Expr.h revision ffce2df6ae280d354d51371282a579df1eb86876
1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/Stmt.h"
19#include "clang/AST/Type.h"
20#include "llvm/ADT/APSInt.h"
21#include "llvm/ADT/APFloat.h"
22#include "llvm/ADT/SmallVector.h"
23#include <vector>
24
25namespace clang {
26  class ASTContext;
27  class APValue;
28  class Decl;
29  class IdentifierInfo;
30  class ParmVarDecl;
31  class NamedDecl;
32  class ValueDecl;
33  class BlockDecl;
34  class CXXOperatorCallExpr;
35  class CXXMemberCallExpr;
36
37/// Expr - This represents one expression.  Note that Expr's are subclasses of
38/// Stmt.  This allows an expression to be transparently used any place a Stmt
39/// is required.
40///
41class Expr : public Stmt {
42  QualType TR;
43
44  /// TypeDependent - Whether this expression is type-dependent
45  /// (C++ [temp.dep.expr]).
46  bool TypeDependent : 1;
47
48  /// ValueDependent - Whether this expression is value-dependent
49  /// (C++ [temp.dep.constexpr]).
50  bool ValueDependent : 1;
51
52protected:
53  // FIXME: Eventually, this constructor should go away and we should
54  // require every subclass to provide type/value-dependence
55  // information.
56  Expr(StmtClass SC, QualType T)
57    : Stmt(SC), TypeDependent(false), ValueDependent(false) {
58    setType(T);
59  }
60
61  Expr(StmtClass SC, QualType T, bool TD, bool VD)
62    : Stmt(SC), TypeDependent(TD), ValueDependent(VD) {
63    setType(T);
64  }
65
66  /// \brief Construct an empty expression.
67  explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
68
69public:
70  QualType getType() const { return TR; }
71  void setType(QualType t) {
72    // In C++, the type of an expression is always adjusted so that it
73    // will not have reference type an expression will never have
74    // reference type (C++ [expr]p6). Use
75    // QualType::getNonReferenceType() to retrieve the non-reference
76    // type. Additionally, inspect Expr::isLvalue to determine whether
77    // an expression that is adjusted in this manner should be
78    // considered an lvalue.
79    assert((TR.isNull() || !TR->isReferenceType()) &&
80           "Expressions can't have reference type");
81
82    TR = t;
83  }
84
85  /// isValueDependent - Determines whether this expression is
86  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
87  /// array bound of "Chars" in the following example is
88  /// value-dependent.
89  /// @code
90  /// template<int Size, char (&Chars)[Size]> struct meta_string;
91  /// @endcode
92  bool isValueDependent() const { return ValueDependent; }
93
94  /// \brief Set whether this expression is value-dependent or not.
95  void setValueDependent(bool VD) { ValueDependent = VD; }
96
97  /// isTypeDependent - Determines whether this expression is
98  /// type-dependent (C++ [temp.dep.expr]), which means that its type
99  /// could change from one template instantiation to the next. For
100  /// example, the expressions "x" and "x + y" are type-dependent in
101  /// the following code, but "y" is not type-dependent:
102  /// @code
103  /// template<typename T>
104  /// void add(T x, int y) {
105  ///   x + y;
106  /// }
107  /// @endcode
108  bool isTypeDependent() const { return TypeDependent; }
109
110  /// \brief Set whether this expression is type-dependent or not.
111  void setTypeDependent(bool TD) { TypeDependent = TD; }
112
113  /// SourceLocation tokens are not useful in isolation - they are low level
114  /// value objects created/interpreted by SourceManager. We assume AST
115  /// clients will have a pointer to the respective SourceManager.
116  virtual SourceRange getSourceRange() const = 0;
117
118  /// getExprLoc - Return the preferred location for the arrow when diagnosing
119  /// a problem with a generic expression.
120  virtual SourceLocation getExprLoc() const { return getLocStart(); }
121
122  /// isUnusedResultAWarning - Return true if this immediate expression should
123  /// be warned about if the result is unused.  If so, fill in Loc and Ranges
124  /// with location to warn on and the source range[s] to report with the
125  /// warning.
126  bool isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
127                              SourceRange &R2) const;
128
129  /// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or
130  /// incomplete type other than void. Nonarray expressions that can be lvalues:
131  ///  - name, where name must be a variable
132  ///  - e[i]
133  ///  - (e), where e must be an lvalue
134  ///  - e.name, where e must be an lvalue
135  ///  - e->name
136  ///  - *e, the type of e cannot be a function type
137  ///  - string-constant
138  ///  - reference type [C++ [expr]]
139  ///  - b ? x : y, where x and y are lvalues of suitable types [C++]
140  ///
141  enum isLvalueResult {
142    LV_Valid,
143    LV_NotObjectType,
144    LV_IncompleteVoidType,
145    LV_DuplicateVectorComponents,
146    LV_InvalidExpression,
147    LV_MemberFunction
148  };
149  isLvalueResult isLvalue(ASTContext &Ctx) const;
150
151  // Same as above, but excluding checks for non-object and void types in C
152  isLvalueResult isLvalueInternal(ASTContext &Ctx) const;
153
154  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
155  /// does not have an incomplete type, does not have a const-qualified type,
156  /// and if it is a structure or union, does not have any member (including,
157  /// recursively, any member or element of all contained aggregates or unions)
158  /// with a const-qualified type.
159  ///
160  /// \param Loc [in] [out] - A source location which *may* be filled
161  /// in with the location of the expression making this a
162  /// non-modifiable lvalue, if specified.
163  enum isModifiableLvalueResult {
164    MLV_Valid,
165    MLV_NotObjectType,
166    MLV_IncompleteVoidType,
167    MLV_DuplicateVectorComponents,
168    MLV_InvalidExpression,
169    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
170    MLV_IncompleteType,
171    MLV_ConstQualified,
172    MLV_ArrayType,
173    MLV_NotBlockQualified,
174    MLV_ReadonlyProperty,
175    MLV_NoSetterProperty,
176    MLV_MemberFunction
177  };
178  isModifiableLvalueResult isModifiableLvalue(ASTContext &Ctx,
179                                              SourceLocation *Loc = 0) const;
180
181  /// \brief If this expression refers to a bit-field, retrieve the
182  /// declaration of that bit-field.
183  FieldDecl *getBitField();
184
185  /// isIntegerConstantExpr - Return true if this expression is a valid integer
186  /// constant expression, and, if so, return its value in Result.  If not a
187  /// valid i-c-e, return false and fill in Loc (if specified) with the location
188  /// of the invalid expression.
189  bool isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
190                             SourceLocation *Loc = 0,
191                             bool isEvaluated = true) const;
192  bool isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc = 0) const {
193    llvm::APSInt X;
194    return isIntegerConstantExpr(X, Ctx, Loc);
195  }
196  /// isConstantInitializer - Returns true if this expression is a constant
197  /// initializer, which can be emitted at compile-time.
198  bool isConstantInitializer(ASTContext &Ctx) const;
199
200  /// EvalResult is a struct with detailed info about an evaluated expression.
201  struct EvalResult {
202    /// Val - This is the value the expression can be folded to.
203    APValue Val;
204
205    /// HasSideEffects - Whether the evaluated expression has side effects.
206    /// For example, (f() && 0) can be folded, but it still has side effects.
207    bool HasSideEffects;
208
209    /// Diag - If the expression is unfoldable, then Diag contains a note
210    /// diagnostic indicating why it's not foldable. DiagLoc indicates a caret
211    /// position for the error, and DiagExpr is the expression that caused
212    /// the error.
213    /// If the expression is foldable, but not an integer constant expression,
214    /// Diag contains a note diagnostic that describes why it isn't an integer
215    /// constant expression. If the expression *is* an integer constant
216    /// expression, then Diag will be zero.
217    unsigned Diag;
218    const Expr *DiagExpr;
219    SourceLocation DiagLoc;
220
221    EvalResult() : HasSideEffects(false), Diag(0), DiagExpr(0) {}
222  };
223
224  /// Evaluate - Return true if this is a constant which we can fold using
225  /// any crazy technique (that has nothing to do with language standards) that
226  /// we want to.  If this function returns true, it returns the folded constant
227  /// in Result.
228  bool Evaluate(EvalResult &Result, ASTContext &Ctx) const;
229
230  /// isEvaluatable - Call Evaluate to see if this expression can be constant
231  /// folded, but discard the result.
232  bool isEvaluatable(ASTContext &Ctx) const;
233
234  /// EvaluateAsInt - Call Evaluate and return the folded integer. This
235  /// must be called on an expression that constant folds to an integer.
236  llvm::APSInt EvaluateAsInt(ASTContext &Ctx) const;
237
238  /// EvaluateAsLValue - Evaluate an expression to see if it's a valid LValue.
239  bool EvaluateAsLValue(EvalResult &Result, ASTContext &Ctx) const;
240
241  /// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
242  /// integer constant expression with the value zero, or if this is one that is
243  /// cast to void*.
244  bool isNullPointerConstant(ASTContext &Ctx) const;
245
246  /// hasGlobalStorage - Return true if this expression has static storage
247  /// duration.  This means that the address of this expression is a link-time
248  /// constant.
249  bool hasGlobalStorage() const;
250
251  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
252  /// write barrier.
253  bool isOBJCGCCandidate() const;
254
255  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
256  ///  its subexpression.  If that subexpression is also a ParenExpr,
257  ///  then this method recursively returns its subexpression, and so forth.
258  ///  Otherwise, the method returns the current Expr.
259  Expr* IgnoreParens();
260
261  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
262  /// or CastExprs, returning their operand.
263  Expr *IgnoreParenCasts();
264
265  /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
266  /// value (including ptr->int casts of the same size).  Strip off any
267  /// ParenExpr or CastExprs, returning their operand.
268  Expr *IgnoreParenNoopCasts(ASTContext &Ctx);
269
270  const Expr* IgnoreParens() const {
271    return const_cast<Expr*>(this)->IgnoreParens();
272  }
273  const Expr *IgnoreParenCasts() const {
274    return const_cast<Expr*>(this)->IgnoreParenCasts();
275  }
276  const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const {
277    return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
278  }
279
280  static bool hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs);
281  static bool hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs);
282
283  static bool classof(const Stmt *T) {
284    return T->getStmtClass() >= firstExprConstant &&
285           T->getStmtClass() <= lastExprConstant;
286  }
287  static bool classof(const Expr *) { return true; }
288};
289
290
291//===----------------------------------------------------------------------===//
292// Primary Expressions.
293//===----------------------------------------------------------------------===//
294
295/// DeclRefExpr - [C99 6.5.1p2] - A reference to a declared variable, function,
296/// enum, etc.
297class DeclRefExpr : public Expr {
298  NamedDecl *D;
299  SourceLocation Loc;
300
301protected:
302  // FIXME: Eventually, this constructor will go away and all subclasses
303  // will have to provide the type- and value-dependent flags.
304  DeclRefExpr(StmtClass SC, NamedDecl *d, QualType t, SourceLocation l) :
305    Expr(SC, t), D(d), Loc(l) {}
306
307  DeclRefExpr(StmtClass SC, NamedDecl *d, QualType t, SourceLocation l, bool TD,
308              bool VD) :
309    Expr(SC, t, TD, VD), D(d), Loc(l) {}
310
311public:
312  // FIXME: Eventually, this constructor will go away and all clients
313  // will have to provide the type- and value-dependent flags.
314  DeclRefExpr(NamedDecl *d, QualType t, SourceLocation l) :
315    Expr(DeclRefExprClass, t), D(d), Loc(l) {}
316
317  DeclRefExpr(NamedDecl *d, QualType t, SourceLocation l, bool TD, bool VD) :
318    Expr(DeclRefExprClass, t, TD, VD), D(d), Loc(l) {}
319
320  /// \brief Construct an empty declaration reference expression.
