ExprCXX.h revision 01d08018b7cf5ce1601707cfd7a84d22015fc04e
1//===--- ExprCXX.h - Classes for representing expressions -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses for C++ expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPRCXX_H
15#define LLVM_CLANG_AST_EXPRCXX_H
16
17#include "clang/AST/Expr.h"
18#include "clang/AST/UnresolvedSet.h"
19#include "clang/AST/TemplateBase.h"
20#include "clang/Basic/ExpressionTraits.h"
21#include "clang/Basic/Lambda.h"
22#include "clang/Basic/TypeTraits.h"
23
24namespace clang {
25
26class CXXConstructorDecl;
27class CXXDestructorDecl;
28class CXXMethodDecl;
29class CXXTemporary;
30class TemplateArgumentListInfo;
31
32//===--------------------------------------------------------------------===//
33// C++ Expressions.
34//===--------------------------------------------------------------------===//
35
36/// \brief A call to an overloaded operator written using operator
37/// syntax.
38///
39/// Represents a call to an overloaded operator written using operator
40/// syntax, e.g., "x + y" or "*p". While semantically equivalent to a
41/// normal call, this AST node provides better information about the
42/// syntactic representation of the call.
43///
44/// In a C++ template, this expression node kind will be used whenever
45/// any of the arguments are type-dependent. In this case, the
46/// function itself will be a (possibly empty) set of functions and
47/// function templates that were found by name lookup at template
48/// definition time.
49class CXXOperatorCallExpr : public CallExpr {
50  /// \brief The overloaded operator.
51  OverloadedOperatorKind Operator;
52
53public:
54  CXXOperatorCallExpr(ASTContext& C, OverloadedOperatorKind Op, Expr *fn,
55                      Expr **args, unsigned numargs, QualType t,
56                      ExprValueKind VK, SourceLocation operatorloc)
57    : CallExpr(C, CXXOperatorCallExprClass, fn, 0, args, numargs, t, VK,
58               operatorloc),
59      Operator(Op) {}
60  explicit CXXOperatorCallExpr(ASTContext& C, EmptyShell Empty) :
61    CallExpr(C, CXXOperatorCallExprClass, Empty) { }
62
63
64  /// getOperator - Returns the kind of overloaded operator that this
65  /// expression refers to.
66  OverloadedOperatorKind getOperator() const { return Operator; }
67  void setOperator(OverloadedOperatorKind Kind) { Operator = Kind; }
68
69  /// getOperatorLoc - Returns the location of the operator symbol in
70  /// the expression. When @c getOperator()==OO_Call, this is the
71  /// location of the right parentheses; when @c
72  /// getOperator()==OO_Subscript, this is the location of the right
73  /// bracket.
74  SourceLocation getOperatorLoc() const { return getRParenLoc(); }
75
76  SourceRange getSourceRange() const;
77
78  static bool classof(const Stmt *T) {
79    return T->getStmtClass() == CXXOperatorCallExprClass;
80  }
81  static bool classof(const CXXOperatorCallExpr *) { return true; }
82};
83
84/// CXXMemberCallExpr - Represents a call to a member function that
85/// may be written either with member call syntax (e.g., "obj.func()"
86/// or "objptr->func()") or with normal function-call syntax
87/// ("func()") within a member function that ends up calling a member
88/// function. The callee in either case is a MemberExpr that contains
89/// both the object argument and the member function, while the
90/// arguments are the arguments within the parentheses (not including
91/// the object argument).
92class CXXMemberCallExpr : public CallExpr {
93public:
94  CXXMemberCallExpr(ASTContext &C, Expr *fn, Expr **args, unsigned numargs,
95                    QualType t, ExprValueKind VK, SourceLocation RP)
96    : CallExpr(C, CXXMemberCallExprClass, fn, 0, args, numargs, t, VK, RP) {}
97
98  CXXMemberCallExpr(ASTContext &C, EmptyShell Empty)
99    : CallExpr(C, CXXMemberCallExprClass, Empty) { }
100
101  /// getImplicitObjectArgument - Retrieves the implicit object
102  /// argument for the member call. For example, in "x.f(5)", this
103  /// operation would return "x".
104  Expr *getImplicitObjectArgument() const;
105
106  /// Retrieves the declaration of the called method.
107  CXXMethodDecl *getMethodDecl() const;
108
109  /// getRecordDecl - Retrieves the CXXRecordDecl for the underlying type of
110  /// the implicit object argument. Note that this is may not be the same
111  /// declaration as that of the class context of the CXXMethodDecl which this
112  /// function is calling.
113  /// FIXME: Returns 0 for member pointer call exprs.
114  CXXRecordDecl *getRecordDecl();
115
116  static bool classof(const Stmt *T) {
117    return T->getStmtClass() == CXXMemberCallExprClass;
118  }
119  static bool classof(const CXXMemberCallExpr *) { return true; }
120};
121
122/// CUDAKernelCallExpr - Represents a call to a CUDA kernel function.
123class CUDAKernelCallExpr : public CallExpr {
124private:
125  enum { CONFIG, END_PREARG };
126
127public:
128  CUDAKernelCallExpr(ASTContext &C, Expr *fn, CallExpr *Config,
129                     Expr **args, unsigned numargs, QualType t,
130                     ExprValueKind VK, SourceLocation RP)
131    : CallExpr(C, CUDAKernelCallExprClass, fn, END_PREARG, args, numargs, t, VK,
132               RP) {
133    setConfig(Config);
134  }
135
136  CUDAKernelCallExpr(ASTContext &C, EmptyShell Empty)
137    : CallExpr(C, CUDAKernelCallExprClass, END_PREARG, Empty) { }
138
139  const CallExpr *getConfig() const {
140    return cast_or_null<CallExpr>(getPreArg(CONFIG));
141  }
142  CallExpr *getConfig() { return cast_or_null<CallExpr>(getPreArg(CONFIG)); }
143  void setConfig(CallExpr *E) { setPreArg(CONFIG, E); }
144
145  static bool classof(const Stmt *T) {
146    return T->getStmtClass() == CUDAKernelCallExprClass;
147  }
148  static bool classof(const CUDAKernelCallExpr *) { return true; }
149};
150
151/// CXXNamedCastExpr - Abstract class common to all of the C++ "named"
152/// casts, @c static_cast, @c dynamic_cast, @c reinterpret_cast, or @c
153/// const_cast.
154///
155/// This abstract class is inherited by all of the classes
156/// representing "named" casts, e.g., CXXStaticCastExpr,
157/// CXXDynamicCastExpr, CXXReinterpretCastExpr, and CXXConstCastExpr.
158class CXXNamedCastExpr : public ExplicitCastExpr {
159private:
160  SourceLocation Loc; // the location of the casting op
161  SourceLocation RParenLoc; // the location of the right parenthesis
162
163protected:
164  CXXNamedCastExpr(StmtClass SC, QualType ty, ExprValueKind VK,
165                   CastKind kind, Expr *op, unsigned PathSize,
166                   TypeSourceInfo *writtenTy, SourceLocation l,
167                   SourceLocation RParenLoc)
168    : ExplicitCastExpr(SC, ty, VK, kind, op, PathSize, writtenTy), Loc(l),
169      RParenLoc(RParenLoc) {}
170
171  explicit CXXNamedCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
172    : ExplicitCastExpr(SC, Shell, PathSize) { }
173
174  friend class ASTStmtReader;
175
176public:
177  const char *getCastName() const;
178
179  /// \brief Retrieve the location of the cast operator keyword, e.g.,
180  /// "static_cast".
181  SourceLocation getOperatorLoc() const { return Loc; }
182
183  /// \brief Retrieve the location of the closing parenthesis.
184  SourceLocation getRParenLoc() const { return RParenLoc; }
185
186  SourceRange getSourceRange() const {
187    return SourceRange(Loc, RParenLoc);
188  }
189  static bool classof(const Stmt *T) {
190    switch (T->getStmtClass()) {
191    case CXXStaticCastExprClass:
192    case CXXDynamicCastExprClass:
193    case CXXReinterpretCastExprClass:
194    case CXXConstCastExprClass:
195      return true;
196    default:
197      return false;
198    }
199  }
200  static bool classof(const CXXNamedCastExpr *) { return true; }
201};
202
203/// CXXStaticCastExpr - A C++ @c static_cast expression
204/// (C++ [expr.static.cast]).
205///
206/// This expression node represents a C++ static cast, e.g.,
207/// @c static_cast<int>(1.0).
208class CXXStaticCastExpr : public CXXNamedCastExpr {
209  CXXStaticCastExpr(QualType ty, ExprValueKind vk, CastKind kind, Expr *op,
210                    unsigned pathSize, TypeSourceInfo *writtenTy,
211                    SourceLocation l, SourceLocation RParenLoc)
212    : CXXNamedCastExpr(CXXStaticCastExprClass, ty, vk, kind, op, pathSize,
213                       writtenTy, l, RParenLoc) {}
214
215  explicit CXXStaticCastExpr(EmptyShell Empty, unsigned PathSize)
216    : CXXNamedCastExpr(CXXStaticCastExprClass, Empty, PathSize) { }
217
218public:
219  static CXXStaticCastExpr *Create(ASTContext &Context, QualType T,
220                                   ExprValueKind VK, CastKind K, Expr *Op,
221                                   const CXXCastPath *Path,
222                                   TypeSourceInfo *Written, SourceLocation L,
223                                   SourceLocation RParenLoc);
224  static CXXStaticCastExpr *CreateEmpty(ASTContext &Context,
225                                        unsigned PathSize);
226
227  static bool classof(const Stmt *T) {
228    return T->getStmtClass() == CXXStaticCastExprClass;
229  }
230  static bool classof(const CXXStaticCastExpr *) { return true; }
231};
232
233/// CXXDynamicCastExpr - A C++ @c dynamic_cast expression
234/// (C++ [expr.dynamic.cast]), which may perform a run-time check to
235/// determine how to perform the type cast.
236///
237/// This expression node represents a dynamic cast, e.g.,
238/// @c dynamic_cast<Derived*>(BasePtr).
239class CXXDynamicCastExpr : public CXXNamedCastExpr {
240  CXXDynamicCastExpr(QualType ty, ExprValueKind VK, CastKind kind,
241                     Expr *op, unsigned pathSize, TypeSourceInfo *writtenTy,
242                     SourceLocation l, SourceLocation RParenLoc)
243    : CXXNamedCastExpr(CXXDynamicCastExprClass, ty, VK, kind, op, pathSize,
244                       writtenTy, l, RParenLoc) {}
245
246  explicit CXXDynamicCastExpr(EmptyShell Empty, unsigned pathSize)
247    : CXXNamedCastExpr(CXXDynamicCastExprClass, Empty, pathSize) { }
248
249public:
250  static CXXDynamicCastExpr *Create(ASTContext &Context, QualType T,
251                                    ExprValueKind VK, CastKind Kind, Expr *Op,
252                                    const CXXCastPath *Path,
253                                    TypeSourceInfo *Written, SourceLocation L,
254                                    SourceLocation RParenLoc);
255
256  static CXXDynamicCastExpr *CreateEmpty(ASTContext &Context,
257                                         unsigned pathSize);
258
259  bool isAlwaysNull() const;
260
261  static bool classof(const Stmt *T) {
262    return T->getStmtClass() == CXXDynamicCastExprClass;
263  }
264  static bool classof(const CXXDynamicCastExpr *) { return true; }
265};
266
267/// CXXReinterpretCastExpr - A C++ @c reinterpret_cast expression (C++
268/// [expr.reinterpret.cast]), which provides a differently-typed view
269/// of a value but performs no actual work at run time.
270///
271/// This expression node represents a reinterpret cast, e.g.,
272/// @c reinterpret_cast<int>(VoidPtr).
273class CXXReinterpretCastExpr : public CXXNamedCastExpr {
274  CXXReinterpretCastExpr(QualType ty, ExprValueKind vk, CastKind kind,
275                         Expr *op, unsigned pathSize,
276                         TypeSourceInfo *writtenTy, SourceLocation l,
277                         SourceLocation RParenLoc)
278    : CXXNamedCastExpr(CXXReinterpretCastExprClass, ty, vk, kind, op,
279                       pathSize, writtenTy, l, RParenLoc) {}
280
281  CXXReinterpretCastExpr(EmptyShell Empty, unsigned pathSize)
282    : CXXNamedCastExpr(CXXReinterpretCastExprClass, Empty, pathSize) { }
283
284public:
285  static CXXReinterpretCastExpr *Create(ASTContext &Context, QualType T,
286                                        ExprValueKind VK, CastKind Kind,
287                                        Expr *Op, const CXXCastPath *Path,
288                                 TypeSourceInfo *WrittenTy, SourceLocation L,
289                                        SourceLocation RParenLoc);
290  static CXXReinterpretCastExpr *CreateEmpty(ASTContext &Context,
291                                             unsigned pathSize);
292
293  static bool classof(const Stmt *T) {
294    return T->getStmtClass() == CXXReinterpretCastExprClass;
295  }
296  static bool classof(const CXXReinterpretCastExpr *) { return true; }
297};
298
299/// CXXConstCastExpr - A C++ @c const_cast expression (C++ [expr.const.cast]),
300/// which can remove type qualifiers but does not change the underlying value.
301///
302/// This expression node represents a const cast, e.g.,
303/// @c const_cast<char*>(PtrToConstChar).
304class CXXConstCastExpr : public CXXNamedCastExpr {
305  CXXConstCastExpr(QualType ty, ExprValueKind VK, Expr *op,
306                   TypeSourceInfo *writtenTy, SourceLocation l,
307                   SourceLocation RParenLoc)
308    : CXXNamedCastExpr(CXXConstCastExprClass, ty, VK, CK_NoOp, op,
309                       0, writtenTy, l, RParenLoc) {}
310
311  explicit CXXConstCastExpr(EmptyShell Empty)
312    : CXXNamedCastExpr(CXXConstCastExprClass, Empty, 0) { }
313
314public:
315  static CXXConstCastExpr *Create(ASTContext &Context, QualType T,
316                                  ExprValueKind VK, Expr *Op,
317                                  TypeSourceInfo *WrittenTy, SourceLocation L,
318                                  SourceLocation RParenLoc);
319  static CXXConstCastExpr *CreateEmpty(ASTContext &Context);
320
321  static bool classof(const Stmt *T) {
322    return T->getStmtClass() == CXXConstCastExprClass;
323  }
324  static bool classof(const CXXConstCastExpr *) { return true; }
325};
326
327/// CXXBoolLiteralExpr - [C++ 2.13.5] C++ Boolean Literal.
328///
329class CXXBoolLiteralExpr : public Expr {
330  bool Value;
331  SourceLocation Loc;
332public:
333  CXXBoolLiteralExpr(bool val, QualType Ty, SourceLocation l) :
334    Expr(CXXBoolLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
335         false, false),
336    Value(val), Loc(l) {}
337
338  explicit CXXBoolLiteralExpr(EmptyShell Empty)
339    : Expr(CXXBoolLiteralExprClass, Empty) { }
340
341  bool getValue() const { return Value; }
342  void setValue(bool V) { Value = V; }
343
344  SourceRange getSourceRange() const { return SourceRange(Loc); }
345
346  SourceLocation getLocation() const { return Loc; }
347  void setLocation(SourceLocation L) { Loc = L; }
348
349  static bool classof(const Stmt *T) {
350    return T->getStmtClass() == CXXBoolLiteralExprClass;
351  }
352  static bool classof(const CXXBoolLiteralExpr *) { return true; }
353
354  // Iterators
355  child_range children() { return child_range(); }
356};
357
358/// CXXNullPtrLiteralExpr - [C++0x 2.14.7] C++ Pointer Literal
359class CXXNullPtrLiteralExpr : public Expr {
360  SourceLocation Loc;
361public:
362  CXXNullPtrLiteralExpr(QualType Ty, SourceLocation l) :
363    Expr(CXXNullPtrLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
364         false, false),
365    Loc(l) {}
366
367  explicit CXXNullPtrLiteralExpr(EmptyShell Empty)
368    : Expr(CXXNullPtrLiteralExprClass, Empty) { }
369
370  SourceRange getSourceRange() const { return SourceRange(Loc); }
371
372  SourceLocation getLocation() const { return Loc; }
373  void setLocation(SourceLocation L) { Loc = L; }
374
375  static bool classof(const Stmt *T) {
376    return T->getStmtClass() == CXXNullPtrLiteralExprClass;
377  }
378  static bool classof(const CXXNullPtrLiteralExpr *) { return true; }
379
380  child_range children() { return child_range(); }
381};
382
383/// CXXTypeidExpr - A C++ @c typeid expression (C++ [expr.typeid]), which gets
384/// the type_info that corresponds to the supplied type, or the (possibly
385/// dynamic) type of the supplied expression.
386///
387/// This represents code like @c typeid(int) or @c typeid(*objPtr)
388class CXXTypeidExpr : public Expr {
389private:
390  llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
391  SourceRange Range;
392
393public:
394  CXXTypeidExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
395    : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
396           // typeid is never type-dependent (C++ [temp.dep.expr]p4)
397           false,
398           // typeid is value-dependent if the type or expression are dependent
399           Operand->getType()->isDependentType(),
400           Operand->getType()->isInstantiationDependentType(),
401           Operand->getType()->containsUnexpandedParameterPack()),
402      Operand(Operand), Range(R) { }
403
404  CXXTypeidExpr(QualType Ty, Expr *Operand, SourceRange R)
405    : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
406        // typeid is never type-dependent (C++ [temp.dep.expr]p4)
407           false,
408        // typeid is value-dependent if the type or expression are dependent
409           Operand->isTypeDependent() || Operand->isValueDependent(),
410           Operand->isInstantiationDependent(),
411           Operand->containsUnexpandedParameterPack()),
412      Operand(Operand), Range(R) { }
413
414  CXXTypeidExpr(EmptyShell Empty, bool isExpr)
415    : Expr(CXXTypeidExprClass, Empty) {
416    if (isExpr)
417      Operand = (Expr*)0;
418    else
419      Operand = (TypeSourceInfo*)0;
420  }
421
422  bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
423
424  /// \brief Retrieves the type operand of this typeid() expression after
425  /// various required adjustments (removing reference types, cv-qualifiers).
