129  /// nor (constant) value can change due to the template instantiation.
130  ///
131  /// In the following example, the expression \c sizeof(sizeof(T() + T())) is
132  /// instantiation-dependent (since it involves a template parameter \c T), but
133  /// is neither type- nor value-dependent, since the type of the inner
134  /// \c sizeof is known (\c std::size_t) and therefore the size of the outer
135  /// \c sizeof is known.
136  ///
137  /// \code
138  /// template<typename T>
139  /// void f(T x, T y) {
140  ///   sizeof(sizeof(T() + T());
141  /// }
142  /// \endcode
143  ///
144  bool isInstantiationDependent() const {
145    return ExprBits.InstantiationDependent;
146  }
147
148  /// \brief Set whether this expression is instantiation-dependent or not.
149  void setInstantiationDependent(bool ID) {
150    ExprBits.InstantiationDependent = ID;
151  }
152
153  /// \brief Whether this expression contains an unexpanded parameter
154  /// pack (for C++0x variadic templates).
155  ///
156  /// Given the following function template:
157  ///
158  /// \code
159  /// template<typename F, typename ...Types>
160  /// void forward(const F &f, Types &&...args) {
161  ///   f(static_cast<Types&&>(args)...);
162  /// }
163  /// \endcode
164  ///
165  /// The expressions \c args and \c static_cast<Types&&>(args) both
166  /// contain parameter packs.
167  bool containsUnexpandedParameterPack() const {
168    return ExprBits.ContainsUnexpandedParameterPack;
169  }
170
171  /// \brief Set the bit that describes whether this expression
172  /// contains an unexpanded parameter pack.
173  void setContainsUnexpandedParameterPack(bool PP = true) {
174    ExprBits.ContainsUnexpandedParameterPack = PP;
175  }
176
177  /// getExprLoc - Return the preferred location for the arrow when diagnosing
178  /// a problem with a generic expression.
179  SourceLocation getExprLoc() const LLVM_READONLY;
180
181  /// isUnusedResultAWarning - Return true if this immediate expression should
182  /// be warned about if the result is unused.  If so, fill in Loc and Ranges
183  /// with location to warn on and the source range[s] to report with the
184  /// warning.
185  bool isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
186                              SourceRange &R2, ASTContext &Ctx) const;
187
188  /// isLValue - True if this expression is an "l-value" according to
189  /// the rules of the current language.  C and C++ give somewhat
190  /// different rules for this concept, but in general, the result of
191  /// an l-value expression identifies a specific object whereas the
192  /// result of an r-value expression is a value detached from any
193  /// specific storage.
194  ///
195  /// C++0x divides the concept of "r-value" into pure r-values
196  /// ("pr-values") and so-called expiring values ("x-values"), which
197  /// identify specific objects that can be safely cannibalized for
198  /// their resources.  This is an unfortunate abuse of terminology on
199  /// the part of the C++ committee.  In Clang, when we say "r-value",
200  /// we generally mean a pr-value.
201  bool isLValue() const { return getValueKind() == VK_LValue; }
202  bool isRValue() const { return getValueKind() == VK_RValue; }
203  bool isXValue() const { return getValueKind() == VK_XValue; }
204  bool isGLValue() const { return getValueKind() != VK_RValue; }
205
206  enum LValueClassification {
207    LV_Valid,
208    LV_NotObjectType,
209    LV_IncompleteVoidType,
210    LV_DuplicateVectorComponents,
211    LV_InvalidExpression,
212    LV_InvalidMessageExpression,
213    LV_MemberFunction,
214    LV_SubObjCPropertySetting,
215    LV_ClassTemporary
216  };
217  /// Reasons why an expression might not be an l-value.
218  LValueClassification ClassifyLValue(ASTContext &Ctx) const;
219
220  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
221  /// does not have an incomplete type, does not have a const-qualified type,
222  /// and if it is a structure or union, does not have any member (including,
223  /// recursively, any member or element of all contained aggregates or unions)
224  /// with a const-qualified type.
225  ///
226  /// \param Loc [in] [out] - A source location which *may* be filled
227  /// in with the location of the expression making this a
228  /// non-modifiable lvalue, if specified.
229  enum isModifiableLvalueResult {
230    MLV_Valid,
231    MLV_NotObjectType,
232    MLV_IncompleteVoidType,
233    MLV_DuplicateVectorComponents,
234    MLV_InvalidExpression,
235    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
236    MLV_IncompleteType,
237    MLV_ConstQualified,
238    MLV_ArrayType,
239    MLV_ReadonlyProperty,
240    MLV_NoSetterProperty,
241    MLV_MemberFunction,
242    MLV_SubObjCPropertySetting,
243    MLV_InvalidMessageExpression,
244    MLV_ClassTemporary
245  };
246  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx,
247                                              SourceLocation *Loc = 0) const;
248
249  /// \brief The return type of classify(). Represents the C++0x expression
250  ///        taxonomy.
251  class Classification {
252  public:
253    /// \brief The various classification results. Most of these mean prvalue.
254    enum Kinds {
255      CL_LValue,
256      CL_XValue,
257      CL_Function, // Functions cannot be lvalues in C.
258      CL_Void, // Void cannot be an lvalue in C.
259      CL_AddressableVoid, // Void expression whose address can be taken in C.
260      CL_DuplicateVectorComponents, // A vector shuffle with dupes.
261      CL_MemberFunction, // An expression referring to a member function
262      CL_SubObjCPropertySetting,
263      CL_ClassTemporary, // A prvalue of class type
264      CL_ObjCMessageRValue, // ObjC message is an rvalue
265      CL_PRValue // A prvalue for any other reason, of any other type
266    };
267    /// \brief The results of modification testing.
268    enum ModifiableType {
269      CM_Untested, // testModifiable was false.
270      CM_Modifiable,
271      CM_RValue, // Not modifiable because it's an rvalue
272      CM_Function, // Not modifiable because it's a function; C++ only
273      CM_LValueCast, // Same as CM_RValue, but indicates GCC cast-as-lvalue ext
274      CM_NoSetterProperty,// Implicit assignment to ObjC property without setter
275      CM_ConstQualified,
276      CM_ArrayType,
277      CM_IncompleteType
278    };
279
280  private:
281    friend class Expr;
282
283    unsigned short Kind;
284    unsigned short Modifiable;
285
286    explicit Classification(Kinds k, ModifiableType m)
287      : Kind(k), Modifiable(m)
288    {}
289
290  public:
291    Classification() {}
292
293    Kinds getKind() const { return static_cast<Kinds>(Kind); }
294    ModifiableType getModifiable() const {
295      assert(Modifiable != CM_Untested && "Did not test for modifiability.");
296      return static_cast<ModifiableType>(Modifiable);
297    }
298    bool isLValue() const { return Kind == CL_LValue; }
299    bool isXValue() const { return Kind == CL_XValue; }
300    bool isGLValue() const { return Kind <= CL_XValue; }
301    bool isPRValue() const { return Kind >= CL_Function; }
302    bool isRValue() const { return Kind >= CL_XValue; }
303    bool isModifiable() const { return getModifiable() == CM_Modifiable; }
304
305    /// \brief Create a simple, modifiably lvalue
306    static Classification makeSimpleLValue() {
307      return Classification(CL_LValue, CM_Modifiable);
308    }
309
310  };
311  /// \brief Classify - Classify this expression according to the C++0x
312  ///        expression taxonomy.
313  ///
314  /// C++0x defines ([basic.lval]) a new taxonomy of expressions to replace the
315  /// old lvalue vs rvalue. This function determines the type of expression this
316  /// is. There are three expression types:
317  /// - lvalues are classical lvalues as in C++03.
318  /// - prvalues are equivalent to rvalues in C++03.
319  /// - xvalues are expressions yielding unnamed rvalue references, e.g. a
320  ///   function returning an rvalue reference.
321  /// lvalues and xvalues are collectively referred to as glvalues, while
322  /// prvalues and xvalues together form rvalues.
323  Classification Classify(ASTContext &Ctx) const {
324    return ClassifyImpl(Ctx, 0);
325  }
326
327  /// \brief ClassifyModifiable - Classify this expression according to the
328  ///        C++0x expression taxonomy, and see if it is valid on the left side
329  ///        of an assignment.
330  ///
331  /// This function extends classify in that it also tests whether the
332  /// expression is modifiable (C99 6.3.2.1p1).
333  /// \param Loc A source location that might be filled with a relevant location
334  ///            if the expression is not modifiable.
335  Classification ClassifyModifiable(ASTContext &Ctx, SourceLocation &Loc) const{
336    return ClassifyImpl(Ctx, &Loc);
337  }
338
339  /// getValueKindForType - Given a formal return or parameter type,
340  /// give its value kind.
341  static ExprValueKind getValueKindForType(QualType T) {
342    if (const ReferenceType *RT = T->getAs<ReferenceType>())
343      return (isa<LValueReferenceType>(RT)
344                ? VK_LValue
345                : (RT->getPointeeType()->isFunctionType()
346                     ? VK_LValue : VK_XValue));
347    return VK_RValue;
348  }
349
350  /// getValueKind - The value kind that this expression produces.
351  ExprValueKind getValueKind() const {
352    return static_cast<ExprValueKind>(ExprBits.ValueKind);
353  }
354
355  /// getObjectKind - The object kind that this expression produces.
356  /// Object kinds are meaningful only for expressions that yield an
357  /// l-value or x-value.
358  ExprObjectKind getObjectKind() const {
359    return static_cast<ExprObjectKind>(ExprBits.ObjectKind);
360  }
361
362  bool isOrdinaryOrBitFieldObject() const {
363    ExprObjectKind OK = getObjectKind();
364    return (OK == OK_Ordinary || OK == OK_BitField);
365  }
366
367  /// setValueKind - Set the value kind produced by this expression.
368  void setValueKind(ExprValueKind Cat) { ExprBits.ValueKind = Cat; }
369
370  /// setObjectKind - Set the object kind produced by this expression.
371  void setObjectKind(ExprObjectKind Cat) { ExprBits.ObjectKind = Cat; }
372
373private:
374  Classification ClassifyImpl(ASTContext &Ctx, SourceLocation *Loc) const;
375
376public:
377
378  /// \brief If this expression refers to a bit-field, retrieve the
379  /// declaration of that bit-field.
380  FieldDecl *getBitField();
381
382  const FieldDecl *getBitField() const {
383    return const_cast<Expr*>(this)->getBitField();
384  }
385
386  /// \brief If this expression is an l-value for an Objective C
387  /// property, find the underlying property reference expression.
388  const ObjCPropertyRefExpr *getObjCProperty() const;
389
390  /// \brief Returns whether this expression refers to a vector element.
391  bool refersToVectorElement() const;
392
393  /// \brief Returns whether this expression has a placeholder type.
394  bool hasPlaceholderType() const {
395    return getType()->isPlaceholderType();
396  }
397
398  /// \brief Returns whether this expression has a specific placeholder type.
399  bool hasPlaceholderType(BuiltinType::Kind K) const {
400    assert(BuiltinType::isPlaceholderTypeKind(K));
401    if (const BuiltinType *BT = dyn_cast<BuiltinType>(getType()))
402      return BT->getKind() == K;
403    return false;
404  }
405
406  /// isKnownToHaveBooleanValue - Return true if this is an integer expression
407  /// that is known to return 0 or 1.  This happens for _Bool/bool expressions
408  /// but also int expressions which are produced by things like comparisons in
409  /// C.
410  bool isKnownToHaveBooleanValue() const;
411
412  /// isIntegerConstantExpr - Return true if this expression is a valid integer
413  /// constant expression, and, if so, return its value in Result.  If not a
414  /// valid i-c-e, return false and fill in Loc (if specified) with the location
415  /// of the invalid expression.
416  ///
417  /// Note: This does not perform the implicit conversions required by C++11
418  /// [expr.const]p5.
419  bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
420                             SourceLocation *Loc = 0,
421                             bool isEvaluated = true) const;
422  bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const;
423
424  /// isCXX98IntegralConstantExpr - Return true if this expression is an
425  /// integral constant expression in C++98. Can only be used in C++.
426  bool isCXX98IntegralConstantExpr(ASTContext &Ctx) const;
427
428  /// isCXX11ConstantExpr - Return true if this expression is a constant
429  /// expression in C++11. Can only be used in C++.
430  ///
431  /// Note: This does not perform the implicit conversions required by C++11
432  /// [expr.const]p5.
433  bool isCXX11ConstantExpr(ASTContext &Ctx, APValue *Result = 0,
434                           SourceLocation *Loc = 0) const;
435
436  /// isPotentialConstantExpr - Return true if this function's definition
437  /// might be usable in a constant expression in C++11, if it were marked
438  /// constexpr. Return false if the function can never produce a constant
439  /// expression, along with diagnostics describing why not.
440  static bool isPotentialConstantExpr(const FunctionDecl *FD,
441                                      llvm::SmallVectorImpl<
442                                        PartialDiagnosticAt> &Diags);
443
444  /// isConstantInitializer - Returns true if this expression can be emitted to
445  /// IR as a constant, and thus can be used as a constant initializer in C.
446  bool isConstantInitializer(ASTContext &Ctx, bool ForRef) const;
447
448  /// EvalStatus is a struct with detailed info about an evaluation in progress.
449  struct EvalStatus {
450    /// HasSideEffects - Whether the evaluated expression has side effects.
451    /// For example, (f() && 0) can be folded, but it still has side effects.
452    bool HasSideEffects;
453
454    /// Diag - If this is non-null, it will be filled in with a stack of notes
455    /// indicating why evaluation failed (or why it failed to produce a constant
456    /// expression).
457    /// If the expression is unfoldable, the notes will indicate why it's not
458    /// foldable. If the expression is foldable, but not a constant expression,
459    /// the notes will describes why it isn't a constant expression. If the
460    /// expression *is* a constant expression, no notes will be produced.
461    llvm::SmallVectorImpl<PartialDiagnosticAt> *Diag;
462
463    EvalStatus() : HasSideEffects(false), Diag(0) {}
464
465    // hasSideEffects - Return true if the evaluated expression has
466    // side effects.
467    bool hasSideEffects() const {
468      return HasSideEffects;
469    }
470  };
471
472  /// EvalResult is a struct with detailed info about an evaluated expression.
473  struct EvalResult : EvalStatus {
474    /// Val - This is the value the expression can be folded to.
475    APValue Val;
476
477    // isGlobalLValue - Return true if the evaluated lvalue expression
478    // is global.
479    bool isGlobalLValue() const;
480  };
481
482  /// EvaluateAsRValue - Return true if this is a constant which we can fold to
483  /// an rvalue using any crazy technique (that has nothing to do with language
484  /// standards) that we want to, even if the expression has side-effects. If
485  /// this function returns true, it returns the folded constant in Result. If
486  /// the expression is a glvalue, an lvalue-to-rvalue conversion will be
487  /// applied.
488  bool EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx) const;
489
490  /// EvaluateAsBooleanCondition - Return true if this is a constant
491  /// which we we can fold and convert to a boolean condition using
492  /// any crazy technique that we want to, even if the expression has
493  /// side-effects.
494  bool EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx) const;
495
496  enum SideEffectsKind { SE_NoSideEffects, SE_AllowSideEffects };
497
498  /// EvaluateAsInt - Return true if this is a constant which we can fold and
499  /// convert to an integer, using any crazy technique that we want to.
500  bool EvaluateAsInt(llvm::APSInt &Result, const ASTContext &Ctx,
501                     SideEffectsKind AllowSideEffects = SE_NoSideEffects) const;
502
503  /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
504  /// constant folded without side-effects, but discard the result.
505  bool isEvaluatable(const ASTContext &Ctx) const;
506
507  /// HasSideEffects - This routine returns true for all those expressions
508  /// which must be evaluated each time and must not be optimized away
509  /// or evaluated at compile time. Example is a function call, volatile
510  /// variable read.
511  bool HasSideEffects(const ASTContext &Ctx) const;
512
513  /// \brief Determine whether this expression involves a call to any function
514  /// that is not trivial.
515  bool hasNonTrivialCall(ASTContext &Ctx);
516
517  /// EvaluateKnownConstInt - Call EvaluateAsRValue and return the folded
518  /// integer. This must be called on an expression that constant folds to an
519  /// integer.
520  llvm::APSInt EvaluateKnownConstInt(const ASTContext &Ctx) const;
521
522  /// EvaluateAsLValue - Evaluate an expression to see if we can fold it to an
523  /// lvalue with link time known address, with no side-effects.
524  bool EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const;
525
526  /// EvaluateAsInitializer - Evaluate an expression as if it were the
527  /// initializer of the given declaration. Returns true if the initializer
528  /// can be folded to a constant, and produces any relevant notes. In C++11,
529  /// notes will be produced if the expression is not a constant expression.
530  bool EvaluateAsInitializer(APValue &Result, const ASTContext &Ctx,
531                             const VarDecl *VD,
532                       llvm::SmallVectorImpl<PartialDiagnosticAt> &Notes) const;
533
534  /// \brief Enumeration used to describe the kind of Null pointer constant
535  /// returned from \c isNullPointerConstant().
536  enum NullPointerConstantKind {
537    /// \brief Expression is not a Null pointer constant.
538    NPCK_NotNull = 0,
539
540    /// \brief Expression is a Null pointer constant built from a zero integer.
541    NPCK_ZeroInteger,
542
543    /// \brief Expression is a C++0X nullptr.
544    NPCK_CXX0X_nullptr,
545
546    /// \brief Expression is a GNU-style __null constant.
547    NPCK_GNUNull
548  };
549
550  /// \brief Enumeration used to describe how \c isNullPointerConstant()
551  /// should cope with value-dependent expressions.
552  enum NullPointerConstantValueDependence {
553    /// \brief Specifies that the expression should never be value-dependent.
554    NPC_NeverValueDependent = 0,
555
556    /// \brief Specifies that a value-dependent expression of integral or
557    /// dependent type should be considered a null pointer constant.
558    NPC_ValueDependentIsNull,
559
560    /// \brief Specifies that a value-dependent expression should be considered
561    /// to never be a null pointer constant.
562    NPC_ValueDependentIsNotNull
563  };
564
565  /// isNullPointerConstant - C99 6.3.2.3p3 - Test if this reduces down to
566  /// a Null pointer constant. The return value can further distinguish the
567  /// kind of NULL pointer constant that was detected.
568  NullPointerConstantKind isNullPointerConstant(
569      ASTContext &Ctx,
570      NullPointerConstantValueDependence NPC) const;
571
572  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
573  /// write barrier.
574  bool isOBJCGCCandidate(ASTContext &Ctx) const;
575
576  /// \brief Returns true if this expression is a bound member function.
577  bool isBoundMemberFunction(ASTContext &Ctx) const;
578
579  /// \brief Given an expression of bound-member type, find the type
580  /// of the member.  Returns null if this is an *overloaded* bound
581  /// member expression.
582  static QualType findBoundMemberType(const Expr *expr);
583
584  /// \brief Result type of CanThrow().
585  enum CanThrowResult {
586    CT_Cannot,
587    CT_Dependent,
588    CT_Can
589  };
590  /// \brief Test if this expression, if evaluated, might throw, according to
591  ///        the rules of C++ [expr.unary.noexcept].
592  CanThrowResult CanThrow(ASTContext &C) const;
593
594  /// IgnoreImpCasts - Skip past any implicit casts which might
595  /// surround this expression.  Only skips ImplicitCastExprs.
596  Expr *IgnoreImpCasts() LLVM_READONLY;
597
598  /// IgnoreImplicit - Skip past any implicit AST nodes which might
599  /// surround this expression.
600  Expr *IgnoreImplicit() LLVM_READONLY {
601    return cast<Expr>(Stmt::IgnoreImplicit());
602  }
603
604  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
605  ///  its subexpression.  If that subexpression is also a ParenExpr,
606  ///  then this method recursively returns its subexpression, and so forth.
607  ///  Otherwise, the method returns the current Expr.
608  Expr *IgnoreParens() LLVM_READONLY;
609
610  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
611  /// or CastExprs, returning their operand.
612  Expr *IgnoreParenCasts() LLVM_READONLY;
613
614  /// IgnoreParenImpCasts - Ignore parentheses and implicit casts.  Strip off
615  /// any ParenExpr or ImplicitCastExprs, returning their operand.
616  Expr *IgnoreParenImpCasts() LLVM_READONLY;
617
618  /// IgnoreConversionOperator - Ignore conversion operator. If this Expr is a
619  /// call to a conversion operator, return the argument.
620  Expr *IgnoreConversionOperator() LLVM_READONLY;
621
622  const Expr *IgnoreConversionOperator() const LLVM_READONLY {
623    return const_cast<Expr*>(this)->IgnoreConversionOperator();
624  }
625
626  const Expr *IgnoreParenImpCasts() const LLVM_READONLY {
627    return const_cast<Expr*>(this)->IgnoreParenImpCasts();
628  }
629
630  /// Ignore parentheses and lvalue casts.  Strip off any ParenExpr and
631  /// CastExprs that represent lvalue casts, returning their operand.
632  Expr *IgnoreParenLValueCasts() LLVM_READONLY;
633
634  const Expr *IgnoreParenLValueCasts() const LLVM_READONLY {
635    return const_cast<Expr*>(this)->IgnoreParenLValueCasts();
636  }
637
638  /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
639  /// value (including ptr->int casts of the same size).  Strip off any
640  /// ParenExpr or CastExprs, returning their operand.
641  Expr *IgnoreParenNoopCasts(ASTContext &Ctx) LLVM_READONLY;
642
643  /// \brief Determine whether this expression is a default function argument.
644  ///
645  /// Default arguments are implicitly generated in the abstract syntax tree
646  /// by semantic analysis for function calls, object constructions, etc. in
647  /// C++. Default arguments are represented by \c CXXDefaultArgExpr nodes;
648  /// this routine also looks through any implicit casts to determine whether
649  /// the expression is a default argument.
650  bool isDefaultArgument() const;
651
652  /// \brief Determine whether the result of this expression is a
653  /// temporary object of the given class type.
654  bool isTemporaryObject(ASTContext &Ctx, const CXXRecordDecl *TempTy) const;
655
656  /// \brief Whether this expression is an implicit reference to 'this' in C++.