321  explicit DeclRefExpr(EmptyShell Empty)
322    : Expr(DeclRefExprClass, Empty) { }
323
324  NamedDecl *getDecl() { return D; }
325  const NamedDecl *getDecl() const { return D; }
326  void setDecl(NamedDecl *NewD) { D = NewD; }
327
328  SourceLocation getLocation() const { return Loc; }
329  void setLocation(SourceLocation L) { Loc = L; }
330  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
331
332  static bool classof(const Stmt *T) {
333    return T->getStmtClass() == DeclRefExprClass ||
334           T->getStmtClass() == CXXConditionDeclExprClass ||
335           T->getStmtClass() == QualifiedDeclRefExprClass;
336  }
337  static bool classof(const DeclRefExpr *) { return true; }
338
339  // Iterators
340  virtual child_iterator child_begin();
341  virtual child_iterator child_end();
342};
343
344/// PredefinedExpr - [C99 6.4.2.2] - A predefined identifier such as __func__.
345class PredefinedExpr : public Expr {
346public:
347  enum IdentType {
348    Func,
349    Function,
350    PrettyFunction
351  };
352
353private:
354  SourceLocation Loc;
355  IdentType Type;
356public:
357  PredefinedExpr(SourceLocation l, QualType type, IdentType IT)
358    : Expr(PredefinedExprClass, type), Loc(l), Type(IT) {}
359
360  /// \brief Construct an empty predefined expression.
361  explicit PredefinedExpr(EmptyShell Empty)
362    : Expr(PredefinedExprClass, Empty) { }
363
364  IdentType getIdentType() const { return Type; }
365  void setIdentType(IdentType IT) { Type = IT; }
366
367  SourceLocation getLocation() const { return Loc; }
368  void setLocation(SourceLocation L) { Loc = L; }
369
370  // FIXME: The logic for computing the value of a predefined expr should go
371  // into a method here that takes the inner-most code decl (a block, function
372  // or objc method) that the expr lives in.  This would allow sema and codegen
373  // to be consistent for things like sizeof(__func__) etc.
374
375  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
376
377  static bool classof(const Stmt *T) {
378    return T->getStmtClass() == PredefinedExprClass;
379  }
380  static bool classof(const PredefinedExpr *) { return true; }
381
382  // Iterators
383  virtual child_iterator child_begin();
384  virtual child_iterator child_end();
385};
386
387class IntegerLiteral : public Expr {
388  llvm::APInt Value;
389  SourceLocation Loc;
390public:
391  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
392  // or UnsignedLongLongTy
393  IntegerLiteral(const llvm::APInt &V, QualType type, SourceLocation l)
394    : Expr(IntegerLiteralClass, type), Value(V), Loc(l) {
395    assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
396  }
397
398  /// \brief Construct an empty integer literal.
399  explicit IntegerLiteral(EmptyShell Empty)
400    : Expr(IntegerLiteralClass, Empty) { }
401
402  IntegerLiteral* Clone(ASTContext &C) const;
403
404  const llvm::APInt &getValue() const { return Value; }
405  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
406
407  /// \brief Retrieve the location of the literal.
408  SourceLocation getLocation() const { return Loc; }
409
410  void setValue(const llvm::APInt &Val) { Value = Val; }
411  void setLocation(SourceLocation Location) { Loc = Location; }
412
413  static bool classof(const Stmt *T) {
414    return T->getStmtClass() == IntegerLiteralClass;
415  }
416  static bool classof(const IntegerLiteral *) { return true; }
417
418  // Iterators
419  virtual child_iterator child_begin();
420  virtual child_iterator child_end();
421};
422
423class CharacterLiteral : public Expr {
424  unsigned Value;
425  SourceLocation Loc;
426  bool IsWide;
427public:
428  // type should be IntTy
429  CharacterLiteral(unsigned value, bool iswide, QualType type, SourceLocation l)
430    : Expr(CharacterLiteralClass, type), Value(value), Loc(l), IsWide(iswide) {
431  }
432
433  /// \brief Construct an empty character literal.
434  CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
435
436  SourceLocation getLoc() const { return Loc; }
437  bool isWide() const { return IsWide; }
438
439  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
440
441  unsigned getValue() const { return Value; }
442
443  void setLocation(SourceLocation Location) { Loc = Location; }
444  void setWide(bool W) { IsWide = W; }
445  void setValue(unsigned Val) { Value = Val; }
446
447  static bool classof(const Stmt *T) {
448    return T->getStmtClass() == CharacterLiteralClass;
449  }
450  static bool classof(const CharacterLiteral *) { return true; }
451
452  // Iterators
453  virtual child_iterator child_begin();
454  virtual child_iterator child_end();
455};
456
457class FloatingLiteral : public Expr {
458  llvm::APFloat Value;
459  bool IsExact : 1;
460  SourceLocation Loc;
461public:
462  FloatingLiteral(const llvm::APFloat &V, bool* isexact,
463                  QualType Type, SourceLocation L)
464    : Expr(FloatingLiteralClass, Type), Value(V), IsExact(*isexact), Loc(L) {}
465
466  /// \brief Construct an empty floating-point literal.
467  FloatingLiteral(EmptyShell Empty)
468    : Expr(FloatingLiteralClass, Empty), Value(0.0) { }
469
470  const llvm::APFloat &getValue() const { return Value; }
471  void setValue(const llvm::APFloat &Val) { Value = Val; }
472
473  bool isExact() const { return IsExact; }
474  void setExact(bool E) { IsExact = E; }
475
476  /// getValueAsApproximateDouble - This returns the value as an inaccurate
477  /// double.  Note that this may cause loss of precision, but is useful for
478  /// debugging dumps, etc.
479  double getValueAsApproximateDouble() const;
480
481  SourceLocation getLocation() const { return Loc; }
482  void setLocation(SourceLocation L) { Loc = L; }
483
484  // FIXME: The logic for computing the value of a predefined expr should go
485  // into a method here that takes the inner-most code decl (a block, function
486  // or objc method) that the expr lives in.  This would allow sema and codegen
487  // to be consistent for things like sizeof(__func__) etc.
488
489  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
490
491  static bool classof(const Stmt *T) {
492    return T->getStmtClass() == FloatingLiteralClass;
493  }
494  static bool classof(const FloatingLiteral *) { return true; }
495
496  // Iterators
497  virtual child_iterator child_begin();
498  virtual child_iterator child_end();
499};
500
501/// ImaginaryLiteral - We support imaginary integer and floating point literals,
502/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
503/// IntegerLiteral classes.  Instances of this class always have a Complex type
504/// whose element type matches the subexpression.
505///
506class ImaginaryLiteral : public Expr {
507  Stmt *Val;
508public:
509  ImaginaryLiteral(Expr *val, QualType Ty)
510    : Expr(ImaginaryLiteralClass, Ty), Val(val) {}
511
512  /// \brief Build an empty imaginary literal.
513  explicit ImaginaryLiteral(EmptyShell Empty)
514    : Expr(ImaginaryLiteralClass, Empty) { }
515
516  const Expr *getSubExpr() const { return cast<Expr>(Val); }
517  Expr *getSubExpr() { return cast<Expr>(Val); }
518  void setSubExpr(Expr *E) { Val = E; }
519
520  virtual SourceRange getSourceRange() const { return Val->getSourceRange(); }
521  static bool classof(const Stmt *T) {
522    return T->getStmtClass() == ImaginaryLiteralClass;
523  }
524  static bool classof(const ImaginaryLiteral *) { return true; }
525
526  // Iterators
527  virtual child_iterator child_begin();
528  virtual child_iterator child_end();
529};
530
531/// StringLiteral - This represents a string literal expression, e.g. "foo"
532/// or L"bar" (wide strings).  The actual string is returned by getStrData()
533/// is NOT null-terminated, and the length of the string is determined by
534/// calling getByteLength().  The C type for a string is always a
535/// ConstantArrayType.  In C++, the char type is const qualified, in C it is
536/// not.
537///
538/// Note that strings in C can be formed by concatenation of multiple string
539/// literal pptokens in translation phase #6.  This keeps track of the locations
540/// of each of these pieces.
541///
542/// Strings in C can also be truncated and extended by assigning into arrays,
543/// e.g. with constructs like:
544///   char X[2] = "foobar";
545/// In this case, getByteLength() will return 6, but the string literal will
546/// have type "char[2]".
547class StringLiteral : public Expr {
548  const char *StrData;
549  unsigned ByteLength;
550  bool IsWide;
551  unsigned NumConcatenated;
552  SourceLocation TokLocs[1];
553
554  StringLiteral(QualType Ty) : Expr(StringLiteralClass, Ty) {}
555public:
556  /// This is the "fully general" constructor that allows representation of
557  /// strings formed from multiple concatenated tokens.
558  static StringLiteral *Create(ASTContext &C, const char *StrData,
559                               unsigned ByteLength, bool Wide, QualType Ty,
560                               const SourceLocation *Loc, unsigned NumStrs);
561
562  /// Simple constructor for string literals made from one token.
563  static StringLiteral *Create(ASTContext &C, const char *StrData,
564                               unsigned ByteLength,
565                               bool Wide, QualType Ty, SourceLocation Loc) {
566    return Create(C, StrData, ByteLength, Wide, Ty, &Loc, 1);
567  }
568
569  /// \brief Construct an empty string literal.
570  static StringLiteral *CreateEmpty(ASTContext &C, unsigned NumStrs);
571
572  StringLiteral* Clone(ASTContext &C) const;
573  void Destroy(ASTContext &C);
574
575  const char *getStrData() const { return StrData; }
576  unsigned getByteLength() const { return ByteLength; }
577
578  /// \brief Sets the string data to the given string data.
579  void setStrData(ASTContext &C, const char *Str, unsigned Len);
580
581  bool isWide() const { return IsWide; }
582  void setWide(bool W) { IsWide = W; }
583
584  bool containsNonAsciiOrNull() const {
585    for (unsigned i = 0; i < getByteLength(); ++i)
586      if (!isascii(getStrData()[i]) || !getStrData()[i])
587        return true;
588    return false;
589  }
590  /// getNumConcatenated - Get the number of string literal tokens that were
591  /// concatenated in translation phase #6 to form this string literal.
592  unsigned getNumConcatenated() const { return NumConcatenated; }
593
594  SourceLocation getStrTokenLoc(unsigned TokNum) const {
595    assert(TokNum < NumConcatenated && "Invalid tok number");
596    return TokLocs[TokNum];
597  }
598  void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
599    assert(TokNum < NumConcatenated && "Invalid tok number");
600    TokLocs[TokNum] = L;
601  }
602
603  typedef const SourceLocation *tokloc_iterator;
604  tokloc_iterator tokloc_begin() const { return TokLocs; }
605  tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; }
606
607  virtual SourceRange getSourceRange() const {
608    return SourceRange(TokLocs[0], TokLocs[NumConcatenated-1]);
609  }
610  static bool classof(const Stmt *T) {
611    return T->getStmtClass() == StringLiteralClass;
612  }
613  static bool classof(const StringLiteral *) { return true; }
614
615  // Iterators
616  virtual child_iterator child_begin();
617  virtual child_iterator child_end();
618};
619
620/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
621/// AST node is only formed if full location information is requested.
622class ParenExpr : public Expr {
623  SourceLocation L, R;
624  Stmt *Val;
625public:
626  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
627    : Expr(ParenExprClass, val->getType(),
628           val->isTypeDependent(), val->isValueDependent()),
629      L(l), R(r), Val(val) {}
630
631  /// \brief Construct an empty parenthesized expression.
632  explicit ParenExpr(EmptyShell Empty)
633    : Expr(ParenExprClass, Empty) { }
634
635  const Expr *getSubExpr() const { return cast<Expr>(Val); }
636  Expr *getSubExpr() { return cast<Expr>(Val); }
637  void setSubExpr(Expr *E) { Val = E; }
638
639  virtual SourceRange getSourceRange() const { return SourceRange(L, R); }
640
641  /// \brief Get the location of the left parentheses '('.
642  SourceLocation getLParen() const { return L; }
643  void setLParen(SourceLocation Loc) { L = Loc; }
644
645  /// \brief Get the location of the right parentheses ')'.
646  SourceLocation getRParen() const { return R; }
647  void setRParen(SourceLocation Loc) { R = Loc; }
648
649  static bool classof(const Stmt *T) {
650    return T->getStmtClass() == ParenExprClass;
651  }
652  static bool classof(const ParenExpr *) { return true; }
653
654  // Iterators
655  virtual child_iterator child_begin();
656  virtual child_iterator child_end();
657};
658
659
660/// UnaryOperator - This represents the unary-expression's (except sizeof and
661/// alignof), the postinc/postdec operators from postfix-expression, and various
662/// extensions.
