ExprCXX.h revision 059ce0d92eb5a7da900ae735dc0a2ea3d64f4b0b
1//===--- ExprCXX.h - Classes for representing expressions -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses for C++ expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPRCXX_H
15#define LLVM_CLANG_AST_EXPRCXX_H
16
17#include "clang/Basic/TypeTraits.h"
18#include "clang/Basic/ExpressionTraits.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/UnresolvedSet.h"
21#include "clang/AST/TemplateBase.h"
22
23namespace clang {
24
25class CXXConstructorDecl;
26class CXXDestructorDecl;
27class CXXMethodDecl;
28class CXXTemporary;
29class TemplateArgumentListInfo;
30
31//===--------------------------------------------------------------------===//
32// C++ Expressions.
33//===--------------------------------------------------------------------===//
34
35/// \brief A call to an overloaded operator written using operator
36/// syntax.
37///
38/// Represents a call to an overloaded operator written using operator
39/// syntax, e.g., "x + y" or "*p". While semantically equivalent to a
40/// normal call, this AST node provides better information about the
41/// syntactic representation of the call.
42///
43/// In a C++ template, this expression node kind will be used whenever
44/// any of the arguments are type-dependent. In this case, the
45/// function itself will be a (possibly empty) set of functions and
46/// function templates that were found by name lookup at template
47/// definition time.
48class CXXOperatorCallExpr : public CallExpr {
49  /// \brief The overloaded operator.
50  OverloadedOperatorKind Operator;
51
52public:
53  CXXOperatorCallExpr(ASTContext& C, OverloadedOperatorKind Op, Expr *fn,
54                      Expr **args, unsigned numargs, QualType t,
55                      ExprValueKind VK, SourceLocation operatorloc)
56    : CallExpr(C, CXXOperatorCallExprClass, fn, 0, args, numargs, t, VK,
57               operatorloc),
58      Operator(Op) {}
59  explicit CXXOperatorCallExpr(ASTContext& C, EmptyShell Empty) :
60    CallExpr(C, CXXOperatorCallExprClass, Empty) { }
61
62
63  /// getOperator - Returns the kind of overloaded operator that this
64  /// expression refers to.
65  OverloadedOperatorKind getOperator() const { return Operator; }
66  void setOperator(OverloadedOperatorKind Kind) { Operator = Kind; }
67
68  /// getOperatorLoc - Returns the location of the operator symbol in
69  /// the expression. When @c getOperator()==OO_Call, this is the
70  /// location of the right parentheses; when @c
71  /// getOperator()==OO_Subscript, this is the location of the right
72  /// bracket.
73  SourceLocation getOperatorLoc() const { return getRParenLoc(); }
74
75  SourceRange getSourceRange() const;
76
77  static bool classof(const Stmt *T) {
78    return T->getStmtClass() == CXXOperatorCallExprClass;
79  }
80  static bool classof(const CXXOperatorCallExpr *) { return true; }
81};
82
83/// CXXMemberCallExpr - Represents a call to a member function that
84/// may be written either with member call syntax (e.g., "obj.func()"
85/// or "objptr->func()") or with normal function-call syntax
86/// ("func()") within a member function that ends up calling a member
87/// function. The callee in either case is a MemberExpr that contains
88/// both the object argument and the member function, while the
89/// arguments are the arguments within the parentheses (not including
90/// the object argument).
91class CXXMemberCallExpr : public CallExpr {
92public:
93  CXXMemberCallExpr(ASTContext &C, Expr *fn, Expr **args, unsigned numargs,
94                    QualType t, ExprValueKind VK, SourceLocation RP)
95    : CallExpr(C, CXXMemberCallExprClass, fn, 0, args, numargs, t, VK, RP) {}
96
97  CXXMemberCallExpr(ASTContext &C, EmptyShell Empty)
98    : CallExpr(C, CXXMemberCallExprClass, Empty) { }
99
100  /// getImplicitObjectArgument - Retrieves the implicit object
101  /// argument for the member call. For example, in "x.f(5)", this
102  /// operation would return "x".
103  Expr *getImplicitObjectArgument() const;
104
105  /// Retrieves the declaration of the called method.
106  CXXMethodDecl *getMethodDecl() const;
107
108  /// getRecordDecl - Retrieves the CXXRecordDecl for the underlying type of
109  /// the implicit object argument. Note that this is may not be the same
110  /// declaration as that of the class context of the CXXMethodDecl which this
111  /// function is calling.
