ExprCXX.h revision 030854b95f7bfd86aaa8afd9ae1aff9768a37e9a
1//===--- ExprCXX.h - Classes for representing expressions -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses for C++ expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPRCXX_H
15#define LLVM_CLANG_AST_EXPRCXX_H
16
17#include "clang/Basic/TypeTraits.h"
18#include "clang/AST/Expr.h"
19#include "clang/AST/UnresolvedSet.h"
20#include "clang/AST/TemplateBase.h"
21
22namespace clang {
23
24  class CXXConstructorDecl;
25  class CXXDestructorDecl;
26  class CXXMethodDecl;
27  class CXXTemporary;
28  class TemplateArgumentListInfo;
29
30//===--------------------------------------------------------------------===//
31// C++ Expressions.
32//===--------------------------------------------------------------------===//
33
34/// \brief A call to an overloaded operator written using operator
35/// syntax.
36///
37/// Represents a call to an overloaded operator written using operator
38/// syntax, e.g., "x + y" or "*p". While semantically equivalent to a
39/// normal call, this AST node provides better information about the
40/// syntactic representation of the call.
41///
42/// In a C++ template, this expression node kind will be used whenever
43/// any of the arguments are type-dependent. In this case, the
44/// function itself will be a (possibly empty) set of functions and
45/// function templates that were found by name lookup at template
46/// definition time.
47class CXXOperatorCallExpr : public CallExpr {
48  /// \brief The overloaded operator.
49  OverloadedOperatorKind Operator;
50
51public:
52  CXXOperatorCallExpr(ASTContext& C, OverloadedOperatorKind Op, Expr *fn,
53                      Expr **args, unsigned numargs, QualType t,
54                      SourceLocation operatorloc)
55    : CallExpr(C, CXXOperatorCallExprClass, fn, args, numargs, t, operatorloc),
56      Operator(Op) {}
57  explicit CXXOperatorCallExpr(ASTContext& C, EmptyShell Empty) :
58    CallExpr(C, CXXOperatorCallExprClass, Empty) { }
59
60
61  /// getOperator - Returns the kind of overloaded operator that this
62  /// expression refers to.
63  OverloadedOperatorKind getOperator() const { return Operator; }
64  void setOperator(OverloadedOperatorKind Kind) { Operator = Kind; }
65
66  /// getOperatorLoc - Returns the location of the operator symbol in
67  /// the expression. When @c getOperator()==OO_Call, this is the
68  /// location of the right parentheses; when @c
69  /// getOperator()==OO_Subscript, this is the location of the right
70  /// bracket.
71  SourceLocation getOperatorLoc() const { return getRParenLoc(); }
72
73  virtual SourceRange getSourceRange() const;
74
75  static bool classof(const Stmt *T) {
76    return T->getStmtClass() == CXXOperatorCallExprClass;
77  }
78  static bool classof(const CXXOperatorCallExpr *) { return true; }
79};
80
81/// CXXMemberCallExpr - Represents a call to a member function that
82/// may be written either with member call syntax (e.g., "obj.func()"
83/// or "objptr->func()") or with normal function-call syntax
84/// ("func()") within a member function that ends up calling a member
85/// function. The callee in either case is a MemberExpr that contains
86/// both the object argument and the member function, while the
87/// arguments are the arguments within the parentheses (not including
88/// the object argument).
89class CXXMemberCallExpr : public CallExpr {
90public:
91  CXXMemberCallExpr(ASTContext &C, Expr *fn, Expr **args, unsigned numargs,
92                    QualType t, SourceLocation rparenloc)
93    : CallExpr(C, CXXMemberCallExprClass, fn, args, numargs, t, rparenloc) {}
94
95  CXXMemberCallExpr(ASTContext &C, EmptyShell Empty)
96    : CallExpr(C, CXXMemberCallExprClass, Empty) { }
97
98  /// getImplicitObjectArgument - Retrieves the implicit object
99  /// argument for the member call. For example, in "x.f(5)", this
100  /// operation would return "x".
101  Expr *getImplicitObjectArgument();
102
103  virtual SourceRange getSourceRange() const;
104
105  static bool classof(const Stmt *T) {
106    return T->getStmtClass() == CXXMemberCallExprClass;
107  }
108  static bool classof(const CXXMemberCallExpr *) { return true; }
109};
110
111/// CXXNamedCastExpr - Abstract class common to all of the C++ "named"
112/// casts, @c static_cast, @c dynamic_cast, @c reinterpret_cast, or @c
113/// const_cast.
114///
115/// This abstract class is inherited by all of the classes
116/// representing "named" casts, e.g., CXXStaticCastExpr,
117/// CXXDynamicCastExpr, CXXReinterpretCastExpr, and CXXConstCastExpr.
118class CXXNamedCastExpr : public ExplicitCastExpr {
119private:
120  SourceLocation Loc; // the location of the casting op
121
122protected:
123  CXXNamedCastExpr(StmtClass SC, QualType ty, CastKind kind, Expr *op,
124                   CXXBaseSpecifierArray BasePath, TypeSourceInfo *writtenTy,
125                   SourceLocation l)
126    : ExplicitCastExpr(SC, ty, kind, op, BasePath, writtenTy), Loc(l) {}
127
128  explicit CXXNamedCastExpr(StmtClass SC, EmptyShell Shell)
129    : ExplicitCastExpr(SC, Shell) { }
130
131public:
132  const char *getCastName() const;
133
134  /// \brief Retrieve the location of the cast operator keyword, e.g.,
135  /// "static_cast".
136  SourceLocation getOperatorLoc() const { return Loc; }
137  void setOperatorLoc(SourceLocation L) { Loc = L; }
138
139  virtual SourceRange getSourceRange() const {
140    return SourceRange(Loc, getSubExpr()->getSourceRange().getEnd());
141  }
142  static bool classof(const Stmt *T) {
143    switch (T->getStmtClass()) {
144    case CXXStaticCastExprClass:
145    case CXXDynamicCastExprClass:
146    case CXXReinterpretCastExprClass:
147    case CXXConstCastExprClass:
148      return true;
149    default:
150      return false;
151    }
152  }
153  static bool classof(const CXXNamedCastExpr *) { return true; }
154};
155
156/// CXXStaticCastExpr - A C++ @c static_cast expression (C++ [expr.static.cast]).
157///
158/// This expression node represents a C++ static cast, e.g.,
159/// @c static_cast<int>(1.0).
160class CXXStaticCastExpr : public CXXNamedCastExpr {
161public:
162  CXXStaticCastExpr(QualType ty, CastKind kind, Expr *op,
163                    CXXBaseSpecifierArray BasePath, TypeSourceInfo *writtenTy,
164                    SourceLocation l)
165    : CXXNamedCastExpr(CXXStaticCastExprClass, ty, kind, op, BasePath, writtenTy, l) {}
166
167  explicit CXXStaticCastExpr(EmptyShell Empty)
168    : CXXNamedCastExpr(CXXStaticCastExprClass, Empty) { }
169
170  static bool classof(const Stmt *T) {
171    return T->getStmtClass() == CXXStaticCastExprClass;
172  }
173  static bool classof(const CXXStaticCastExpr *) { return true; }
174};
175
176/// CXXDynamicCastExpr - A C++ @c dynamic_cast expression
177/// (C++ [expr.dynamic.cast]), which may perform a run-time check to
178/// determine how to perform the type cast.
179///
180/// This expression node represents a dynamic cast, e.g.,
181/// @c dynamic_cast<Derived*>(BasePtr).
182class CXXDynamicCastExpr : public CXXNamedCastExpr {
183public:
184  CXXDynamicCastExpr(QualType ty, CastKind kind, Expr *op,
185                     CXXBaseSpecifierArray BasePath, TypeSourceInfo *writtenTy,
186                     SourceLocation l)
187    : CXXNamedCastExpr(CXXDynamicCastExprClass, ty, kind, op, BasePath,
188                       writtenTy, l) {}
189
190  explicit CXXDynamicCastExpr(EmptyShell Empty)
191    : CXXNamedCastExpr(CXXDynamicCastExprClass, Empty) { }
192
193  static bool classof(const Stmt *T) {
194    return T->getStmtClass() == CXXDynamicCastExprClass;
195  }
196  static bool classof(const CXXDynamicCastExpr *) { return true; }
197};
198
199/// CXXReinterpretCastExpr - A C++ @c reinterpret_cast expression (C++
200/// [expr.reinterpret.cast]), which provides a differently-typed view
201/// of a value but performs no actual work at run time.
202///
203/// This expression node represents a reinterpret cast, e.g.,
204/// @c reinterpret_cast<int>(VoidPtr).
205class CXXReinterpretCastExpr : public CXXNamedCastExpr {
206public:
207  CXXReinterpretCastExpr(QualType ty, CastKind kind, Expr *op,
208                         CXXBaseSpecifierArray BasePath,
209                         TypeSourceInfo *writtenTy, SourceLocation l)
210    : CXXNamedCastExpr(CXXReinterpretCastExprClass, ty, kind, op, BasePath,
211                       writtenTy, l) {}
212
213  explicit CXXReinterpretCastExpr(EmptyShell Empty)
214    : CXXNamedCastExpr(CXXReinterpretCastExprClass, Empty) { }
215
216  static bool classof(const Stmt *T) {
217    return T->getStmtClass() == CXXReinterpretCastExprClass;
218  }
219  static bool classof(const CXXReinterpretCastExpr *) { return true; }
220};
221
222/// CXXConstCastExpr - A C++ @c const_cast expression (C++ [expr.const.cast]),
223/// which can remove type qualifiers but does not change the underlying value.
224///
225/// This expression node represents a const cast, e.g.,
226/// @c const_cast<char*>(PtrToConstChar).
227class CXXConstCastExpr : public CXXNamedCastExpr {
228public:
229  CXXConstCastExpr(QualType ty, Expr *op, TypeSourceInfo *writtenTy,
230                   SourceLocation l)
231    : CXXNamedCastExpr(CXXConstCastExprClass, ty, CK_NoOp, op,
232                       CXXBaseSpecifierArray(), writtenTy, l) {}
233
234  explicit CXXConstCastExpr(EmptyShell Empty)
235    : CXXNamedCastExpr(CXXConstCastExprClass, Empty) { }
236
237  static bool classof(const Stmt *T) {
238    return T->getStmtClass() == CXXConstCastExprClass;
239  }
240  static bool classof(const CXXConstCastExpr *) { return true; }
241};
242
243/// CXXBoolLiteralExpr - [C++ 2.13.5] C++ Boolean Literal.