663///
664/// Notes on various nodes:
665///
666/// Real/Imag - These return the real/imag part of a complex operand.  If
667///   applied to a non-complex value, the former returns its operand and the
668///   later returns zero in the type of the operand.
669///
670/// __builtin_offsetof(type, a.b[10]) is represented as a unary operator whose
671///   subexpression is a compound literal with the various MemberExpr and
672///   ArraySubscriptExpr's applied to it.
673///
674class UnaryOperator : public Expr {
675public:
676  // Note that additions to this should also update the StmtVisitor class.
677  enum Opcode {
678    PostInc, PostDec, // [C99 6.5.2.4] Postfix increment and decrement operators
679    PreInc, PreDec,   // [C99 6.5.3.1] Prefix increment and decrement operators.
680    AddrOf, Deref,    // [C99 6.5.3.2] Address and indirection operators.
681    Plus, Minus,      // [C99 6.5.3.3] Unary arithmetic operators.
682    Not, LNot,        // [C99 6.5.3.3] Unary arithmetic operators.
683    Real, Imag,       // "__real expr"/"__imag expr" Extension.
684    Extension,        // __extension__ marker.
685    OffsetOf          // __builtin_offsetof
686  };
687private:
688  Stmt *Val;
689  Opcode Opc;
690  SourceLocation Loc;
691public:
692
693  UnaryOperator(Expr *input, Opcode opc, QualType type, SourceLocation l)
694    : Expr(UnaryOperatorClass, type,
695           input->isTypeDependent() && opc != OffsetOf,
696           input->isValueDependent()),
697      Val(input), Opc(opc), Loc(l) {}
698
699  /// \brief Build an empty unary operator.
700  explicit UnaryOperator(EmptyShell Empty)
701    : Expr(UnaryOperatorClass, Empty), Opc(AddrOf) { }
702
703  Opcode getOpcode() const { return Opc; }
704  void setOpcode(Opcode O) { Opc = O; }
705
706  Expr *getSubExpr() const { return cast<Expr>(Val); }
707  void setSubExpr(Expr *E) { Val = E; }
708
709  /// getOperatorLoc - Return the location of the operator.
710  SourceLocation getOperatorLoc() const { return Loc; }
711  void setOperatorLoc(SourceLocation L) { Loc = L; }
712
713  /// isPostfix - Return true if this is a postfix operation, like x++.
714  static bool isPostfix(Opcode Op) {
715    return Op == PostInc || Op == PostDec;
716  }
717
718  /// isPostfix - Return true if this is a prefix operation, like --x.
719  static bool isPrefix(Opcode Op) {
720    return Op == PreInc || Op == PreDec;
721  }
722
723  bool isPrefix() const { return isPrefix(Opc); }
724  bool isPostfix() const { return isPostfix(Opc); }
725  bool isIncrementOp() const {return Opc==PreInc || Opc==PostInc; }
726  bool isIncrementDecrementOp() const { return Opc>=PostInc && Opc<=PreDec; }
727  bool isOffsetOfOp() const { return Opc == OffsetOf; }
728  static bool isArithmeticOp(Opcode Op) { return Op >= Plus && Op <= LNot; }
729
730  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
731  /// corresponds to, e.g. "sizeof" or "[pre]++"
732  static const char *getOpcodeStr(Opcode Op);
733
734  /// \brief Retrieve the unary opcode that corresponds to the given
735  /// overloaded operator.
736  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
737
738  /// \brief Retrieve the overloaded operator kind that corresponds to
739  /// the given unary opcode.
740  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
741
742  virtual SourceRange getSourceRange() const {
743    if (isPostfix())
744      return SourceRange(Val->getLocStart(), Loc);
745    else
746      return SourceRange(Loc, Val->getLocEnd());
747  }
748  virtual SourceLocation getExprLoc() const { return Loc; }
749
750  static bool classof(const Stmt *T) {
751    return T->getStmtClass() == UnaryOperatorClass;
752  }
753  static bool classof(const UnaryOperator *) { return true; }
754
755  // Iterators
756  virtual child_iterator child_begin();
757  virtual child_iterator child_end();
758};
759
760/// SizeOfAlignOfExpr - [C99 6.5.3.4] - This is for sizeof/alignof, both of
761/// types and expressions.
762class SizeOfAlignOfExpr : public Expr {
763  bool isSizeof : 1;  // true if sizeof, false if alignof.
764  bool isType : 1;    // true if operand is a type, false if an expression
765  union {
766    void *Ty;
767    Stmt *Ex;
768  } Argument;
769  SourceLocation OpLoc, RParenLoc;
770public:
771  SizeOfAlignOfExpr(bool issizeof, QualType T,
772                    QualType resultType, SourceLocation op,
773                    SourceLocation rp) :
774      Expr(SizeOfAlignOfExprClass, resultType,
775           false, // Never type-dependent (C++ [temp.dep.expr]p3).
776           // Value-dependent if the argument is type-dependent.
777           T->isDependentType()),
778      isSizeof(issizeof), isType(true), OpLoc(op), RParenLoc(rp) {
779    Argument.Ty = T.getAsOpaquePtr();
780  }
781
782  SizeOfAlignOfExpr(bool issizeof, Expr *E,
783                    QualType resultType, SourceLocation op,
784                    SourceLocation rp) :
785      Expr(SizeOfAlignOfExprClass, resultType,
786           false, // Never type-dependent (C++ [temp.dep.expr]p3).
787           // Value-dependent if the argument is type-dependent.
788           E->isTypeDependent()),
789      isSizeof(issizeof), isType(false), OpLoc(op), RParenLoc(rp) {
790    Argument.Ex = E;
791  }
792
793  /// \brief Construct an empty sizeof/alignof expression.
794  explicit SizeOfAlignOfExpr(EmptyShell Empty)
795    : Expr(SizeOfAlignOfExprClass, Empty) { }
796
797  virtual void Destroy(ASTContext& C);
798
799  bool isSizeOf() const { return isSizeof; }
800  void setSizeof(bool S) { isSizeof = S; }
801
802  bool isArgumentType() const { return isType; }
803  QualType getArgumentType() const {
804    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
805    return QualType::getFromOpaquePtr(Argument.Ty);
806  }
807  Expr *getArgumentExpr() {
808    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
809    return static_cast<Expr*>(Argument.Ex);
810  }
811  const Expr *getArgumentExpr() const {
812    return const_cast<SizeOfAlignOfExpr*>(this)->getArgumentExpr();
813  }
814
815  void setArgument(Expr *E) { Argument.Ex = E; isType = false; }
816  void setArgument(QualType T) {
817    Argument.Ty = T.getAsOpaquePtr();
818    isType = true;
819  }
820
821  /// Gets the argument type, or the type of the argument expression, whichever
822  /// is appropriate.
823  QualType getTypeOfArgument() const {
824    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
825  }
826
827  SourceLocation getOperatorLoc() const { return OpLoc; }
828  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
829
830  SourceLocation getRParenLoc() const { return RParenLoc; }
831  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
832
833  virtual SourceRange getSourceRange() const {
834    return SourceRange(OpLoc, RParenLoc);
835  }
836
837  static bool classof(const Stmt *T) {
838    return T->getStmtClass() == SizeOfAlignOfExprClass;
839  }
840  static bool classof(const SizeOfAlignOfExpr *) { return true; }
841
842  // Iterators
843  virtual child_iterator child_begin();
844  virtual child_iterator child_end();
845};
846
847//===----------------------------------------------------------------------===//
848// Postfix Operators.
849//===----------------------------------------------------------------------===//
850
851/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
852class ArraySubscriptExpr : public Expr {
853  enum { LHS, RHS, END_EXPR=2 };
854  Stmt* SubExprs[END_EXPR];
855  SourceLocation RBracketLoc;
856public:
857  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
858                     SourceLocation rbracketloc)
859  : Expr(ArraySubscriptExprClass, t,
860         lhs->isTypeDependent() || rhs->isTypeDependent(),
861         lhs->isValueDependent() || rhs->isValueDependent()),
862    RBracketLoc(rbracketloc) {
863    SubExprs[LHS] = lhs;
864    SubExprs[RHS] = rhs;
865  }
866
867  /// \brief Create an empty array subscript expression.
868  explicit ArraySubscriptExpr(EmptyShell Shell)
869    : Expr(ArraySubscriptExprClass, Shell) { }
870
871  /// An array access can be written A[4] or 4[A] (both are equivalent).
872  /// - getBase() and getIdx() always present the normalized view: A[4].
873  ///    In this case getBase() returns "A" and getIdx() returns "4".
874  /// - getLHS() and getRHS() present the syntactic view. e.g. for
875  ///    4[A] getLHS() returns "4".
876  /// Note: Because vector element access is also written A[4] we must
877  /// predicate the format conversion in getBase and getIdx only on the
878  /// the type of the RHS, as it is possible for the LHS to be a vector of
879  /// integer type
880  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
881  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
882  void setLHS(Expr *E) { SubExprs[LHS] = E; }
883
884  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
885  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
886  void setRHS(Expr *E) { SubExprs[RHS] = E; }
887
888  Expr *getBase() {
889    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
890  }
891
892  const Expr *getBase() const {
893    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
894  }
895
896  Expr *getIdx() {
897    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
898  }
899
900  const Expr *getIdx() const {
901    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
902  }
903
904  virtual SourceRange getSourceRange() const {
905    return SourceRange(getLHS()->getLocStart(), RBracketLoc);
906  }
907
908  SourceLocation getRBracketLoc() const { return RBracketLoc; }
909  void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
910
911  virtual SourceLocation getExprLoc() const { return getBase()->getExprLoc(); }
912
913  static bool classof(const Stmt *T) {
914    return T->getStmtClass() == ArraySubscriptExprClass;
915  }
916  static bool classof(const ArraySubscriptExpr *) { return true; }
917
918  // Iterators
919  virtual child_iterator child_begin();
920  virtual child_iterator child_end();
921};
922
923
924/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
925/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
926/// while its subclasses may represent alternative syntax that (semantically)
927/// results in a function call. For example, CXXOperatorCallExpr is
928/// a subclass for overloaded operator calls that use operator syntax, e.g.,
929/// "str1 + str2" to resolve to a function call.
930class CallExpr : public Expr {
931  enum { FN=0, ARGS_START=1 };
932  Stmt **SubExprs;
933  unsigned NumArgs;
934  SourceLocation RParenLoc;
935
936  // This version of the ctor is for deserialization.
937  CallExpr(StmtClass SC, Stmt** subexprs, unsigned numargs, QualType t,
938           SourceLocation rparenloc)
939  : Expr(SC,t), SubExprs(subexprs),
940    NumArgs(numargs), RParenLoc(rparenloc) {}
941
942protected:
943  // This version of the constructor is for derived classes.
944  CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args, unsigned numargs,
945           QualType t, SourceLocation rparenloc);
946
947public:
948  CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs, QualType t,
949           SourceLocation rparenloc);
950
951  /// \brief Build an empty call expression.
952  CallExpr(ASTContext &C, EmptyShell Empty);
953
954  ~CallExpr() {}
955
956  void Destroy(ASTContext& C);
957
958  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
959  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
960  void setCallee(Expr *F) { SubExprs[FN] = F; }
961
962  /// getNumArgs - Return the number of actual arguments to this call.
963  ///
964  unsigned getNumArgs() const { return NumArgs; }
965
966  /// getArg - Return the specified argument.
967  Expr *getArg(unsigned Arg) {
968    assert(Arg < NumArgs && "Arg access out of range!");
969    return cast<Expr>(SubExprs[Arg+ARGS_START]);
970  }
971  const Expr *getArg(unsigned Arg) const {
972    assert(Arg < NumArgs && "Arg access out of range!");
973    return cast<Expr>(SubExprs[Arg+ARGS_START]);
974  }
975
976  /// setArg - Set the specified argument.
