ExprCXX.h revision 3b6bef9a213249c6ab6d67c07b1ac6380961be3e
1//===--- ExprCXX.h - Classes for representing expressions -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses for C++ expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPRCXX_H
15#define LLVM_CLANG_AST_EXPRCXX_H
16
17#include "clang/AST/Decl.h"
18#include "clang/AST/Expr.h"
19#include "clang/AST/UnresolvedSet.h"
20#include "clang/AST/TemplateBase.h"
21#include "clang/Basic/ExpressionTraits.h"
22#include "clang/Basic/Lambda.h"
23#include "clang/Basic/TypeTraits.h"
24#include "llvm/Support/Compiler.h"
25
26namespace clang {
27
28class CXXConstructorDecl;
29class CXXDestructorDecl;
30class CXXMethodDecl;
31class CXXTemporary;
32class TemplateArgumentListInfo;
33
34//===--------------------------------------------------------------------===//
35// C++ Expressions.
36//===--------------------------------------------------------------------===//
37
38/// \brief A call to an overloaded operator written using operator
39/// syntax.
40///
41/// Represents a call to an overloaded operator written using operator
42/// syntax, e.g., "x + y" or "*p". While semantically equivalent to a
43/// normal call, this AST node provides better information about the
44/// syntactic representation of the call.
45///
46/// In a C++ template, this expression node kind will be used whenever
47/// any of the arguments are type-dependent. In this case, the
48/// function itself will be a (possibly empty) set of functions and
49/// function templates that were found by name lookup at template
50/// definition time.
51class CXXOperatorCallExpr : public CallExpr {
52  /// \brief The overloaded operator.
53  OverloadedOperatorKind Operator;
54  SourceRange Range;
55
56  SourceRange getSourceRangeImpl() const LLVM_READONLY;
57public:
58  CXXOperatorCallExpr(ASTContext& C, OverloadedOperatorKind Op, Expr *fn,
59                      ArrayRef<Expr*> args, QualType t, ExprValueKind VK,
60                      SourceLocation operatorloc)
61    : CallExpr(C, CXXOperatorCallExprClass, fn, 0, args, t, VK,
62               operatorloc),
63      Operator(Op) {
64    Range = getSourceRangeImpl();
65  }
66  explicit CXXOperatorCallExpr(ASTContext& C, EmptyShell Empty) :
67    CallExpr(C, CXXOperatorCallExprClass, Empty) { }
68
69
70  /// getOperator - Returns the kind of overloaded operator that this
71  /// expression refers to.
72  OverloadedOperatorKind getOperator() const { return Operator; }
73
74  /// getOperatorLoc - Returns the location of the operator symbol in
75  /// the expression. When @c getOperator()==OO_Call, this is the
76  /// location of the right parentheses; when @c
77  /// getOperator()==OO_Subscript, this is the location of the right
78  /// bracket.
79  SourceLocation getOperatorLoc() const { return getRParenLoc(); }
80
81  SourceRange getSourceRange() const { return Range; }
82
83  static bool classof(const Stmt *T) {
84    return T->getStmtClass() == CXXOperatorCallExprClass;
85  }
86  static bool classof(const CXXOperatorCallExpr *) { return true; }
87
88  friend class ASTStmtReader;
89  friend class ASTStmtWriter;
90};
91
92/// CXXMemberCallExpr - Represents a call to a member function that
93/// may be written either with member call syntax (e.g., "obj.func()"
94/// or "objptr->func()") or with normal function-call syntax
95/// ("func()") within a member function that ends up calling a member
96/// function. The callee in either case is a MemberExpr that contains
97/// both the object argument and the member function, while the
98/// arguments are the arguments within the parentheses (not including
99/// the object argument).
100class CXXMemberCallExpr : public CallExpr {
101public:
102  CXXMemberCallExpr(ASTContext &C, Expr *fn, ArrayRef<Expr*> args,
103                    QualType t, ExprValueKind VK, SourceLocation RP)
104    : CallExpr(C, CXXMemberCallExprClass, fn, 0, args, t, VK, RP) {}
105
106  CXXMemberCallExpr(ASTContext &C, EmptyShell Empty)
107    : CallExpr(C, CXXMemberCallExprClass, Empty) { }
108
109  /// getImplicitObjectArgument - Retrieves the implicit object
110  /// argument for the member call. For example, in "x.f(5)", this
111  /// operation would return "x".
112  Expr *getImplicitObjectArgument() const;
113
114  /// Retrieves the declaration of the called method.
115  CXXMethodDecl *getMethodDecl() const;
116
117  /// getRecordDecl - Retrieves the CXXRecordDecl for the underlying type of
118  /// the implicit object argument. Note that this is may not be the same
119  /// declaration as that of the class context of the CXXMethodDecl which this
120  /// function is calling.
121  /// FIXME: Returns 0 for member pointer call exprs.
122  CXXRecordDecl *getRecordDecl() const;
123
124  static bool classof(const Stmt *T) {
125    return T->getStmtClass() == CXXMemberCallExprClass;
126  }
127  static bool classof(const CXXMemberCallExpr *) { return true; }
128};
129
130/// CUDAKernelCallExpr - Represents a call to a CUDA kernel function.
131class CUDAKernelCallExpr : public CallExpr {
132private:
133  enum { CONFIG, END_PREARG };
134
135public:
136  CUDAKernelCallExpr(ASTContext &C, Expr *fn, CallExpr *Config,
137                     ArrayRef<Expr*> args, QualType t, ExprValueKind VK,
138                     SourceLocation RP)
139    : CallExpr(C, CUDAKernelCallExprClass, fn, END_PREARG, args, t, VK, RP) {
140    setConfig(Config);
141  }
142
143  CUDAKernelCallExpr(ASTContext &C, EmptyShell Empty)
144    : CallExpr(C, CUDAKernelCallExprClass, END_PREARG, Empty) { }
145
146  const CallExpr *getConfig() const {
147    return cast_or_null<CallExpr>(getPreArg(CONFIG));
148  }
149  CallExpr *getConfig() { return cast_or_null<CallExpr>(getPreArg(CONFIG)); }
150  void setConfig(CallExpr *E) { setPreArg(CONFIG, E); }
151
152  static bool classof(const Stmt *T) {
153    return T->getStmtClass() == CUDAKernelCallExprClass;
154  }
155  static bool classof(const CUDAKernelCallExpr *) { return true; }
156};
157
158/// CXXNamedCastExpr - Abstract class common to all of the C++ "named"
159/// casts, @c static_cast, @c dynamic_cast, @c reinterpret_cast, or @c
160/// const_cast.
161///
162/// This abstract class is inherited by all of the classes
163/// representing "named" casts, e.g., CXXStaticCastExpr,
164/// CXXDynamicCastExpr, CXXReinterpretCastExpr, and CXXConstCastExpr.
165class CXXNamedCastExpr : public ExplicitCastExpr {
166private:
167  SourceLocation Loc; // the location of the casting op
168  SourceLocation RParenLoc; // the location of the right parenthesis
169
170protected:
171  CXXNamedCastExpr(StmtClass SC, QualType ty, ExprValueKind VK,
172                   CastKind kind, Expr *op, unsigned PathSize,
173                   TypeSourceInfo *writtenTy, SourceLocation l,
174                   SourceLocation RParenLoc)
175    : ExplicitCastExpr(SC, ty, VK, kind, op, PathSize, writtenTy), Loc(l),
176      RParenLoc(RParenLoc) {}
177
178  explicit CXXNamedCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
179    : ExplicitCastExpr(SC, Shell, PathSize) { }
180
181  friend class ASTStmtReader;
182
183public:
184  const char *getCastName() const;
185
186  /// \brief Retrieve the location of the cast operator keyword, e.g.,
187  /// "static_cast".
188  SourceLocation getOperatorLoc() const { return Loc; }
189
190  /// \brief Retrieve the location of the closing parenthesis.
191  SourceLocation getRParenLoc() const { return RParenLoc; }
192
193  SourceRange getSourceRange() const LLVM_READONLY {
194    return SourceRange(Loc, RParenLoc);
195  }
196  static bool classof(const Stmt *T) {
197    switch (T->getStmtClass()) {
198    case CXXStaticCastExprClass:
199    case CXXDynamicCastExprClass:
200    case CXXReinterpretCastExprClass:
201    case CXXConstCastExprClass:
202      return true;
203    default:
204      return false;
205    }
206  }
207  static bool classof(const CXXNamedCastExpr *) { return true; }
208};
209
210/// CXXStaticCastExpr - A C++ @c static_cast expression
211/// (C++ [expr.static.cast]).
212///
213/// This expression node represents a C++ static cast, e.g.,
214/// @c static_cast<int>(1.0).
215class CXXStaticCastExpr : public CXXNamedCastExpr {
216  CXXStaticCastExpr(QualType ty, ExprValueKind vk, CastKind kind, Expr *op,
217                    unsigned pathSize, TypeSourceInfo *writtenTy,
218                    SourceLocation l, SourceLocation RParenLoc)
219    : CXXNamedCastExpr(CXXStaticCastExprClass, ty, vk, kind, op, pathSize,
220                       writtenTy, l, RParenLoc) {}
221
222  explicit CXXStaticCastExpr(EmptyShell Empty, unsigned PathSize)
223    : CXXNamedCastExpr(CXXStaticCastExprClass, Empty, PathSize) { }
224
225public:
226  static CXXStaticCastExpr *Create(ASTContext &Context, QualType T,
227                                   ExprValueKind VK, CastKind K, Expr *Op,
228                                   const CXXCastPath *Path,
229                                   TypeSourceInfo *Written, SourceLocation L,
230                                   SourceLocation RParenLoc);
231  static CXXStaticCastExpr *CreateEmpty(ASTContext &Context,
232                                        unsigned PathSize);
233
234  static bool classof(const Stmt *T) {
235    return T->getStmtClass() == CXXStaticCastExprClass;
236  }
237  static bool classof(const CXXStaticCastExpr *) { return true; }
238};
239
240/// CXXDynamicCastExpr - A C++ @c dynamic_cast expression
241/// (C++ [expr.dynamic.cast]), which may perform a run-time check to
242/// determine how to perform the type cast.
243///
244/// This expression node represents a dynamic cast, e.g.,
245/// @c dynamic_cast<Derived*>(BasePtr).
246class CXXDynamicCastExpr : public CXXNamedCastExpr {
247  CXXDynamicCastExpr(QualType ty, ExprValueKind VK, CastKind kind,
248                     Expr *op, unsigned pathSize, TypeSourceInfo *writtenTy,
249                     SourceLocation l, SourceLocation RParenLoc)
250    : CXXNamedCastExpr(CXXDynamicCastExprClass, ty, VK, kind, op, pathSize,
251                       writtenTy, l, RParenLoc) {}
252
253  explicit CXXDynamicCastExpr(EmptyShell Empty, unsigned pathSize)
254    : CXXNamedCastExpr(CXXDynamicCastExprClass, Empty, pathSize) { }
255
256public:
257  static CXXDynamicCastExpr *Create(ASTContext &Context, QualType T,
258                                    ExprValueKind VK, CastKind Kind, Expr *Op,
259                                    const CXXCastPath *Path,
260                                    TypeSourceInfo *Written, SourceLocation L,
261                                    SourceLocation RParenLoc);
262
263  static CXXDynamicCastExpr *CreateEmpty(ASTContext &Context,
264                                         unsigned pathSize);
265
266  bool isAlwaysNull() const;
267
268  static bool classof(const Stmt *T) {
269    return T->getStmtClass() == CXXDynamicCastExprClass;
270  }
271  static bool classof(const CXXDynamicCastExpr *) { return true; }
272};
273
274/// CXXReinterpretCastExpr - A C++ @c reinterpret_cast expression (C++
275/// [expr.reinterpret.cast]), which provides a differently-typed view
276/// of a value but performs no actual work at run time.
277///
278/// This expression node represents a reinterpret cast, e.g.,
279/// @c reinterpret_cast<int>(VoidPtr).
280class CXXReinterpretCastExpr : public CXXNamedCastExpr {
281  CXXReinterpretCastExpr(QualType ty, ExprValueKind vk, CastKind kind,
282                         Expr *op, unsigned pathSize,
283                         TypeSourceInfo *writtenTy, SourceLocation l,
284                         SourceLocation RParenLoc)
285    : CXXNamedCastExpr(CXXReinterpretCastExprClass, ty, vk, kind, op,
286                       pathSize, writtenTy, l, RParenLoc) {}
287
288  CXXReinterpretCastExpr(EmptyShell Empty, unsigned pathSize)
289    : CXXNamedCastExpr(CXXReinterpretCastExprClass, Empty, pathSize) { }
290
291public:
292  static CXXReinterpretCastExpr *Create(ASTContext &Context, QualType T,
293                                        ExprValueKind VK, CastKind Kind,
294                                        Expr *Op, const CXXCastPath *Path,
295                                 TypeSourceInfo *WrittenTy, SourceLocation L,
296                                        SourceLocation RParenLoc);
297  static CXXReinterpretCastExpr *CreateEmpty(ASTContext &Context,
298                                             unsigned pathSize);
299
300  static bool classof(const Stmt *T) {
301    return T->getStmtClass() == CXXReinterpretCastExprClass;
302  }
303  static bool classof(const CXXReinterpretCastExpr *) { return true; }
304};
305
306/// CXXConstCastExpr - A C++ @c const_cast expression (C++ [expr.const.cast]),
307/// which can remove type qualifiers but does not change the underlying value.
308///
309/// This expression node represents a const cast, e.g.,
310/// @c const_cast<char*>(PtrToConstChar).
311class CXXConstCastExpr : public CXXNamedCastExpr {
312  CXXConstCastExpr(QualType ty, ExprValueKind VK, Expr *op,
313                   TypeSourceInfo *writtenTy, SourceLocation l,
314                   SourceLocation RParenLoc)
315    : CXXNamedCastExpr(CXXConstCastExprClass, ty, VK, CK_NoOp, op,
316                       0, writtenTy, l, RParenLoc) {}
317
318  explicit CXXConstCastExpr(EmptyShell Empty)
319    : CXXNamedCastExpr(CXXConstCastExprClass, Empty, 0) { }
320
321public:
322  static CXXConstCastExpr *Create(ASTContext &Context, QualType T,
323                                  ExprValueKind VK, Expr *Op,
324                                  TypeSourceInfo *WrittenTy, SourceLocation L,
325                                  SourceLocation RParenLoc);
326  static CXXConstCastExpr *CreateEmpty(ASTContext &Context);
327
328  static bool classof(const Stmt *T) {
329    return T->getStmtClass() == CXXConstCastExprClass;
330  }
331  static bool classof(const CXXConstCastExpr *) { return true; }
332};
333
334/// UserDefinedLiteral - A call to a literal operator (C++11 [over.literal])
335/// written as a user-defined literal (C++11 [lit.ext]).
336///
337/// Represents a user-defined literal, e.g. "foo"_bar or 1.23_xyz. While this
338/// is semantically equivalent to a normal call, this AST node provides better
339/// information about the syntactic representation of the literal.
340///
341/// Since literal operators are never found by ADL and can only be declared at
342/// namespace scope, a user-defined literal is never dependent.
343class UserDefinedLiteral : public CallExpr {
344  /// \brief The location of a ud-suffix within the literal.
345  SourceLocation UDSuffixLoc;
346
347public:
348  UserDefinedLiteral(ASTContext &C, Expr *Fn, ArrayRef<Expr*> Args,
349                     QualType T, ExprValueKind VK, SourceLocation LitEndLoc,
350                     SourceLocation SuffixLoc)
351    : CallExpr(C, UserDefinedLiteralClass, Fn, 0, Args, T, VK, LitEndLoc),
352      UDSuffixLoc(SuffixLoc) {}
353  explicit UserDefinedLiteral(ASTContext &C, EmptyShell Empty)
354    : CallExpr(C, UserDefinedLiteralClass, Empty) {}
355
356  /// The kind of literal operator which is invoked.
357  enum LiteralOperatorKind {
358    LOK_Raw,      ///< Raw form: operator "" X (const char *)
359    LOK_Template, ///< Raw form: operator "" X<cs...> ()
360    LOK_Integer,  ///< operator "" X (unsigned long long)
361    LOK_Floating, ///< operator "" X (long double)
362    LOK_String,   ///< operator "" X (const CharT *, size_t)
363    LOK_Character ///< operator "" X (CharT)
364  };
365
366  /// getLiteralOperatorKind - Returns the kind of literal operator invocation
367  /// which this expression represents.
368  LiteralOperatorKind getLiteralOperatorKind() const;
369
370  /// getCookedLiteral - If this is not a raw user-defined literal, get the
371  /// underlying cooked literal (representing the literal with the suffix
372  /// removed).
373  Expr *getCookedLiteral();
374  const Expr *getCookedLiteral() const {
375    return const_cast<UserDefinedLiteral*>(this)->getCookedLiteral();
376  }
377
378  SourceLocation getLocStart() const {
379    if (getLiteralOperatorKind() == LOK_Template)
380      return getRParenLoc();
381    return getArg(0)->getLocStart();
382  }
383  SourceLocation getLocEnd() const { return getRParenLoc(); }
384  SourceRange getSourceRange() const {
385    return SourceRange(getLocStart(), getLocEnd());
386  }
387
388
389  /// getUDSuffixLoc - Returns the location of a ud-suffix in the expression.
390  /// For a string literal, there may be multiple identical suffixes. This
391  /// returns the first.
392  SourceLocation getUDSuffixLoc() const { return UDSuffixLoc; }
393
394  /// getUDSuffix - Returns the ud-suffix specified for this literal.
395  const IdentifierInfo *getUDSuffix() const;
396
397  static bool classof(const Stmt *S) {
398    return S->getStmtClass() == UserDefinedLiteralClass;
399  }
400  static bool classof(const UserDefinedLiteral *) { return true; }
401
402  friend class ASTStmtReader;
403  friend class ASTStmtWriter;
404};
405
406/// CXXBoolLiteralExpr - [C++ 2.13.5] C++ Boolean Literal.