657  bool isImplicitCXXThis() const;
658
659  const Expr *IgnoreImpCasts() const LLVM_READONLY {
660    return const_cast<Expr*>(this)->IgnoreImpCasts();
661  }
662  const Expr *IgnoreParens() const LLVM_READONLY {
663    return const_cast<Expr*>(this)->IgnoreParens();
664  }
665  const Expr *IgnoreParenCasts() const LLVM_READONLY {
666    return const_cast<Expr*>(this)->IgnoreParenCasts();
667  }
668  const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const LLVM_READONLY {
669    return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
670  }
671
672  static bool hasAnyTypeDependentArguments(llvm::ArrayRef<Expr *> Exprs);
673
674  static bool classof(const Stmt *T) {
675    return T->getStmtClass() >= firstExprConstant &&
676           T->getStmtClass() <= lastExprConstant;
677  }
678  static bool classof(const Expr *) { return true; }
679};
680
681
682//===----------------------------------------------------------------------===//
683// Primary Expressions.
684//===----------------------------------------------------------------------===//
685
686/// OpaqueValueExpr - An expression referring to an opaque object of a
687/// fixed type and value class.  These don't correspond to concrete
688/// syntax; instead they're used to express operations (usually copy
689/// operations) on values whose source is generally obvious from
690/// context.
691class OpaqueValueExpr : public Expr {
692  friend class ASTStmtReader;
693  Expr *SourceExpr;
694  SourceLocation Loc;
695
696public:
697  OpaqueValueExpr(SourceLocation Loc, QualType T, ExprValueKind VK,
698                  ExprObjectKind OK = OK_Ordinary,
699                  Expr *SourceExpr = 0)
700    : Expr(OpaqueValueExprClass, T, VK, OK,
701           T->isDependentType(),
702           T->isDependentType() ||
703           (SourceExpr && SourceExpr->isValueDependent()),
704           T->isInstantiationDependentType(),
705           false),
706      SourceExpr(SourceExpr), Loc(Loc) {
707  }
708
709  /// Given an expression which invokes a copy constructor --- i.e.  a
710  /// CXXConstructExpr, possibly wrapped in an ExprWithCleanups ---
711  /// find the OpaqueValueExpr that's the source of the construction.
712  static const OpaqueValueExpr *findInCopyConstruct(const Expr *expr);
713
714  explicit OpaqueValueExpr(EmptyShell Empty)
715    : Expr(OpaqueValueExprClass, Empty) { }
716
717  /// \brief Retrieve the location of this expression.
718  SourceLocation getLocation() const { return Loc; }
719
720  SourceRange getSourceRange() const LLVM_READONLY {
721    if (SourceExpr) return SourceExpr->getSourceRange();
722    return Loc;
723  }
724  SourceLocation getExprLoc() const LLVM_READONLY {
725    if (SourceExpr) return SourceExpr->getExprLoc();
726    return Loc;
727  }
728
729  child_range children() { return child_range(); }
730
731  /// The source expression of an opaque value expression is the
732  /// expression which originally generated the value.  This is
733  /// provided as a convenience for analyses that don't wish to
734  /// precisely model the execution behavior of the program.
735  ///
736  /// The source expression is typically set when building the
737  /// expression which binds the opaque value expression in the first
738  /// place.
739  Expr *getSourceExpr() const { return SourceExpr; }
740
741  static bool classof(const Stmt *T) {
742    return T->getStmtClass() == OpaqueValueExprClass;
743  }
744  static bool classof(const OpaqueValueExpr *) { return true; }
745};
746
747/// \brief A reference to a declared variable, function, enum, etc.
748/// [C99 6.5.1p2]
749///
750/// This encodes all the information about how a declaration is referenced
751/// within an expression.
752///
753/// There are several optional constructs attached to DeclRefExprs only when
754/// they apply in order to conserve memory. These are laid out past the end of
755/// the object, and flags in the DeclRefExprBitfield track whether they exist:
756///
757///   DeclRefExprBits.HasQualifier:
758///       Specifies when this declaration reference expression has a C++
759///       nested-name-specifier.
760///   DeclRefExprBits.HasFoundDecl:
761///       Specifies when this declaration reference expression has a record of
762///       a NamedDecl (different from the referenced ValueDecl) which was found
763///       during name lookup and/or overload resolution.
764///   DeclRefExprBits.HasTemplateKWAndArgsInfo:
765///       Specifies when this declaration reference expression has an explicit
766///       C++ template keyword and/or template argument list.
767///   DeclRefExprBits.RefersToEnclosingLocal
768///       Specifies when this declaration reference expression (validly)
769///       refers to a local variable from a different function.
770class DeclRefExpr : public Expr {
771  /// \brief The declaration that we are referencing.
772  ValueDecl *D;
773
774  /// \brief The location of the declaration name itself.
775  SourceLocation Loc;
776
777  /// \brief Provides source/type location info for the declaration name
778  /// embedded in D.
779  DeclarationNameLoc DNLoc;
780
781  /// \brief Helper to retrieve the optional NestedNameSpecifierLoc.
782  NestedNameSpecifierLoc &getInternalQualifierLoc() {
783    assert(hasQualifier());
784    return *reinterpret_cast<NestedNameSpecifierLoc *>(this + 1);
785  }
786
787  /// \brief Helper to retrieve the optional NestedNameSpecifierLoc.
788  const NestedNameSpecifierLoc &getInternalQualifierLoc() const {
789    return const_cast<DeclRefExpr *>(this)->getInternalQualifierLoc();
790  }
791
792  /// \brief Test whether there is a distinct FoundDecl attached to the end of
793  /// this DRE.
794  bool hasFoundDecl() const { return DeclRefExprBits.HasFoundDecl; }
795
796  /// \brief Helper to retrieve the optional NamedDecl through which this
797  /// reference occured.
798  NamedDecl *&getInternalFoundDecl() {
799    assert(hasFoundDecl());
800    if (hasQualifier())
801      return *reinterpret_cast<NamedDecl **>(&getInternalQualifierLoc() + 1);
802    return *reinterpret_cast<NamedDecl **>(this + 1);
803  }
804
805  /// \brief Helper to retrieve the optional NamedDecl through which this
806  /// reference occured.
807  NamedDecl *getInternalFoundDecl() const {
808    return const_cast<DeclRefExpr *>(this)->getInternalFoundDecl();
809  }
810
811  DeclRefExpr(ASTContext &Ctx,
812              NestedNameSpecifierLoc QualifierLoc,
813              SourceLocation TemplateKWLoc,
814              ValueDecl *D, bool refersToEnclosingLocal,
815              const DeclarationNameInfo &NameInfo,
816              NamedDecl *FoundD,
817              const TemplateArgumentListInfo *TemplateArgs,
818              QualType T, ExprValueKind VK);
819
820  /// \brief Construct an empty declaration reference expression.
821  explicit DeclRefExpr(EmptyShell Empty)
822    : Expr(DeclRefExprClass, Empty) { }
823
824  /// \brief Computes the type- and value-dependence flags for this
825  /// declaration reference expression.
826  void computeDependence(ASTContext &C);
827
828public:
829  DeclRefExpr(ValueDecl *D, bool refersToEnclosingLocal, QualType T,
830              ExprValueKind VK, SourceLocation L,
831              const DeclarationNameLoc &LocInfo = DeclarationNameLoc())
832    : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
833      D(D), Loc(L), DNLoc(LocInfo) {
834    DeclRefExprBits.HasQualifier = 0;
835    DeclRefExprBits.HasTemplateKWAndArgsInfo = 0;
836    DeclRefExprBits.HasFoundDecl = 0;
837    DeclRefExprBits.HadMultipleCandidates = 0;
838    DeclRefExprBits.RefersToEnclosingLocal = refersToEnclosingLocal;
839    computeDependence(D->getASTContext());
840  }
841
842  static DeclRefExpr *Create(ASTContext &Context,
843                             NestedNameSpecifierLoc QualifierLoc,
844                             SourceLocation TemplateKWLoc,
845                             ValueDecl *D,
846                             bool isEnclosingLocal,
847                             SourceLocation NameLoc,
848                             QualType T, ExprValueKind VK,
849                             NamedDecl *FoundD = 0,
850                             const TemplateArgumentListInfo *TemplateArgs = 0);
851
852  static DeclRefExpr *Create(ASTContext &Context,
853                             NestedNameSpecifierLoc QualifierLoc,
854                             SourceLocation TemplateKWLoc,
855                             ValueDecl *D,
856                             bool isEnclosingLocal,
857                             const DeclarationNameInfo &NameInfo,
858                             QualType T, ExprValueKind VK,
859                             NamedDecl *FoundD = 0,
860                             const TemplateArgumentListInfo *TemplateArgs = 0);
861
862  /// \brief Construct an empty declaration reference expression.
863  static DeclRefExpr *CreateEmpty(ASTContext &Context,
864                                  bool HasQualifier,
865                                  bool HasFoundDecl,
866                                  bool HasTemplateKWAndArgsInfo,
867                                  unsigned NumTemplateArgs);
868
869  ValueDecl *getDecl() { return D; }
870  const ValueDecl *getDecl() const { return D; }
871  void setDecl(ValueDecl *NewD) { D = NewD; }
872
873  DeclarationNameInfo getNameInfo() const {
874    return DeclarationNameInfo(getDecl()->getDeclName(), Loc, DNLoc);
875  }
876
877  SourceLocation getLocation() const { return Loc; }
878  void setLocation(SourceLocation L) { Loc = L; }
879  SourceRange getSourceRange() const LLVM_READONLY;
880  SourceLocation getLocStart() const LLVM_READONLY;
881  SourceLocation getLocEnd() const LLVM_READONLY;
882
883  /// \brief Determine whether this declaration reference was preceded by a
884  /// C++ nested-name-specifier, e.g., \c N::foo.
885  bool hasQualifier() const { return DeclRefExprBits.HasQualifier; }
886
887  /// \brief If the name was qualified, retrieves the nested-name-specifier
888  /// that precedes the name. Otherwise, returns NULL.
889  NestedNameSpecifier *getQualifier() const {
890    if (!hasQualifier())
891      return 0;
892
893    return getInternalQualifierLoc().getNestedNameSpecifier();
894  }
895
896  /// \brief If the name was qualified, retrieves the nested-name-specifier
897  /// that precedes the name, with source-location information.
898  NestedNameSpecifierLoc getQualifierLoc() const {
899    if (!hasQualifier())
900      return NestedNameSpecifierLoc();
901
902    return getInternalQualifierLoc();
903  }
904
905  /// \brief Get the NamedDecl through which this reference occured.
906  ///
907  /// This Decl may be different from the ValueDecl actually referred to in the
908  /// presence of using declarations, etc. It always returns non-NULL, and may
909  /// simple return the ValueDecl when appropriate.
910  NamedDecl *getFoundDecl() {
911    return hasFoundDecl() ? getInternalFoundDecl() : D;
912  }
913
914  /// \brief Get the NamedDecl through which this reference occurred.
915  /// See non-const variant.
916  const NamedDecl *getFoundDecl() const {
917    return hasFoundDecl() ? getInternalFoundDecl() : D;
918  }
919
920  bool hasTemplateKWAndArgsInfo() const {
921    return DeclRefExprBits.HasTemplateKWAndArgsInfo;
922  }
923
924  /// \brief Return the optional template keyword and arguments info.
925  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
926    if (!hasTemplateKWAndArgsInfo())
927      return 0;
928
929    if (hasFoundDecl())
930      return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(
931        &getInternalFoundDecl() + 1);
932
933    if (hasQualifier())
934      return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(
935        &getInternalQualifierLoc() + 1);
936
937    return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(this + 1);
938  }
939
940  /// \brief Return the optional template keyword and arguments info.
941  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
942    return const_cast<DeclRefExpr*>(this)->getTemplateKWAndArgsInfo();
943  }
944
945  /// \brief Retrieve the location of the template keyword preceding
946  /// this name, if any.
947  SourceLocation getTemplateKeywordLoc() const {
948    if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
949    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
950  }
951
952  /// \brief Retrieve the location of the left angle bracket starting the
953  /// explicit template argument list following the name, if any.
954  SourceLocation getLAngleLoc() const {
955    if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
956    return getTemplateKWAndArgsInfo()->LAngleLoc;
957  }
958
959  /// \brief Retrieve the location of the right angle bracket ending the
960  /// explicit template argument list following the name, if any.
961  SourceLocation getRAngleLoc() const {
962    if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
963    return getTemplateKWAndArgsInfo()->RAngleLoc;
964  }
965
966  /// \brief Determines whether the name in this declaration reference
967  /// was preceded by the template keyword.
968  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
969
970  /// \brief Determines whether this declaration reference was followed by an
971  /// explicit template argument list.
972  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
973
974  /// \brief Retrieve the explicit template argument list that followed the
975  /// member template name.
976  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
977    assert(hasExplicitTemplateArgs());
978    return *getTemplateKWAndArgsInfo();
979  }
980
981  /// \brief Retrieve the explicit template argument list that followed the
982  /// member template name.
983  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
984    return const_cast<DeclRefExpr *>(this)->getExplicitTemplateArgs();
985  }
986
987  /// \brief Retrieves the optional explicit template arguments.
988  /// This points to the same data as getExplicitTemplateArgs(), but
989  /// returns null if there are no explicit template arguments.
990  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() const {
991    if (!hasExplicitTemplateArgs()) return 0;
992    return &getExplicitTemplateArgs();
993  }
994
995  /// \brief Copies the template arguments (if present) into the given
996  /// structure.
997  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
998    if (hasExplicitTemplateArgs())
999      getExplicitTemplateArgs().copyInto(List);
1000  }
1001
1002  /// \brief Retrieve the template arguments provided as part of this
1003  /// template-id.
1004  const TemplateArgumentLoc *getTemplateArgs() const {
1005    if (!hasExplicitTemplateArgs())
1006      return 0;
1007
1008    return getExplicitTemplateArgs().getTemplateArgs();
1009  }
1010
1011  /// \brief Retrieve the number of template arguments provided as part of this
1012  /// template-id.
1013  unsigned getNumTemplateArgs() const {
1014    if (!hasExplicitTemplateArgs())
1015      return 0;
1016
1017    return getExplicitTemplateArgs().NumTemplateArgs;
1018  }
1019
1020  /// \brief Returns true if this expression refers to a function that
1021  /// was resolved from an overloaded set having size greater than 1.
1022  bool hadMultipleCandidates() const {
1023    return DeclRefExprBits.HadMultipleCandidates;
1024  }
1025  /// \brief Sets the flag telling whether this expression refers to
1026  /// a function that was resolved from an overloaded set having size
1027  /// greater than 1.
1028  void setHadMultipleCandidates(bool V = true) {
1029    DeclRefExprBits.HadMultipleCandidates = V;
1030  }
1031
1032  /// Does this DeclRefExpr refer to a local declaration from an
1033  /// enclosing function scope?
1034  bool refersToEnclosingLocal() const {
1035    return DeclRefExprBits.RefersToEnclosingLocal;
1036  }
1037
1038  static bool classof(const Stmt *T) {
1039    return T->getStmtClass() == DeclRefExprClass;
1040  }
1041  static bool classof(const DeclRefExpr *) { return true; }
1042
1043  // Iterators
1044  child_range children() { return child_range(); }
1045
1046  friend class ASTStmtReader;
1047  friend class ASTStmtWriter;
1048};
1049
1050/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
1051class PredefinedExpr : public Expr {
1052public:
1053  enum IdentType {
1054    Func,
1055    Function,
1056    PrettyFunction,
1057    /// PrettyFunctionNoVirtual - The same as PrettyFunction, except that the
1058    /// 'virtual' keyword is omitted for virtual member functions.
1059    PrettyFunctionNoVirtual
1060  };
1061
1062private:
1063  SourceLocation Loc;
1064  IdentType Type;
1065public:
1066  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
1067    : Expr(PredefinedExprClass, type, VK_LValue, OK_Ordinary,
1068           type->isDependentType(), type->isDependentType(),
1069           type->isInstantiationDependentType(),
1070           /*ContainsUnexpandedParameterPack=*/false),
1071      Loc(l), Type(IT) {}
1072
1073  /// \brief Construct an empty predefined expression.
1074  explicit PredefinedExpr(EmptyShell Empty)
1075    : Expr(PredefinedExprClass, Empty) { }
1076
1077  IdentType getIdentType() const { return Type; }
1078  void setIdentType(IdentType IT) { Type = IT; }
1079
1080  SourceLocation getLocation() const { return Loc; }
1081  void setLocation(SourceLocation L) { Loc = L; }
1082
1083  static std::string ComputeName(IdentType IT, const Decl *CurrentDecl);
1084
1085  SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(Loc); }
1086
1087  static bool classof(const Stmt *T) {
1088    return T->getStmtClass() == PredefinedExprClass;
1089  }
1090  static bool classof(const PredefinedExpr *) { return true; }
1091
1092  // Iterators
1093  child_range children() { return child_range(); }
1094};
1095
1096/// \brief Used by IntegerLiteral/FloatingLiteral to store the numeric without
1097/// leaking memory.
1098///
1099/// For large floats/integers, APFloat/APInt will allocate memory from the heap
1100/// to represent these numbers.  Unfortunately, when we use a BumpPtrAllocator
1101/// to allocate IntegerLiteral/FloatingLiteral nodes the memory associated with
1102/// the APFloat/APInt values will never get freed. APNumericStorage uses
1103/// ASTContext's allocator for memory allocation.
1104class APNumericStorage {
1105  union {
1106    uint64_t VAL;    ///< Used to store the <= 64 bits integer value.
1107    uint64_t *pVal;  ///< Used to store the >64 bits integer value.
1108  };
1109  unsigned BitWidth;
1110
1111  bool hasAllocation() const { return llvm::APInt::getNumWords(BitWidth) > 1; }
1112
1113  APNumericStorage(const APNumericStorage&); // do not implement
1114  APNumericStorage& operator=(const APNumericStorage&); // do not implement
1115
1116protected:
1117  APNumericStorage() : VAL(0), BitWidth(0) { }
1118
1119  llvm::APInt getIntValue() const {
1120    unsigned NumWords = llvm::APInt::getNumWords(BitWidth);
1121    if (NumWords > 1)
1122      return llvm::APInt(BitWidth, NumWords, pVal);
1123    else
1124      return llvm::APInt(BitWidth, VAL);
1125  }
1126  void setIntValue(ASTContext &C, const llvm::APInt &Val);
1127};
1128
1129class APIntStorage : private APNumericStorage {
1130public:
1131  llvm::APInt getValue() const { return getIntValue(); }
1132  void setValue(ASTContext &C, const llvm::APInt &Val) { setIntValue(C, Val); }
1133};
1134
1135class APFloatStorage : private APNumericStorage {
1136public:
1137  llvm::APFloat getValue(bool IsIEEE) const {
1138    return llvm::APFloat(getIntValue(), IsIEEE);
1139  }
1140  void setValue(ASTContext &C, const llvm::APFloat &Val) {
1141    setIntValue(C, Val.bitcastToAPInt());
1142  }
1143};
1144
1145class IntegerLiteral : public Expr, public APIntStorage {
1146  SourceLocation Loc;
1147
1148  /// \brief Construct an empty integer literal.
1149  explicit IntegerLiteral(EmptyShell Empty)
1150    : Expr(IntegerLiteralClass, Empty) { }
1151
1152public:
1153  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
1154  // or UnsignedLongLongTy
1155  IntegerLiteral(ASTContext &C, const llvm::APInt &V,
1156                 QualType type, SourceLocation l)
1157    : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
1158           false, false),
1159      Loc(l) {
1160    assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
1161    assert(V.getBitWidth() == C.getIntWidth(type) &&
1162           "Integer type is not the correct size for constant.");
1163    setValue(C, V);
1164  }
1165
1166  /// \brief Returns a new integer literal with value 'V' and type 'type'.
1167  /// \param type - either IntTy, LongTy, LongLongTy, UnsignedIntTy,
1168  /// UnsignedLongTy, or UnsignedLongLongTy which should match the size of V
1169  /// \param V - the value that the returned integer literal contains.
1170  static IntegerLiteral *Create(ASTContext &C, const llvm::APInt &V,
1171                                QualType type, SourceLocation l);
1172  /// \brief Returns a new empty integer literal.
1173  static IntegerLiteral *Create(ASTContext &C, EmptyShell Empty);
1174
1175  SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(Loc); }
1176
1177  /// \brief Retrieve the location of the literal.
1178  SourceLocation getLocation() const { return Loc; }
1179
1180  void setLocation(SourceLocation Location) { Loc = Location; }
1181
1182  static bool classof(const Stmt *T) {
1183    return T->getStmtClass() == IntegerLiteralClass;
1184  }
1185  static bool classof(const IntegerLiteral *) { return true; }
1186
1187  // Iterators
1188  child_range children() { return child_range(); }
1189};
1190
1191class CharacterLiteral : public Expr {
1192public:
1193  enum CharacterKind {
1194    Ascii,
1195    Wide,
1196    UTF16,
1197    UTF32
1198  };
1199
1200private:
1201  unsigned Value;
1202  SourceLocation Loc;
1203public:
1204  // type should be IntTy
1205  CharacterLiteral(unsigned value, CharacterKind kind, QualType type,
1206                   SourceLocation l)
1207    : Expr(CharacterLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
1208           false, false),
1209      Value(value), Loc(l) {
1210    CharacterLiteralBits.Kind = kind;
1211  }
1212
1213  /// \brief Construct an empty character literal.
1214  CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
1215
1216  SourceLocation getLocation() const { return Loc; }
1217  CharacterKind getKind() const {
1218    return static_cast<CharacterKind>(CharacterLiteralBits.Kind);
1219  }
1220
1221  SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(Loc); }
1222
1223  unsigned getValue() const { return Value; }
1224
1225  void setLocation(SourceLocation Location) { Loc = Location; }
1226  void setKind(CharacterKind kind) { CharacterLiteralBits.Kind = kind; }
1227  void setValue(unsigned Val) { Value = Val; }
1228
1229  static bool classof(const Stmt *T) {
1230    return T->getStmtClass() == CharacterLiteralClass;
1231  }
1232  static bool classof(const CharacterLiteral *) { return true; }
1233
1234  // Iterators
1235  child_range children() { return child_range(); }
1236};
1237
1238class FloatingLiteral : public Expr, private APFloatStorage {
1239  SourceLocation Loc;
1240
1241  FloatingLiteral(ASTContext &C, const llvm::APFloat &V, bool isexact,
1242                  QualType Type, SourceLocation L)
1243    : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false,
1244           false, false), Loc(L) {
1245    FloatingLiteralBits.IsIEEE =
1246      &C.getTargetInfo().getLongDoubleFormat() == &llvm::APFloat::IEEEquad;
1247    FloatingLiteralBits.IsExact = isexact;
1248    setValue(C, V);
1249  }
1250
1251  /// \brief Construct an empty floating-point literal.