112  /// FIXME: Returns 0 for member pointer call exprs.
113  CXXRecordDecl *getRecordDecl();
114
115  static bool classof(const Stmt *T) {
116    return T->getStmtClass() == CXXMemberCallExprClass;
117  }
118  static bool classof(const CXXMemberCallExpr *) { return true; }
119};
120
121/// CUDAKernelCallExpr - Represents a call to a CUDA kernel function.
122class CUDAKernelCallExpr : public CallExpr {
123private:
124  enum { CONFIG, END_PREARG };
125
126public:
127  CUDAKernelCallExpr(ASTContext &C, Expr *fn, CallExpr *Config,
128                     Expr **args, unsigned numargs, QualType t,
129                     ExprValueKind VK, SourceLocation RP)
130    : CallExpr(C, CUDAKernelCallExprClass, fn, END_PREARG, args, numargs, t, VK,
131               RP) {
132    setConfig(Config);
133  }
134
135  CUDAKernelCallExpr(ASTContext &C, EmptyShell Empty)
136    : CallExpr(C, CUDAKernelCallExprClass, END_PREARG, Empty) { }
137
138  const CallExpr *getConfig() const {
139    return cast_or_null<CallExpr>(getPreArg(CONFIG));
140  }
141  CallExpr *getConfig() { return cast_or_null<CallExpr>(getPreArg(CONFIG)); }
142  void setConfig(CallExpr *E) { setPreArg(CONFIG, E); }
143
144  static bool classof(const Stmt *T) {
145    return T->getStmtClass() == CUDAKernelCallExprClass;
146  }
147  static bool classof(const CUDAKernelCallExpr *) { return true; }
148};
149
150/// CXXNamedCastExpr - Abstract class common to all of the C++ "named"
151/// casts, @c static_cast, @c dynamic_cast, @c reinterpret_cast, or @c
152/// const_cast.
153///
154/// This abstract class is inherited by all of the classes
155/// representing "named" casts, e.g., CXXStaticCastExpr,
156/// CXXDynamicCastExpr, CXXReinterpretCastExpr, and CXXConstCastExpr.
157class CXXNamedCastExpr : public ExplicitCastExpr {
158private:
159  SourceLocation Loc; // the location of the casting op
160  SourceLocation RParenLoc; // the location of the right parenthesis
161
162protected:
163  CXXNamedCastExpr(StmtClass SC, QualType ty, ExprValueKind VK,
164                   CastKind kind, Expr *op, unsigned PathSize,
165                   TypeSourceInfo *writtenTy, SourceLocation l,
166                   SourceLocation RParenLoc)
167    : ExplicitCastExpr(SC, ty, VK, kind, op, PathSize, writtenTy), Loc(l),
168      RParenLoc(RParenLoc) {}
169
170  explicit CXXNamedCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
171    : ExplicitCastExpr(SC, Shell, PathSize) { }
172
173  friend class ASTStmtReader;
174
175public:
176  const char *getCastName() const;
177
178  /// \brief Retrieve the location of the cast operator keyword, e.g.,
179  /// "static_cast".
180  SourceLocation getOperatorLoc() const { return Loc; }
181
182  /// \brief Retrieve the location of the closing parenthesis.
183  SourceLocation getRParenLoc() const { return RParenLoc; }
184
185  SourceRange getSourceRange() const {
186    return SourceRange(Loc, RParenLoc);
187  }
188  static bool classof(const Stmt *T) {
189    switch (T->getStmtClass()) {
190    case CXXStaticCastExprClass:
191    case CXXDynamicCastExprClass:
192    case CXXReinterpretCastExprClass:
193    case CXXConstCastExprClass:
194      return true;
195    default:
196      return false;
197    }
198  }
199  static bool classof(const CXXNamedCastExpr *) { return true; }
200};
201
202/// CXXStaticCastExpr - A C++ @c static_cast expression (C++ [expr.static.cast]).
203///
204/// This expression node represents a C++ static cast, e.g.,
205/// @c static_cast<int>(1.0).