407///
408class CXXBoolLiteralExpr : public Expr {
409  bool Value;
410  SourceLocation Loc;
411public:
412  CXXBoolLiteralExpr(bool val, QualType Ty, SourceLocation l) :
413    Expr(CXXBoolLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
414         false, false),
415    Value(val), Loc(l) {}
416
417  explicit CXXBoolLiteralExpr(EmptyShell Empty)
418    : Expr(CXXBoolLiteralExprClass, Empty) { }
419
420  bool getValue() const { return Value; }
421  void setValue(bool V) { Value = V; }
422
423  SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(Loc); }
424
425  SourceLocation getLocation() const { return Loc; }
426  void setLocation(SourceLocation L) { Loc = L; }
427
428  static bool classof(const Stmt *T) {
429    return T->getStmtClass() == CXXBoolLiteralExprClass;
430  }
431  static bool classof(const CXXBoolLiteralExpr *) { return true; }
432
433  // Iterators
434  child_range children() { return child_range(); }
435};
436
437/// CXXNullPtrLiteralExpr - [C++0x 2.14.7] C++ Pointer Literal
438class CXXNullPtrLiteralExpr : public Expr {
439  SourceLocation Loc;
440public:
441  CXXNullPtrLiteralExpr(QualType Ty, SourceLocation l) :
442    Expr(CXXNullPtrLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
443         false, false),
444    Loc(l) {}
445
446  explicit CXXNullPtrLiteralExpr(EmptyShell Empty)
447    : Expr(CXXNullPtrLiteralExprClass, Empty) { }
448
449  SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(Loc); }
450
451  SourceLocation getLocation() const { return Loc; }
452  void setLocation(SourceLocation L) { Loc = L; }
453
454  static bool classof(const Stmt *T) {
455    return T->getStmtClass() == CXXNullPtrLiteralExprClass;
456  }
457  static bool classof(const CXXNullPtrLiteralExpr *) { return true; }
458
459  child_range children() { return child_range(); }
460};
461
462/// CXXTypeidExpr - A C++ @c typeid expression (C++ [expr.typeid]), which gets
463/// the type_info that corresponds to the supplied type, or the (possibly
464/// dynamic) type of the supplied expression.
465///
466/// This represents code like @c typeid(int) or @c typeid(*objPtr)
467class CXXTypeidExpr : public Expr {
468private:
469  llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
470  SourceRange Range;
471
472public:
473  CXXTypeidExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
474    : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
475           // typeid is never type-dependent (C++ [temp.dep.expr]p4)
476           false,
477           // typeid is value-dependent if the type or expression are dependent
478           Operand->getType()->isDependentType(),
479           Operand->getType()->isInstantiationDependentType(),
480           Operand->getType()->containsUnexpandedParameterPack()),
481      Operand(Operand), Range(R) { }
482
483  CXXTypeidExpr(QualType Ty, Expr *Operand, SourceRange R)
484    : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
485        // typeid is never type-dependent (C++ [temp.dep.expr]p4)
486           false,
487        // typeid is value-dependent if the type or expression are dependent
488           Operand->isTypeDependent() || Operand->isValueDependent(),
489           Operand->isInstantiationDependent(),
490           Operand->containsUnexpandedParameterPack()),
491      Operand(Operand), Range(R) { }
492
493  CXXTypeidExpr(EmptyShell Empty, bool isExpr)
494    : Expr(CXXTypeidExprClass, Empty) {
495    if (isExpr)
496      Operand = (Expr*)0;
497    else
498      Operand = (TypeSourceInfo*)0;
499  }
500
501  /// Determine whether this typeid has a type operand which is potentially
502  /// evaluated, per C++11 [expr.typeid]p3.
503  bool isPotentiallyEvaluated() const;
504
505  bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
506
507  /// \brief Retrieves the type operand of this typeid() expression after
508  /// various required adjustments (removing reference types, cv-qualifiers).
509  QualType getTypeOperand() const;
510
511  /// \brief Retrieve source information for the type operand.
512  TypeSourceInfo *getTypeOperandSourceInfo() const {
513    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
514    return Operand.get<TypeSourceInfo *>();
515  }
516
517  void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
518    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
519    Operand = TSI;
520  }
521
522  Expr *getExprOperand() const {
523    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
524    return static_cast<Expr*>(Operand.get<Stmt *>());
525  }
526
527  void setExprOperand(Expr *E) {
528    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
529    Operand = E;
530  }
531
532  SourceRange getSourceRange() const LLVM_READONLY { return Range; }
533  void setSourceRange(SourceRange R) { Range = R; }
534
535  static bool classof(const Stmt *T) {
536    return T->getStmtClass() == CXXTypeidExprClass;
537  }
538  static bool classof(const CXXTypeidExpr *) { return true; }
539
540  // Iterators
541  child_range children() {
542    if (isTypeOperand()) return child_range();
543    Stmt **begin = reinterpret_cast<Stmt**>(&Operand);
544    return child_range(begin, begin + 1);
545  }
546};
547
548/// CXXUuidofExpr - A microsoft C++ @c __uuidof expression, which gets
549/// the _GUID that corresponds to the supplied type or expression.
550///
551/// This represents code like @c __uuidof(COMTYPE) or @c __uuidof(*comPtr)
552class CXXUuidofExpr : public Expr {
553private:
554  llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
555  SourceRange Range;
556
557public:
558  CXXUuidofExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
559    : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary,
560           false, Operand->getType()->isDependentType(),
561           Operand->getType()->isInstantiationDependentType(),
562           Operand->getType()->containsUnexpandedParameterPack()),
563      Operand(Operand), Range(R) { }
564
565  CXXUuidofExpr(QualType Ty, Expr *Operand, SourceRange R)
566    : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary,
567           false, Operand->isTypeDependent(),
568           Operand->isInstantiationDependent(),
569           Operand->containsUnexpandedParameterPack()),
570      Operand(Operand), Range(R) { }
571
572  CXXUuidofExpr(EmptyShell Empty, bool isExpr)
573    : Expr(CXXUuidofExprClass, Empty) {
574    if (isExpr)
575      Operand = (Expr*)0;
576    else
577      Operand = (TypeSourceInfo*)0;
578  }
579
580  bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
581
582  /// \brief Retrieves the type operand of this __uuidof() expression after
583  /// various required adjustments (removing reference types, cv-qualifiers).
584  QualType getTypeOperand() const;
585
586  /// \brief Retrieve source information for the type operand.
587  TypeSourceInfo *getTypeOperandSourceInfo() const {
588    assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
589    return Operand.get<TypeSourceInfo *>();
590  }
591
592  void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
593    assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
594    Operand = TSI;
595  }
596
597  Expr *getExprOperand() const {
598    assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
599    return static_cast<Expr*>(Operand.get<Stmt *>());
600  }
601
602  void setExprOperand(Expr *E) {
603    assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
604    Operand = E;
605  }
606
607  SourceRange getSourceRange() const LLVM_READONLY { return Range; }
608  void setSourceRange(SourceRange R) { Range = R; }
609
610  static bool classof(const Stmt *T) {
611    return T->getStmtClass() == CXXUuidofExprClass;
612  }
613  static bool classof(const CXXUuidofExpr *) { return true; }
614
615  // Iterators
616  child_range children() {
617    if (isTypeOperand()) return child_range();
618    Stmt **begin = reinterpret_cast<Stmt**>(&Operand);
619    return child_range(begin, begin + 1);
620  }
621};
622
623/// CXXThisExpr - Represents the "this" expression in C++, which is a
624/// pointer to the object on which the current member function is
625/// executing (C++ [expr.prim]p3). Example:
626///
627/// @code
628/// class Foo {
629/// public:
630///   void bar();
631///   void test() { this->bar(); }
632/// };
633/// @endcode
634class CXXThisExpr : public Expr {
635  SourceLocation Loc;
636  bool Implicit : 1;
637
638public:
639  CXXThisExpr(SourceLocation L, QualType Type, bool isImplicit)
640    : Expr(CXXThisExprClass, Type, VK_RValue, OK_Ordinary,
641           // 'this' is type-dependent if the class type of the enclosing
642           // member function is dependent (C++ [temp.dep.expr]p2)
643           Type->isDependentType(), Type->isDependentType(),
644           Type->isInstantiationDependentType(),
645           /*ContainsUnexpandedParameterPack=*/false),
646      Loc(L), Implicit(isImplicit) { }
647
648  CXXThisExpr(EmptyShell Empty) : Expr(CXXThisExprClass, Empty) {}
649
650  SourceLocation getLocation() const { return Loc; }
651  void setLocation(SourceLocation L) { Loc = L; }
652
653  SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(Loc); }
654
655  bool isImplicit() const { return Implicit; }
656  void setImplicit(bool I) { Implicit = I; }
657
658  static bool classof(const Stmt *T) {
659    return T->getStmtClass() == CXXThisExprClass;
660  }
661  static bool classof(const CXXThisExpr *) { return true; }
662
663  // Iterators
664  child_range children() { return child_range(); }
665};
666
667///  CXXThrowExpr - [C++ 15] C++ Throw Expression.  This handles
668///  'throw' and 'throw' assignment-expression.  When
669///  assignment-expression isn't present, Op will be null.
670///
671class CXXThrowExpr : public Expr {
672  Stmt *Op;
673  SourceLocation ThrowLoc;
674  /// \brief Whether the thrown variable (if any) is in scope.
675  unsigned IsThrownVariableInScope : 1;
676
677  friend class ASTStmtReader;
678
679public:
680  // Ty is the void type which is used as the result type of the
681  // exepression.  The l is the location of the throw keyword.  expr
682  // can by null, if the optional expression to throw isn't present.
683  CXXThrowExpr(Expr *expr, QualType Ty, SourceLocation l,
684               bool IsThrownVariableInScope) :
685    Expr(CXXThrowExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
686         expr && expr->isInstantiationDependent(),
687         expr && expr->containsUnexpandedParameterPack()),
688    Op(expr), ThrowLoc(l), IsThrownVariableInScope(IsThrownVariableInScope) {}
689  CXXThrowExpr(EmptyShell Empty) : Expr(CXXThrowExprClass, Empty) {}
690
691  const Expr *getSubExpr() const { return cast_or_null<Expr>(Op); }
692  Expr *getSubExpr() { return cast_or_null<Expr>(Op); }
693
694  SourceLocation getThrowLoc() const { return ThrowLoc; }
695
696  /// \brief Determines whether the variable thrown by this expression (if any!)
697  /// is within the innermost try block.
698  ///
699  /// This information is required to determine whether the NRVO can apply to
700  /// this variable.
701  bool isThrownVariableInScope() const { return IsThrownVariableInScope; }
702
703  SourceRange getSourceRange() const LLVM_READONLY {
704    if (getSubExpr() == 0)
705      return SourceRange(ThrowLoc, ThrowLoc);
706    return SourceRange(ThrowLoc, getSubExpr()->getSourceRange().getEnd());
707  }
708
709  static bool classof(const Stmt *T) {
710    return T->getStmtClass() == CXXThrowExprClass;
711  }
712  static bool classof(const CXXThrowExpr *) { return true; }
713
714  // Iterators
715  child_range children() {
716    return child_range(&Op, Op ? &Op+1 : &Op);
717  }
718};
719
720/// CXXDefaultArgExpr - C++ [dcl.fct.default]. This wraps up a
721/// function call argument that was created from the corresponding
722/// parameter's default argument, when the call did not explicitly
723/// supply arguments for all of the parameters.
724class CXXDefaultArgExpr : public Expr {
725  /// \brief The parameter whose default is being used.
726  ///
727  /// When the bit is set, the subexpression is stored after the
728  /// CXXDefaultArgExpr itself. When the bit is clear, the parameter's
729  /// actual default expression is the subexpression.
730  llvm::PointerIntPair<ParmVarDecl *, 1, bool> Param;
731
732  /// \brief The location where the default argument expression was used.
733  SourceLocation Loc;
734
735  CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param)
736    : Expr(SC,
737           param->hasUnparsedDefaultArg()
738             ? param->getType().getNonReferenceType()
739             : param->getDefaultArg()->getType(),
740           param->getDefaultArg()->getValueKind(),
741           param->getDefaultArg()->getObjectKind(), false, false, false, false),
742      Param(param, false), Loc(Loc) { }
743
744  CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param,
745                    Expr *SubExpr)
746    : Expr(SC, SubExpr->getType(),
747           SubExpr->getValueKind(), SubExpr->getObjectKind(),
748           false, false, false, false),
749      Param(param, true), Loc(Loc) {
750    *reinterpret_cast<Expr **>(this + 1) = SubExpr;
751  }
752
753public:
754  CXXDefaultArgExpr(EmptyShell Empty) : Expr(CXXDefaultArgExprClass, Empty) {}
755
756
757  // Param is the parameter whose default argument is used by this
758  // expression.
759  static CXXDefaultArgExpr *Create(ASTContext &C, SourceLocation Loc,
760                                   ParmVarDecl *Param) {
761    return new (C) CXXDefaultArgExpr(CXXDefaultArgExprClass, Loc, Param);
762  }
763
764  // Param is the parameter whose default argument is used by this
765  // expression, and SubExpr is the expression that will actually be used.
766  static CXXDefaultArgExpr *Create(ASTContext &C,
767                                   SourceLocation Loc,
768                                   ParmVarDecl *Param,
769                                   Expr *SubExpr);
770
771  // Retrieve the parameter that the argument was created from.
772  const ParmVarDecl *getParam() const { return Param.getPointer(); }
773  ParmVarDecl *getParam() { return Param.getPointer(); }
774
775  // Retrieve the actual argument to the function call.
776  const Expr *getExpr() const {
777    if (Param.getInt())
778      return *reinterpret_cast<Expr const * const*> (this + 1);
779    return getParam()->getDefaultArg();
780  }
781  Expr *getExpr() {
782    if (Param.getInt())
783      return *reinterpret_cast<Expr **> (this + 1);
784    return getParam()->getDefaultArg();
785  }
786
787  /// \brief Retrieve the location where this default argument was actually
788  /// used.
789  SourceLocation getUsedLocation() const { return Loc; }
790
791  SourceRange getSourceRange() const LLVM_READONLY {
792    // Default argument expressions have no representation in the
793    // source, so they have an empty source range.
794    return SourceRange();
795  }
796
797  static bool classof(const Stmt *T) {
798    return T->getStmtClass() == CXXDefaultArgExprClass;
799  }
800  static bool classof(const CXXDefaultArgExpr *) { return true; }
801
802  // Iterators
803  child_range children() { return child_range(); }
804
805  friend class ASTStmtReader;
806  friend class ASTStmtWriter;
807};
808
809/// CXXTemporary - Represents a C++ temporary.
810class CXXTemporary {
811  /// Destructor - The destructor that needs to be called.
812  const CXXDestructorDecl *Destructor;
813
814  CXXTemporary(const CXXDestructorDecl *destructor)
815    : Destructor(destructor) { }
816
817public:
818  static CXXTemporary *Create(ASTContext &C,
819                              const CXXDestructorDecl *Destructor);
820
821  const CXXDestructorDecl *getDestructor() const { return Destructor; }
822  void setDestructor(const CXXDestructorDecl *Dtor) {
823    Destructor = Dtor;
824  }
825};
826
827/// \brief Represents binding an expression to a temporary.
828///
829/// This ensures the destructor is called for the temporary. It should only be
830/// needed for non-POD, non-trivially destructable class types. For example:
831///
832/// \code
833///   struct S {
834///     S() { }  // User defined constructor makes S non-POD.
835///     ~S() { } // User defined destructor makes it non-trivial.
836///   };
837///   void test() {
838///     const S &s_ref = S(); // Requires a CXXBindTemporaryExpr.
839///   }
840/// \endcode
841class CXXBindTemporaryExpr : public Expr {
842  CXXTemporary *Temp;
843
844  Stmt *SubExpr;
845
846  CXXBindTemporaryExpr(CXXTemporary *temp, Expr* SubExpr)
847   : Expr(CXXBindTemporaryExprClass, SubExpr->getType(),
848          VK_RValue, OK_Ordinary, SubExpr->isTypeDependent(),
849          SubExpr->isValueDependent(),
850          SubExpr->isInstantiationDependent(),
851          SubExpr->containsUnexpandedParameterPack()),
852     Temp(temp), SubExpr(SubExpr) { }
853
854public:
855  CXXBindTemporaryExpr(EmptyShell Empty)
856    : Expr(CXXBindTemporaryExprClass, Empty), Temp(0), SubExpr(0) {}
857
858  static CXXBindTemporaryExpr *Create(ASTContext &C, CXXTemporary *Temp,
859                                      Expr* SubExpr);
860
861  CXXTemporary *getTemporary() { return Temp; }
862  const CXXTemporary *getTemporary() const { return Temp; }
863  void setTemporary(CXXTemporary *T) { Temp = T; }
864
865  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
866  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
867  void setSubExpr(Expr *E) { SubExpr = E; }
868
869  SourceRange getSourceRange() const LLVM_READONLY {
870    return SubExpr->getSourceRange();
871  }
872
873  // Implement isa/cast/dyncast/etc.
874  static bool classof(const Stmt *T) {
875    return T->getStmtClass() == CXXBindTemporaryExprClass;
876  }
877  static bool classof(const CXXBindTemporaryExpr *) { return true; }
878
879  // Iterators
880  child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
881};
882
883/// \brief Represents a call to a C++ constructor.
884class CXXConstructExpr : public Expr {
885public:
886  enum ConstructionKind {
887    CK_Complete,
888    CK_NonVirtualBase,
889    CK_VirtualBase,
890    CK_Delegating
891  };
892
893private:
894  CXXConstructorDecl *Constructor;
895
896  SourceLocation Loc;
897  SourceRange ParenRange;
898  unsigned NumArgs : 16;
899  bool Elidable : 1;
900  bool HadMultipleCandidates : 1;
901  bool ListInitialization : 1;
902  bool ZeroInitialization : 1;
903  unsigned ConstructKind : 2;
904  Stmt **Args;
905
906protected:
907  CXXConstructExpr(ASTContext &C, StmtClass SC, QualType T,
908                   SourceLocation Loc,
909                   CXXConstructorDecl *d, bool elidable,
910                   ArrayRef<Expr *> Args,
911                   bool HadMultipleCandidates,
912                   bool ListInitialization,
913                   bool ZeroInitialization,
914                   ConstructionKind ConstructKind,
915                   SourceRange ParenRange);
916
917  /// \brief Construct an empty C++ construction expression.
918  CXXConstructExpr(StmtClass SC, EmptyShell Empty)
919    : Expr(SC, Empty), Constructor(0), NumArgs(0), Elidable(false),
920      HadMultipleCandidates(false), ListInitialization(false),
921      ZeroInitialization(false), ConstructKind(0), Args(0)
922  { }
923
924public:
925  /// \brief Construct an empty C++ construction expression.
926  explicit CXXConstructExpr(EmptyShell Empty)
927    : Expr(CXXConstructExprClass, Empty), Constructor(0),
928      NumArgs(0), Elidable(false), HadMultipleCandidates(false),
929      ListInitialization(false), ZeroInitialization(false),
930      ConstructKind(0), Args(0)
931  { }
932
933  static CXXConstructExpr *Create(ASTContext &C, QualType T,
934                                  SourceLocation Loc,
935                                  CXXConstructorDecl *D, bool Elidable,
936                                  ArrayRef<Expr *> Args,
937                                  bool HadMultipleCandidates,
938                                  bool ListInitialization,
939                                  bool ZeroInitialization,
940                                  ConstructionKind ConstructKind,
941                                  SourceRange ParenRange);
942
943  CXXConstructorDecl* getConstructor() const { return Constructor; }
944  void setConstructor(CXXConstructorDecl *C) { Constructor = C; }
945
946  SourceLocation getLocation() const { return Loc; }
947  void setLocation(SourceLocation Loc) { this->Loc = Loc; }
948
949  /// \brief Whether this construction is elidable.