426  QualType getTypeOperand() const;
427
428  /// \brief Retrieve source information for the type operand.
429  TypeSourceInfo *getTypeOperandSourceInfo() const {
430    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
431    return Operand.get<TypeSourceInfo *>();
432  }
433
434  void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
435    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
436    Operand = TSI;
437  }
438
439  Expr *getExprOperand() const {
440    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
441    return static_cast<Expr*>(Operand.get<Stmt *>());
442  }
443
444  void setExprOperand(Expr *E) {
445    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
446    Operand = E;
447  }
448
449  SourceRange getSourceRange() const { return Range; }
450  void setSourceRange(SourceRange R) { Range = R; }
451
452  static bool classof(const Stmt *T) {
453    return T->getStmtClass() == CXXTypeidExprClass;
454  }
455  static bool classof(const CXXTypeidExpr *) { return true; }
456
457  // Iterators
458  child_range children() {
459    if (isTypeOperand()) return child_range();
460    Stmt **begin = reinterpret_cast<Stmt**>(&Operand);
461    return child_range(begin, begin + 1);
462  }
463};
464
465/// CXXUuidofExpr - A microsoft C++ @c __uuidof expression, which gets
466/// the _GUID that corresponds to the supplied type or expression.
467///
468/// This represents code like @c __uuidof(COMTYPE) or @c __uuidof(*comPtr)
469class CXXUuidofExpr : public Expr {
470private:
471  llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
472  SourceRange Range;
473
474public:
475  CXXUuidofExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
476    : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary,
477           false, Operand->getType()->isDependentType(),
478           Operand->getType()->isInstantiationDependentType(),
479           Operand->getType()->containsUnexpandedParameterPack()),
480      Operand(Operand), Range(R) { }
481
482  CXXUuidofExpr(QualType Ty, Expr *Operand, SourceRange R)
483    : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary,
484           false, Operand->isTypeDependent(),
485           Operand->isInstantiationDependent(),
486           Operand->containsUnexpandedParameterPack()),
487      Operand(Operand), Range(R) { }
488
489  CXXUuidofExpr(EmptyShell Empty, bool isExpr)
490    : Expr(CXXUuidofExprClass, Empty) {
491    if (isExpr)
492      Operand = (Expr*)0;
493    else
494      Operand = (TypeSourceInfo*)0;
495  }
496
497  bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
498
499  /// \brief Retrieves the type operand of this __uuidof() expression after
500  /// various required adjustments (removing reference types, cv-qualifiers).
501  QualType getTypeOperand() const;
502
503  /// \brief Retrieve source information for the type operand.
504  TypeSourceInfo *getTypeOperandSourceInfo() const {
505    assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
506    return Operand.get<TypeSourceInfo *>();
507  }
508
509  void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
510    assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
511    Operand = TSI;
512  }
513
514  Expr *getExprOperand() const {
515    assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
516    return static_cast<Expr*>(Operand.get<Stmt *>());
517  }
518
519  void setExprOperand(Expr *E) {
520    assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
521    Operand = E;
522  }
523
524  SourceRange getSourceRange() const { return Range; }
525  void setSourceRange(SourceRange R) { Range = R; }
526
527  static bool classof(const Stmt *T) {
528    return T->getStmtClass() == CXXUuidofExprClass;
529  }
530  static bool classof(const CXXUuidofExpr *) { return true; }
531
532  // Iterators
533  child_range children() {
534    if (isTypeOperand()) return child_range();
535    Stmt **begin = reinterpret_cast<Stmt**>(&Operand);
536    return child_range(begin, begin + 1);
537  }
538};
539
540/// CXXThisExpr - Represents the "this" expression in C++, which is a
541/// pointer to the object on which the current member function is
542/// executing (C++ [expr.prim]p3). Example:
543///
544/// @code
545/// class Foo {
546/// public:
547///   void bar();
548///   void test() { this->bar(); }
549/// };
550/// @endcode
551class CXXThisExpr : public Expr {
552  SourceLocation Loc;
553  bool Implicit : 1;
554
555public:
556  CXXThisExpr(SourceLocation L, QualType Type, bool isImplicit)
557    : Expr(CXXThisExprClass, Type, VK_RValue, OK_Ordinary,
558           // 'this' is type-dependent if the class type of the enclosing
559           // member function is dependent (C++ [temp.dep.expr]p2)
560           Type->isDependentType(), Type->isDependentType(),
561           Type->isInstantiationDependentType(),
562           /*ContainsUnexpandedParameterPack=*/false),
563      Loc(L), Implicit(isImplicit) { }
564
565  CXXThisExpr(EmptyShell Empty) : Expr(CXXThisExprClass, Empty) {}
566
567  SourceLocation getLocation() const { return Loc; }
568  void setLocation(SourceLocation L) { Loc = L; }
569
570  SourceRange getSourceRange() const { return SourceRange(Loc); }
571
572  bool isImplicit() const { return Implicit; }
573  void setImplicit(bool I) { Implicit = I; }
574
575  static bool classof(const Stmt *T) {
576    return T->getStmtClass() == CXXThisExprClass;
577  }
578  static bool classof(const CXXThisExpr *) { return true; }
579
580  // Iterators
581  child_range children() { return child_range(); }
582};
583
584///  CXXThrowExpr - [C++ 15] C++ Throw Expression.  This handles
585///  'throw' and 'throw' assignment-expression.  When
586///  assignment-expression isn't present, Op will be null.
587///
588class CXXThrowExpr : public Expr {
589  Stmt *Op;
590  SourceLocation ThrowLoc;
591  /// \brief Whether the thrown variable (if any) is in scope.
592  unsigned IsThrownVariableInScope : 1;
593
594  friend class ASTStmtReader;
595
596public:
597  // Ty is the void type which is used as the result type of the
598  // exepression.  The l is the location of the throw keyword.  expr
599  // can by null, if the optional expression to throw isn't present.
600  CXXThrowExpr(Expr *expr, QualType Ty, SourceLocation l,
601               bool IsThrownVariableInScope) :
602    Expr(CXXThrowExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
603         expr && expr->isInstantiationDependent(),
604         expr && expr->containsUnexpandedParameterPack()),
605    Op(expr), ThrowLoc(l), IsThrownVariableInScope(IsThrownVariableInScope) {}
606  CXXThrowExpr(EmptyShell Empty) : Expr(CXXThrowExprClass, Empty) {}
607
608  const Expr *getSubExpr() const { return cast_or_null<Expr>(Op); }
609  Expr *getSubExpr() { return cast_or_null<Expr>(Op); }
610
611  SourceLocation getThrowLoc() const { return ThrowLoc; }
612
613  /// \brief Determines whether the variable thrown by this expression (if any!)
614  /// is within the innermost try block.
615  ///
616  /// This information is required to determine whether the NRVO can apply to
617  /// this variable.
618  bool isThrownVariableInScope() const { return IsThrownVariableInScope; }
619
620  SourceRange getSourceRange() const {
621    if (getSubExpr() == 0)
622      return SourceRange(ThrowLoc, ThrowLoc);
623    return SourceRange(ThrowLoc, getSubExpr()->getSourceRange().getEnd());
624  }
625
626  static bool classof(const Stmt *T) {
627    return T->getStmtClass() == CXXThrowExprClass;
628  }
629  static bool classof(const CXXThrowExpr *) { return true; }
630
631  // Iterators
632  child_range children() {
633    return child_range(&Op, Op ? &Op+1 : &Op);
634  }
635};
636
637/// CXXDefaultArgExpr - C++ [dcl.fct.default]. This wraps up a
638/// function call argument that was created from the corresponding
639/// parameter's default argument, when the call did not explicitly
640/// supply arguments for all of the parameters.
641class CXXDefaultArgExpr : public Expr {
642  /// \brief The parameter whose default is being used.
643  ///
644  /// When the bit is set, the subexpression is stored after the
645  /// CXXDefaultArgExpr itself. When the bit is clear, the parameter's
646  /// actual default expression is the subexpression.
647  llvm::PointerIntPair<ParmVarDecl *, 1, bool> Param;
648
649  /// \brief The location where the default argument expression was used.
650  SourceLocation Loc;
651
652  CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param)
653    : Expr(SC,
654           param->hasUnparsedDefaultArg()
655             ? param->getType().getNonReferenceType()
656             : param->getDefaultArg()->getType(),
657           param->getDefaultArg()->getValueKind(),
658           param->getDefaultArg()->getObjectKind(), false, false, false, false),
659      Param(param, false), Loc(Loc) { }
660
661  CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param,
662                    Expr *SubExpr)
663    : Expr(SC, SubExpr->getType(),
664           SubExpr->getValueKind(), SubExpr->getObjectKind(),
665           false, false, false, false),
666      Param(param, true), Loc(Loc) {
667    *reinterpret_cast<Expr **>(this + 1) = SubExpr;
668  }
669
670public:
671  CXXDefaultArgExpr(EmptyShell Empty) : Expr(CXXDefaultArgExprClass, Empty) {}
672
673
674  // Param is the parameter whose default argument is used by this
675  // expression.
676  static CXXDefaultArgExpr *Create(ASTContext &C, SourceLocation Loc,
677                                   ParmVarDecl *Param) {
678    return new (C) CXXDefaultArgExpr(CXXDefaultArgExprClass, Loc, Param);
679  }
680
681  // Param is the parameter whose default argument is used by this
682  // expression, and SubExpr is the expression that will actually be used.
683  static CXXDefaultArgExpr *Create(ASTContext &C,
684                                   SourceLocation Loc,
685                                   ParmVarDecl *Param,
686                                   Expr *SubExpr);
687
688  // Retrieve the parameter that the argument was created from.
689  const ParmVarDecl *getParam() const { return Param.getPointer(); }
690  ParmVarDecl *getParam() { return Param.getPointer(); }
691
692  // Retrieve the actual argument to the function call.
693  const Expr *getExpr() const {
694    if (Param.getInt())
695      return *reinterpret_cast<Expr const * const*> (this + 1);
696    return getParam()->getDefaultArg();
697  }
698  Expr *getExpr() {
699    if (Param.getInt())
700      return *reinterpret_cast<Expr **> (this + 1);
701    return getParam()->getDefaultArg();
702  }
703
704  /// \brief Retrieve the location where this default argument was actually
705  /// used.
706  SourceLocation getUsedLocation() const { return Loc; }
707
708  SourceRange getSourceRange() const {
709    // Default argument expressions have no representation in the
710    // source, so they have an empty source range.
711    return SourceRange();
712  }
713
714  static bool classof(const Stmt *T) {
715    return T->getStmtClass() == CXXDefaultArgExprClass;
716  }
717  static bool classof(const CXXDefaultArgExpr *) { return true; }
718
719  // Iterators
720  child_range children() { return child_range(); }
721
722  friend class ASTStmtReader;
723  friend class ASTStmtWriter;
724};
725
726/// CXXTemporary - Represents a C++ temporary.
727class CXXTemporary {
728  /// Destructor - The destructor that needs to be called.
729  const CXXDestructorDecl *Destructor;
730
731  CXXTemporary(const CXXDestructorDecl *destructor)
732    : Destructor(destructor) { }
733
734public:
735  static CXXTemporary *Create(ASTContext &C,
736                              const CXXDestructorDecl *Destructor);
737
738  const CXXDestructorDecl *getDestructor() const { return Destructor; }
739};
740
741/// \brief Represents binding an expression to a temporary.
742///
743/// This ensures the destructor is called for the temporary. It should only be
744/// needed for non-POD, non-trivially destructable class types. For example:
745///
746/// \code
747///   struct S {
748///     S() { }  // User defined constructor makes S non-POD.
749///     ~S() { } // User defined destructor makes it non-trivial.
750///   };
751///   void test() {
752///     const S &s_ref = S(); // Requires a CXXBindTemporaryExpr.
753///   }
754/// \endcode
755class CXXBindTemporaryExpr : public Expr {
756  CXXTemporary *Temp;
757
758  Stmt *SubExpr;
759
760  CXXBindTemporaryExpr(CXXTemporary *temp, Expr* SubExpr)
761   : Expr(CXXBindTemporaryExprClass, SubExpr->getType(),
762          VK_RValue, OK_Ordinary, SubExpr->isTypeDependent(),
763          SubExpr->isValueDependent(),
764          SubExpr->isInstantiationDependent(),
765          SubExpr->containsUnexpandedParameterPack()),
766     Temp(temp), SubExpr(SubExpr) { }
767
768public:
769  CXXBindTemporaryExpr(EmptyShell Empty)
770    : Expr(CXXBindTemporaryExprClass, Empty), Temp(0), SubExpr(0) {}
771
772  static CXXBindTemporaryExpr *Create(ASTContext &C, CXXTemporary *Temp,
773                                      Expr* SubExpr);
774
775  CXXTemporary *getTemporary() { return Temp; }
776  const CXXTemporary *getTemporary() const { return Temp; }
777  void setTemporary(CXXTemporary *T) { Temp = T; }
778
779  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
780  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
781  void setSubExpr(Expr *E) { SubExpr = E; }
782
783  SourceRange getSourceRange() const {
784    return SubExpr->getSourceRange();
785  }
786
787  // Implement isa/cast/dyncast/etc.
788  static bool classof(const Stmt *T) {
789    return T->getStmtClass() == CXXBindTemporaryExprClass;
790  }
791  static bool classof(const CXXBindTemporaryExpr *) { return true; }
792
793  // Iterators
794  child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
795};
796
797/// CXXConstructExpr - Represents a call to a C++ constructor.
798class CXXConstructExpr : public Expr {
799public:
800  enum ConstructionKind {
801    CK_Complete,
802    CK_NonVirtualBase,
803    CK_VirtualBase,
804    CK_Delegating
805  };
806
807private:
808  CXXConstructorDecl *Constructor;
809
810  SourceLocation Loc;
811  SourceRange ParenRange;
812  unsigned NumArgs : 16;
813  bool Elidable : 1;
814  bool HadMultipleCandidates : 1;
815  bool ZeroInitialization : 1;
816  unsigned ConstructKind : 2;
817  Stmt **Args;
818
819protected:
820  CXXConstructExpr(ASTContext &C, StmtClass SC, QualType T,
821                   SourceLocation Loc,
822                   CXXConstructorDecl *d, bool elidable,
823                   Expr **args, unsigned numargs,
824                   bool HadMultipleCandidates,
825                   bool ZeroInitialization = false,
826                   ConstructionKind ConstructKind = CK_Complete,
827                   SourceRange ParenRange = SourceRange());
828
829  /// \brief Construct an empty C++ construction expression.
830  CXXConstructExpr(StmtClass SC, EmptyShell Empty)
831    : Expr(SC, Empty), Constructor(0), NumArgs(0), Elidable(0),
832      HadMultipleCandidates(false), ZeroInitialization(0),
833      ConstructKind(0), Args(0) { }
834
835public:
836  /// \brief Construct an empty C++ construction expression.
837  explicit CXXConstructExpr(EmptyShell Empty)
838    : Expr(CXXConstructExprClass, Empty), Constructor(0),
839      NumArgs(0), Elidable(0), HadMultipleCandidates(false),
840      ZeroInitialization(0), ConstructKind(0), Args(0) { }
841
842  static CXXConstructExpr *Create(ASTContext &C, QualType T,
843                                  SourceLocation Loc,
844                                  CXXConstructorDecl *D, bool Elidable,
845                                  Expr **Args, unsigned NumArgs,
846                                  bool HadMultipleCandidates,
847                                  bool ZeroInitialization = false,
848                                  ConstructionKind ConstructKind = CK_Complete,
849                                  SourceRange ParenRange = SourceRange());
850
851
852  CXXConstructorDecl* getConstructor() const { return Constructor; }
853  void setConstructor(CXXConstructorDecl *C) { Constructor = C; }
854
855  SourceLocation getLocation() const { return Loc; }
856  void setLocation(SourceLocation Loc) { this->Loc = Loc; }
857
858  /// \brief Whether this construction is elidable.
859  bool isElidable() const { return Elidable; }
860  void setElidable(bool E) { Elidable = E; }
861
862  /// \brief Whether the referred constructor was resolved from
863  /// an overloaded set having size greater than 1.
864  bool hadMultipleCandidates() const { return HadMultipleCandidates; }
865  void setHadMultipleCandidates(bool V) { HadMultipleCandidates = V; }
866
867  /// \brief Whether this construction first requires
868  /// zero-initialization before the initializer is called.
869  bool requiresZeroInitialization() const { return ZeroInitialization; }
870  void setRequiresZeroInitialization(bool ZeroInit) {
871    ZeroInitialization = ZeroInit;
872  }
873
874  /// \brief Determines whether this constructor is actually constructing
875  /// a base class (rather than a complete object).
876  ConstructionKind getConstructionKind() const {
877    return (ConstructionKind)ConstructKind;
878  }
879  void setConstructionKind(ConstructionKind CK) {
880    ConstructKind = CK;
881  }
882
883  typedef ExprIterator arg_iterator;
884  typedef ConstExprIterator const_arg_iterator;
885
886  arg_iterator arg_begin() { return Args; }
887  arg_iterator arg_end() { return Args + NumArgs; }
888  const_arg_iterator arg_begin() const { return Args; }
889  const_arg_iterator arg_end() const { return Args + NumArgs; }
890
891  Expr **getArgs() const { return reinterpret_cast<Expr **>(Args); }
892  unsigned getNumArgs() const { return NumArgs; }
893
894  /// getArg - Return the specified argument.