244///
245class CXXBoolLiteralExpr : public Expr {
246  bool Value;
247  SourceLocation Loc;
248public:
249  CXXBoolLiteralExpr(bool val, QualType Ty, SourceLocation l) :
250    Expr(CXXBoolLiteralExprClass, Ty, false, false), Value(val), Loc(l) {}
251
252  explicit CXXBoolLiteralExpr(EmptyShell Empty)
253    : Expr(CXXBoolLiteralExprClass, Empty) { }
254
255  bool getValue() const { return Value; }
256  void setValue(bool V) { Value = V; }
257
258  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
259
260  SourceLocation getLocation() const { return Loc; }
261  void setLocation(SourceLocation L) { Loc = L; }
262
263  static bool classof(const Stmt *T) {
264    return T->getStmtClass() == CXXBoolLiteralExprClass;
265  }
266  static bool classof(const CXXBoolLiteralExpr *) { return true; }
267
268  // Iterators
269  virtual child_iterator child_begin();
270  virtual child_iterator child_end();
271};
272
273/// CXXNullPtrLiteralExpr - [C++0x 2.14.7] C++ Pointer Literal
274class CXXNullPtrLiteralExpr : public Expr {
275  SourceLocation Loc;
276public:
277  CXXNullPtrLiteralExpr(QualType Ty, SourceLocation l) :
278    Expr(CXXNullPtrLiteralExprClass, Ty, false, false), Loc(l) {}
279
280  explicit CXXNullPtrLiteralExpr(EmptyShell Empty)
281    : Expr(CXXNullPtrLiteralExprClass, Empty) { }
282
283  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
284
285  SourceLocation getLocation() const { return Loc; }
286  void setLocation(SourceLocation L) { Loc = L; }
287
288  static bool classof(const Stmt *T) {
289    return T->getStmtClass() == CXXNullPtrLiteralExprClass;
290  }
291  static bool classof(const CXXNullPtrLiteralExpr *) { return true; }
292
293  virtual child_iterator child_begin();
294  virtual child_iterator child_end();
295};
296
297/// CXXTypeidExpr - A C++ @c typeid expression (C++ [expr.typeid]), which gets
298/// the type_info that corresponds to the supplied type, or the (possibly
299/// dynamic) type of the supplied expression.
300///
301/// This represents code like @c typeid(int) or @c typeid(*objPtr)
302class CXXTypeidExpr : public Expr {
303private:
304  llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
305  SourceRange Range;
306
307public:
308  CXXTypeidExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
309    : Expr(CXXTypeidExprClass, Ty,
310           // typeid is never type-dependent (C++ [temp.dep.expr]p4)
311           false,
312           // typeid is value-dependent if the type or expression are dependent
313           Operand->getType()->isDependentType()),
314      Operand(Operand), Range(R) { }
315
316  CXXTypeidExpr(QualType Ty, Expr *Operand, SourceRange R)
317    : Expr(CXXTypeidExprClass, Ty,
318        // typeid is never type-dependent (C++ [temp.dep.expr]p4)
319        false,
320        // typeid is value-dependent if the type or expression are dependent
321        Operand->isTypeDependent() || Operand->isValueDependent()),
322      Operand(Operand), Range(R) { }
323
324  CXXTypeidExpr(EmptyShell Empty, bool isExpr)
325    : Expr(CXXTypeidExprClass, Empty) {
326    if (isExpr)
327      Operand = (Expr*)0;
328    else
329      Operand = (TypeSourceInfo*)0;
330  }
331
332  bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
333
334  /// \brief Retrieves the type operand of this typeid() expression after
335  /// various required adjustments (removing reference types, cv-qualifiers).
336  QualType getTypeOperand() const;
337
338  /// \brief Retrieve source information for the type operand.
339  TypeSourceInfo *getTypeOperandSourceInfo() const {
340    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
341    return Operand.get<TypeSourceInfo *>();
342  }
343
344  void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
345    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
346    Operand = TSI;
347  }
348
349  Expr *getExprOperand() const {
350    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
351    return static_cast<Expr*>(Operand.get<Stmt *>());
352  }
353
354  void setExprOperand(Expr *E) {
355    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
356    Operand = E;
357  }
358
359  virtual SourceRange getSourceRange() const { return Range; }
360  void setSourceRange(SourceRange R) { Range = R; }
361
362  static bool classof(const Stmt *T) {
363    return T->getStmtClass() == CXXTypeidExprClass;
364  }
365  static bool classof(const CXXTypeidExpr *) { return true; }
366
367  // Iterators
368  virtual child_iterator child_begin();
369  virtual child_iterator child_end();
370};
371
372/// CXXThisExpr - Represents the "this" expression in C++, which is a
373/// pointer to the object on which the current member function is
374/// executing (C++ [expr.prim]p3). Example:
375///
376/// @code
377/// class Foo {
378/// public:
379///   void bar();
380///   void test() { this->bar(); }
381/// };
382/// @endcode
383class CXXThisExpr : public Expr {
384  SourceLocation Loc;
385  bool Implicit : 1;
386
387public:
388  CXXThisExpr(SourceLocation L, QualType Type, bool isImplicit)
389    : Expr(CXXThisExprClass, Type,
390           // 'this' is type-dependent if the class type of the enclosing
391           // member function is dependent (C++ [temp.dep.expr]p2)
392           Type->isDependentType(), Type->isDependentType()),
393      Loc(L), Implicit(isImplicit) { }
394
395  CXXThisExpr(EmptyShell Empty) : Expr(CXXThisExprClass, Empty) {}
396
397  SourceLocation getLocation() const { return Loc; }
398  void setLocation(SourceLocation L) { Loc = L; }
399
400  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
401
402  bool isImplicit() const { return Implicit; }
403  void setImplicit(bool I) { Implicit = I; }
404
405  static bool classof(const Stmt *T) {
406    return T->getStmtClass() == CXXThisExprClass;
407  }
408  static bool classof(const CXXThisExpr *) { return true; }
409
410  // Iterators
411  virtual child_iterator child_begin();
412  virtual child_iterator child_end();
413};
414
415///  CXXThrowExpr - [C++ 15] C++ Throw Expression.  This handles
416///  'throw' and 'throw' assignment-expression.  When
417///  assignment-expression isn't present, Op will be null.
418///
419class CXXThrowExpr : public Expr {
420  Stmt *Op;
421  SourceLocation ThrowLoc;
422public:
423  // Ty is the void type which is used as the result type of the
424  // exepression.  The l is the location of the throw keyword.  expr
425  // can by null, if the optional expression to throw isn't present.
426  CXXThrowExpr(Expr *expr, QualType Ty, SourceLocation l) :
427    Expr(CXXThrowExprClass, Ty, false, false), Op(expr), ThrowLoc(l) {}
428  CXXThrowExpr(EmptyShell Empty) : Expr(CXXThrowExprClass, Empty) {}
429
430  const Expr *getSubExpr() const { return cast_or_null<Expr>(Op); }
431  Expr *getSubExpr() { return cast_or_null<Expr>(Op); }
432  void setSubExpr(Expr *E) { Op = E; }
433
434  SourceLocation getThrowLoc() const { return ThrowLoc; }
435  void setThrowLoc(SourceLocation L) { ThrowLoc = L; }
436
437  virtual SourceRange getSourceRange() const {
438    if (getSubExpr() == 0)
439      return SourceRange(ThrowLoc, ThrowLoc);
440    return SourceRange(ThrowLoc, getSubExpr()->getSourceRange().getEnd());
441  }
442
443  static bool classof(const Stmt *T) {
444    return T->getStmtClass() == CXXThrowExprClass;
445  }
446  static bool classof(const CXXThrowExpr *) { return true; }
447
448  // Iterators
449  virtual child_iterator child_begin();
450  virtual child_iterator child_end();
451};
452
453/// CXXDefaultArgExpr - C++ [dcl.fct.default]. This wraps up a
454/// function call argument that was created from the corresponding
455/// parameter's default argument, when the call did not explicitly
456/// supply arguments for all of the parameters.
457class CXXDefaultArgExpr : public Expr {
458  /// \brief The parameter whose default is being used.
459  ///
460  /// When the bit is set, the subexpression is stored after the
461  /// CXXDefaultArgExpr itself. When the bit is clear, the parameter's
462  /// actual default expression is the subexpression.
463  llvm::PointerIntPair<ParmVarDecl *, 1, bool> Param;
464
465  /// \brief The location where the default argument expression was used.
466  SourceLocation Loc;
467
468protected:
469  CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param)
470    : Expr(SC,
471           param->hasUnparsedDefaultArg()
472             ? param->getType().getNonReferenceType()
473             : param->getDefaultArg()->getType(),
474           false, false),
475      Param(param, false), Loc(Loc) { }
476
477  CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param,
478                    Expr *SubExpr)
479    : Expr(SC, SubExpr->getType(), false, false), Param(param, true), Loc(Loc) {
480    *reinterpret_cast<Expr **>(this + 1) = SubExpr;
481  }
482
483protected:
484  virtual void DoDestroy(ASTContext &C);
485
486public:
487  CXXDefaultArgExpr(EmptyShell Empty) : Expr(CXXDefaultArgExprClass, Empty) {}
488
489
490  // Param is the parameter whose default argument is used by this
491  // expression.
492  static CXXDefaultArgExpr *Create(ASTContext &C, SourceLocation Loc,
493                                   ParmVarDecl *Param) {
494    return new (C) CXXDefaultArgExpr(CXXDefaultArgExprClass, Loc, Param);
495  }
496
497  // Param is the parameter whose default argument is used by this
498  // expression, and SubExpr is the expression that will actually be used.
499  static CXXDefaultArgExpr *Create(ASTContext &C,
500                                   SourceLocation Loc,
501                                   ParmVarDecl *Param,
502                                   Expr *SubExpr);
503
504  // Retrieve the parameter that the argument was created from.
505  const ParmVarDecl *getParam() const { return Param.getPointer(); }
506  ParmVarDecl *getParam() { return Param.getPointer(); }
507
508  /// isExprStored - Return true if this expression owns the expression.
509  bool isExprStored() const { return Param.getInt(); }
510
511  // Retrieve the actual argument to the function call.
512  const Expr *getExpr() const {
513    if (Param.getInt())
514      return *reinterpret_cast<Expr const * const*> (this + 1);
515    return getParam()->getDefaultArg();
516  }
517  Expr *getExpr() {
518    if (Param.getInt())
519      return *reinterpret_cast<Expr **> (this + 1);
520    return getParam()->getDefaultArg();
521  }
522
523  void setExpr(Expr *E) {
524    Param.setInt(true);
525    Param.setPointer((ParmVarDecl*)E);
526  }
527
528  /// \brief Retrieve the location where this default argument was actually
529  /// used.
530  SourceLocation getUsedLocation() const { return Loc; }
531  void setUsedLocation(SourceLocation L) { Loc = L; }
532
533  virtual SourceRange getSourceRange() const {
534    // Default argument expressions have no representation in the
535    // source, so they have an empty source range.
536    return SourceRange();
537  }
538
539  static bool classof(const Stmt *T) {
540    return T->getStmtClass() == CXXDefaultArgExprClass;
541  }
542  static bool classof(const CXXDefaultArgExpr *) { return true; }
543
544  // Iterators
545  virtual child_iterator child_begin();
546  virtual child_iterator child_end();
547};
548
549/// CXXTemporary - Represents a C++ temporary.
550class CXXTemporary {
551  /// Destructor - The destructor that needs to be called.