1252  explicit FloatingLiteral(ASTContext &C, EmptyShell Empty)
1253    : Expr(FloatingLiteralClass, Empty) {
1254    FloatingLiteralBits.IsIEEE =
1255      &C.getTargetInfo().getLongDoubleFormat() == &llvm::APFloat::IEEEquad;
1256    FloatingLiteralBits.IsExact = false;
1257  }
1258
1259public:
1260  static FloatingLiteral *Create(ASTContext &C, const llvm::APFloat &V,
1261                                 bool isexact, QualType Type, SourceLocation L);
1262  static FloatingLiteral *Create(ASTContext &C, EmptyShell Empty);
1263
1264  llvm::APFloat getValue() const {
1265    return APFloatStorage::getValue(FloatingLiteralBits.IsIEEE);
1266  }
1267  void setValue(ASTContext &C, const llvm::APFloat &Val) {
1268    APFloatStorage::setValue(C, Val);
1269  }
1270
1271  bool isExact() const { return FloatingLiteralBits.IsExact; }
1272  void setExact(bool E) { FloatingLiteralBits.IsExact = E; }
1273
1274  /// getValueAsApproximateDouble - This returns the value as an inaccurate
1275  /// double.  Note that this may cause loss of precision, but is useful for
1276  /// debugging dumps, etc.
1277  double getValueAsApproximateDouble() const;
1278
1279  SourceLocation getLocation() const { return Loc; }
1280  void setLocation(SourceLocation L) { Loc = L; }
1281
1282  SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(Loc); }
1283
1284  static bool classof(const Stmt *T) {
1285    return T->getStmtClass() == FloatingLiteralClass;
1286  }
1287  static bool classof(const FloatingLiteral *) { return true; }
1288
1289  // Iterators
1290  child_range children() { return child_range(); }
1291};
1292
1293/// ImaginaryLiteral - We support imaginary integer and floating point literals,
1294/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
1295/// IntegerLiteral classes.  Instances of this class always have a Complex type
1296/// whose element type matches the subexpression.
1297///
1298class ImaginaryLiteral : public Expr {
1299  Stmt *Val;
1300public:
1301  ImaginaryLiteral(Expr *val, QualType Ty)
1302    : Expr(ImaginaryLiteralClass, Ty, VK_RValue, OK_Ordinary, false, false,
1303           false, false),
1304      Val(val) {}
1305
1306  /// \brief Build an empty imaginary literal.
1307  explicit ImaginaryLiteral(EmptyShell Empty)
1308    : Expr(ImaginaryLiteralClass, Empty) { }
1309
1310  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1311  Expr *getSubExpr() { return cast<Expr>(Val); }
1312  void setSubExpr(Expr *E) { Val = E; }
1313
1314  SourceRange getSourceRange() const LLVM_READONLY { return Val->getSourceRange(); }
1315  static bool classof(const Stmt *T) {
1316    return T->getStmtClass() == ImaginaryLiteralClass;
1317  }
1318  static bool classof(const ImaginaryLiteral *) { return true; }
1319
1320  // Iterators
1321  child_range children() { return child_range(&Val, &Val+1); }
1322};
1323
1324/// StringLiteral - This represents a string literal expression, e.g. "foo"
1325/// or L"bar" (wide strings).  The actual string is returned by getStrData()
1326/// is NOT null-terminated, and the length of the string is determined by
1327/// calling getByteLength().  The C type for a string is always a
1328/// ConstantArrayType.  In C++, the char type is const qualified, in C it is
1329/// not.
1330///
1331/// Note that strings in C can be formed by concatenation of multiple string
1332/// literal pptokens in translation phase #6.  This keeps track of the locations
1333/// of each of these pieces.
1334///
1335/// Strings in C can also be truncated and extended by assigning into arrays,
1336/// e.g. with constructs like:
1337///   char X[2] = "foobar";
1338/// In this case, getByteLength() will return 6, but the string literal will
1339/// have type "char[2]".
1340class StringLiteral : public Expr {
1341public:
1342  enum StringKind {
1343    Ascii,
1344    Wide,
1345    UTF8,
1346    UTF16,
1347    UTF32
1348  };
1349
1350private:
1351  friend class ASTStmtReader;
1352
1353  union {
1354    const char *asChar;
1355    const uint16_t *asUInt16;
1356    const uint32_t *asUInt32;
1357  } StrData;
1358  unsigned Length;
1359  unsigned CharByteWidth : 4;
1360  unsigned Kind : 3;
1361  unsigned IsPascal : 1;
1362  unsigned NumConcatenated;
1363  SourceLocation TokLocs[1];
1364
1365  StringLiteral(QualType Ty) :
1366    Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary, false, false, false,
1367         false) {}
1368
1369  static int mapCharByteWidth(TargetInfo const &target,StringKind k);
1370
1371public:
1372  /// This is the "fully general" constructor that allows representation of
1373  /// strings formed from multiple concatenated tokens.
1374  static StringLiteral *Create(ASTContext &C, StringRef Str, StringKind Kind,
1375                               bool Pascal, QualType Ty,
1376                               const SourceLocation *Loc, unsigned NumStrs);
1377
1378  /// Simple constructor for string literals made from one token.
1379  static StringLiteral *Create(ASTContext &C, StringRef Str, StringKind Kind,
1380                               bool Pascal, QualType Ty,
1381                               SourceLocation Loc) {
1382    return Create(C, Str, Kind, Pascal, Ty, &Loc, 1);
1383  }
1384
1385  /// \brief Construct an empty string literal.
1386  static StringLiteral *CreateEmpty(ASTContext &C, unsigned NumStrs);
1387
1388  StringRef getString() const {
1389    assert(CharByteWidth==1
1390           && "This function is used in places that assume strings use char");
1391    return StringRef(StrData.asChar, getByteLength());
1392  }
1393
1394  /// Allow clients that need the byte representation, such as ASTWriterStmt
1395  /// ::VisitStringLiteral(), access.
1396  StringRef getBytes() const {
1397    // FIXME: StringRef may not be the right type to use as a result for this.
1398    if (CharByteWidth == 1)
1399      return StringRef(StrData.asChar, getByteLength());
1400    if (CharByteWidth == 4)
1401      return StringRef(reinterpret_cast<const char*>(StrData.asUInt32),
1402                       getByteLength());
1403    assert(CharByteWidth == 2 && "unsupported CharByteWidth");
1404    return StringRef(reinterpret_cast<const char*>(StrData.asUInt16),
1405                     getByteLength());
1406  }
1407
1408  uint32_t getCodeUnit(size_t i) const {
1409    assert(i < Length && "out of bounds access");
1410    if (CharByteWidth == 1)
1411      return static_cast<unsigned char>(StrData.asChar[i]);
1412    if (CharByteWidth == 4)
1413      return StrData.asUInt32[i];
1414    assert(CharByteWidth == 2 && "unsupported CharByteWidth");
1415    return StrData.asUInt16[i];
1416  }
1417
1418  unsigned getByteLength() const { return CharByteWidth*Length; }
1419  unsigned getLength() const { return Length; }
1420  unsigned getCharByteWidth() const { return CharByteWidth; }
1421
1422  /// \brief Sets the string data to the given string data.
1423  void setString(ASTContext &C, StringRef Str,
1424                 StringKind Kind, bool IsPascal);
1425
1426  StringKind getKind() const { return static_cast<StringKind>(Kind); }
1427
1428
1429  bool isAscii() const { return Kind == Ascii; }
1430  bool isWide() const { return Kind == Wide; }
1431  bool isUTF8() const { return Kind == UTF8; }
1432  bool isUTF16() const { return Kind == UTF16; }
1433  bool isUTF32() const { return Kind == UTF32; }
1434  bool isPascal() const { return IsPascal; }
1435
1436  bool containsNonAsciiOrNull() const {
1437    StringRef Str = getString();
1438    for (unsigned i = 0, e = Str.size(); i != e; ++i)
1439      if (!isascii(Str[i]) || !Str[i])
1440        return true;
1441    return false;
1442  }
1443
1444  /// getNumConcatenated - Get the number of string literal tokens that were
1445  /// concatenated in translation phase #6 to form this string literal.
1446  unsigned getNumConcatenated() const { return NumConcatenated; }
1447
1448  SourceLocation getStrTokenLoc(unsigned TokNum) const {
1449    assert(TokNum < NumConcatenated && "Invalid tok number");
1450    return TokLocs[TokNum];
1451  }
1452  void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
1453    assert(TokNum < NumConcatenated && "Invalid tok number");
1454    TokLocs[TokNum] = L;
1455  }
1456
1457  /// getLocationOfByte - Return a source location that points to the specified
1458  /// byte of this string literal.
1459  ///
1460  /// Strings are amazingly complex.  They can be formed from multiple tokens
1461  /// and can have escape sequences in them in addition to the usual trigraph
1462  /// and escaped newline business.  This routine handles this complexity.
1463  ///
1464  SourceLocation getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
1465                                   const LangOptions &Features,
1466                                   const TargetInfo &Target) const;
1467
1468  typedef const SourceLocation *tokloc_iterator;
1469  tokloc_iterator tokloc_begin() const { return TokLocs; }
1470  tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; }
1471
1472  SourceRange getSourceRange() const LLVM_READONLY {
1473    return SourceRange(TokLocs[0], TokLocs[NumConcatenated-1]);
1474  }
1475  static bool classof(const Stmt *T) {
1476    return T->getStmtClass() == StringLiteralClass;
1477  }
1478  static bool classof(const StringLiteral *) { return true; }
1479
1480  // Iterators
1481  child_range children() { return child_range(); }
1482};
1483
1484/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
1485/// AST node is only formed if full location information is requested.
1486class ParenExpr : public Expr {
1487  SourceLocation L, R;
1488  Stmt *Val;
1489public:
1490  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
1491    : Expr(ParenExprClass, val->getType(),
1492           val->getValueKind(), val->getObjectKind(),
1493           val->isTypeDependent(), val->isValueDependent(),
1494           val->isInstantiationDependent(),
1495           val->containsUnexpandedParameterPack()),
1496      L(l), R(r), Val(val) {}
1497
1498  /// \brief Construct an empty parenthesized expression.
1499  explicit ParenExpr(EmptyShell Empty)
1500    : Expr(ParenExprClass, Empty) { }
1501
1502  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1503  Expr *getSubExpr() { return cast<Expr>(Val); }
1504  void setSubExpr(Expr *E) { Val = E; }
1505
1506  SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(L, R); }
1507
1508  /// \brief Get the location of the left parentheses '('.
1509  SourceLocation getLParen() const { return L; }
1510  void setLParen(SourceLocation Loc) { L = Loc; }
1511
1512  /// \brief Get the location of the right parentheses ')'.
1513  SourceLocation getRParen() const { return R; }
1514  void setRParen(SourceLocation Loc) { R = Loc; }
1515
1516  static bool classof(const Stmt *T) {
1517    return T->getStmtClass() == ParenExprClass;
1518  }
1519  static bool classof(const ParenExpr *) { return true; }
1520
1521  // Iterators
1522  child_range children() { return child_range(&Val, &Val+1); }
1523};
1524
1525
1526/// UnaryOperator - This represents the unary-expression's (except sizeof and
1527/// alignof), the postinc/postdec operators from postfix-expression, and various
1528/// extensions.
1529///
1530/// Notes on various nodes:
1531///
1532/// Real/Imag - These return the real/imag part of a complex operand.  If
1533///   applied to a non-complex value, the former returns its operand and the
1534///   later returns zero in the type of the operand.
1535///
1536class UnaryOperator : public Expr {
1537public:
1538  typedef UnaryOperatorKind Opcode;
1539
1540private:
1541  unsigned Opc : 5;
1542  SourceLocation Loc;
1543  Stmt *Val;
1544public:
1545
1546  UnaryOperator(Expr *input, Opcode opc, QualType type,
1547                ExprValueKind VK, ExprObjectKind OK, SourceLocation l)
1548    : Expr(UnaryOperatorClass, type, VK, OK,
1549           input->isTypeDependent() || type->isDependentType(),
1550           input->isValueDependent(),
1551           (input->isInstantiationDependent() ||
1552            type->isInstantiationDependentType()),
1553           input->containsUnexpandedParameterPack()),
1554      Opc(opc), Loc(l), Val(input) {}
1555
1556  /// \brief Build an empty unary operator.
1557  explicit UnaryOperator(EmptyShell Empty)
1558    : Expr(UnaryOperatorClass, Empty), Opc(UO_AddrOf) { }
1559
1560  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
1561  void setOpcode(Opcode O) { Opc = O; }
1562
1563  Expr *getSubExpr() const { return cast<Expr>(Val); }
1564  void setSubExpr(Expr *E) { Val = E; }
1565
1566  /// getOperatorLoc - Return the location of the operator.
1567  SourceLocation getOperatorLoc() const { return Loc; }
1568  void setOperatorLoc(SourceLocation L) { Loc = L; }
1569
1570  /// isPostfix - Return true if this is a postfix operation, like x++.
1571  static bool isPostfix(Opcode Op) {
1572    return Op == UO_PostInc || Op == UO_PostDec;
1573  }
1574
1575  /// isPrefix - Return true if this is a prefix operation, like --x.
1576  static bool isPrefix(Opcode Op) {
1577    return Op == UO_PreInc || Op == UO_PreDec;
1578  }
1579
1580  bool isPrefix() const { return isPrefix(getOpcode()); }
1581  bool isPostfix() const { return isPostfix(getOpcode()); }
1582
1583  static bool isIncrementOp(Opcode Op) {
1584    return Op == UO_PreInc || Op == UO_PostInc;
1585  }
1586  bool isIncrementOp() const {
1587    return isIncrementOp(getOpcode());
1588  }
1589
1590  static bool isDecrementOp(Opcode Op) {
1591    return Op == UO_PreDec || Op == UO_PostDec;
1592  }
1593  bool isDecrementOp() const {
1594    return isDecrementOp(getOpcode());
1595  }
1596
1597  static bool isIncrementDecrementOp(Opcode Op) { return Op <= UO_PreDec; }
1598  bool isIncrementDecrementOp() const {
1599    return isIncrementDecrementOp(getOpcode());
1600  }
1601
1602  static bool isArithmeticOp(Opcode Op) {
1603    return Op >= UO_Plus && Op <= UO_LNot;
1604  }
1605  bool isArithmeticOp() const { return isArithmeticOp(getOpcode()); }
1606
1607  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1608  /// corresponds to, e.g. "sizeof" or "[pre]++"
1609  static const char *getOpcodeStr(Opcode Op);
1610
1611  /// \brief Retrieve the unary opcode that corresponds to the given
1612  /// overloaded operator.
1613  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
1614
1615  /// \brief Retrieve the overloaded operator kind that corresponds to
1616  /// the given unary opcode.
1617  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
1618
1619  SourceRange getSourceRange() const LLVM_READONLY {
1620    if (isPostfix())
1621      return SourceRange(Val->getLocStart(), Loc);
1622    else
1623      return SourceRange(Loc, Val->getLocEnd());
1624  }
1625  SourceLocation getExprLoc() const LLVM_READONLY { return Loc; }
1626
1627  static bool classof(const Stmt *T) {
1628    return T->getStmtClass() == UnaryOperatorClass;
1629  }
1630  static bool classof(const UnaryOperator *) { return true; }
1631
1632  // Iterators
1633  child_range children() { return child_range(&Val, &Val+1); }
1634};
1635
1636/// OffsetOfExpr - [C99 7.17] - This represents an expression of the form
1637/// offsetof(record-type, member-designator). For example, given:
1638/// @code
1639/// struct S {
1640///   float f;
1641///   double d;
1642/// };
1643/// struct T {
1644///   int i;
1645///   struct S s[10];
1646/// };
1647/// @endcode
1648/// we can represent and evaluate the expression @c offsetof(struct T, s[2].d).
1649
1650class OffsetOfExpr : public Expr {
1651public:
1652  // __builtin_offsetof(type, identifier(.identifier|[expr])*)
1653  class OffsetOfNode {
1654  public:
1655    /// \brief The kind of offsetof node we have.
1656    enum Kind {
1657      /// \brief An index into an array.
1658      Array = 0x00,
1659      /// \brief A field.
1660      Field = 0x01,
1661      /// \brief A field in a dependent type, known only by its name.
1662      Identifier = 0x02,
1663      /// \brief An implicit indirection through a C++ base class, when the
1664      /// field found is in a base class.
1665      Base = 0x03
1666    };
1667
1668  private:
1669    enum { MaskBits = 2, Mask = 0x03 };
1670
1671    /// \brief The source range that covers this part of the designator.
1672    SourceRange Range;
1673
1674    /// \brief The data describing the designator, which comes in three
1675    /// different forms, depending on the lower two bits.
1676    ///   - An unsigned index into the array of Expr*'s stored after this node
1677    ///     in memory, for [constant-expression] designators.
1678    ///   - A FieldDecl*, for references to a known field.
1679    ///   - An IdentifierInfo*, for references to a field with a given name
1680    ///     when the class type is dependent.
1681    ///   - A CXXBaseSpecifier*, for references that look at a field in a
1682    ///     base class.
1683    uintptr_t Data;
1684
1685  public:
1686    /// \brief Create an offsetof node that refers to an array element.
1687    OffsetOfNode(SourceLocation LBracketLoc, unsigned Index,
1688                 SourceLocation RBracketLoc)
1689      : Range(LBracketLoc, RBracketLoc), Data((Index << 2) | Array) { }
1690
1691    /// \brief Create an offsetof node that refers to a field.
1692    OffsetOfNode(SourceLocation DotLoc, FieldDecl *Field,
1693                 SourceLocation NameLoc)
1694      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1695        Data(reinterpret_cast<uintptr_t>(Field) | OffsetOfNode::Field) { }
1696
1697    /// \brief Create an offsetof node that refers to an identifier.
1698    OffsetOfNode(SourceLocation DotLoc, IdentifierInfo *Name,
1699                 SourceLocation NameLoc)
1700      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1701        Data(reinterpret_cast<uintptr_t>(Name) | Identifier) { }
1702
1703    /// \brief Create an offsetof node that refers into a C++ base class.
1704    explicit OffsetOfNode(const CXXBaseSpecifier *Base)
1705      : Range(), Data(reinterpret_cast<uintptr_t>(Base) | OffsetOfNode::Base) {}
1706
1707    /// \brief Determine what kind of offsetof node this is.
1708    Kind getKind() const {
1709      return static_cast<Kind>(Data & Mask);
1710    }
1711
1712    /// \brief For an array element node, returns the index into the array
1713    /// of expressions.
1714    unsigned getArrayExprIndex() const {
1715      assert(getKind() == Array);
1716      return Data >> 2;
1717    }
1718
1719    /// \brief For a field offsetof node, returns the field.
1720    FieldDecl *getField() const {
1721      assert(getKind() == Field);
1722      return reinterpret_cast<FieldDecl *>(Data & ~(uintptr_t)Mask);
1723    }
1724
1725    /// \brief For a field or identifier offsetof node, returns the name of
1726    /// the field.
1727    IdentifierInfo *getFieldName() const;
1728
1729    /// \brief For a base class node, returns the base specifier.
1730    CXXBaseSpecifier *getBase() const {
1731      assert(getKind() == Base);
1732      return reinterpret_cast<CXXBaseSpecifier *>(Data & ~(uintptr_t)Mask);
1733    }
1734
1735    /// \brief Retrieve the source range that covers this offsetof node.
1736    ///
1737    /// For an array element node, the source range contains the locations of
1738    /// the square brackets. For a field or identifier node, the source range
1739    /// contains the location of the period (if there is one) and the
1740    /// identifier.
1741    SourceRange getSourceRange() const LLVM_READONLY { return Range; }
1742  };
1743
1744private:
1745
1746  SourceLocation OperatorLoc, RParenLoc;
1747  // Base type;
1748  TypeSourceInfo *TSInfo;
1749  // Number of sub-components (i.e. instances of OffsetOfNode).
1750  unsigned NumComps;
1751  // Number of sub-expressions (i.e. array subscript expressions).
1752  unsigned NumExprs;
1753
1754  OffsetOfExpr(ASTContext &C, QualType type,
1755               SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1756               OffsetOfNode* compsPtr, unsigned numComps,
1757               Expr** exprsPtr, unsigned numExprs,
1758               SourceLocation RParenLoc);
1759
1760  explicit OffsetOfExpr(unsigned numComps, unsigned numExprs)
1761    : Expr(OffsetOfExprClass, EmptyShell()),
1762      TSInfo(0), NumComps(numComps), NumExprs(numExprs) {}
1763
1764public:
1765
1766  static OffsetOfExpr *Create(ASTContext &C, QualType type,
1767                              SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1768                              OffsetOfNode* compsPtr, unsigned numComps,
1769                              Expr** exprsPtr, unsigned numExprs,
1770                              SourceLocation RParenLoc);
1771
1772  static OffsetOfExpr *CreateEmpty(ASTContext &C,
1773                                   unsigned NumComps, unsigned NumExprs);
1774
1775  /// getOperatorLoc - Return the location of the operator.
1776  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1777  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
1778
1779  /// \brief Return the location of the right parentheses.
1780  SourceLocation getRParenLoc() const { return RParenLoc; }
1781  void setRParenLoc(SourceLocation R) { RParenLoc = R; }
1782
1783  TypeSourceInfo *getTypeSourceInfo() const {
1784    return TSInfo;
1785  }
1786  void setTypeSourceInfo(TypeSourceInfo *tsi) {
1787    TSInfo = tsi;
1788  }
1789
1790  const OffsetOfNode &getComponent(unsigned Idx) const {
1791    assert(Idx < NumComps && "Subscript out of range");
1792    return reinterpret_cast<const OffsetOfNode *> (this + 1)[Idx];
1793  }
1794
1795  void setComponent(unsigned Idx, OffsetOfNode ON) {
1796    assert(Idx < NumComps && "Subscript out of range");
1797    reinterpret_cast<OffsetOfNode *> (this + 1)[Idx] = ON;
1798  }
1799
1800  unsigned getNumComponents() const {
1801    return NumComps;
1802  }
1803
1804  Expr* getIndexExpr(unsigned Idx) {
1805    assert(Idx < NumExprs && "Subscript out of range");
1806    return reinterpret_cast<Expr **>(
1807                    reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx];
1808  }
1809  const Expr *getIndexExpr(unsigned Idx) const {
1810    return const_cast<OffsetOfExpr*>(this)->getIndexExpr(Idx);
1811  }
1812
1813  void setIndexExpr(unsigned Idx, Expr* E) {
1814    assert(Idx < NumComps && "Subscript out of range");
1815    reinterpret_cast<Expr **>(
1816                reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx] = E;
1817  }
1818
1819  unsigned getNumExpressions() const {
1820    return NumExprs;
1821  }
1822
1823  SourceRange getSourceRange() const LLVM_READONLY {
1824    return SourceRange(OperatorLoc, RParenLoc);
1825  }
1826
1827  static bool classof(const Stmt *T) {
1828    return T->getStmtClass() == OffsetOfExprClass;
1829  }
1830
1831  static bool classof(const OffsetOfExpr *) { return true; }
1832
1833  // Iterators
1834  child_range children() {
1835    Stmt **begin =
1836      reinterpret_cast<Stmt**>(reinterpret_cast<OffsetOfNode*>(this + 1)
1837                               + NumComps);
1838    return child_range(begin, begin + NumExprs);
1839  }
1840};
1841
1842/// UnaryExprOrTypeTraitExpr - expression with either a type or (unevaluated)
1843/// expression operand.  Used for sizeof/alignof (C99 6.5.3.4) and
1844/// vec_step (OpenCL 1.1 6.11.12).