950  bool isElidable() const { return Elidable; }
951  void setElidable(bool E) { Elidable = E; }
952
953  /// \brief Whether the referred constructor was resolved from
954  /// an overloaded set having size greater than 1.
955  bool hadMultipleCandidates() const { return HadMultipleCandidates; }
956  void setHadMultipleCandidates(bool V) { HadMultipleCandidates = V; }
957
958  /// \brief Whether this constructor call was written as list-initialization.
959  bool isListInitialization() const { return ListInitialization; }
960  void setListInitialization(bool V) { ListInitialization = V; }
961
962  /// \brief Whether this construction first requires
963  /// zero-initialization before the initializer is called.
964  bool requiresZeroInitialization() const { return ZeroInitialization; }
965  void setRequiresZeroInitialization(bool ZeroInit) {
966    ZeroInitialization = ZeroInit;
967  }
968
969  /// \brief Determines whether this constructor is actually constructing
970  /// a base class (rather than a complete object).
971  ConstructionKind getConstructionKind() const {
972    return (ConstructionKind)ConstructKind;
973  }
974  void setConstructionKind(ConstructionKind CK) {
975    ConstructKind = CK;
976  }
977
978  typedef ExprIterator arg_iterator;
979  typedef ConstExprIterator const_arg_iterator;
980
981  arg_iterator arg_begin() { return Args; }
982  arg_iterator arg_end() { return Args + NumArgs; }
983  const_arg_iterator arg_begin() const { return Args; }
984  const_arg_iterator arg_end() const { return Args + NumArgs; }
985
986  Expr **getArgs() const { return reinterpret_cast<Expr **>(Args); }
987  unsigned getNumArgs() const { return NumArgs; }
988
989  /// getArg - Return the specified argument.
990  Expr *getArg(unsigned Arg) {
991    assert(Arg < NumArgs && "Arg access out of range!");
992    return cast<Expr>(Args[Arg]);
993  }
994  const Expr *getArg(unsigned Arg) const {
995    assert(Arg < NumArgs && "Arg access out of range!");
996    return cast<Expr>(Args[Arg]);
997  }
998
999  /// setArg - Set the specified argument.
1000  void setArg(unsigned Arg, Expr *ArgExpr) {
1001    assert(Arg < NumArgs && "Arg access out of range!");
1002    Args[Arg] = ArgExpr;
1003  }
1004
1005  SourceRange getSourceRange() const LLVM_READONLY;
1006  SourceRange getParenRange() const { return ParenRange; }
1007  void setParenRange(SourceRange Range) { ParenRange = Range; }
1008
1009  static bool classof(const Stmt *T) {
1010    return T->getStmtClass() == CXXConstructExprClass ||
1011      T->getStmtClass() == CXXTemporaryObjectExprClass;
1012  }
1013  static bool classof(const CXXConstructExpr *) { return true; }
1014
1015  // Iterators
1016  child_range children() {
1017    return child_range(&Args[0], &Args[0]+NumArgs);
1018  }
1019
1020  friend class ASTStmtReader;
1021};
1022
1023/// \brief Represents an explicit C++ type conversion that uses "functional"
1024/// notation (C++ [expr.type.conv]).
1025///
1026/// Example:
1027/// @code
1028///   x = int(0.5);
1029/// @endcode
1030class CXXFunctionalCastExpr : public ExplicitCastExpr {
1031  SourceLocation TyBeginLoc;
1032  SourceLocation RParenLoc;
1033
1034  CXXFunctionalCastExpr(QualType ty, ExprValueKind VK,
1035                        TypeSourceInfo *writtenTy,
1036                        SourceLocation tyBeginLoc, CastKind kind,
1037                        Expr *castExpr, unsigned pathSize,
1038                        SourceLocation rParenLoc)
1039    : ExplicitCastExpr(CXXFunctionalCastExprClass, ty, VK, kind,
1040                       castExpr, pathSize, writtenTy),
1041      TyBeginLoc(tyBeginLoc), RParenLoc(rParenLoc) {}
1042
1043  explicit CXXFunctionalCastExpr(EmptyShell Shell, unsigned PathSize)
1044    : ExplicitCastExpr(CXXFunctionalCastExprClass, Shell, PathSize) { }
1045
1046public:
1047  static CXXFunctionalCastExpr *Create(ASTContext &Context, QualType T,
1048                                       ExprValueKind VK,
1049                                       TypeSourceInfo *Written,
1050                                       SourceLocation TyBeginLoc,
1051                                       CastKind Kind, Expr *Op,
1052                                       const CXXCastPath *Path,
1053                                       SourceLocation RPLoc);
1054  static CXXFunctionalCastExpr *CreateEmpty(ASTContext &Context,
1055                                            unsigned PathSize);
1056
1057  SourceLocation getTypeBeginLoc() const { return TyBeginLoc; }
1058  void setTypeBeginLoc(SourceLocation L) { TyBeginLoc = L; }
1059  SourceLocation getRParenLoc() const { return RParenLoc; }
1060  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1061
1062  SourceRange getSourceRange() const LLVM_READONLY {
1063    return SourceRange(TyBeginLoc, RParenLoc);
1064  }
1065  static bool classof(const Stmt *T) {
1066    return T->getStmtClass() == CXXFunctionalCastExprClass;
1067  }
1068  static bool classof(const CXXFunctionalCastExpr *) { return true; }
1069};
1070
1071/// @brief Represents a C++ functional cast expression that builds a
1072/// temporary object.
1073///
1074/// This expression type represents a C++ "functional" cast
1075/// (C++[expr.type.conv]) with N != 1 arguments that invokes a
1076/// constructor to build a temporary object. With N == 1 arguments the
1077/// functional cast expression will be represented by CXXFunctionalCastExpr.
1078/// Example:
1079/// @code
1080/// struct X { X(int, float); }
1081///
1082/// X create_X() {
1083///   return X(1, 3.14f); // creates a CXXTemporaryObjectExpr
1084/// };
1085/// @endcode
1086class CXXTemporaryObjectExpr : public CXXConstructExpr {
1087  TypeSourceInfo *Type;
1088
1089public:
1090  CXXTemporaryObjectExpr(ASTContext &C, CXXConstructorDecl *Cons,
1091                         TypeSourceInfo *Type,
1092                         ArrayRef<Expr *> Args,
1093                         SourceRange parenRange,
1094                         bool HadMultipleCandidates,
1095                         bool ZeroInitialization = false);
1096  explicit CXXTemporaryObjectExpr(EmptyShell Empty)
1097    : CXXConstructExpr(CXXTemporaryObjectExprClass, Empty), Type() { }
1098
1099  TypeSourceInfo *getTypeSourceInfo() const { return Type; }
1100
1101  SourceRange getSourceRange() const LLVM_READONLY;
1102
1103  static bool classof(const Stmt *T) {
1104    return T->getStmtClass() == CXXTemporaryObjectExprClass;
1105  }
1106  static bool classof(const CXXTemporaryObjectExpr *) { return true; }
1107
1108  friend class ASTStmtReader;
1109};
1110
1111/// \brief A C++ lambda expression, which produces a function object
1112/// (of unspecified type) that can be invoked later.
1113///
1114/// Example:
1115/// \code
1116/// void low_pass_filter(std::vector<double> &values, double cutoff) {
1117///   values.erase(std::remove_if(values.begin(), values.end(),
1118//                                [=](double value) { return value > cutoff; });
1119/// }
1120/// \endcode
1121///
1122/// Lambda expressions can capture local variables, either by copying
1123/// the values of those local variables at the time the function
1124/// object is constructed (not when it is called!) or by holding a
1125/// reference to the local variable. These captures can occur either
1126/// implicitly or can be written explicitly between the square
1127/// brackets ([...]) that start the lambda expression.
1128class LambdaExpr : public Expr {
1129  enum {
1130    /// \brief Flag used by the Capture class to indicate that the given
1131    /// capture was implicit.
1132    Capture_Implicit = 0x01,
1133
1134    /// \brief Flag used by the Capture class to indciate that the
1135    /// given capture was by-copy.
1136    Capture_ByCopy = 0x02
1137  };
1138
1139  /// \brief The source range that covers the lambda introducer ([...]).
1140  SourceRange IntroducerRange;
1141
1142  /// \brief The number of captures.
1143  unsigned NumCaptures : 16;
1144
1145  /// \brief The default capture kind, which is a value of type
1146  /// LambdaCaptureDefault.
1147  unsigned CaptureDefault : 2;
1148
1149  /// \brief Whether this lambda had an explicit parameter list vs. an
1150  /// implicit (and empty) parameter list.
1151  unsigned ExplicitParams : 1;
1152
1153  /// \brief Whether this lambda had the result type explicitly specified.
1154  unsigned ExplicitResultType : 1;
1155
1156  /// \brief Whether there are any array index variables stored at the end of
1157  /// this lambda expression.
1158  unsigned HasArrayIndexVars : 1;
1159
1160  /// \brief The location of the closing brace ('}') that completes
1161  /// the lambda.
1162  ///
1163  /// The location of the brace is also available by looking up the
1164  /// function call operator in the lambda class. However, it is
1165  /// stored here to improve the performance of getSourceRange(), and
1166  /// to avoid having to deserialize the function call operator from a
1167  /// module file just to determine the source range.
1168  SourceLocation ClosingBrace;
1169
1170  // Note: The capture initializers are stored directly after the lambda
1171  // expression, along with the index variables used to initialize by-copy
1172  // array captures.
1173
1174public:
1175  /// \brief Describes the capture of either a variable or 'this'.
1176  class Capture {
1177    llvm::PointerIntPair<VarDecl *, 2> VarAndBits;
1178    SourceLocation Loc;
1179    SourceLocation EllipsisLoc;
1180
1181    friend class ASTStmtReader;
1182    friend class ASTStmtWriter;
1183
1184  public:
1185    /// \brief Create a new capture.
1186    ///
1187    /// \param Loc The source location associated with this capture.
1188    ///
1189    /// \param Kind The kind of capture (this, byref, bycopy).
1190    ///
1191    /// \param Implicit Whether the capture was implicit or explicit.
1192    ///
1193    /// \param Var The local variable being captured, or null if capturing this.
1194    ///
1195    /// \param EllipsisLoc The location of the ellipsis (...) for a
1196    /// capture that is a pack expansion, or an invalid source
1197    /// location to indicate that this is not a pack expansion.
1198    Capture(SourceLocation Loc, bool Implicit,
1199            LambdaCaptureKind Kind, VarDecl *Var = 0,
1200            SourceLocation EllipsisLoc = SourceLocation());
1201
1202    /// \brief Determine the kind of capture.
1203    LambdaCaptureKind getCaptureKind() const;
1204
1205    /// \brief Determine whether this capture handles the C++ 'this'
1206    /// pointer.
1207    bool capturesThis() const { return VarAndBits.getPointer() == 0; }
1208
1209    /// \brief Determine whether this capture handles a variable.
1210    bool capturesVariable() const { return VarAndBits.getPointer() != 0; }
1211
1212    /// \brief Retrieve the declaration of the local variable being
1213    /// captured.
1214    ///
1215    /// This operation is only valid if this capture does not capture
1216    /// 'this'.
1217    VarDecl *getCapturedVar() const {
1218      assert(!capturesThis() && "No variable available for 'this' capture");
1219      return VarAndBits.getPointer();
1220    }
1221
1222    /// \brief Determine whether this was an implicit capture (not
1223    /// written between the square brackets introducing the lambda).
1224    bool isImplicit() const { return VarAndBits.getInt() & Capture_Implicit; }
1225
1226    /// \brief Determine whether this was an explicit capture, written
1227    /// between the square brackets introducing the lambda.
1228    bool isExplicit() const { return !isImplicit(); }
1229
1230    /// \brief Retrieve the source location of the capture.
1231    ///
1232    /// For an explicit capture, this returns the location of the
1233    /// explicit capture in the source. For an implicit capture, this
1234    /// returns the location at which the variable or 'this' was first
1235    /// used.
1236    SourceLocation getLocation() const { return Loc; }
1237
1238    /// \brief Determine whether this capture is a pack expansion,
1239    /// which captures a function parameter pack.
1240    bool isPackExpansion() const { return EllipsisLoc.isValid(); }
1241
1242    /// \brief Retrieve the location of the ellipsis for a capture
1243    /// that is a pack expansion.
1244    SourceLocation getEllipsisLoc() const {
1245      assert(isPackExpansion() && "No ellipsis location for a non-expansion");
1246      return EllipsisLoc;
1247    }
1248  };
1249
1250private:
1251  /// \brief Construct a lambda expression.
1252  LambdaExpr(QualType T, SourceRange IntroducerRange,
1253             LambdaCaptureDefault CaptureDefault,
1254             ArrayRef<Capture> Captures,
1255             bool ExplicitParams,
1256             bool ExplicitResultType,
1257             ArrayRef<Expr *> CaptureInits,
1258             ArrayRef<VarDecl *> ArrayIndexVars,
1259             ArrayRef<unsigned> ArrayIndexStarts,
1260             SourceLocation ClosingBrace,
1261             bool ContainsUnexpandedParameterPack);
1262
1263  /// \brief Construct an empty lambda expression.
1264  LambdaExpr(EmptyShell Empty, unsigned NumCaptures, bool HasArrayIndexVars)
1265    : Expr(LambdaExprClass, Empty),
1266      NumCaptures(NumCaptures), CaptureDefault(LCD_None), ExplicitParams(false),
1267      ExplicitResultType(false), HasArrayIndexVars(true) {
1268    getStoredStmts()[NumCaptures] = 0;
1269  }
1270
1271  Stmt **getStoredStmts() const {
1272    return reinterpret_cast<Stmt **>(const_cast<LambdaExpr *>(this) + 1);
1273  }
1274
1275  /// \brief Retrieve the mapping from captures to the first array index
1276  /// variable.
1277  unsigned *getArrayIndexStarts() const {
1278    return reinterpret_cast<unsigned *>(getStoredStmts() + NumCaptures + 1);
1279  }
1280
1281  /// \brief Retrieve the complete set of array-index variables.
1282  VarDecl **getArrayIndexVars() const {
1283    unsigned ArrayIndexSize =
1284        llvm::RoundUpToAlignment(sizeof(unsigned) * (NumCaptures + 1),
1285                                 llvm::alignOf<VarDecl*>());
1286    return reinterpret_cast<VarDecl **>(
1287        reinterpret_cast<char*>(getArrayIndexStarts()) + ArrayIndexSize);
1288  }
1289
1290public:
1291  /// \brief Construct a new lambda expression.
1292  static LambdaExpr *Create(ASTContext &C,
1293                            CXXRecordDecl *Class,
1294                            SourceRange IntroducerRange,
1295                            LambdaCaptureDefault CaptureDefault,
1296                            ArrayRef<Capture> Captures,
1297                            bool ExplicitParams,
1298                            bool ExplicitResultType,
1299                            ArrayRef<Expr *> CaptureInits,
1300                            ArrayRef<VarDecl *> ArrayIndexVars,
1301                            ArrayRef<unsigned> ArrayIndexStarts,
1302                            SourceLocation ClosingBrace,
1303                            bool ContainsUnexpandedParameterPack);
1304
1305  /// \brief Construct a new lambda expression that will be deserialized from
1306  /// an external source.
1307  static LambdaExpr *CreateDeserialized(ASTContext &C, unsigned NumCaptures,
1308                                        unsigned NumArrayIndexVars);
1309
1310  /// \brief Determine the default capture kind for this lambda.
1311  LambdaCaptureDefault getCaptureDefault() const {
1312    return static_cast<LambdaCaptureDefault>(CaptureDefault);
1313  }
1314
1315  /// \brief An iterator that walks over the captures of the lambda,
1316  /// both implicit and explicit.
1317  typedef const Capture *capture_iterator;
1318
1319  /// \brief Retrieve an iterator pointing to the first lambda capture.
1320  capture_iterator capture_begin() const;
1321
1322  /// \brief Retrieve an iterator pointing past the end of the
1323  /// sequence of lambda captures.
1324  capture_iterator capture_end() const;
1325
1326  /// \brief Determine the number of captures in this lambda.
1327  unsigned capture_size() const { return NumCaptures; }
1328
1329  /// \brief Retrieve an iterator pointing to the first explicit
1330  /// lambda capture.
1331  capture_iterator explicit_capture_begin() const;
1332
1333  /// \brief Retrieve an iterator pointing past the end of the sequence of
1334  /// explicit lambda captures.
1335  capture_iterator explicit_capture_end() const;
1336
1337  /// \brief Retrieve an iterator pointing to the first implicit
1338  /// lambda capture.
1339  capture_iterator implicit_capture_begin() const;
1340
1341  /// \brief Retrieve an iterator pointing past the end of the sequence of
1342  /// implicit lambda captures.
1343  capture_iterator implicit_capture_end() const;
1344
1345  /// \brief Iterator that walks over the capture initialization
1346  /// arguments.
1347  typedef Expr **capture_init_iterator;
1348
1349  /// \brief Retrieve the first initialization argument for this
1350  /// lambda expression (which initializes the first capture field).
1351  capture_init_iterator capture_init_begin() const {
1352    return reinterpret_cast<Expr **>(getStoredStmts());
1353  }
1354
1355  /// \brief Retrieve the iterator pointing one past the last
1356  /// initialization argument for this lambda expression.
1357  capture_init_iterator capture_init_end() const {
1358    return capture_init_begin() + NumCaptures;
1359  }
1360
1361  /// \brief Retrieve the set of index variables used in the capture
1362  /// initializer of an array captured by copy.
1363  ///
1364  /// \param Iter The iterator that points at the capture initializer for
1365  /// which we are extracting the corresponding index variables.
1366  ArrayRef<VarDecl *> getCaptureInitIndexVars(capture_init_iterator Iter) const;
1367
1368  /// \brief Retrieve the source range covering the lambda introducer,
1369  /// which contains the explicit capture list surrounded by square
1370  /// brackets ([...]).
1371  SourceRange getIntroducerRange() const { return IntroducerRange; }
1372
1373  /// \brief Retrieve the class that corresponds to the lambda, which
1374  /// stores the captures in its fields and provides the various
1375  /// operations permitted on a lambda (copying, calling).
1376  CXXRecordDecl *getLambdaClass() const;
1377
1378  /// \brief Retrieve the function call operator associated with this
1379  /// lambda expression.
1380  CXXMethodDecl *getCallOperator() const;
1381
1382  /// \brief Retrieve the body of the lambda.
1383  CompoundStmt *getBody() const;
1384
1385  /// \brief Determine whether the lambda is mutable, meaning that any
1386  /// captures values can be modified.
1387  bool isMutable() const;
1388
1389  /// \brief Determine whether this lambda has an explicit parameter
1390  /// list vs. an implicit (empty) parameter list.