552  const CXXDestructorDecl *Destructor;
553
554  CXXTemporary(const CXXDestructorDecl *destructor)
555    : Destructor(destructor) { }
556  ~CXXTemporary() { }
557
558public:
559  static CXXTemporary *Create(ASTContext &C,
560                              const CXXDestructorDecl *Destructor);
561
562  void Destroy(ASTContext &Ctx);
563
564  const CXXDestructorDecl *getDestructor() const { return Destructor; }
565};
566
567/// CXXBindTemporaryExpr - Represents binding an expression to a temporary,
568/// so its destructor can be called later.
569class CXXBindTemporaryExpr : public Expr {
570  CXXTemporary *Temp;
571
572  Stmt *SubExpr;
573
574  CXXBindTemporaryExpr(CXXTemporary *temp, Expr* subexpr)
575   : Expr(CXXBindTemporaryExprClass, subexpr->getType(), false, false),
576     Temp(temp), SubExpr(subexpr) { }
577  ~CXXBindTemporaryExpr() { }
578
579protected:
580  virtual void DoDestroy(ASTContext &C);
581
582public:
583  static CXXBindTemporaryExpr *Create(ASTContext &C, CXXTemporary *Temp,
584                                      Expr* SubExpr);
585
586  CXXTemporary *getTemporary() { return Temp; }
587  const CXXTemporary *getTemporary() const { return Temp; }
588
589  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
590  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
591  void setSubExpr(Expr *E) { SubExpr = E; }
592
593  virtual SourceRange getSourceRange() const {
594    return SubExpr->getSourceRange();
595  }
596
597  // Implement isa/cast/dyncast/etc.
598  static bool classof(const Stmt *T) {
599    return T->getStmtClass() == CXXBindTemporaryExprClass;
600  }
601  static bool classof(const CXXBindTemporaryExpr *) { return true; }
602
603  // Iterators
604  virtual child_iterator child_begin();
605  virtual child_iterator child_end();
606};
607
608/// CXXBindReferenceExpr - Represents binding an expression to a reference.
609/// In the example:
610///
611/// const int &i = 10;
612///
613/// a bind reference expression is inserted to indicate that 10 is bound to
614/// a reference. (Ans also that a temporary needs to be created to hold the
615/// value).
616class CXXBindReferenceExpr : public Expr {
617  // SubExpr - The expression being bound.
618  Stmt *SubExpr;
619
620  // ExtendsLifetime - Whether binding this reference extends the lifetime of
621  // the expression being bound. FIXME: Add C++ reference.
622  bool ExtendsLifetime;
623
624  /// RequiresTemporaryCopy - Whether binding the subexpression requires a
625  /// temporary copy.
626  bool RequiresTemporaryCopy;
627
628  CXXBindReferenceExpr(Expr *subexpr, bool ExtendsLifetime,
629                       bool RequiresTemporaryCopy)
630  : Expr(CXXBindReferenceExprClass, subexpr->getType(), false, false),
631    SubExpr(subexpr), ExtendsLifetime(ExtendsLifetime),
632    RequiresTemporaryCopy(RequiresTemporaryCopy) { }
633  ~CXXBindReferenceExpr() { }
634
635protected:
636  virtual void DoDestroy(ASTContext &C);
637
638public:
639  static CXXBindReferenceExpr *Create(ASTContext &C, Expr *SubExpr,
640                                      bool ExtendsLifetime,
641                                      bool RequiresTemporaryCopy);
642
643  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
644  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
645  void setSubExpr(Expr *E) { SubExpr = E; }
646
647  virtual SourceRange getSourceRange() const {
648    return SubExpr->getSourceRange();
649  }
650
651  /// requiresTemporaryCopy - Whether binding the subexpression requires a
652  /// temporary copy.
653  bool requiresTemporaryCopy() const { return RequiresTemporaryCopy; }
654
655  // extendsLifetime - Whether binding this reference extends the lifetime of
656  // the expression being bound. FIXME: Add C++ reference.
657  bool extendsLifetime() { return ExtendsLifetime; }
658
659  // Implement isa/cast/dyncast/etc.
660  static bool classof(const Stmt *T) {
661    return T->getStmtClass() == CXXBindReferenceExprClass;
662  }
663  static bool classof(const CXXBindReferenceExpr *) { return true; }
664
665  // Iterators
666  virtual child_iterator child_begin();
667  virtual child_iterator child_end();
668};
669
670/// CXXConstructExpr - Represents a call to a C++ constructor.
671class CXXConstructExpr : public Expr {
672public:
673  enum ConstructionKind {
674    CK_Complete,
675    CK_NonVirtualBase,
676    CK_VirtualBase
677  };
678
679private:
680  CXXConstructorDecl *Constructor;
681
682  SourceLocation Loc;
683  bool Elidable : 1;
684  bool ZeroInitialization : 1;
685  unsigned ConstructKind : 2;
686  Stmt **Args;
687  unsigned NumArgs;
688
689protected:
690  CXXConstructExpr(ASTContext &C, StmtClass SC, QualType T,
691                   SourceLocation Loc,
692                   CXXConstructorDecl *d, bool elidable,
693                   Expr **args, unsigned numargs,
694                   bool ZeroInitialization = false,
695                   ConstructionKind ConstructKind = CK_Complete);
696  ~CXXConstructExpr() { }
697
698  virtual void DoDestroy(ASTContext &C);
699
700public:
701  /// \brief Construct an empty C++ construction expression that will store
702  /// \p numargs arguments.
703  CXXConstructExpr(EmptyShell Empty, ASTContext &C, unsigned numargs);
704
705  static CXXConstructExpr *Create(ASTContext &C, QualType T,
706                                  SourceLocation Loc,
707                                  CXXConstructorDecl *D, bool Elidable,
708                                  Expr **Args, unsigned NumArgs,
709                                  bool ZeroInitialization = false,
710                                  ConstructionKind ConstructKind = CK_Complete);
711
712
713  CXXConstructorDecl* getConstructor() const { return Constructor; }
714  void setConstructor(CXXConstructorDecl *C) { Constructor = C; }
715
716  SourceLocation getLocation() const { return Loc; }
717  void setLocation(SourceLocation Loc) { this->Loc = Loc; }
718
719  /// \brief Whether this construction is elidable.
720  bool isElidable() const { return Elidable; }
721  void setElidable(bool E) { Elidable = E; }
722
723  /// \brief Whether this construction first requires
724  /// zero-initialization before the initializer is called.
725  bool requiresZeroInitialization() const { return ZeroInitialization; }
726  void setRequiresZeroInitialization(bool ZeroInit) {
727    ZeroInitialization = ZeroInit;
728  }
729
730  /// \brief Determines whether this constructor is actually constructing
731  /// a base class (rather than a complete object).
732  ConstructionKind getConstructionKind() const {
733    return (ConstructionKind)ConstructKind;
734  }
735  void setConstructionKind(ConstructionKind CK) {
736    ConstructKind = CK;
737  }
738
739  typedef ExprIterator arg_iterator;
740  typedef ConstExprIterator const_arg_iterator;
741
742  arg_iterator arg_begin() { return Args; }
743  arg_iterator arg_end() { return Args + NumArgs; }
744  const_arg_iterator arg_begin() const { return Args; }
745  const_arg_iterator arg_end() const { return Args + NumArgs; }
746
747  Expr **getArgs() const { return reinterpret_cast<Expr **>(Args); }
748  unsigned getNumArgs() const { return NumArgs; }
749
750  /// getArg - Return the specified argument.
751  Expr *getArg(unsigned Arg) {
752    assert(Arg < NumArgs && "Arg access out of range!");
753    return cast<Expr>(Args[Arg]);
754  }
755  const Expr *getArg(unsigned Arg) const {
756    assert(Arg < NumArgs && "Arg access out of range!");
757    return cast<Expr>(Args[Arg]);
758  }
759
760  /// setArg - Set the specified argument.
761  void setArg(unsigned Arg, Expr *ArgExpr) {
762    assert(Arg < NumArgs && "Arg access out of range!");
763    Args[Arg] = ArgExpr;
764  }
765
766  virtual SourceRange getSourceRange() const;
767
768  static bool classof(const Stmt *T) {
769    return T->getStmtClass() == CXXConstructExprClass ||
770      T->getStmtClass() == CXXTemporaryObjectExprClass;
771  }
772  static bool classof(const CXXConstructExpr *) { return true; }
773
774  // Iterators
775  virtual child_iterator child_begin();
776  virtual child_iterator child_end();
777};
778
779/// CXXFunctionalCastExpr - Represents an explicit C++ type conversion
780/// that uses "functional" notion (C++ [expr.type.conv]). Example: @c
781/// x = int(0.5);
782class CXXFunctionalCastExpr : public ExplicitCastExpr {
783  SourceLocation TyBeginLoc;
784  SourceLocation RParenLoc;
785public:
786  CXXFunctionalCastExpr(QualType ty, TypeSourceInfo *writtenTy,
787                        SourceLocation tyBeginLoc, CastKind kind,
788                        Expr *castExpr, CXXBaseSpecifierArray BasePath,
789                        SourceLocation rParenLoc)
790    : ExplicitCastExpr(CXXFunctionalCastExprClass, ty, kind, castExpr,
791                       BasePath, writtenTy),
792      TyBeginLoc(tyBeginLoc), RParenLoc(rParenLoc) {}
793
794  explicit CXXFunctionalCastExpr(EmptyShell Shell)
795    : ExplicitCastExpr(CXXFunctionalCastExprClass, Shell) { }
796
797  SourceLocation getTypeBeginLoc() const { return TyBeginLoc; }
798  void setTypeBeginLoc(SourceLocation L) { TyBeginLoc = L; }
799  SourceLocation getRParenLoc() const { return RParenLoc; }
800  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
801
802  virtual SourceRange getSourceRange() const {
803    return SourceRange(TyBeginLoc, RParenLoc);
804  }
805  static bool classof(const Stmt *T) {
806    return T->getStmtClass() == CXXFunctionalCastExprClass;
807  }
808  static bool classof(const CXXFunctionalCastExpr *) { return true; }
809};
810
811/// @brief Represents a C++ functional cast expression that builds a
812/// temporary object.
813///
814/// This expression type represents a C++ "functional" cast
815/// (C++[expr.type.conv]) with N != 1 arguments that invokes a
816/// constructor to build a temporary object. If N == 0 but no
817/// constructor will be called (because the functional cast is
818/// performing a value-initialized an object whose class type has no
819/// user-declared constructors), CXXZeroInitValueExpr will represent
820/// the functional cast. Finally, with N == 1 arguments the functional
821/// cast expression will be represented by CXXFunctionalCastExpr.