1845class UnaryExprOrTypeTraitExpr : public Expr {
1846  union {
1847    TypeSourceInfo *Ty;
1848    Stmt *Ex;
1849  } Argument;
1850  SourceLocation OpLoc, RParenLoc;
1851
1852public:
1853  UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, TypeSourceInfo *TInfo,
1854                           QualType resultType, SourceLocation op,
1855                           SourceLocation rp) :
1856      Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
1857           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1858           // Value-dependent if the argument is type-dependent.
1859           TInfo->getType()->isDependentType(),
1860           TInfo->getType()->isInstantiationDependentType(),
1861           TInfo->getType()->containsUnexpandedParameterPack()),
1862      OpLoc(op), RParenLoc(rp) {
1863    UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
1864    UnaryExprOrTypeTraitExprBits.IsType = true;
1865    Argument.Ty = TInfo;
1866  }
1867
1868  UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, Expr *E,
1869                           QualType resultType, SourceLocation op,
1870                           SourceLocation rp) :
1871      Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
1872           false, // Never type-dependent (C++ [temp.dep.expr]p3).
1873           // Value-dependent if the argument is type-dependent.
1874           E->isTypeDependent(),
1875           E->isInstantiationDependent(),
1876           E->containsUnexpandedParameterPack()),
1877      OpLoc(op), RParenLoc(rp) {
1878    UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
1879    UnaryExprOrTypeTraitExprBits.IsType = false;
1880    Argument.Ex = E;
1881  }
1882
1883  /// \brief Construct an empty sizeof/alignof expression.
1884  explicit UnaryExprOrTypeTraitExpr(EmptyShell Empty)
1885    : Expr(UnaryExprOrTypeTraitExprClass, Empty) { }
1886
1887  UnaryExprOrTypeTrait getKind() const {
1888    return static_cast<UnaryExprOrTypeTrait>(UnaryExprOrTypeTraitExprBits.Kind);
1889  }
1890  void setKind(UnaryExprOrTypeTrait K) { UnaryExprOrTypeTraitExprBits.Kind = K;}
1891
1892  bool isArgumentType() const { return UnaryExprOrTypeTraitExprBits.IsType; }
1893  QualType getArgumentType() const {
1894    return getArgumentTypeInfo()->getType();
1895  }
1896  TypeSourceInfo *getArgumentTypeInfo() const {
1897    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
1898    return Argument.Ty;
1899  }
1900  Expr *getArgumentExpr() {
1901    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
1902    return static_cast<Expr*>(Argument.Ex);
1903  }
1904  const Expr *getArgumentExpr() const {
1905    return const_cast<UnaryExprOrTypeTraitExpr*>(this)->getArgumentExpr();
1906  }
1907
1908  void setArgument(Expr *E) {
1909    Argument.Ex = E;
1910    UnaryExprOrTypeTraitExprBits.IsType = false;
1911  }
1912  void setArgument(TypeSourceInfo *TInfo) {
1913    Argument.Ty = TInfo;
1914    UnaryExprOrTypeTraitExprBits.IsType = true;
1915  }
1916
1917  /// Gets the argument type, or the type of the argument expression, whichever
1918  /// is appropriate.
1919  QualType getTypeOfArgument() const {
1920    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
1921  }
1922
1923  SourceLocation getOperatorLoc() const { return OpLoc; }
1924  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
1925
1926  SourceLocation getRParenLoc() const { return RParenLoc; }
1927  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1928
1929  SourceRange getSourceRange() const LLVM_READONLY {
1930    return SourceRange(OpLoc, RParenLoc);
1931  }
1932
1933  static bool classof(const Stmt *T) {
1934    return T->getStmtClass() == UnaryExprOrTypeTraitExprClass;
1935  }
1936  static bool classof(const UnaryExprOrTypeTraitExpr *) { return true; }
1937
1938  // Iterators
1939  child_range children();
1940};
1941
1942//===----------------------------------------------------------------------===//
1943// Postfix Operators.
1944//===----------------------------------------------------------------------===//
1945
1946/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
1947class ArraySubscriptExpr : public Expr {
1948  enum { LHS, RHS, END_EXPR=2 };
1949  Stmt* SubExprs[END_EXPR];
1950  SourceLocation RBracketLoc;
1951public:
1952  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
1953                     ExprValueKind VK, ExprObjectKind OK,
1954                     SourceLocation rbracketloc)
1955  : Expr(ArraySubscriptExprClass, t, VK, OK,
1956         lhs->isTypeDependent() || rhs->isTypeDependent(),
1957         lhs->isValueDependent() || rhs->isValueDependent(),
1958         (lhs->isInstantiationDependent() ||
1959          rhs->isInstantiationDependent()),
1960         (lhs->containsUnexpandedParameterPack() ||
1961          rhs->containsUnexpandedParameterPack())),
1962    RBracketLoc(rbracketloc) {
1963    SubExprs[LHS] = lhs;
1964    SubExprs[RHS] = rhs;
1965  }
1966
1967  /// \brief Create an empty array subscript expression.
1968  explicit ArraySubscriptExpr(EmptyShell Shell)
1969    : Expr(ArraySubscriptExprClass, Shell) { }
1970
1971  /// An array access can be written A[4] or 4[A] (both are equivalent).
1972  /// - getBase() and getIdx() always present the normalized view: A[4].
1973  ///    In this case getBase() returns "A" and getIdx() returns "4".
1974  /// - getLHS() and getRHS() present the syntactic view. e.g. for
1975  ///    4[A] getLHS() returns "4".
1976  /// Note: Because vector element access is also written A[4] we must
1977  /// predicate the format conversion in getBase and getIdx only on the
1978  /// the type of the RHS, as it is possible for the LHS to be a vector of
1979  /// integer type
1980  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
1981  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1982  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1983
1984  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
1985  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1986  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1987
1988  Expr *getBase() {
1989    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1990  }
1991
1992  const Expr *getBase() const {
1993    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
1994  }
1995
1996  Expr *getIdx() {
1997    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
1998  }
1999
2000  const Expr *getIdx() const {
2001    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
2002  }
2003
2004  SourceRange getSourceRange() const LLVM_READONLY {
2005    return SourceRange(getLHS()->getLocStart(), RBracketLoc);
2006  }
2007
2008  SourceLocation getRBracketLoc() const { return RBracketLoc; }
2009  void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
2010
2011  SourceLocation getExprLoc() const LLVM_READONLY { return getBase()->getExprLoc(); }
2012
2013  static bool classof(const Stmt *T) {
2014    return T->getStmtClass() == ArraySubscriptExprClass;
2015  }
2016  static bool classof(const ArraySubscriptExpr *) { return true; }
2017
2018  // Iterators
2019  child_range children() {
2020    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
2021  }
2022};
2023
2024
2025/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
2026/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
2027/// while its subclasses may represent alternative syntax that (semantically)
2028/// results in a function call. For example, CXXOperatorCallExpr is
2029/// a subclass for overloaded operator calls that use operator syntax, e.g.,
2030/// "str1 + str2" to resolve to a function call.
2031class CallExpr : public Expr {
2032  enum { FN=0, PREARGS_START=1 };
2033  Stmt **SubExprs;
2034  unsigned NumArgs;
2035  SourceLocation RParenLoc;
2036
2037protected:
2038  // These versions of the constructor are for derived classes.
2039  CallExpr(ASTContext& C, StmtClass SC, Expr *fn, unsigned NumPreArgs,
2040           Expr **args, unsigned numargs, QualType t, ExprValueKind VK,
2041           SourceLocation rparenloc);
2042  CallExpr(ASTContext &C, StmtClass SC, unsigned NumPreArgs, EmptyShell Empty);
2043
2044  Stmt *getPreArg(unsigned i) {
2045    assert(i < getNumPreArgs() && "Prearg access out of range!");
2046    return SubExprs[PREARGS_START+i];
2047  }
2048  const Stmt *getPreArg(unsigned i) const {
2049    assert(i < getNumPreArgs() && "Prearg access out of range!");
2050    return SubExprs[PREARGS_START+i];
2051  }
2052  void setPreArg(unsigned i, Stmt *PreArg) {
2053    assert(i < getNumPreArgs() && "Prearg access out of range!");
2054    SubExprs[PREARGS_START+i] = PreArg;
2055  }
2056
2057  unsigned getNumPreArgs() const { return CallExprBits.NumPreArgs; }
2058
2059public:
2060  CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, QualType t,
2061           ExprValueKind VK, SourceLocation rparenloc);
2062
2063  /// \brief Build an empty call expression.
2064  CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty);
2065
2066  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
2067  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
2068  void setCallee(Expr *F) { SubExprs[FN] = F; }
2069
2070  Decl *getCalleeDecl();
2071  const Decl *getCalleeDecl() const {
2072    return const_cast<CallExpr*>(this)->getCalleeDecl();
2073  }
2074
2075  /// \brief If the callee is a FunctionDecl, return it. Otherwise return 0.
2076  FunctionDecl *getDirectCallee();
2077  const FunctionDecl *getDirectCallee() const {
2078    return const_cast<CallExpr*>(this)->getDirectCallee();
2079  }
2080
2081  /// getNumArgs - Return the number of actual arguments to this call.
2082  ///
2083  unsigned getNumArgs() const { return NumArgs; }
2084
2085  /// \brief Retrieve the call arguments.
2086  Expr **getArgs() {
2087    return reinterpret_cast<Expr **>(SubExprs+getNumPreArgs()+PREARGS_START);
2088  }
2089  const Expr *const *getArgs() const {
2090    return const_cast<CallExpr*>(this)->getArgs();
2091  }
2092
2093  /// getArg - Return the specified argument.
2094  Expr *getArg(unsigned Arg) {
2095    assert(Arg < NumArgs && "Arg access out of range!");
2096    return cast<Expr>(SubExprs[Arg+getNumPreArgs()+PREARGS_START]);
2097  }
2098  const Expr *getArg(unsigned Arg) const {
2099    assert(Arg < NumArgs && "Arg access out of range!");
2100    return cast<Expr>(SubExprs[Arg+getNumPreArgs()+PREARGS_START]);
2101  }
2102
2103  /// setArg - Set the specified argument.
2104  void setArg(unsigned Arg, Expr *ArgExpr) {
2105    assert(Arg < NumArgs && "Arg access out of range!");
2106    SubExprs[Arg+getNumPreArgs()+PREARGS_START] = ArgExpr;
2107  }
2108
2109  /// setNumArgs - This changes the number of arguments present in this call.
2110  /// Any orphaned expressions are deleted by this, and any new operands are set
2111  /// to null.
2112  void setNumArgs(ASTContext& C, unsigned NumArgs);
2113
2114  typedef ExprIterator arg_iterator;
2115  typedef ConstExprIterator const_arg_iterator;
2116
2117  arg_iterator arg_begin() { return SubExprs+PREARGS_START+getNumPreArgs(); }
2118  arg_iterator arg_end() {
2119    return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
2120  }
2121  const_arg_iterator arg_begin() const {
2122    return SubExprs+PREARGS_START+getNumPreArgs();
2123  }
2124  const_arg_iterator arg_end() const {
2125    return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
2126  }
2127
2128  /// getNumCommas - Return the number of commas that must have been present in
2129  /// this function call.
2130  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
2131
2132  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
2133  /// not, return 0.
2134  unsigned isBuiltinCall() const;
2135
2136  /// getCallReturnType - Get the return type of the call expr. This is not
2137  /// always the type of the expr itself, if the return type is a reference
2138  /// type.
2139  QualType getCallReturnType() const;
2140
2141  SourceLocation getRParenLoc() const { return RParenLoc; }
2142  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2143
2144  SourceRange getSourceRange() const LLVM_READONLY;
2145  SourceLocation getLocStart() const LLVM_READONLY;
2146  SourceLocation getLocEnd() const LLVM_READONLY;
2147
2148  static bool classof(const Stmt *T) {
2149    return T->getStmtClass() >= firstCallExprConstant &&
2150           T->getStmtClass() <= lastCallExprConstant;
2151  }
2152  static bool classof(const CallExpr *) { return true; }
2153
2154  // Iterators
2155  child_range children() {
2156    return child_range(&SubExprs[0],
2157                       &SubExprs[0]+NumArgs+getNumPreArgs()+PREARGS_START);
2158  }
2159};
2160
2161/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.  X->F and X.F.
2162///
2163class MemberExpr : public Expr {
2164  /// Extra data stored in some member expressions.
2165  struct MemberNameQualifier {
2166    /// \brief The nested-name-specifier that qualifies the name, including
2167    /// source-location information.
2168    NestedNameSpecifierLoc QualifierLoc;
2169
2170    /// \brief The DeclAccessPair through which the MemberDecl was found due to
2171    /// name qualifiers.
2172    DeclAccessPair FoundDecl;
2173  };
2174
2175  /// Base - the expression for the base pointer or structure references.  In
2176  /// X.F, this is "X".
2177  Stmt *Base;
2178
2179  /// MemberDecl - This is the decl being referenced by the field/member name.
2180  /// In X.F, this is the decl referenced by F.
2181  ValueDecl *MemberDecl;
2182
2183  /// MemberDNLoc - Provides source/type location info for the
2184  /// declaration name embedded in MemberDecl.
2185  DeclarationNameLoc MemberDNLoc;
2186
2187  /// MemberLoc - This is the location of the member name.
2188  SourceLocation MemberLoc;
2189
2190  /// IsArrow - True if this is "X->F", false if this is "X.F".
2191  bool IsArrow : 1;
2192
2193  /// \brief True if this member expression used a nested-name-specifier to
2194  /// refer to the member, e.g., "x->Base::f", or found its member via a using
2195  /// declaration.  When true, a MemberNameQualifier
2196  /// structure is allocated immediately after the MemberExpr.
2197  bool HasQualifierOrFoundDecl : 1;
2198
2199  /// \brief True if this member expression specified a template keyword
2200  /// and/or a template argument list explicitly, e.g., x->f<int>,
2201  /// x->template f, x->template f<int>.
2202  /// When true, an ASTTemplateKWAndArgsInfo structure and its
2203  /// TemplateArguments (if any) are allocated immediately after
2204  /// the MemberExpr or, if the member expression also has a qualifier,
2205  /// after the MemberNameQualifier structure.
2206  bool HasTemplateKWAndArgsInfo : 1;
2207
2208  /// \brief True if this member expression refers to a method that
2209  /// was resolved from an overloaded set having size greater than 1.
2210  bool HadMultipleCandidates : 1;
2211
2212  /// \brief Retrieve the qualifier that preceded the member name, if any.
2213  MemberNameQualifier *getMemberQualifier() {
2214    assert(HasQualifierOrFoundDecl);
2215    return reinterpret_cast<MemberNameQualifier *> (this + 1);
2216  }
2217
2218  /// \brief Retrieve the qualifier that preceded the member name, if any.
2219  const MemberNameQualifier *getMemberQualifier() const {
2220    return const_cast<MemberExpr *>(this)->getMemberQualifier();
2221  }
2222
2223public:
2224  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
2225             const DeclarationNameInfo &NameInfo, QualType ty,
2226             ExprValueKind VK, ExprObjectKind OK)
2227    : Expr(MemberExprClass, ty, VK, OK,
2228           base->isTypeDependent(),
2229           base->isValueDependent(),
2230           base->isInstantiationDependent(),
2231           base->containsUnexpandedParameterPack()),
2232      Base(base), MemberDecl(memberdecl), MemberDNLoc(NameInfo.getInfo()),
2233      MemberLoc(NameInfo.getLoc()), IsArrow(isarrow),
2234      HasQualifierOrFoundDecl(false), HasTemplateKWAndArgsInfo(false),
2235      HadMultipleCandidates(false) {
2236    assert(memberdecl->getDeclName() == NameInfo.getName());
2237  }
2238
2239  // NOTE: this constructor should be used only when it is known that
2240  // the member name can not provide additional syntactic info
2241  // (i.e., source locations for C++ operator names or type source info
2242  // for constructors, destructors and conversion operators).
2243  MemberExpr(Expr *base, bool isarrow, ValueDecl *memberdecl,
2244             SourceLocation l, QualType ty,
2245             ExprValueKind VK, ExprObjectKind OK)
2246    : Expr(MemberExprClass, ty, VK, OK,
2247           base->isTypeDependent(), base->isValueDependent(),
2248           base->isInstantiationDependent(),
2249           base->containsUnexpandedParameterPack()),
2250      Base(base), MemberDecl(memberdecl), MemberDNLoc(), MemberLoc(l),
2251      IsArrow(isarrow),
2252      HasQualifierOrFoundDecl(false), HasTemplateKWAndArgsInfo(false),
2253      HadMultipleCandidates(false) {}
2254
2255  static MemberExpr *Create(ASTContext &C, Expr *base, bool isarrow,
2256                            NestedNameSpecifierLoc QualifierLoc,
2257                            SourceLocation TemplateKWLoc,
2258                            ValueDecl *memberdecl, DeclAccessPair founddecl,
2259                            DeclarationNameInfo MemberNameInfo,
2260                            const TemplateArgumentListInfo *targs,
2261                            QualType ty, ExprValueKind VK, ExprObjectKind OK);
2262
2263  void setBase(Expr *E) { Base = E; }
2264  Expr *getBase() const { return cast<Expr>(Base); }
2265
2266  /// \brief Retrieve the member declaration to which this expression refers.
2267  ///
2268  /// The returned declaration will either be a FieldDecl or (in C++)
2269  /// a CXXMethodDecl.
2270  ValueDecl *getMemberDecl() const { return MemberDecl; }
2271  void setMemberDecl(ValueDecl *D) { MemberDecl = D; }
2272
2273  /// \brief Retrieves the declaration found by lookup.
2274  DeclAccessPair getFoundDecl() const {
2275    if (!HasQualifierOrFoundDecl)
2276      return DeclAccessPair::make(getMemberDecl(),
2277                                  getMemberDecl()->getAccess());
2278    return getMemberQualifier()->FoundDecl;
2279  }
2280
2281  /// \brief Determines whether this member expression actually had
2282  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
2283  /// x->Base::foo.
2284  bool hasQualifier() const { return getQualifier() != 0; }
2285
2286  /// \brief If the member name was qualified, retrieves the
2287  /// nested-name-specifier that precedes the member name. Otherwise, returns
2288  /// NULL.
2289  NestedNameSpecifier *getQualifier() const {
2290    if (!HasQualifierOrFoundDecl)
2291      return 0;
2292
2293    return getMemberQualifier()->QualifierLoc.getNestedNameSpecifier();
2294  }
2295
2296  /// \brief If the member name was qualified, retrieves the
2297  /// nested-name-specifier that precedes the member name, with source-location
2298  /// information.
2299  NestedNameSpecifierLoc getQualifierLoc() const {
2300    if (!hasQualifier())
2301      return NestedNameSpecifierLoc();
2302
2303    return getMemberQualifier()->QualifierLoc;
2304  }
2305
2306  /// \brief Return the optional template keyword and arguments info.
2307  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
2308    if (!HasTemplateKWAndArgsInfo)
2309      return 0;
2310
2311    if (!HasQualifierOrFoundDecl)
2312      return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(this + 1);
2313
2314    return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(
2315                                                      getMemberQualifier() + 1);
2316  }
2317
2318  /// \brief Return the optional template keyword and arguments info.
2319  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
2320    return const_cast<MemberExpr*>(this)->getTemplateKWAndArgsInfo();
2321  }
2322
2323  /// \brief Retrieve the location of the template keyword preceding
2324  /// the member name, if any.
2325  SourceLocation getTemplateKeywordLoc() const {
2326    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2327    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
2328  }
2329
2330  /// \brief Retrieve the location of the left angle bracket starting the
2331  /// explicit template argument list following the member name, if any.
2332  SourceLocation getLAngleLoc() const {
2333    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2334    return getTemplateKWAndArgsInfo()->LAngleLoc;
2335  }
2336
2337  /// \brief Retrieve the location of the right angle bracket ending the
2338  /// explicit template argument list following the member name, if any.
2339  SourceLocation getRAngleLoc() const {
2340    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2341    return getTemplateKWAndArgsInfo()->RAngleLoc;
2342  }
2343
2344  /// Determines whether the member name was preceded by the template keyword.
2345  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
2346
2347  /// \brief Determines whether the member name was followed by an
2348  /// explicit template argument list.
2349  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
2350
2351  /// \brief Copies the template arguments (if present) into the given
2352  /// structure.
2353  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2354    if (hasExplicitTemplateArgs())
2355      getExplicitTemplateArgs().copyInto(List);
2356  }
2357
2358  /// \brief Retrieve the explicit template argument list that
2359  /// follow the member template name.  This must only be called on an
2360  /// expression with explicit template arguments.
2361  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
2362    assert(hasExplicitTemplateArgs());
2363    return *getTemplateKWAndArgsInfo();
2364  }
2365
2366  /// \brief Retrieve the explicit template argument list that
2367  /// followed the member template name.  This must only be called on
2368  /// an expression with explicit template arguments.
2369  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2370    return const_cast<MemberExpr *>(this)->getExplicitTemplateArgs();
2371  }
2372
2373  /// \brief Retrieves the optional explicit template arguments.
2374  /// This points to the same data as getExplicitTemplateArgs(), but
2375  /// returns null if there are no explicit template arguments.
2376  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() const {
2377    if (!hasExplicitTemplateArgs()) return 0;
2378    return &getExplicitTemplateArgs();
2379  }
2380
2381  /// \brief Retrieve the template arguments provided as part of this
2382  /// template-id.