206class CXXStaticCastExpr : public CXXNamedCastExpr {
207  CXXStaticCastExpr(QualType ty, ExprValueKind vk, CastKind kind, Expr *op,
208                    unsigned pathSize, TypeSourceInfo *writtenTy,
209                    SourceLocation l, SourceLocation RParenLoc)
210    : CXXNamedCastExpr(CXXStaticCastExprClass, ty, vk, kind, op, pathSize,
211                       writtenTy, l, RParenLoc) {}
212
213  explicit CXXStaticCastExpr(EmptyShell Empty, unsigned PathSize)
214    : CXXNamedCastExpr(CXXStaticCastExprClass, Empty, PathSize) { }
215
216public:
217  static CXXStaticCastExpr *Create(ASTContext &Context, QualType T,
218                                   ExprValueKind VK, CastKind K, Expr *Op,
219                                   const CXXCastPath *Path,
220                                   TypeSourceInfo *Written, SourceLocation L,
221                                   SourceLocation RParenLoc);
222  static CXXStaticCastExpr *CreateEmpty(ASTContext &Context,
223                                        unsigned PathSize);
224
225  static bool classof(const Stmt *T) {
226    return T->getStmtClass() == CXXStaticCastExprClass;
227  }
228  static bool classof(const CXXStaticCastExpr *) { return true; }
229};
230
231/// CXXDynamicCastExpr - A C++ @c dynamic_cast expression
232/// (C++ [expr.dynamic.cast]), which may perform a run-time check to
233/// determine how to perform the type cast.
234///
235/// This expression node represents a dynamic cast, e.g.,
236/// @c dynamic_cast<Derived*>(BasePtr).
237class CXXDynamicCastExpr : public CXXNamedCastExpr {
238  CXXDynamicCastExpr(QualType ty, ExprValueKind VK, CastKind kind,
239                     Expr *op, unsigned pathSize, TypeSourceInfo *writtenTy,
240                     SourceLocation l, SourceLocation RParenLoc)
241    : CXXNamedCastExpr(CXXDynamicCastExprClass, ty, VK, kind, op, pathSize,
242                       writtenTy, l, RParenLoc) {}
243
244  explicit CXXDynamicCastExpr(EmptyShell Empty, unsigned pathSize)
245    : CXXNamedCastExpr(CXXDynamicCastExprClass, Empty, pathSize) { }
246
247public:
248  static CXXDynamicCastExpr *Create(ASTContext &Context, QualType T,
249                                    ExprValueKind VK, CastKind Kind, Expr *Op,
250                                    const CXXCastPath *Path,
251                                    TypeSourceInfo *Written, SourceLocation L,
252                                    SourceLocation RParenLoc);
253
254  static CXXDynamicCastExpr *CreateEmpty(ASTContext &Context,
255                                         unsigned pathSize);
256
257  bool isAlwaysNull() const;
258
259  static bool classof(const Stmt *T) {
260    return T->getStmtClass() == CXXDynamicCastExprClass;
261  }
262  static bool classof(const CXXDynamicCastExpr *) { return true; }
263};
264
265/// CXXReinterpretCastExpr - A C++ @c reinterpret_cast expression (C++
266/// [expr.reinterpret.cast]), which provides a differently-typed view
267/// of a value but performs no actual work at run time.
268///
269/// This expression node represents a reinterpret cast, e.g.,
270/// @c reinterpret_cast<int>(VoidPtr).
271class CXXReinterpretCastExpr : public CXXNamedCastExpr {
272  CXXReinterpretCastExpr(QualType ty, ExprValueKind vk, CastKind kind,
273                         Expr *op, unsigned pathSize,
274                         TypeSourceInfo *writtenTy, SourceLocation l,
275                         SourceLocation RParenLoc)
276    : CXXNamedCastExpr(CXXReinterpretCastExprClass, ty, vk, kind, op,
277                       pathSize, writtenTy, l, RParenLoc) {}
278
279  CXXReinterpretCastExpr(EmptyShell Empty, unsigned pathSize)
280    : CXXNamedCastExpr(CXXReinterpretCastExprClass, Empty, pathSize) { }
281
282public:
283  static CXXReinterpretCastExpr *Create(ASTContext &Context, QualType T,
284                                        ExprValueKind VK, CastKind Kind,
285                                        Expr *Op, const CXXCastPath *Path,
286                                 TypeSourceInfo *WrittenTy, SourceLocation L,
287                                        SourceLocation RParenLoc);
288  static CXXReinterpretCastExpr *CreateEmpty(ASTContext &Context,
289                                             unsigned pathSize);
290
291  static bool classof(const Stmt *T) {
292    return T->getStmtClass() == CXXReinterpretCastExprClass;
293  }
294  static bool classof(const CXXReinterpretCastExpr *) { return true; }
295};
296
297/// CXXConstCastExpr - A C++ @c const_cast expression (C++ [expr.const.cast]),
298/// which can remove type qualifiers but does not change the underlying value.