977  void setArg(unsigned Arg, Expr *ArgExpr) {
978    assert(Arg < NumArgs && "Arg access out of range!");
979    SubExprs[Arg+ARGS_START] = ArgExpr;
980  }
981
982  /// setNumArgs - This changes the number of arguments present in this call.
983  /// Any orphaned expressions are deleted by this, and any new operands are set
984  /// to null.
985  void setNumArgs(ASTContext& C, unsigned NumArgs);
986
987  typedef ExprIterator arg_iterator;
988  typedef ConstExprIterator const_arg_iterator;
989
990  arg_iterator arg_begin() { return SubExprs+ARGS_START; }
991  arg_iterator arg_end() { return SubExprs+ARGS_START+getNumArgs(); }
992  const_arg_iterator arg_begin() const { return SubExprs+ARGS_START; }
993  const_arg_iterator arg_end() const { return SubExprs+ARGS_START+getNumArgs();}
994
995  /// getNumCommas - Return the number of commas that must have been present in
996  /// this function call.
997  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
998
999  /// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
1000  /// not, return 0.
1001  unsigned isBuiltinCall(ASTContext &Context) const;
1002
1003  SourceLocation getRParenLoc() const { return RParenLoc; }
1004  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1005
1006  virtual SourceRange getSourceRange() const {
1007    return SourceRange(getCallee()->getLocStart(), RParenLoc);
1008  }
1009
1010  static bool classof(const Stmt *T) {
1011    return T->getStmtClass() == CallExprClass ||
1012           T->getStmtClass() == CXXOperatorCallExprClass ||
1013           T->getStmtClass() == CXXMemberCallExprClass;
1014  }
1015  static bool classof(const CallExpr *) { return true; }
1016  static bool classof(const CXXOperatorCallExpr *) { return true; }
1017  static bool classof(const CXXMemberCallExpr *) { return true; }
1018
1019  // Iterators
1020  virtual child_iterator child_begin();
1021  virtual child_iterator child_end();
1022};
1023
1024/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.  X->F and X.F.
1025///
1026class MemberExpr : public Expr {
1027  /// Base - the expression for the base pointer or structure references.  In
1028  /// X.F, this is "X".
1029  Stmt *Base;
1030
1031  /// MemberDecl - This is the decl being referenced by the field/member name.
1032  /// In X.F, this is the decl referenced by F.
1033  NamedDecl *MemberDecl;
1034
1035  /// MemberLoc - This is the location of the member name.
1036  SourceLocation MemberLoc;
1037
1038  /// IsArrow - True if this is "X->F", false if this is "X.F".
1039  bool IsArrow;
1040public:
1041  MemberExpr(Expr *base, bool isarrow, NamedDecl *memberdecl, SourceLocation l,
1042             QualType ty)
1043    : Expr(MemberExprClass, ty,
1044           base->isTypeDependent(), base->isValueDependent()),
1045      Base(base), MemberDecl(memberdecl), MemberLoc(l), IsArrow(isarrow) {}
1046
1047  /// \brief Build an empty member reference expression.
1048  explicit MemberExpr(EmptyShell Empty) : Expr(MemberExprClass, Empty) { }
1049
1050  void setBase(Expr *E) { Base = E; }
1051  Expr *getBase() const { return cast<Expr>(Base); }
1052
1053  /// \brief Retrieve the member declaration to which this expression refers.
1054  ///
1055  /// The returned declaration will either be a FieldDecl or (in C++)
1056  /// a CXXMethodDecl.
1057  NamedDecl *getMemberDecl() const { return MemberDecl; }
1058  void setMemberDecl(NamedDecl *D) { MemberDecl = D; }
1059
1060  bool isArrow() const { return IsArrow; }
1061  void setArrow(bool A) { IsArrow = A; }
1062
1063  /// getMemberLoc - Return the location of the "member", in X->F, it is the
1064  /// location of 'F'.
1065  SourceLocation getMemberLoc() const { return MemberLoc; }
1066  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
1067
1068  virtual SourceRange getSourceRange() const {
1069    // If we have an implicit base (like a C++ implicit this),
1070    // make sure not to return its location
1071    SourceLocation BaseLoc = getBase()->getLocStart();
1072    if (BaseLoc.isInvalid())
1073      return SourceRange(MemberLoc, MemberLoc);
1074    return SourceRange(BaseLoc, MemberLoc);
1075  }
1076
1077  virtual SourceLocation getExprLoc() const { return MemberLoc; }
1078
1079  static bool classof(const Stmt *T) {
1080    return T->getStmtClass() == MemberExprClass;
1081  }
1082  static bool classof(const MemberExpr *) { return true; }
1083
1084  // Iterators
1085  virtual child_iterator child_begin();
1086  virtual child_iterator child_end();
1087};
1088
1089/// CompoundLiteralExpr - [C99 6.5.2.5]
1090///
1091class CompoundLiteralExpr : public Expr {
1092  /// LParenLoc - If non-null, this is the location of the left paren in a
1093  /// compound literal like "(int){4}".  This can be null if this is a
1094  /// synthesized compound expression.
1095  SourceLocation LParenLoc;
1096  Stmt *Init;
1097  bool FileScope;
1098public:
1099  CompoundLiteralExpr(SourceLocation lparenloc, QualType ty, Expr *init,
1100                      bool fileScope)
1101    : Expr(CompoundLiteralExprClass, ty), LParenLoc(lparenloc), Init(init),
1102      FileScope(fileScope) {}
1103
1104  /// \brief Construct an empty compound literal.
1105  explicit CompoundLiteralExpr(EmptyShell Empty)
1106    : Expr(CompoundLiteralExprClass, Empty) { }
1107
1108  const Expr *getInitializer() const { return cast<Expr>(Init); }
1109  Expr *getInitializer() { return cast<Expr>(Init); }
1110  void setInitializer(Expr *E) { Init = E; }
1111
1112  bool isFileScope() const { return FileScope; }
1113  void setFileScope(bool FS) { FileScope = FS; }
1114
1115  SourceLocation getLParenLoc() const { return LParenLoc; }
1116  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
1117
1118  virtual SourceRange getSourceRange() const {
1119    // FIXME: Init should never be null.
1120    if (!Init)
1121      return SourceRange();
1122    if (LParenLoc.isInvalid())
1123      return Init->getSourceRange();
1124    return SourceRange(LParenLoc, Init->getLocEnd());
1125  }
1126
1127  static bool classof(const Stmt *T) {
1128    return T->getStmtClass() == CompoundLiteralExprClass;
1129  }
1130  static bool classof(const CompoundLiteralExpr *) { return true; }
1131
1132  // Iterators
1133  virtual child_iterator child_begin();
1134  virtual child_iterator child_end();
1135};
1136
1137/// CastExpr - Base class for type casts, including both implicit
1138/// casts (ImplicitCastExpr) and explicit casts that have some
1139/// representation in the source code (ExplicitCastExpr's derived
1140/// classes).
1141class CastExpr : public Expr {
1142  Stmt *Op;
1143protected:
1144  CastExpr(StmtClass SC, QualType ty, Expr *op) :
1145    Expr(SC, ty,
1146         // Cast expressions are type-dependent if the type is
1147         // dependent (C++ [temp.dep.expr]p3).
1148         ty->isDependentType(),
1149         // Cast expressions are value-dependent if the type is
1150         // dependent or if the subexpression is value-dependent.
1151         ty->isDependentType() || (op && op->isValueDependent())),
1152    Op(op) {}
1153
1154  /// \brief Construct an empty cast.
1155  CastExpr(StmtClass SC, EmptyShell Empty)
1156    : Expr(SC, Empty) { }
1157
1158public:
1159  Expr *getSubExpr() { return cast<Expr>(Op); }
1160  const Expr *getSubExpr() const { return cast<Expr>(Op); }
1161  void setSubExpr(Expr *E) { Op = E; }
1162
1163  static bool classof(const Stmt *T) {
1164    StmtClass SC = T->getStmtClass();
1165    if (SC >= CXXNamedCastExprClass && SC <= CXXFunctionalCastExprClass)
1166      return true;
1167
1168    if (SC >= ImplicitCastExprClass && SC <= CStyleCastExprClass)
1169      return true;
1170
1171    return false;
1172  }
1173  static bool classof(const CastExpr *) { return true; }
1174
1175  // Iterators
1176  virtual child_iterator child_begin();
1177  virtual child_iterator child_end();
1178};
1179
1180/// ImplicitCastExpr - Allows us to explicitly represent implicit type
1181/// conversions, which have no direct representation in the original
1182/// source code. For example: converting T[]->T*, void f()->void
1183/// (*f)(), float->double, short->int, etc.
1184///
1185/// In C, implicit casts always produce rvalues. However, in C++, an
1186/// implicit cast whose result is being bound to a reference will be
1187/// an lvalue. For example:
1188///
1189/// @code
1190/// class Base { };
1191/// class Derived : public Base { };
1192/// void f(Derived d) {
1193///   Base& b = d; // initializer is an ImplicitCastExpr to an lvalue of type Base
1194/// }
1195/// @endcode
1196class ImplicitCastExpr : public CastExpr {
1197  /// LvalueCast - Whether this cast produces an lvalue.
1198  bool LvalueCast;
1199
1200public:
1201  ImplicitCastExpr(QualType ty, Expr *op, bool Lvalue) :
1202    CastExpr(ImplicitCastExprClass, ty, op), LvalueCast(Lvalue) { }
1203
1204  /// \brief Construct an empty implicit cast.
1205  explicit ImplicitCastExpr(EmptyShell Shell)
1206    : CastExpr(ImplicitCastExprClass, Shell) { }
1207
1208
1209  virtual SourceRange getSourceRange() const {
1210    return getSubExpr()->getSourceRange();
1211  }
1212
1213  /// isLvalueCast - Whether this cast produces an lvalue.
1214  bool isLvalueCast() const { return LvalueCast; }
1215
1216  /// setLvalueCast - Set whether this cast produces an lvalue.
1217  void setLvalueCast(bool Lvalue) { LvalueCast = Lvalue; }
1218
1219  static bool classof(const Stmt *T) {
1220    return T->getStmtClass() == ImplicitCastExprClass;
1221  }
1222  static bool classof(const ImplicitCastExpr *) { return true; }
1223};
1224
1225/// ExplicitCastExpr - An explicit cast written in the source
1226/// code.
1227///
1228/// This class is effectively an abstract class, because it provides
1229/// the basic representation of an explicitly-written cast without
1230/// specifying which kind of cast (C cast, functional cast, static
1231/// cast, etc.) was written; specific derived classes represent the
1232/// particular style of cast and its location information.
1233///
1234/// Unlike implicit casts, explicit cast nodes have two different
1235/// types: the type that was written into the source code, and the
1236/// actual type of the expression as determined by semantic
1237/// analysis. These types may differ slightly. For example, in C++ one
1238/// can cast to a reference type, which indicates that the resulting
1239/// expression will be an lvalue. The reference type, however, will
1240/// not be used as the type of the expression.
1241class ExplicitCastExpr : public CastExpr {
1242  /// TypeAsWritten - The type that this expression is casting to, as
1243  /// written in the source code.
1244  QualType TypeAsWritten;
1245
1246protected:
1247  ExplicitCastExpr(StmtClass SC, QualType exprTy, Expr *op, QualType writtenTy)
1248    : CastExpr(SC, exprTy, op), TypeAsWritten(writtenTy) {}
1249
1250  /// \brief Construct an empty explicit cast.
1251  ExplicitCastExpr(StmtClass SC, EmptyShell Shell)
1252    : CastExpr(SC, Shell) { }
1253
1254public:
1255  /// getTypeAsWritten - Returns the type that this expression is
1256  /// casting to, as written in the source code.
1257  QualType getTypeAsWritten() const { return TypeAsWritten; }
1258  void setTypeAsWritten(QualType T) { TypeAsWritten = T; }
1259
1260  static bool classof(const Stmt *T) {
1261    StmtClass SC = T->getStmtClass();
1262    if (SC >= ExplicitCastExprClass && SC <= CStyleCastExprClass)
1263      return true;
1264    if (SC >= CXXNamedCastExprClass && SC <= CXXFunctionalCastExprClass)
1265      return true;
1266
1267    return false;
1268  }
1269  static bool classof(const ExplicitCastExpr *) { return true; }
1270};
1271
1272/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
1273/// cast in C++ (C++ [expr.cast]), which uses the syntax
1274/// (Type)expr. For example: @c (int)f.