2383  const TemplateArgumentLoc *getTemplateArgs() const {
2384    if (!hasExplicitTemplateArgs())
2385      return 0;
2386
2387    return getExplicitTemplateArgs().getTemplateArgs();
2388  }
2389
2390  /// \brief Retrieve the number of template arguments provided as part of this
2391  /// template-id.
2392  unsigned getNumTemplateArgs() const {
2393    if (!hasExplicitTemplateArgs())
2394      return 0;
2395
2396    return getExplicitTemplateArgs().NumTemplateArgs;
2397  }
2398
2399  /// \brief Retrieve the member declaration name info.
2400  DeclarationNameInfo getMemberNameInfo() const {
2401    return DeclarationNameInfo(MemberDecl->getDeclName(),
2402                               MemberLoc, MemberDNLoc);
2403  }
2404
2405  bool isArrow() const { return IsArrow; }
2406  void setArrow(bool A) { IsArrow = A; }
2407
2408  /// getMemberLoc - Return the location of the "member", in X->F, it is the
2409  /// location of 'F'.
2410  SourceLocation getMemberLoc() const { return MemberLoc; }
2411  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
2412
2413  SourceRange getSourceRange() const LLVM_READONLY;
2414  SourceLocation getLocStart() const LLVM_READONLY;
2415  SourceLocation getLocEnd() const LLVM_READONLY;
2416
2417  SourceLocation getExprLoc() const LLVM_READONLY { return MemberLoc; }
2418
2419  /// \brief Determine whether the base of this explicit is implicit.
2420  bool isImplicitAccess() const {
2421    return getBase() && getBase()->isImplicitCXXThis();
2422  }
2423
2424  /// \brief Returns true if this member expression refers to a method that
2425  /// was resolved from an overloaded set having size greater than 1.
2426  bool hadMultipleCandidates() const {
2427    return HadMultipleCandidates;
2428  }
2429  /// \brief Sets the flag telling whether this expression refers to
2430  /// a method that was resolved from an overloaded set having size
2431  /// greater than 1.
2432  void setHadMultipleCandidates(bool V = true) {
2433    HadMultipleCandidates = V;
2434  }
2435
2436  static bool classof(const Stmt *T) {
2437    return T->getStmtClass() == MemberExprClass;
2438  }
2439  static bool classof(const MemberExpr *) { return true; }
2440
2441  // Iterators
2442  child_range children() { return child_range(&Base, &Base+1); }
2443
2444  friend class ASTReader;
2445  friend class ASTStmtWriter;
2446};
2447
2448/// CompoundLiteralExpr - [C99 6.5.2.5]
2449///
2450class CompoundLiteralExpr : public Expr {
2451  /// LParenLoc - If non-null, this is the location of the left paren in a
2452  /// compound literal like "(int){4}".  This can be null if this is a
2453  /// synthesized compound expression.
2454  SourceLocation LParenLoc;
2455
2456  /// The type as written.  This can be an incomplete array type, in
2457  /// which case the actual expression type will be different.
2458  /// The int part of the pair stores whether this expr is file scope.
2459  llvm::PointerIntPair<TypeSourceInfo *, 1, bool> TInfoAndScope;
2460  Stmt *Init;
2461public:
2462  CompoundLiteralExpr(SourceLocation lparenloc, TypeSourceInfo *tinfo,
2463                      QualType T, ExprValueKind VK, Expr *init, bool fileScope)
2464    : Expr(CompoundLiteralExprClass, T, VK, OK_Ordinary,
2465           tinfo->getType()->isDependentType(),
2466           init->isValueDependent(),
2467           (init->isInstantiationDependent() ||
2468            tinfo->getType()->isInstantiationDependentType()),
2469           init->containsUnexpandedParameterPack()),
2470      LParenLoc(lparenloc), TInfoAndScope(tinfo, fileScope), Init(init) {}
2471
2472  /// \brief Construct an empty compound literal.
2473  explicit CompoundLiteralExpr(EmptyShell Empty)
2474    : Expr(CompoundLiteralExprClass, Empty) { }
2475
2476  const Expr *getInitializer() const { return cast<Expr>(Init); }
2477  Expr *getInitializer() { return cast<Expr>(Init); }
2478  void setInitializer(Expr *E) { Init = E; }
2479
2480  bool isFileScope() const { return TInfoAndScope.getInt(); }
2481  void setFileScope(bool FS) { TInfoAndScope.setInt(FS); }
2482
2483  SourceLocation getLParenLoc() const { return LParenLoc; }
2484  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2485
2486  TypeSourceInfo *getTypeSourceInfo() const {
2487    return TInfoAndScope.getPointer();
2488  }
2489  void setTypeSourceInfo(TypeSourceInfo *tinfo) {
2490    TInfoAndScope.setPointer(tinfo);
2491  }
2492
2493  SourceRange getSourceRange() const LLVM_READONLY {
2494    // FIXME: Init should never be null.
2495    if (!Init)
2496      return SourceRange();
2497    if (LParenLoc.isInvalid())
2498      return Init->getSourceRange();
2499    return SourceRange(LParenLoc, Init->getLocEnd());
2500  }
2501
2502  static bool classof(const Stmt *T) {
2503    return T->getStmtClass() == CompoundLiteralExprClass;
2504  }
2505  static bool classof(const CompoundLiteralExpr *) { return true; }
2506
2507  // Iterators
2508  child_range children() { return child_range(&Init, &Init+1); }
2509};
2510
2511/// CastExpr - Base class for type casts, including both implicit
2512/// casts (ImplicitCastExpr) and explicit casts that have some
2513/// representation in the source code (ExplicitCastExpr's derived
2514/// classes).
2515class CastExpr : public Expr {
2516public:
2517  typedef clang::CastKind CastKind;
2518
2519private:
2520  Stmt *Op;
2521
2522  void CheckCastConsistency() const;
2523
2524  const CXXBaseSpecifier * const *path_buffer() const {
2525    return const_cast<CastExpr*>(this)->path_buffer();
2526  }
2527  CXXBaseSpecifier **path_buffer();
2528
2529  void setBasePathSize(unsigned basePathSize) {
2530    CastExprBits.BasePathSize = basePathSize;
2531    assert(CastExprBits.BasePathSize == basePathSize &&
2532           "basePathSize doesn't fit in bits of CastExprBits.BasePathSize!");
2533  }
2534
2535protected:
2536  CastExpr(StmtClass SC, QualType ty, ExprValueKind VK,
2537           const CastKind kind, Expr *op, unsigned BasePathSize) :
2538    Expr(SC, ty, VK, OK_Ordinary,
2539         // Cast expressions are type-dependent if the type is
2540         // dependent (C++ [temp.dep.expr]p3).
2541         ty->isDependentType(),
2542         // Cast expressions are value-dependent if the type is
2543         // dependent or if the subexpression is value-dependent.
2544         ty->isDependentType() || (op && op->isValueDependent()),
2545         (ty->isInstantiationDependentType() ||
2546          (op && op->isInstantiationDependent())),
2547         (ty->containsUnexpandedParameterPack() ||
2548          op->containsUnexpandedParameterPack())),
2549    Op(op) {
2550    assert(kind != CK_Invalid && "creating cast with invalid cast kind");
2551    CastExprBits.Kind = kind;
2552    setBasePathSize(BasePathSize);
2553#ifndef NDEBUG
2554    CheckCastConsistency();
2555#endif
2556  }
2557
2558  /// \brief Construct an empty cast.
2559  CastExpr(StmtClass SC, EmptyShell Empty, unsigned BasePathSize)
2560    : Expr(SC, Empty) {
2561    setBasePathSize(BasePathSize);
2562  }
2563
2564public:
2565  CastKind getCastKind() const { return (CastKind) CastExprBits.Kind; }
2566  void setCastKind(CastKind K) { CastExprBits.Kind = K; }
2567  const char *getCastKindName() const;
2568
2569  Expr *getSubExpr() { return cast<Expr>(Op); }
2570  const Expr *getSubExpr() const { return cast<Expr>(Op); }
2571  void setSubExpr(Expr *E) { Op = E; }
2572
2573  /// \brief Retrieve the cast subexpression as it was written in the source
2574  /// code, looking through any implicit casts or other intermediate nodes
2575  /// introduced by semantic analysis.
2576  Expr *getSubExprAsWritten();
2577  const Expr *getSubExprAsWritten() const {
2578    return const_cast<CastExpr *>(this)->getSubExprAsWritten();
2579  }
2580
2581  typedef CXXBaseSpecifier **path_iterator;
2582  typedef const CXXBaseSpecifier * const *path_const_iterator;
2583  bool path_empty() const { return CastExprBits.BasePathSize == 0; }
2584  unsigned path_size() const { return CastExprBits.BasePathSize; }
2585  path_iterator path_begin() { return path_buffer(); }
2586  path_iterator path_end() { return path_buffer() + path_size(); }
2587  path_const_iterator path_begin() const { return path_buffer(); }
2588  path_const_iterator path_end() const { return path_buffer() + path_size(); }
2589
2590  void setCastPath(const CXXCastPath &Path);
2591
2592  static bool classof(const Stmt *T) {
2593    return T->getStmtClass() >= firstCastExprConstant &&
2594           T->getStmtClass() <= lastCastExprConstant;
2595  }
2596  static bool classof(const CastExpr *) { return true; }
2597
2598  // Iterators
2599  child_range children() { return child_range(&Op, &Op+1); }
2600};
2601
2602/// ImplicitCastExpr - Allows us to explicitly represent implicit type
2603/// conversions, which have no direct representation in the original
2604/// source code. For example: converting T[]->T*, void f()->void
2605/// (*f)(), float->double, short->int, etc.
2606///
2607/// In C, implicit casts always produce rvalues. However, in C++, an
2608/// implicit cast whose result is being bound to a reference will be
2609/// an lvalue or xvalue. For example:
2610///
2611/// @code
2612/// class Base { };
2613/// class Derived : public Base { };
2614/// Derived &&ref();
2615/// void f(Derived d) {
2616///   Base& b = d; // initializer is an ImplicitCastExpr
2617///                // to an lvalue of type Base
2618///   Base&& r = ref(); // initializer is an ImplicitCastExpr
2619///                     // to an xvalue of type Base
2620/// }
2621/// @endcode
2622class ImplicitCastExpr : public CastExpr {
2623private:
2624  ImplicitCastExpr(QualType ty, CastKind kind, Expr *op,
2625                   unsigned BasePathLength, ExprValueKind VK)
2626    : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, BasePathLength) {
2627  }
2628
2629  /// \brief Construct an empty implicit cast.
2630  explicit ImplicitCastExpr(EmptyShell Shell, unsigned PathSize)
2631    : CastExpr(ImplicitCastExprClass, Shell, PathSize) { }
2632
2633public:
2634  enum OnStack_t { OnStack };
2635  ImplicitCastExpr(OnStack_t _, QualType ty, CastKind kind, Expr *op,
2636                   ExprValueKind VK)
2637    : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, 0) {
2638  }
2639
2640  static ImplicitCastExpr *Create(ASTContext &Context, QualType T,
2641                                  CastKind Kind, Expr *Operand,
2642                                  const CXXCastPath *BasePath,
2643                                  ExprValueKind Cat);
2644
2645  static ImplicitCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize);
2646
2647  SourceRange getSourceRange() const LLVM_READONLY {
2648    return getSubExpr()->getSourceRange();
2649  }
2650  SourceLocation getLocStart() const LLVM_READONLY {
2651    return getSubExpr()->getLocStart();
2652  }
2653  SourceLocation getLocEnd() const LLVM_READONLY {
2654    return getSubExpr()->getLocEnd();
2655  }
2656
2657  static bool classof(const Stmt *T) {
2658    return T->getStmtClass() == ImplicitCastExprClass;
2659  }
2660  static bool classof(const ImplicitCastExpr *) { return true; }
2661};
2662
2663inline Expr *Expr::IgnoreImpCasts() {
2664  Expr *e = this;
2665  while (ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
2666    e = ice->getSubExpr();
2667  return e;
2668}
2669
2670/// ExplicitCastExpr - An explicit cast written in the source
2671/// code.
2672///
2673/// This class is effectively an abstract class, because it provides
2674/// the basic representation of an explicitly-written cast without
2675/// specifying which kind of cast (C cast, functional cast, static
2676/// cast, etc.) was written; specific derived classes represent the
2677/// particular style of cast and its location information.
2678///
2679/// Unlike implicit casts, explicit cast nodes have two different
2680/// types: the type that was written into the source code, and the
2681/// actual type of the expression as determined by semantic
2682/// analysis. These types may differ slightly. For example, in C++ one
2683/// can cast to a reference type, which indicates that the resulting
2684/// expression will be an lvalue or xvalue. The reference type, however,
2685/// will not be used as the type of the expression.
2686class ExplicitCastExpr : public CastExpr {
2687  /// TInfo - Source type info for the (written) type
2688  /// this expression is casting to.
2689  TypeSourceInfo *TInfo;
2690
2691protected:
2692  ExplicitCastExpr(StmtClass SC, QualType exprTy, ExprValueKind VK,
2693                   CastKind kind, Expr *op, unsigned PathSize,
2694                   TypeSourceInfo *writtenTy)
2695    : CastExpr(SC, exprTy, VK, kind, op, PathSize), TInfo(writtenTy) {}
2696
2697  /// \brief Construct an empty explicit cast.
2698  ExplicitCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
2699    : CastExpr(SC, Shell, PathSize) { }
2700
2701public:
2702  /// getTypeInfoAsWritten - Returns the type source info for the type
2703  /// that this expression is casting to.
2704  TypeSourceInfo *getTypeInfoAsWritten() const { return TInfo; }
2705  void setTypeInfoAsWritten(TypeSourceInfo *writtenTy) { TInfo = writtenTy; }
2706
2707  /// getTypeAsWritten - Returns the type that this expression is
2708  /// casting to, as written in the source code.
2709  QualType getTypeAsWritten() const { return TInfo->getType(); }
2710
2711  static bool classof(const Stmt *T) {
2712     return T->getStmtClass() >= firstExplicitCastExprConstant &&
2713            T->getStmtClass() <= lastExplicitCastExprConstant;
2714  }
2715  static bool classof(const ExplicitCastExpr *) { return true; }
2716};
2717
2718/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
2719/// cast in C++ (C++ [expr.cast]), which uses the syntax
2720/// (Type)expr. For example: @c (int)f.
2721class CStyleCastExpr : public ExplicitCastExpr {
2722  SourceLocation LPLoc; // the location of the left paren
2723  SourceLocation RPLoc; // the location of the right paren
2724
2725  CStyleCastExpr(QualType exprTy, ExprValueKind vk, CastKind kind, Expr *op,
2726                 unsigned PathSize, TypeSourceInfo *writtenTy,
2727                 SourceLocation l, SourceLocation r)
2728    : ExplicitCastExpr(CStyleCastExprClass, exprTy, vk, kind, op, PathSize,
2729                       writtenTy), LPLoc(l), RPLoc(r) {}
2730
2731  /// \brief Construct an empty C-style explicit cast.
2732  explicit CStyleCastExpr(EmptyShell Shell, unsigned PathSize)
2733    : ExplicitCastExpr(CStyleCastExprClass, Shell, PathSize) { }
2734
2735public:
2736  static CStyleCastExpr *Create(ASTContext &Context, QualType T,
2737                                ExprValueKind VK, CastKind K,
2738                                Expr *Op, const CXXCastPath *BasePath,
2739                                TypeSourceInfo *WrittenTy, SourceLocation L,
2740                                SourceLocation R);
2741
2742  static CStyleCastExpr *CreateEmpty(ASTContext &Context, unsigned PathSize);
2743
2744  SourceLocation getLParenLoc() const { return LPLoc; }
2745  void setLParenLoc(SourceLocation L) { LPLoc = L; }
2746
2747  SourceLocation getRParenLoc() const { return RPLoc; }
2748  void setRParenLoc(SourceLocation L) { RPLoc = L; }
2749
2750  SourceRange getSourceRange() const LLVM_READONLY {
2751    return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd());
2752  }
2753  static bool classof(const Stmt *T) {
2754    return T->getStmtClass() == CStyleCastExprClass;
2755  }
2756  static bool classof(const CStyleCastExpr *) { return true; }
2757};
2758
2759/// \brief A builtin binary operation expression such as "x + y" or "x <= y".
2760///
2761/// This expression node kind describes a builtin binary operation,
2762/// such as "x + y" for integer values "x" and "y". The operands will
2763/// already have been converted to appropriate types (e.g., by
2764/// performing promotions or conversions).
2765///
2766/// In C++, where operators may be overloaded, a different kind of
2767/// expression node (CXXOperatorCallExpr) is used to express the
2768/// invocation of an overloaded operator with operator syntax. Within
2769/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
2770/// used to store an expression "x + y" depends on the subexpressions
2771/// for x and y. If neither x or y is type-dependent, and the "+"
2772/// operator resolves to a built-in operation, BinaryOperator will be
2773/// used to express the computation (x and y may still be
2774/// value-dependent). If either x or y is type-dependent, or if the
2775/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
2776/// be used to express the computation.
2777class BinaryOperator : public Expr {
2778public:
2779  typedef BinaryOperatorKind Opcode;
2780
2781private:
2782  unsigned Opc : 6;
2783  SourceLocation OpLoc;
2784
2785  enum { LHS, RHS, END_EXPR };
2786  Stmt* SubExprs[END_EXPR];
2787public:
2788
2789  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2790                 ExprValueKind VK, ExprObjectKind OK,
2791                 SourceLocation opLoc)
2792    : Expr(BinaryOperatorClass, ResTy, VK, OK,
2793           lhs->isTypeDependent() || rhs->isTypeDependent(),
2794           lhs->isValueDependent() || rhs->isValueDependent(),
2795           (lhs->isInstantiationDependent() ||
2796            rhs->isInstantiationDependent()),
2797           (lhs->containsUnexpandedParameterPack() ||
2798            rhs->containsUnexpandedParameterPack())),
2799      Opc(opc), OpLoc(opLoc) {
2800    SubExprs[LHS] = lhs;
2801    SubExprs[RHS] = rhs;
2802    assert(!isCompoundAssignmentOp() &&
2803           "Use ArithAssignBinaryOperator for compound assignments");
2804  }
2805
2806  /// \brief Construct an empty binary operator.
2807  explicit BinaryOperator(EmptyShell Empty)
2808    : Expr(BinaryOperatorClass, Empty), Opc(BO_Comma) { }
2809
2810  SourceLocation getExprLoc() const LLVM_READONLY { return OpLoc; }
2811  SourceLocation getOperatorLoc() const { return OpLoc; }
2812  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
2813
2814  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
2815  void setOpcode(Opcode O) { Opc = O; }
2816
2817  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2818  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2819  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2820  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2821
2822  SourceRange getSourceRange() const LLVM_READONLY {
2823    return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
2824  }
2825
2826  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
2827  /// corresponds to, e.g. "<<=".
2828  static const char *getOpcodeStr(Opcode Op);
2829
2830  const char *getOpcodeStr() const { return getOpcodeStr(getOpcode()); }
2831
2832  /// \brief Retrieve the binary opcode that corresponds to the given
2833  /// overloaded operator.
2834  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
2835
2836  /// \brief Retrieve the overloaded operator kind that corresponds to
2837  /// the given binary opcode.
2838  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
2839
2840  /// predicates to categorize the respective opcodes.
2841  bool isPtrMemOp() const { return Opc == BO_PtrMemD || Opc == BO_PtrMemI; }
2842  bool isMultiplicativeOp() const { return Opc >= BO_Mul && Opc <= BO_Rem; }
2843  static bool isAdditiveOp(Opcode Opc) { return Opc == BO_Add || Opc==BO_Sub; }
2844  bool isAdditiveOp() const { return isAdditiveOp(getOpcode()); }
2845  static bool isShiftOp(Opcode Opc) { return Opc == BO_Shl || Opc == BO_Shr; }
2846  bool isShiftOp() const { return isShiftOp(getOpcode()); }
2847
2848  static bool isBitwiseOp(Opcode Opc) { return Opc >= BO_And && Opc <= BO_Or; }
2849  bool isBitwiseOp() const { return isBitwiseOp(getOpcode()); }
2850
2851  static bool isRelationalOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_GE; }
2852  bool isRelationalOp() const { return isRelationalOp(getOpcode()); }
2853
2854  static bool isEqualityOp(Opcode Opc) { return Opc == BO_EQ || Opc == BO_NE; }
2855  bool isEqualityOp() const { return isEqualityOp(getOpcode()); }
2856
2857  static bool isComparisonOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_NE; }
2858  bool isComparisonOp() const { return isComparisonOp(getOpcode()); }
2859
2860  static bool isLogicalOp(Opcode Opc) { return Opc == BO_LAnd || Opc==BO_LOr; }
2861  bool isLogicalOp() const { return isLogicalOp(getOpcode()); }
2862
2863  static bool isAssignmentOp(Opcode Opc) {
2864    return Opc >= BO_Assign && Opc <= BO_OrAssign;
2865  }
2866  bool isAssignmentOp() const { return isAssignmentOp(getOpcode()); }
2867
2868  static bool isCompoundAssignmentOp(Opcode Opc) {
2869    return Opc > BO_Assign && Opc <= BO_OrAssign;
2870  }
2871  bool isCompoundAssignmentOp() const {
2872    return isCompoundAssignmentOp(getOpcode());
2873  }
2874  static Opcode getOpForCompoundAssignment(Opcode Opc) {
2875    assert(isCompoundAssignmentOp(Opc));
2876    if (Opc >= BO_AndAssign)
2877      return Opcode(unsigned(Opc) - BO_AndAssign + BO_And);
2878    else
2879      return Opcode(unsigned(Opc) - BO_MulAssign + BO_Mul);
2880  }
2881
2882  static bool isShiftAssignOp(Opcode Opc) {
2883    return Opc == BO_ShlAssign || Opc == BO_ShrAssign;
2884  }
2885  bool isShiftAssignOp() const {
2886    return isShiftAssignOp(getOpcode());
2887  }
2888
2889  static bool classof(const Stmt *S) {
2890    return S->getStmtClass() >= firstBinaryOperatorConstant &&
2891           S->getStmtClass() <= lastBinaryOperatorConstant;
2892  }
2893  static bool classof(const BinaryOperator *) { return true; }
2894
2895  // Iterators
2896  child_range children() {
2897    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
2898  }
2899
2900protected:
2901  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2902                 ExprValueKind VK, ExprObjectKind OK,
2903                 SourceLocation opLoc, bool dead)
2904    : Expr(CompoundAssignOperatorClass, ResTy, VK, OK,
2905           lhs->isTypeDependent() || rhs->isTypeDependent(),
2906           lhs->isValueDependent() || rhs->isValueDependent(),
2907           (lhs->isInstantiationDependent() ||
2908            rhs->isInstantiationDependent()),
2909           (lhs->containsUnexpandedParameterPack() ||
2910            rhs->containsUnexpandedParameterPack())),
2911      Opc(opc), OpLoc(opLoc) {
2912    SubExprs[LHS] = lhs;
2913    SubExprs[RHS] = rhs;
2914  }
2915
2916  BinaryOperator(StmtClass SC, EmptyShell Empty)
2917    : Expr(SC, Empty), Opc(BO_MulAssign) { }
2918};
2919
2920/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
2921/// track of the type the operation is performed in.  Due to the semantics of
2922/// these operators, the operands are promoted, the arithmetic performed, an
2923/// implicit conversion back to the result type done, then the assignment takes
2924/// place.  This captures the intermediate type which the computation is done
2925/// in.