299///
300/// This expression node represents a const cast, e.g.,
301/// @c const_cast<char*>(PtrToConstChar).
302class CXXConstCastExpr : public CXXNamedCastExpr {
303  CXXConstCastExpr(QualType ty, ExprValueKind VK, Expr *op,
304                   TypeSourceInfo *writtenTy, SourceLocation l,
305                   SourceLocation RParenLoc)
306    : CXXNamedCastExpr(CXXConstCastExprClass, ty, VK, CK_NoOp, op,
307                       0, writtenTy, l, RParenLoc) {}
308
309  explicit CXXConstCastExpr(EmptyShell Empty)
310    : CXXNamedCastExpr(CXXConstCastExprClass, Empty, 0) { }
311
312public:
313  static CXXConstCastExpr *Create(ASTContext &Context, QualType T,
314                                  ExprValueKind VK, Expr *Op,
315                                  TypeSourceInfo *WrittenTy, SourceLocation L,
316                                  SourceLocation RParenLoc);
317  static CXXConstCastExpr *CreateEmpty(ASTContext &Context);
318
319  static bool classof(const Stmt *T) {
320    return T->getStmtClass() == CXXConstCastExprClass;
321  }
322  static bool classof(const CXXConstCastExpr *) { return true; }
323};
324
325/// CXXBoolLiteralExpr - [C++ 2.13.5] C++ Boolean Literal.
326///
327class CXXBoolLiteralExpr : public Expr {
328  bool Value;
329  SourceLocation Loc;
330public:
331  CXXBoolLiteralExpr(bool val, QualType Ty, SourceLocation l) :
332    Expr(CXXBoolLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
333         false),
334    Value(val), Loc(l) {}
335
336  explicit CXXBoolLiteralExpr(EmptyShell Empty)
337    : Expr(CXXBoolLiteralExprClass, Empty) { }
338
339  bool getValue() const { return Value; }
340  void setValue(bool V) { Value = V; }
341
342  SourceRange getSourceRange() const { return SourceRange(Loc); }
343
344  SourceLocation getLocation() const { return Loc; }
345  void setLocation(SourceLocation L) { Loc = L; }
346
347  static bool classof(const Stmt *T) {
348    return T->getStmtClass() == CXXBoolLiteralExprClass;
349  }
350  static bool classof(const CXXBoolLiteralExpr *) { return true; }
351
352  // Iterators
353  child_range children() { return child_range(); }
354};
355
356/// CXXNullPtrLiteralExpr - [C++0x 2.14.7] C++ Pointer Literal
357class CXXNullPtrLiteralExpr : public Expr {
358  SourceLocation Loc;
359public:
360  CXXNullPtrLiteralExpr(QualType Ty, SourceLocation l) :
361    Expr(CXXNullPtrLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
362         false),
363    Loc(l) {}
364
365  explicit CXXNullPtrLiteralExpr(EmptyShell Empty)
366    : Expr(CXXNullPtrLiteralExprClass, Empty) { }
367
368  SourceRange getSourceRange() const { return SourceRange(Loc); }
369
370  SourceLocation getLocation() const { return Loc; }
371  void setLocation(SourceLocation L) { Loc = L; }
372
373  static bool classof(const Stmt *T) {
374    return T->getStmtClass() == CXXNullPtrLiteralExprClass;
375  }
376  static bool classof(const CXXNullPtrLiteralExpr *) { return true; }
377
378  child_range children() { return child_range(); }
379};
380
381/// CXXTypeidExpr - A C++ @c typeid expression (C++ [expr.typeid]), which gets
382/// the type_info that corresponds to the supplied type, or the (possibly
383/// dynamic) type of the supplied expression.