1275class CStyleCastExpr : public ExplicitCastExpr {
1276  SourceLocation LPLoc; // the location of the left paren
1277  SourceLocation RPLoc; // the location of the right paren
1278public:
1279  CStyleCastExpr(QualType exprTy, Expr *op, QualType writtenTy,
1280                    SourceLocation l, SourceLocation r) :
1281    ExplicitCastExpr(CStyleCastExprClass, exprTy, op, writtenTy),
1282    LPLoc(l), RPLoc(r) {}
1283
1284  /// \brief Construct an empty C-style explicit cast.
1285  explicit CStyleCastExpr(EmptyShell Shell)
1286    : ExplicitCastExpr(CStyleCastExprClass, Shell) { }
1287
1288  SourceLocation getLParenLoc() const { return LPLoc; }
1289  void setLParenLoc(SourceLocation L) { LPLoc = L; }
1290
1291  SourceLocation getRParenLoc() const { return RPLoc; }
1292  void setRParenLoc(SourceLocation L) { RPLoc = L; }
1293
1294  virtual SourceRange getSourceRange() const {
1295    return SourceRange(LPLoc, getSubExpr()->getSourceRange().getEnd());
1296  }
1297  static bool classof(const Stmt *T) {
1298    return T->getStmtClass() == CStyleCastExprClass;
1299  }
1300  static bool classof(const CStyleCastExpr *) { return true; }
1301};
1302
1303/// \brief A builtin binary operation expression such as "x + y" or "x <= y".
1304///
1305/// This expression node kind describes a builtin binary operation,
1306/// such as "x + y" for integer values "x" and "y". The operands will
1307/// already have been converted to appropriate types (e.g., by
1308/// performing promotions or conversions).
1309///
1310/// In C++, where operators may be overloaded, a different kind of
1311/// expression node (CXXOperatorCallExpr) is used to express the
1312/// invocation of an overloaded operator with operator syntax. Within
1313/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
1314/// used to store an expression "x + y" depends on the subexpressions
1315/// for x and y. If neither x or y is type-dependent, and the "+"
1316/// operator resolves to a built-in operation, BinaryOperator will be
1317/// used to express the computation (x and y may still be
1318/// value-dependent). If either x or y is type-dependent, or if the
1319/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
1320/// be used to express the computation.
1321class BinaryOperator : public Expr {
1322public:
1323  enum Opcode {
1324    // Operators listed in order of precedence.
1325    // Note that additions to this should also update the StmtVisitor class.
1326    PtrMemD, PtrMemI, // [C++ 5.5] Pointer-to-member operators.
1327    Mul, Div, Rem,    // [C99 6.5.5] Multiplicative operators.
1328    Add, Sub,         // [C99 6.5.6] Additive operators.
1329    Shl, Shr,         // [C99 6.5.7] Bitwise shift operators.
1330    LT, GT, LE, GE,   // [C99 6.5.8] Relational operators.
1331    EQ, NE,           // [C99 6.5.9] Equality operators.
1332    And,              // [C99 6.5.10] Bitwise AND operator.
1333    Xor,              // [C99 6.5.11] Bitwise XOR operator.
1334    Or,               // [C99 6.5.12] Bitwise OR operator.
1335    LAnd,             // [C99 6.5.13] Logical AND operator.
1336    LOr,              // [C99 6.5.14] Logical OR operator.
1337    Assign, MulAssign,// [C99 6.5.16] Assignment operators.
1338    DivAssign, RemAssign,
1339    AddAssign, SubAssign,
1340    ShlAssign, ShrAssign,
1341    AndAssign, XorAssign,
1342    OrAssign,
1343    Comma             // [C99 6.5.17] Comma operator.
1344  };
1345private:
1346  enum { LHS, RHS, END_EXPR };
1347  Stmt* SubExprs[END_EXPR];
1348  Opcode Opc;
1349  SourceLocation OpLoc;
1350public:
1351
1352  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
1353                 SourceLocation opLoc)
1354    : Expr(BinaryOperatorClass, ResTy,
1355           lhs->isTypeDependent() || rhs->isTypeDependent(),
1356           lhs->isValueDependent() || rhs->isValueDependent()),
1357      Opc(opc), OpLoc(opLoc) {
1358    SubExprs[LHS] = lhs;
1359    SubExprs[RHS] = rhs;
1360    assert(!isCompoundAssignmentOp() &&
1361           "Use ArithAssignBinaryOperator for compound assignments");
1362  }
1363
1364  /// \brief Construct an empty binary operator.
1365  explicit BinaryOperator(EmptyShell Empty)
1366    : Expr(BinaryOperatorClass, Empty), Opc(Comma) { }
1367
1368  SourceLocation getOperatorLoc() const { return OpLoc; }
1369  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
1370
1371  Opcode getOpcode() const { return Opc; }
1372  void setOpcode(Opcode O) { Opc = O; }
1373
1374  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1375  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1376  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1377  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1378
1379  virtual SourceRange getSourceRange() const {
1380    return SourceRange(getLHS()->getLocStart(), getRHS()->getLocEnd());
1381  }
1382
1383  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1384  /// corresponds to, e.g. "<<=".
1385  static const char *getOpcodeStr(Opcode Op);
1386
1387  /// \brief Retrieve the binary opcode that corresponds to the given
1388  /// overloaded operator.
1389  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
1390
1391  /// \brief Retrieve the overloaded operator kind that corresponds to
1392  /// the given binary opcode.
1393  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
1394
1395  /// predicates to categorize the respective opcodes.
1396  bool isMultiplicativeOp() const { return Opc >= Mul && Opc <= Rem; }
1397  bool isAdditiveOp() const { return Opc == Add || Opc == Sub; }
1398  bool isShiftOp() const { return Opc == Shl || Opc == Shr; }
1399  bool isBitwiseOp() const { return Opc >= And && Opc <= Or; }
1400
1401  static bool isRelationalOp(Opcode Opc) { return Opc >= LT && Opc <= GE; }
1402  bool isRelationalOp() const { return isRelationalOp(Opc); }
1403
1404  static bool isEqualityOp(Opcode Opc) { return Opc == EQ || Opc == NE; }
1405  bool isEqualityOp() const { return isEqualityOp(Opc); }
1406
1407  static bool isLogicalOp(Opcode Opc) { return Opc == LAnd || Opc == LOr; }
1408  bool isLogicalOp() const { return isLogicalOp(Opc); }
1409
1410  bool isAssignmentOp() const { return Opc >= Assign && Opc <= OrAssign; }
1411  bool isCompoundAssignmentOp() const { return Opc > Assign && Opc <= OrAssign;}
1412  bool isShiftAssignOp() const { return Opc == ShlAssign || Opc == ShrAssign; }
1413
1414  static bool classof(const Stmt *S) {
1415    return S->getStmtClass() == BinaryOperatorClass ||
1416           S->getStmtClass() == CompoundAssignOperatorClass;
1417  }
1418  static bool classof(const BinaryOperator *) { return true; }
1419
1420  // Iterators
1421  virtual child_iterator child_begin();
1422  virtual child_iterator child_end();
1423
1424protected:
1425  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
1426                 SourceLocation oploc, bool dead)
1427    : Expr(CompoundAssignOperatorClass, ResTy), Opc(opc), OpLoc(oploc) {
1428    SubExprs[LHS] = lhs;
1429    SubExprs[RHS] = rhs;
1430  }
1431
1432  BinaryOperator(StmtClass SC, EmptyShell Empty)
1433    : Expr(SC, Empty), Opc(MulAssign) { }
1434};
1435
1436/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
1437/// track of the type the operation is performed in.  Due to the semantics of
1438/// these operators, the operands are promoted, the aritmetic performed, an
1439/// implicit conversion back to the result type done, then the assignment takes
1440/// place.  This captures the intermediate type which the computation is done
1441/// in.
1442class CompoundAssignOperator : public BinaryOperator {
1443  QualType ComputationLHSType;
1444  QualType ComputationResultType;
1445public:
1446  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc,
1447                         QualType ResType, QualType CompLHSType,
1448                         QualType CompResultType,
1449                         SourceLocation OpLoc)
1450    : BinaryOperator(lhs, rhs, opc, ResType, OpLoc, true),
1451      ComputationLHSType(CompLHSType),
1452      ComputationResultType(CompResultType) {
1453    assert(isCompoundAssignmentOp() &&
1454           "Only should be used for compound assignments");
1455  }
1456
1457  /// \brief Build an empty compound assignment operator expression.
1458  explicit CompoundAssignOperator(EmptyShell Empty)
1459    : BinaryOperator(CompoundAssignOperatorClass, Empty) { }
1460
1461  // The two computation types are the type the LHS is converted
1462  // to for the computation and the type of the result; the two are
1463  // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
1464  QualType getComputationLHSType() const { return ComputationLHSType; }
1465  void setComputationLHSType(QualType T) { ComputationLHSType = T; }
1466
1467  QualType getComputationResultType() const { return ComputationResultType; }
1468  void setComputationResultType(QualType T) { ComputationResultType = T; }
1469
1470  static bool classof(const CompoundAssignOperator *) { return true; }
1471  static bool classof(const Stmt *S) {
1472    return S->getStmtClass() == CompoundAssignOperatorClass;
1473  }
1474};
1475
1476/// ConditionalOperator - The ?: operator.  Note that LHS may be null when the
1477/// GNU "missing LHS" extension is in use.
1478///
1479class ConditionalOperator : public Expr {
1480  enum { COND, LHS, RHS, END_EXPR };
1481  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
1482public:
1483  ConditionalOperator(Expr *cond, Expr *lhs, Expr *rhs, QualType t)
1484    : Expr(ConditionalOperatorClass, t,
1485           // FIXME: the type of the conditional operator doesn't
1486           // depend on the type of the conditional, but the standard
1487           // seems to imply that it could. File a bug!
1488           ((lhs && lhs->isTypeDependent()) || (rhs && rhs->isTypeDependent())),
1489           (cond->isValueDependent() ||
1490            (lhs && lhs->isValueDependent()) ||
1491            (rhs && rhs->isValueDependent()))) {
1492    SubExprs[COND] = cond;
1493    SubExprs[LHS] = lhs;
1494    SubExprs[RHS] = rhs;
1495  }
1496
1497  /// \brief Build an empty conditional operator.
1498  explicit ConditionalOperator(EmptyShell Empty)
1499    : Expr(ConditionalOperatorClass, Empty) { }
1500
1501  // getCond - Return the expression representing the condition for
1502  //  the ?: operator.
1503  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
1504  void setCond(Expr *E) { SubExprs[COND] = E; }
1505
1506  // getTrueExpr - Return the subexpression representing the value of the ?:
1507  //  expression if the condition evaluates to true.  In most cases this value
1508  //  will be the same as getLHS() except a GCC extension allows the left
1509  //  subexpression to be omitted, and instead of the condition be returned.
1510  //  e.g: x ?: y is shorthand for x ? x : y, except that the expression "x"
1511  //  is only evaluated once.
1512  Expr *getTrueExpr() const {
1513    return cast<Expr>(SubExprs[LHS] ? SubExprs[LHS] : SubExprs[COND]);
1514  }
1515
1516  // getTrueExpr - Return the subexpression representing the value of the ?:
1517  // expression if the condition evaluates to false. This is the same as getRHS.
1518  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
1519
1520  Expr *getLHS() const { return cast_or_null<Expr>(SubExprs[LHS]); }
1521  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1522
1523  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1524  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1525
1526  virtual SourceRange getSourceRange() const {
1527    return SourceRange(getCond()->getLocStart(), getRHS()->getLocEnd());
1528  }
1529  static bool classof(const Stmt *T) {
1530    return T->getStmtClass() == ConditionalOperatorClass;
1531  }
1532  static bool classof(const ConditionalOperator *) { return true; }
1533
1534  // Iterators
1535  virtual child_iterator child_begin();
1536  virtual child_iterator child_end();
1537};
1538
1539/// AddrLabelExpr - The GNU address of label extension, representing &&label.