822/// Example:
823/// @code
824/// struct X { X(int, float); }
825///
826/// X create_X() {
827///   return X(1, 3.14f); // creates a CXXTemporaryObjectExpr
828/// };
829/// @endcode
830class CXXTemporaryObjectExpr : public CXXConstructExpr {
831  SourceLocation TyBeginLoc;
832  SourceLocation RParenLoc;
833
834public:
835  CXXTemporaryObjectExpr(ASTContext &C, CXXConstructorDecl *Cons,
836                         QualType writtenTy, SourceLocation tyBeginLoc,
837                         Expr **Args,unsigned NumArgs,
838                         SourceLocation rParenLoc,
839                         bool ZeroInitialization = false);
840
841  ~CXXTemporaryObjectExpr() { }
842
843  SourceLocation getTypeBeginLoc() const { return TyBeginLoc; }
844  SourceLocation getRParenLoc() const { return RParenLoc; }
845
846  virtual SourceRange getSourceRange() const {
847    return SourceRange(TyBeginLoc, RParenLoc);
848  }
849  static bool classof(const Stmt *T) {
850    return T->getStmtClass() == CXXTemporaryObjectExprClass;
851  }
852  static bool classof(const CXXTemporaryObjectExpr *) { return true; }
853};
854
855/// CXXZeroInitValueExpr - [C++ 5.2.3p2]
856/// Expression "T()" which creates a value-initialized rvalue of type
857/// T, which is either a non-class type or a class type without any
858/// user-defined constructors.
859///
860class CXXZeroInitValueExpr : public Expr {
861  SourceLocation TyBeginLoc;
862  SourceLocation RParenLoc;
863
864public:
865  CXXZeroInitValueExpr(QualType ty, SourceLocation tyBeginLoc,
866                       SourceLocation rParenLoc ) :
867    Expr(CXXZeroInitValueExprClass, ty, false, false),
868    TyBeginLoc(tyBeginLoc), RParenLoc(rParenLoc) {}
869
870  SourceLocation getTypeBeginLoc() const { return TyBeginLoc; }
871  SourceLocation getRParenLoc() const { return RParenLoc; }
872
873  /// @brief Whether this initialization expression was
874  /// implicitly-generated.
875  bool isImplicit() const {
876    return TyBeginLoc.isInvalid() && RParenLoc.isInvalid();
877  }
878
879  virtual SourceRange getSourceRange() const {
880    return SourceRange(TyBeginLoc, RParenLoc);
881  }
882
883  static bool classof(const Stmt *T) {
884    return T->getStmtClass() == CXXZeroInitValueExprClass;
885  }
886  static bool classof(const CXXZeroInitValueExpr *) { return true; }
887
888  // Iterators
889  virtual child_iterator child_begin();
890  virtual child_iterator child_end();
891};
892
893/// CXXNewExpr - A new expression for memory allocation and constructor calls,
894/// e.g: "new CXXNewExpr(foo)".
895class CXXNewExpr : public Expr {
896  // Was the usage ::new, i.e. is the global new to be used?
897  bool GlobalNew : 1;
898  // Was the form (type-id) used? Otherwise, it was new-type-id.
899  bool ParenTypeId : 1;
900  // Is there an initializer? If not, built-ins are uninitialized, else they're
901  // value-initialized.
902  bool Initializer : 1;
903  // Do we allocate an array? If so, the first SubExpr is the size expression.
904  bool Array : 1;
905  // The number of placement new arguments.
906  unsigned NumPlacementArgs : 14;
907  // The number of constructor arguments. This may be 1 even for non-class
908  // types; use the pseudo copy constructor.
909  unsigned NumConstructorArgs : 14;
910  // Contains an optional array size expression, any number of optional
911  // placement arguments, and any number of optional constructor arguments,
912  // in that order.
913  Stmt **SubExprs;
914  // Points to the allocation function used.
915  FunctionDecl *OperatorNew;
916  // Points to the deallocation function used in case of error. May be null.
917  FunctionDecl *OperatorDelete;
918  // Points to the constructor used. Cannot be null if AllocType is a record;
919  // it would still point at the default constructor (even an implicit one).
920  // Must be null for all other types.
921  CXXConstructorDecl *Constructor;
922
923  SourceLocation StartLoc;
924  SourceLocation EndLoc;
925
926public:
927  CXXNewExpr(ASTContext &C, bool globalNew, FunctionDecl *operatorNew,
928             Expr **placementArgs, unsigned numPlaceArgs, bool ParenTypeId,
929             Expr *arraySize, CXXConstructorDecl *constructor, bool initializer,
930             Expr **constructorArgs, unsigned numConsArgs,
931             FunctionDecl *operatorDelete, QualType ty,
932             SourceLocation startLoc, SourceLocation endLoc);
933
934  virtual void DoDestroy(ASTContext &C);
935
936  QualType getAllocatedType() const {
937    assert(getType()->isPointerType());
938    return getType()->getAs<PointerType>()->getPointeeType();
939  }
940
941  FunctionDecl *getOperatorNew() const { return OperatorNew; }
942  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
943  CXXConstructorDecl *getConstructor() const { return Constructor; }
944
945  bool isArray() const { return Array; }
946  Expr *getArraySize() {
947    return Array ? cast<Expr>(SubExprs[0]) : 0;
948  }
949  const Expr *getArraySize() const {
950    return Array ? cast<Expr>(SubExprs[0]) : 0;
951  }
952
953  unsigned getNumPlacementArgs() const { return NumPlacementArgs; }
954  Expr *getPlacementArg(unsigned i) {
955    assert(i < NumPlacementArgs && "Index out of range");
956    return cast<Expr>(SubExprs[Array + i]);
957  }
958  const Expr *getPlacementArg(unsigned i) const {
959    assert(i < NumPlacementArgs && "Index out of range");
960    return cast<Expr>(SubExprs[Array + i]);
961  }
962
963  bool isGlobalNew() const { return GlobalNew; }
964  bool isParenTypeId() const { return ParenTypeId; }
965  bool hasInitializer() const { return Initializer; }
966
967  unsigned getNumConstructorArgs() const { return NumConstructorArgs; }
968  Expr *getConstructorArg(unsigned i) {
969    assert(i < NumConstructorArgs && "Index out of range");
970    return cast<Expr>(SubExprs[Array + NumPlacementArgs + i]);
971  }
972  const Expr *getConstructorArg(unsigned i) const {
973    assert(i < NumConstructorArgs && "Index out of range");
974    return cast<Expr>(SubExprs[Array + NumPlacementArgs + i]);
975  }
976
977  typedef ExprIterator arg_iterator;
978  typedef ConstExprIterator const_arg_iterator;
979
980  arg_iterator placement_arg_begin() {
981    return SubExprs + Array;
982  }
983  arg_iterator placement_arg_end() {
984    return SubExprs + Array + getNumPlacementArgs();
985  }
986  const_arg_iterator placement_arg_begin() const {
987    return SubExprs + Array;
988  }
989  const_arg_iterator placement_arg_end() const {
990    return SubExprs + Array + getNumPlacementArgs();
991  }
992
993  arg_iterator constructor_arg_begin() {
994    return SubExprs + Array + getNumPlacementArgs();
995  }
996  arg_iterator constructor_arg_end() {
997    return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
998  }
999  const_arg_iterator constructor_arg_begin() const {
1000    return SubExprs + Array + getNumPlacementArgs();
1001  }
1002  const_arg_iterator constructor_arg_end() const {
1003    return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
1004  }
1005
1006  virtual SourceRange getSourceRange() const {
1007    return SourceRange(StartLoc, EndLoc);
1008  }
1009
1010  static bool classof(const Stmt *T) {
1011    return T->getStmtClass() == CXXNewExprClass;
1012  }
1013  static bool classof(const CXXNewExpr *) { return true; }
1014
1015  // Iterators
1016  virtual child_iterator child_begin();
1017  virtual child_iterator child_end();
1018};
1019
1020/// CXXDeleteExpr - A delete expression for memory deallocation and destructor
1021/// calls, e.g. "delete[] pArray".
1022class CXXDeleteExpr : public Expr {
1023  // Is this a forced global delete, i.e. "::delete"?
1024  bool GlobalDelete : 1;
1025  // Is this the array form of delete, i.e. "delete[]"?
1026  bool ArrayForm : 1;
1027  // Points to the operator delete overload that is used. Could be a member.
1028  FunctionDecl *OperatorDelete;
1029  // The pointer expression to be deleted.
1030  Stmt *Argument;
1031  // Location of the expression.
1032  SourceLocation Loc;
1033public:
1034  CXXDeleteExpr(QualType ty, bool globalDelete, bool arrayForm,
1035                FunctionDecl *operatorDelete, Expr *arg, SourceLocation loc)
1036    : Expr(CXXDeleteExprClass, ty, false, false), GlobalDelete(globalDelete),
1037      ArrayForm(arrayForm), OperatorDelete(operatorDelete), Argument(arg),
1038      Loc(loc) { }
1039
1040  bool isGlobalDelete() const { return GlobalDelete; }
1041  bool isArrayForm() const { return ArrayForm; }
1042
1043  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
1044
1045  Expr *getArgument() { return cast<Expr>(Argument); }
1046  const Expr *getArgument() const { return cast<Expr>(Argument); }
1047
1048  virtual SourceRange getSourceRange() const {
1049    return SourceRange(Loc, Argument->getLocEnd());
1050  }
1051
1052  static bool classof(const Stmt *T) {
1053    return T->getStmtClass() == CXXDeleteExprClass;
1054  }
1055  static bool classof(const CXXDeleteExpr *) { return true; }
1056
1057  // Iterators
1058  virtual child_iterator child_begin();
1059  virtual child_iterator child_end();
1060};
1061
1062/// \brief Structure used to store the type being destroyed by a
1063/// pseudo-destructor expression.
1064class PseudoDestructorTypeStorage {
1065  /// \brief Either the type source information or the name of the type, if
1066  /// it couldn't be resolved due to type-dependence.
1067  llvm::PointerUnion<TypeSourceInfo *, IdentifierInfo *> Type;
1068
1069  /// \brief The starting source location of the pseudo-destructor type.
1070  SourceLocation Location;
1071
1072public:
1073  PseudoDestructorTypeStorage() { }
1074
1075  PseudoDestructorTypeStorage(IdentifierInfo *II, SourceLocation Loc)
1076    : Type(II), Location(Loc) { }
1077
1078  PseudoDestructorTypeStorage(TypeSourceInfo *Info);
1079
1080  TypeSourceInfo *getTypeSourceInfo() const {
1081    return Type.dyn_cast<TypeSourceInfo *>();
1082  }
1083
1084  IdentifierInfo *getIdentifier() const {
1085    return Type.dyn_cast<IdentifierInfo *>();
1086  }
1087
1088  SourceLocation getLocation() const { return Location; }
1089};
1090
1091/// \brief Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
1092///
1093/// A pseudo-destructor is an expression that looks like a member access to a
1094/// destructor of a scalar type, except that scalar types don't have
1095/// destructors. For example:
1096///
1097/// \code
1098/// typedef int T;
1099/// void f(int *p) {
1100///   p->T::~T();
1101/// }
1102/// \endcode
1103///
1104/// Pseudo-destructors typically occur when instantiating templates such as:
1105///
1106/// \code
1107/// template<typename T>
1108/// void destroy(T* ptr) {
1109///   ptr->T::~T();
1110/// }
1111/// \endcode
1112///
1113/// for scalar types. A pseudo-destructor expression has no run-time semantics
1114/// beyond evaluating the base expression.
1115class CXXPseudoDestructorExpr : public Expr {
1116  /// \brief The base expression (that is being destroyed).
1117  Stmt *Base;
1118
1119  /// \brief Whether the operator was an arrow ('->'); otherwise, it was a
1120  /// period ('.').