384///
385/// This represents code like @c typeid(int) or @c typeid(*objPtr)
386class CXXTypeidExpr : public Expr {
387private:
388  llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
389  SourceRange Range;
390
391public:
392  CXXTypeidExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
393    : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
394           // typeid is never type-dependent (C++ [temp.dep.expr]p4)
395           false,
396           // typeid is value-dependent if the type or expression are dependent
397           Operand->getType()->isDependentType(),
398           Operand->getType()->containsUnexpandedParameterPack()),
399      Operand(Operand), Range(R) { }
400
401  CXXTypeidExpr(QualType Ty, Expr *Operand, SourceRange R)
402    : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
403        // typeid is never type-dependent (C++ [temp.dep.expr]p4)
404           false,
405        // typeid is value-dependent if the type or expression are dependent
406           Operand->isTypeDependent() || Operand->isValueDependent(),
407           Operand->containsUnexpandedParameterPack()),
408      Operand(Operand), Range(R) { }
409
410  CXXTypeidExpr(EmptyShell Empty, bool isExpr)
411    : Expr(CXXTypeidExprClass, Empty) {
412    if (isExpr)
413      Operand = (Expr*)0;
414    else
415      Operand = (TypeSourceInfo*)0;
416  }
417
418  bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
419
420  /// \brief Retrieves the type operand of this typeid() expression after
421  /// various required adjustments (removing reference types, cv-qualifiers).
422  QualType getTypeOperand() const;
423
424  /// \brief Retrieve source information for the type operand.
425  TypeSourceInfo *getTypeOperandSourceInfo() const {
426    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
427    return Operand.get<TypeSourceInfo *>();
428  }
429
430  void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
431    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
432    Operand = TSI;
433  }
434
435  Expr *getExprOperand() const {
436    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
437    return static_cast<Expr*>(Operand.get<Stmt *>());
438  }
439
440  void setExprOperand(Expr *E) {
441    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
442    Operand = E;
443  }
444
445  SourceRange getSourceRange() const { return Range; }
446  void setSourceRange(SourceRange R) { Range = R; }
447
448  static bool classof(const Stmt *T) {
449    return T->getStmtClass() == CXXTypeidExprClass;
450  }
451  static bool classof(const CXXTypeidExpr *) { return true; }
452
453  // Iterators
454  child_range children() {
455    if (isTypeOperand()) return child_range();
456    Stmt **begin = reinterpret_cast<Stmt**>(&Operand);
457    return child_range(begin, begin + 1);
458  }
459};
460
461/// CXXUuidofExpr - A microsoft C++ @c __uuidof expression, which gets
462/// the _GUID that corresponds to the supplied type or expression.
463///
464/// This represents code like @c __uuidof(COMTYPE) or @c __uuidof(*comPtr)
465class CXXUuidofExpr : public Expr {
466private:
467  llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
468  SourceRange Range;
469
470public:
471  CXXUuidofExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
472    : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary,
473           false, Operand->getType()->isDependentType(),
474           Operand->getType()->containsUnexpandedParameterPack()),
475      Operand(Operand), Range(R) { }
476
477  CXXUuidofExpr(QualType Ty, Expr *Operand, SourceRange R)
478    : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary,
479           false, Operand->isTypeDependent(),
480           Operand->containsUnexpandedParameterPack()),
481      Operand(Operand), Range(R) { }
482
483  CXXUuidofExpr(EmptyShell Empty, bool isExpr)
484    : Expr(CXXUuidofExprClass, Empty) {
485    if (isExpr)
486      Operand = (Expr*)0;
487    else
488      Operand = (TypeSourceInfo*)0;
489  }
490
491  bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
492
493  /// \brief Retrieves the type operand of this __uuidof() expression after
494  /// various required adjustments (removing reference types, cv-qualifiers).
495  QualType getTypeOperand() const;
496
497  /// \brief Retrieve source information for the type operand.