895  Expr *getArg(unsigned Arg) {
896    assert(Arg < NumArgs && "Arg access out of range!");
897    return cast<Expr>(Args[Arg]);
898  }
899  const Expr *getArg(unsigned Arg) const {
900    assert(Arg < NumArgs && "Arg access out of range!");
901    return cast<Expr>(Args[Arg]);
902  }
903
904  /// setArg - Set the specified argument.
905  void setArg(unsigned Arg, Expr *ArgExpr) {
906    assert(Arg < NumArgs && "Arg access out of range!");
907    Args[Arg] = ArgExpr;
908  }
909
910  SourceRange getSourceRange() const;
911  SourceRange getParenRange() const { return ParenRange; }
912
913  static bool classof(const Stmt *T) {
914    return T->getStmtClass() == CXXConstructExprClass ||
915      T->getStmtClass() == CXXTemporaryObjectExprClass;
916  }
917  static bool classof(const CXXConstructExpr *) { return true; }
918
919  // Iterators
920  child_range children() {
921    return child_range(&Args[0], &Args[0]+NumArgs);
922  }
923
924  friend class ASTStmtReader;
925};
926
927/// CXXFunctionalCastExpr - Represents an explicit C++ type conversion
928/// that uses "functional" notion (C++ [expr.type.conv]). Example: @c
929/// x = int(0.5);
930class CXXFunctionalCastExpr : public ExplicitCastExpr {
931  SourceLocation TyBeginLoc;
932  SourceLocation RParenLoc;
933
934  CXXFunctionalCastExpr(QualType ty, ExprValueKind VK,
935                        TypeSourceInfo *writtenTy,
936                        SourceLocation tyBeginLoc, CastKind kind,
937                        Expr *castExpr, unsigned pathSize,
938                        SourceLocation rParenLoc)
939    : ExplicitCastExpr(CXXFunctionalCastExprClass, ty, VK, kind,
940                       castExpr, pathSize, writtenTy),
941      TyBeginLoc(tyBeginLoc), RParenLoc(rParenLoc) {}
942
943  explicit CXXFunctionalCastExpr(EmptyShell Shell, unsigned PathSize)
944    : ExplicitCastExpr(CXXFunctionalCastExprClass, Shell, PathSize) { }
945
946public:
947  static CXXFunctionalCastExpr *Create(ASTContext &Context, QualType T,
948                                       ExprValueKind VK,
949                                       TypeSourceInfo *Written,
950                                       SourceLocation TyBeginLoc,
951                                       CastKind Kind, Expr *Op,
952                                       const CXXCastPath *Path,
953                                       SourceLocation RPLoc);
954  static CXXFunctionalCastExpr *CreateEmpty(ASTContext &Context,
955                                            unsigned PathSize);
956
957  SourceLocation getTypeBeginLoc() const { return TyBeginLoc; }
958  void setTypeBeginLoc(SourceLocation L) { TyBeginLoc = L; }
959  SourceLocation getRParenLoc() const { return RParenLoc; }
960  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
961
962  SourceRange getSourceRange() const {
963    return SourceRange(TyBeginLoc, RParenLoc);
964  }
965  static bool classof(const Stmt *T) {
966    return T->getStmtClass() == CXXFunctionalCastExprClass;
967  }
968  static bool classof(const CXXFunctionalCastExpr *) { return true; }
969};
970
971/// @brief Represents a C++ functional cast expression that builds a
972/// temporary object.
973///
974/// This expression type represents a C++ "functional" cast
975/// (C++[expr.type.conv]) with N != 1 arguments that invokes a
976/// constructor to build a temporary object. With N == 1 arguments the
977/// functional cast expression will be represented by CXXFunctionalCastExpr.
978/// Example:
979/// @code
980/// struct X { X(int, float); }
981///
982/// X create_X() {
983///   return X(1, 3.14f); // creates a CXXTemporaryObjectExpr
984/// };
985/// @endcode
986class CXXTemporaryObjectExpr : public CXXConstructExpr {
987  TypeSourceInfo *Type;
988
989public:
990  CXXTemporaryObjectExpr(ASTContext &C, CXXConstructorDecl *Cons,
991                         TypeSourceInfo *Type,
992                         Expr **Args,unsigned NumArgs,
993                         SourceRange parenRange,
994                         bool HadMultipleCandidates,
995                         bool ZeroInitialization = false);
996  explicit CXXTemporaryObjectExpr(EmptyShell Empty)
997    : CXXConstructExpr(CXXTemporaryObjectExprClass, Empty), Type() { }
998
999  TypeSourceInfo *getTypeSourceInfo() const { return Type; }
1000
1001  SourceRange getSourceRange() const;
1002
1003  static bool classof(const Stmt *T) {
1004    return T->getStmtClass() == CXXTemporaryObjectExprClass;
1005  }
1006  static bool classof(const CXXTemporaryObjectExpr *) { return true; }
1007
1008  friend class ASTStmtReader;
1009};
1010
1011/// \brief A C++ lambda expression, which produces a function object
1012/// (of unspecified type) that can be invoked later.
1013///
1014/// Example:
1015/// \code
1016/// void low_pass_filter(std::vector<double> &values, double cutoff) {
1017///   values.erase(std::remove_if(values.begin(), values.end(),
1018//                                [=](double value) { return value > cutoff; });
1019/// }
1020/// \endcode
1021///
1022/// Lambda expressions can capture local variables, either by copying
1023/// the values of those local variables at the time the function
1024/// object is constructed (not when it is called!) or by holding a
1025/// reference to the local variable. These captures can occur either
1026/// implicitly or can be written explicitly between the square
1027/// brackets ([...]) that start the lambda expression.
1028class LambdaExpr : public Expr {
1029  enum {
1030    /// \brief Flag used by the Capture class to indicate that the given
1031    /// capture was implicit.
1032    Capture_Implicit = 0x01,
1033
1034    /// \brief Flag used by the Capture class to indciate that the
1035    /// given capture was by-copy.
1036    Capture_ByCopy = 0x02
1037  };
1038
1039  /// \brief The source range that covers the lambda introducer ([...]).
1040  SourceRange IntroducerRange;
1041
1042  /// \brief The number of captures in this lambda.
1043  unsigned NumCaptures : 16;
1044
1045  /// \brief The number of explicit captures in this lambda.
1046  unsigned NumExplicitCaptures : 13;
1047
1048  /// \brief The default capture kind, which is a value of type
1049  /// LambdaCaptureDefault.
1050  unsigned CaptureDefault : 2;
1051
1052  /// \brief Whether this lambda had an explicit parameter list vs. an
1053  /// implicit (and empty) parameter list.
1054  unsigned ExplicitParams : 1;
1055
1056  /// \brief The location of the closing brace ('}') that completes
1057  /// the lambda.
1058  ///
1059  /// The location of the brace is also available by looking up the
1060  /// function call operator in the lambda class. However, it is
1061  /// stored here to improve the performance of getSourceRange(), and
1062  /// to avoid having to deserialize the function call operator from a
1063  /// module file just to determine the source range.
1064  SourceLocation ClosingBrace;
1065
1066  // Note: The Create method allocates storage after the LambdaExpr
1067  // object, which contains the captures, followed by the capture
1068  // initializers, and finally the body of the lambda. The capture
1069  // initializers and lambda body are placed next to each other so
1070  // that the children() function can visit all of them easily.
1071
1072public:
1073  /// \brief Describes the capture of either a variable or 'this'.
1074  class Capture {
1075    llvm::PointerIntPair<VarDecl *, 2> VarAndBits;
1076    SourceLocation Loc;
1077    SourceLocation EllipsisLoc;
1078
1079    friend class ASTStmtReader;
1080    friend class ASTStmtWriter;
1081
1082  public:
1083    /// \brief Create a new capture.
1084    ///
1085    /// \param Loc The source location associated with this capture.
1086    ///
1087    /// \param Kind The kind of capture (this, byref, bycopy).
1088    ///
1089    /// \param Implicit Whether the capture was implicit or explicit.
1090    ///
1091    /// \param Var The local variable being captured, or null if capturing this.
1092    ///
1093    /// \param EllipsisLoc The location of the ellipsis (...) for a
1094    /// capture that is a pack expansion, or an invalid source
1095    /// location to indicate that this is not a pack expansion.
1096    Capture(SourceLocation Loc, bool Implicit,
1097            LambdaCaptureKind Kind, VarDecl *Var = 0,
1098            SourceLocation EllipsisLoc = SourceLocation());
1099
1100    /// \brief Determine the kind of capture.
1101    LambdaCaptureKind getCaptureKind() const;
1102
1103    /// \brief Determine whether this capture handles the C++ 'this'
1104    /// pointer.
1105    bool capturesThis() const { return VarAndBits.getPointer() == 0; }
1106
1107    /// \brief Determine whether this capture handles a variable.
1108    bool capturesVariable() const { return VarAndBits.getPointer() != 0; }
1109
1110    /// \brief Retrieve the declaration of the local variable being
1111    /// captured.
1112    ///
1113    /// This operation is only valid if this capture does not capture
1114    /// 'this'.
1115    VarDecl *getCapturedVar() const {
1116      assert(!capturesThis() && "No variable available for 'this' capture");
1117      return VarAndBits.getPointer();
1118    }
1119
1120    /// \brief Determine whether this was an implicit capture (not
1121    /// written between the square brackets introducing the lambda).
1122    bool isImplicit() const { return VarAndBits.getInt() & Capture_Implicit; }
1123
1124    /// \brief Determine whether this was an explicit capture, written
1125    /// between the square brackets introducing the lambda.
1126    bool isExplicit() const { return !isImplicit(); }
1127
1128    /// \brief Retrieve the source location of the capture.
1129    ///
1130    /// For an explicit capture, this returns the location of the
1131    /// explicit capture in the source. For an implicit capture, this
1132    /// returns the location at which the variable or 'this' was first
1133    /// used.
1134    SourceLocation getLocation() const { return Loc; }
1135
1136    /// \brief Determine whether this capture is a pack expansion,
1137    /// which captures a function parameter pack.
1138    bool isPackExpansion() const { return EllipsisLoc.isValid(); }
1139
1140    /// \brief Retrieve the location of the ellipsis for a capture
1141    /// that is a pack expansion.
1142    SourceLocation getEllipsisLoc() const {
1143      assert(isPackExpansion() && "No ellipsis location for a non-expansion");
1144      return EllipsisLoc;
1145    }
1146  };
1147
1148private:
1149  /// \brief Construct a lambda expression.
1150  LambdaExpr(QualType T, SourceRange IntroducerRange,
1151             LambdaCaptureDefault CaptureDefault,
1152             ArrayRef<Capture> Captures,
1153             bool ExplicitParams,
1154             ArrayRef<Expr *> CaptureInits,
1155             SourceLocation ClosingBrace);
1156
1157  Stmt **getStoredStmts() const {
1158    LambdaExpr *This = const_cast<LambdaExpr *>(this);
1159    return reinterpret_cast<Stmt **>(reinterpret_cast<Capture *>(This + 1)
1160                                     + NumCaptures);
1161  }
1162
1163public:
1164  /// \brief Construct a new lambda expression.
1165  static LambdaExpr *Create(ASTContext &C,
1166                            CXXRecordDecl *Class,
1167                            SourceRange IntroducerRange,
1168                            LambdaCaptureDefault CaptureDefault,
1169                            ArrayRef<Capture> Captures,
1170                            bool ExplicitParams,
1171                            ArrayRef<Expr *> CaptureInits,
1172                            SourceLocation ClosingBrace);
1173
1174  /// \brief Determine the default capture kind for this lambda.
1175  LambdaCaptureDefault getCaptureDefault() const {
1176    return static_cast<LambdaCaptureDefault>(CaptureDefault);
1177  }
1178
1179  /// \brief An iterator that walks over the captures of the lambda,
1180  /// both implicit and explicit.
1181  typedef const Capture *capture_iterator;
1182
1183  /// \brief Retrieve an iterator pointing to the first lambda capture.
1184  capture_iterator capture_begin() const {
1185    return reinterpret_cast<const Capture *>(this + 1);
1186  }
1187
1188  /// \brief Retrieve an iterator pointing past the end of the
1189  /// sequence of lambda captures.
1190  capture_iterator capture_end() const {
1191    return capture_begin() + NumCaptures;
1192  }
1193
1194  /// \brief Retrieve an iterator pointing to the first explicit
1195  /// lambda capture.
1196  capture_iterator explicit_capture_begin() const {
1197    return capture_begin();
1198  }
1199
1200  /// \brief Retrieve an iterator pointing past the end of the sequence of
1201  /// explicit lambda captures.
1202  capture_iterator explicit_capture_end() const {
1203    return capture_begin() + NumExplicitCaptures;
1204  }
1205
1206  /// \brief Retrieve an iterator pointing to the first implicit
1207  /// lambda capture.
1208  capture_iterator implicit_capture_begin() const {
1209    return explicit_capture_end();
1210  }
1211
1212  /// \brief Retrieve an iterator pointing past the end of the sequence of
1213  /// implicit lambda captures.
1214  capture_iterator implicit_capture_end() const {
1215    return capture_end();
1216  }
1217
1218  /// \brief Iterator that walks over the capture initialization
1219  /// arguments.
1220  typedef Expr **capture_init_iterator;
1221
1222  /// \brief Retrieve the first initialization argument for this
1223  /// lambda expression (which initializes the first capture field).
1224  capture_init_iterator capture_init_begin() const {
1225    return reinterpret_cast<Expr **>(getStoredStmts() + 1);
1226  }
1227
1228  /// \brief Retrieve the iterator pointing one past the last
1229  /// initialization argument for this lambda expression (which
1230  /// initializes the first capture field).
1231  capture_init_iterator capture_init_end() const {
1232    return capture_init_begin() + NumCaptures;
1233  }
1234
1235  /// \brief Retrieve the source range covering the lambda introducer,
1236  /// which contains the explicit capture list surrounded by square
1237  /// brackets ([...]).
1238  SourceRange getIntroducerRange() const { return IntroducerRange; }
1239
1240  /// \brief Retrieve the class that corresponds to the lambda, which
1241  /// stores the captures in its fields and provides the various
1242  /// operations permitted on a lambda (copying, calling).
1243  CXXRecordDecl *getLambdaClass() const;
1244
1245  /// \brief Retrieve the function call operator associated with this
1246  /// lambda expression.
1247  CXXMethodDecl *getCallOperator() const;
1248
1249  /// \brief Retrieve the body of the lambda.
1250  CompoundStmt *getBody() const {
1251    return reinterpret_cast<CompoundStmt *>(getStoredStmts()[NumCaptures]);
1252  }
1253
1254  /// \brief Determine whether the lambda is mutable, meaning that any
1255  /// captures values can be modified.
1256  bool isMutable() const;
1257
1258  /// \brief Determine whether this lambda has an explicit parameter
1259  /// list vs. an implicit (empty) parameter list.
1260  bool hasExplicitParameters() const { return ExplicitParams; }
1261
1262  static bool classof(const Stmt *T) {
1263    return T->getStmtClass() == LambdaExprClass;
1264  }
1265  static bool classof(const LambdaExpr *) { return true; }
1266
1267  SourceRange getSourceRange() const {
1268    return SourceRange(IntroducerRange.getBegin(), ClosingBrace);
1269  }
1270
1271  child_range children() {
1272    return child_range(getStoredStmts(), getStoredStmts() + NumCaptures + 1);
1273  }
1274
1275  friend class ASTStmtReader;
1276  friend class ASTStmtWriter;
1277};
1278
1279/// CXXScalarValueInitExpr - [C++ 5.2.3p2]
1280/// Expression "T()" which creates a value-initialized rvalue of type
1281/// T, which is a non-class type.
1282///
1283class CXXScalarValueInitExpr : public Expr {
1284  SourceLocation RParenLoc;
1285  TypeSourceInfo *TypeInfo;
1286
1287  friend class ASTStmtReader;
1288
1289public:
1290  /// \brief Create an explicitly-written scalar-value initialization
1291  /// expression.
1292  CXXScalarValueInitExpr(QualType Type,
1293                         TypeSourceInfo *TypeInfo,
1294                         SourceLocation rParenLoc ) :
1295    Expr(CXXScalarValueInitExprClass, Type, VK_RValue, OK_Ordinary,
1296         false, false, Type->isInstantiationDependentType(), false),
1297    RParenLoc(rParenLoc), TypeInfo(TypeInfo) {}
1298
1299  explicit CXXScalarValueInitExpr(EmptyShell Shell)
1300    : Expr(CXXScalarValueInitExprClass, Shell) { }
1301
1302  TypeSourceInfo *getTypeSourceInfo() const {
1303    return TypeInfo;
1304  }
1305
1306  SourceLocation getRParenLoc() const { return RParenLoc; }
1307
1308  SourceRange getSourceRange() const;
1309
1310  static bool classof(const Stmt *T) {
1311    return T->getStmtClass() == CXXScalarValueInitExprClass;
1312  }
1313  static bool classof(const CXXScalarValueInitExpr *) { return true; }
1314
1315  // Iterators
1316  child_range children() { return child_range(); }
1317};
1318
1319/// CXXNewExpr - A new expression for memory allocation and constructor calls,
1320/// e.g: "new CXXNewExpr(foo)".
1321class CXXNewExpr : public Expr {
1322  // Was the usage ::new, i.e. is the global new to be used?