2926class CompoundAssignOperator : public BinaryOperator {
2927  QualType ComputationLHSType;
2928  QualType ComputationResultType;
2929public:
2930  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResType,
2931                         ExprValueKind VK, ExprObjectKind OK,
2932                         QualType CompLHSType, QualType CompResultType,
2933                         SourceLocation OpLoc)
2934    : BinaryOperator(lhs, rhs, opc, ResType, VK, OK, OpLoc, true),
2935      ComputationLHSType(CompLHSType),
2936      ComputationResultType(CompResultType) {
2937    assert(isCompoundAssignmentOp() &&
2938           "Only should be used for compound assignments");
2939  }
2940
2941  /// \brief Build an empty compound assignment operator expression.
2942  explicit CompoundAssignOperator(EmptyShell Empty)
2943    : BinaryOperator(CompoundAssignOperatorClass, Empty) { }
2944
2945  // The two computation types are the type the LHS is converted
2946  // to for the computation and the type of the result; the two are
2947  // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
2948  QualType getComputationLHSType() const { return ComputationLHSType; }
2949  void setComputationLHSType(QualType T) { ComputationLHSType = T; }
2950
2951  QualType getComputationResultType() const { return ComputationResultType; }
2952  void setComputationResultType(QualType T) { ComputationResultType = T; }
2953
2954  static bool classof(const CompoundAssignOperator *) { return true; }
2955  static bool classof(const Stmt *S) {
2956    return S->getStmtClass() == CompoundAssignOperatorClass;
2957  }
2958};
2959
2960/// AbstractConditionalOperator - An abstract base class for
2961/// ConditionalOperator and BinaryConditionalOperator.
2962class AbstractConditionalOperator : public Expr {
2963  SourceLocation QuestionLoc, ColonLoc;
2964  friend class ASTStmtReader;
2965
2966protected:
2967  AbstractConditionalOperator(StmtClass SC, QualType T,
2968                              ExprValueKind VK, ExprObjectKind OK,
2969                              bool TD, bool VD, bool ID,
2970                              bool ContainsUnexpandedParameterPack,
2971                              SourceLocation qloc,
2972                              SourceLocation cloc)
2973    : Expr(SC, T, VK, OK, TD, VD, ID, ContainsUnexpandedParameterPack),
2974      QuestionLoc(qloc), ColonLoc(cloc) {}
2975
2976  AbstractConditionalOperator(StmtClass SC, EmptyShell Empty)
2977    : Expr(SC, Empty) { }
2978
2979public:
2980  // getCond - Return the expression representing the condition for
2981  //   the ?: operator.
2982  Expr *getCond() const;
2983
2984  // getTrueExpr - Return the subexpression representing the value of
2985  //   the expression if the condition evaluates to true.
2986  Expr *getTrueExpr() const;
2987
2988  // getFalseExpr - Return the subexpression representing the value of
2989  //   the expression if the condition evaluates to false.  This is
2990  //   the same as getRHS.
2991  Expr *getFalseExpr() const;
2992
2993  SourceLocation getQuestionLoc() const { return QuestionLoc; }
2994  SourceLocation getColonLoc() const { return ColonLoc; }
2995
2996  static bool classof(const Stmt *T) {
2997    return T->getStmtClass() == ConditionalOperatorClass ||
2998           T->getStmtClass() == BinaryConditionalOperatorClass;
2999  }
3000  static bool classof(const AbstractConditionalOperator *) { return true; }
3001};
3002
3003/// ConditionalOperator - The ?: ternary operator.  The GNU "missing
3004/// middle" extension is a BinaryConditionalOperator.
3005class ConditionalOperator : public AbstractConditionalOperator {
3006  enum { COND, LHS, RHS, END_EXPR };
3007  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
3008
3009  friend class ASTStmtReader;
3010public:
3011  ConditionalOperator(Expr *cond, SourceLocation QLoc, Expr *lhs,
3012                      SourceLocation CLoc, Expr *rhs,
3013                      QualType t, ExprValueKind VK, ExprObjectKind OK)
3014    : AbstractConditionalOperator(ConditionalOperatorClass, t, VK, OK,
3015           // FIXME: the type of the conditional operator doesn't
3016           // depend on the type of the conditional, but the standard
3017           // seems to imply that it could. File a bug!
3018           (lhs->isTypeDependent() || rhs->isTypeDependent()),
3019           (cond->isValueDependent() || lhs->isValueDependent() ||
3020            rhs->isValueDependent()),
3021           (cond->isInstantiationDependent() ||
3022            lhs->isInstantiationDependent() ||
3023            rhs->isInstantiationDependent()),
3024           (cond->containsUnexpandedParameterPack() ||
3025            lhs->containsUnexpandedParameterPack() ||
3026            rhs->containsUnexpandedParameterPack()),
3027                                  QLoc, CLoc) {
3028    SubExprs[COND] = cond;
3029    SubExprs[LHS] = lhs;
3030    SubExprs[RHS] = rhs;
3031  }
3032
3033  /// \brief Build an empty conditional operator.
3034  explicit ConditionalOperator(EmptyShell Empty)
3035    : AbstractConditionalOperator(ConditionalOperatorClass, Empty) { }
3036
3037  // getCond - Return the expression representing the condition for
3038  //   the ?: operator.
3039  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3040
3041  // getTrueExpr - Return the subexpression representing the value of
3042  //   the expression if the condition evaluates to true.
3043  Expr *getTrueExpr() const { return cast<Expr>(SubExprs[LHS]); }
3044
3045  // getFalseExpr - Return the subexpression representing the value of
3046  //   the expression if the condition evaluates to false.  This is
3047  //   the same as getRHS.
3048  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
3049
3050  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
3051  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
3052
3053  SourceRange getSourceRange() const LLVM_READONLY {
3054    return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
3055  }
3056  static bool classof(const Stmt *T) {
3057    return T->getStmtClass() == ConditionalOperatorClass;
3058  }
3059  static bool classof(const ConditionalOperator *) { return true; }
3060
3061  // Iterators
3062  child_range children() {
3063    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
3064  }
3065};
3066
3067/// BinaryConditionalOperator - The GNU extension to the conditional
3068/// operator which allows the middle operand to be omitted.
3069///
3070/// This is a different expression kind on the assumption that almost
3071/// every client ends up needing to know that these are different.
3072class BinaryConditionalOperator : public AbstractConditionalOperator {
3073  enum { COMMON, COND, LHS, RHS, NUM_SUBEXPRS };
3074
3075  /// - the common condition/left-hand-side expression, which will be
3076  ///   evaluated as the opaque value
3077  /// - the condition, expressed in terms of the opaque value
3078  /// - the left-hand-side, expressed in terms of the opaque value
3079  /// - the right-hand-side
3080  Stmt *SubExprs[NUM_SUBEXPRS];
3081  OpaqueValueExpr *OpaqueValue;
3082
3083  friend class ASTStmtReader;
3084public:
3085  BinaryConditionalOperator(Expr *common, OpaqueValueExpr *opaqueValue,
3086                            Expr *cond, Expr *lhs, Expr *rhs,
3087                            SourceLocation qloc, SourceLocation cloc,
3088                            QualType t, ExprValueKind VK, ExprObjectKind OK)
3089    : AbstractConditionalOperator(BinaryConditionalOperatorClass, t, VK, OK,
3090           (common->isTypeDependent() || rhs->isTypeDependent()),
3091           (common->isValueDependent() || rhs->isValueDependent()),
3092           (common->isInstantiationDependent() ||
3093            rhs->isInstantiationDependent()),
3094           (common->containsUnexpandedParameterPack() ||
3095            rhs->containsUnexpandedParameterPack()),
3096                                  qloc, cloc),
3097      OpaqueValue(opaqueValue) {
3098    SubExprs[COMMON] = common;
3099    SubExprs[COND] = cond;
3100    SubExprs[LHS] = lhs;
3101    SubExprs[RHS] = rhs;
3102    assert(OpaqueValue->getSourceExpr() == common && "Wrong opaque value");
3103  }
3104
3105  /// \brief Build an empty conditional operator.
3106  explicit BinaryConditionalOperator(EmptyShell Empty)
3107    : AbstractConditionalOperator(BinaryConditionalOperatorClass, Empty) { }
3108
3109  /// \brief getCommon - Return the common expression, written to the
3110  ///   left of the condition.  The opaque value will be bound to the
3111  ///   result of this expression.
3112  Expr *getCommon() const { return cast<Expr>(SubExprs[COMMON]); }
3113
3114  /// \brief getOpaqueValue - Return the opaque value placeholder.
3115  OpaqueValueExpr *getOpaqueValue() const { return OpaqueValue; }
3116
3117  /// \brief getCond - Return the condition expression; this is defined
3118  ///   in terms of the opaque value.
3119  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3120
3121  /// \brief getTrueExpr - Return the subexpression which will be
3122  ///   evaluated if the condition evaluates to true;  this is defined
3123  ///   in terms of the opaque value.
3124  Expr *getTrueExpr() const {
3125    return cast<Expr>(SubExprs[LHS]);
3126  }
3127
3128  /// \brief getFalseExpr - Return the subexpression which will be
3129  ///   evaluated if the condnition evaluates to false; this is
3130  ///   defined in terms of the opaque value.
3131  Expr *getFalseExpr() const {
3132    return cast<Expr>(SubExprs[RHS]);
3133  }
3134
3135  SourceRange getSourceRange() const LLVM_READONLY {
3136    return SourceRange(getCommon()->getLocStart(), getFalseExpr()->getLocEnd());
3137  }
3138  static bool classof(const Stmt *T) {
3139    return T->getStmtClass() == BinaryConditionalOperatorClass;
3140  }
3141  static bool classof(const BinaryConditionalOperator *) { return true; }
3142
3143  // Iterators
3144  child_range children() {
3145    return child_range(SubExprs, SubExprs + NUM_SUBEXPRS);
3146  }
3147};
3148
3149inline Expr *AbstractConditionalOperator::getCond() const {
3150  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3151    return co->getCond();
3152  return cast<BinaryConditionalOperator>(this)->getCond();
3153}
3154
3155inline Expr *AbstractConditionalOperator::getTrueExpr() const {
3156  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3157    return co->getTrueExpr();
3158  return cast<BinaryConditionalOperator>(this)->getTrueExpr();
3159}
3160
3161inline Expr *AbstractConditionalOperator::getFalseExpr() const {
3162  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3163    return co->getFalseExpr();
3164  return cast<BinaryConditionalOperator>(this)->getFalseExpr();
3165}
3166
3167/// AddrLabelExpr - The GNU address of label extension, representing &&label.
3168class AddrLabelExpr : public Expr {
3169  SourceLocation AmpAmpLoc, LabelLoc;
3170  LabelDecl *Label;
3171public:
3172  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelDecl *L,
3173                QualType t)
3174    : Expr(AddrLabelExprClass, t, VK_RValue, OK_Ordinary, false, false, false,
3175           false),
3176      AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
3177
3178  /// \brief Build an empty address of a label expression.
3179  explicit AddrLabelExpr(EmptyShell Empty)
3180    : Expr(AddrLabelExprClass, Empty) { }
3181
3182  SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
3183  void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
3184  SourceLocation getLabelLoc() const { return LabelLoc; }
3185  void setLabelLoc(SourceLocation L) { LabelLoc = L; }
3186
3187  SourceRange getSourceRange() const LLVM_READONLY {
3188    return SourceRange(AmpAmpLoc, LabelLoc);
3189  }
3190
3191  LabelDecl *getLabel() const { return Label; }
3192  void setLabel(LabelDecl *L) { Label = L; }
3193
3194  static bool classof(const Stmt *T) {
3195    return T->getStmtClass() == AddrLabelExprClass;
3196  }
3197  static bool classof(const AddrLabelExpr *) { return true; }
3198
3199  // Iterators
3200  child_range children() { return child_range(); }
3201};
3202
3203/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
3204/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
3205/// takes the value of the last subexpression.
3206///
3207/// A StmtExpr is always an r-value; values "returned" out of a
3208/// StmtExpr will be copied.
3209class StmtExpr : public Expr {
3210  Stmt *SubStmt;
3211  SourceLocation LParenLoc, RParenLoc;
3212public:
3213  // FIXME: Does type-dependence need to be computed differently?
3214  // FIXME: Do we need to compute instantiation instantiation-dependence for
3215  // statements? (ugh!)
3216  StmtExpr(CompoundStmt *substmt, QualType T,
3217           SourceLocation lp, SourceLocation rp) :
3218    Expr(StmtExprClass, T, VK_RValue, OK_Ordinary,
3219         T->isDependentType(), false, false, false),
3220    SubStmt(substmt), LParenLoc(lp), RParenLoc(rp) { }
3221
3222  /// \brief Build an empty statement expression.
3223  explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
3224
3225  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
3226  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
3227  void setSubStmt(CompoundStmt *S) { SubStmt = S; }
3228
3229  SourceRange getSourceRange() const LLVM_READONLY {
3230    return SourceRange(LParenLoc, RParenLoc);
3231  }
3232
3233  SourceLocation getLParenLoc() const { return LParenLoc; }
3234  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
3235  SourceLocation getRParenLoc() const { return RParenLoc; }
3236  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3237
3238  static bool classof(const Stmt *T) {
3239    return T->getStmtClass() == StmtExprClass;
3240  }
3241  static bool classof(const StmtExpr *) { return true; }
3242
3243  // Iterators
3244  child_range children() { return child_range(&SubStmt, &SubStmt+1); }
3245};
3246
3247
3248/// ShuffleVectorExpr - clang-specific builtin-in function
3249/// __builtin_shufflevector.
3250/// This AST node represents a operator that does a constant
3251/// shuffle, similar to LLVM's shufflevector instruction. It takes
3252/// two vectors and a variable number of constant indices,
3253/// and returns the appropriately shuffled vector.
3254class ShuffleVectorExpr : public Expr {
3255  SourceLocation BuiltinLoc, RParenLoc;
3256
3257  // SubExprs - the list of values passed to the __builtin_shufflevector
3258  // function. The first two are vectors, and the rest are constant
3259  // indices.  The number of values in this list is always
3260  // 2+the number of indices in the vector type.
3261  Stmt **SubExprs;
3262  unsigned NumExprs;
3263
3264public:
3265  ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr,
3266                    QualType Type, SourceLocation BLoc,
3267                    SourceLocation RP);
3268
3269  /// \brief Build an empty vector-shuffle expression.
3270  explicit ShuffleVectorExpr(EmptyShell Empty)
3271    : Expr(ShuffleVectorExprClass, Empty), SubExprs(0) { }
3272
3273  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3274  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3275
3276  SourceLocation getRParenLoc() const { return RParenLoc; }
3277  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3278
3279  SourceRange getSourceRange() const LLVM_READONLY {
3280    return SourceRange(BuiltinLoc, RParenLoc);
3281  }
3282  static bool classof(const Stmt *T) {
3283    return T->getStmtClass() == ShuffleVectorExprClass;
3284  }
3285  static bool classof(const ShuffleVectorExpr *) { return true; }
3286
3287  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
3288  /// constant expression, the actual arguments passed in, and the function
3289  /// pointers.
3290  unsigned getNumSubExprs() const { return NumExprs; }
3291
3292  /// \brief Retrieve the array of expressions.
3293  Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
3294
3295  /// getExpr - Return the Expr at the specified index.
3296  Expr *getExpr(unsigned Index) {
3297    assert((Index < NumExprs) && "Arg access out of range!");
3298    return cast<Expr>(SubExprs[Index]);
3299  }
3300  const Expr *getExpr(unsigned Index) const {
3301    assert((Index < NumExprs) && "Arg access out of range!");
3302    return cast<Expr>(SubExprs[Index]);
3303  }
3304
3305  void setExprs(ASTContext &C, Expr ** Exprs, unsigned NumExprs);
3306
3307  unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) {
3308    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
3309    return getExpr(N+2)->EvaluateKnownConstInt(Ctx).getZExtValue();
3310  }
3311
3312  // Iterators
3313  child_range children() {
3314    return child_range(&SubExprs[0], &SubExprs[0]+NumExprs);
3315  }
3316};
3317
3318/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
3319/// This AST node is similar to the conditional operator (?:) in C, with
3320/// the following exceptions:
3321/// - the test expression must be a integer constant expression.
3322/// - the expression returned acts like the chosen subexpression in every
3323///   visible way: the type is the same as that of the chosen subexpression,
3324///   and all predicates (whether it's an l-value, whether it's an integer
3325///   constant expression, etc.) return the same result as for the chosen
3326///   sub-expression.
3327class ChooseExpr : public Expr {
3328  enum { COND, LHS, RHS, END_EXPR };
3329  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
3330  SourceLocation BuiltinLoc, RParenLoc;
3331public:
3332  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs,
3333             QualType t, ExprValueKind VK, ExprObjectKind OK,
3334             SourceLocation RP, bool TypeDependent, bool ValueDependent)
3335    : Expr(ChooseExprClass, t, VK, OK, TypeDependent, ValueDependent,
3336           (cond->isInstantiationDependent() ||
3337            lhs->isInstantiationDependent() ||
3338            rhs->isInstantiationDependent()),
3339           (cond->containsUnexpandedParameterPack() ||
3340            lhs->containsUnexpandedParameterPack() ||
3341            rhs->containsUnexpandedParameterPack())),
3342      BuiltinLoc(BLoc), RParenLoc(RP) {
3343      SubExprs[COND] = cond;
3344      SubExprs[LHS] = lhs;
3345      SubExprs[RHS] = rhs;
3346    }
3347
3348  /// \brief Build an empty __builtin_choose_expr.
3349  explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
3350
3351  /// isConditionTrue - Return whether the condition is true (i.e. not
3352  /// equal to zero).
3353  bool isConditionTrue(const ASTContext &C) const;
3354
3355  /// getChosenSubExpr - Return the subexpression chosen according to the
3356  /// condition.
3357  Expr *getChosenSubExpr(const ASTContext &C) const {
3358    return isConditionTrue(C) ? getLHS() : getRHS();
3359  }
3360
3361  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3362  void setCond(Expr *E) { SubExprs[COND] = E; }
3363  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
3364  void setLHS(Expr *E) { SubExprs[LHS] = E; }
3365  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
3366  void setRHS(Expr *E) { SubExprs[RHS] = E; }
3367
3368  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3369  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3370
3371  SourceLocation getRParenLoc() const { return RParenLoc; }
3372  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3373
3374  SourceRange getSourceRange() const LLVM_READONLY {
3375    return SourceRange(BuiltinLoc, RParenLoc);
3376  }
3377  static bool classof(const Stmt *T) {
3378    return T->getStmtClass() == ChooseExprClass;
3379  }
3380  static bool classof(const ChooseExpr *) { return true; }
3381
3382  // Iterators
3383  child_range children() {
3384    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
3385  }
3386};
3387
3388/// GNUNullExpr - Implements the GNU __null extension, which is a name
3389/// for a null pointer constant that has integral type (e.g., int or
3390/// long) and is the same size and alignment as a pointer. The __null
3391/// extension is typically only used by system headers, which define
3392/// NULL as __null in C++ rather than using 0 (which is an integer
3393/// that may not match the size of a pointer).
3394class GNUNullExpr : public Expr {
3395  /// TokenLoc - The location of the __null keyword.
3396  SourceLocation TokenLoc;
3397
3398public:
3399  GNUNullExpr(QualType Ty, SourceLocation Loc)
3400    : Expr(GNUNullExprClass, Ty, VK_RValue, OK_Ordinary, false, false, false,
3401           false),
3402      TokenLoc(Loc) { }
3403
3404  /// \brief Build an empty GNU __null expression.
3405  explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
3406
3407  /// getTokenLocation - The location of the __null token.
3408  SourceLocation getTokenLocation() const { return TokenLoc; }
3409  void setTokenLocation(SourceLocation L) { TokenLoc = L; }
3410
3411  SourceRange getSourceRange() const LLVM_READONLY {
3412    return SourceRange(TokenLoc);
3413  }
3414  static bool classof(const Stmt *T) {
3415    return T->getStmtClass() == GNUNullExprClass;
3416  }
3417  static bool classof(const GNUNullExpr *) { return true; }
3418
3419  // Iterators
3420  child_range children() { return child_range(); }
3421};
3422
3423/// VAArgExpr, used for the builtin function __builtin_va_arg.
3424class VAArgExpr : public Expr {
3425  Stmt *Val;
3426  TypeSourceInfo *TInfo;
3427  SourceLocation BuiltinLoc, RParenLoc;
3428public:
3429  VAArgExpr(SourceLocation BLoc, Expr* e, TypeSourceInfo *TInfo,
3430            SourceLocation RPLoc, QualType t)
3431    : Expr(VAArgExprClass, t, VK_RValue, OK_Ordinary,
3432           t->isDependentType(), false,
3433           (TInfo->getType()->isInstantiationDependentType() ||
3434            e->isInstantiationDependent()),
3435           (TInfo->getType()->containsUnexpandedParameterPack() ||
3436            e->containsUnexpandedParameterPack())),
3437      Val(e), TInfo(TInfo),
3438      BuiltinLoc(BLoc),
3439      RParenLoc(RPLoc) { }
3440
3441  /// \brief Create an empty __builtin_va_arg expression.