1391  bool hasExplicitParameters() const { return ExplicitParams; }
1392
1393  /// \brief Whether this lambda had its result type explicitly specified.
1394  bool hasExplicitResultType() const { return ExplicitResultType; }
1395
1396  static bool classof(const Stmt *T) {
1397    return T->getStmtClass() == LambdaExprClass;
1398  }
1399  static bool classof(const LambdaExpr *) { return true; }
1400
1401  SourceRange getSourceRange() const LLVM_READONLY {
1402    return SourceRange(IntroducerRange.getBegin(), ClosingBrace);
1403  }
1404
1405  child_range children() {
1406    return child_range(getStoredStmts(), getStoredStmts() + NumCaptures + 1);
1407  }
1408
1409  friend class ASTStmtReader;
1410  friend class ASTStmtWriter;
1411};
1412
1413/// CXXScalarValueInitExpr - [C++ 5.2.3p2]
1414/// Expression "T()" which creates a value-initialized rvalue of type
1415/// T, which is a non-class type.
1416///
1417class CXXScalarValueInitExpr : public Expr {
1418  SourceLocation RParenLoc;
1419  TypeSourceInfo *TypeInfo;
1420
1421  friend class ASTStmtReader;
1422
1423public:
1424  /// \brief Create an explicitly-written scalar-value initialization
1425  /// expression.
1426  CXXScalarValueInitExpr(QualType Type,
1427                         TypeSourceInfo *TypeInfo,
1428                         SourceLocation rParenLoc ) :
1429    Expr(CXXScalarValueInitExprClass, Type, VK_RValue, OK_Ordinary,
1430         false, false, Type->isInstantiationDependentType(), false),
1431    RParenLoc(rParenLoc), TypeInfo(TypeInfo) {}
1432
1433  explicit CXXScalarValueInitExpr(EmptyShell Shell)
1434    : Expr(CXXScalarValueInitExprClass, Shell) { }
1435
1436  TypeSourceInfo *getTypeSourceInfo() const {
1437    return TypeInfo;
1438  }
1439
1440  SourceLocation getRParenLoc() const { return RParenLoc; }
1441
1442  SourceRange getSourceRange() const LLVM_READONLY;
1443
1444  static bool classof(const Stmt *T) {
1445    return T->getStmtClass() == CXXScalarValueInitExprClass;
1446  }
1447  static bool classof(const CXXScalarValueInitExpr *) { return true; }
1448
1449  // Iterators
1450  child_range children() { return child_range(); }
1451};
1452
1453/// @brief Represents a new-expression for memory allocation and constructor
1454// calls, e.g: "new CXXNewExpr(foo)".
1455class CXXNewExpr : public Expr {
1456  // Contains an optional array size expression, an optional initialization
1457  // expression, and any number of optional placement arguments, in that order.
1458  Stmt **SubExprs;
1459  /// \brief Points to the allocation function used.
1460  FunctionDecl *OperatorNew;
1461  /// \brief Points to the deallocation function used in case of error. May be
1462  /// null.
1463  FunctionDecl *OperatorDelete;
1464
1465  /// \brief The allocated type-source information, as written in the source.
1466  TypeSourceInfo *AllocatedTypeInfo;
1467
1468  /// \brief If the allocated type was expressed as a parenthesized type-id,
1469  /// the source range covering the parenthesized type-id.
1470  SourceRange TypeIdParens;
1471
1472  /// \brief Location of the first token.
1473  SourceLocation StartLoc;
1474
1475  /// \brief Source-range of a paren-delimited initializer.
1476  SourceRange DirectInitRange;
1477
1478  // Was the usage ::new, i.e. is the global new to be used?
1479  bool GlobalNew : 1;
1480  // Do we allocate an array? If so, the first SubExpr is the size expression.
1481  bool Array : 1;
1482  // If this is an array allocation, does the usual deallocation
1483  // function for the allocated type want to know the allocated size?
1484  bool UsualArrayDeleteWantsSize : 1;
1485  // The number of placement new arguments.
1486  unsigned NumPlacementArgs : 13;
1487  // What kind of initializer do we have? Could be none, parens, or braces.
1488  // In storage, we distinguish between "none, and no initializer expr", and
1489  // "none, but an implicit initializer expr".
1490  unsigned StoredInitializationStyle : 2;
1491
1492  friend class ASTStmtReader;
1493  friend class ASTStmtWriter;
1494public:
1495  enum InitializationStyle {
1496    NoInit,   ///< New-expression has no initializer as written.
1497    CallInit, ///< New-expression has a C++98 paren-delimited initializer.
1498    ListInit  ///< New-expression has a C++11 list-initializer.
1499  };
1500
1501  CXXNewExpr(ASTContext &C, bool globalNew, FunctionDecl *operatorNew,
1502             FunctionDecl *operatorDelete, bool usualArrayDeleteWantsSize,
1503             ArrayRef<Expr*> placementArgs,
1504             SourceRange typeIdParens, Expr *arraySize,
1505             InitializationStyle initializationStyle, Expr *initializer,
1506             QualType ty, TypeSourceInfo *AllocatedTypeInfo,
1507             SourceLocation startLoc, SourceRange directInitRange);
1508  explicit CXXNewExpr(EmptyShell Shell)
1509    : Expr(CXXNewExprClass, Shell), SubExprs(0) { }
1510
1511  void AllocateArgsArray(ASTContext &C, bool isArray, unsigned numPlaceArgs,
1512                         bool hasInitializer);
1513
1514  QualType getAllocatedType() const {
1515    assert(getType()->isPointerType());
1516    return getType()->getAs<PointerType>()->getPointeeType();
1517  }
1518
1519  TypeSourceInfo *getAllocatedTypeSourceInfo() const {
1520    return AllocatedTypeInfo;
1521  }
1522
1523  /// \brief True if the allocation result needs to be null-checked.
1524  /// C++0x [expr.new]p13:
1525  ///   If the allocation function returns null, initialization shall
1526  ///   not be done, the deallocation function shall not be called,
1527  ///   and the value of the new-expression shall be null.
1528  /// An allocation function is not allowed to return null unless it
1529  /// has a non-throwing exception-specification.  The '03 rule is
1530  /// identical except that the definition of a non-throwing
1531  /// exception specification is just "is it throw()?".
1532  bool shouldNullCheckAllocation(ASTContext &Ctx) const;
1533
1534  FunctionDecl *getOperatorNew() const { return OperatorNew; }
1535  void setOperatorNew(FunctionDecl *D) { OperatorNew = D; }
1536  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
1537  void setOperatorDelete(FunctionDecl *D) { OperatorDelete = D; }
1538
1539  bool isArray() const { return Array; }
1540  Expr *getArraySize() {
1541    return Array ? cast<Expr>(SubExprs[0]) : 0;
1542  }
1543  const Expr *getArraySize() const {
1544    return Array ? cast<Expr>(SubExprs[0]) : 0;
1545  }
1546
1547  unsigned getNumPlacementArgs() const { return NumPlacementArgs; }
1548  Expr **getPlacementArgs() {
1549    return reinterpret_cast<Expr **>(SubExprs + Array + hasInitializer());
1550  }
1551
1552  Expr *getPlacementArg(unsigned i) {
1553    assert(i < NumPlacementArgs && "Index out of range");
1554    return getPlacementArgs()[i];
1555  }
1556  const Expr *getPlacementArg(unsigned i) const {
1557    assert(i < NumPlacementArgs && "Index out of range");
1558    return const_cast<CXXNewExpr*>(this)->getPlacementArg(i);
1559  }
1560
1561  bool isParenTypeId() const { return TypeIdParens.isValid(); }
1562  SourceRange getTypeIdParens() const { return TypeIdParens; }
1563
1564  bool isGlobalNew() const { return GlobalNew; }
1565
1566  /// \brief Whether this new-expression has any initializer at all.
1567  bool hasInitializer() const { return StoredInitializationStyle > 0; }
1568
1569  /// \brief The kind of initializer this new-expression has.
1570  InitializationStyle getInitializationStyle() const {
1571    if (StoredInitializationStyle == 0)
1572      return NoInit;
1573    return static_cast<InitializationStyle>(StoredInitializationStyle-1);
1574  }
1575
1576  /// \brief The initializer of this new-expression.
1577  Expr *getInitializer() {
1578    return hasInitializer() ? cast<Expr>(SubExprs[Array]) : 0;
1579  }
1580  const Expr *getInitializer() const {
1581    return hasInitializer() ? cast<Expr>(SubExprs[Array]) : 0;
1582  }
1583
1584  /// \brief Returns the CXXConstructExpr from this new-expression, or NULL.
1585  const CXXConstructExpr* getConstructExpr() const {
1586    return dyn_cast_or_null<CXXConstructExpr>(getInitializer());
1587  }
1588
1589  /// Answers whether the usual array deallocation function for the
1590  /// allocated type expects the size of the allocation as a
1591  /// parameter.
1592  bool doesUsualArrayDeleteWantSize() const {
1593    return UsualArrayDeleteWantsSize;
1594  }
1595
1596  typedef ExprIterator arg_iterator;
1597  typedef ConstExprIterator const_arg_iterator;
1598
1599  arg_iterator placement_arg_begin() {
1600    return SubExprs + Array + hasInitializer();
1601  }
1602  arg_iterator placement_arg_end() {
1603    return SubExprs + Array + hasInitializer() + getNumPlacementArgs();
1604  }
1605  const_arg_iterator placement_arg_begin() const {
1606    return SubExprs + Array + hasInitializer();
1607  }
1608  const_arg_iterator placement_arg_end() const {
1609    return SubExprs + Array + hasInitializer() + getNumPlacementArgs();
1610  }
1611
1612  typedef Stmt **raw_arg_iterator;
1613  raw_arg_iterator raw_arg_begin() { return SubExprs; }
1614  raw_arg_iterator raw_arg_end() {
1615    return SubExprs + Array + hasInitializer() + getNumPlacementArgs();
1616  }
1617  const_arg_iterator raw_arg_begin() const { return SubExprs; }
1618  const_arg_iterator raw_arg_end() const {
1619    return SubExprs + Array + hasInitializer() + getNumPlacementArgs();
1620  }
1621
1622  SourceLocation getStartLoc() const { return StartLoc; }
1623  SourceLocation getEndLoc() const;
1624
1625  SourceRange getDirectInitRange() const { return DirectInitRange; }
1626
1627  SourceRange getSourceRange() const LLVM_READONLY {
1628    return SourceRange(getStartLoc(), getEndLoc());
1629  }
1630
1631  static bool classof(const Stmt *T) {
1632    return T->getStmtClass() == CXXNewExprClass;
1633  }
1634  static bool classof(const CXXNewExpr *) { return true; }
1635
1636  // Iterators
1637  child_range children() {
1638    return child_range(raw_arg_begin(), raw_arg_end());
1639  }
1640};
1641
1642/// \brief Represents a \c delete expression for memory deallocation and
1643/// destructor calls, e.g. "delete[] pArray".
1644class CXXDeleteExpr : public Expr {
1645  // Points to the operator delete overload that is used. Could be a member.
1646  FunctionDecl *OperatorDelete;
1647  // The pointer expression to be deleted.
1648  Stmt *Argument;
1649  // Location of the expression.
1650  SourceLocation Loc;
1651  // Is this a forced global delete, i.e. "::delete"?
1652  bool GlobalDelete : 1;
1653  // Is this the array form of delete, i.e. "delete[]"?
1654  bool ArrayForm : 1;
1655  // ArrayFormAsWritten can be different from ArrayForm if 'delete' is applied
1656  // to pointer-to-array type (ArrayFormAsWritten will be false while ArrayForm
1657  // will be true).
1658  bool ArrayFormAsWritten : 1;
1659  // Does the usual deallocation function for the element type require
1660  // a size_t argument?
1661  bool UsualArrayDeleteWantsSize : 1;
1662public:
1663  CXXDeleteExpr(QualType ty, bool globalDelete, bool arrayForm,
1664                bool arrayFormAsWritten, bool usualArrayDeleteWantsSize,
1665                FunctionDecl *operatorDelete, Expr *arg, SourceLocation loc)
1666    : Expr(CXXDeleteExprClass, ty, VK_RValue, OK_Ordinary, false, false,
1667           arg->isInstantiationDependent(),
1668           arg->containsUnexpandedParameterPack()),
1669      OperatorDelete(operatorDelete), Argument(arg), Loc(loc),
1670      GlobalDelete(globalDelete),
1671      ArrayForm(arrayForm), ArrayFormAsWritten(arrayFormAsWritten),
1672      UsualArrayDeleteWantsSize(usualArrayDeleteWantsSize) { }
1673  explicit CXXDeleteExpr(EmptyShell Shell)
1674    : Expr(CXXDeleteExprClass, Shell), OperatorDelete(0), Argument(0) { }
1675
1676  bool isGlobalDelete() const { return GlobalDelete; }
1677  bool isArrayForm() const { return ArrayForm; }
1678  bool isArrayFormAsWritten() const { return ArrayFormAsWritten; }
1679
1680  /// Answers whether the usual array deallocation function for the
1681  /// allocated type expects the size of the allocation as a
1682  /// parameter.  This can be true even if the actual deallocation
1683  /// function that we're using doesn't want a size.
1684  bool doesUsualArrayDeleteWantSize() const {
1685    return UsualArrayDeleteWantsSize;
1686  }
1687
1688  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
1689
1690  Expr *getArgument() { return cast<Expr>(Argument); }
1691  const Expr *getArgument() const { return cast<Expr>(Argument); }
1692
1693  /// \brief Retrieve the type being destroyed.  If the type being
1694  /// destroyed is a dependent type which may or may not be a pointer,
1695  /// return an invalid type.
1696  QualType getDestroyedType() const;
1697
1698  SourceRange getSourceRange() const LLVM_READONLY {
1699    return SourceRange(Loc, Argument->getLocEnd());
1700  }
1701
1702  static bool classof(const Stmt *T) {
1703    return T->getStmtClass() == CXXDeleteExprClass;
1704  }
1705  static bool classof(const CXXDeleteExpr *) { return true; }
1706
1707  // Iterators
1708  child_range children() { return child_range(&Argument, &Argument+1); }
1709
1710  friend class ASTStmtReader;
1711};
1712
1713/// \brief Stores the type being destroyed by a pseudo-destructor expression.
1714class PseudoDestructorTypeStorage {
1715  /// \brief Either the type source information or the name of the type, if
1716  /// it couldn't be resolved due to type-dependence.
1717  llvm::PointerUnion<TypeSourceInfo *, IdentifierInfo *> Type;
1718
1719  /// \brief The starting source location of the pseudo-destructor type.
1720  SourceLocation Location;
1721
1722public:
1723  PseudoDestructorTypeStorage() { }
1724
1725  PseudoDestructorTypeStorage(IdentifierInfo *II, SourceLocation Loc)
1726    : Type(II), Location(Loc) { }
1727
1728  PseudoDestructorTypeStorage(TypeSourceInfo *Info);
1729
1730  TypeSourceInfo *getTypeSourceInfo() const {
1731    return Type.dyn_cast<TypeSourceInfo *>();
1732  }
1733
1734  IdentifierInfo *getIdentifier() const {
1735    return Type.dyn_cast<IdentifierInfo *>();
1736  }
1737
1738  SourceLocation getLocation() const { return Location; }
1739};
1740
1741/// \brief Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
1742///
1743/// A pseudo-destructor is an expression that looks like a member access to a
1744/// destructor of a scalar type, except that scalar types don't have
1745/// destructors. For example:
1746///
1747/// \code
1748/// typedef int T;
1749/// void f(int *p) {
1750///   p->T::~T();
1751/// }
1752/// \endcode
1753///
1754/// Pseudo-destructors typically occur when instantiating templates such as:
1755///
1756/// \code
1757/// template<typename T>
1758/// void destroy(T* ptr) {
1759///   ptr->T::~T();
1760/// }
1761/// \endcode
1762///
1763/// for scalar types. A pseudo-destructor expression has no run-time semantics
1764/// beyond evaluating the base expression.
1765class CXXPseudoDestructorExpr : public Expr {
1766  /// \brief The base expression (that is being destroyed).
1767  Stmt *Base;
1768
1769  /// \brief Whether the operator was an arrow ('->'); otherwise, it was a
1770  /// period ('.').
1771  bool IsArrow : 1;
1772
1773  /// \brief The location of the '.' or '->' operator.
1774  SourceLocation OperatorLoc;
1775
1776  /// \brief The nested-name-specifier that follows the operator, if present.
1777  NestedNameSpecifierLoc QualifierLoc;
1778
1779  /// \brief The type that precedes the '::' in a qualified pseudo-destructor
1780  /// expression.
1781  TypeSourceInfo *ScopeType;
1782
1783  /// \brief The location of the '::' in a qualified pseudo-destructor
1784  /// expression.
1785  SourceLocation ColonColonLoc;
1786
1787  /// \brief The location of the '~'.
1788  SourceLocation TildeLoc;
1789
1790  /// \brief The type being destroyed, or its name if we were unable to
1791  /// resolve the name.
1792  PseudoDestructorTypeStorage DestroyedType;
1793
1794  friend class ASTStmtReader;
1795
1796public:
1797  CXXPseudoDestructorExpr(ASTContext &Context,
1798                          Expr *Base, bool isArrow, SourceLocation OperatorLoc,
1799                          NestedNameSpecifierLoc QualifierLoc,
1800                          TypeSourceInfo *ScopeType,
1801                          SourceLocation ColonColonLoc,
1802                          SourceLocation TildeLoc,
1803                          PseudoDestructorTypeStorage DestroyedType);
1804
1805  explicit CXXPseudoDestructorExpr(EmptyShell Shell)
1806    : Expr(CXXPseudoDestructorExprClass, Shell),
1807      Base(0), IsArrow(false), QualifierLoc(), ScopeType(0) { }
1808
1809  Expr *getBase() const { return cast<Expr>(Base); }
1810
1811  /// \brief Determines whether this member expression actually had
1812  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
1813  /// x->Base::foo.
1814  bool hasQualifier() const { return QualifierLoc; }
1815
1816  /// \brief Retrieves the nested-name-specifier that qualifies the type name,
1817  /// with source-location information.
1818  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
1819
1820  /// \brief If the member name was qualified, retrieves the
1821  /// nested-name-specifier that precedes the member name. Otherwise, returns
1822  /// NULL.
1823  NestedNameSpecifier *getQualifier() const {
1824    return QualifierLoc.getNestedNameSpecifier();
1825  }
1826
1827  /// \brief Determine whether this pseudo-destructor expression was written
1828  /// using an '->' (otherwise, it used a '.').
1829  bool isArrow() const { return IsArrow; }
1830
1831  /// \brief Retrieve the location of the '.' or '->' operator.
1832  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1833
1834  /// \brief Retrieve the scope type in a qualified pseudo-destructor
1835  /// expression.