498  TypeSourceInfo *getTypeOperandSourceInfo() const {
499    assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
500    return Operand.get<TypeSourceInfo *>();
501  }
502
503  void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
504    assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
505    Operand = TSI;
506  }
507
508  Expr *getExprOperand() const {
509    assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
510    return static_cast<Expr*>(Operand.get<Stmt *>());
511  }
512
513  void setExprOperand(Expr *E) {
514    assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
515    Operand = E;
516  }
517
518  SourceRange getSourceRange() const { return Range; }
519  void setSourceRange(SourceRange R) { Range = R; }
520
521  static bool classof(const Stmt *T) {
522    return T->getStmtClass() == CXXUuidofExprClass;
523  }
524  static bool classof(const CXXUuidofExpr *) { return true; }
525
526  // Iterators
527  child_range children() {
528    if (isTypeOperand()) return child_range();
529    Stmt **begin = reinterpret_cast<Stmt**>(&Operand);
530    return child_range(begin, begin + 1);
531  }
532};
533
534/// CXXThisExpr - Represents the "this" expression in C++, which is a
535/// pointer to the object on which the current member function is
536/// executing (C++ [expr.prim]p3). Example:
537///
538/// @code
539/// class Foo {
540/// public:
541///   void bar();
542///   void test() { this->bar(); }
543/// };
544/// @endcode
545class CXXThisExpr : public Expr {
546  SourceLocation Loc;
547  bool Implicit : 1;
548
549public:
550  CXXThisExpr(SourceLocation L, QualType Type, bool isImplicit)
551    : Expr(CXXThisExprClass, Type, VK_RValue, OK_Ordinary,
552           // 'this' is type-dependent if the class type of the enclosing
553           // member function is dependent (C++ [temp.dep.expr]p2)
554           Type->isDependentType(), Type->isDependentType(),
555           /*ContainsUnexpandedParameterPack=*/false),
556      Loc(L), Implicit(isImplicit) { }
557
558  CXXThisExpr(EmptyShell Empty) : Expr(CXXThisExprClass, Empty) {}
559
560  SourceLocation getLocation() const { return Loc; }
561  void setLocation(SourceLocation L) { Loc = L; }
562
563  SourceRange getSourceRange() const { return SourceRange(Loc); }
564
565  bool isImplicit() const { return Implicit; }
566  void setImplicit(bool I) { Implicit = I; }
567
568  static bool classof(const Stmt *T) {
569    return T->getStmtClass() == CXXThisExprClass;
570  }
571  static bool classof(const CXXThisExpr *) { return true; }
572
573  // Iterators
574  child_range children() { return child_range(); }
575};
576
577///  CXXThrowExpr - [C++ 15] C++ Throw Expression.  This handles
578///  'throw' and 'throw' assignment-expression.  When
579///  assignment-expression isn't present, Op will be null.
580///
581class CXXThrowExpr : public Expr {
582  Stmt *Op;
583  SourceLocation ThrowLoc;
584public:
585  // Ty is the void type which is used as the result type of the
586  // exepression.  The l is the location of the throw keyword.  expr
587  // can by null, if the optional expression to throw isn't present.
588  CXXThrowExpr(Expr *expr, QualType Ty, SourceLocation l) :
589    Expr(CXXThrowExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
590         expr && expr->containsUnexpandedParameterPack()),
591    Op(expr), ThrowLoc(l) {}
592  CXXThrowExpr(EmptyShell Empty) : Expr(CXXThrowExprClass, Empty) {}
593
594  const Expr *getSubExpr() const { return cast_or_null<Expr>(Op); }
595  Expr *getSubExpr() { return cast_or_null<Expr>(Op); }
596  void setSubExpr(Expr *E) { Op = E; }
597
598  SourceLocation getThrowLoc() const { return ThrowLoc; }
599  void setThrowLoc(SourceLocation L) { ThrowLoc = L; }
600
601  SourceRange getSourceRange() const {
602    if (getSubExpr() == 0)
603      return SourceRange(ThrowLoc, ThrowLoc);
604    return SourceRange(ThrowLoc, getSubExpr()->getSourceRange().getEnd());
605  }
606
607  static bool classof(const Stmt *T) {
608    return T->getStmtClass() == CXXThrowExprClass;
609  }
610  static bool classof(const CXXThrowExpr *) { return true; }
611
612  // Iterators
613  child_range children() {
614    return child_range(&Op, Op ? &Op+1 : &Op);
615  }
616};
617
618/// CXXDefaultArgExpr - C++ [dcl.fct.default]. This wraps up a
619/// function call argument that was created from the corresponding
620/// parameter's default argument, when the call did not explicitly
621/// supply arguments for all of the parameters.
622class CXXDefaultArgExpr : public Expr {
623  /// \brief The parameter whose default is being used.
624  ///
625  /// When the bit is set, the subexpression is stored after the
626  /// CXXDefaultArgExpr itself. When the bit is clear, the parameter's
627  /// actual default expression is the subexpression.