1121  bool IsArrow : 1;
1122
1123  /// \brief The location of the '.' or '->' operator.
1124  SourceLocation OperatorLoc;
1125
1126  /// \brief The nested-name-specifier that follows the operator, if present.
1127  NestedNameSpecifier *Qualifier;
1128
1129  /// \brief The source range that covers the nested-name-specifier, if
1130  /// present.
1131  SourceRange QualifierRange;
1132
1133  /// \brief The type that precedes the '::' in a qualified pseudo-destructor
1134  /// expression.
1135  TypeSourceInfo *ScopeType;
1136
1137  /// \brief The location of the '::' in a qualified pseudo-destructor
1138  /// expression.
1139  SourceLocation ColonColonLoc;
1140
1141  /// \brief The location of the '~'.
1142  SourceLocation TildeLoc;
1143
1144  /// \brief The type being destroyed, or its name if we were unable to
1145  /// resolve the name.
1146  PseudoDestructorTypeStorage DestroyedType;
1147
1148public:
1149  CXXPseudoDestructorExpr(ASTContext &Context,
1150                          Expr *Base, bool isArrow, SourceLocation OperatorLoc,
1151                          NestedNameSpecifier *Qualifier,
1152                          SourceRange QualifierRange,
1153                          TypeSourceInfo *ScopeType,
1154                          SourceLocation ColonColonLoc,
1155                          SourceLocation TildeLoc,
1156                          PseudoDestructorTypeStorage DestroyedType)
1157    : Expr(CXXPseudoDestructorExprClass,
1158           Context.getPointerType(Context.getFunctionType(Context.VoidTy, 0, 0,
1159                                                          false, 0, false,
1160                                                          false, 0, 0,
1161                                                      FunctionType::ExtInfo())),
1162           /*isTypeDependent=*/(Base->isTypeDependent() ||
1163            (DestroyedType.getTypeSourceInfo() &&
1164              DestroyedType.getTypeSourceInfo()->getType()->isDependentType())),
1165           /*isValueDependent=*/Base->isValueDependent()),
1166      Base(static_cast<Stmt *>(Base)), IsArrow(isArrow),
1167      OperatorLoc(OperatorLoc), Qualifier(Qualifier),
1168      QualifierRange(QualifierRange),
1169      ScopeType(ScopeType), ColonColonLoc(ColonColonLoc), TildeLoc(TildeLoc),
1170      DestroyedType(DestroyedType) { }
1171
1172  void setBase(Expr *E) { Base = E; }
1173  Expr *getBase() const { return cast<Expr>(Base); }
1174
1175  /// \brief Determines whether this member expression actually had
1176  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
1177  /// x->Base::foo.
1178  bool hasQualifier() const { return Qualifier != 0; }
1179
1180  /// \brief If the member name was qualified, retrieves the source range of
1181  /// the nested-name-specifier that precedes the member name. Otherwise,
1182  /// returns an empty source range.
1183  SourceRange getQualifierRange() const { return QualifierRange; }
1184
1185  /// \brief If the member name was qualified, retrieves the
1186  /// nested-name-specifier that precedes the member name. Otherwise, returns
1187  /// NULL.
1188  NestedNameSpecifier *getQualifier() const { return Qualifier; }
1189
1190  /// \brief Determine whether this pseudo-destructor expression was written
1191  /// using an '->' (otherwise, it used a '.').
1192  bool isArrow() const { return IsArrow; }
1193  void setArrow(bool A) { IsArrow = A; }
1194
1195  /// \brief Retrieve the location of the '.' or '->' operator.
1196  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1197
1198  /// \brief Retrieve the scope type in a qualified pseudo-destructor
1199  /// expression.
1200  ///
1201  /// Pseudo-destructor expressions can have extra qualification within them
1202  /// that is not part of the nested-name-specifier, e.g., \c p->T::~T().
1203  /// Here, if the object type of the expression is (or may be) a scalar type,
1204  /// \p T may also be a scalar type and, therefore, cannot be part of a
1205  /// nested-name-specifier. It is stored as the "scope type" of the pseudo-
1206  /// destructor expression.
1207  TypeSourceInfo *getScopeTypeInfo() const { return ScopeType; }
1208
1209  /// \brief Retrieve the location of the '::' in a qualified pseudo-destructor
1210  /// expression.
1211  SourceLocation getColonColonLoc() const { return ColonColonLoc; }
1212
1213  /// \brief Retrieve the location of the '~'.
1214  SourceLocation getTildeLoc() const { return TildeLoc; }
1215
1216  /// \brief Retrieve the source location information for the type
1217  /// being destroyed.
1218  ///
1219  /// This type-source information is available for non-dependent
1220  /// pseudo-destructor expressions and some dependent pseudo-destructor
1221  /// expressions. Returns NULL if we only have the identifier for a
1222  /// dependent pseudo-destructor expression.
1223  TypeSourceInfo *getDestroyedTypeInfo() const {
1224    return DestroyedType.getTypeSourceInfo();
1225  }
1226
1227  /// \brief In a dependent pseudo-destructor expression for which we do not
1228  /// have full type information on the destroyed type, provides the name
1229  /// of the destroyed type.
1230  IdentifierInfo *getDestroyedTypeIdentifier() const {
1231    return DestroyedType.getIdentifier();
1232  }
1233
1234  /// \brief Retrieve the type being destroyed.
1235  QualType getDestroyedType() const;
1236
1237  /// \brief Retrieve the starting location of the type being destroyed.
1238  SourceLocation getDestroyedTypeLoc() const {
1239    return DestroyedType.getLocation();
1240  }
1241
1242  virtual SourceRange getSourceRange() const;
1243
1244  static bool classof(const Stmt *T) {
1245    return T->getStmtClass() == CXXPseudoDestructorExprClass;
1246  }
1247  static bool classof(const CXXPseudoDestructorExpr *) { return true; }
1248
1249  // Iterators
1250  virtual child_iterator child_begin();
1251  virtual child_iterator child_end();
1252};
1253
1254/// UnaryTypeTraitExpr - A GCC or MS unary type trait, as used in the
1255/// implementation of TR1/C++0x type trait templates.
1256/// Example:
1257/// __is_pod(int) == true
1258/// __is_enum(std::string) == false
1259class UnaryTypeTraitExpr : public Expr {
1260  /// UTT - The trait.
1261  UnaryTypeTrait UTT;
1262
1263  /// Loc - The location of the type trait keyword.
1264  SourceLocation Loc;
1265
1266  /// RParen - The location of the closing paren.
1267  SourceLocation RParen;
1268
1269  /// QueriedType - The type we're testing.
1270  QualType QueriedType;
1271
1272public:
1273  UnaryTypeTraitExpr(SourceLocation loc, UnaryTypeTrait utt, QualType queried,
1274                     SourceLocation rparen, QualType ty)
1275    : Expr(UnaryTypeTraitExprClass, ty, false, queried->isDependentType()),
1276      UTT(utt), Loc(loc), RParen(rparen), QueriedType(queried) { }
1277
1278  virtual SourceRange getSourceRange() const { return SourceRange(Loc, RParen);}
1279
1280  UnaryTypeTrait getTrait() const { return UTT; }
1281
1282  QualType getQueriedType() const { return QueriedType; }
1283
1284  bool EvaluateTrait(ASTContext&) const;
1285
1286  static bool classof(const Stmt *T) {
1287    return T->getStmtClass() == UnaryTypeTraitExprClass;
1288  }
1289  static bool classof(const UnaryTypeTraitExpr *) { return true; }
1290
1291  // Iterators
1292  virtual child_iterator child_begin();
1293  virtual child_iterator child_end();
1294};
1295
1296/// \brief A reference to an overloaded function set, either an
1297/// \t UnresolvedLookupExpr or an \t UnresolvedMemberExpr.
1298class OverloadExpr : public Expr {
1299  /// The results.  These are undesugared, which is to say, they may
1300  /// include UsingShadowDecls.  Access is relative to the naming
1301  /// class.
1302  UnresolvedSet<4> Results;
1303
1304  /// The common name of these declarations.
1305  DeclarationName Name;
1306
1307  /// The scope specifier, if any.
1308  NestedNameSpecifier *Qualifier;
1309
1310  /// The source range of the scope specifier.
1311  SourceRange QualifierRange;
1312
1313  /// The location of the name.
1314  SourceLocation NameLoc;
1315
1316  /// True if the name was a template-id.
1317  bool HasExplicitTemplateArgs;
1318
1319protected:
1320  OverloadExpr(StmtClass K, QualType T, bool Dependent,
1321               NestedNameSpecifier *Qualifier, SourceRange QRange,
1322               DeclarationName Name, SourceLocation NameLoc,
1323               bool HasTemplateArgs)
1324    : Expr(K, T, Dependent, Dependent),
1325      Name(Name), Qualifier(Qualifier), QualifierRange(QRange),
1326      NameLoc(NameLoc), HasExplicitTemplateArgs(HasTemplateArgs)
1327  {}
1328
1329public:
1330  /// Computes whether an unresolved lookup on the given declarations
1331  /// and optional template arguments is type- and value-dependent.
1332  static bool ComputeDependence(UnresolvedSetIterator Begin,
1333                                UnresolvedSetIterator End,
1334                                const TemplateArgumentListInfo *Args);
1335
1336  /// Finds the overloaded expression in the given expression of
1337  /// OverloadTy.
1338  ///
1339  /// \return the expression (which must be there) and true if it is
1340  /// within an address-of operator.
1341  static llvm::PointerIntPair<OverloadExpr*,1> find(Expr *E) {
1342    assert(E->getType()->isSpecificBuiltinType(BuiltinType::Overload));
1343
1344    bool op = false;
1345    E = E->IgnoreParens();
1346    if (isa<UnaryOperator>(E))
1347      op = true, E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
1348    return llvm::PointerIntPair<OverloadExpr*,1>(cast<OverloadExpr>(E), op);
1349  }
1350
1351  void addDecls(UnresolvedSetIterator Begin, UnresolvedSetIterator End) {
1352    Results.append(Begin, End);
1353  }
1354
1355  /// Gets the naming class of this lookup, if any.
1356  CXXRecordDecl *getNamingClass() const;
1357
1358  typedef UnresolvedSetImpl::iterator decls_iterator;
1359  decls_iterator decls_begin() const { return Results.begin(); }
1360  decls_iterator decls_end() const { return Results.end(); }
1361
1362  /// Gets the decls as an unresolved set.
1363  const UnresolvedSetImpl &getDecls() { return Results; }
1364
1365  /// Gets the number of declarations in the unresolved set.
1366  unsigned getNumDecls() const { return Results.size(); }
1367
1368  /// Gets the name looked up.
1369  DeclarationName getName() const { return Name; }
1370  void setName(DeclarationName N) { Name = N; }
1371
1372  /// Gets the location of the name.
1373  SourceLocation getNameLoc() const { return NameLoc; }
1374  void setNameLoc(SourceLocation Loc) { NameLoc = Loc; }
1375
1376  /// Fetches the nested-name qualifier, if one was given.
1377  NestedNameSpecifier *getQualifier() const { return Qualifier; }
1378
1379  /// Fetches the range of the nested-name qualifier.