1836  ///
1837  /// Pseudo-destructor expressions can have extra qualification within them
1838  /// that is not part of the nested-name-specifier, e.g., \c p->T::~T().
1839  /// Here, if the object type of the expression is (or may be) a scalar type,
1840  /// \p T may also be a scalar type and, therefore, cannot be part of a
1841  /// nested-name-specifier. It is stored as the "scope type" of the pseudo-
1842  /// destructor expression.
1843  TypeSourceInfo *getScopeTypeInfo() const { return ScopeType; }
1844
1845  /// \brief Retrieve the location of the '::' in a qualified pseudo-destructor
1846  /// expression.
1847  SourceLocation getColonColonLoc() const { return ColonColonLoc; }
1848
1849  /// \brief Retrieve the location of the '~'.
1850  SourceLocation getTildeLoc() const { return TildeLoc; }
1851
1852  /// \brief Retrieve the source location information for the type
1853  /// being destroyed.
1854  ///
1855  /// This type-source information is available for non-dependent
1856  /// pseudo-destructor expressions and some dependent pseudo-destructor
1857  /// expressions. Returns NULL if we only have the identifier for a
1858  /// dependent pseudo-destructor expression.
1859  TypeSourceInfo *getDestroyedTypeInfo() const {
1860    return DestroyedType.getTypeSourceInfo();
1861  }
1862
1863  /// \brief In a dependent pseudo-destructor expression for which we do not
1864  /// have full type information on the destroyed type, provides the name
1865  /// of the destroyed type.
1866  IdentifierInfo *getDestroyedTypeIdentifier() const {
1867    return DestroyedType.getIdentifier();
1868  }
1869
1870  /// \brief Retrieve the type being destroyed.
1871  QualType getDestroyedType() const;
1872
1873  /// \brief Retrieve the starting location of the type being destroyed.
1874  SourceLocation getDestroyedTypeLoc() const {
1875    return DestroyedType.getLocation();
1876  }
1877
1878  /// \brief Set the name of destroyed type for a dependent pseudo-destructor
1879  /// expression.
1880  void setDestroyedType(IdentifierInfo *II, SourceLocation Loc) {
1881    DestroyedType = PseudoDestructorTypeStorage(II, Loc);
1882  }
1883
1884  /// \brief Set the destroyed type.
1885  void setDestroyedType(TypeSourceInfo *Info) {
1886    DestroyedType = PseudoDestructorTypeStorage(Info);
1887  }
1888
1889  SourceRange getSourceRange() const LLVM_READONLY;
1890
1891  static bool classof(const Stmt *T) {
1892    return T->getStmtClass() == CXXPseudoDestructorExprClass;
1893  }
1894  static bool classof(const CXXPseudoDestructorExpr *) { return true; }
1895
1896  // Iterators
1897  child_range children() { return child_range(&Base, &Base + 1); }
1898};
1899
1900/// \brief Represents a GCC or MS unary type trait, as used in the
1901/// implementation of TR1/C++11 type trait templates.
1902///
1903/// Example:
1904/// @code
1905///   __is_pod(int) == true
1906///   __is_enum(std::string) == false
1907/// @endcode
1908class UnaryTypeTraitExpr : public Expr {
1909  /// UTT - The trait. A UnaryTypeTrait enum in MSVC compat unsigned.
1910  unsigned UTT : 31;
1911  /// The value of the type trait. Unspecified if dependent.
1912  bool Value : 1;
1913
1914  /// Loc - The location of the type trait keyword.
1915  SourceLocation Loc;
1916
1917  /// RParen - The location of the closing paren.
1918  SourceLocation RParen;
1919
1920  /// The type being queried.
1921  TypeSourceInfo *QueriedType;
1922
1923public:
1924  UnaryTypeTraitExpr(SourceLocation loc, UnaryTypeTrait utt,
1925                     TypeSourceInfo *queried, bool value,
1926                     SourceLocation rparen, QualType ty)
1927    : Expr(UnaryTypeTraitExprClass, ty, VK_RValue, OK_Ordinary,
1928           false,  queried->getType()->isDependentType(),
1929           queried->getType()->isInstantiationDependentType(),
1930           queried->getType()->containsUnexpandedParameterPack()),
1931      UTT(utt), Value(value), Loc(loc), RParen(rparen), QueriedType(queried) { }
1932
1933  explicit UnaryTypeTraitExpr(EmptyShell Empty)
1934    : Expr(UnaryTypeTraitExprClass, Empty), UTT(0), Value(false),
1935      QueriedType() { }
1936
1937  SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(Loc, RParen);}
1938
1939  UnaryTypeTrait getTrait() const { return static_cast<UnaryTypeTrait>(UTT); }
1940
1941  QualType getQueriedType() const { return QueriedType->getType(); }
1942
1943  TypeSourceInfo *getQueriedTypeSourceInfo() const { return QueriedType; }
1944
1945  bool getValue() const { return Value; }
1946
1947  static bool classof(const Stmt *T) {
1948    return T->getStmtClass() == UnaryTypeTraitExprClass;
1949  }
1950  static bool classof(const UnaryTypeTraitExpr *) { return true; }
1951
1952  // Iterators
1953  child_range children() { return child_range(); }
1954
1955  friend class ASTStmtReader;
1956};
1957
1958/// \brief Represents a GCC or MS binary type trait, as used in the
1959/// implementation of TR1/C++11 type trait templates.
1960///
1961/// Example:
1962/// @code
1963///   __is_base_of(Base, Derived) == true
1964/// @endcode
1965class BinaryTypeTraitExpr : public Expr {
1966  /// BTT - The trait. A BinaryTypeTrait enum in MSVC compat unsigned.
1967  unsigned BTT : 8;
1968
1969  /// The value of the type trait. Unspecified if dependent.
1970  bool Value : 1;
1971
1972  /// Loc - The location of the type trait keyword.
1973  SourceLocation Loc;
1974
1975  /// RParen - The location of the closing paren.
1976  SourceLocation RParen;
1977
1978  /// The lhs type being queried.
1979  TypeSourceInfo *LhsType;
1980
1981  /// The rhs type being queried.
1982  TypeSourceInfo *RhsType;
1983
1984public:
1985  BinaryTypeTraitExpr(SourceLocation loc, BinaryTypeTrait btt,
1986                     TypeSourceInfo *lhsType, TypeSourceInfo *rhsType,
1987                     bool value, SourceLocation rparen, QualType ty)
1988    : Expr(BinaryTypeTraitExprClass, ty, VK_RValue, OK_Ordinary, false,
1989           lhsType->getType()->isDependentType() ||
1990           rhsType->getType()->isDependentType(),
1991           (lhsType->getType()->isInstantiationDependentType() ||
1992            rhsType->getType()->isInstantiationDependentType()),
1993           (lhsType->getType()->containsUnexpandedParameterPack() ||
1994            rhsType->getType()->containsUnexpandedParameterPack())),
1995      BTT(btt), Value(value), Loc(loc), RParen(rparen),
1996      LhsType(lhsType), RhsType(rhsType) { }
1997
1998
1999  explicit BinaryTypeTraitExpr(EmptyShell Empty)
2000    : Expr(BinaryTypeTraitExprClass, Empty), BTT(0), Value(false),
2001      LhsType(), RhsType() { }
2002
2003  SourceRange getSourceRange() const LLVM_READONLY {
2004    return SourceRange(Loc, RParen);
2005  }
2006
2007  BinaryTypeTrait getTrait() const {
2008    return static_cast<BinaryTypeTrait>(BTT);
2009  }
2010
2011  QualType getLhsType() const { return LhsType->getType(); }
2012  QualType getRhsType() const { return RhsType->getType(); }
2013
2014  TypeSourceInfo *getLhsTypeSourceInfo() const { return LhsType; }
2015  TypeSourceInfo *getRhsTypeSourceInfo() const { return RhsType; }
2016
2017  bool getValue() const { assert(!isTypeDependent()); return Value; }
2018
2019  static bool classof(const Stmt *T) {
2020    return T->getStmtClass() == BinaryTypeTraitExprClass;
2021  }
2022  static bool classof(const BinaryTypeTraitExpr *) { return true; }
2023
2024  // Iterators
2025  child_range children() { return child_range(); }
2026
2027  friend class ASTStmtReader;
2028};
2029
2030/// \brief A type trait used in the implementation of various C++11 and
2031/// Library TR1 trait templates.
2032///
2033/// \code
2034///   __is_trivially_constructible(vector<int>, int*, int*)
2035/// \endcode
2036class TypeTraitExpr : public Expr {
2037  /// \brief The location of the type trait keyword.
2038  SourceLocation Loc;
2039
2040  /// \brief  The location of the closing parenthesis.
2041  SourceLocation RParenLoc;
2042
2043  // Note: The TypeSourceInfos for the arguments are allocated after the
2044  // TypeTraitExpr.
2045
2046  TypeTraitExpr(QualType T, SourceLocation Loc, TypeTrait Kind,
2047                ArrayRef<TypeSourceInfo *> Args,
2048                SourceLocation RParenLoc,
2049                bool Value);
2050
2051  TypeTraitExpr(EmptyShell Empty) : Expr(TypeTraitExprClass, Empty) { }
2052
2053  /// \brief Retrieve the argument types.
2054  TypeSourceInfo **getTypeSourceInfos() {
2055    return reinterpret_cast<TypeSourceInfo **>(this+1);
2056  }
2057
2058  /// \brief Retrieve the argument types.
2059  TypeSourceInfo * const *getTypeSourceInfos() const {
2060    return reinterpret_cast<TypeSourceInfo * const*>(this+1);
2061  }
2062
2063public:
2064  /// \brief Create a new type trait expression.
2065  static TypeTraitExpr *Create(ASTContext &C, QualType T, SourceLocation Loc,
2066                               TypeTrait Kind,
2067                               ArrayRef<TypeSourceInfo *> Args,
2068                               SourceLocation RParenLoc,
2069                               bool Value);
2070
2071  static TypeTraitExpr *CreateDeserialized(ASTContext &C, unsigned NumArgs);
2072
2073  /// \brief Determine which type trait this expression uses.
2074  TypeTrait getTrait() const {
2075    return static_cast<TypeTrait>(TypeTraitExprBits.Kind);
2076  }
2077
2078  bool getValue() const {
2079    assert(!isValueDependent());
2080    return TypeTraitExprBits.Value;
2081  }
2082
2083  /// \brief Determine the number of arguments to this type trait.
2084  unsigned getNumArgs() const { return TypeTraitExprBits.NumArgs; }
2085
2086  /// \brief Retrieve the Ith argument.
2087  TypeSourceInfo *getArg(unsigned I) const {
2088    assert(I < getNumArgs() && "Argument out-of-range");
2089    return getArgs()[I];
2090  }
2091
2092  /// \brief Retrieve the argument types.
2093  ArrayRef<TypeSourceInfo *> getArgs() const {
2094    return ArrayRef<TypeSourceInfo *>(getTypeSourceInfos(), getNumArgs());
2095  }
2096
2097  typedef TypeSourceInfo **arg_iterator;
2098  arg_iterator arg_begin() {
2099    return getTypeSourceInfos();
2100  }
2101  arg_iterator arg_end() {
2102    return getTypeSourceInfos() + getNumArgs();
2103  }
2104
2105  typedef TypeSourceInfo const * const *arg_const_iterator;
2106  arg_const_iterator arg_begin() const { return getTypeSourceInfos(); }
2107  arg_const_iterator arg_end() const {
2108    return getTypeSourceInfos() + getNumArgs();
2109  }
2110
2111  SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(Loc, RParenLoc); }
2112
2113  static bool classof(const Stmt *T) {
2114    return T->getStmtClass() == TypeTraitExprClass;
2115  }
2116  static bool classof(const TypeTraitExpr *) { return true; }
2117
2118  // Iterators
2119  child_range children() { return child_range(); }
2120
2121  friend class ASTStmtReader;
2122  friend class ASTStmtWriter;
2123
2124};
2125
2126/// \brief An Embarcadero array type trait, as used in the implementation of
2127/// __array_rank and __array_extent.
2128///
2129/// Example:
2130/// @code
2131///   __array_rank(int[10][20]) == 2
2132///   __array_extent(int, 1)    == 20
2133/// @endcode
2134class ArrayTypeTraitExpr : public Expr {
2135  virtual void anchor();
2136
2137  /// \brief The trait. An ArrayTypeTrait enum in MSVC compat unsigned.
2138  unsigned ATT : 2;
2139
2140  /// \brief The value of the type trait. Unspecified if dependent.
2141  uint64_t Value;
2142
2143  /// \brief The array dimension being queried, or -1 if not used.
2144  Expr *Dimension;
2145
2146  /// \brief The location of the type trait keyword.
2147  SourceLocation Loc;
2148
2149  /// \brief The location of the closing paren.
2150  SourceLocation RParen;
2151
2152  /// \brief The type being queried.
2153  TypeSourceInfo *QueriedType;
2154
2155public:
2156  ArrayTypeTraitExpr(SourceLocation loc, ArrayTypeTrait att,
2157                     TypeSourceInfo *queried, uint64_t value,
2158                     Expr *dimension, SourceLocation rparen, QualType ty)
2159    : Expr(ArrayTypeTraitExprClass, ty, VK_RValue, OK_Ordinary,
2160           false, queried->getType()->isDependentType(),
2161           (queried->getType()->isInstantiationDependentType() ||
2162            (dimension && dimension->isInstantiationDependent())),
2163           queried->getType()->containsUnexpandedParameterPack()),
2164      ATT(att), Value(value), Dimension(dimension),
2165      Loc(loc), RParen(rparen), QueriedType(queried) { }
2166
2167
2168  explicit ArrayTypeTraitExpr(EmptyShell Empty)
2169    : Expr(ArrayTypeTraitExprClass, Empty), ATT(0), Value(false),
2170      QueriedType() { }
2171
2172  virtual ~ArrayTypeTraitExpr() { }
2173
2174  virtual SourceRange getSourceRange() const LLVM_READONLY {
2175    return SourceRange(Loc, RParen);
2176  }
2177
2178  ArrayTypeTrait getTrait() const { return static_cast<ArrayTypeTrait>(ATT); }
2179
2180  QualType getQueriedType() const { return QueriedType->getType(); }
2181
2182  TypeSourceInfo *getQueriedTypeSourceInfo() const { return QueriedType; }
2183
2184  uint64_t getValue() const { assert(!isTypeDependent()); return Value; }
2185
2186  Expr *getDimensionExpression() const { return Dimension; }
2187
2188  static bool classof(const Stmt *T) {
2189    return T->getStmtClass() == ArrayTypeTraitExprClass;
2190  }
2191  static bool classof(const ArrayTypeTraitExpr *) { return true; }
2192
2193  // Iterators
2194  child_range children() { return child_range(); }
2195
2196  friend class ASTStmtReader;
2197};
2198
2199/// \brief An expression trait intrinsic.
2200///
2201/// Example:
2202/// @code
2203///   __is_lvalue_expr(std::cout) == true
2204///   __is_lvalue_expr(1) == false
2205/// @endcode
2206class ExpressionTraitExpr : public Expr {
2207  /// \brief The trait. A ExpressionTrait enum in MSVC compat unsigned.
2208  unsigned ET : 31;
2209  /// \brief The value of the type trait. Unspecified if dependent.
2210  bool Value : 1;
2211
2212  /// \brief The location of the type trait keyword.
2213  SourceLocation Loc;
2214
2215  /// \brief The location of the closing paren.
2216  SourceLocation RParen;
2217
2218  /// \brief The expression being queried.
2219  Expr* QueriedExpression;
2220public:
2221  ExpressionTraitExpr(SourceLocation loc, ExpressionTrait et,
2222                     Expr *queried, bool value,
2223                     SourceLocation rparen, QualType resultType)
2224    : Expr(ExpressionTraitExprClass, resultType, VK_RValue, OK_Ordinary,
2225           false, // Not type-dependent
2226           // Value-dependent if the argument is type-dependent.
2227           queried->isTypeDependent(),
2228           queried->isInstantiationDependent(),
2229           queried->containsUnexpandedParameterPack()),
2230      ET(et), Value(value), Loc(loc), RParen(rparen),
2231      QueriedExpression(queried) { }
2232
2233  explicit ExpressionTraitExpr(EmptyShell Empty)
2234    : Expr(ExpressionTraitExprClass, Empty), ET(0), Value(false),
2235      QueriedExpression() { }
2236
2237  SourceRange getSourceRange() const LLVM_READONLY {
2238    return SourceRange(Loc, RParen);
2239  }
2240
2241  ExpressionTrait getTrait() const { return static_cast<ExpressionTrait>(ET); }
2242
2243  Expr *getQueriedExpression() const { return QueriedExpression; }
2244
2245  bool getValue() const { return Value; }
2246
2247  static bool classof(const Stmt *T) {
2248    return T->getStmtClass() == ExpressionTraitExprClass;
2249  }
2250  static bool classof(const ExpressionTraitExpr *) { return true; }
2251
2252  // Iterators
2253  child_range children() { return child_range(); }
2254
2255  friend class ASTStmtReader;
2256};
2257
2258
2259/// \brief A reference to an overloaded function set, either an
2260/// \c UnresolvedLookupExpr or an \c UnresolvedMemberExpr.
2261class OverloadExpr : public Expr {
2262  /// \brief The common name of these declarations.
2263  DeclarationNameInfo NameInfo;
2264
2265  /// \brief The nested-name-specifier that qualifies the name, if any.
2266  NestedNameSpecifierLoc QualifierLoc;
2267
2268  /// The results.  These are undesugared, which is to say, they may
2269  /// include UsingShadowDecls.  Access is relative to the naming
2270  /// class.
2271  // FIXME: Allocate this data after the OverloadExpr subclass.
2272  DeclAccessPair *Results;
2273  unsigned NumResults;
2274
2275protected:
2276  /// \brief Whether the name includes info for explicit template
2277  /// keyword and arguments.
2278  bool HasTemplateKWAndArgsInfo;
2279
2280  /// \brief Return the optional template keyword and arguments info.
2281  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo(); // defined far below.
2282
2283  /// \brief Return the optional template keyword and arguments info.
2284  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
2285    return const_cast<OverloadExpr*>(this)->getTemplateKWAndArgsInfo();
2286  }
2287
2288  OverloadExpr(StmtClass K, ASTContext &C,
2289               NestedNameSpecifierLoc QualifierLoc,
2290               SourceLocation TemplateKWLoc,
2291               const DeclarationNameInfo &NameInfo,
2292               const TemplateArgumentListInfo *TemplateArgs,
2293               UnresolvedSetIterator Begin, UnresolvedSetIterator End,
2294               bool KnownDependent,
2295               bool KnownInstantiationDependent,
2296               bool KnownContainsUnexpandedParameterPack);
2297
2298  OverloadExpr(StmtClass K, EmptyShell Empty)
2299    : Expr(K, Empty), QualifierLoc(), Results(0), NumResults(0),
2300      HasTemplateKWAndArgsInfo(false) { }
2301
2302  void initializeResults(ASTContext &C,
2303                         UnresolvedSetIterator Begin,
2304                         UnresolvedSetIterator End);
2305
2306public:
2307  struct FindResult {
2308    OverloadExpr *Expression;
2309    bool IsAddressOfOperand;
2310    bool HasFormOfMemberPointer;
2311  };
2312
2313  /// Finds the overloaded expression in the given expression of
2314  /// OverloadTy.