1323  bool GlobalNew : 1;
1324  // Is there an initializer? If not, built-ins are uninitialized, else they're
1325  // value-initialized.
1326  bool Initializer : 1;
1327  // Do we allocate an array? If so, the first SubExpr is the size expression.
1328  bool Array : 1;
1329  // If this is an array allocation, does the usual deallocation
1330  // function for the allocated type want to know the allocated size?
1331  bool UsualArrayDeleteWantsSize : 1;
1332  // Whether the referred constructor (if any) was resolved from an
1333  // overload set having size greater than 1.
1334  bool HadMultipleCandidates : 1;
1335  // The number of placement new arguments.
1336  unsigned NumPlacementArgs : 13;
1337  // The number of constructor arguments. This may be 1 even for non-class
1338  // types; use the pseudo copy constructor.
1339  unsigned NumConstructorArgs : 14;
1340  // Contains an optional array size expression, any number of optional
1341  // placement arguments, and any number of optional constructor arguments,
1342  // in that order.
1343  Stmt **SubExprs;
1344  // Points to the allocation function used.
1345  FunctionDecl *OperatorNew;
1346  // Points to the deallocation function used in case of error. May be null.
1347  FunctionDecl *OperatorDelete;
1348  // Points to the constructor used. Cannot be null if AllocType is a record;
1349  // it would still point at the default constructor (even an implicit one).
1350  // Must be null for all other types.
1351  CXXConstructorDecl *Constructor;
1352
1353  /// \brief The allocated type-source information, as written in the source.
1354  TypeSourceInfo *AllocatedTypeInfo;
1355
1356  /// \brief If the allocated type was expressed as a parenthesized type-id,
1357  /// the source range covering the parenthesized type-id.
1358  SourceRange TypeIdParens;
1359
1360  SourceLocation StartLoc;
1361  SourceLocation EndLoc;
1362  SourceLocation ConstructorLParen;
1363  SourceLocation ConstructorRParen;
1364
1365  friend class ASTStmtReader;
1366public:
1367  CXXNewExpr(ASTContext &C, bool globalNew, FunctionDecl *operatorNew,
1368             Expr **placementArgs, unsigned numPlaceArgs,
1369             SourceRange TypeIdParens,
1370             Expr *arraySize, CXXConstructorDecl *constructor, bool initializer,
1371             Expr **constructorArgs, unsigned numConsArgs,
1372             bool HadMultipleCandidates,
1373             FunctionDecl *operatorDelete, bool usualArrayDeleteWantsSize,
1374             QualType ty, TypeSourceInfo *AllocatedTypeInfo,
1375             SourceLocation startLoc, SourceLocation endLoc,
1376             SourceLocation constructorLParen,
1377             SourceLocation constructorRParen);
1378  explicit CXXNewExpr(EmptyShell Shell)
1379    : Expr(CXXNewExprClass, Shell), SubExprs(0) { }
1380
1381  void AllocateArgsArray(ASTContext &C, bool isArray, unsigned numPlaceArgs,
1382                         unsigned numConsArgs);
1383
1384  QualType getAllocatedType() const {
1385    assert(getType()->isPointerType());
1386    return getType()->getAs<PointerType>()->getPointeeType();
1387  }
1388
1389  TypeSourceInfo *getAllocatedTypeSourceInfo() const {
1390    return AllocatedTypeInfo;
1391  }
1392
1393  /// \brief True if the allocation result needs to be null-checked.
1394  /// C++0x [expr.new]p13:
1395  ///   If the allocation function returns null, initialization shall
1396  ///   not be done, the deallocation function shall not be called,
1397  ///   and the value of the new-expression shall be null.
1398  /// An allocation function is not allowed to return null unless it
1399  /// has a non-throwing exception-specification.  The '03 rule is
1400  /// identical except that the definition of a non-throwing
1401  /// exception specification is just "is it throw()?".
1402  bool shouldNullCheckAllocation(ASTContext &Ctx) const;
1403
1404  FunctionDecl *getOperatorNew() const { return OperatorNew; }
1405  void setOperatorNew(FunctionDecl *D) { OperatorNew = D; }
1406  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
1407  void setOperatorDelete(FunctionDecl *D) { OperatorDelete = D; }
1408  CXXConstructorDecl *getConstructor() const { return Constructor; }
1409  void setConstructor(CXXConstructorDecl *D) { Constructor = D; }
1410
1411  bool isArray() const { return Array; }
1412  Expr *getArraySize() {
1413    return Array ? cast<Expr>(SubExprs[0]) : 0;
1414  }
1415  const Expr *getArraySize() const {
1416    return Array ? cast<Expr>(SubExprs[0]) : 0;
1417  }
1418
1419  unsigned getNumPlacementArgs() const { return NumPlacementArgs; }
1420  Expr **getPlacementArgs() {
1421    return reinterpret_cast<Expr **>(SubExprs + Array);
1422  }
1423
1424  Expr *getPlacementArg(unsigned i) {
1425    assert(i < NumPlacementArgs && "Index out of range");
1426    return cast<Expr>(SubExprs[Array + i]);
1427  }
1428  const Expr *getPlacementArg(unsigned i) const {
1429    assert(i < NumPlacementArgs && "Index out of range");
1430    return cast<Expr>(SubExprs[Array + i]);
1431  }
1432
1433  bool isParenTypeId() const { return TypeIdParens.isValid(); }
1434  SourceRange getTypeIdParens() const { return TypeIdParens; }
1435
1436  bool isGlobalNew() const { return GlobalNew; }
1437  bool hasInitializer() const { return Initializer; }
1438
1439  /// Answers whether the usual array deallocation function for the
1440  /// allocated type expects the size of the allocation as a
1441  /// parameter.
1442  bool doesUsualArrayDeleteWantSize() const {
1443    return UsualArrayDeleteWantsSize;
1444  }
1445
1446  unsigned getNumConstructorArgs() const { return NumConstructorArgs; }
1447
1448  Expr **getConstructorArgs() {
1449    return reinterpret_cast<Expr **>(SubExprs + Array + NumPlacementArgs);
1450  }
1451
1452  Expr *getConstructorArg(unsigned i) {
1453    assert(i < NumConstructorArgs && "Index out of range");
1454    return cast<Expr>(SubExprs[Array + NumPlacementArgs + i]);
1455  }
1456  const Expr *getConstructorArg(unsigned i) const {
1457    assert(i < NumConstructorArgs && "Index out of range");
1458    return cast<Expr>(SubExprs[Array + NumPlacementArgs + i]);
1459  }
1460
1461  /// \brief Whether the new expression refers a constructor that was
1462  /// resolved from an overloaded set having size greater than 1.
1463  bool hadMultipleCandidates() const { return HadMultipleCandidates; }
1464  void setHadMultipleCandidates(bool V) { HadMultipleCandidates = V; }
1465
1466  typedef ExprIterator arg_iterator;
1467  typedef ConstExprIterator const_arg_iterator;
1468
1469  arg_iterator placement_arg_begin() {
1470    return SubExprs + Array;
1471  }
1472  arg_iterator placement_arg_end() {
1473    return SubExprs + Array + getNumPlacementArgs();
1474  }
1475  const_arg_iterator placement_arg_begin() const {
1476    return SubExprs + Array;
1477  }
1478  const_arg_iterator placement_arg_end() const {
1479    return SubExprs + Array + getNumPlacementArgs();
1480  }
1481
1482  arg_iterator constructor_arg_begin() {
1483    return SubExprs + Array + getNumPlacementArgs();
1484  }
1485  arg_iterator constructor_arg_end() {
1486    return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
1487  }
1488  const_arg_iterator constructor_arg_begin() const {
1489    return SubExprs + Array + getNumPlacementArgs();
1490  }
1491  const_arg_iterator constructor_arg_end() const {
1492    return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
1493  }
1494
1495  typedef Stmt **raw_arg_iterator;
1496  raw_arg_iterator raw_arg_begin() { return SubExprs; }
1497  raw_arg_iterator raw_arg_end() {
1498    return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
1499  }
1500  const_arg_iterator raw_arg_begin() const { return SubExprs; }
1501  const_arg_iterator raw_arg_end() const { return constructor_arg_end(); }
1502
1503  SourceLocation getStartLoc() const { return StartLoc; }
1504  SourceLocation getEndLoc() const { return EndLoc; }
1505
1506  SourceLocation getConstructorLParen() const { return ConstructorLParen; }
1507  SourceLocation getConstructorRParen() const { return ConstructorRParen; }
1508
1509  SourceRange getSourceRange() const {
1510    return SourceRange(StartLoc, EndLoc);
1511  }
1512
1513  static bool classof(const Stmt *T) {
1514    return T->getStmtClass() == CXXNewExprClass;
1515  }
1516  static bool classof(const CXXNewExpr *) { return true; }
1517
1518  // Iterators
1519  child_range children() {
1520    return child_range(&SubExprs[0],
1521                       &SubExprs[0] + Array + getNumPlacementArgs()
1522                         + getNumConstructorArgs());
1523  }
1524};
1525
1526/// CXXDeleteExpr - A delete expression for memory deallocation and destructor
1527/// calls, e.g. "delete[] pArray".
1528class CXXDeleteExpr : public Expr {
1529  // Is this a forced global delete, i.e. "::delete"?
1530  bool GlobalDelete : 1;
1531  // Is this the array form of delete, i.e. "delete[]"?
1532  bool ArrayForm : 1;
1533  // ArrayFormAsWritten can be different from ArrayForm if 'delete' is applied
1534  // to pointer-to-array type (ArrayFormAsWritten will be false while ArrayForm
1535  // will be true).
1536  bool ArrayFormAsWritten : 1;
1537  // Does the usual deallocation function for the element type require
1538  // a size_t argument?
1539  bool UsualArrayDeleteWantsSize : 1;
1540  // Points to the operator delete overload that is used. Could be a member.
1541  FunctionDecl *OperatorDelete;
1542  // The pointer expression to be deleted.
1543  Stmt *Argument;
1544  // Location of the expression.
1545  SourceLocation Loc;
1546public:
1547  CXXDeleteExpr(QualType ty, bool globalDelete, bool arrayForm,
1548                bool arrayFormAsWritten, bool usualArrayDeleteWantsSize,
1549                FunctionDecl *operatorDelete, Expr *arg, SourceLocation loc)
1550    : Expr(CXXDeleteExprClass, ty, VK_RValue, OK_Ordinary, false, false,
1551           arg->isInstantiationDependent(),
1552           arg->containsUnexpandedParameterPack()),
1553      GlobalDelete(globalDelete),
1554      ArrayForm(arrayForm), ArrayFormAsWritten(arrayFormAsWritten),
1555      UsualArrayDeleteWantsSize(usualArrayDeleteWantsSize),
1556      OperatorDelete(operatorDelete), Argument(arg), Loc(loc) { }
1557  explicit CXXDeleteExpr(EmptyShell Shell)
1558    : Expr(CXXDeleteExprClass, Shell), OperatorDelete(0), Argument(0) { }
1559
1560  bool isGlobalDelete() const { return GlobalDelete; }
1561  bool isArrayForm() const { return ArrayForm; }
1562  bool isArrayFormAsWritten() const { return ArrayFormAsWritten; }
1563
1564  /// Answers whether the usual array deallocation function for the
1565  /// allocated type expects the size of the allocation as a
1566  /// parameter.  This can be true even if the actual deallocation
1567  /// function that we're using doesn't want a size.
1568  bool doesUsualArrayDeleteWantSize() const {
1569    return UsualArrayDeleteWantsSize;
1570  }
1571
1572  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
1573
1574  Expr *getArgument() { return cast<Expr>(Argument); }
1575  const Expr *getArgument() const { return cast<Expr>(Argument); }
1576
1577  /// \brief Retrieve the type being destroyed.  If the type being
1578  /// destroyed is a dependent type which may or may not be a pointer,
1579  /// return an invalid type.
1580  QualType getDestroyedType() const;
1581
1582  SourceRange getSourceRange() const {
1583    return SourceRange(Loc, Argument->getLocEnd());
1584  }
1585
1586  static bool classof(const Stmt *T) {
1587    return T->getStmtClass() == CXXDeleteExprClass;
1588  }
1589  static bool classof(const CXXDeleteExpr *) { return true; }
1590
1591  // Iterators
1592  child_range children() { return child_range(&Argument, &Argument+1); }
1593
1594  friend class ASTStmtReader;
1595};
1596
1597/// \brief Structure used to store the type being destroyed by a
1598/// pseudo-destructor expression.
1599class PseudoDestructorTypeStorage {
1600  /// \brief Either the type source information or the name of the type, if
1601  /// it couldn't be resolved due to type-dependence.
1602  llvm::PointerUnion<TypeSourceInfo *, IdentifierInfo *> Type;
1603
1604  /// \brief The starting source location of the pseudo-destructor type.
1605  SourceLocation Location;
1606
1607public:
1608  PseudoDestructorTypeStorage() { }
1609
1610  PseudoDestructorTypeStorage(IdentifierInfo *II, SourceLocation Loc)
1611    : Type(II), Location(Loc) { }
1612
1613  PseudoDestructorTypeStorage(TypeSourceInfo *Info);
1614
1615  TypeSourceInfo *getTypeSourceInfo() const {
1616    return Type.dyn_cast<TypeSourceInfo *>();
1617  }
1618
1619  IdentifierInfo *getIdentifier() const {
1620    return Type.dyn_cast<IdentifierInfo *>();
1621  }
1622
1623  SourceLocation getLocation() const { return Location; }
1624};
1625
1626/// \brief Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
1627///
1628/// A pseudo-destructor is an expression that looks like a member access to a
1629/// destructor of a scalar type, except that scalar types don't have
1630/// destructors. For example:
1631///
1632/// \code
1633/// typedef int T;
1634/// void f(int *p) {
1635///   p->T::~T();
1636/// }
1637/// \endcode
1638///
1639/// Pseudo-destructors typically occur when instantiating templates such as:
1640///
1641/// \code
1642/// template<typename T>
1643/// void destroy(T* ptr) {
1644///   ptr->T::~T();
1645/// }
1646/// \endcode
1647///
1648/// for scalar types. A pseudo-destructor expression has no run-time semantics
1649/// beyond evaluating the base expression.
1650class CXXPseudoDestructorExpr : public Expr {
1651  /// \brief The base expression (that is being destroyed).
1652  Stmt *Base;
1653
1654  /// \brief Whether the operator was an arrow ('->'); otherwise, it was a
1655  /// period ('.').
1656  bool IsArrow : 1;
1657
1658  /// \brief The location of the '.' or '->' operator.
1659  SourceLocation OperatorLoc;
1660
1661  /// \brief The nested-name-specifier that follows the operator, if present.
1662  NestedNameSpecifierLoc QualifierLoc;
1663
1664  /// \brief The type that precedes the '::' in a qualified pseudo-destructor
1665  /// expression.
1666  TypeSourceInfo *ScopeType;
1667
1668  /// \brief The location of the '::' in a qualified pseudo-destructor
1669  /// expression.
1670  SourceLocation ColonColonLoc;
1671
1672  /// \brief The location of the '~'.
1673  SourceLocation TildeLoc;
1674
1675  /// \brief The type being destroyed, or its name if we were unable to
1676  /// resolve the name.
1677  PseudoDestructorTypeStorage DestroyedType;
1678
1679  friend class ASTStmtReader;
1680
1681public:
1682  CXXPseudoDestructorExpr(ASTContext &Context,
1683                          Expr *Base, bool isArrow, SourceLocation OperatorLoc,
1684                          NestedNameSpecifierLoc QualifierLoc,
1685                          TypeSourceInfo *ScopeType,
1686                          SourceLocation ColonColonLoc,
1687                          SourceLocation TildeLoc,
1688                          PseudoDestructorTypeStorage DestroyedType);
1689
1690  explicit CXXPseudoDestructorExpr(EmptyShell Shell)
1691    : Expr(CXXPseudoDestructorExprClass, Shell),
1692      Base(0), IsArrow(false), QualifierLoc(), ScopeType(0) { }
1693
1694  Expr *getBase() const { return cast<Expr>(Base); }
1695
1696  /// \brief Determines whether this member expression actually had
1697  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
1698  /// x->Base::foo.
1699  bool hasQualifier() const { return QualifierLoc; }
1700
1701  /// \brief Retrieves the nested-name-specifier that qualifies the type name,
1702  /// with source-location information.
1703  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
1704
1705  /// \brief If the member name was qualified, retrieves the
1706  /// nested-name-specifier that precedes the member name. Otherwise, returns
1707  /// NULL.
1708  NestedNameSpecifier *getQualifier() const {
1709    return QualifierLoc.getNestedNameSpecifier();
1710  }
1711
1712  /// \brief Determine whether this pseudo-destructor expression was written
1713  /// using an '->' (otherwise, it used a '.').
1714  bool isArrow() const { return IsArrow; }
1715
1716  /// \brief Retrieve the location of the '.' or '->' operator.
1717  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1718
1719  /// \brief Retrieve the scope type in a qualified pseudo-destructor
1720  /// expression.
1721  ///
1722  /// Pseudo-destructor expressions can have extra qualification within them
1723  /// that is not part of the nested-name-specifier, e.g., \c p->T::~T().
1724  /// Here, if the object type of the expression is (or may be) a scalar type,
1725  /// \p T may also be a scalar type and, therefore, cannot be part of a
1726  /// nested-name-specifier. It is stored as the "scope type" of the pseudo-
1727  /// destructor expression.
1728  TypeSourceInfo *getScopeTypeInfo() const { return ScopeType; }
1729
1730  /// \brief Retrieve the location of the '::' in a qualified pseudo-destructor
1731  /// expression.