1380  SourceRange getQualifierRange() const { return QualifierRange; }
1381
1382  /// \brief Determines whether this expression had an explicit
1383  /// template argument list, e.g. f<int>.
1384  bool hasExplicitTemplateArgs() const { return HasExplicitTemplateArgs; }
1385
1386  ExplicitTemplateArgumentList &getExplicitTemplateArgs(); // defined far below
1387
1388  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
1389    return const_cast<OverloadExpr*>(this)->getExplicitTemplateArgs();
1390  }
1391
1392  ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() {
1393    if (hasExplicitTemplateArgs())
1394      return &getExplicitTemplateArgs();
1395    return 0;
1396  }
1397
1398  static bool classof(const Stmt *T) {
1399    return T->getStmtClass() == UnresolvedLookupExprClass ||
1400           T->getStmtClass() == UnresolvedMemberExprClass;
1401  }
1402  static bool classof(const OverloadExpr *) { return true; }
1403};
1404
1405/// \brief A reference to a name which we were able to look up during
1406/// parsing but could not resolve to a specific declaration.  This
1407/// arises in several ways:
1408///   * we might be waiting for argument-dependent lookup
1409///   * the name might resolve to an overloaded function
1410/// and eventually:
1411///   * the lookup might have included a function template
1412/// These never include UnresolvedUsingValueDecls, which are always
1413/// class members and therefore appear only in
1414/// UnresolvedMemberLookupExprs.
1415class UnresolvedLookupExpr : public OverloadExpr {
1416  /// True if these lookup results should be extended by
1417  /// argument-dependent lookup if this is the operand of a function
1418  /// call.
1419  bool RequiresADL;
1420
1421  /// True if these lookup results are overloaded.  This is pretty
1422  /// trivially rederivable if we urgently need to kill this field.
1423  bool Overloaded;
1424
1425  /// The naming class (C++ [class.access.base]p5) of the lookup, if
1426  /// any.  This can generally be recalculated from the context chain,
1427  /// but that can be fairly expensive for unqualified lookups.  If we
1428  /// want to improve memory use here, this could go in a union
1429  /// against the qualified-lookup bits.
1430  CXXRecordDecl *NamingClass;
1431
1432  UnresolvedLookupExpr(QualType T, bool Dependent, CXXRecordDecl *NamingClass,
1433                       NestedNameSpecifier *Qualifier, SourceRange QRange,
1434                       DeclarationName Name, SourceLocation NameLoc,
1435                       bool RequiresADL, bool Overloaded, bool HasTemplateArgs)
1436    : OverloadExpr(UnresolvedLookupExprClass, T, Dependent, Qualifier, QRange,
1437                   Name, NameLoc, HasTemplateArgs),
1438      RequiresADL(RequiresADL), Overloaded(Overloaded), NamingClass(NamingClass)
1439  {}
1440
1441public:
1442  static UnresolvedLookupExpr *Create(ASTContext &C,
1443                                      bool Dependent,
1444                                      CXXRecordDecl *NamingClass,
1445                                      NestedNameSpecifier *Qualifier,
1446                                      SourceRange QualifierRange,
1447                                      DeclarationName Name,
1448                                      SourceLocation NameLoc,
1449                                      bool ADL, bool Overloaded) {
1450    return new(C) UnresolvedLookupExpr(Dependent ? C.DependentTy : C.OverloadTy,
1451                                       Dependent, NamingClass,
1452                                       Qualifier, QualifierRange,
1453                                       Name, NameLoc, ADL, Overloaded, false);
1454  }
1455
1456  static UnresolvedLookupExpr *Create(ASTContext &C,
1457                                      bool Dependent,
1458                                      CXXRecordDecl *NamingClass,
1459                                      NestedNameSpecifier *Qualifier,
1460                                      SourceRange QualifierRange,
1461                                      DeclarationName Name,
1462                                      SourceLocation NameLoc,
1463                                      bool ADL,
1464                                      const TemplateArgumentListInfo &Args);
1465
1466  /// True if this declaration should be extended by
1467  /// argument-dependent lookup.
1468  bool requiresADL() const { return RequiresADL; }
1469
1470  /// True if this lookup is overloaded.
1471  bool isOverloaded() const { return Overloaded; }
1472
1473  /// Gets the 'naming class' (in the sense of C++0x
1474  /// [class.access.base]p5) of the lookup.  This is the scope
1475  /// that was looked in to find these results.
1476  CXXRecordDecl *getNamingClass() const { return NamingClass; }
1477
1478  // Note that, inconsistently with the explicit-template-argument AST
1479  // nodes, users are *forbidden* from calling these methods on objects
1480  // without explicit template arguments.
1481
1482  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
1483    assert(hasExplicitTemplateArgs());
1484    return *reinterpret_cast<ExplicitTemplateArgumentList*>(this + 1);
1485  }
1486
1487  /// Gets a reference to the explicit template argument list.
1488  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
1489    assert(hasExplicitTemplateArgs());
1490    return *reinterpret_cast<const ExplicitTemplateArgumentList*>(this + 1);
1491  }
1492
1493  /// \brief Copies the template arguments (if present) into the given
1494  /// structure.
1495  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1496    getExplicitTemplateArgs().copyInto(List);
1497  }
1498
1499  SourceLocation getLAngleLoc() const {
1500    return getExplicitTemplateArgs().LAngleLoc;
1501  }
1502
1503  SourceLocation getRAngleLoc() const {
1504    return getExplicitTemplateArgs().RAngleLoc;
1505  }
1506
1507  TemplateArgumentLoc const *getTemplateArgs() const {
1508    return getExplicitTemplateArgs().getTemplateArgs();
1509  }
1510
1511  unsigned getNumTemplateArgs() const {
1512    return getExplicitTemplateArgs().NumTemplateArgs;
1513  }
1514
1515  virtual SourceRange getSourceRange() const {
1516    SourceRange Range(getNameLoc());
1517    if (getQualifier()) Range.setBegin(getQualifierRange().getBegin());
1518    if (hasExplicitTemplateArgs()) Range.setEnd(getRAngleLoc());
1519    return Range;
1520  }
1521
1522  virtual StmtIterator child_begin();
1523  virtual StmtIterator child_end();
1524
1525  static bool classof(const Stmt *T) {
1526    return T->getStmtClass() == UnresolvedLookupExprClass;
1527  }
1528  static bool classof(const UnresolvedLookupExpr *) { return true; }
1529};
1530
1531/// \brief A qualified reference to a name whose declaration cannot
1532/// yet be resolved.
1533///
1534/// DependentScopeDeclRefExpr is similar to DeclRefExpr in that
1535/// it expresses a reference to a declaration such as
1536/// X<T>::value. The difference, however, is that an
1537/// DependentScopeDeclRefExpr node is used only within C++ templates when
1538/// the qualification (e.g., X<T>::) refers to a dependent type. In
1539/// this case, X<T>::value cannot resolve to a declaration because the
1540/// declaration will differ from on instantiation of X<T> to the
1541/// next. Therefore, DependentScopeDeclRefExpr keeps track of the
1542/// qualifier (X<T>::) and the name of the entity being referenced
1543/// ("value"). Such expressions will instantiate to a DeclRefExpr once the
1544/// declaration can be found.
1545class DependentScopeDeclRefExpr : public Expr {
1546  /// The name of the entity we will be referencing.
1547  DeclarationName Name;
1548
1549  /// Location of the name of the declaration we're referencing.
1550  SourceLocation Loc;
1551
1552  /// QualifierRange - The source range that covers the
1553  /// nested-name-specifier.
1554  SourceRange QualifierRange;
1555
1556  /// \brief The nested-name-specifier that qualifies this unresolved
1557  /// declaration name.
1558  NestedNameSpecifier *Qualifier;
1559
1560  /// \brief Whether the name includes explicit template arguments.
1561  bool HasExplicitTemplateArgs;
1562
1563  DependentScopeDeclRefExpr(QualType T,
1564                            NestedNameSpecifier *Qualifier,
1565                            SourceRange QualifierRange,
1566                            DeclarationName Name,
1567                            SourceLocation NameLoc,
1568                            bool HasExplicitTemplateArgs)
1569    : Expr(DependentScopeDeclRefExprClass, T, true, true),
1570      Name(Name), Loc(NameLoc),
1571      QualifierRange(QualifierRange), Qualifier(Qualifier),
1572      HasExplicitTemplateArgs(HasExplicitTemplateArgs)
1573  {}
1574
1575public:
1576  static DependentScopeDeclRefExpr *Create(ASTContext &C,
1577                                           NestedNameSpecifier *Qualifier,
1578                                           SourceRange QualifierRange,
1579                                           DeclarationName Name,
1580                                           SourceLocation NameLoc,
1581                              const TemplateArgumentListInfo *TemplateArgs = 0);
1582
1583  /// \brief Retrieve the name that this expression refers to.
1584  DeclarationName getDeclName() const { return Name; }
1585
1586  /// \brief Retrieve the location of the name within the expression.
1587  SourceLocation getLocation() const { return Loc; }
1588
1589  /// \brief Retrieve the source range of the nested-name-specifier.
1590  SourceRange getQualifierRange() const { return QualifierRange; }
1591
1592  /// \brief Retrieve the nested-name-specifier that qualifies this
1593  /// declaration.
1594  NestedNameSpecifier *getQualifier() const { return Qualifier; }
1595
1596  /// Determines whether this lookup had explicit template arguments.
1597  bool hasExplicitTemplateArgs() const { return HasExplicitTemplateArgs; }
1598
1599  // Note that, inconsistently with the explicit-template-argument AST
1600  // nodes, users are *forbidden* from calling these methods on objects
1601  // without explicit template arguments.
1602
1603  /// Gets a reference to the explicit template argument list.
1604  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
1605    assert(hasExplicitTemplateArgs());
1606    return *reinterpret_cast<const ExplicitTemplateArgumentList*>(this + 1);
1607  }
1608
1609  /// \brief Copies the template arguments (if present) into the given
1610  /// structure.