2315  ///
2316  /// \return the expression (which must be there) and true if it has
2317  /// the particular form of a member pointer expression
2318  static FindResult find(Expr *E) {
2319    assert(E->getType()->isSpecificBuiltinType(BuiltinType::Overload));
2320
2321    FindResult Result;
2322
2323    E = E->IgnoreParens();
2324    if (isa<UnaryOperator>(E)) {
2325      assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
2326      E = cast<UnaryOperator>(E)->getSubExpr();
2327      OverloadExpr *Ovl = cast<OverloadExpr>(E->IgnoreParens());
2328
2329      Result.HasFormOfMemberPointer = (E == Ovl && Ovl->getQualifier());
2330      Result.IsAddressOfOperand = true;
2331      Result.Expression = Ovl;
2332    } else {
2333      Result.HasFormOfMemberPointer = false;
2334      Result.IsAddressOfOperand = false;
2335      Result.Expression = cast<OverloadExpr>(E);
2336    }
2337
2338    return Result;
2339  }
2340
2341  /// \brief Gets the naming class of this lookup, if any.
2342  CXXRecordDecl *getNamingClass() const;
2343
2344  typedef UnresolvedSetImpl::iterator decls_iterator;
2345  decls_iterator decls_begin() const { return UnresolvedSetIterator(Results); }
2346  decls_iterator decls_end() const {
2347    return UnresolvedSetIterator(Results + NumResults);
2348  }
2349
2350  /// \brief Gets the number of declarations in the unresolved set.
2351  unsigned getNumDecls() const { return NumResults; }
2352
2353  /// \brief Gets the full name info.
2354  const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
2355
2356  /// \brief Gets the name looked up.
2357  DeclarationName getName() const { return NameInfo.getName(); }
2358
2359  /// \brief Gets the location of the name.
2360  SourceLocation getNameLoc() const { return NameInfo.getLoc(); }
2361
2362  /// \brief Fetches the nested-name qualifier, if one was given.
2363  NestedNameSpecifier *getQualifier() const {
2364    return QualifierLoc.getNestedNameSpecifier();
2365  }
2366
2367  /// \brief Fetches the nested-name qualifier with source-location
2368  /// information, if one was given.
2369  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2370
2371  /// \brief Retrieve the location of the template keyword preceding
2372  /// this name, if any.
2373  SourceLocation getTemplateKeywordLoc() const {
2374    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2375    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
2376  }
2377
2378  /// \brief Retrieve the location of the left angle bracket starting the
2379  /// explicit template argument list following the name, if any.
2380  SourceLocation getLAngleLoc() const {
2381    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2382    return getTemplateKWAndArgsInfo()->LAngleLoc;
2383  }
2384
2385  /// \brief Retrieve the location of the right angle bracket ending the
2386  /// explicit template argument list following the name, if any.
2387  SourceLocation getRAngleLoc() const {
2388    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2389    return getTemplateKWAndArgsInfo()->RAngleLoc;
2390  }
2391
2392  /// \brief Determines whether the name was preceded by the template keyword.
2393  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
2394
2395  /// \brief Determines whether this expression had explicit template arguments.
2396  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
2397
2398  // Note that, inconsistently with the explicit-template-argument AST
2399  // nodes, users are *forbidden* from calling these methods on objects
2400  // without explicit template arguments.
2401
2402  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
2403    assert(hasExplicitTemplateArgs());
2404    return *getTemplateKWAndArgsInfo();
2405  }
2406
2407  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2408    return const_cast<OverloadExpr*>(this)->getExplicitTemplateArgs();
2409  }
2410
2411  TemplateArgumentLoc const *getTemplateArgs() const {
2412    return getExplicitTemplateArgs().getTemplateArgs();
2413  }
2414
2415  unsigned getNumTemplateArgs() const {
2416    return getExplicitTemplateArgs().NumTemplateArgs;
2417  }
2418
2419  /// \brief Copies the template arguments into the given structure.
2420  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2421    getExplicitTemplateArgs().copyInto(List);
2422  }
2423
2424  /// \brief Retrieves the optional explicit template arguments.
2425  ///
2426  /// This points to the same data as getExplicitTemplateArgs(), but
2427  /// returns null if there are no explicit template arguments.
2428  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() {
2429    if (!hasExplicitTemplateArgs()) return 0;
2430    return &getExplicitTemplateArgs();
2431  }
2432
2433  static bool classof(const Stmt *T) {
2434    return T->getStmtClass() == UnresolvedLookupExprClass ||
2435           T->getStmtClass() == UnresolvedMemberExprClass;
2436  }
2437  static bool classof(const OverloadExpr *) { return true; }
2438
2439  friend class ASTStmtReader;
2440  friend class ASTStmtWriter;
2441};
2442
2443/// \brief A reference to a name which we were able to look up during
2444/// parsing but could not resolve to a specific declaration.
2445///
2446/// This arises in several ways:
2447///   * we might be waiting for argument-dependent lookup
2448///   * the name might resolve to an overloaded function
2449/// and eventually:
2450///   * the lookup might have included a function template
2451/// These never include UnresolvedUsingValueDecls, which are always class
2452/// members and therefore appear only in UnresolvedMemberLookupExprs.
2453class UnresolvedLookupExpr : public OverloadExpr {
2454  /// True if these lookup results should be extended by
2455  /// argument-dependent lookup if this is the operand of a function
2456  /// call.
2457  bool RequiresADL;
2458
2459  /// True if namespace ::std should be considered an associated namespace
2460  /// for the purposes of argument-dependent lookup. See C++0x [stmt.ranged]p1.
2461  bool StdIsAssociatedNamespace;
2462
2463  /// True if these lookup results are overloaded.  This is pretty
2464  /// trivially rederivable if we urgently need to kill this field.
2465  bool Overloaded;
2466
2467  /// The naming class (C++ [class.access.base]p5) of the lookup, if
2468  /// any.  This can generally be recalculated from the context chain,
2469  /// but that can be fairly expensive for unqualified lookups.  If we
2470  /// want to improve memory use here, this could go in a union
2471  /// against the qualified-lookup bits.
2472  CXXRecordDecl *NamingClass;
2473
2474  UnresolvedLookupExpr(ASTContext &C,
2475                       CXXRecordDecl *NamingClass,
2476                       NestedNameSpecifierLoc QualifierLoc,
2477                       SourceLocation TemplateKWLoc,
2478                       const DeclarationNameInfo &NameInfo,
2479                       bool RequiresADL, bool Overloaded,
2480                       const TemplateArgumentListInfo *TemplateArgs,
2481                       UnresolvedSetIterator Begin, UnresolvedSetIterator End,
2482                       bool StdIsAssociatedNamespace)
2483    : OverloadExpr(UnresolvedLookupExprClass, C, QualifierLoc, TemplateKWLoc,
2484                   NameInfo, TemplateArgs, Begin, End, false, false, false),
2485      RequiresADL(RequiresADL),
2486      StdIsAssociatedNamespace(StdIsAssociatedNamespace),
2487      Overloaded(Overloaded), NamingClass(NamingClass)
2488  {}
2489
2490  UnresolvedLookupExpr(EmptyShell Empty)
2491    : OverloadExpr(UnresolvedLookupExprClass, Empty),
2492      RequiresADL(false), StdIsAssociatedNamespace(false), Overloaded(false),
2493      NamingClass(0)
2494  {}
2495
2496  friend class ASTStmtReader;
2497
2498public:
2499  static UnresolvedLookupExpr *Create(ASTContext &C,
2500                                      CXXRecordDecl *NamingClass,
2501                                      NestedNameSpecifierLoc QualifierLoc,
2502                                      const DeclarationNameInfo &NameInfo,
2503                                      bool ADL, bool Overloaded,
2504                                      UnresolvedSetIterator Begin,
2505                                      UnresolvedSetIterator End,
2506                                      bool StdIsAssociatedNamespace = false) {
2507    assert((ADL || !StdIsAssociatedNamespace) &&
2508           "std considered associated namespace when not performing ADL");
2509    return new(C) UnresolvedLookupExpr(C, NamingClass, QualifierLoc,
2510                                       SourceLocation(), NameInfo,
2511                                       ADL, Overloaded, 0, Begin, End,
2512                                       StdIsAssociatedNamespace);
2513  }
2514
2515  static UnresolvedLookupExpr *Create(ASTContext &C,
2516                                      CXXRecordDecl *NamingClass,
2517                                      NestedNameSpecifierLoc QualifierLoc,
2518                                      SourceLocation TemplateKWLoc,
2519                                      const DeclarationNameInfo &NameInfo,
2520                                      bool ADL,
2521                                      const TemplateArgumentListInfo *Args,
2522                                      UnresolvedSetIterator Begin,
2523                                      UnresolvedSetIterator End);
2524
2525  static UnresolvedLookupExpr *CreateEmpty(ASTContext &C,
2526                                           bool HasTemplateKWAndArgsInfo,
2527                                           unsigned NumTemplateArgs);
2528
2529  /// True if this declaration should be extended by
2530  /// argument-dependent lookup.
2531  bool requiresADL() const { return RequiresADL; }
2532
2533  /// True if namespace \::std should be artificially added to the set of
2534  /// associated namespaces for argument-dependent lookup purposes.
2535  bool isStdAssociatedNamespace() const { return StdIsAssociatedNamespace; }
2536
2537  /// True if this lookup is overloaded.
2538  bool isOverloaded() const { return Overloaded; }
2539
2540  /// Gets the 'naming class' (in the sense of C++0x
2541  /// [class.access.base]p5) of the lookup.  This is the scope
2542  /// that was looked in to find these results.
2543  CXXRecordDecl *getNamingClass() const { return NamingClass; }
2544
2545  SourceRange getSourceRange() const LLVM_READONLY {
2546    SourceRange Range(getNameInfo().getSourceRange());
2547    if (getQualifierLoc())
2548      Range.setBegin(getQualifierLoc().getBeginLoc());
2549    if (hasExplicitTemplateArgs())
2550      Range.setEnd(getRAngleLoc());
2551    return Range;
2552  }
2553
2554  child_range children() { return child_range(); }
2555
2556  static bool classof(const Stmt *T) {
2557    return T->getStmtClass() == UnresolvedLookupExprClass;
2558  }
2559  static bool classof(const UnresolvedLookupExpr *) { return true; }
2560};
2561
2562/// \brief A qualified reference to a name whose declaration cannot
2563/// yet be resolved.
2564///
2565/// DependentScopeDeclRefExpr is similar to DeclRefExpr in that
2566/// it expresses a reference to a declaration such as
2567/// X<T>::value. The difference, however, is that an
2568/// DependentScopeDeclRefExpr node is used only within C++ templates when
2569/// the qualification (e.g., X<T>::) refers to a dependent type. In
2570/// this case, X<T>::value cannot resolve to a declaration because the
2571/// declaration will differ from on instantiation of X<T> to the
2572/// next. Therefore, DependentScopeDeclRefExpr keeps track of the
2573/// qualifier (X<T>::) and the name of the entity being referenced
2574/// ("value"). Such expressions will instantiate to a DeclRefExpr once the
2575/// declaration can be found.
2576class DependentScopeDeclRefExpr : public Expr {
2577  /// \brief The nested-name-specifier that qualifies this unresolved
2578  /// declaration name.
2579  NestedNameSpecifierLoc QualifierLoc;
2580
2581  /// The name of the entity we will be referencing.
2582  DeclarationNameInfo NameInfo;
2583
2584  /// \brief Whether the name includes info for explicit template
2585  /// keyword and arguments.
2586  bool HasTemplateKWAndArgsInfo;
2587
2588  /// \brief Return the optional template keyword and arguments info.
2589  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
2590    if (!HasTemplateKWAndArgsInfo) return 0;
2591    return reinterpret_cast<ASTTemplateKWAndArgsInfo*>(this + 1);
2592  }
2593  /// \brief Return the optional template keyword and arguments info.
2594  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
2595    return const_cast<DependentScopeDeclRefExpr*>(this)
2596      ->getTemplateKWAndArgsInfo();
2597  }
2598
2599  DependentScopeDeclRefExpr(QualType T,
2600                            NestedNameSpecifierLoc QualifierLoc,
2601                            SourceLocation TemplateKWLoc,
2602                            const DeclarationNameInfo &NameInfo,
2603                            const TemplateArgumentListInfo *Args);
2604
2605public:
2606  static DependentScopeDeclRefExpr *Create(ASTContext &C,
2607                                           NestedNameSpecifierLoc QualifierLoc,
2608                                           SourceLocation TemplateKWLoc,
2609                                           const DeclarationNameInfo &NameInfo,
2610                              const TemplateArgumentListInfo *TemplateArgs);
2611
2612  static DependentScopeDeclRefExpr *CreateEmpty(ASTContext &C,
2613                                                bool HasTemplateKWAndArgsInfo,
2614                                                unsigned NumTemplateArgs);
2615
2616  /// \brief Retrieve the name that this expression refers to.
2617  const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
2618
2619  /// \brief Retrieve the name that this expression refers to.
2620  DeclarationName getDeclName() const { return NameInfo.getName(); }
2621
2622  /// \brief Retrieve the location of the name within the expression.
2623  SourceLocation getLocation() const { return NameInfo.getLoc(); }
2624
2625  /// \brief Retrieve the nested-name-specifier that qualifies the
2626  /// name, with source location information.
2627  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2628
2629
2630  /// \brief Retrieve the nested-name-specifier that qualifies this
2631  /// declaration.
2632  NestedNameSpecifier *getQualifier() const {
2633    return QualifierLoc.getNestedNameSpecifier();
2634  }
2635
2636  /// \brief Retrieve the location of the template keyword preceding
2637  /// this name, if any.
2638  SourceLocation getTemplateKeywordLoc() const {
2639    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2640    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
2641  }
2642
2643  /// \brief Retrieve the location of the left angle bracket starting the
2644  /// explicit template argument list following the name, if any.
2645  SourceLocation getLAngleLoc() const {
2646    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2647    return getTemplateKWAndArgsInfo()->LAngleLoc;
2648  }
2649
2650  /// \brief Retrieve the location of the right angle bracket ending the
2651  /// explicit template argument list following the name, if any.
2652  SourceLocation getRAngleLoc() const {
2653    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2654    return getTemplateKWAndArgsInfo()->RAngleLoc;
2655  }
2656
2657  /// Determines whether the name was preceded by the template keyword.
2658  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
2659
2660  /// Determines whether this lookup had explicit template arguments.
2661  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
2662
2663  // Note that, inconsistently with the explicit-template-argument AST
2664  // nodes, users are *forbidden* from calling these methods on objects
2665  // without explicit template arguments.
2666
2667  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
2668    assert(hasExplicitTemplateArgs());
2669    return *reinterpret_cast<ASTTemplateArgumentListInfo*>(this + 1);
2670  }
2671
2672  /// Gets a reference to the explicit template argument list.
2673  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2674    assert(hasExplicitTemplateArgs());
2675    return *reinterpret_cast<const ASTTemplateArgumentListInfo*>(this + 1);
2676  }
2677
2678  /// \brief Retrieves the optional explicit template arguments.
2679  /// This points to the same data as getExplicitTemplateArgs(), but
2680  /// returns null if there are no explicit template arguments.
2681  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() {
2682    if (!hasExplicitTemplateArgs()) return 0;
2683    return &getExplicitTemplateArgs();
2684  }
2685
2686  /// \brief Copies the template arguments (if present) into the given
2687  /// structure.
2688  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2689    getExplicitTemplateArgs().copyInto(List);
2690  }
2691
2692  TemplateArgumentLoc const *getTemplateArgs() const {
2693    return getExplicitTemplateArgs().getTemplateArgs();
2694  }
2695
2696  unsigned getNumTemplateArgs() const {
2697    return getExplicitTemplateArgs().NumTemplateArgs;
2698  }
2699
2700  SourceRange getSourceRange() const LLVM_READONLY {
2701    SourceRange Range(QualifierLoc.getBeginLoc(), getLocation());
2702    if (hasExplicitTemplateArgs())
2703      Range.setEnd(getRAngleLoc());
2704    return Range;
2705  }
2706
2707  static bool classof(const Stmt *T) {
2708    return T->getStmtClass() == DependentScopeDeclRefExprClass;
2709  }
2710  static bool classof(const DependentScopeDeclRefExpr *) { return true; }
2711
2712  child_range children() { return child_range(); }
2713
2714  friend class ASTStmtReader;
2715  friend class ASTStmtWriter;
2716};
2717
2718/// Represents an expression --- generally a full-expression --- which
2719/// introduces cleanups to be run at the end of the sub-expression's
2720/// evaluation.  The most common source of expression-introduced
2721/// cleanups is temporary objects in C++, but several other kinds of
2722/// expressions can create cleanups, including basically every
2723/// call in ARC that returns an Objective-C pointer.
2724///
2725/// This expression also tracks whether the sub-expression contains a
2726/// potentially-evaluated block literal.  The lifetime of a block
2727/// literal is the extent of the enclosing scope.
2728class ExprWithCleanups : public Expr {
2729public:
2730  /// The type of objects that are kept in the cleanup.
2731  /// It's useful to remember the set of blocks;  we could also
2732  /// remember the set of temporaries, but there's currently
2733  /// no need.
2734  typedef BlockDecl *CleanupObject;
2735
2736private:
2737  Stmt *SubExpr;
2738
2739  ExprWithCleanups(EmptyShell, unsigned NumObjects);
2740  ExprWithCleanups(Expr *SubExpr, ArrayRef<CleanupObject> Objects);
2741
2742  CleanupObject *getObjectsBuffer() {
2743    return reinterpret_cast<CleanupObject*>(this + 1);
2744  }
2745  const CleanupObject *getObjectsBuffer() const {
2746    return reinterpret_cast<const CleanupObject*>(this + 1);
2747  }
2748  friend class ASTStmtReader;
2749
2750public:
2751  static ExprWithCleanups *Create(ASTContext &C, EmptyShell empty,
2752                                  unsigned numObjects);
2753
2754  static ExprWithCleanups *Create(ASTContext &C, Expr *subexpr,
2755                                  ArrayRef<CleanupObject> objects);
2756
2757  ArrayRef<CleanupObject> getObjects() const {
2758    return ArrayRef<CleanupObject>(getObjectsBuffer(), getNumObjects());
2759  }
2760
2761  unsigned getNumObjects() const { return ExprWithCleanupsBits.NumObjects; }
2762
2763  CleanupObject getObject(unsigned i) const {
2764    assert(i < getNumObjects() && "Index out of range");
2765    return getObjects()[i];
2766  }
2767
2768  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
2769  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
2770
2771  /// setSubExpr - As with any mutator of the AST, be very careful
2772  /// when modifying an existing AST to preserve its invariants.