1540class AddrLabelExpr : public Expr {
1541  SourceLocation AmpAmpLoc, LabelLoc;
1542  LabelStmt *Label;
1543public:
1544  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelStmt *L,
1545                QualType t)
1546    : Expr(AddrLabelExprClass, t), AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
1547
1548  /// \brief Build an empty address of a label expression.
1549  explicit AddrLabelExpr(EmptyShell Empty)
1550    : Expr(AddrLabelExprClass, Empty) { }
1551
1552  SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
1553  void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
1554  SourceLocation getLabelLoc() const { return LabelLoc; }
1555  void setLabelLoc(SourceLocation L) { LabelLoc = L; }
1556
1557  virtual SourceRange getSourceRange() const {
1558    return SourceRange(AmpAmpLoc, LabelLoc);
1559  }
1560
1561  LabelStmt *getLabel() const { return Label; }
1562  void setLabel(LabelStmt *S) { Label = S; }
1563
1564  static bool classof(const Stmt *T) {
1565    return T->getStmtClass() == AddrLabelExprClass;
1566  }
1567  static bool classof(const AddrLabelExpr *) { return true; }
1568
1569  // Iterators
1570  virtual child_iterator child_begin();
1571  virtual child_iterator child_end();
1572};
1573
1574/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
1575/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
1576/// takes the value of the last subexpression.
1577class StmtExpr : public Expr {
1578  Stmt *SubStmt;
1579  SourceLocation LParenLoc, RParenLoc;
1580public:
1581  StmtExpr(CompoundStmt *substmt, QualType T,
1582           SourceLocation lp, SourceLocation rp) :
1583    Expr(StmtExprClass, T), SubStmt(substmt),  LParenLoc(lp), RParenLoc(rp) { }
1584
1585  /// \brief Build an empty statement expression.
1586  explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
1587
1588  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
1589  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
1590  void setSubStmt(CompoundStmt *S) { SubStmt = S; }
1591
1592  virtual SourceRange getSourceRange() const {
1593    return SourceRange(LParenLoc, RParenLoc);
1594  }
1595
1596  SourceLocation getLParenLoc() const { return LParenLoc; }
1597  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
1598  SourceLocation getRParenLoc() const { return RParenLoc; }
1599  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1600
1601  static bool classof(const Stmt *T) {
1602    return T->getStmtClass() == StmtExprClass;
1603  }
1604  static bool classof(const StmtExpr *) { return true; }
1605
1606  // Iterators
1607  virtual child_iterator child_begin();
1608  virtual child_iterator child_end();
1609};
1610
1611/// TypesCompatibleExpr - GNU builtin-in function __builtin_type_compatible_p.
1612/// This AST node represents a function that returns 1 if two *types* (not
1613/// expressions) are compatible. The result of this built-in function can be
1614/// used in integer constant expressions.
1615class TypesCompatibleExpr : public Expr {
1616  QualType Type1;
1617  QualType Type2;
1618  SourceLocation BuiltinLoc, RParenLoc;
1619public:
1620  TypesCompatibleExpr(QualType ReturnType, SourceLocation BLoc,
1621                      QualType t1, QualType t2, SourceLocation RP) :
1622    Expr(TypesCompatibleExprClass, ReturnType), Type1(t1), Type2(t2),
1623    BuiltinLoc(BLoc), RParenLoc(RP) {}
1624
1625  /// \brief Build an empty __builtin_type_compatible_p expression.
1626  explicit TypesCompatibleExpr(EmptyShell Empty)
1627    : Expr(TypesCompatibleExprClass, Empty) { }
1628
1629  QualType getArgType1() const { return Type1; }
1630  void setArgType1(QualType T) { Type1 = T; }
1631  QualType getArgType2() const { return Type2; }
1632  void setArgType2(QualType T) { Type2 = T; }
1633
1634  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
1635  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
1636
1637  SourceLocation getRParenLoc() const { return RParenLoc; }
1638  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1639
1640  virtual SourceRange getSourceRange() const {
1641    return SourceRange(BuiltinLoc, RParenLoc);
1642  }
1643  static bool classof(const Stmt *T) {
1644    return T->getStmtClass() == TypesCompatibleExprClass;
1645  }
1646  static bool classof(const TypesCompatibleExpr *) { return true; }
1647
1648  // Iterators
1649  virtual child_iterator child_begin();
1650  virtual child_iterator child_end();
1651};
1652
1653/// ShuffleVectorExpr - clang-specific builtin-in function
1654/// __builtin_shufflevector.
1655/// This AST node represents a operator that does a constant
1656/// shuffle, similar to LLVM's shufflevector instruction. It takes
1657/// two vectors and a variable number of constant indices,
1658/// and returns the appropriately shuffled vector.
1659class ShuffleVectorExpr : public Expr {
1660  SourceLocation BuiltinLoc, RParenLoc;
1661
1662  // SubExprs - the list of values passed to the __builtin_shufflevector
1663  // function. The first two are vectors, and the rest are constant
1664  // indices.  The number of values in this list is always
1665  // 2+the number of indices in the vector type.
1666  Stmt **SubExprs;
1667  unsigned NumExprs;
1668
1669public:
1670  ShuffleVectorExpr(Expr **args, unsigned nexpr,
1671                    QualType Type, SourceLocation BLoc,
1672                    SourceLocation RP) :
1673    Expr(ShuffleVectorExprClass, Type), BuiltinLoc(BLoc),
1674    RParenLoc(RP), NumExprs(nexpr) {
1675
1676    SubExprs = new Stmt*[nexpr];
1677    for (unsigned i = 0; i < nexpr; i++)
1678      SubExprs[i] = args[i];
1679  }
1680
1681  /// \brief Build an empty vector-shuffle expression.
1682  explicit ShuffleVectorExpr(EmptyShell Empty)
1683    : Expr(ShuffleVectorExprClass, Empty), SubExprs(0) { }
1684
1685  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
1686  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
1687
1688  SourceLocation getRParenLoc() const { return RParenLoc; }
1689  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1690
1691  virtual SourceRange getSourceRange() const {
1692    return SourceRange(BuiltinLoc, RParenLoc);
1693  }
1694  static bool classof(const Stmt *T) {
1695    return T->getStmtClass() == ShuffleVectorExprClass;
1696  }
1697  static bool classof(const ShuffleVectorExpr *) { return true; }
1698
1699  ~ShuffleVectorExpr() {
1700    delete [] SubExprs;
1701  }
1702
1703  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
1704  /// constant expression, the actual arguments passed in, and the function
1705  /// pointers.
1706  unsigned getNumSubExprs() const { return NumExprs; }
1707
1708  /// getExpr - Return the Expr at the specified index.
1709  Expr *getExpr(unsigned Index) {
1710    assert((Index < NumExprs) && "Arg access out of range!");
1711    return cast<Expr>(SubExprs[Index]);
1712  }
1713  const Expr *getExpr(unsigned Index) const {
1714    assert((Index < NumExprs) && "Arg access out of range!");
1715    return cast<Expr>(SubExprs[Index]);
1716  }
1717
1718  void setExprs(Expr ** Exprs, unsigned NumExprs);
1719
1720  unsigned getShuffleMaskIdx(ASTContext &Ctx, unsigned N) {
1721    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
1722    return getExpr(N+2)->EvaluateAsInt(Ctx).getZExtValue();
1723  }
1724
1725  // Iterators
1726  virtual child_iterator child_begin();
1727  virtual child_iterator child_end();
1728};
1729
1730/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
1731/// This AST node is similar to the conditional operator (?:) in C, with
1732/// the following exceptions:
1733/// - the test expression must be a integer constant expression.
1734/// - the expression returned acts like the chosen subexpression in every
1735///   visible way: the type is the same as that of the chosen subexpression,
1736///   and all predicates (whether it's an l-value, whether it's an integer
1737///   constant expression, etc.) return the same result as for the chosen
1738///   sub-expression.
1739class ChooseExpr : public Expr {
1740  enum { COND, LHS, RHS, END_EXPR };
1741  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
1742  SourceLocation BuiltinLoc, RParenLoc;
1743public:
1744  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs, QualType t,
1745             SourceLocation RP)
1746    : Expr(ChooseExprClass, t),
1747      BuiltinLoc(BLoc), RParenLoc(RP) {
1748      SubExprs[COND] = cond;
1749      SubExprs[LHS] = lhs;
1750      SubExprs[RHS] = rhs;
1751    }
1752
1753  /// \brief Build an empty __builtin_choose_expr.
1754  explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
1755
1756  /// isConditionTrue - Return whether the condition is true (i.e. not
1757  /// equal to zero).
1758  bool isConditionTrue(ASTContext &C) const;
1759
1760  /// getChosenSubExpr - Return the subexpression chosen according to the
1761  /// condition.
1762  Expr *getChosenSubExpr(ASTContext &C) const {
1763    return isConditionTrue(C) ? getLHS() : getRHS();
1764  }
1765
1766  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
1767  void setCond(Expr *E) { SubExprs[COND] = E; }
1768  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
1769  void setLHS(Expr *E) { SubExprs[LHS] = E; }
1770  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
1771  void setRHS(Expr *E) { SubExprs[RHS] = E; }
1772
1773  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
1774  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
1775
1776  SourceLocation getRParenLoc() const { return RParenLoc; }
1777  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1778
1779  virtual SourceRange getSourceRange() const {
1780    return SourceRange(BuiltinLoc, RParenLoc);
1781  }
1782  static bool classof(const Stmt *T) {
1783    return T->getStmtClass() == ChooseExprClass;
1784  }
1785  static bool classof(const ChooseExpr *) { return true; }
1786
1787  // Iterators
1788  virtual child_iterator child_begin();
1789  virtual child_iterator child_end();
1790};
1791
1792/// GNUNullExpr - Implements the GNU __null extension, which is a name
1793/// for a null pointer constant that has integral type (e.g., int or
1794/// long) and is the same size and alignment as a pointer. The __null
1795/// extension is typically only used by system headers, which define
1796/// NULL as __null in C++ rather than using 0 (which is an integer
1797/// that may not match the size of a pointer).
1798class GNUNullExpr : public Expr {
1799  /// TokenLoc - The location of the __null keyword.
1800  SourceLocation TokenLoc;
1801
1802public:
1803  GNUNullExpr(QualType Ty, SourceLocation Loc)
1804    : Expr(GNUNullExprClass, Ty), TokenLoc(Loc) { }
1805
1806  /// \brief Build an empty GNU __null expression.
1807  explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
1808
1809  /// getTokenLocation - The location of the __null token.
1810  SourceLocation getTokenLocation() const { return TokenLoc; }
1811  void setTokenLocation(SourceLocation L) { TokenLoc = L; }
1812
1813  virtual SourceRange getSourceRange() const {
1814    return SourceRange(TokenLoc);
1815  }
1816  static bool classof(const Stmt *T) {
1817    return T->getStmtClass() == GNUNullExprClass;
1818  }
1819  static bool classof(const GNUNullExpr *) { return true; }
1820
1821  // Iterators
1822  virtual child_iterator child_begin();
1823  virtual child_iterator child_end();
1824};
1825
1826/// VAArgExpr, used for the builtin function __builtin_va_start.
1827class VAArgExpr : public Expr {
1828  Stmt *Val;
1829  SourceLocation BuiltinLoc, RParenLoc;
1830public:
1831  VAArgExpr(SourceLocation BLoc, Expr* e, QualType t, SourceLocation RPLoc)
1832    : Expr(VAArgExprClass, t),
1833      Val(e),
1834      BuiltinLoc(BLoc),
1835      RParenLoc(RPLoc) { }
1836
1837  /// \brief Create an empty __builtin_va_start expression.