1732  SourceLocation getColonColonLoc() const { return ColonColonLoc; }
1733
1734  /// \brief Retrieve the location of the '~'.
1735  SourceLocation getTildeLoc() const { return TildeLoc; }
1736
1737  /// \brief Retrieve the source location information for the type
1738  /// being destroyed.
1739  ///
1740  /// This type-source information is available for non-dependent
1741  /// pseudo-destructor expressions and some dependent pseudo-destructor
1742  /// expressions. Returns NULL if we only have the identifier for a
1743  /// dependent pseudo-destructor expression.
1744  TypeSourceInfo *getDestroyedTypeInfo() const {
1745    return DestroyedType.getTypeSourceInfo();
1746  }
1747
1748  /// \brief In a dependent pseudo-destructor expression for which we do not
1749  /// have full type information on the destroyed type, provides the name
1750  /// of the destroyed type.
1751  IdentifierInfo *getDestroyedTypeIdentifier() const {
1752    return DestroyedType.getIdentifier();
1753  }
1754
1755  /// \brief Retrieve the type being destroyed.
1756  QualType getDestroyedType() const;
1757
1758  /// \brief Retrieve the starting location of the type being destroyed.
1759  SourceLocation getDestroyedTypeLoc() const {
1760    return DestroyedType.getLocation();
1761  }
1762
1763  /// \brief Set the name of destroyed type for a dependent pseudo-destructor
1764  /// expression.
1765  void setDestroyedType(IdentifierInfo *II, SourceLocation Loc) {
1766    DestroyedType = PseudoDestructorTypeStorage(II, Loc);
1767  }
1768
1769  /// \brief Set the destroyed type.
1770  void setDestroyedType(TypeSourceInfo *Info) {
1771    DestroyedType = PseudoDestructorTypeStorage(Info);
1772  }
1773
1774  SourceRange getSourceRange() const;
1775
1776  static bool classof(const Stmt *T) {
1777    return T->getStmtClass() == CXXPseudoDestructorExprClass;
1778  }
1779  static bool classof(const CXXPseudoDestructorExpr *) { return true; }
1780
1781  // Iterators
1782  child_range children() { return child_range(&Base, &Base + 1); }
1783};
1784
1785/// UnaryTypeTraitExpr - A GCC or MS unary type trait, as used in the
1786/// implementation of TR1/C++0x type trait templates.
1787/// Example:
1788/// __is_pod(int) == true
1789/// __is_enum(std::string) == false
1790class UnaryTypeTraitExpr : public Expr {
1791  /// UTT - The trait. A UnaryTypeTrait enum in MSVC compat unsigned.
1792  unsigned UTT : 31;
1793  /// The value of the type trait. Unspecified if dependent.
1794  bool Value : 1;
1795
1796  /// Loc - The location of the type trait keyword.
1797  SourceLocation Loc;
1798
1799  /// RParen - The location of the closing paren.
1800  SourceLocation RParen;
1801
1802  /// The type being queried.
1803  TypeSourceInfo *QueriedType;
1804
1805public:
1806  UnaryTypeTraitExpr(SourceLocation loc, UnaryTypeTrait utt,
1807                     TypeSourceInfo *queried, bool value,
1808                     SourceLocation rparen, QualType ty)
1809    : Expr(UnaryTypeTraitExprClass, ty, VK_RValue, OK_Ordinary,
1810           false,  queried->getType()->isDependentType(),
1811           queried->getType()->isInstantiationDependentType(),
1812           queried->getType()->containsUnexpandedParameterPack()),
1813      UTT(utt), Value(value), Loc(loc), RParen(rparen), QueriedType(queried) { }
1814
1815  explicit UnaryTypeTraitExpr(EmptyShell Empty)
1816    : Expr(UnaryTypeTraitExprClass, Empty), UTT(0), Value(false),
1817      QueriedType() { }
1818
1819  SourceRange getSourceRange() const { return SourceRange(Loc, RParen);}
1820
1821  UnaryTypeTrait getTrait() const { return static_cast<UnaryTypeTrait>(UTT); }
1822
1823  QualType getQueriedType() const { return QueriedType->getType(); }
1824
1825  TypeSourceInfo *getQueriedTypeSourceInfo() const { return QueriedType; }
1826
1827  bool getValue() const { return Value; }
1828
1829  static bool classof(const Stmt *T) {
1830    return T->getStmtClass() == UnaryTypeTraitExprClass;
1831  }
1832  static bool classof(const UnaryTypeTraitExpr *) { return true; }
1833
1834  // Iterators
1835  child_range children() { return child_range(); }
1836
1837  friend class ASTStmtReader;
1838};
1839
1840/// BinaryTypeTraitExpr - A GCC or MS binary type trait, as used in the
1841/// implementation of TR1/C++0x type trait templates.
1842/// Example:
1843/// __is_base_of(Base, Derived) == true
1844class BinaryTypeTraitExpr : public Expr {
1845  /// BTT - The trait. A BinaryTypeTrait enum in MSVC compat unsigned.
1846  unsigned BTT : 8;
1847
1848  /// The value of the type trait. Unspecified if dependent.
1849  bool Value : 1;
1850
1851  /// Loc - The location of the type trait keyword.
1852  SourceLocation Loc;
1853
1854  /// RParen - The location of the closing paren.
1855  SourceLocation RParen;
1856
1857  /// The lhs type being queried.
1858  TypeSourceInfo *LhsType;
1859
1860  /// The rhs type being queried.
1861  TypeSourceInfo *RhsType;
1862
1863public:
1864  BinaryTypeTraitExpr(SourceLocation loc, BinaryTypeTrait btt,
1865                     TypeSourceInfo *lhsType, TypeSourceInfo *rhsType,
1866                     bool value, SourceLocation rparen, QualType ty)
1867    : Expr(BinaryTypeTraitExprClass, ty, VK_RValue, OK_Ordinary, false,
1868           lhsType->getType()->isDependentType() ||
1869           rhsType->getType()->isDependentType(),
1870           (lhsType->getType()->isInstantiationDependentType() ||
1871            rhsType->getType()->isInstantiationDependentType()),
1872           (lhsType->getType()->containsUnexpandedParameterPack() ||
1873            rhsType->getType()->containsUnexpandedParameterPack())),
1874      BTT(btt), Value(value), Loc(loc), RParen(rparen),
1875      LhsType(lhsType), RhsType(rhsType) { }
1876
1877
1878  explicit BinaryTypeTraitExpr(EmptyShell Empty)
1879    : Expr(BinaryTypeTraitExprClass, Empty), BTT(0), Value(false),
1880      LhsType(), RhsType() { }
1881
1882  SourceRange getSourceRange() const {
1883    return SourceRange(Loc, RParen);
1884  }
1885
1886  BinaryTypeTrait getTrait() const {
1887    return static_cast<BinaryTypeTrait>(BTT);
1888  }
1889
1890  QualType getLhsType() const { return LhsType->getType(); }
1891  QualType getRhsType() const { return RhsType->getType(); }
1892
1893  TypeSourceInfo *getLhsTypeSourceInfo() const { return LhsType; }
1894  TypeSourceInfo *getRhsTypeSourceInfo() const { return RhsType; }
1895
1896  bool getValue() const { assert(!isTypeDependent()); return Value; }
1897
1898  static bool classof(const Stmt *T) {
1899    return T->getStmtClass() == BinaryTypeTraitExprClass;
1900  }
1901  static bool classof(const BinaryTypeTraitExpr *) { return true; }
1902
1903  // Iterators
1904  child_range children() { return child_range(); }
1905
1906  friend class ASTStmtReader;
1907};
1908
1909/// ArrayTypeTraitExpr - An Embarcadero array type trait, as used in the
1910/// implementation of __array_rank and __array_extent.
1911/// Example:
1912/// __array_rank(int[10][20]) == 2
1913/// __array_extent(int, 1)    == 20
1914class ArrayTypeTraitExpr : public Expr {
1915  virtual void anchor();
1916
1917  /// ATT - The trait. An ArrayTypeTrait enum in MSVC compat unsigned.
1918  unsigned ATT : 2;
1919
1920  /// The value of the type trait. Unspecified if dependent.
1921  uint64_t Value;
1922
1923  /// The array dimension being queried, or -1 if not used
1924  Expr *Dimension;
1925
1926  /// Loc - The location of the type trait keyword.
1927  SourceLocation Loc;
1928
1929  /// RParen - The location of the closing paren.
1930  SourceLocation RParen;
1931
1932  /// The type being queried.
1933  TypeSourceInfo *QueriedType;
1934
1935public:
1936  ArrayTypeTraitExpr(SourceLocation loc, ArrayTypeTrait att,
1937                     TypeSourceInfo *queried, uint64_t value,
1938                     Expr *dimension, SourceLocation rparen, QualType ty)
1939    : Expr(ArrayTypeTraitExprClass, ty, VK_RValue, OK_Ordinary,
1940           false, queried->getType()->isDependentType(),
1941           (queried->getType()->isInstantiationDependentType() ||
1942            (dimension && dimension->isInstantiationDependent())),
1943           queried->getType()->containsUnexpandedParameterPack()),
1944      ATT(att), Value(value), Dimension(dimension),
1945      Loc(loc), RParen(rparen), QueriedType(queried) { }
1946
1947
1948  explicit ArrayTypeTraitExpr(EmptyShell Empty)
1949    : Expr(ArrayTypeTraitExprClass, Empty), ATT(0), Value(false),
1950      QueriedType() { }
1951
1952  virtual ~ArrayTypeTraitExpr() { }
1953
1954  virtual SourceRange getSourceRange() const {
1955    return SourceRange(Loc, RParen);
1956  }
1957
1958  ArrayTypeTrait getTrait() const { return static_cast<ArrayTypeTrait>(ATT); }
1959
1960  QualType getQueriedType() const { return QueriedType->getType(); }
1961
1962  TypeSourceInfo *getQueriedTypeSourceInfo() const { return QueriedType; }
1963
1964  uint64_t getValue() const { assert(!isTypeDependent()); return Value; }
1965
1966  Expr *getDimensionExpression() const { return Dimension; }
1967
1968  static bool classof(const Stmt *T) {
1969    return T->getStmtClass() == ArrayTypeTraitExprClass;
1970  }
1971  static bool classof(const ArrayTypeTraitExpr *) { return true; }
1972
1973  // Iterators
1974  child_range children() { return child_range(); }
1975
1976  friend class ASTStmtReader;
1977};
1978
1979/// ExpressionTraitExpr - An expression trait intrinsic
1980/// Example:
1981/// __is_lvalue_expr(std::cout) == true
1982/// __is_lvalue_expr(1) == false
1983class ExpressionTraitExpr : public Expr {
1984  /// ET - The trait. A ExpressionTrait enum in MSVC compat unsigned.
1985  unsigned ET : 31;
1986  /// The value of the type trait. Unspecified if dependent.
1987  bool Value : 1;
1988
1989  /// Loc - The location of the type trait keyword.
1990  SourceLocation Loc;
1991
1992  /// RParen - The location of the closing paren.
1993  SourceLocation RParen;
1994
1995  Expr* QueriedExpression;
1996public:
1997  ExpressionTraitExpr(SourceLocation loc, ExpressionTrait et,
1998                     Expr *queried, bool value,
1999                     SourceLocation rparen, QualType resultType)
2000    : Expr(ExpressionTraitExprClass, resultType, VK_RValue, OK_Ordinary,
2001           false, // Not type-dependent
2002           // Value-dependent if the argument is type-dependent.
2003           queried->isTypeDependent(),
2004           queried->isInstantiationDependent(),
2005           queried->containsUnexpandedParameterPack()),
2006      ET(et), Value(value), Loc(loc), RParen(rparen),
2007      QueriedExpression(queried) { }
2008
2009  explicit ExpressionTraitExpr(EmptyShell Empty)
2010    : Expr(ExpressionTraitExprClass, Empty), ET(0), Value(false),
2011      QueriedExpression() { }
2012
2013  SourceRange getSourceRange() const { return SourceRange(Loc, RParen);}
2014
2015  ExpressionTrait getTrait() const { return static_cast<ExpressionTrait>(ET); }
2016
2017  Expr *getQueriedExpression() const { return QueriedExpression; }
2018
2019  bool getValue() const { return Value; }
2020
2021  static bool classof(const Stmt *T) {
2022    return T->getStmtClass() == ExpressionTraitExprClass;
2023  }
2024  static bool classof(const ExpressionTraitExpr *) { return true; }
2025
2026  // Iterators
2027  child_range children() { return child_range(); }
2028
2029  friend class ASTStmtReader;
2030};
2031
2032
2033/// \brief A reference to an overloaded function set, either an
2034/// \t UnresolvedLookupExpr or an \t UnresolvedMemberExpr.
2035class OverloadExpr : public Expr {
2036  /// The results.  These are undesugared, which is to say, they may
2037  /// include UsingShadowDecls.  Access is relative to the naming
2038  /// class.
2039  // FIXME: Allocate this data after the OverloadExpr subclass.
2040  DeclAccessPair *Results;
2041  unsigned NumResults;
2042
2043  /// The common name of these declarations.
2044  DeclarationNameInfo NameInfo;
2045
2046  /// \brief The nested-name-specifier that qualifies the name, if any.
2047  NestedNameSpecifierLoc QualifierLoc;
2048
2049protected:
2050  /// \brief Whether the name includes info for explicit template
2051  /// keyword and arguments.
2052  bool HasTemplateKWAndArgsInfo;
2053
2054  /// \brief Return the optional template keyword and arguments info.
2055  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo(); // defined far below.
2056
2057  /// \brief Return the optional template keyword and arguments info.
2058  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
2059    return const_cast<OverloadExpr*>(this)->getTemplateKWAndArgsInfo();
2060  }
2061
2062  OverloadExpr(StmtClass K, ASTContext &C,
2063               NestedNameSpecifierLoc QualifierLoc,
2064               SourceLocation TemplateKWLoc,
2065               const DeclarationNameInfo &NameInfo,
2066               const TemplateArgumentListInfo *TemplateArgs,
2067               UnresolvedSetIterator Begin, UnresolvedSetIterator End,
2068               bool KnownDependent,
2069               bool KnownInstantiationDependent,
2070               bool KnownContainsUnexpandedParameterPack);
2071
2072  OverloadExpr(StmtClass K, EmptyShell Empty)
2073    : Expr(K, Empty), Results(0), NumResults(0),
2074      QualifierLoc(), HasTemplateKWAndArgsInfo(false) { }
2075
2076  void initializeResults(ASTContext &C,
2077                         UnresolvedSetIterator Begin,
2078                         UnresolvedSetIterator End);
2079
2080public:
2081  struct FindResult {
2082    OverloadExpr *Expression;
2083    bool IsAddressOfOperand;
2084    bool HasFormOfMemberPointer;
2085  };
2086
2087  /// Finds the overloaded expression in the given expression of
2088  /// OverloadTy.
2089  ///
2090  /// \return the expression (which must be there) and true if it has
2091  /// the particular form of a member pointer expression
2092  static FindResult find(Expr *E) {
2093    assert(E->getType()->isSpecificBuiltinType(BuiltinType::Overload));
2094
2095    FindResult Result;
2096
2097    E = E->IgnoreParens();
2098    if (isa<UnaryOperator>(E)) {
2099      assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
2100      E = cast<UnaryOperator>(E)->getSubExpr();
2101      OverloadExpr *Ovl = cast<OverloadExpr>(E->IgnoreParens());
2102
2103      Result.HasFormOfMemberPointer = (E == Ovl && Ovl->getQualifier());
2104      Result.IsAddressOfOperand = true;
2105      Result.Expression = Ovl;
2106    } else {
2107      Result.HasFormOfMemberPointer = false;
2108      Result.IsAddressOfOperand = false;
2109      Result.Expression = cast<OverloadExpr>(E);
2110    }
2111
2112    return Result;
2113  }
2114
2115  /// Gets the naming class of this lookup, if any.
2116  CXXRecordDecl *getNamingClass() const;
2117
2118  typedef UnresolvedSetImpl::iterator decls_iterator;
2119  decls_iterator decls_begin() const { return UnresolvedSetIterator(Results); }
2120  decls_iterator decls_end() const {
2121    return UnresolvedSetIterator(Results + NumResults);
2122  }
2123
2124  /// Gets the number of declarations in the unresolved set.
2125  unsigned getNumDecls() const { return NumResults; }
2126
2127  /// Gets the full name info.
2128  const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
2129
2130  /// Gets the name looked up.
2131  DeclarationName getName() const { return NameInfo.getName(); }
2132
2133  /// Gets the location of the name.
2134  SourceLocation getNameLoc() const { return NameInfo.getLoc(); }
2135
2136  /// Fetches the nested-name qualifier, if one was given.
2137  NestedNameSpecifier *getQualifier() const {
2138    return QualifierLoc.getNestedNameSpecifier();
2139  }
2140
2141  /// Fetches the nested-name qualifier with source-location information, if
2142  /// one was given.
2143  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2144
2145  /// \brief Retrieve the location of the template keyword preceding
2146  /// this name, if any.
2147  SourceLocation getTemplateKeywordLoc() const {
2148    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2149    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
2150  }
2151
2152  /// \brief Retrieve the location of the left angle bracket starting the
2153  /// explicit template argument list following the name, if any.
2154  SourceLocation getLAngleLoc() const {
2155    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2156    return getTemplateKWAndArgsInfo()->LAngleLoc;
2157  }
2158
2159  /// \brief Retrieve the location of the right angle bracket ending the
2160  /// explicit template argument list following the name, if any.
2161  SourceLocation getRAngleLoc() const {
2162    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2163    return getTemplateKWAndArgsInfo()->RAngleLoc;
2164  }
2165
2166  /// Determines whether the name was preceded by the template keyword.