3442  explicit VAArgExpr(EmptyShell Empty) : Expr(VAArgExprClass, Empty) { }
3443
3444  const Expr *getSubExpr() const { return cast<Expr>(Val); }
3445  Expr *getSubExpr() { return cast<Expr>(Val); }
3446  void setSubExpr(Expr *E) { Val = E; }
3447
3448  TypeSourceInfo *getWrittenTypeInfo() const { return TInfo; }
3449  void setWrittenTypeInfo(TypeSourceInfo *TI) { TInfo = TI; }
3450
3451  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3452  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3453
3454  SourceLocation getRParenLoc() const { return RParenLoc; }
3455  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3456
3457  SourceRange getSourceRange() const LLVM_READONLY {
3458    return SourceRange(BuiltinLoc, RParenLoc);
3459  }
3460  static bool classof(const Stmt *T) {
3461    return T->getStmtClass() == VAArgExprClass;
3462  }
3463  static bool classof(const VAArgExpr *) { return true; }
3464
3465  // Iterators
3466  child_range children() { return child_range(&Val, &Val+1); }
3467};
3468
3469/// @brief Describes an C or C++ initializer list.
3470///
3471/// InitListExpr describes an initializer list, which can be used to
3472/// initialize objects of different types, including
3473/// struct/class/union types, arrays, and vectors. For example:
3474///
3475/// @code
3476/// struct foo x = { 1, { 2, 3 } };
3477/// @endcode
3478///
3479/// Prior to semantic analysis, an initializer list will represent the
3480/// initializer list as written by the user, but will have the
3481/// placeholder type "void". This initializer list is called the
3482/// syntactic form of the initializer, and may contain C99 designated
3483/// initializers (represented as DesignatedInitExprs), initializations
3484/// of subobject members without explicit braces, and so on. Clients
3485/// interested in the original syntax of the initializer list should
3486/// use the syntactic form of the initializer list.
3487///
3488/// After semantic analysis, the initializer list will represent the
3489/// semantic form of the initializer, where the initializations of all
3490/// subobjects are made explicit with nested InitListExpr nodes and
3491/// C99 designators have been eliminated by placing the designated
3492/// initializations into the subobject they initialize. Additionally,
3493/// any "holes" in the initialization, where no initializer has been
3494/// specified for a particular subobject, will be replaced with
3495/// implicitly-generated ImplicitValueInitExpr expressions that
3496/// value-initialize the subobjects. Note, however, that the
3497/// initializer lists may still have fewer initializers than there are
3498/// elements to initialize within the object.
3499///
3500/// Given the semantic form of the initializer list, one can retrieve
3501/// the original syntactic form of that initializer list (if it
3502/// exists) using getSyntacticForm(). Since many initializer lists
3503/// have the same syntactic and semantic forms, getSyntacticForm() may
3504/// return NULL, indicating that the current initializer list also
3505/// serves as its syntactic form.
3506class InitListExpr : public Expr {
3507  // FIXME: Eliminate this vector in favor of ASTContext allocation
3508  typedef ASTVector<Stmt *> InitExprsTy;
3509  InitExprsTy InitExprs;
3510  SourceLocation LBraceLoc, RBraceLoc;
3511
3512  /// Contains the initializer list that describes the syntactic form
3513  /// written in the source code.
3514  InitListExpr *SyntacticForm;
3515
3516  /// \brief Either:
3517  ///  If this initializer list initializes an array with more elements than
3518  ///  there are initializers in the list, specifies an expression to be used
3519  ///  for value initialization of the rest of the elements.
3520  /// Or
3521  ///  If this initializer list initializes a union, specifies which
3522  ///  field within the union will be initialized.
3523  llvm::PointerUnion<Expr *, FieldDecl *> ArrayFillerOrUnionFieldInit;
3524
3525public:
3526  InitListExpr(ASTContext &C, SourceLocation lbraceloc,
3527               Expr **initexprs, unsigned numinits,
3528               SourceLocation rbraceloc);
3529
3530  /// \brief Build an empty initializer list.
3531  explicit InitListExpr(ASTContext &C, EmptyShell Empty)
3532    : Expr(InitListExprClass, Empty), InitExprs(C) { }
3533
3534  unsigned getNumInits() const { return InitExprs.size(); }
3535
3536  /// \brief Retrieve the set of initializers.
3537  Expr **getInits() { return reinterpret_cast<Expr **>(InitExprs.data()); }
3538
3539  const Expr *getInit(unsigned Init) const {
3540    assert(Init < getNumInits() && "Initializer access out of range!");
3541    return cast_or_null<Expr>(InitExprs[Init]);
3542  }
3543
3544  Expr *getInit(unsigned Init) {
3545    assert(Init < getNumInits() && "Initializer access out of range!");
3546    return cast_or_null<Expr>(InitExprs[Init]);
3547  }
3548
3549  void setInit(unsigned Init, Expr *expr) {
3550    assert(Init < getNumInits() && "Initializer access out of range!");
3551    InitExprs[Init] = expr;
3552  }
3553
3554  /// \brief Reserve space for some number of initializers.
3555  void reserveInits(ASTContext &C, unsigned NumInits);
3556
3557  /// @brief Specify the number of initializers
3558  ///
3559  /// If there are more than @p NumInits initializers, the remaining
3560  /// initializers will be destroyed. If there are fewer than @p
3561  /// NumInits initializers, NULL expressions will be added for the
3562  /// unknown initializers.
3563  void resizeInits(ASTContext &Context, unsigned NumInits);
3564
3565  /// @brief Updates the initializer at index @p Init with the new
3566  /// expression @p expr, and returns the old expression at that
3567  /// location.
3568  ///
3569  /// When @p Init is out of range for this initializer list, the
3570  /// initializer list will be extended with NULL expressions to
3571  /// accommodate the new entry.
3572  Expr *updateInit(ASTContext &C, unsigned Init, Expr *expr);
3573
3574  /// \brief If this initializer list initializes an array with more elements
3575  /// than there are initializers in the list, specifies an expression to be
3576  /// used for value initialization of the rest of the elements.
3577  Expr *getArrayFiller() {
3578    return ArrayFillerOrUnionFieldInit.dyn_cast<Expr *>();
3579  }
3580  const Expr *getArrayFiller() const {
3581    return const_cast<InitListExpr *>(this)->getArrayFiller();
3582  }
3583  void setArrayFiller(Expr *filler);
3584
3585  /// \brief Return true if this is an array initializer and its array "filler"
3586  /// has been set.
3587  bool hasArrayFiller() const { return getArrayFiller(); }
3588
3589  /// \brief If this initializes a union, specifies which field in the
3590  /// union to initialize.
3591  ///
3592  /// Typically, this field is the first named field within the
3593  /// union. However, a designated initializer can specify the
3594  /// initialization of a different field within the union.
3595  FieldDecl *getInitializedFieldInUnion() {
3596    return ArrayFillerOrUnionFieldInit.dyn_cast<FieldDecl *>();
3597  }
3598  const FieldDecl *getInitializedFieldInUnion() const {
3599    return const_cast<InitListExpr *>(this)->getInitializedFieldInUnion();
3600  }
3601  void setInitializedFieldInUnion(FieldDecl *FD) {
3602    ArrayFillerOrUnionFieldInit = FD;
3603  }
3604
3605  // Explicit InitListExpr's originate from source code (and have valid source
3606  // locations). Implicit InitListExpr's are created by the semantic analyzer.
3607  bool isExplicit() {
3608    return LBraceLoc.isValid() && RBraceLoc.isValid();
3609  }
3610
3611  SourceLocation getLBraceLoc() const { return LBraceLoc; }
3612  void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
3613  SourceLocation getRBraceLoc() const { return RBraceLoc; }
3614  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
3615
3616  /// @brief Retrieve the initializer list that describes the
3617  /// syntactic form of the initializer.
3618  ///
3619  ///
3620  InitListExpr *getSyntacticForm() const { return SyntacticForm; }
3621  void setSyntacticForm(InitListExpr *Init) { SyntacticForm = Init; }
3622
3623  bool hadArrayRangeDesignator() const {
3624    return InitListExprBits.HadArrayRangeDesignator != 0;
3625  }
3626  void sawArrayRangeDesignator(bool ARD = true) {
3627    InitListExprBits.HadArrayRangeDesignator = ARD;
3628  }
3629
3630  bool initializesStdInitializerList() const {
3631    return InitListExprBits.InitializesStdInitializerList != 0;
3632  }
3633  void setInitializesStdInitializerList(bool ISIL = true) {
3634    InitListExprBits.InitializesStdInitializerList = ISIL;
3635  }
3636
3637  SourceRange getSourceRange() const LLVM_READONLY;
3638
3639  static bool classof(const Stmt *T) {
3640    return T->getStmtClass() == InitListExprClass;
3641  }
3642  static bool classof(const InitListExpr *) { return true; }
3643
3644  // Iterators
3645  child_range children() {
3646    if (InitExprs.empty()) return child_range();
3647    return child_range(&InitExprs[0], &InitExprs[0] + InitExprs.size());
3648  }
3649
3650  typedef InitExprsTy::iterator iterator;
3651  typedef InitExprsTy::const_iterator const_iterator;
3652  typedef InitExprsTy::reverse_iterator reverse_iterator;
3653  typedef InitExprsTy::const_reverse_iterator const_reverse_iterator;
3654
3655  iterator begin() { return InitExprs.begin(); }
3656  const_iterator begin() const { return InitExprs.begin(); }
3657  iterator end() { return InitExprs.end(); }
3658  const_iterator end() const { return InitExprs.end(); }
3659  reverse_iterator rbegin() { return InitExprs.rbegin(); }
3660  const_reverse_iterator rbegin() const { return InitExprs.rbegin(); }
3661  reverse_iterator rend() { return InitExprs.rend(); }
3662  const_reverse_iterator rend() const { return InitExprs.rend(); }
3663
3664  friend class ASTStmtReader;
3665  friend class ASTStmtWriter;
3666};
3667
3668/// @brief Represents a C99 designated initializer expression.
3669///
3670/// A designated initializer expression (C99 6.7.8) contains one or
3671/// more designators (which can be field designators, array
3672/// designators, or GNU array-range designators) followed by an
3673/// expression that initializes the field or element(s) that the
3674/// designators refer to. For example, given:
3675///
3676/// @code
3677/// struct point {
3678///   double x;
3679///   double y;
3680/// };
3681/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
3682/// @endcode
3683///
3684/// The InitListExpr contains three DesignatedInitExprs, the first of
3685/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
3686/// designators, one array designator for @c [2] followed by one field
3687/// designator for @c .y. The initalization expression will be 1.0.
3688class DesignatedInitExpr : public Expr {
3689public:
3690  /// \brief Forward declaration of the Designator class.
3691  class Designator;
3692
3693private:
3694  /// The location of the '=' or ':' prior to the actual initializer
3695  /// expression.
3696  SourceLocation EqualOrColonLoc;
3697
3698  /// Whether this designated initializer used the GNU deprecated
3699  /// syntax rather than the C99 '=' syntax.
3700  bool GNUSyntax : 1;
3701
3702  /// The number of designators in this initializer expression.
3703  unsigned NumDesignators : 15;
3704
3705  /// The number of subexpressions of this initializer expression,
3706  /// which contains both the initializer and any additional
3707  /// expressions used by array and array-range designators.
3708  unsigned NumSubExprs : 16;
3709
3710  /// \brief The designators in this designated initialization
3711  /// expression.
3712  Designator *Designators;
3713
3714
3715  DesignatedInitExpr(ASTContext &C, QualType Ty, unsigned NumDesignators,
3716                     const Designator *Designators,
3717                     SourceLocation EqualOrColonLoc, bool GNUSyntax,
3718                     Expr **IndexExprs, unsigned NumIndexExprs,
3719                     Expr *Init);
3720
3721  explicit DesignatedInitExpr(unsigned NumSubExprs)
3722    : Expr(DesignatedInitExprClass, EmptyShell()),
3723      NumDesignators(0), NumSubExprs(NumSubExprs), Designators(0) { }
3724
3725public:
3726  /// A field designator, e.g., ".x".
3727  struct FieldDesignator {
3728    /// Refers to the field that is being initialized. The low bit
3729    /// of this field determines whether this is actually a pointer
3730    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
3731    /// initially constructed, a field designator will store an
3732    /// IdentifierInfo*. After semantic analysis has resolved that
3733    /// name, the field designator will instead store a FieldDecl*.
3734    uintptr_t NameOrField;
3735
3736    /// The location of the '.' in the designated initializer.
3737    unsigned DotLoc;
3738
3739    /// The location of the field name in the designated initializer.
3740    unsigned FieldLoc;
3741  };
3742
3743  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
3744  struct ArrayOrRangeDesignator {
3745    /// Location of the first index expression within the designated
3746    /// initializer expression's list of subexpressions.
3747    unsigned Index;
3748    /// The location of the '[' starting the array range designator.
3749    unsigned LBracketLoc;
3750    /// The location of the ellipsis separating the start and end
3751    /// indices. Only valid for GNU array-range designators.
3752    unsigned EllipsisLoc;
3753    /// The location of the ']' terminating the array range designator.
3754    unsigned RBracketLoc;
3755  };
3756
3757  /// @brief Represents a single C99 designator.
3758  ///
3759  /// @todo This class is infuriatingly similar to clang::Designator,
3760  /// but minor differences (storing indices vs. storing pointers)
3761  /// keep us from reusing it. Try harder, later, to rectify these
3762  /// differences.
3763  class Designator {
3764    /// @brief The kind of designator this describes.
3765    enum {
3766      FieldDesignator,
3767      ArrayDesignator,
3768      ArrayRangeDesignator
3769    } Kind;
3770
3771    union {
3772      /// A field designator, e.g., ".x".
3773      struct FieldDesignator Field;
3774      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
3775      struct ArrayOrRangeDesignator ArrayOrRange;
3776    };
3777    friend class DesignatedInitExpr;
3778
3779  public:
3780    Designator() {}
3781
3782    /// @brief Initializes a field designator.
3783    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
3784               SourceLocation FieldLoc)
3785      : Kind(FieldDesignator) {
3786      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
3787      Field.DotLoc = DotLoc.getRawEncoding();
3788      Field.FieldLoc = FieldLoc.getRawEncoding();
3789    }
3790
3791    /// @brief Initializes an array designator.
3792    Designator(unsigned Index, SourceLocation LBracketLoc,
3793               SourceLocation RBracketLoc)
3794      : Kind(ArrayDesignator) {
3795      ArrayOrRange.Index = Index;
3796      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3797      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
3798      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3799    }
3800
3801    /// @brief Initializes a GNU array-range designator.
3802    Designator(unsigned Index, SourceLocation LBracketLoc,
3803               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
3804      : Kind(ArrayRangeDesignator) {
3805      ArrayOrRange.Index = Index;
3806      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
3807      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
3808      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
3809    }
3810
3811    bool isFieldDesignator() const { return Kind == FieldDesignator; }
3812    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
3813    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
3814
3815    IdentifierInfo *getFieldName() const;
3816
3817    FieldDecl *getField() const {
3818      assert(Kind == FieldDesignator && "Only valid on a field designator");
3819      if (Field.NameOrField & 0x01)
3820        return 0;
3821      else
3822        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
3823    }
3824
3825    void setField(FieldDecl *FD) {
3826      assert(Kind == FieldDesignator && "Only valid on a field designator");
3827      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
3828    }
3829
3830    SourceLocation getDotLoc() const {
3831      assert(Kind == FieldDesignator && "Only valid on a field designator");
3832      return SourceLocation::getFromRawEncoding(Field.DotLoc);
3833    }
3834
3835    SourceLocation getFieldLoc() const {
3836      assert(Kind == FieldDesignator && "Only valid on a field designator");
3837      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
3838    }
3839
3840    SourceLocation getLBracketLoc() const {
3841      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3842             "Only valid on an array or array-range designator");
3843      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
3844    }
3845
3846    SourceLocation getRBracketLoc() const {
3847      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3848             "Only valid on an array or array-range designator");
3849      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
3850    }
3851
3852    SourceLocation getEllipsisLoc() const {
3853      assert(Kind == ArrayRangeDesignator &&
3854             "Only valid on an array-range designator");
3855      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
3856    }
3857
3858    unsigned getFirstExprIndex() const {
3859      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
3860             "Only valid on an array or array-range designator");
3861      return ArrayOrRange.Index;
3862    }
3863
3864    SourceLocation getStartLocation() const {
3865      if (Kind == FieldDesignator)
3866        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
3867      else
3868        return getLBracketLoc();
3869    }
3870    SourceLocation getEndLocation() const {
3871      return Kind == FieldDesignator ? getFieldLoc() : getRBracketLoc();
3872    }
3873    SourceRange getSourceRange() const LLVM_READONLY {
3874      return SourceRange(getStartLocation(), getEndLocation());
3875    }
3876  };
3877
3878  static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators,
3879                                    unsigned NumDesignators,
3880                                    Expr **IndexExprs, unsigned NumIndexExprs,
3881                                    SourceLocation EqualOrColonLoc,
3882                                    bool GNUSyntax, Expr *Init);
3883
3884  static DesignatedInitExpr *CreateEmpty(ASTContext &C, unsigned NumIndexExprs);
3885
3886  /// @brief Returns the number of designators in this initializer.
3887  unsigned size() const { return NumDesignators; }
3888
3889  // Iterator access to the designators.
3890  typedef Designator *designators_iterator;
3891  designators_iterator designators_begin() { return Designators; }
3892  designators_iterator designators_end() {
3893    return Designators + NumDesignators;
3894  }
3895
3896  typedef const Designator *const_designators_iterator;
3897  const_designators_iterator designators_begin() const { return Designators; }
3898  const_designators_iterator designators_end() const {
3899    return Designators + NumDesignators;
3900  }
3901
3902  typedef std::reverse_iterator<designators_iterator>
3903          reverse_designators_iterator;
3904  reverse_designators_iterator designators_rbegin() {
3905    return reverse_designators_iterator(designators_end());
3906  }
3907  reverse_designators_iterator designators_rend() {
3908    return reverse_designators_iterator(designators_begin());
3909  }
3910
3911  typedef std::reverse_iterator<const_designators_iterator>
3912          const_reverse_designators_iterator;
3913  const_reverse_designators_iterator designators_rbegin() const {
3914    return const_reverse_designators_iterator(designators_end());
3915  }
3916  const_reverse_designators_iterator designators_rend() const {
3917    return const_reverse_designators_iterator(designators_begin());
3918  }
3919
3920  Designator *getDesignator(unsigned Idx) { return &designators_begin()[Idx]; }
3921
3922  void setDesignators(ASTContext &C, const Designator *Desigs,
3923                      unsigned NumDesigs);
3924
3925  Expr *getArrayIndex(const Designator& D);
3926  Expr *getArrayRangeStart(const Designator& D);
3927  Expr *getArrayRangeEnd(const Designator& D);
3928
3929  /// @brief Retrieve the location of the '=' that precedes the
3930  /// initializer value itself, if present.
3931  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
3932  void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
3933
3934  /// @brief Determines whether this designated initializer used the
3935  /// deprecated GNU syntax for designated initializers.
3936  bool usesGNUSyntax() const { return GNUSyntax; }
3937  void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
3938
3939  /// @brief Retrieve the initializer value.
3940  Expr *getInit() const {
3941    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
3942  }
3943
3944  void setInit(Expr *init) {
3945    *child_begin() = init;
3946  }
3947
3948  /// \brief Retrieve the total number of subexpressions in this
3949  /// designated initializer expression, including the actual
3950  /// initialized value and any expressions that occur within array
3951  /// and array-range designators.
3952  unsigned getNumSubExprs() const { return NumSubExprs; }
3953
3954  Expr *getSubExpr(unsigned Idx) {
3955    assert(Idx < NumSubExprs && "Subscript out of range");
3956    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3957    Ptr += sizeof(DesignatedInitExpr);
3958    return reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx];
3959  }
3960
3961  void setSubExpr(unsigned Idx, Expr *E) {
3962    assert(Idx < NumSubExprs && "Subscript out of range");
3963    char* Ptr = static_cast<char*>(static_cast<void *>(this));
3964    Ptr += sizeof(DesignatedInitExpr);
3965    reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx] = E;
3966  }
3967
3968  /// \brief Replaces the designator at index @p Idx with the series
3969  /// of designators in [First, Last).
3970  void ExpandDesignator(ASTContext &C, unsigned Idx, const Designator *First,
3971                        const Designator *Last);
3972
3973  SourceRange getDesignatorsSourceRange() const;
3974
3975  SourceRange getSourceRange() const LLVM_READONLY;
3976
3977  static bool classof(const Stmt *T) {
3978    return T->getStmtClass() == DesignatedInitExprClass;
3979  }
3980  static bool classof(const DesignatedInitExpr *) { return true; }
3981
3982  // Iterators
3983  child_range children() {
3984    Stmt **begin = reinterpret_cast<Stmt**>(this + 1);
3985    return child_range(begin, begin + NumSubExprs);
3986  }
3987};
3988
3989/// \brief Represents an implicitly-generated value initialization of
3990/// an object of a given type.
3991///
3992/// Implicit value initializations occur within semantic initializer
3993/// list expressions (InitListExpr) as placeholders for subobject
3994/// initializations not explicitly specified by the user.
3995///
3996/// \see InitListExpr
3997class ImplicitValueInitExpr : public Expr {
3998public:
3999  explicit ImplicitValueInitExpr(QualType ty)
4000    : Expr(ImplicitValueInitExprClass, ty, VK_RValue, OK_Ordinary,
4001           false, false, ty->isInstantiationDependentType(), false) { }
4002
4003  /// \brief Construct an empty implicit value initialization.
4004  explicit ImplicitValueInitExpr(EmptyShell Empty)
4005    : Expr(ImplicitValueInitExprClass, Empty) { }
4006
4007  static bool classof(const Stmt *T) {
4008    return T->getStmtClass() == ImplicitValueInitExprClass;
4009  }
4010  static bool classof(const ImplicitValueInitExpr *) { return true; }
4011
4012  SourceRange getSourceRange() const LLVM_READONLY {
4013    return SourceRange();
4014  }
4015
4016  // Iterators
4017  child_range children() { return child_range(); }
4018};
4019
4020
4021class ParenListExpr : public Expr {
4022  Stmt **Exprs;
4023  unsigned NumExprs;
4024  SourceLocation LParenLoc, RParenLoc;
4025
4026public:
4027  ParenListExpr(ASTContext& C, SourceLocation lparenloc, Expr **exprs,
4028                unsigned numexprs, SourceLocation rparenloc);
4029
4030  /// \brief Build an empty paren list.