1611  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1612    getExplicitTemplateArgs().copyInto(List);
1613  }
1614
1615  SourceLocation getLAngleLoc() const {
1616    return getExplicitTemplateArgs().LAngleLoc;
1617  }
1618
1619  SourceLocation getRAngleLoc() const {
1620    return getExplicitTemplateArgs().RAngleLoc;
1621  }
1622
1623  TemplateArgumentLoc const *getTemplateArgs() const {
1624    return getExplicitTemplateArgs().getTemplateArgs();
1625  }
1626
1627  unsigned getNumTemplateArgs() const {
1628    return getExplicitTemplateArgs().NumTemplateArgs;
1629  }
1630
1631  virtual SourceRange getSourceRange() const {
1632    SourceRange Range(QualifierRange.getBegin(), getLocation());
1633    if (hasExplicitTemplateArgs())
1634      Range.setEnd(getRAngleLoc());
1635    return Range;
1636  }
1637
1638  static bool classof(const Stmt *T) {
1639    return T->getStmtClass() == DependentScopeDeclRefExprClass;
1640  }
1641  static bool classof(const DependentScopeDeclRefExpr *) { return true; }
1642
1643  virtual StmtIterator child_begin();
1644  virtual StmtIterator child_end();
1645};
1646
1647class CXXExprWithTemporaries : public Expr {
1648  Stmt *SubExpr;
1649
1650  CXXTemporary **Temps;
1651  unsigned NumTemps;
1652
1653  CXXExprWithTemporaries(Expr *SubExpr, CXXTemporary **Temps,
1654                         unsigned NumTemps);
1655  ~CXXExprWithTemporaries();
1656
1657protected:
1658  virtual void DoDestroy(ASTContext &C);
1659
1660public:
1661  static CXXExprWithTemporaries *Create(ASTContext &C, Expr *SubExpr,
1662                                        CXXTemporary **Temps,
1663                                        unsigned NumTemps);
1664
1665  unsigned getNumTemporaries() const { return NumTemps; }
1666  CXXTemporary *getTemporary(unsigned i) {
1667    assert(i < NumTemps && "Index out of range");
1668    return Temps[i];
1669  }
1670  const CXXTemporary *getTemporary(unsigned i) const {
1671    return const_cast<CXXExprWithTemporaries*>(this)->getTemporary(i);
1672  }
1673
1674  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
1675  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
1676  void setSubExpr(Expr *E) { SubExpr = E; }
1677
1678  virtual SourceRange getSourceRange() const {
1679    return SubExpr->getSourceRange();
1680  }
1681
1682  // Implement isa/cast/dyncast/etc.
1683  static bool classof(const Stmt *T) {
1684    return T->getStmtClass() == CXXExprWithTemporariesClass;
1685  }
1686  static bool classof(const CXXExprWithTemporaries *) { return true; }
1687
1688  // Iterators
1689  virtual child_iterator child_begin();
1690  virtual child_iterator child_end();
1691};
1692
1693/// \brief Describes an explicit type conversion that uses functional
1694/// notion but could not be resolved because one or more arguments are
1695/// type-dependent.
1696///
1697/// The explicit type conversions expressed by
1698/// CXXUnresolvedConstructExpr have the form \c T(a1, a2, ..., aN),
1699/// where \c T is some type and \c a1, a2, ..., aN are values, and
1700/// either \C T is a dependent type or one or more of the \c a's is
1701/// type-dependent. For example, this would occur in a template such
1702/// as:
1703///
1704/// \code
1705///   template<typename T, typename A1>
1706///   inline T make_a(const A1& a1) {
1707///     return T(a1);
1708///   }
1709/// \endcode
1710///
1711/// When the returned expression is instantiated, it may resolve to a
1712/// constructor call, conversion function call, or some kind of type
1713/// conversion.
1714class CXXUnresolvedConstructExpr : public Expr {
1715  /// \brief The starting location of the type
1716  SourceLocation TyBeginLoc;
1717
1718  /// \brief The type being constructed.
1719  QualType Type;
1720
1721  /// \brief The location of the left parentheses ('(').
1722  SourceLocation LParenLoc;
1723
1724  /// \brief The location of the right parentheses (')').
1725  SourceLocation RParenLoc;
1726
1727  /// \brief The number of arguments used to construct the type.
1728  unsigned NumArgs;
1729
1730  CXXUnresolvedConstructExpr(SourceLocation TyBegin,
1731                             QualType T,
1732                             SourceLocation LParenLoc,
1733                             Expr **Args,
1734                             unsigned NumArgs,
1735                             SourceLocation RParenLoc);
1736
1737public:
1738  static CXXUnresolvedConstructExpr *Create(ASTContext &C,
1739                                            SourceLocation TyBegin,
1740                                            QualType T,
1741                                            SourceLocation LParenLoc,
1742                                            Expr **Args,
1743                                            unsigned NumArgs,
1744                                            SourceLocation RParenLoc);
1745
1746  /// \brief Retrieve the source location where the type begins.
1747  SourceLocation getTypeBeginLoc() const { return TyBeginLoc; }
1748  void setTypeBeginLoc(SourceLocation L) { TyBeginLoc = L; }
1749
1750  /// \brief Retrieve the type that is being constructed, as specified
1751  /// in the source code.
1752  QualType getTypeAsWritten() const { return Type; }
1753  void setTypeAsWritten(QualType T) { Type = T; }
1754
1755  /// \brief Retrieve the location of the left parentheses ('(') that
1756  /// precedes the argument list.
1757  SourceLocation getLParenLoc() const { return LParenLoc; }
1758  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
1759
1760  /// \brief Retrieve the location of the right parentheses (')') that
1761  /// follows the argument list.
1762  SourceLocation getRParenLoc() const { return RParenLoc; }
1763  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1764
1765  /// \brief Retrieve the number of arguments.
1766  unsigned arg_size() const { return NumArgs; }
1767
1768  typedef Expr** arg_iterator;
1769  arg_iterator arg_begin() { return reinterpret_cast<Expr**>(this + 1); }
1770  arg_iterator arg_end() { return arg_begin() + NumArgs; }
1771
1772  typedef const Expr* const * const_arg_iterator;
1773  const_arg_iterator arg_begin() const {
1774    return reinterpret_cast<const Expr* const *>(this + 1);
1775  }
1776  const_arg_iterator arg_end() const {
1777    return arg_begin() + NumArgs;
1778  }
1779
1780  Expr *getArg(unsigned I) {
1781    assert(I < NumArgs && "Argument index out-of-range");
1782    return *(arg_begin() + I);
1783  }
1784
1785  const Expr *getArg(unsigned I) const {
1786    assert(I < NumArgs && "Argument index out-of-range");
1787    return *(arg_begin() + I);
1788  }
1789
1790  virtual SourceRange getSourceRange() const {
1791    return SourceRange(TyBeginLoc, RParenLoc);
1792  }
1793  static bool classof(const Stmt *T) {
1794    return T->getStmtClass() == CXXUnresolvedConstructExprClass;
1795  }
1796  static bool classof(const CXXUnresolvedConstructExpr *) { return true; }
1797
1798  // Iterators
1799  virtual child_iterator child_begin();
1800  virtual child_iterator child_end();
1801};
1802
1803/// \brief Represents a C++ member access expression where the actual
1804/// member referenced could not be resolved because the base
1805/// expression or the member name was dependent.
1806///
1807/// Like UnresolvedMemberExprs, these can be either implicit or
1808/// explicit accesses.  It is only possible to get one of these with
1809/// an implicit access if a qualifier is provided.
1810class CXXDependentScopeMemberExpr : public Expr {
1811  /// \brief The expression for the base pointer or class reference,
1812  /// e.g., the \c x in x.f.  Can be null in implicit accesses.
1813  Stmt *Base;
1814
1815  /// \brief The type of the base expression.  Never null, even for
1816  /// implicit accesses.
1817  QualType BaseType;
1818
1819  /// \brief Whether this member expression used the '->' operator or
1820  /// the '.' operator.
1821  bool IsArrow : 1;
1822
1823  /// \brief Whether this member expression has explicitly-specified template
1824  /// arguments.
1825  bool HasExplicitTemplateArgs : 1;
1826
1827  /// \brief The location of the '->' or '.' operator.
1828  SourceLocation OperatorLoc;
1829
1830  /// \brief The nested-name-specifier that precedes the member name, if any.
1831  NestedNameSpecifier *Qualifier;
1832
1833  /// \brief The source range covering the nested name specifier.
1834  SourceRange QualifierRange;
1835
1836  /// \brief In a qualified member access expression such as t->Base::f, this
1837  /// member stores the resolves of name lookup in the context of the member
1838  /// access expression, to be used at instantiation time.
1839  ///
1840  /// FIXME: This member, along with the Qualifier and QualifierRange, could
1841  /// be stuck into a structure that is optionally allocated at the end of
1842  /// the CXXDependentScopeMemberExpr, to save space in the common case.
1843  NamedDecl *FirstQualifierFoundInScope;
1844
1845  /// \brief The member to which this member expression refers, which
1846  /// can be name, overloaded operator, or destructor.
1847  /// FIXME: could also be a template-id
1848  DeclarationName Member;
1849
1850  /// \brief The location of the member name.
1851  SourceLocation MemberLoc;
1852
1853  /// \brief Retrieve the explicit template argument list that followed the
1854  /// member template name, if any.
1855  ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() {
1856    assert(HasExplicitTemplateArgs);
1857    return reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
1858  }
1859
1860  /// \brief Retrieve the explicit template argument list that followed the
1861  /// member template name, if any.
1862  const ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() const {
1863    return const_cast<CXXDependentScopeMemberExpr *>(this)
1864             ->getExplicitTemplateArgumentList();
1865  }
1866
1867  CXXDependentScopeMemberExpr(ASTContext &C,
1868                          Expr *Base, QualType BaseType, bool IsArrow,
1869                          SourceLocation OperatorLoc,
1870                          NestedNameSpecifier *Qualifier,
1871                          SourceRange QualifierRange,
1872                          NamedDecl *FirstQualifierFoundInScope,
1873                          DeclarationName Member,
1874                          SourceLocation MemberLoc,
1875                          const TemplateArgumentListInfo *TemplateArgs);
1876
1877public:
1878  CXXDependentScopeMemberExpr(ASTContext &C,
1879                          Expr *Base, QualType BaseType,
1880                          bool IsArrow,
1881                          SourceLocation OperatorLoc,
1882                          NestedNameSpecifier *Qualifier,
1883                          SourceRange QualifierRange,
1884                          NamedDecl *FirstQualifierFoundInScope,
1885                          DeclarationName Member,
1886                          SourceLocation MemberLoc)
1887  : Expr(CXXDependentScopeMemberExprClass, C.DependentTy, true, true),
1888    Base(Base), BaseType(BaseType), IsArrow(IsArrow),
1889    HasExplicitTemplateArgs(false), OperatorLoc(OperatorLoc),
1890    Qualifier(Qualifier), QualifierRange(QualifierRange),
1891    FirstQualifierFoundInScope(FirstQualifierFoundInScope),
1892    Member(Member), MemberLoc(MemberLoc) { }
1893
1894  static CXXDependentScopeMemberExpr *
1895  Create(ASTContext &C,
1896         Expr *Base, QualType BaseType, bool IsArrow,
1897         SourceLocation OperatorLoc,
1898         NestedNameSpecifier *Qualifier,
1899         SourceRange QualifierRange,
1900         NamedDecl *FirstQualifierFoundInScope,
1901         DeclarationName Member,
1902         SourceLocation MemberLoc,
1903         const TemplateArgumentListInfo *TemplateArgs);
1904
1905  /// \brief True if this is an implicit access, i.e. one in which the
1906  /// member being accessed was not written in the source.  The source
1907  /// location of the operator is invalid in this case.
1908  bool isImplicitAccess() const { return Base == 0; }
1909
1910  /// \brief Retrieve the base object of this member expressions,
1911  /// e.g., the \c x in \c x.m.
1912  Expr *getBase() const {
1913    assert(!isImplicitAccess());
1914    return cast<Expr>(Base);
1915  }
1916  void setBase(Expr *E) { Base = E; }
1917
1918  QualType getBaseType() const { return BaseType; }
1919
1920  /// \brief Determine whether this member expression used the '->'
1921  /// operator; otherwise, it used the '.' operator.