2167  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
2168
2169  /// Determines whether this expression had explicit template arguments.
2170  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
2171
2172  // Note that, inconsistently with the explicit-template-argument AST
2173  // nodes, users are *forbidden* from calling these methods on objects
2174  // without explicit template arguments.
2175
2176  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
2177    assert(hasExplicitTemplateArgs());
2178    return *getTemplateKWAndArgsInfo();
2179  }
2180
2181  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2182    return const_cast<OverloadExpr*>(this)->getExplicitTemplateArgs();
2183  }
2184
2185  TemplateArgumentLoc const *getTemplateArgs() const {
2186    return getExplicitTemplateArgs().getTemplateArgs();
2187  }
2188
2189  unsigned getNumTemplateArgs() const {
2190    return getExplicitTemplateArgs().NumTemplateArgs;
2191  }
2192
2193  /// Copies the template arguments into the given structure.
2194  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2195    getExplicitTemplateArgs().copyInto(List);
2196  }
2197
2198  /// \brief Retrieves the optional explicit template arguments.
2199  /// This points to the same data as getExplicitTemplateArgs(), but
2200  /// returns null if there are no explicit template arguments.
2201  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() {
2202    if (!hasExplicitTemplateArgs()) return 0;
2203    return &getExplicitTemplateArgs();
2204  }
2205
2206  static bool classof(const Stmt *T) {
2207    return T->getStmtClass() == UnresolvedLookupExprClass ||
2208           T->getStmtClass() == UnresolvedMemberExprClass;
2209  }
2210  static bool classof(const OverloadExpr *) { return true; }
2211
2212  friend class ASTStmtReader;
2213  friend class ASTStmtWriter;
2214};
2215
2216/// \brief A reference to a name which we were able to look up during
2217/// parsing but could not resolve to a specific declaration.  This
2218/// arises in several ways:
2219///   * we might be waiting for argument-dependent lookup
2220///   * the name might resolve to an overloaded function
2221/// and eventually:
2222///   * the lookup might have included a function template
2223/// These never include UnresolvedUsingValueDecls, which are always
2224/// class members and therefore appear only in
2225/// UnresolvedMemberLookupExprs.
2226class UnresolvedLookupExpr : public OverloadExpr {
2227  /// True if these lookup results should be extended by
2228  /// argument-dependent lookup if this is the operand of a function
2229  /// call.
2230  bool RequiresADL;
2231
2232  /// True if namespace ::std should be considered an associated namespace
2233  /// for the purposes of argument-dependent lookup. See C++0x [stmt.ranged]p1.
2234  bool StdIsAssociatedNamespace;
2235
2236  /// True if these lookup results are overloaded.  This is pretty
2237  /// trivially rederivable if we urgently need to kill this field.
2238  bool Overloaded;
2239
2240  /// The naming class (C++ [class.access.base]p5) of the lookup, if
2241  /// any.  This can generally be recalculated from the context chain,
2242  /// but that can be fairly expensive for unqualified lookups.  If we
2243  /// want to improve memory use here, this could go in a union
2244  /// against the qualified-lookup bits.
2245  CXXRecordDecl *NamingClass;
2246
2247  UnresolvedLookupExpr(ASTContext &C,
2248                       CXXRecordDecl *NamingClass,
2249                       NestedNameSpecifierLoc QualifierLoc,
2250                       SourceLocation TemplateKWLoc,
2251                       const DeclarationNameInfo &NameInfo,
2252                       bool RequiresADL, bool Overloaded,
2253                       const TemplateArgumentListInfo *TemplateArgs,
2254                       UnresolvedSetIterator Begin, UnresolvedSetIterator End,
2255                       bool StdIsAssociatedNamespace)
2256    : OverloadExpr(UnresolvedLookupExprClass, C, QualifierLoc, TemplateKWLoc,
2257                   NameInfo, TemplateArgs, Begin, End, false, false, false),
2258      RequiresADL(RequiresADL),
2259      StdIsAssociatedNamespace(StdIsAssociatedNamespace),
2260      Overloaded(Overloaded), NamingClass(NamingClass)
2261  {}
2262
2263  UnresolvedLookupExpr(EmptyShell Empty)
2264    : OverloadExpr(UnresolvedLookupExprClass, Empty),
2265      RequiresADL(false), StdIsAssociatedNamespace(false), Overloaded(false),
2266      NamingClass(0)
2267  {}
2268
2269  friend class ASTStmtReader;
2270
2271public:
2272  static UnresolvedLookupExpr *Create(ASTContext &C,
2273                                      CXXRecordDecl *NamingClass,
2274                                      NestedNameSpecifierLoc QualifierLoc,
2275                                      const DeclarationNameInfo &NameInfo,
2276                                      bool ADL, bool Overloaded,
2277                                      UnresolvedSetIterator Begin,
2278                                      UnresolvedSetIterator End,
2279                                      bool StdIsAssociatedNamespace = false) {
2280    assert((ADL || !StdIsAssociatedNamespace) &&
2281           "std considered associated namespace when not performing ADL");
2282    return new(C) UnresolvedLookupExpr(C, NamingClass, QualifierLoc,
2283                                       SourceLocation(), NameInfo,
2284                                       ADL, Overloaded, 0, Begin, End,
2285                                       StdIsAssociatedNamespace);
2286  }
2287
2288  static UnresolvedLookupExpr *Create(ASTContext &C,
2289                                      CXXRecordDecl *NamingClass,
2290                                      NestedNameSpecifierLoc QualifierLoc,
2291                                      SourceLocation TemplateKWLoc,
2292                                      const DeclarationNameInfo &NameInfo,
2293                                      bool ADL,
2294                                      const TemplateArgumentListInfo *Args,
2295                                      UnresolvedSetIterator Begin,
2296                                      UnresolvedSetIterator End);
2297
2298  static UnresolvedLookupExpr *CreateEmpty(ASTContext &C,
2299                                           bool HasTemplateKWAndArgsInfo,
2300                                           unsigned NumTemplateArgs);
2301
2302  /// True if this declaration should be extended by
2303  /// argument-dependent lookup.
2304  bool requiresADL() const { return RequiresADL; }
2305
2306  /// True if namespace ::std should be artificially added to the set of
2307  /// associated namespaecs for argument-dependent lookup purposes.
2308  bool isStdAssociatedNamespace() const { return StdIsAssociatedNamespace; }
2309
2310  /// True if this lookup is overloaded.
2311  bool isOverloaded() const { return Overloaded; }
2312
2313  /// Gets the 'naming class' (in the sense of C++0x
2314  /// [class.access.base]p5) of the lookup.  This is the scope
2315  /// that was looked in to find these results.
2316  CXXRecordDecl *getNamingClass() const { return NamingClass; }
2317
2318  SourceRange getSourceRange() const {
2319    SourceRange Range(getNameInfo().getSourceRange());
2320    if (getQualifierLoc())
2321      Range.setBegin(getQualifierLoc().getBeginLoc());
2322    if (hasExplicitTemplateArgs())
2323      Range.setEnd(getRAngleLoc());
2324    return Range;
2325  }
2326
2327  child_range children() { return child_range(); }
2328
2329  static bool classof(const Stmt *T) {
2330    return T->getStmtClass() == UnresolvedLookupExprClass;
2331  }
2332  static bool classof(const UnresolvedLookupExpr *) { return true; }
2333};
2334
2335/// \brief A qualified reference to a name whose declaration cannot
2336/// yet be resolved.
2337///
2338/// DependentScopeDeclRefExpr is similar to DeclRefExpr in that
2339/// it expresses a reference to a declaration such as
2340/// X<T>::value. The difference, however, is that an
2341/// DependentScopeDeclRefExpr node is used only within C++ templates when
2342/// the qualification (e.g., X<T>::) refers to a dependent type. In
2343/// this case, X<T>::value cannot resolve to a declaration because the
2344/// declaration will differ from on instantiation of X<T> to the
2345/// next. Therefore, DependentScopeDeclRefExpr keeps track of the
2346/// qualifier (X<T>::) and the name of the entity being referenced
2347/// ("value"). Such expressions will instantiate to a DeclRefExpr once the
2348/// declaration can be found.
2349class DependentScopeDeclRefExpr : public Expr {
2350  /// \brief The nested-name-specifier that qualifies this unresolved
2351  /// declaration name.
2352  NestedNameSpecifierLoc QualifierLoc;
2353
2354  /// The name of the entity we will be referencing.
2355  DeclarationNameInfo NameInfo;
2356
2357  /// \brief Whether the name includes info for explicit template
2358  /// keyword and arguments.
2359  bool HasTemplateKWAndArgsInfo;
2360
2361  /// \brief Return the optional template keyword and arguments info.
2362  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
2363    if (!HasTemplateKWAndArgsInfo) return 0;
2364    return reinterpret_cast<ASTTemplateKWAndArgsInfo*>(this + 1);
2365  }
2366  /// \brief Return the optional template keyword and arguments info.
2367  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
2368    return const_cast<DependentScopeDeclRefExpr*>(this)
2369      ->getTemplateKWAndArgsInfo();
2370  }
2371
2372  DependentScopeDeclRefExpr(QualType T,
2373                            NestedNameSpecifierLoc QualifierLoc,
2374                            SourceLocation TemplateKWLoc,
2375                            const DeclarationNameInfo &NameInfo,
2376                            const TemplateArgumentListInfo *Args);
2377
2378public:
2379  static DependentScopeDeclRefExpr *Create(ASTContext &C,
2380                                           NestedNameSpecifierLoc QualifierLoc,
2381                                           SourceLocation TemplateKWLoc,
2382                                           const DeclarationNameInfo &NameInfo,
2383                              const TemplateArgumentListInfo *TemplateArgs);
2384
2385  static DependentScopeDeclRefExpr *CreateEmpty(ASTContext &C,
2386                                                bool HasTemplateKWAndArgsInfo,
2387                                                unsigned NumTemplateArgs);
2388
2389  /// \brief Retrieve the name that this expression refers to.
2390  const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
2391
2392  /// \brief Retrieve the name that this expression refers to.
2393  DeclarationName getDeclName() const { return NameInfo.getName(); }
2394
2395  /// \brief Retrieve the location of the name within the expression.
2396  SourceLocation getLocation() const { return NameInfo.getLoc(); }
2397
2398  /// \brief Retrieve the nested-name-specifier that qualifies the
2399  /// name, with source location information.
2400  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2401
2402
2403  /// \brief Retrieve the nested-name-specifier that qualifies this
2404  /// declaration.
2405  NestedNameSpecifier *getQualifier() const {
2406    return QualifierLoc.getNestedNameSpecifier();
2407  }
2408
2409  /// \brief Retrieve the location of the template keyword preceding
2410  /// this name, if any.
2411  SourceLocation getTemplateKeywordLoc() const {
2412    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2413    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
2414  }
2415
2416  /// \brief Retrieve the location of the left angle bracket starting the
2417  /// explicit template argument list following the name, if any.
2418  SourceLocation getLAngleLoc() const {
2419    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2420    return getTemplateKWAndArgsInfo()->LAngleLoc;
2421  }
2422
2423  /// \brief Retrieve the location of the right angle bracket ending the
2424  /// explicit template argument list following the name, if any.
2425  SourceLocation getRAngleLoc() const {
2426    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2427    return getTemplateKWAndArgsInfo()->RAngleLoc;
2428  }
2429
2430  /// Determines whether the name was preceded by the template keyword.
2431  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
2432
2433  /// Determines whether this lookup had explicit template arguments.
2434  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
2435
2436  // Note that, inconsistently with the explicit-template-argument AST
2437  // nodes, users are *forbidden* from calling these methods on objects
2438  // without explicit template arguments.
2439
2440  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
2441    assert(hasExplicitTemplateArgs());
2442    return *reinterpret_cast<ASTTemplateArgumentListInfo*>(this + 1);
2443  }
2444
2445  /// Gets a reference to the explicit template argument list.
2446  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2447    assert(hasExplicitTemplateArgs());
2448    return *reinterpret_cast<const ASTTemplateArgumentListInfo*>(this + 1);
2449  }
2450
2451  /// \brief Retrieves the optional explicit template arguments.
2452  /// This points to the same data as getExplicitTemplateArgs(), but
2453  /// returns null if there are no explicit template arguments.
2454  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() {
2455    if (!hasExplicitTemplateArgs()) return 0;
2456    return &getExplicitTemplateArgs();
2457  }
2458
2459  /// \brief Copies the template arguments (if present) into the given
2460  /// structure.
2461  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2462    getExplicitTemplateArgs().copyInto(List);
2463  }
2464
2465  TemplateArgumentLoc const *getTemplateArgs() const {
2466    return getExplicitTemplateArgs().getTemplateArgs();
2467  }
2468
2469  unsigned getNumTemplateArgs() const {
2470    return getExplicitTemplateArgs().NumTemplateArgs;
2471  }
2472
2473  SourceRange getSourceRange() const {
2474    SourceRange Range(QualifierLoc.getBeginLoc(), getLocation());
2475    if (hasExplicitTemplateArgs())
2476      Range.setEnd(getRAngleLoc());
2477    return Range;
2478  }
2479
2480  static bool classof(const Stmt *T) {
2481    return T->getStmtClass() == DependentScopeDeclRefExprClass;
2482  }
2483  static bool classof(const DependentScopeDeclRefExpr *) { return true; }
2484
2485  child_range children() { return child_range(); }
2486
2487  friend class ASTStmtReader;
2488  friend class ASTStmtWriter;
2489};
2490
2491/// Represents an expression --- generally a full-expression --- which
2492/// introduces cleanups to be run at the end of the sub-expression's
2493/// evaluation.  The most common source of expression-introduced
2494/// cleanups is temporary objects in C++, but several other kinds of
2495/// expressions can create cleanups, including basically every
2496/// call in ARC that returns an Objective-C pointer.
2497///
2498/// This expression also tracks whether the sub-expression contains a
2499/// potentially-evaluated block literal.  The lifetime of a block
2500/// literal is the extent of the enclosing scope.
2501class ExprWithCleanups : public Expr {
2502public:
2503  /// The type of objects that are kept in the cleanup.
2504  /// It's useful to remember the set of blocks;  we could also
2505  /// remember the set of temporaries, but there's currently
2506  /// no need.
2507  typedef BlockDecl *CleanupObject;
2508
2509private:
2510  Stmt *SubExpr;
2511
2512  ExprWithCleanups(EmptyShell, unsigned NumObjects);
2513  ExprWithCleanups(Expr *SubExpr, ArrayRef<CleanupObject> Objects);
2514
2515  CleanupObject *getObjectsBuffer() {
2516    return reinterpret_cast<CleanupObject*>(this + 1);
2517  }
2518  const CleanupObject *getObjectsBuffer() const {
2519    return reinterpret_cast<const CleanupObject*>(this + 1);
2520  }
2521  friend class ASTStmtReader;
2522
2523public:
2524  static ExprWithCleanups *Create(ASTContext &C, EmptyShell empty,
2525                                  unsigned numObjects);
2526
2527  static ExprWithCleanups *Create(ASTContext &C, Expr *subexpr,
2528                                  ArrayRef<CleanupObject> objects);
2529
2530  ArrayRef<CleanupObject> getObjects() const {
2531    return ArrayRef<CleanupObject>(getObjectsBuffer(), getNumObjects());
2532  }
2533
2534  unsigned getNumObjects() const { return ExprWithCleanupsBits.NumObjects; }
2535
2536  CleanupObject getObject(unsigned i) const {
2537    assert(i < getNumObjects() && "Index out of range");
2538    return getObjects()[i];
2539  }
2540
2541  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
2542  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
2543
2544  /// setSubExpr - As with any mutator of the AST, be very careful
2545  /// when modifying an existing AST to preserve its invariants.
2546  void setSubExpr(Expr *E) { SubExpr = E; }
2547
2548  SourceRange getSourceRange() const {
2549    return SubExpr->getSourceRange();
2550  }
2551
2552  // Implement isa/cast/dyncast/etc.
2553  static bool classof(const Stmt *T) {
2554    return T->getStmtClass() == ExprWithCleanupsClass;
2555  }
2556  static bool classof(const ExprWithCleanups *) { return true; }
2557
2558  // Iterators
2559  child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
2560};
2561
2562/// \brief Describes an explicit type conversion that uses functional
2563/// notion but could not be resolved because one or more arguments are
2564/// type-dependent.
2565///
2566/// The explicit type conversions expressed by
2567/// CXXUnresolvedConstructExpr have the form \c T(a1, a2, ..., aN),
2568/// where \c T is some type and \c a1, a2, ..., aN are values, and
2569/// either \C T is a dependent type or one or more of the \c a's is
2570/// type-dependent. For example, this would occur in a template such
2571/// as:
2572///
2573/// \code
2574///   template<typename T, typename A1>
2575///   inline T make_a(const A1& a1) {
2576///     return T(a1);
2577///   }
2578/// \endcode
2579///
2580/// When the returned expression is instantiated, it may resolve to a
2581/// constructor call, conversion function call, or some kind of type
2582/// conversion.
2583class CXXUnresolvedConstructExpr : public Expr {
2584  /// \brief The type being constructed.
2585  TypeSourceInfo *Type;
2586
2587  /// \brief The location of the left parentheses ('(').
2588  SourceLocation LParenLoc;
2589
2590  /// \brief The location of the right parentheses (')').
2591  SourceLocation RParenLoc;
2592
2593  /// \brief The number of arguments used to construct the type.