4031  explicit ParenListExpr(EmptyShell Empty) : Expr(ParenListExprClass, Empty) { }
4032
4033  unsigned getNumExprs() const { return NumExprs; }
4034
4035  const Expr* getExpr(unsigned Init) const {
4036    assert(Init < getNumExprs() && "Initializer access out of range!");
4037    return cast_or_null<Expr>(Exprs[Init]);
4038  }
4039
4040  Expr* getExpr(unsigned Init) {
4041    assert(Init < getNumExprs() && "Initializer access out of range!");
4042    return cast_or_null<Expr>(Exprs[Init]);
4043  }
4044
4045  Expr **getExprs() { return reinterpret_cast<Expr **>(Exprs); }
4046
4047  SourceLocation getLParenLoc() const { return LParenLoc; }
4048  SourceLocation getRParenLoc() const { return RParenLoc; }
4049
4050  SourceRange getSourceRange() const LLVM_READONLY {
4051    return SourceRange(LParenLoc, RParenLoc);
4052  }
4053  static bool classof(const Stmt *T) {
4054    return T->getStmtClass() == ParenListExprClass;
4055  }
4056  static bool classof(const ParenListExpr *) { return true; }
4057
4058  // Iterators
4059  child_range children() {
4060    return child_range(&Exprs[0], &Exprs[0]+NumExprs);
4061  }
4062
4063  friend class ASTStmtReader;
4064  friend class ASTStmtWriter;
4065};
4066
4067
4068/// \brief Represents a C11 generic selection.
4069///
4070/// A generic selection (C11 6.5.1.1) contains an unevaluated controlling
4071/// expression, followed by one or more generic associations.  Each generic
4072/// association specifies a type name and an expression, or "default" and an
4073/// expression (in which case it is known as a default generic association).
4074/// The type and value of the generic selection are identical to those of its
4075/// result expression, which is defined as the expression in the generic
4076/// association with a type name that is compatible with the type of the
4077/// controlling expression, or the expression in the default generic association
4078/// if no types are compatible.  For example:
4079///
4080/// @code
4081/// _Generic(X, double: 1, float: 2, default: 3)
4082/// @endcode
4083///
4084/// The above expression evaluates to 1 if 1.0 is substituted for X, 2 if 1.0f
4085/// or 3 if "hello".
4086///
4087/// As an extension, generic selections are allowed in C++, where the following
4088/// additional semantics apply:
4089///
4090/// Any generic selection whose controlling expression is type-dependent or
4091/// which names a dependent type in its association list is result-dependent,
4092/// which means that the choice of result expression is dependent.
4093/// Result-dependent generic associations are both type- and value-dependent.
4094class GenericSelectionExpr : public Expr {
4095  enum { CONTROLLING, END_EXPR };
4096  TypeSourceInfo **AssocTypes;
4097  Stmt **SubExprs;
4098  unsigned NumAssocs, ResultIndex;
4099  SourceLocation GenericLoc, DefaultLoc, RParenLoc;
4100
4101public:
4102  GenericSelectionExpr(ASTContext &Context,
4103                       SourceLocation GenericLoc, Expr *ControllingExpr,
4104                       TypeSourceInfo **AssocTypes, Expr **AssocExprs,
4105                       unsigned NumAssocs, SourceLocation DefaultLoc,
4106                       SourceLocation RParenLoc,
4107                       bool ContainsUnexpandedParameterPack,
4108                       unsigned ResultIndex);
4109
4110  /// This constructor is used in the result-dependent case.
4111  GenericSelectionExpr(ASTContext &Context,
4112                       SourceLocation GenericLoc, Expr *ControllingExpr,
4113                       TypeSourceInfo **AssocTypes, Expr **AssocExprs,
4114                       unsigned NumAssocs, SourceLocation DefaultLoc,
4115                       SourceLocation RParenLoc,
4116                       bool ContainsUnexpandedParameterPack);
4117
4118  explicit GenericSelectionExpr(EmptyShell Empty)
4119    : Expr(GenericSelectionExprClass, Empty) { }
4120
4121  unsigned getNumAssocs() const { return NumAssocs; }
4122
4123  SourceLocation getGenericLoc() const { return GenericLoc; }
4124  SourceLocation getDefaultLoc() const { return DefaultLoc; }
4125  SourceLocation getRParenLoc() const { return RParenLoc; }
4126
4127  const Expr *getAssocExpr(unsigned i) const {
4128    return cast<Expr>(SubExprs[END_EXPR+i]);
4129  }
4130  Expr *getAssocExpr(unsigned i) { return cast<Expr>(SubExprs[END_EXPR+i]); }
4131
4132  const TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) const {
4133    return AssocTypes[i];
4134  }
4135  TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) { return AssocTypes[i]; }
4136
4137  QualType getAssocType(unsigned i) const {
4138    if (const TypeSourceInfo *TS = getAssocTypeSourceInfo(i))
4139      return TS->getType();
4140    else
4141      return QualType();
4142  }
4143
4144  const Expr *getControllingExpr() const {
4145    return cast<Expr>(SubExprs[CONTROLLING]);
4146  }
4147  Expr *getControllingExpr() { return cast<Expr>(SubExprs[CONTROLLING]); }
4148
4149  /// Whether this generic selection is result-dependent.
4150  bool isResultDependent() const { return ResultIndex == -1U; }
4151
4152  /// The zero-based index of the result expression's generic association in
4153  /// the generic selection's association list.  Defined only if the
4154  /// generic selection is not result-dependent.
4155  unsigned getResultIndex() const {
4156    assert(!isResultDependent() && "Generic selection is result-dependent");
4157    return ResultIndex;
4158  }
4159
4160  /// The generic selection's result expression.  Defined only if the
4161  /// generic selection is not result-dependent.
4162  const Expr *getResultExpr() const { return getAssocExpr(getResultIndex()); }
4163  Expr *getResultExpr() { return getAssocExpr(getResultIndex()); }
4164
4165  SourceRange getSourceRange() const LLVM_READONLY {
4166    return SourceRange(GenericLoc, RParenLoc);
4167  }
4168  static bool classof(const Stmt *T) {
4169    return T->getStmtClass() == GenericSelectionExprClass;
4170  }
4171  static bool classof(const GenericSelectionExpr *) { return true; }
4172
4173  child_range children() {
4174    return child_range(SubExprs, SubExprs+END_EXPR+NumAssocs);
4175  }
4176
4177  friend class ASTStmtReader;
4178};
4179
4180//===----------------------------------------------------------------------===//
4181// Clang Extensions
4182//===----------------------------------------------------------------------===//
4183
4184
4185/// ExtVectorElementExpr - This represents access to specific elements of a
4186/// vector, and may occur on the left hand side or right hand side.  For example
4187/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
4188///
4189/// Note that the base may have either vector or pointer to vector type, just
4190/// like a struct field reference.
4191///
4192class ExtVectorElementExpr : public Expr {
4193  Stmt *Base;
4194  IdentifierInfo *Accessor;
4195  SourceLocation AccessorLoc;
4196public:
4197  ExtVectorElementExpr(QualType ty, ExprValueKind VK, Expr *base,
4198                       IdentifierInfo &accessor, SourceLocation loc)
4199    : Expr(ExtVectorElementExprClass, ty, VK,
4200           (VK == VK_RValue ? OK_Ordinary : OK_VectorComponent),
4201           base->isTypeDependent(), base->isValueDependent(),
4202           base->isInstantiationDependent(),
4203           base->containsUnexpandedParameterPack()),
4204      Base(base), Accessor(&accessor), AccessorLoc(loc) {}
4205
4206  /// \brief Build an empty vector element expression.
4207  explicit ExtVectorElementExpr(EmptyShell Empty)
4208    : Expr(ExtVectorElementExprClass, Empty) { }
4209
4210  const Expr *getBase() const { return cast<Expr>(Base); }
4211  Expr *getBase() { return cast<Expr>(Base); }
4212  void setBase(Expr *E) { Base = E; }
4213
4214  IdentifierInfo &getAccessor() const { return *Accessor; }
4215  void setAccessor(IdentifierInfo *II) { Accessor = II; }
4216
4217  SourceLocation getAccessorLoc() const { return AccessorLoc; }
4218  void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
4219
4220  /// getNumElements - Get the number of components being selected.
4221  unsigned getNumElements() const;
4222
4223  /// containsDuplicateElements - Return true if any element access is
4224  /// repeated.
4225  bool containsDuplicateElements() const;
4226
4227  /// getEncodedElementAccess - Encode the elements accessed into an llvm
4228  /// aggregate Constant of ConstantInt(s).
4229  void getEncodedElementAccess(SmallVectorImpl<unsigned> &Elts) const;
4230
4231  SourceRange getSourceRange() const LLVM_READONLY {
4232    return SourceRange(getBase()->getLocStart(), AccessorLoc);
4233  }
4234
4235  /// isArrow - Return true if the base expression is a pointer to vector,
4236  /// return false if the base expression is a vector.
4237  bool isArrow() const;
4238
4239  static bool classof(const Stmt *T) {
4240    return T->getStmtClass() == ExtVectorElementExprClass;
4241  }
4242  static bool classof(const ExtVectorElementExpr *) { return true; }
4243
4244  // Iterators
4245  child_range children() { return child_range(&Base, &Base+1); }
4246};
4247
4248
4249/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
4250/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
4251class BlockExpr : public Expr {
4252protected:
4253  BlockDecl *TheBlock;
4254public:
4255  BlockExpr(BlockDecl *BD, QualType ty)
4256    : Expr(BlockExprClass, ty, VK_RValue, OK_Ordinary,
4257           ty->isDependentType(), ty->isDependentType(),
4258           ty->isInstantiationDependentType() || BD->isDependentContext(),
4259           false),
4260      TheBlock(BD) {}
4261
4262  /// \brief Build an empty block expression.
4263  explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { }
4264
4265  const BlockDecl *getBlockDecl() const { return TheBlock; }
4266  BlockDecl *getBlockDecl() { return TheBlock; }
4267  void setBlockDecl(BlockDecl *BD) { TheBlock = BD; }
4268
4269  // Convenience functions for probing the underlying BlockDecl.
4270  SourceLocation getCaretLocation() const;
4271  const Stmt *getBody() const;
4272  Stmt *getBody();
4273
4274  SourceRange getSourceRange() const LLVM_READONLY {
4275    return SourceRange(getCaretLocation(), getBody()->getLocEnd());
4276  }
4277
4278  /// getFunctionType - Return the underlying function type for this block.
4279  const FunctionProtoType *getFunctionType() const;
4280
4281  static bool classof(const Stmt *T) {
4282    return T->getStmtClass() == BlockExprClass;
4283  }
4284  static bool classof(const BlockExpr *) { return true; }
4285
4286  // Iterators
4287  child_range children() { return child_range(); }
4288};
4289
4290/// AsTypeExpr - Clang builtin function __builtin_astype [OpenCL 6.2.4.2]
4291/// This AST node provides support for reinterpreting a type to another
4292/// type of the same size.
4293class AsTypeExpr : public Expr { // Should this be an ExplicitCastExpr?
4294private:
4295  Stmt *SrcExpr;
4296  SourceLocation BuiltinLoc, RParenLoc;
4297
4298  friend class ASTReader;
4299  friend class ASTStmtReader;
4300  explicit AsTypeExpr(EmptyShell Empty) : Expr(AsTypeExprClass, Empty) {}
4301
4302public:
4303  AsTypeExpr(Expr* SrcExpr, QualType DstType,
4304             ExprValueKind VK, ExprObjectKind OK,
4305             SourceLocation BuiltinLoc, SourceLocation RParenLoc)
4306    : Expr(AsTypeExprClass, DstType, VK, OK,
4307           DstType->isDependentType(),
4308           DstType->isDependentType() || SrcExpr->isValueDependent(),
4309           (DstType->isInstantiationDependentType() ||
4310            SrcExpr->isInstantiationDependent()),
4311           (DstType->containsUnexpandedParameterPack() ||
4312            SrcExpr->containsUnexpandedParameterPack())),
4313  SrcExpr(SrcExpr), BuiltinLoc(BuiltinLoc), RParenLoc(RParenLoc) {}
4314
4315  /// getSrcExpr - Return the Expr to be converted.
4316  Expr *getSrcExpr() const { return cast<Expr>(SrcExpr); }
4317
4318  /// getBuiltinLoc - Return the location of the __builtin_astype token.
4319  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
4320
4321  /// getRParenLoc - Return the location of final right parenthesis.
4322  SourceLocation getRParenLoc() const { return RParenLoc; }
4323
4324  SourceRange getSourceRange() const LLVM_READONLY {
4325    return SourceRange(BuiltinLoc, RParenLoc);
4326  }
4327
4328  static bool classof(const Stmt *T) {
4329    return T->getStmtClass() == AsTypeExprClass;
4330  }
4331  static bool classof(const AsTypeExpr *) { return true; }
4332
4333  // Iterators
4334  child_range children() { return child_range(&SrcExpr, &SrcExpr+1); }
4335};
4336
4337/// PseudoObjectExpr - An expression which accesses a pseudo-object
4338/// l-value.  A pseudo-object is an abstract object, accesses to which
4339/// are translated to calls.  The pseudo-object expression has a
4340/// syntactic form, which shows how the expression was actually
4341/// written in the source code, and a semantic form, which is a series
4342/// of expressions to be executed in order which detail how the
4343/// operation is actually evaluated.  Optionally, one of the semantic
4344/// forms may also provide a result value for the expression.
4345///
4346/// If any of the semantic-form expressions is an OpaqueValueExpr,
4347/// that OVE is required to have a source expression, and it is bound
4348/// to the result of that source expression.  Such OVEs may appear
4349/// only in subsequent semantic-form expressions and as
4350/// sub-expressions of the syntactic form.
4351///
4352/// PseudoObjectExpr should be used only when an operation can be
4353/// usefully described in terms of fairly simple rewrite rules on
4354/// objects and functions that are meant to be used by end-developers.
4355/// For example, under the Itanium ABI, dynamic casts are implemented
4356/// as a call to a runtime function called __dynamic_cast; using this
4357/// class to describe that would be inappropriate because that call is
4358/// not really part of the user-visible semantics, and instead the
4359/// cast is properly reflected in the AST and IR-generation has been
4360/// taught to generate the call as necessary.  In contrast, an
4361/// Objective-C property access is semantically defined to be
4362/// equivalent to a particular message send, and this is very much
4363/// part of the user model.  The name of this class encourages this
4364/// modelling design.
4365class PseudoObjectExpr : public Expr {
4366  // PseudoObjectExprBits.NumSubExprs - The number of sub-expressions.
4367  // Always at least two, because the first sub-expression is the
4368  // syntactic form.
4369
4370  // PseudoObjectExprBits.ResultIndex - The index of the
4371  // sub-expression holding the result.  0 means the result is void,
4372  // which is unambiguous because it's the index of the syntactic
4373  // form.  Note that this is therefore 1 higher than the value passed
4374  // in to Create, which is an index within the semantic forms.
4375  // Note also that ASTStmtWriter assumes this encoding.
4376
4377  Expr **getSubExprsBuffer() { return reinterpret_cast<Expr**>(this + 1); }
4378  const Expr * const *getSubExprsBuffer() const {
4379    return reinterpret_cast<const Expr * const *>(this + 1);
4380  }
4381
4382  friend class ASTStmtReader;
4383
4384  PseudoObjectExpr(QualType type, ExprValueKind VK,
4385                   Expr *syntactic, ArrayRef<Expr*> semantic,
4386                   unsigned resultIndex);
4387
4388  PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs);
4389
4390  unsigned getNumSubExprs() const {
4391    return PseudoObjectExprBits.NumSubExprs;
4392  }
4393
4394public:
4395  /// NoResult - A value for the result index indicating that there is
4396  /// no semantic result.
4397  enum { NoResult = ~0U };
4398
4399  static PseudoObjectExpr *Create(ASTContext &Context, Expr *syntactic,
4400                                  ArrayRef<Expr*> semantic,
4401                                  unsigned resultIndex);
4402
4403  static PseudoObjectExpr *Create(ASTContext &Context, EmptyShell shell,
4404                                  unsigned numSemanticExprs);
4405
4406  /// Return the syntactic form of this expression, i.e. the
4407  /// expression it actually looks like.  Likely to be expressed in
4408  /// terms of OpaqueValueExprs bound in the semantic form.
4409  Expr *getSyntacticForm() { return getSubExprsBuffer()[0]; }
4410  const Expr *getSyntacticForm() const { return getSubExprsBuffer()[0]; }
4411
4412  /// Return the index of the result-bearing expression into the semantics
4413  /// expressions, or PseudoObjectExpr::NoResult if there is none.
4414  unsigned getResultExprIndex() const {
4415    if (PseudoObjectExprBits.ResultIndex == 0) return NoResult;
4416    return PseudoObjectExprBits.ResultIndex - 1;
4417  }
4418
4419  /// Return the result-bearing expression, or null if there is none.
4420  Expr *getResultExpr() {
4421    if (PseudoObjectExprBits.ResultIndex == 0)
4422      return 0;
4423    return getSubExprsBuffer()[PseudoObjectExprBits.ResultIndex];
4424  }
4425  const Expr *getResultExpr() const {
4426    return const_cast<PseudoObjectExpr*>(this)->getResultExpr();
4427  }
4428
4429  unsigned getNumSemanticExprs() const { return getNumSubExprs() - 1; }
4430
4431  typedef Expr * const *semantics_iterator;
4432  typedef const Expr * const *const_semantics_iterator;
4433  semantics_iterator semantics_begin() {
4434    return getSubExprsBuffer() + 1;
4435  }
4436  const_semantics_iterator semantics_begin() const {
4437    return getSubExprsBuffer() + 1;
4438  }
4439  semantics_iterator semantics_end() {
4440    return getSubExprsBuffer() + getNumSubExprs();
4441  }
4442  const_semantics_iterator semantics_end() const {
4443    return getSubExprsBuffer() + getNumSubExprs();
4444  }
4445  Expr *getSemanticExpr(unsigned index) {
4446    assert(index + 1 < getNumSubExprs());
4447    return getSubExprsBuffer()[index + 1];
4448  }
4449  const Expr *getSemanticExpr(unsigned index) const {
4450    return const_cast<PseudoObjectExpr*>(this)->getSemanticExpr(index);
4451  }
4452
4453  SourceLocation getExprLoc() const LLVM_READONLY {
4454    return getSyntacticForm()->getExprLoc();
4455  }
4456  SourceRange getSourceRange() const LLVM_READONLY {
4457    return getSyntacticForm()->getSourceRange();
4458  }
4459
4460  child_range children() {
4461    Stmt **cs = reinterpret_cast<Stmt**>(getSubExprsBuffer());
4462    return child_range(cs, cs + getNumSubExprs());
4463  }
4464
4465  static bool classof(const Stmt *T) {
4466    return T->getStmtClass() == PseudoObjectExprClass;
4467  }
4468  static bool classof(const PseudoObjectExpr *) { return true; }
4469};
4470
4471/// AtomicExpr - Variadic atomic builtins: __atomic_exchange, __atomic_fetch_*,
4472/// __atomic_load, __atomic_store, and __atomic_compare_exchange_*, for the
4473/// similarly-named C++11 instructions, and __c11 variants for <stdatomic.h>.
4474/// All of these instructions take one primary pointer and at least one memory
4475/// order.
4476class AtomicExpr : public Expr {
4477public:
4478  enum AtomicOp {
4479#define BUILTIN(ID, TYPE, ATTRS)
4480#define ATOMIC_BUILTIN(ID, TYPE, ATTRS) AO ## ID,
4481#include "clang/Basic/Builtins.def"
4482    // Avoid trailing comma
4483    BI_First = 0
4484  };
4485
4486private:
4487  enum { PTR, ORDER, VAL1, ORDER_FAIL, VAL2, WEAK, END_EXPR };
4488  Stmt* SubExprs[END_EXPR];
4489  unsigned NumSubExprs;
4490  SourceLocation BuiltinLoc, RParenLoc;
4491  AtomicOp Op;
4492
4493  friend class ASTStmtReader;
4494
4495public:
4496  AtomicExpr(SourceLocation BLoc, Expr **args, unsigned nexpr, QualType t,
4497             AtomicOp op, SourceLocation RP);
4498
4499  /// \brief Determine the number of arguments the specified atomic builtin
4500  /// should have.
4501  static unsigned getNumSubExprs(AtomicOp Op);
4502
4503  /// \brief Build an empty AtomicExpr.
4504  explicit AtomicExpr(EmptyShell Empty) : Expr(AtomicExprClass, Empty) { }
4505
4506  Expr *getPtr() const {
4507    return cast<Expr>(SubExprs[PTR]);
4508  }
4509  Expr *getOrder() const {
4510    return cast<Expr>(SubExprs[ORDER]);
4511  }
4512  Expr *getVal1() const {
4513    if (Op == AO__c11_atomic_init)
4514      return cast<Expr>(SubExprs[ORDER]);
4515    assert(NumSubExprs > VAL1);
4516    return cast<Expr>(SubExprs[VAL1]);
4517  }
4518  Expr *getOrderFail() const {
4519    assert(NumSubExprs > ORDER_FAIL);
4520    return cast<Expr>(SubExprs[ORDER_FAIL]);
4521  }
4522  Expr *getVal2() const {
4523    if (Op == AO__atomic_exchange)
4524      return cast<Expr>(SubExprs[ORDER_FAIL]);
4525    assert(NumSubExprs > VAL2);
4526    return cast<Expr>(SubExprs[VAL2]);
4527  }
4528  Expr *getWeak() const {
4529    assert(NumSubExprs > WEAK);
4530    return cast<Expr>(SubExprs[WEAK]);
4531  }
4532
4533  AtomicOp getOp() const { return Op; }
4534  unsigned getNumSubExprs() { return NumSubExprs; }
4535
4536  Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
4537
4538  bool isVolatile() const {
4539    return getPtr()->getType()->getPointeeType().isVolatileQualified();
4540  }
4541
4542  bool isCmpXChg() const {
4543    return getOp() == AO__c11_atomic_compare_exchange_strong ||
4544           getOp() == AO__c11_atomic_compare_exchange_weak ||
4545           getOp() == AO__atomic_compare_exchange ||
4546           getOp() == AO__atomic_compare_exchange_n;
4547  }
4548
4549  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
4550  SourceLocation getRParenLoc() const { return RParenLoc; }
4551
4552  SourceRange getSourceRange() const LLVM_READONLY {
4553    return SourceRange(BuiltinLoc, RParenLoc);
4554  }
4555  static bool classof(const Stmt *T) {
4556    return T->getStmtClass() == AtomicExprClass;
4557  }
4558  static bool classof(const AtomicExpr *) { return true; }
4559
4560  // Iterators
4561  child_range children() {
4562    return child_range(SubExprs, SubExprs+NumSubExprs);
4563  }
4564};
4565}  // end namespace clang
4566
4567#endif
4568