2773  void setSubExpr(Expr *E) { SubExpr = E; }
2774
2775  SourceRange getSourceRange() const LLVM_READONLY {
2776    return SubExpr->getSourceRange();
2777  }
2778
2779  // Implement isa/cast/dyncast/etc.
2780  static bool classof(const Stmt *T) {
2781    return T->getStmtClass() == ExprWithCleanupsClass;
2782  }
2783  static bool classof(const ExprWithCleanups *) { return true; }
2784
2785  // Iterators
2786  child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
2787};
2788
2789/// \brief Describes an explicit type conversion that uses functional
2790/// notion but could not be resolved because one or more arguments are
2791/// type-dependent.
2792///
2793/// The explicit type conversions expressed by
2794/// CXXUnresolvedConstructExpr have the form <tt>T(a1, a2, ..., aN)</tt>,
2795/// where \c T is some type and \c a1, \c a2, ..., \c aN are values, and
2796/// either \c T is a dependent type or one or more of the <tt>a</tt>'s is
2797/// type-dependent. For example, this would occur in a template such
2798/// as:
2799///
2800/// \code
2801///   template<typename T, typename A1>
2802///   inline T make_a(const A1& a1) {
2803///     return T(a1);
2804///   }
2805/// \endcode
2806///
2807/// When the returned expression is instantiated, it may resolve to a
2808/// constructor call, conversion function call, or some kind of type
2809/// conversion.
2810class CXXUnresolvedConstructExpr : public Expr {
2811  /// \brief The type being constructed.
2812  TypeSourceInfo *Type;
2813
2814  /// \brief The location of the left parentheses ('(').
2815  SourceLocation LParenLoc;
2816
2817  /// \brief The location of the right parentheses (')').
2818  SourceLocation RParenLoc;
2819
2820  /// \brief The number of arguments used to construct the type.
2821  unsigned NumArgs;
2822
2823  CXXUnresolvedConstructExpr(TypeSourceInfo *Type,
2824                             SourceLocation LParenLoc,
2825                             ArrayRef<Expr*> Args,
2826                             SourceLocation RParenLoc);
2827
2828  CXXUnresolvedConstructExpr(EmptyShell Empty, unsigned NumArgs)
2829    : Expr(CXXUnresolvedConstructExprClass, Empty), Type(), NumArgs(NumArgs) { }
2830
2831  friend class ASTStmtReader;
2832
2833public:
2834  static CXXUnresolvedConstructExpr *Create(ASTContext &C,
2835                                            TypeSourceInfo *Type,
2836                                            SourceLocation LParenLoc,
2837                                            ArrayRef<Expr*> Args,
2838                                            SourceLocation RParenLoc);
2839
2840  static CXXUnresolvedConstructExpr *CreateEmpty(ASTContext &C,
2841                                                 unsigned NumArgs);
2842
2843  /// \brief Retrieve the type that is being constructed, as specified
2844  /// in the source code.
2845  QualType getTypeAsWritten() const { return Type->getType(); }
2846
2847  /// \brief Retrieve the type source information for the type being
2848  /// constructed.
2849  TypeSourceInfo *getTypeSourceInfo() const { return Type; }
2850
2851  /// \brief Retrieve the location of the left parentheses ('(') that
2852  /// precedes the argument list.
2853  SourceLocation getLParenLoc() const { return LParenLoc; }
2854  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2855
2856  /// \brief Retrieve the location of the right parentheses (')') that
2857  /// follows the argument list.
2858  SourceLocation getRParenLoc() const { return RParenLoc; }
2859  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2860
2861  /// \brief Retrieve the number of arguments.
2862  unsigned arg_size() const { return NumArgs; }
2863
2864  typedef Expr** arg_iterator;
2865  arg_iterator arg_begin() { return reinterpret_cast<Expr**>(this + 1); }
2866  arg_iterator arg_end() { return arg_begin() + NumArgs; }
2867
2868  typedef const Expr* const * const_arg_iterator;
2869  const_arg_iterator arg_begin() const {
2870    return reinterpret_cast<const Expr* const *>(this + 1);
2871  }
2872  const_arg_iterator arg_end() const {
2873    return arg_begin() + NumArgs;
2874  }
2875
2876  Expr *getArg(unsigned I) {
2877    assert(I < NumArgs && "Argument index out-of-range");
2878    return *(arg_begin() + I);
2879  }
2880
2881  const Expr *getArg(unsigned I) const {
2882    assert(I < NumArgs && "Argument index out-of-range");
2883    return *(arg_begin() + I);
2884  }
2885
2886  void setArg(unsigned I, Expr *E) {
2887    assert(I < NumArgs && "Argument index out-of-range");
2888    *(arg_begin() + I) = E;
2889  }
2890
2891  SourceRange getSourceRange() const LLVM_READONLY;
2892
2893  static bool classof(const Stmt *T) {
2894    return T->getStmtClass() == CXXUnresolvedConstructExprClass;
2895  }
2896  static bool classof(const CXXUnresolvedConstructExpr *) { return true; }
2897
2898  // Iterators
2899  child_range children() {
2900    Stmt **begin = reinterpret_cast<Stmt**>(this+1);
2901    return child_range(begin, begin + NumArgs);
2902  }
2903};
2904
2905/// \brief Represents a C++ member access expression where the actual
2906/// member referenced could not be resolved because the base
2907/// expression or the member name was dependent.
2908///
2909/// Like UnresolvedMemberExprs, these can be either implicit or
2910/// explicit accesses.  It is only possible to get one of these with
2911/// an implicit access if a qualifier is provided.
2912class CXXDependentScopeMemberExpr : public Expr {
2913  /// \brief The expression for the base pointer or class reference,
2914  /// e.g., the \c x in x.f.  Can be null in implicit accesses.
2915  Stmt *Base;
2916
2917  /// \brief The type of the base expression.  Never null, even for
2918  /// implicit accesses.
2919  QualType BaseType;
2920
2921  /// \brief Whether this member expression used the '->' operator or
2922  /// the '.' operator.
2923  bool IsArrow : 1;
2924
2925  /// \brief Whether this member expression has info for explicit template
2926  /// keyword and arguments.
2927  bool HasTemplateKWAndArgsInfo : 1;
2928
2929  /// \brief The location of the '->' or '.' operator.
2930  SourceLocation OperatorLoc;
2931
2932  /// \brief The nested-name-specifier that precedes the member name, if any.
2933  NestedNameSpecifierLoc QualifierLoc;
2934
2935  /// \brief In a qualified member access expression such as t->Base::f, this
2936  /// member stores the resolves of name lookup in the context of the member
2937  /// access expression, to be used at instantiation time.
2938  ///
2939  /// FIXME: This member, along with the QualifierLoc, could
2940  /// be stuck into a structure that is optionally allocated at the end of
2941  /// the CXXDependentScopeMemberExpr, to save space in the common case.
2942  NamedDecl *FirstQualifierFoundInScope;
2943
2944  /// \brief The member to which this member expression refers, which
2945  /// can be name, overloaded operator, or destructor.
2946  /// FIXME: could also be a template-id
2947  DeclarationNameInfo MemberNameInfo;
2948
2949  /// \brief Return the optional template keyword and arguments info.
2950  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
2951    if (!HasTemplateKWAndArgsInfo) return 0;
2952    return reinterpret_cast<ASTTemplateKWAndArgsInfo*>(this + 1);
2953  }
2954  /// \brief Return the optional template keyword and arguments info.
2955  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
2956    return const_cast<CXXDependentScopeMemberExpr*>(this)
2957      ->getTemplateKWAndArgsInfo();
2958  }
2959
2960  CXXDependentScopeMemberExpr(ASTContext &C,
2961                          Expr *Base, QualType BaseType, bool IsArrow,
2962                          SourceLocation OperatorLoc,
2963                          NestedNameSpecifierLoc QualifierLoc,
2964                          SourceLocation TemplateKWLoc,
2965                          NamedDecl *FirstQualifierFoundInScope,
2966                          DeclarationNameInfo MemberNameInfo,
2967                          const TemplateArgumentListInfo *TemplateArgs);
2968
2969public:
2970  CXXDependentScopeMemberExpr(ASTContext &C,
2971                              Expr *Base, QualType BaseType,
2972                              bool IsArrow,
2973                              SourceLocation OperatorLoc,
2974                              NestedNameSpecifierLoc QualifierLoc,
2975                              NamedDecl *FirstQualifierFoundInScope,
2976                              DeclarationNameInfo MemberNameInfo);
2977
2978  static CXXDependentScopeMemberExpr *
2979  Create(ASTContext &C,
2980         Expr *Base, QualType BaseType, bool IsArrow,
2981         SourceLocation OperatorLoc,
2982         NestedNameSpecifierLoc QualifierLoc,
2983         SourceLocation TemplateKWLoc,
2984         NamedDecl *FirstQualifierFoundInScope,
2985         DeclarationNameInfo MemberNameInfo,
2986         const TemplateArgumentListInfo *TemplateArgs);
2987
2988  static CXXDependentScopeMemberExpr *
2989  CreateEmpty(ASTContext &C, bool HasTemplateKWAndArgsInfo,
2990              unsigned NumTemplateArgs);
2991
2992  /// \brief True if this is an implicit access, i.e. one in which the
2993  /// member being accessed was not written in the source.  The source
2994  /// location of the operator is invalid in this case.
2995  bool isImplicitAccess() const;
2996
2997  /// \brief Retrieve the base object of this member expressions,
2998  /// e.g., the \c x in \c x.m.
2999  Expr *getBase() const {
3000    assert(!isImplicitAccess());
3001    return cast<Expr>(Base);
3002  }
3003
3004  QualType getBaseType() const { return BaseType; }
3005
3006  /// \brief Determine whether this member expression used the '->'
3007  /// operator; otherwise, it used the '.' operator.
3008  bool isArrow() const { return IsArrow; }
3009
3010  /// \brief Retrieve the location of the '->' or '.' operator.
3011  SourceLocation getOperatorLoc() const { return OperatorLoc; }
3012
3013  /// \brief Retrieve the nested-name-specifier that qualifies the member
3014  /// name.
3015  NestedNameSpecifier *getQualifier() const {
3016    return QualifierLoc.getNestedNameSpecifier();
3017  }
3018
3019  /// \brief Retrieve the nested-name-specifier that qualifies the member
3020  /// name, with source location information.
3021  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
3022
3023
3024  /// \brief Retrieve the first part of the nested-name-specifier that was
3025  /// found in the scope of the member access expression when the member access
3026  /// was initially parsed.
3027  ///
3028  /// This function only returns a useful result when member access expression
3029  /// uses a qualified member name, e.g., "x.Base::f". Here, the declaration
3030  /// returned by this function describes what was found by unqualified name
3031  /// lookup for the identifier "Base" within the scope of the member access
3032  /// expression itself. At template instantiation time, this information is
3033  /// combined with the results of name lookup into the type of the object
3034  /// expression itself (the class type of x).
3035  NamedDecl *getFirstQualifierFoundInScope() const {
3036    return FirstQualifierFoundInScope;
3037  }
3038
3039  /// \brief Retrieve the name of the member that this expression
3040  /// refers to.
3041  const DeclarationNameInfo &getMemberNameInfo() const {
3042    return MemberNameInfo;
3043  }
3044
3045  /// \brief Retrieve the name of the member that this expression
3046  /// refers to.
3047  DeclarationName getMember() const { return MemberNameInfo.getName(); }
3048
3049  // \brief Retrieve the location of the name of the member that this
3050  // expression refers to.
3051  SourceLocation getMemberLoc() const { return MemberNameInfo.getLoc(); }
3052
3053  /// \brief Retrieve the location of the template keyword preceding the
3054  /// member name, if any.
3055  SourceLocation getTemplateKeywordLoc() const {
3056    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
3057    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
3058  }
3059
3060  /// \brief Retrieve the location of the left angle bracket starting the
3061  /// explicit template argument list following the member name, if any.
3062  SourceLocation getLAngleLoc() const {
3063    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
3064    return getTemplateKWAndArgsInfo()->LAngleLoc;
3065  }
3066
3067  /// \brief Retrieve the location of the right angle bracket ending the
3068  /// explicit template argument list following the member name, if any.
3069  SourceLocation getRAngleLoc() const {
3070    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
3071    return getTemplateKWAndArgsInfo()->RAngleLoc;
3072  }
3073
3074  /// Determines whether the member name was preceded by the template keyword.
3075  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
3076
3077  /// \brief Determines whether this member expression actually had a C++
3078  /// template argument list explicitly specified, e.g., x.f<int>.
3079  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
3080
3081  /// \brief Retrieve the explicit template argument list that followed the
3082  /// member template name, if any.
3083  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
3084    assert(hasExplicitTemplateArgs());
3085    return *reinterpret_cast<ASTTemplateArgumentListInfo *>(this + 1);
3086  }
3087
3088  /// \brief Retrieve the explicit template argument list that followed the
3089  /// member template name, if any.
3090  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
3091    return const_cast<CXXDependentScopeMemberExpr *>(this)
3092             ->getExplicitTemplateArgs();
3093  }
3094
3095  /// \brief Retrieves the optional explicit template arguments.
3096  /// This points to the same data as getExplicitTemplateArgs(), but
3097  /// returns null if there are no explicit template arguments.
3098  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() {
3099    if (!hasExplicitTemplateArgs()) return 0;
3100    return &getExplicitTemplateArgs();
3101  }
3102
3103  /// \brief Copies the template arguments (if present) into the given
3104  /// structure.
3105  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
3106    getExplicitTemplateArgs().copyInto(List);
3107  }
3108
3109  /// \brief Initializes the template arguments using the given structure.
3110  void initializeTemplateArgumentsFrom(const TemplateArgumentListInfo &List) {
3111    getExplicitTemplateArgs().initializeFrom(List);
3112  }
3113
3114  /// \brief Retrieve the template arguments provided as part of this
3115  /// template-id.
3116  const TemplateArgumentLoc *getTemplateArgs() const {
3117    return getExplicitTemplateArgs().getTemplateArgs();
3118  }
3119
3120  /// \brief Retrieve the number of template arguments provided as part of this
3121  /// template-id.
3122  unsigned getNumTemplateArgs() const {
3123    return getExplicitTemplateArgs().NumTemplateArgs;
3124  }
3125
3126  SourceRange getSourceRange() const LLVM_READONLY {
3127    SourceRange Range;
3128    if (!isImplicitAccess())
3129      Range.setBegin(Base->getSourceRange().getBegin());
3130    else if (getQualifier())
3131      Range.setBegin(getQualifierLoc().getBeginLoc());
3132    else
3133      Range.setBegin(MemberNameInfo.getBeginLoc());
3134
3135    if (hasExplicitTemplateArgs())
3136      Range.setEnd(getRAngleLoc());
3137    else
3138      Range.setEnd(MemberNameInfo.getEndLoc());
3139    return Range;
3140  }
3141
3142  static bool classof(const Stmt *T) {
3143    return T->getStmtClass() == CXXDependentScopeMemberExprClass;
3144  }
3145  static bool classof(const CXXDependentScopeMemberExpr *) { return true; }
3146
3147  // Iterators
3148  child_range children() {
3149    if (isImplicitAccess()) return child_range();
3150    return child_range(&Base, &Base + 1);
3151  }
3152
3153  friend class ASTStmtReader;
3154  friend class ASTStmtWriter;
3155};
3156
3157/// \brief Represents a C++ member access expression for which lookup
3158/// produced a set of overloaded functions.
3159///
3160/// The member access may be explicit or implicit:
3161///    struct A {
3162///      int a, b;
3163///      int explicitAccess() { return this->a + this->A::b; }
3164///      int implicitAccess() { return a + A::b; }
3165///    };
3166///
3167/// In the final AST, an explicit access always becomes a MemberExpr.
3168/// An implicit access may become either a MemberExpr or a
3169/// DeclRefExpr, depending on whether the member is static.
3170class UnresolvedMemberExpr : public OverloadExpr {
3171  /// \brief Whether this member expression used the '->' operator or
3172  /// the '.' operator.
3173  bool IsArrow : 1;
3174
3175  /// \brief Whether the lookup results contain an unresolved using
3176  /// declaration.
3177  bool HasUnresolvedUsing : 1;
3178
3179  /// \brief The expression for the base pointer or class reference,
3180  /// e.g., the \c x in x.f.  This can be null if this is an 'unbased'
3181  /// member expression
3182  Stmt *Base;
3183
3184  /// \brief The type of the base expression;  never null.
3185  QualType BaseType;
3186
3187  /// \brief The location of the '->' or '.' operator.
3188  SourceLocation OperatorLoc;
3189
3190  UnresolvedMemberExpr(ASTContext &C, bool HasUnresolvedUsing,
3191                       Expr *Base, QualType BaseType, bool IsArrow,
3192                       SourceLocation OperatorLoc,
3193                       NestedNameSpecifierLoc QualifierLoc,
3194                       SourceLocation TemplateKWLoc,
3195                       const DeclarationNameInfo &MemberNameInfo,
3196                       const TemplateArgumentListInfo *TemplateArgs,
3197                       UnresolvedSetIterator Begin, UnresolvedSetIterator End);
3198
3199  UnresolvedMemberExpr(EmptyShell Empty)
3200    : OverloadExpr(UnresolvedMemberExprClass, Empty), IsArrow(false),
3201      HasUnresolvedUsing(false), Base(0) { }
3202
3203  friend class ASTStmtReader;
3204
3205public:
3206  static UnresolvedMemberExpr *
3207  Create(ASTContext &C, bool HasUnresolvedUsing,
3208         Expr *Base, QualType BaseType, bool IsArrow,
3209         SourceLocation OperatorLoc,
3210         NestedNameSpecifierLoc QualifierLoc,
3211         SourceLocation TemplateKWLoc,
3212         const DeclarationNameInfo &MemberNameInfo,
3213         const TemplateArgumentListInfo *TemplateArgs,
3214         UnresolvedSetIterator Begin, UnresolvedSetIterator End);
3215
3216  static UnresolvedMemberExpr *
3217  CreateEmpty(ASTContext &C, bool HasTemplateKWAndArgsInfo,
3218              unsigned NumTemplateArgs);
3219
3220  /// \brief True if this is an implicit access, i.e. one in which the
3221  /// member being accessed was not written in the source.  The source
3222  /// location of the operator is invalid in this case.
3223  bool isImplicitAccess() const;
3224
3225  /// \brief Retrieve the base object of this member expressions,
3226  /// e.g., the \c x in \c x.m.