2594  unsigned NumArgs;
2595
2596  CXXUnresolvedConstructExpr(TypeSourceInfo *Type,
2597                             SourceLocation LParenLoc,
2598                             Expr **Args,
2599                             unsigned NumArgs,
2600                             SourceLocation RParenLoc);
2601
2602  CXXUnresolvedConstructExpr(EmptyShell Empty, unsigned NumArgs)
2603    : Expr(CXXUnresolvedConstructExprClass, Empty), Type(), NumArgs(NumArgs) { }
2604
2605  friend class ASTStmtReader;
2606
2607public:
2608  static CXXUnresolvedConstructExpr *Create(ASTContext &C,
2609                                            TypeSourceInfo *Type,
2610                                            SourceLocation LParenLoc,
2611                                            Expr **Args,
2612                                            unsigned NumArgs,
2613                                            SourceLocation RParenLoc);
2614
2615  static CXXUnresolvedConstructExpr *CreateEmpty(ASTContext &C,
2616                                                 unsigned NumArgs);
2617
2618  /// \brief Retrieve the type that is being constructed, as specified
2619  /// in the source code.
2620  QualType getTypeAsWritten() const { return Type->getType(); }
2621
2622  /// \brief Retrieve the type source information for the type being
2623  /// constructed.
2624  TypeSourceInfo *getTypeSourceInfo() const { return Type; }
2625
2626  /// \brief Retrieve the location of the left parentheses ('(') that
2627  /// precedes the argument list.
2628  SourceLocation getLParenLoc() const { return LParenLoc; }
2629  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2630
2631  /// \brief Retrieve the location of the right parentheses (')') that
2632  /// follows the argument list.
2633  SourceLocation getRParenLoc() const { return RParenLoc; }
2634  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2635
2636  /// \brief Retrieve the number of arguments.
2637  unsigned arg_size() const { return NumArgs; }
2638
2639  typedef Expr** arg_iterator;
2640  arg_iterator arg_begin() { return reinterpret_cast<Expr**>(this + 1); }
2641  arg_iterator arg_end() { return arg_begin() + NumArgs; }
2642
2643  typedef const Expr* const * const_arg_iterator;
2644  const_arg_iterator arg_begin() const {
2645    return reinterpret_cast<const Expr* const *>(this + 1);
2646  }
2647  const_arg_iterator arg_end() const {
2648    return arg_begin() + NumArgs;
2649  }
2650
2651  Expr *getArg(unsigned I) {
2652    assert(I < NumArgs && "Argument index out-of-range");
2653    return *(arg_begin() + I);
2654  }
2655
2656  const Expr *getArg(unsigned I) const {
2657    assert(I < NumArgs && "Argument index out-of-range");
2658    return *(arg_begin() + I);
2659  }
2660
2661  void setArg(unsigned I, Expr *E) {
2662    assert(I < NumArgs && "Argument index out-of-range");
2663    *(arg_begin() + I) = E;
2664  }
2665
2666  SourceRange getSourceRange() const;
2667
2668  static bool classof(const Stmt *T) {
2669    return T->getStmtClass() == CXXUnresolvedConstructExprClass;
2670  }
2671  static bool classof(const CXXUnresolvedConstructExpr *) { return true; }
2672
2673  // Iterators
2674  child_range children() {
2675    Stmt **begin = reinterpret_cast<Stmt**>(this+1);
2676    return child_range(begin, begin + NumArgs);
2677  }
2678};
2679
2680/// \brief Represents a C++ member access expression where the actual
2681/// member referenced could not be resolved because the base
2682/// expression or the member name was dependent.
2683///
2684/// Like UnresolvedMemberExprs, these can be either implicit or
2685/// explicit accesses.  It is only possible to get one of these with
2686/// an implicit access if a qualifier is provided.
2687class CXXDependentScopeMemberExpr : public Expr {
2688  /// \brief The expression for the base pointer or class reference,
2689  /// e.g., the \c x in x.f.  Can be null in implicit accesses.
2690  Stmt *Base;
2691
2692  /// \brief The type of the base expression.  Never null, even for
2693  /// implicit accesses.
2694  QualType BaseType;
2695
2696  /// \brief Whether this member expression used the '->' operator or
2697  /// the '.' operator.
2698  bool IsArrow : 1;
2699
2700  /// \brief Whether this member expression has info for explicit template
2701  /// keyword and arguments.
2702  bool HasTemplateKWAndArgsInfo : 1;
2703
2704  /// \brief The location of the '->' or '.' operator.
2705  SourceLocation OperatorLoc;
2706
2707  /// \brief The nested-name-specifier that precedes the member name, if any.
2708  NestedNameSpecifierLoc QualifierLoc;
2709
2710  /// \brief In a qualified member access expression such as t->Base::f, this
2711  /// member stores the resolves of name lookup in the context of the member
2712  /// access expression, to be used at instantiation time.
2713  ///
2714  /// FIXME: This member, along with the QualifierLoc, could
2715  /// be stuck into a structure that is optionally allocated at the end of
2716  /// the CXXDependentScopeMemberExpr, to save space in the common case.
2717  NamedDecl *FirstQualifierFoundInScope;
2718
2719  /// \brief The member to which this member expression refers, which
2720  /// can be name, overloaded operator, or destructor.
2721  /// FIXME: could also be a template-id
2722  DeclarationNameInfo MemberNameInfo;
2723
2724  /// \brief Return the optional template keyword and arguments info.
2725  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
2726    if (!HasTemplateKWAndArgsInfo) return 0;
2727    return reinterpret_cast<ASTTemplateKWAndArgsInfo*>(this + 1);
2728  }
2729  /// \brief Return the optional template keyword and arguments info.
2730  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
2731    return const_cast<CXXDependentScopeMemberExpr*>(this)
2732      ->getTemplateKWAndArgsInfo();
2733  }
2734
2735  CXXDependentScopeMemberExpr(ASTContext &C,
2736                          Expr *Base, QualType BaseType, bool IsArrow,
2737                          SourceLocation OperatorLoc,
2738                          NestedNameSpecifierLoc QualifierLoc,
2739                          SourceLocation TemplateKWLoc,
2740                          NamedDecl *FirstQualifierFoundInScope,
2741                          DeclarationNameInfo MemberNameInfo,
2742                          const TemplateArgumentListInfo *TemplateArgs);
2743
2744public:
2745  CXXDependentScopeMemberExpr(ASTContext &C,
2746                              Expr *Base, QualType BaseType,
2747                              bool IsArrow,
2748                              SourceLocation OperatorLoc,
2749                              NestedNameSpecifierLoc QualifierLoc,
2750                              NamedDecl *FirstQualifierFoundInScope,
2751                              DeclarationNameInfo MemberNameInfo);
2752
2753  static CXXDependentScopeMemberExpr *
2754  Create(ASTContext &C,
2755         Expr *Base, QualType BaseType, bool IsArrow,
2756         SourceLocation OperatorLoc,
2757         NestedNameSpecifierLoc QualifierLoc,
2758         SourceLocation TemplateKWLoc,
2759         NamedDecl *FirstQualifierFoundInScope,
2760         DeclarationNameInfo MemberNameInfo,
2761         const TemplateArgumentListInfo *TemplateArgs);
2762
2763  static CXXDependentScopeMemberExpr *
2764  CreateEmpty(ASTContext &C, bool HasTemplateKWAndArgsInfo,
2765              unsigned NumTemplateArgs);
2766
2767  /// \brief True if this is an implicit access, i.e. one in which the
2768  /// member being accessed was not written in the source.  The source
2769  /// location of the operator is invalid in this case.
2770  bool isImplicitAccess() const;
2771
2772  /// \brief Retrieve the base object of this member expressions,
2773  /// e.g., the \c x in \c x.m.
2774  Expr *getBase() const {
2775    assert(!isImplicitAccess());
2776    return cast<Expr>(Base);
2777  }
2778
2779  QualType getBaseType() const { return BaseType; }
2780
2781  /// \brief Determine whether this member expression used the '->'
2782  /// operator; otherwise, it used the '.' operator.
2783  bool isArrow() const { return IsArrow; }
2784
2785  /// \brief Retrieve the location of the '->' or '.' operator.
2786  SourceLocation getOperatorLoc() const { return OperatorLoc; }
2787
2788  /// \brief Retrieve the nested-name-specifier that qualifies the member
2789  /// name.
2790  NestedNameSpecifier *getQualifier() const {
2791    return QualifierLoc.getNestedNameSpecifier();
2792  }
2793
2794  /// \brief Retrieve the nested-name-specifier that qualifies the member
2795  /// name, with source location information.
2796  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2797
2798
2799  /// \brief Retrieve the first part of the nested-name-specifier that was
2800  /// found in the scope of the member access expression when the member access
2801  /// was initially parsed.
2802  ///
2803  /// This function only returns a useful result when member access expression
2804  /// uses a qualified member name, e.g., "x.Base::f". Here, the declaration
2805  /// returned by this function describes what was found by unqualified name
2806  /// lookup for the identifier "Base" within the scope of the member access
2807  /// expression itself. At template instantiation time, this information is
2808  /// combined with the results of name lookup into the type of the object
2809  /// expression itself (the class type of x).
2810  NamedDecl *getFirstQualifierFoundInScope() const {
2811    return FirstQualifierFoundInScope;
2812  }
2813
2814  /// \brief Retrieve the name of the member that this expression
2815  /// refers to.
2816  const DeclarationNameInfo &getMemberNameInfo() const {
2817    return MemberNameInfo;
2818  }
2819
2820  /// \brief Retrieve the name of the member that this expression
2821  /// refers to.
2822  DeclarationName getMember() const { return MemberNameInfo.getName(); }
2823
2824  // \brief Retrieve the location of the name of the member that this
2825  // expression refers to.
2826  SourceLocation getMemberLoc() const { return MemberNameInfo.getLoc(); }
2827
2828  /// \brief Retrieve the location of the template keyword preceding the
2829  /// member name, if any.
2830  SourceLocation getTemplateKeywordLoc() const {
2831    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2832    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
2833  }
2834
2835  /// \brief Retrieve the location of the left angle bracket starting the
2836  /// explicit template argument list following the member name, if any.
2837  SourceLocation getLAngleLoc() const {
2838    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2839    return getTemplateKWAndArgsInfo()->LAngleLoc;
2840  }
2841
2842  /// \brief Retrieve the location of the right angle bracket ending the
2843  /// explicit template argument list following the member name, if any.
2844  SourceLocation getRAngleLoc() const {
2845    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2846    return getTemplateKWAndArgsInfo()->RAngleLoc;
2847  }
2848
2849  /// Determines whether the member name was preceded by the template keyword.
2850  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
2851
2852  /// \brief Determines whether this member expression actually had a C++
2853  /// template argument list explicitly specified, e.g., x.f<int>.
2854  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
2855
2856  /// \brief Retrieve the explicit template argument list that followed the
2857  /// member template name, if any.
2858  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
2859    assert(hasExplicitTemplateArgs());
2860    return *reinterpret_cast<ASTTemplateArgumentListInfo *>(this + 1);
2861  }
2862
2863  /// \brief Retrieve the explicit template argument list that followed the
2864  /// member template name, if any.
2865  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2866    return const_cast<CXXDependentScopeMemberExpr *>(this)
2867             ->getExplicitTemplateArgs();
2868  }
2869
2870  /// \brief Retrieves the optional explicit template arguments.
2871  /// This points to the same data as getExplicitTemplateArgs(), but
2872  /// returns null if there are no explicit template arguments.
2873  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() {
2874    if (!hasExplicitTemplateArgs()) return 0;
2875    return &getExplicitTemplateArgs();
2876  }
2877
2878  /// \brief Copies the template arguments (if present) into the given
2879  /// structure.
2880  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2881    getExplicitTemplateArgs().copyInto(List);
2882  }
2883
2884  /// \brief Initializes the template arguments using the given structure.
2885  void initializeTemplateArgumentsFrom(const TemplateArgumentListInfo &List) {
2886    getExplicitTemplateArgs().initializeFrom(List);
2887  }
2888
2889  /// \brief Retrieve the template arguments provided as part of this
2890  /// template-id.
2891  const TemplateArgumentLoc *getTemplateArgs() const {
2892    return getExplicitTemplateArgs().getTemplateArgs();
2893  }
2894
2895  /// \brief Retrieve the number of template arguments provided as part of this
2896  /// template-id.
2897  unsigned getNumTemplateArgs() const {
2898    return getExplicitTemplateArgs().NumTemplateArgs;
2899  }
2900
2901  SourceRange getSourceRange() const {
2902    SourceRange Range;
2903    if (!isImplicitAccess())
2904      Range.setBegin(Base->getSourceRange().getBegin());
2905    else if (getQualifier())
2906      Range.setBegin(getQualifierLoc().getBeginLoc());
2907    else
2908      Range.setBegin(MemberNameInfo.getBeginLoc());
2909
2910    if (hasExplicitTemplateArgs())
2911      Range.setEnd(getRAngleLoc());
2912    else
2913      Range.setEnd(MemberNameInfo.getEndLoc());
2914    return Range;
2915  }
2916
2917  static bool classof(const Stmt *T) {
2918    return T->getStmtClass() == CXXDependentScopeMemberExprClass;
2919  }
2920  static bool classof(const CXXDependentScopeMemberExpr *) { return true; }
2921
2922  // Iterators
2923  child_range children() {
2924    if (isImplicitAccess()) return child_range();
2925    return child_range(&Base, &Base + 1);
2926  }
2927
2928  friend class ASTStmtReader;
2929  friend class ASTStmtWriter;
2930};
2931
2932/// \brief Represents a C++ member access expression for which lookup
2933/// produced a set of overloaded functions.
2934///
2935/// The member access may be explicit or implicit:
2936///    struct A {
2937///      int a, b;
2938///      int explicitAccess() { return this->a + this->A::b; }
2939///      int implicitAccess() { return a + A::b; }
2940///    };
2941///
2942/// In the final AST, an explicit access always becomes a MemberExpr.
2943/// An implicit access may become either a MemberExpr or a
2944/// DeclRefExpr, depending on whether the member is static.
2945class UnresolvedMemberExpr : public OverloadExpr {
2946  /// \brief Whether this member expression used the '->' operator or
2947  /// the '.' operator.
2948  bool IsArrow : 1;
2949
2950  /// \brief Whether the lookup results contain an unresolved using
2951  /// declaration.
2952  bool HasUnresolvedUsing : 1;
2953
2954  /// \brief The expression for the base pointer or class reference,
2955  /// e.g., the \c x in x.f.  This can be null if this is an 'unbased'
2956  /// member expression
2957  Stmt *Base;
2958
2959  /// \brief The type of the base expression;  never null.
2960  QualType BaseType;
2961
2962  /// \brief The location of the '->' or '.' operator.
2963  SourceLocation OperatorLoc;
2964
2965  UnresolvedMemberExpr(ASTContext &C, bool HasUnresolvedUsing,
2966                       Expr *Base, QualType BaseType, bool IsArrow,
2967                       SourceLocation OperatorLoc,
2968                       NestedNameSpecifierLoc QualifierLoc,
2969                       SourceLocation TemplateKWLoc,
2970                       const DeclarationNameInfo &MemberNameInfo,
2971                       const TemplateArgumentListInfo *TemplateArgs,
2972                       UnresolvedSetIterator Begin, UnresolvedSetIterator End);
2973
2974  UnresolvedMemberExpr(EmptyShell Empty)
2975    : OverloadExpr(UnresolvedMemberExprClass, Empty), IsArrow(false),
2976      HasUnresolvedUsing(false), Base(0) { }
2977
2978  friend class ASTStmtReader;
2979
2980public:
2981  static UnresolvedMemberExpr *
2982  Create(ASTContext &C, bool HasUnresolvedUsing,
2983         Expr *Base, QualType BaseType, bool IsArrow,
2984         SourceLocation OperatorLoc,
2985         NestedNameSpecifierLoc QualifierLoc,
2986         SourceLocation TemplateKWLoc,
2987         const DeclarationNameInfo &MemberNameInfo,
2988         const TemplateArgumentListInfo *TemplateArgs,
2989         UnresolvedSetIterator Begin, UnresolvedSetIterator End);
2990
2991  static UnresolvedMemberExpr *
2992  CreateEmpty(ASTContext &C, bool HasTemplateKWAndArgsInfo,
2993              unsigned NumTemplateArgs);
2994
2995  /// \brief True if this is an implicit access, i.e. one in which the
2996  /// member being accessed was not written in the source.  The source
2997  /// location of the operator is invalid in this case.
2998  bool isImplicitAccess() const;
2999
3000  /// \brief Retrieve the base object of this member expressions,
3001  /// e.g., the \c x in \c x.m.
3002  Expr *getBase() {
3003    assert(!isImplicitAccess());
3004    return cast<Expr>(Base);
3005  }
3006  const Expr *getBase() const {
3007    assert(!isImplicitAccess());
3008    return cast<Expr>(Base);
3009  }
3010
3011  QualType getBaseType() const { return BaseType; }
3012
3013  /// \brief Determine whether the lookup results contain an unresolved using
3014  /// declaration.
3015  bool hasUnresolvedUsing() const { return HasUnresolvedUsing; }
3016
3017  /// \brief Determine whether this member expression used the '->'
3018  /// operator; otherwise, it used the '.' operator.
3019  bool isArrow() const { return IsArrow; }
3020
3021  /// \brief Retrieve the location of the '->' or '.' operator.
3022  SourceLocation getOperatorLoc() const { return OperatorLoc; }
3023
3024  /// \brief Retrieves the naming class of this lookup.
3025  CXXRecordDecl *getNamingClass() const;
3026
3027  /// \brief Retrieve the full name info for the member that this expression
3028  /// refers to.
3029  const DeclarationNameInfo &getMemberNameInfo() const { return getNameInfo(); }
3030
3031  /// \brief Retrieve the name of the member that this expression
3032  /// refers to.