628  llvm::PointerIntPair<ParmVarDecl *, 1, bool> Param;
629
630  /// \brief The location where the default argument expression was used.
631  SourceLocation Loc;
632
633  CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param)
634    : Expr(SC,
635           param->hasUnparsedDefaultArg()
636             ? param->getType().getNonReferenceType()
637             : param->getDefaultArg()->getType(),
638           param->getDefaultArg()->getValueKind(),
639           param->getDefaultArg()->getObjectKind(), false, false, false),
640      Param(param, false), Loc(Loc) { }
641
642  CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param,
643                    Expr *SubExpr)
644    : Expr(SC, SubExpr->getType(),
645           SubExpr->getValueKind(), SubExpr->getObjectKind(),
646           false, false, false),
647      Param(param, true), Loc(Loc) {
648    *reinterpret_cast<Expr **>(this + 1) = SubExpr;
649  }
650
651public:
652  CXXDefaultArgExpr(EmptyShell Empty) : Expr(CXXDefaultArgExprClass, Empty) {}
653
654
655  // Param is the parameter whose default argument is used by this
656  // expression.
657  static CXXDefaultArgExpr *Create(ASTContext &C, SourceLocation Loc,
658                                   ParmVarDecl *Param) {
659    return new (C) CXXDefaultArgExpr(CXXDefaultArgExprClass, Loc, Param);
660  }
661
662  // Param is the parameter whose default argument is used by this
663  // expression, and SubExpr is the expression that will actually be used.
664  static CXXDefaultArgExpr *Create(ASTContext &C,
665                                   SourceLocation Loc,
666                                   ParmVarDecl *Param,
667                                   Expr *SubExpr);
668
669  // Retrieve the parameter that the argument was created from.
670  const ParmVarDecl *getParam() const { return Param.getPointer(); }
671  ParmVarDecl *getParam() { return Param.getPointer(); }
672
673  // Retrieve the actual argument to the function call.
674  const Expr *getExpr() const {
675    if (Param.getInt())
676      return *reinterpret_cast<Expr const * const*> (this + 1);
677    return getParam()->getDefaultArg();
678  }
679  Expr *getExpr() {
680    if (Param.getInt())
681      return *reinterpret_cast<Expr **> (this + 1);
682    return getParam()->getDefaultArg();
683  }
684
685  /// \brief Retrieve the location where this default argument was actually
686  /// used.
687  SourceLocation getUsedLocation() const { return Loc; }
688
689  SourceRange getSourceRange() const {
690    // Default argument expressions have no representation in the
691    // source, so they have an empty source range.
692    return SourceRange();
693  }
694
695  static bool classof(const Stmt *T) {
696    return T->getStmtClass() == CXXDefaultArgExprClass;
697  }
698  static bool classof(const CXXDefaultArgExpr *) { return true; }
699
700  // Iterators
701  child_range children() { return child_range(); }
702
703  friend class ASTStmtReader;
704  friend class ASTStmtWriter;
705};
706
707/// CXXTemporary - Represents a C++ temporary.
708class CXXTemporary {
709  /// Destructor - The destructor that needs to be called.
710  const CXXDestructorDecl *Destructor;
711
712  CXXTemporary(const CXXDestructorDecl *destructor)
713    : Destructor(destructor) { }
714
715public:
716  static CXXTemporary *Create(ASTContext &C,
717                              const CXXDestructorDecl *Destructor);
718
719  const CXXDestructorDecl *getDestructor() const { return Destructor; }
720};
721
722/// \brief Represents binding an expression to a temporary.
723///
724/// This ensures the destructor is called for the temporary. It should only be
725/// needed for non-POD, non-trivially destructable class types. For example:
726///
727/// \code
728///   struct S {
729///     S() { }  // User defined constructor makes S non-POD.
730///     ~S() { } // User defined destructor makes it non-trivial.
731///   };
732///   void test() {
733///     const S &s_ref = S(); // Requires a CXXBindTemporaryExpr.