1838  explicit VAArgExpr(EmptyShell Empty) : Expr(VAArgExprClass, Empty) { }
1839
1840  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1841  Expr *getSubExpr() { return cast<Expr>(Val); }
1842  void setSubExpr(Expr *E) { Val = E; }
1843
1844  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
1845  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
1846
1847  SourceLocation getRParenLoc() const { return RParenLoc; }
1848  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1849
1850  virtual SourceRange getSourceRange() const {
1851    return SourceRange(BuiltinLoc, RParenLoc);
1852  }
1853  static bool classof(const Stmt *T) {
1854    return T->getStmtClass() == VAArgExprClass;
1855  }
1856  static bool classof(const VAArgExpr *) { return true; }
1857
1858  // Iterators
1859  virtual child_iterator child_begin();
1860  virtual child_iterator child_end();
1861};
1862
1863/// @brief Describes an C or C++ initializer list.
1864///
1865/// InitListExpr describes an initializer list, which can be used to
1866/// initialize objects of different types, including
1867/// struct/class/union types, arrays, and vectors. For example:
1868///
1869/// @code
1870/// struct foo x = { 1, { 2, 3 } };
1871/// @endcode
1872///
1873/// Prior to semantic analysis, an initializer list will represent the
1874/// initializer list as written by the user, but will have the
1875/// placeholder type "void". This initializer list is called the
1876/// syntactic form of the initializer, and may contain C99 designated
1877/// initializers (represented as DesignatedInitExprs), initializations
1878/// of subobject members without explicit braces, and so on. Clients
1879/// interested in the original syntax of the initializer list should
1880/// use the syntactic form of the initializer list.
1881///
1882/// After semantic analysis, the initializer list will represent the
1883/// semantic form of the initializer, where the initializations of all
1884/// subobjects are made explicit with nested InitListExpr nodes and
1885/// C99 designators have been eliminated by placing the designated
1886/// initializations into the subobject they initialize. Additionally,
1887/// any "holes" in the initialization, where no initializer has been
1888/// specified for a particular subobject, will be replaced with
1889/// implicitly-generated ImplicitValueInitExpr expressions that
1890/// value-initialize the subobjects. Note, however, that the
1891/// initializer lists may still have fewer initializers than there are
1892/// elements to initialize within the object.
1893///
1894/// Given the semantic form of the initializer list, one can retrieve
1895/// the original syntactic form of that initializer list (if it
1896/// exists) using getSyntacticForm(). Since many initializer lists
1897/// have the same syntactic and semantic forms, getSyntacticForm() may
1898/// return NULL, indicating that the current initializer list also
1899/// serves as its syntactic form.
1900class InitListExpr : public Expr {
1901  std::vector<Stmt *> InitExprs;
1902  SourceLocation LBraceLoc, RBraceLoc;
1903
1904  /// Contains the initializer list that describes the syntactic form
1905  /// written in the source code.
1906  InitListExpr *SyntacticForm;
1907
1908  /// If this initializer list initializes a union, specifies which
1909  /// field within the union will be initialized.
1910  FieldDecl *UnionFieldInit;
1911
1912  /// Whether this initializer list originally had a GNU array-range
1913  /// designator in it. This is a temporary marker used by CodeGen.
1914  bool HadArrayRangeDesignator;
1915
1916public:
1917  InitListExpr(SourceLocation lbraceloc, Expr **initexprs, unsigned numinits,
1918               SourceLocation rbraceloc);
1919
1920  /// \brief Build an empty initializer list.
1921  explicit InitListExpr(EmptyShell Empty) : Expr(InitListExprClass, Empty) { }
1922
1923  unsigned getNumInits() const { return InitExprs.size(); }
1924
1925  const Expr* getInit(unsigned Init) const {
1926    assert(Init < getNumInits() && "Initializer access out of range!");
1927    return cast_or_null<Expr>(InitExprs[Init]);
1928  }
1929
1930  Expr* getInit(unsigned Init) {
1931    assert(Init < getNumInits() && "Initializer access out of range!");
1932    return cast_or_null<Expr>(InitExprs[Init]);
1933  }
1934
1935  void setInit(unsigned Init, Expr *expr) {
1936    assert(Init < getNumInits() && "Initializer access out of range!");
1937    InitExprs[Init] = expr;
1938  }
1939
1940  /// \brief Reserve space for some number of initializers.
1941  void reserveInits(unsigned NumInits);
1942
1943  /// @brief Specify the number of initializers
1944  ///
1945  /// If there are more than @p NumInits initializers, the remaining
1946  /// initializers will be destroyed. If there are fewer than @p
1947  /// NumInits initializers, NULL expressions will be added for the
1948  /// unknown initializers.
1949  void resizeInits(ASTContext &Context, unsigned NumInits);
1950
1951  /// @brief Updates the initializer at index @p Init with the new
1952  /// expression @p expr, and returns the old expression at that
1953  /// location.
1954  ///
1955  /// When @p Init is out of range for this initializer list, the
1956  /// initializer list will be extended with NULL expressions to
1957  /// accomodate the new entry.
1958  Expr *updateInit(unsigned Init, Expr *expr);
1959
1960  /// \brief If this initializes a union, specifies which field in the
1961  /// union to initialize.
1962  ///
1963  /// Typically, this field is the first named field within the
1964  /// union. However, a designated initializer can specify the
1965  /// initialization of a different field within the union.
1966  FieldDecl *getInitializedFieldInUnion() { return UnionFieldInit; }
1967  void setInitializedFieldInUnion(FieldDecl *FD) { UnionFieldInit = FD; }
1968
1969  // Explicit InitListExpr's originate from source code (and have valid source
1970  // locations). Implicit InitListExpr's are created by the semantic analyzer.
1971  bool isExplicit() {
1972    return LBraceLoc.isValid() && RBraceLoc.isValid();
1973  }
1974
1975  SourceLocation getLBraceLoc() const { return LBraceLoc; }
1976  void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
1977  SourceLocation getRBraceLoc() const { return RBraceLoc; }
1978  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
1979
1980  /// @brief Retrieve the initializer list that describes the
1981  /// syntactic form of the initializer.
1982  ///
1983  ///
1984  InitListExpr *getSyntacticForm() const { return SyntacticForm; }
1985  void setSyntacticForm(InitListExpr *Init) { SyntacticForm = Init; }
1986
1987  bool hadArrayRangeDesignator() const { return HadArrayRangeDesignator; }
1988  void sawArrayRangeDesignator(bool ARD = true) {
1989    HadArrayRangeDesignator = ARD;
1990  }
1991
1992  virtual SourceRange getSourceRange() const {
1993    return SourceRange(LBraceLoc, RBraceLoc);
1994  }
1995  static bool classof(const Stmt *T) {
1996    return T->getStmtClass() == InitListExprClass;
1997  }
1998  static bool classof(const InitListExpr *) { return true; }
1999
2000  // Iterators
2001  virtual child_iterator child_begin();
2002  virtual child_iterator child_end();
2003
2004  typedef std::vector<Stmt *>::iterator iterator;
2005  typedef std::vector<Stmt *>::reverse_iterator reverse_iterator;
2006
2007  iterator begin() { return InitExprs.begin(); }
2008  iterator end() { return InitExprs.end(); }
2009  reverse_iterator rbegin() { return InitExprs.rbegin(); }
2010  reverse_iterator rend() { return InitExprs.rend(); }
2011};
2012
2013/// @brief Represents a C99 designated initializer expression.
2014///
2015/// A designated initializer expression (C99 6.7.8) contains one or
2016/// more designators (which can be field designators, array
2017/// designators, or GNU array-range designators) followed by an
2018/// expression that initializes the field or element(s) that the
2019/// designators refer to. For example, given:
2020///
2021/// @code
2022/// struct point {
2023///   double x;
2024///   double y;
2025/// };
2026/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
2027/// @endcode
2028///
2029/// The InitListExpr contains three DesignatedInitExprs, the first of
2030/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
2031/// designators, one array designator for @c [2] followed by one field
2032/// designator for @c .y. The initalization expression will be 1.0.
2033class DesignatedInitExpr : public Expr {
2034public:
2035  /// \brief Forward declaration of the Designator class.
2036  class Designator;
2037
2038private:
2039  /// The location of the '=' or ':' prior to the actual initializer
2040  /// expression.
2041  SourceLocation EqualOrColonLoc;
2042
2043  /// Whether this designated initializer used the GNU deprecated
2044  /// syntax rather than the C99 '=' syntax.
2045  bool GNUSyntax : 1;
2046
2047  /// The number of designators in this initializer expression.
2048  unsigned NumDesignators : 15;
2049
2050  /// \brief The designators in this designated initialization
2051  /// expression.
2052  Designator *Designators;
2053
2054  /// The number of subexpressions of this initializer expression,
2055  /// which contains both the initializer and any additional
2056  /// expressions used by array and array-range designators.
2057  unsigned NumSubExprs : 16;
2058
2059
2060  DesignatedInitExpr(QualType Ty, unsigned NumDesignators,
2061                     const Designator *Designators,
2062                     SourceLocation EqualOrColonLoc, bool GNUSyntax,
2063                     unsigned NumSubExprs);
2064
2065  explicit DesignatedInitExpr(unsigned NumSubExprs)
2066    : Expr(DesignatedInitExprClass, EmptyShell()),
2067      NumDesignators(0), Designators(0), NumSubExprs(NumSubExprs) { }
2068
2069public:
2070  /// A field designator, e.g., ".x".
2071  struct FieldDesignator {
2072    /// Refers to the field that is being initialized. The low bit
2073    /// of this field determines whether this is actually a pointer
2074    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
2075    /// initially constructed, a field designator will store an
2076    /// IdentifierInfo*. After semantic analysis has resolved that
2077    /// name, the field designator will instead store a FieldDecl*.
2078    uintptr_t NameOrField;
2079
2080    /// The location of the '.' in the designated initializer.
2081    unsigned DotLoc;
2082
2083    /// The location of the field name in the designated initializer.
2084    unsigned FieldLoc;
2085  };
2086
2087  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
2088  struct ArrayOrRangeDesignator {
2089    /// Location of the first index expression within the designated
2090    /// initializer expression's list of subexpressions.
2091    unsigned Index;
2092    /// The location of the '[' starting the array range designator.
2093    unsigned LBracketLoc;
2094    /// The location of the ellipsis separating the start and end
2095    /// indices. Only valid for GNU array-range designators.
2096    unsigned EllipsisLoc;
2097    /// The location of the ']' terminating the array range designator.
2098    unsigned RBracketLoc;
2099  };
2100
2101  /// @brief Represents a single C99 designator.
2102  ///
2103  /// @todo This class is infuriatingly similar to clang::Designator,
2104  /// but minor differences (storing indices vs. storing pointers)
2105  /// keep us from reusing it. Try harder, later, to rectify these
2106  /// differences.
2107  class Designator {
2108    /// @brief The kind of designator this describes.
2109    enum {
2110      FieldDesignator,
2111      ArrayDesignator,
2112      ArrayRangeDesignator
2113    } Kind;
2114
2115    union {
2116      /// A field designator, e.g., ".x".
2117      struct FieldDesignator Field;
2118      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
2119      struct ArrayOrRangeDesignator ArrayOrRange;
2120    };
2121    friend class DesignatedInitExpr;
2122
2123  public:
2124    Designator() {}
2125
2126    /// @brief Initializes a field designator.
2127    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
2128               SourceLocation FieldLoc)
2129      : Kind(FieldDesignator) {
2130      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
2131      Field.DotLoc = DotLoc.getRawEncoding();
2132      Field.FieldLoc = FieldLoc.getRawEncoding();
2133    }
2134
2135    /// @brief Initializes an array designator.
2136    Designator(unsigned Index, SourceLocation LBracketLoc,
2137               SourceLocation RBracketLoc)
2138      : Kind(ArrayDesignator) {
2139      ArrayOrRange.Index = Index;
2140      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
2141      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
2142      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
2143    }
2144
2145    /// @brief Initializes a GNU array-range designator.