3227  Expr *getBase() {
3228    assert(!isImplicitAccess());
3229    return cast<Expr>(Base);
3230  }
3231  const Expr *getBase() const {
3232    assert(!isImplicitAccess());
3233    return cast<Expr>(Base);
3234  }
3235
3236  QualType getBaseType() const { return BaseType; }
3237
3238  /// \brief Determine whether the lookup results contain an unresolved using
3239  /// declaration.
3240  bool hasUnresolvedUsing() const { return HasUnresolvedUsing; }
3241
3242  /// \brief Determine whether this member expression used the '->'
3243  /// operator; otherwise, it used the '.' operator.
3244  bool isArrow() const { return IsArrow; }
3245
3246  /// \brief Retrieve the location of the '->' or '.' operator.
3247  SourceLocation getOperatorLoc() const { return OperatorLoc; }
3248
3249  /// \brief Retrieves the naming class of this lookup.
3250  CXXRecordDecl *getNamingClass() const;
3251
3252  /// \brief Retrieve the full name info for the member that this expression
3253  /// refers to.
3254  const DeclarationNameInfo &getMemberNameInfo() const { return getNameInfo(); }
3255
3256  /// \brief Retrieve the name of the member that this expression
3257  /// refers to.
3258  DeclarationName getMemberName() const { return getName(); }
3259
3260  // \brief Retrieve the location of the name of the member that this
3261  // expression refers to.
3262  SourceLocation getMemberLoc() const { return getNameLoc(); }
3263
3264  SourceRange getSourceRange() const LLVM_READONLY {
3265    SourceRange Range = getMemberNameInfo().getSourceRange();
3266    if (!isImplicitAccess())
3267      Range.setBegin(Base->getSourceRange().getBegin());
3268    else if (getQualifierLoc())
3269      Range.setBegin(getQualifierLoc().getBeginLoc());
3270
3271    if (hasExplicitTemplateArgs())
3272      Range.setEnd(getRAngleLoc());
3273    return Range;
3274  }
3275
3276  static bool classof(const Stmt *T) {
3277    return T->getStmtClass() == UnresolvedMemberExprClass;
3278  }
3279  static bool classof(const UnresolvedMemberExpr *) { return true; }
3280
3281  // Iterators
3282  child_range children() {
3283    if (isImplicitAccess()) return child_range();
3284    return child_range(&Base, &Base + 1);
3285  }
3286};
3287
3288/// \brief Represents a C++0x noexcept expression (C++ [expr.unary.noexcept]).
3289///
3290/// The noexcept expression tests whether a given expression might throw. Its
3291/// result is a boolean constant.
3292class CXXNoexceptExpr : public Expr {
3293  bool Value : 1;
3294  Stmt *Operand;
3295  SourceRange Range;
3296
3297  friend class ASTStmtReader;
3298
3299public:
3300  CXXNoexceptExpr(QualType Ty, Expr *Operand, CanThrowResult Val,
3301                  SourceLocation Keyword, SourceLocation RParen)
3302    : Expr(CXXNoexceptExprClass, Ty, VK_RValue, OK_Ordinary,
3303           /*TypeDependent*/false,
3304           /*ValueDependent*/Val == CT_Dependent,
3305           Val == CT_Dependent || Operand->isInstantiationDependent(),
3306           Operand->containsUnexpandedParameterPack()),
3307      Value(Val == CT_Cannot), Operand(Operand), Range(Keyword, RParen)
3308  { }
3309
3310  CXXNoexceptExpr(EmptyShell Empty)
3311    : Expr(CXXNoexceptExprClass, Empty)
3312  { }
3313
3314  Expr *getOperand() const { return static_cast<Expr*>(Operand); }
3315
3316  SourceRange getSourceRange() const LLVM_READONLY { return Range; }
3317
3318  bool getValue() const { return Value; }
3319
3320  static bool classof(const Stmt *T) {
3321    return T->getStmtClass() == CXXNoexceptExprClass;
3322  }
3323  static bool classof(const CXXNoexceptExpr *) { return true; }
3324
3325  // Iterators
3326  child_range children() { return child_range(&Operand, &Operand + 1); }
3327};
3328
3329/// \brief Represents a C++0x pack expansion that produces a sequence of
3330/// expressions.
3331///
3332/// A pack expansion expression contains a pattern (which itself is an
3333/// expression) followed by an ellipsis. For example:
3334///
3335/// \code
3336/// template<typename F, typename ...Types>
3337/// void forward(F f, Types &&...args) {
3338///   f(static_cast<Types&&>(args)...);
3339/// }
3340/// \endcode
3341///
3342/// Here, the argument to the function object \c f is a pack expansion whose
3343/// pattern is \c static_cast<Types&&>(args). When the \c forward function
3344/// template is instantiated, the pack expansion will instantiate to zero or
3345/// or more function arguments to the function object \c f.
3346class PackExpansionExpr : public Expr {
3347  SourceLocation EllipsisLoc;
3348
3349  /// \brief The number of expansions that will be produced by this pack
3350  /// expansion expression, if known.
3351  ///
3352  /// When zero, the number of expansions is not known. Otherwise, this value
3353  /// is the number of expansions + 1.
3354  unsigned NumExpansions;
3355
3356  Stmt *Pattern;
3357
3358  friend class ASTStmtReader;
3359  friend class ASTStmtWriter;
3360
3361public:
3362  PackExpansionExpr(QualType T, Expr *Pattern, SourceLocation EllipsisLoc,
3363                    llvm::Optional<unsigned> NumExpansions)
3364    : Expr(PackExpansionExprClass, T, Pattern->getValueKind(),
3365           Pattern->getObjectKind(), /*TypeDependent=*/true,
3366           /*ValueDependent=*/true, /*InstantiationDependent=*/true,
3367           /*ContainsUnexpandedParameterPack=*/false),
3368      EllipsisLoc(EllipsisLoc),
3369      NumExpansions(NumExpansions? *NumExpansions + 1 : 0),
3370      Pattern(Pattern) { }
3371
3372  PackExpansionExpr(EmptyShell Empty) : Expr(PackExpansionExprClass, Empty) { }
3373
3374  /// \brief Retrieve the pattern of the pack expansion.
3375  Expr *getPattern() { return reinterpret_cast<Expr *>(Pattern); }
3376
3377  /// \brief Retrieve the pattern of the pack expansion.
3378  const Expr *getPattern() const { return reinterpret_cast<Expr *>(Pattern); }
3379
3380  /// \brief Retrieve the location of the ellipsis that describes this pack
3381  /// expansion.
3382  SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
3383
3384  /// \brief Determine the number of expansions that will be produced when
3385  /// this pack expansion is instantiated, if already known.
3386  llvm::Optional<unsigned> getNumExpansions() const {
3387    if (NumExpansions)
3388      return NumExpansions - 1;
3389
3390    return llvm::Optional<unsigned>();
3391  }
3392
3393  SourceRange getSourceRange() const LLVM_READONLY {
3394    return SourceRange(Pattern->getLocStart(), EllipsisLoc);
3395  }
3396
3397  static bool classof(const Stmt *T) {
3398    return T->getStmtClass() == PackExpansionExprClass;
3399  }
3400  static bool classof(const PackExpansionExpr *) { return true; }
3401
3402  // Iterators
3403  child_range children() {
3404    return child_range(&Pattern, &Pattern + 1);
3405  }
3406};
3407
3408inline ASTTemplateKWAndArgsInfo *OverloadExpr::getTemplateKWAndArgsInfo() {
3409  if (!HasTemplateKWAndArgsInfo) return 0;
3410  if (isa<UnresolvedLookupExpr>(this))
3411    return reinterpret_cast<ASTTemplateKWAndArgsInfo*>
3412      (cast<UnresolvedLookupExpr>(this) + 1);
3413  else
3414    return reinterpret_cast<ASTTemplateKWAndArgsInfo*>
3415      (cast<UnresolvedMemberExpr>(this) + 1);
3416}
3417
3418/// \brief Represents an expression that computes the length of a parameter
3419/// pack.
3420///
3421/// \code
3422/// template<typename ...Types>
3423/// struct count {
3424///   static const unsigned value = sizeof...(Types);
3425/// };
3426/// \endcode
3427class SizeOfPackExpr : public Expr {
3428  /// \brief The location of the 'sizeof' keyword.
3429  SourceLocation OperatorLoc;
3430
3431  /// \brief The location of the name of the parameter pack.
3432  SourceLocation PackLoc;
3433
3434  /// \brief The location of the closing parenthesis.
3435  SourceLocation RParenLoc;
3436
3437  /// \brief The length of the parameter pack, if known.
3438  ///
3439  /// When this expression is value-dependent, the length of the parameter pack
3440  /// is unknown. When this expression is not value-dependent, the length is
3441  /// known.
3442  unsigned Length;
3443
3444  /// \brief The parameter pack itself.
3445  NamedDecl *Pack;
3446
3447  friend class ASTStmtReader;
3448  friend class ASTStmtWriter;
3449
3450public:
3451  /// \brief Creates a value-dependent expression that computes the length of
3452  /// the given parameter pack.
3453  SizeOfPackExpr(QualType SizeType, SourceLocation OperatorLoc, NamedDecl *Pack,
3454                 SourceLocation PackLoc, SourceLocation RParenLoc)
3455    : Expr(SizeOfPackExprClass, SizeType, VK_RValue, OK_Ordinary,
3456           /*TypeDependent=*/false, /*ValueDependent=*/true,
3457           /*InstantiationDependent=*/true,
3458           /*ContainsUnexpandedParameterPack=*/false),
3459      OperatorLoc(OperatorLoc), PackLoc(PackLoc), RParenLoc(RParenLoc),
3460      Length(0), Pack(Pack) { }
3461
3462  /// \brief Creates an expression that computes the length of
3463  /// the given parameter pack, which is already known.
3464  SizeOfPackExpr(QualType SizeType, SourceLocation OperatorLoc, NamedDecl *Pack,
3465                 SourceLocation PackLoc, SourceLocation RParenLoc,
3466                 unsigned Length)
3467  : Expr(SizeOfPackExprClass, SizeType, VK_RValue, OK_Ordinary,
3468         /*TypeDependent=*/false, /*ValueDependent=*/false,
3469         /*InstantiationDependent=*/false,
3470         /*ContainsUnexpandedParameterPack=*/false),
3471    OperatorLoc(OperatorLoc), PackLoc(PackLoc), RParenLoc(RParenLoc),
3472    Length(Length), Pack(Pack) { }
3473
3474  /// \brief Create an empty expression.
3475  SizeOfPackExpr(EmptyShell Empty) : Expr(SizeOfPackExprClass, Empty) { }
3476
3477  /// \brief Determine the location of the 'sizeof' keyword.
3478  SourceLocation getOperatorLoc() const { return OperatorLoc; }
3479
3480  /// \brief Determine the location of the parameter pack.
3481  SourceLocation getPackLoc() const { return PackLoc; }
3482
3483  /// \brief Determine the location of the right parenthesis.
3484  SourceLocation getRParenLoc() const { return RParenLoc; }
3485
3486  /// \brief Retrieve the parameter pack.
3487  NamedDecl *getPack() const { return Pack; }
3488
3489  /// \brief Retrieve the length of the parameter pack.
3490  ///
3491  /// This routine may only be invoked when the expression is not
3492  /// value-dependent.
3493  unsigned getPackLength() const {
3494    assert(!isValueDependent() &&
3495           "Cannot get the length of a value-dependent pack size expression");
3496    return Length;
3497  }
3498
3499  SourceRange getSourceRange() const LLVM_READONLY {
3500    return SourceRange(OperatorLoc, RParenLoc);
3501  }
3502
3503  static bool classof(const Stmt *T) {
3504    return T->getStmtClass() == SizeOfPackExprClass;
3505  }
3506  static bool classof(const SizeOfPackExpr *) { return true; }
3507
3508  // Iterators
3509  child_range children() { return child_range(); }
3510};
3511
3512/// \brief Represents a reference to a non-type template parameter
3513/// that has been substituted with a template argument.
3514class SubstNonTypeTemplateParmExpr : public Expr {
3515  /// \brief The replaced parameter.
3516  NonTypeTemplateParmDecl *Param;
3517
3518  /// \brief The replacement expression.
3519  Stmt *Replacement;
3520
3521  /// \brief The location of the non-type template parameter reference.
3522  SourceLocation NameLoc;
3523
3524  friend class ASTReader;
3525  friend class ASTStmtReader;
3526  explicit SubstNonTypeTemplateParmExpr(EmptyShell Empty)
3527    : Expr(SubstNonTypeTemplateParmExprClass, Empty) { }
3528
3529public:
3530  SubstNonTypeTemplateParmExpr(QualType type,
3531                               ExprValueKind valueKind,
3532                               SourceLocation loc,
3533                               NonTypeTemplateParmDecl *param,
3534                               Expr *replacement)
3535    : Expr(SubstNonTypeTemplateParmExprClass, type, valueKind, OK_Ordinary,
3536           replacement->isTypeDependent(), replacement->isValueDependent(),
3537           replacement->isInstantiationDependent(),
3538           replacement->containsUnexpandedParameterPack()),
3539      Param(param), Replacement(replacement), NameLoc(loc) {}
3540
3541  SourceLocation getNameLoc() const { return NameLoc; }
3542  SourceRange getSourceRange() const LLVM_READONLY { return NameLoc; }
3543
3544  Expr *getReplacement() const { return cast<Expr>(Replacement); }
3545
3546  NonTypeTemplateParmDecl *getParameter() const { return Param; }
3547
3548  static bool classof(const Stmt *s) {
3549    return s->getStmtClass() == SubstNonTypeTemplateParmExprClass;
3550  }
3551  static bool classof(const SubstNonTypeTemplateParmExpr *) {
3552    return true;
3553  }
3554
3555  // Iterators
3556  child_range children() { return child_range(&Replacement, &Replacement+1); }
3557};
3558
3559/// \brief Represents a reference to a non-type template parameter pack that
3560/// has been substituted with a non-template argument pack.
3561///
3562/// When a pack expansion in the source code contains multiple parameter packs
3563/// and those parameter packs correspond to different levels of template
3564/// parameter lists, this node node is used to represent a non-type template
3565/// parameter pack from an outer level, which has already had its argument pack
3566/// substituted but that still lives within a pack expansion that itself
3567/// could not be instantiated. When actually performing a substitution into
3568/// that pack expansion (e.g., when all template parameters have corresponding
3569/// arguments), this type will be replaced with the appropriate underlying
3570/// expression at the current pack substitution index.
3571class SubstNonTypeTemplateParmPackExpr : public Expr {
3572  /// \brief The non-type template parameter pack itself.
3573  NonTypeTemplateParmDecl *Param;
3574
3575  /// \brief A pointer to the set of template arguments that this
3576  /// parameter pack is instantiated with.
3577  const TemplateArgument *Arguments;
3578
3579  /// \brief The number of template arguments in \c Arguments.
3580  unsigned NumArguments;
3581
3582  /// \brief The location of the non-type template parameter pack reference.
3583  SourceLocation NameLoc;
3584
3585  friend class ASTReader;
3586  friend class ASTStmtReader;
3587  explicit SubstNonTypeTemplateParmPackExpr(EmptyShell Empty)
3588    : Expr(SubstNonTypeTemplateParmPackExprClass, Empty) { }
3589
3590public:
3591  SubstNonTypeTemplateParmPackExpr(QualType T,
3592                                   NonTypeTemplateParmDecl *Param,
3593                                   SourceLocation NameLoc,
3594                                   const TemplateArgument &ArgPack);
3595
3596  /// \brief Retrieve the non-type template parameter pack being substituted.
3597  NonTypeTemplateParmDecl *getParameterPack() const { return Param; }
3598
3599  /// \brief Retrieve the location of the parameter pack name.
3600  SourceLocation getParameterPackLocation() const { return NameLoc; }
3601
3602  /// \brief Retrieve the template argument pack containing the substituted
3603  /// template arguments.
3604  TemplateArgument getArgumentPack() const;
3605
3606  SourceRange getSourceRange() const LLVM_READONLY { return NameLoc; }
3607
3608  static bool classof(const Stmt *T) {
3609    return T->getStmtClass() == SubstNonTypeTemplateParmPackExprClass;
3610  }
3611  static bool classof(const SubstNonTypeTemplateParmPackExpr *) {
3612    return true;
3613  }
3614
3615  // Iterators
3616  child_range children() { return child_range(); }
3617};
3618
3619/// \brief Represents a prvalue temporary that written into memory so that
3620/// a reference can bind to it.
3621///
3622/// Prvalue expressions are materialized when they need to have an address
3623/// in memory for a reference to bind to. This happens when binding a
3624/// reference to the result of a conversion, e.g.,
3625///
3626/// \code
3627/// const int &r = 1.0;
3628/// \endcode
3629///
3630/// Here, 1.0 is implicitly converted to an \c int. That resulting \c int is
3631/// then materialized via a \c MaterializeTemporaryExpr, and the reference
3632/// binds to the temporary. \c MaterializeTemporaryExprs are always glvalues
3633/// (either an lvalue or an xvalue, depending on the kind of reference binding
3634/// to it), maintaining the invariant that references always bind to glvalues.
3635class MaterializeTemporaryExpr : public Expr {
3636  /// \brief The temporary-generating expression whose value will be
3637  /// materialized.
3638  Stmt *Temporary;
3639
3640  friend class ASTStmtReader;
3641  friend class ASTStmtWriter;
3642
3643public:
3644  MaterializeTemporaryExpr(QualType T, Expr *Temporary,
3645                           bool BoundToLvalueReference)
3646    : Expr(MaterializeTemporaryExprClass, T,
3647           BoundToLvalueReference? VK_LValue : VK_XValue, OK_Ordinary,
3648           Temporary->isTypeDependent(), Temporary->isValueDependent(),
3649           Temporary->isInstantiationDependent(),
3650           Temporary->containsUnexpandedParameterPack()),
3651      Temporary(Temporary) { }
3652
3653  MaterializeTemporaryExpr(EmptyShell Empty)
3654    : Expr(MaterializeTemporaryExprClass, Empty) { }
3655
3656  /// \brief Retrieve the temporary-generating subexpression whose value will
3657  /// be materialized into a glvalue.
3658  Expr *GetTemporaryExpr() const { return reinterpret_cast<Expr *>(Temporary); }
3659
3660  /// \brief Determine whether this materialized temporary is bound to an
3661  /// lvalue reference; otherwise, it's bound to an rvalue reference.
3662  bool isBoundToLvalueReference() const {
3663    return getValueKind() == VK_LValue;
3664  }
3665
3666  SourceRange getSourceRange() const LLVM_READONLY {
3667    return Temporary->getSourceRange();
3668  }
3669
3670  static bool classof(const Stmt *T) {
3671    return T->getStmtClass() == MaterializeTemporaryExprClass;
3672  }
3673  static bool classof(const MaterializeTemporaryExpr *) {
3674    return true;
3675  }
3676
3677  // Iterators
3678  child_range children() { return child_range(&Temporary, &Temporary + 1); }
3679};
3680
3681}  // end namespace clang
3682
3683#endif
3684