3033  DeclarationName getMemberName() const { return getName(); }
3034
3035  // \brief Retrieve the location of the name of the member that this
3036  // expression refers to.
3037  SourceLocation getMemberLoc() const { return getNameLoc(); }
3038
3039  SourceRange getSourceRange() const {
3040    SourceRange Range = getMemberNameInfo().getSourceRange();
3041    if (!isImplicitAccess())
3042      Range.setBegin(Base->getSourceRange().getBegin());
3043    else if (getQualifierLoc())
3044      Range.setBegin(getQualifierLoc().getBeginLoc());
3045
3046    if (hasExplicitTemplateArgs())
3047      Range.setEnd(getRAngleLoc());
3048    return Range;
3049  }
3050
3051  static bool classof(const Stmt *T) {
3052    return T->getStmtClass() == UnresolvedMemberExprClass;
3053  }
3054  static bool classof(const UnresolvedMemberExpr *) { return true; }
3055
3056  // Iterators
3057  child_range children() {
3058    if (isImplicitAccess()) return child_range();
3059    return child_range(&Base, &Base + 1);
3060  }
3061};
3062
3063/// \brief Represents a C++0x noexcept expression (C++ [expr.unary.noexcept]).
3064///
3065/// The noexcept expression tests whether a given expression might throw. Its
3066/// result is a boolean constant.
3067class CXXNoexceptExpr : public Expr {
3068  bool Value : 1;
3069  Stmt *Operand;
3070  SourceRange Range;
3071
3072  friend class ASTStmtReader;
3073
3074public:
3075  CXXNoexceptExpr(QualType Ty, Expr *Operand, CanThrowResult Val,
3076                  SourceLocation Keyword, SourceLocation RParen)
3077    : Expr(CXXNoexceptExprClass, Ty, VK_RValue, OK_Ordinary,
3078           /*TypeDependent*/false,
3079           /*ValueDependent*/Val == CT_Dependent,
3080           Val == CT_Dependent || Operand->isInstantiationDependent(),
3081           Operand->containsUnexpandedParameterPack()),
3082      Value(Val == CT_Cannot), Operand(Operand), Range(Keyword, RParen)
3083  { }
3084
3085  CXXNoexceptExpr(EmptyShell Empty)
3086    : Expr(CXXNoexceptExprClass, Empty)
3087  { }
3088
3089  Expr *getOperand() const { return static_cast<Expr*>(Operand); }
3090
3091  SourceRange getSourceRange() const { return Range; }
3092
3093  bool getValue() const { return Value; }
3094
3095  static bool classof(const Stmt *T) {
3096    return T->getStmtClass() == CXXNoexceptExprClass;
3097  }
3098  static bool classof(const CXXNoexceptExpr *) { return true; }
3099
3100  // Iterators
3101  child_range children() { return child_range(&Operand, &Operand + 1); }
3102};
3103
3104/// \brief Represents a C++0x pack expansion that produces a sequence of
3105/// expressions.
3106///
3107/// A pack expansion expression contains a pattern (which itself is an
3108/// expression) followed by an ellipsis. For example:
3109///
3110/// \code
3111/// template<typename F, typename ...Types>
3112/// void forward(F f, Types &&...args) {
3113///   f(static_cast<Types&&>(args)...);
3114/// }
3115/// \endcode
3116///
3117/// Here, the argument to the function object \c f is a pack expansion whose
3118/// pattern is \c static_cast<Types&&>(args). When the \c forward function
3119/// template is instantiated, the pack expansion will instantiate to zero or
3120/// or more function arguments to the function object \c f.
3121class PackExpansionExpr : public Expr {
3122  SourceLocation EllipsisLoc;
3123
3124  /// \brief The number of expansions that will be produced by this pack
3125  /// expansion expression, if known.
3126  ///
3127  /// When zero, the number of expansions is not known. Otherwise, this value
3128  /// is the number of expansions + 1.
3129  unsigned NumExpansions;
3130
3131  Stmt *Pattern;
3132
3133  friend class ASTStmtReader;
3134  friend class ASTStmtWriter;
3135
3136public:
3137  PackExpansionExpr(QualType T, Expr *Pattern, SourceLocation EllipsisLoc,
3138                    llvm::Optional<unsigned> NumExpansions)
3139    : Expr(PackExpansionExprClass, T, Pattern->getValueKind(),
3140           Pattern->getObjectKind(), /*TypeDependent=*/true,
3141           /*ValueDependent=*/true, /*InstantiationDependent=*/true,
3142           /*ContainsUnexpandedParameterPack=*/false),
3143      EllipsisLoc(EllipsisLoc),
3144      NumExpansions(NumExpansions? *NumExpansions + 1 : 0),
3145      Pattern(Pattern) { }
3146
3147  PackExpansionExpr(EmptyShell Empty) : Expr(PackExpansionExprClass, Empty) { }
3148
3149  /// \brief Retrieve the pattern of the pack expansion.
3150  Expr *getPattern() { return reinterpret_cast<Expr *>(Pattern); }
3151
3152  /// \brief Retrieve the pattern of the pack expansion.
3153  const Expr *getPattern() const { return reinterpret_cast<Expr *>(Pattern); }
3154
3155  /// \brief Retrieve the location of the ellipsis that describes this pack
3156  /// expansion.
3157  SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
3158
3159  /// \brief Determine the number of expansions that will be produced when
3160  /// this pack expansion is instantiated, if already known.
3161  llvm::Optional<unsigned> getNumExpansions() const {
3162    if (NumExpansions)
3163      return NumExpansions - 1;
3164
3165    return llvm::Optional<unsigned>();
3166  }
3167
3168  SourceRange getSourceRange() const {
3169    return SourceRange(Pattern->getLocStart(), EllipsisLoc);
3170  }
3171
3172  static bool classof(const Stmt *T) {
3173    return T->getStmtClass() == PackExpansionExprClass;
3174  }
3175  static bool classof(const PackExpansionExpr *) { return true; }
3176
3177  // Iterators
3178  child_range children() {
3179    return child_range(&Pattern, &Pattern + 1);
3180  }
3181};
3182
3183inline ASTTemplateKWAndArgsInfo *OverloadExpr::getTemplateKWAndArgsInfo() {
3184  if (!HasTemplateKWAndArgsInfo) return 0;
3185  if (isa<UnresolvedLookupExpr>(this))
3186    return reinterpret_cast<ASTTemplateKWAndArgsInfo*>
3187      (cast<UnresolvedLookupExpr>(this) + 1);
3188  else
3189    return reinterpret_cast<ASTTemplateKWAndArgsInfo*>
3190      (cast<UnresolvedMemberExpr>(this) + 1);
3191}
3192
3193/// \brief Represents an expression that computes the length of a parameter
3194/// pack.
3195///
3196/// \code
3197/// template<typename ...Types>
3198/// struct count {
3199///   static const unsigned value = sizeof...(Types);
3200/// };
3201/// \endcode
3202class SizeOfPackExpr : public Expr {
3203  /// \brief The location of the 'sizeof' keyword.
3204  SourceLocation OperatorLoc;
3205
3206  /// \brief The location of the name of the parameter pack.
3207  SourceLocation PackLoc;
3208
3209  /// \brief The location of the closing parenthesis.
3210  SourceLocation RParenLoc;
3211
3212  /// \brief The length of the parameter pack, if known.
3213  ///
3214  /// When this expression is value-dependent, the length of the parameter pack
3215  /// is unknown. When this expression is not value-dependent, the length is
3216  /// known.
3217  unsigned Length;
3218
3219  /// \brief The parameter pack itself.
3220  NamedDecl *Pack;
3221
3222  friend class ASTStmtReader;
3223  friend class ASTStmtWriter;
3224
3225public:
3226  /// \brief Creates a value-dependent expression that computes the length of
3227  /// the given parameter pack.
3228  SizeOfPackExpr(QualType SizeType, SourceLocation OperatorLoc, NamedDecl *Pack,
3229                 SourceLocation PackLoc, SourceLocation RParenLoc)
3230    : Expr(SizeOfPackExprClass, SizeType, VK_RValue, OK_Ordinary,
3231           /*TypeDependent=*/false, /*ValueDependent=*/true,
3232           /*InstantiationDependent=*/true,
3233           /*ContainsUnexpandedParameterPack=*/false),
3234      OperatorLoc(OperatorLoc), PackLoc(PackLoc), RParenLoc(RParenLoc),
3235      Length(0), Pack(Pack) { }
3236
3237  /// \brief Creates an expression that computes the length of
3238  /// the given parameter pack, which is already known.
3239  SizeOfPackExpr(QualType SizeType, SourceLocation OperatorLoc, NamedDecl *Pack,
3240                 SourceLocation PackLoc, SourceLocation RParenLoc,
3241                 unsigned Length)
3242  : Expr(SizeOfPackExprClass, SizeType, VK_RValue, OK_Ordinary,
3243         /*TypeDependent=*/false, /*ValueDependent=*/false,
3244         /*InstantiationDependent=*/false,
3245         /*ContainsUnexpandedParameterPack=*/false),
3246    OperatorLoc(OperatorLoc), PackLoc(PackLoc), RParenLoc(RParenLoc),
3247    Length(Length), Pack(Pack) { }
3248
3249  /// \brief Create an empty expression.
3250  SizeOfPackExpr(EmptyShell Empty) : Expr(SizeOfPackExprClass, Empty) { }
3251
3252  /// \brief Determine the location of the 'sizeof' keyword.
3253  SourceLocation getOperatorLoc() const { return OperatorLoc; }
3254
3255  /// \brief Determine the location of the parameter pack.
3256  SourceLocation getPackLoc() const { return PackLoc; }
3257
3258  /// \brief Determine the location of the right parenthesis.
3259  SourceLocation getRParenLoc() const { return RParenLoc; }
3260
3261  /// \brief Retrieve the parameter pack.
3262  NamedDecl *getPack() const { return Pack; }
3263
3264  /// \brief Retrieve the length of the parameter pack.
3265  ///
3266  /// This routine may only be invoked when the expression is not
3267  /// value-dependent.
3268  unsigned getPackLength() const {
3269    assert(!isValueDependent() &&
3270           "Cannot get the length of a value-dependent pack size expression");
3271    return Length;
3272  }
3273
3274  SourceRange getSourceRange() const {
3275    return SourceRange(OperatorLoc, RParenLoc);
3276  }
3277
3278  static bool classof(const Stmt *T) {
3279    return T->getStmtClass() == SizeOfPackExprClass;
3280  }
3281  static bool classof(const SizeOfPackExpr *) { return true; }
3282
3283  // Iterators
3284  child_range children() { return child_range(); }
3285};
3286
3287/// \brief Represents a reference to a non-type template parameter
3288/// that has been substituted with a template argument.
3289class SubstNonTypeTemplateParmExpr : public Expr {
3290  /// \brief The replaced parameter.
3291  NonTypeTemplateParmDecl *Param;
3292
3293  /// \brief The replacement expression.
3294  Stmt *Replacement;
3295
3296  /// \brief The location of the non-type template parameter reference.
3297  SourceLocation NameLoc;
3298
3299  friend class ASTReader;
3300  friend class ASTStmtReader;
3301  explicit SubstNonTypeTemplateParmExpr(EmptyShell Empty)
3302    : Expr(SubstNonTypeTemplateParmExprClass, Empty) { }
3303
3304public:
3305  SubstNonTypeTemplateParmExpr(QualType type,
3306                               ExprValueKind valueKind,
3307                               SourceLocation loc,
3308                               NonTypeTemplateParmDecl *param,
3309                               Expr *replacement)
3310    : Expr(SubstNonTypeTemplateParmExprClass, type, valueKind, OK_Ordinary,
3311           replacement->isTypeDependent(), replacement->isValueDependent(),
3312           replacement->isInstantiationDependent(),
3313           replacement->containsUnexpandedParameterPack()),
3314      Param(param), Replacement(replacement), NameLoc(loc) {}
3315
3316  SourceLocation getNameLoc() const { return NameLoc; }
3317  SourceRange getSourceRange() const { return NameLoc; }
3318
3319  Expr *getReplacement() const { return cast<Expr>(Replacement); }
3320
3321  NonTypeTemplateParmDecl *getParameter() const { return Param; }
3322
3323  static bool classof(const Stmt *s) {
3324    return s->getStmtClass() == SubstNonTypeTemplateParmExprClass;
3325  }
3326  static bool classof(const SubstNonTypeTemplateParmExpr *) {
3327    return true;
3328  }
3329
3330  // Iterators
3331  child_range children() { return child_range(&Replacement, &Replacement+1); }
3332};
3333
3334/// \brief Represents a reference to a non-type template parameter pack that
3335/// has been substituted with a non-template argument pack.
3336///
3337/// When a pack expansion in the source code contains multiple parameter packs
3338/// and those parameter packs correspond to different levels of template
3339/// parameter lists, this node node is used to represent a non-type template
3340/// parameter pack from an outer level, which has already had its argument pack
3341/// substituted but that still lives within a pack expansion that itself
3342/// could not be instantiated. When actually performing a substitution into
3343/// that pack expansion (e.g., when all template parameters have corresponding
3344/// arguments), this type will be replaced with the appropriate underlying
3345/// expression at the current pack substitution index.
3346class SubstNonTypeTemplateParmPackExpr : public Expr {
3347  /// \brief The non-type template parameter pack itself.
3348  NonTypeTemplateParmDecl *Param;
3349
3350  /// \brief A pointer to the set of template arguments that this
3351  /// parameter pack is instantiated with.
3352  const TemplateArgument *Arguments;
3353
3354  /// \brief The number of template arguments in \c Arguments.
3355  unsigned NumArguments;
3356
3357  /// \brief The location of the non-type template parameter pack reference.
3358  SourceLocation NameLoc;
3359
3360  friend class ASTReader;
3361  friend class ASTStmtReader;
3362  explicit SubstNonTypeTemplateParmPackExpr(EmptyShell Empty)
3363    : Expr(SubstNonTypeTemplateParmPackExprClass, Empty) { }
3364
3365public:
3366  SubstNonTypeTemplateParmPackExpr(QualType T,
3367                                   NonTypeTemplateParmDecl *Param,
3368                                   SourceLocation NameLoc,
3369                                   const TemplateArgument &ArgPack);
3370
3371  /// \brief Retrieve the non-type template parameter pack being substituted.
3372  NonTypeTemplateParmDecl *getParameterPack() const { return Param; }
3373
3374  /// \brief Retrieve the location of the parameter pack name.
3375  SourceLocation getParameterPackLocation() const { return NameLoc; }
3376
3377  /// \brief Retrieve the template argument pack containing the substituted
3378  /// template arguments.
3379  TemplateArgument getArgumentPack() const;
3380
3381  SourceRange getSourceRange() const { return NameLoc; }
3382
3383  static bool classof(const Stmt *T) {
3384    return T->getStmtClass() == SubstNonTypeTemplateParmPackExprClass;
3385  }
3386  static bool classof(const SubstNonTypeTemplateParmPackExpr *) {
3387    return true;
3388  }
3389
3390  // Iterators
3391  child_range children() { return child_range(); }
3392};
3393
3394/// \brief Represents a prvalue temporary that written into memory so that
3395/// a reference can bind to it.
3396///
3397/// Prvalue expressions are materialized when they need to have an address
3398/// in memory for a reference to bind to. This happens when binding a
3399/// reference to the result of a conversion, e.g.,
3400///
3401/// \code
3402/// const int &r = 1.0;
3403/// \endcode
3404///
3405/// Here, 1.0 is implicitly converted to an \c int. That resulting \c int is
3406/// then materialized via a \c MaterializeTemporaryExpr, and the reference
3407/// binds to the temporary. \c MaterializeTemporaryExprs are always glvalues
3408/// (either an lvalue or an xvalue, depending on the kind of reference binding
3409/// to it), maintaining the invariant that references always bind to glvalues.
3410class MaterializeTemporaryExpr : public Expr {
3411  /// \brief The temporary-generating expression whose value will be
3412  /// materialized.
3413 Stmt *Temporary;
3414
3415  friend class ASTStmtReader;
3416  friend class ASTStmtWriter;
3417
3418public:
3419  MaterializeTemporaryExpr(QualType T, Expr *Temporary,
3420                           bool BoundToLvalueReference)
3421    : Expr(MaterializeTemporaryExprClass, T,
3422           BoundToLvalueReference? VK_LValue : VK_XValue, OK_Ordinary,
3423           Temporary->isTypeDependent(), Temporary->isValueDependent(),
3424           Temporary->isInstantiationDependent(),
3425           Temporary->containsUnexpandedParameterPack()),
3426      Temporary(Temporary) { }
3427
3428  MaterializeTemporaryExpr(EmptyShell Empty)
3429    : Expr(MaterializeTemporaryExprClass, Empty) { }
3430
3431  /// \brief Retrieve the temporary-generating subexpression whose value will
3432  /// be materialized into a glvalue.
3433  Expr *GetTemporaryExpr() const { return reinterpret_cast<Expr *>(Temporary); }
3434
3435  /// \brief Determine whether this materialized temporary is bound to an
3436  /// lvalue reference; otherwise, it's bound to an rvalue reference.
3437  bool isBoundToLvalueReference() const {
3438    return getValueKind() == VK_LValue;
3439  }
3440
3441  SourceRange getSourceRange() const { return Temporary->getSourceRange(); }
3442
3443  static bool classof(const Stmt *T) {
3444    return T->getStmtClass() == MaterializeTemporaryExprClass;
3445  }
3446  static bool classof(const MaterializeTemporaryExpr *) {
3447    return true;
3448  }
3449
3450  // Iterators
3451  child_range children() { return child_range(&Temporary, &Temporary + 1); }
3452};
3453
3454}  // end namespace clang
3455
3456#endif
3457