2146    Designator(unsigned Index, SourceLocation LBracketLoc,
2147               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
2148      : Kind(ArrayRangeDesignator) {
2149      ArrayOrRange.Index = Index;
2150      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
2151      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
2152      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
2153    }
2154
2155    bool isFieldDesignator() const { return Kind == FieldDesignator; }
2156    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
2157    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
2158
2159    IdentifierInfo * getFieldName();
2160
2161    FieldDecl *getField() {
2162      assert(Kind == FieldDesignator && "Only valid on a field designator");
2163      if (Field.NameOrField & 0x01)
2164        return 0;
2165      else
2166        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
2167    }
2168
2169    void setField(FieldDecl *FD) {
2170      assert(Kind == FieldDesignator && "Only valid on a field designator");
2171      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
2172    }
2173
2174    SourceLocation getDotLoc() const {
2175      assert(Kind == FieldDesignator && "Only valid on a field designator");
2176      return SourceLocation::getFromRawEncoding(Field.DotLoc);
2177    }
2178
2179    SourceLocation getFieldLoc() const {
2180      assert(Kind == FieldDesignator && "Only valid on a field designator");
2181      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
2182    }
2183
2184    SourceLocation getLBracketLoc() const {
2185      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
2186             "Only valid on an array or array-range designator");
2187      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
2188    }
2189
2190    SourceLocation getRBracketLoc() const {
2191      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
2192             "Only valid on an array or array-range designator");
2193      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
2194    }
2195
2196    SourceLocation getEllipsisLoc() const {
2197      assert(Kind == ArrayRangeDesignator &&
2198             "Only valid on an array-range designator");
2199      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
2200    }
2201
2202    unsigned getFirstExprIndex() const {
2203      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
2204             "Only valid on an array or array-range designator");
2205      return ArrayOrRange.Index;
2206    }
2207
2208    SourceLocation getStartLocation() const {
2209      if (Kind == FieldDesignator)
2210        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
2211      else
2212        return getLBracketLoc();
2213    }
2214  };
2215
2216  static DesignatedInitExpr *Create(ASTContext &C, Designator *Designators,
2217                                    unsigned NumDesignators,
2218                                    Expr **IndexExprs, unsigned NumIndexExprs,
2219                                    SourceLocation EqualOrColonLoc,
2220                                    bool GNUSyntax, Expr *Init);
2221
2222  static DesignatedInitExpr *CreateEmpty(ASTContext &C, unsigned NumIndexExprs);
2223
2224  /// @brief Returns the number of designators in this initializer.
2225  unsigned size() const { return NumDesignators; }
2226
2227  // Iterator access to the designators.
2228  typedef Designator* designators_iterator;
2229  designators_iterator designators_begin() { return Designators; }
2230  designators_iterator designators_end() {
2231    return Designators + NumDesignators;
2232  }
2233
2234  Designator *getDesignator(unsigned Idx) { return &designators_begin()[Idx]; }
2235
2236  void setDesignators(const Designator *Desigs, unsigned NumDesigs);
2237
2238  Expr *getArrayIndex(const Designator& D);
2239  Expr *getArrayRangeStart(const Designator& D);
2240  Expr *getArrayRangeEnd(const Designator& D);
2241
2242  /// @brief Retrieve the location of the '=' that precedes the
2243  /// initializer value itself, if present.
2244  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
2245  void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
2246
2247  /// @brief Determines whether this designated initializer used the
2248  /// deprecated GNU syntax for designated initializers.
2249  bool usesGNUSyntax() const { return GNUSyntax; }
2250  void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
2251
2252  /// @brief Retrieve the initializer value.
2253  Expr *getInit() const {
2254    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
2255  }
2256
2257  void setInit(Expr *init) {
2258    *child_begin() = init;
2259  }
2260
2261  /// \brief Retrieve the total number of subexpressions in this
2262  /// designated initializer expression, including the actual
2263  /// initialized value and any expressions that occur within array
2264  /// and array-range designators.
2265  unsigned getNumSubExprs() const { return NumSubExprs; }
2266
2267  Expr *getSubExpr(unsigned Idx) {
2268    assert(Idx < NumSubExprs && "Subscript out of range");
2269    char* Ptr = static_cast<char*>(static_cast<void *>(this));
2270    Ptr += sizeof(DesignatedInitExpr);
2271    return reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx];
2272  }
2273
2274  void setSubExpr(unsigned Idx, Expr *E) {
2275    assert(Idx < NumSubExprs && "Subscript out of range");
2276    char* Ptr = static_cast<char*>(static_cast<void *>(this));
2277    Ptr += sizeof(DesignatedInitExpr);
2278    reinterpret_cast<Expr**>(reinterpret_cast<void**>(Ptr))[Idx] = E;
2279  }
2280
2281  /// \brief Replaces the designator at index @p Idx with the series
2282  /// of designators in [First, Last).
2283  void ExpandDesignator(unsigned Idx, const Designator *First,
2284                        const Designator *Last);
2285
2286  virtual SourceRange getSourceRange() const;
2287
2288  virtual void Destroy(ASTContext &C);
2289
2290  static bool classof(const Stmt *T) {
2291    return T->getStmtClass() == DesignatedInitExprClass;
2292  }
2293  static bool classof(const DesignatedInitExpr *) { return true; }
2294
2295  // Iterators
2296  virtual child_iterator child_begin();
2297  virtual child_iterator child_end();
2298};
2299
2300/// \brief Represents an implicitly-generated value initialization of
2301/// an object of a given type.
2302///
2303/// Implicit value initializations occur within semantic initializer
2304/// list expressions (InitListExpr) as placeholders for subobject
2305/// initializations not explicitly specified by the user.
2306///
2307/// \see InitListExpr
2308class ImplicitValueInitExpr : public Expr {
2309public:
2310  explicit ImplicitValueInitExpr(QualType ty)
2311    : Expr(ImplicitValueInitExprClass, ty) { }
2312
2313  /// \brief Construct an empty implicit value initialization.
2314  explicit ImplicitValueInitExpr(EmptyShell Empty)
2315    : Expr(ImplicitValueInitExprClass, Empty) { }
2316
2317  static bool classof(const Stmt *T) {
2318    return T->getStmtClass() == ImplicitValueInitExprClass;
2319  }
2320  static bool classof(const ImplicitValueInitExpr *) { return true; }
2321
2322  virtual SourceRange getSourceRange() const {
2323    return SourceRange();
2324  }
2325
2326  // Iterators
2327  virtual child_iterator child_begin();
2328  virtual child_iterator child_end();
2329};
2330
2331//===----------------------------------------------------------------------===//
2332// Clang Extensions
2333//===----------------------------------------------------------------------===//
2334
2335
2336/// ExtVectorElementExpr - This represents access to specific elements of a
2337/// vector, and may occur on the left hand side or right hand side.  For example
2338/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
2339///
2340/// Note that the base may have either vector or pointer to vector type, just
2341/// like a struct field reference.
2342///
2343class ExtVectorElementExpr : public Expr {
2344  Stmt *Base;
2345  IdentifierInfo *Accessor;
2346  SourceLocation AccessorLoc;
2347public:
2348  ExtVectorElementExpr(QualType ty, Expr *base, IdentifierInfo &accessor,
2349                       SourceLocation loc)
2350    : Expr(ExtVectorElementExprClass, ty),
2351      Base(base), Accessor(&accessor), AccessorLoc(loc) {}
2352
2353  /// \brief Build an empty vector element expression.
2354  explicit ExtVectorElementExpr(EmptyShell Empty)
2355    : Expr(ExtVectorElementExprClass, Empty) { }
2356
2357  const Expr *getBase() const { return cast<Expr>(Base); }
2358  Expr *getBase() { return cast<Expr>(Base); }
2359  void setBase(Expr *E) { Base = E; }
2360
2361  IdentifierInfo &getAccessor() const { return *Accessor; }
2362  void setAccessor(IdentifierInfo *II) { Accessor = II; }
2363
2364  SourceLocation getAccessorLoc() const { return AccessorLoc; }
2365  void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
2366
2367  /// getNumElements - Get the number of components being selected.
2368  unsigned getNumElements() const;
2369
2370  /// containsDuplicateElements - Return true if any element access is
2371  /// repeated.
2372  bool containsDuplicateElements() const;
2373
2374  /// getEncodedElementAccess - Encode the elements accessed into an llvm
2375  /// aggregate Constant of ConstantInt(s).
2376  void getEncodedElementAccess(llvm::SmallVectorImpl<unsigned> &Elts) const;
2377
2378  virtual SourceRange getSourceRange() const {
2379    return SourceRange(getBase()->getLocStart(), AccessorLoc);
2380  }
2381
2382  /// isArrow - Return true if the base expression is a pointer to vector,
2383  /// return false if the base expression is a vector.
2384  bool isArrow() const;
2385
2386  static bool classof(const Stmt *T) {
2387    return T->getStmtClass() == ExtVectorElementExprClass;
2388  }
2389  static bool classof(const ExtVectorElementExpr *) { return true; }
2390
2391  // Iterators
2392  virtual child_iterator child_begin();
2393  virtual child_iterator child_end();
2394};
2395
2396
2397/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
2398/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
2399class BlockExpr : public Expr {
2400protected:
2401  BlockDecl *TheBlock;
2402  bool HasBlockDeclRefExprs;
2403public:
2404  BlockExpr(BlockDecl *BD, QualType ty, bool hasBlockDeclRefExprs)
2405    : Expr(BlockExprClass, ty),
2406      TheBlock(BD), HasBlockDeclRefExprs(hasBlockDeclRefExprs) {}
2407
2408  /// \brief Build an empty block expression.
2409  explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { }
2410
2411  const BlockDecl *getBlockDecl() const { return TheBlock; }
2412  BlockDecl *getBlockDecl() { return TheBlock; }
2413  void setBlockDecl(BlockDecl *BD) { TheBlock = BD; }
2414
2415  // Convenience functions for probing the underlying BlockDecl.
2416  SourceLocation getCaretLocation() const;
2417  const Stmt *getBody() const;
2418  Stmt *getBody();
2419
2420  const Stmt *getBody(ASTContext &C) const { return getBody(); }
2421  Stmt *getBody(ASTContext &C) { return getBody(); }
2422
2423  virtual SourceRange getSourceRange() const {
2424    return SourceRange(getCaretLocation(), getBody()->getLocEnd());
2425  }
2426
2427  /// getFunctionType - Return the underlying function type for this block.
2428  const FunctionType *getFunctionType() const;
2429
2430  /// hasBlockDeclRefExprs - Return true iff the block has BlockDeclRefExpr
2431  /// inside of the block that reference values outside the block.
2432  bool hasBlockDeclRefExprs() const { return HasBlockDeclRefExprs; }
2433  void setHasBlockDeclRefExprs(bool BDRE) { HasBlockDeclRefExprs = BDRE; }
2434
2435  static bool classof(const Stmt *T) {
2436    return T->getStmtClass() == BlockExprClass;
2437  }
2438  static bool classof(const BlockExpr *) { return true; }
2439
2440  // Iterators
2441  virtual child_iterator child_begin();
2442  virtual child_iterator child_end();
2443};
2444
2445/// BlockDeclRefExpr - A reference to a declared variable, function,
2446/// enum, etc.
2447class BlockDeclRefExpr : public Expr {
2448  ValueDecl *D;
2449  SourceLocation Loc;
2450  bool IsByRef;
2451public:
2452  BlockDeclRefExpr(ValueDecl *d, QualType t, SourceLocation l, bool ByRef) :
2453       Expr(BlockDeclRefExprClass, t), D(d), Loc(l), IsByRef(ByRef) {}
2454
2455  // \brief Build an empty reference to a declared variable in a
2456  // block.
2457  explicit BlockDeclRefExpr(EmptyShell Empty)
2458    : Expr(BlockDeclRefExprClass, Empty) { }
2459
2460  ValueDecl *getDecl() { return D; }
2461  const ValueDecl *getDecl() const { return D; }
2462  void setDecl(ValueDecl *VD) { D = VD; }
2463
2464  SourceLocation getLocation() const { return Loc; }
2465  void setLocation(SourceLocation L) { Loc = L; }
2466
2467  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
2468
2469  bool isByRef() const { return IsByRef; }
2470  void setByRef(bool BR) { IsByRef = BR; }
2471
2472  static bool classof(const Stmt *T) {
2473    return T->getStmtClass() == BlockDeclRefExprClass;
2474  }
2475  static bool classof(const BlockDeclRefExpr *) { return true; }
2476
2477  // Iterators
2478  virtual child_iterator child_begin();
2479  virtual child_iterator child_end();
2480};
2481
2482}  // end namespace clang
2483
2484#endif
2485