1922  bool isArrow() const { return IsArrow; }
1923  void setArrow(bool A) { IsArrow = A; }
1924
1925  /// \brief Retrieve the location of the '->' or '.' operator.
1926  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1927  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
1928
1929  /// \brief Retrieve the nested-name-specifier that qualifies the member
1930  /// name.
1931  NestedNameSpecifier *getQualifier() const { return Qualifier; }
1932
1933  /// \brief Retrieve the source range covering the nested-name-specifier
1934  /// that qualifies the member name.
1935  SourceRange getQualifierRange() const { return QualifierRange; }
1936
1937  /// \brief Retrieve the first part of the nested-name-specifier that was
1938  /// found in the scope of the member access expression when the member access
1939  /// was initially parsed.
1940  ///
1941  /// This function only returns a useful result when member access expression
1942  /// uses a qualified member name, e.g., "x.Base::f". Here, the declaration
1943  /// returned by this function describes what was found by unqualified name
1944  /// lookup for the identifier "Base" within the scope of the member access
1945  /// expression itself. At template instantiation time, this information is
1946  /// combined with the results of name lookup into the type of the object
1947  /// expression itself (the class type of x).
1948  NamedDecl *getFirstQualifierFoundInScope() const {
1949    return FirstQualifierFoundInScope;
1950  }
1951
1952  /// \brief Retrieve the name of the member that this expression
1953  /// refers to.
1954  DeclarationName getMember() const { return Member; }
1955  void setMember(DeclarationName N) { Member = N; }
1956
1957  // \brief Retrieve the location of the name of the member that this
1958  // expression refers to.
1959  SourceLocation getMemberLoc() const { return MemberLoc; }
1960  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
1961
1962  /// \brief Determines whether this member expression actually had a C++
1963  /// template argument list explicitly specified, e.g., x.f<int>.
1964  bool hasExplicitTemplateArgs() const {
1965    return HasExplicitTemplateArgs;
1966  }
1967
1968  /// \brief Copies the template arguments (if present) into the given
1969  /// structure.
1970  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1971    assert(HasExplicitTemplateArgs);
1972    getExplicitTemplateArgumentList()->copyInto(List);
1973  }
1974
1975  /// \brief Retrieve the location of the left angle bracket following the
1976  /// member name ('<'), if any.
1977  SourceLocation getLAngleLoc() const {
1978    assert(HasExplicitTemplateArgs);
1979    return getExplicitTemplateArgumentList()->LAngleLoc;
1980  }
1981
1982  /// \brief Retrieve the template arguments provided as part of this
1983  /// template-id.
1984  const TemplateArgumentLoc *getTemplateArgs() const {
1985    assert(HasExplicitTemplateArgs);
1986    return getExplicitTemplateArgumentList()->getTemplateArgs();
1987  }
1988
1989  /// \brief Retrieve the number of template arguments provided as part of this
1990  /// template-id.
1991  unsigned getNumTemplateArgs() const {
1992    assert(HasExplicitTemplateArgs);
1993    return getExplicitTemplateArgumentList()->NumTemplateArgs;
1994  }
1995
1996  /// \brief Retrieve the location of the right angle bracket following the
1997  /// template arguments ('>').
1998  SourceLocation getRAngleLoc() const {
1999    assert(HasExplicitTemplateArgs);
2000    return getExplicitTemplateArgumentList()->RAngleLoc;
2001  }
2002
2003  virtual SourceRange getSourceRange() const {
2004    SourceRange Range;
2005    if (!isImplicitAccess())
2006      Range.setBegin(Base->getSourceRange().getBegin());
2007    else if (getQualifier())
2008      Range.setBegin(getQualifierRange().getBegin());
2009    else
2010      Range.setBegin(MemberLoc);
2011
2012    if (hasExplicitTemplateArgs())
2013      Range.setEnd(getRAngleLoc());
2014    else
2015      Range.setEnd(MemberLoc);
2016    return Range;
2017  }
2018
2019  static bool classof(const Stmt *T) {
2020    return T->getStmtClass() == CXXDependentScopeMemberExprClass;
2021  }
2022  static bool classof(const CXXDependentScopeMemberExpr *) { return true; }
2023
2024  // Iterators
2025  virtual child_iterator child_begin();
2026  virtual child_iterator child_end();
2027};
2028
2029/// \brief Represents a C++ member access expression for which lookup
2030/// produced a set of overloaded functions.
2031///
2032/// The member access may be explicit or implicit:
2033///    struct A {
2034///      int a, b;
2035///      int explicitAccess() { return this->a + this->A::b; }
2036///      int implicitAccess() { return a + A::b; }
2037///    };
2038///
2039/// In the final AST, an explicit access always becomes a MemberExpr.
2040/// An implicit access may become either a MemberExpr or a
2041/// DeclRefExpr, depending on whether the member is static.
2042class UnresolvedMemberExpr : public OverloadExpr {
2043  /// \brief Whether this member expression used the '->' operator or
2044  /// the '.' operator.
2045  bool IsArrow : 1;
2046
2047  /// \brief Whether the lookup results contain an unresolved using
2048  /// declaration.
2049  bool HasUnresolvedUsing : 1;
2050
2051  /// \brief The expression for the base pointer or class reference,
2052  /// e.g., the \c x in x.f.  This can be null if this is an 'unbased'
2053  /// member expression
2054  Stmt *Base;
2055
2056  /// \brief The type of the base expression;  never null.
2057  QualType BaseType;
2058
2059  /// \brief The location of the '->' or '.' operator.
2060  SourceLocation OperatorLoc;
2061
2062  UnresolvedMemberExpr(QualType T, bool Dependent,
2063                       bool HasUnresolvedUsing,
2064                       Expr *Base, QualType BaseType, bool IsArrow,
2065                       SourceLocation OperatorLoc,
2066                       NestedNameSpecifier *Qualifier,
2067                       SourceRange QualifierRange,
2068                       DeclarationName Member,
2069                       SourceLocation MemberLoc,
2070                       const TemplateArgumentListInfo *TemplateArgs);
2071
2072public:
2073  static UnresolvedMemberExpr *
2074  Create(ASTContext &C, bool Dependent, bool HasUnresolvedUsing,
2075         Expr *Base, QualType BaseType, bool IsArrow,
2076         SourceLocation OperatorLoc,
2077         NestedNameSpecifier *Qualifier,
2078         SourceRange QualifierRange,
2079         DeclarationName Member,
2080         SourceLocation MemberLoc,
2081         const TemplateArgumentListInfo *TemplateArgs);
2082
2083  /// \brief True if this is an implicit access, i.e. one in which the
2084  /// member being accessed was not written in the source.  The source
2085  /// location of the operator is invalid in this case.
2086  bool isImplicitAccess() const { return Base == 0; }
2087
2088  /// \brief Retrieve the base object of this member expressions,
2089  /// e.g., the \c x in \c x.m.
2090  Expr *getBase() {
2091    assert(!isImplicitAccess());
2092    return cast<Expr>(Base);
2093  }
2094  const Expr *getBase() const {
2095    assert(!isImplicitAccess());
2096    return cast<Expr>(Base);
2097  }
2098  void setBase(Expr *E) { Base = E; }
2099
2100  QualType getBaseType() const { return BaseType; }
2101
2102  /// \brief Determine whether this member expression used the '->'
2103  /// operator; otherwise, it used the '.' operator.
2104  bool isArrow() const { return IsArrow; }
2105  void setArrow(bool A) { IsArrow = A; }
2106
2107  /// \brief Retrieve the location of the '->' or '.' operator.
2108  SourceLocation getOperatorLoc() const { return OperatorLoc; }
2109  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
2110
2111  /// \brief Retrieves the naming class of this lookup.
2112  CXXRecordDecl *getNamingClass() const;
2113
2114  /// \brief Retrieve the name of the member that this expression
2115  /// refers to.
2116  DeclarationName getMemberName() const { return getName(); }
2117  void setMemberName(DeclarationName N) { setName(N); }
2118
2119  // \brief Retrieve the location of the name of the member that this
2120  // expression refers to.
2121  SourceLocation getMemberLoc() const { return getNameLoc(); }
2122  void setMemberLoc(SourceLocation L) { setNameLoc(L); }
2123
2124  /// \brief Retrieve the explicit template argument list that followed the
2125  /// member template name.
2126  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
2127    assert(hasExplicitTemplateArgs());
2128    return *reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
2129  }
2130
2131  /// \brief Retrieve the explicit template argument list that followed the
2132  /// member template name, if any.
2133  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
2134    assert(hasExplicitTemplateArgs());
2135    return *reinterpret_cast<const ExplicitTemplateArgumentList *>(this + 1);
2136  }
2137
2138  /// \brief Copies the template arguments into the given structure.
2139  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2140    getExplicitTemplateArgs().copyInto(List);
2141  }
2142
2143  /// \brief Retrieve the location of the left angle bracket following
2144  /// the member name ('<').
2145  SourceLocation getLAngleLoc() const {
2146    return getExplicitTemplateArgs().LAngleLoc;
2147  }
2148
2149  /// \brief Retrieve the template arguments provided as part of this
2150  /// template-id.
2151  const TemplateArgumentLoc *getTemplateArgs() const {
2152    return getExplicitTemplateArgs().getTemplateArgs();
2153  }
2154
2155  /// \brief Retrieve the number of template arguments provided as
2156  /// part of this template-id.
2157  unsigned getNumTemplateArgs() const {
2158    return getExplicitTemplateArgs().NumTemplateArgs;
2159  }
2160
2161  /// \brief Retrieve the location of the right angle bracket
2162  /// following the template arguments ('>').
2163  SourceLocation getRAngleLoc() const {
2164    return getExplicitTemplateArgs().RAngleLoc;
2165  }
2166
2167  virtual SourceRange getSourceRange() const {
2168    SourceRange Range;
2169    if (!isImplicitAccess())
2170      Range.setBegin(Base->getSourceRange().getBegin());
2171    else if (getQualifier())
2172      Range.setBegin(getQualifierRange().getBegin());
2173    else
2174      Range.setBegin(getMemberLoc());
2175
2176    if (hasExplicitTemplateArgs())
2177      Range.setEnd(getRAngleLoc());
2178    else
2179      Range.setEnd(getMemberLoc());
2180    return Range;
2181  }
2182
2183  static bool classof(const Stmt *T) {
2184    return T->getStmtClass() == UnresolvedMemberExprClass;
2185  }
2186  static bool classof(const UnresolvedMemberExpr *) { return true; }
2187
2188  // Iterators
2189  virtual child_iterator child_begin();
2190  virtual child_iterator child_end();
2191};
2192
2193inline ExplicitTemplateArgumentList &OverloadExpr::getExplicitTemplateArgs() {
2194  if (isa<UnresolvedLookupExpr>(this))
2195    return cast<UnresolvedLookupExpr>(this)->getExplicitTemplateArgs();
2196  else
2197    return cast<UnresolvedMemberExpr>(this)->getExplicitTemplateArgs();
2198}
2199
2200}  // end namespace clang
2201
2202#endif
2203