734///   }
735/// \endcode
736class CXXBindTemporaryExpr : public Expr {
737  CXXTemporary *Temp;
738
739  Stmt *SubExpr;
740
741  CXXBindTemporaryExpr(CXXTemporary *temp, Expr* SubExpr)
742   : Expr(CXXBindTemporaryExprClass, SubExpr->getType(),
743          VK_RValue, OK_Ordinary, SubExpr->isTypeDependent(),
744          SubExpr->isValueDependent(),
745          SubExpr->containsUnexpandedParameterPack()),
746     Temp(temp), SubExpr(SubExpr) { }
747
748public:
749  CXXBindTemporaryExpr(EmptyShell Empty)
750    : Expr(CXXBindTemporaryExprClass, Empty), Temp(0), SubExpr(0) {}
751
752  static CXXBindTemporaryExpr *Create(ASTContext &C, CXXTemporary *Temp,
753                                      Expr* SubExpr);
754
755  CXXTemporary *getTemporary() { return Temp; }
756  const CXXTemporary *getTemporary() const { return Temp; }
757  void setTemporary(CXXTemporary *T) { Temp = T; }
758
759  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
760  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
761  void setSubExpr(Expr *E) { SubExpr = E; }
762
763  SourceRange getSourceRange() const {
764    return SubExpr->getSourceRange();
765  }
766
767  // Implement isa/cast/dyncast/etc.
768  static bool classof(const Stmt *T) {
769    return T->getStmtClass() == CXXBindTemporaryExprClass;
770  }
771  static bool classof(const CXXBindTemporaryExpr *) { return true; }
772
773  // Iterators
774  child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
775};
776
777/// CXXConstructExpr - Represents a call to a C++ constructor.
778class CXXConstructExpr : public Expr {
779public:
780  enum ConstructionKind {
781    CK_Complete,
782    CK_NonVirtualBase,
783    CK_VirtualBase,
784    CK_Delegating
785  };
786
787private:
788  CXXConstructorDecl *Constructor;
789
790  SourceLocation Loc;
791  SourceRange ParenRange;
792  bool Elidable : 1;
793  bool ZeroInitialization : 1;
794  unsigned ConstructKind : 2;
795  Stmt **Args;
796  unsigned NumArgs;
797
798protected:
799  CXXConstructExpr(ASTContext &C, StmtClass SC, QualType T,
800                   SourceLocation Loc,
801                   CXXConstructorDecl *d, bool elidable,
802                   Expr **args, unsigned numargs,
803                   bool ZeroInitialization = false,
804                   ConstructionKind ConstructKind = CK_Complete,
805                   SourceRange ParenRange = SourceRange());
806
807  /// \brief Construct an empty C++ construction expression.
808  CXXConstructExpr(StmtClass SC, EmptyShell Empty)
809    : Expr(SC, Empty), Constructor(0), Elidable(0), ZeroInitialization(0),
810      ConstructKind(0), Args(0), NumArgs(0) { }
811
812public:
813  /// \brief Construct an empty C++ construction expression.
814  explicit CXXConstructExpr(EmptyShell Empty)
815    : Expr(CXXConstructExprClass, Empty), Constructor(0),
816      Elidable(0), ZeroInitialization(0),
817      ConstructKind(0), Args(0), NumArgs(0) { }
818
819  static CXXConstructExpr *Create(ASTContext &C, QualType T,
820                                  SourceLocation Loc,
821                                  CXXConstructorDecl *D, bool Elidable,
822                                  Expr **Args, unsigned NumArgs,
823                                  bool ZeroInitialization = false,
824                                  ConstructionKind ConstructKind = CK_Complete,
825                                  SourceRange ParenRange = SourceRange());
826
827
828  CXXConstructorDecl* getConstructor() const { return Constructor; }
829  void setConstructor(CXXConstructorDecl *C) { Constructor = C; }
830
831  SourceLocation getLocation() const { return Loc; }
832  void setLocation(SourceLocation Loc) { this->Loc = Loc; }
833
834  /// \brief Whether this construction is elidable.
835  bool isElidable() const { return Elidable; }
836  void setElidable(bool E) { Elidable = E; }
837
838  /// \brief Whether this construction first requires
839  /// zero-initialization before the initializer is called.
840  bool requiresZeroInitialization() const { return ZeroInitialization; }
841  void setRequiresZeroInitialization(bool ZeroInit) {
842    ZeroInitialization = ZeroInit;
843  }
844
845  /// \brief Determines whether this constructor is actually constructing
846  /// a base class (rather than a complete object).
847  ConstructionKind getConstructionKind() const {
848    return (ConstructionKind)ConstructKind;
849  }
850  void setConstructionKind(ConstructionKind CK) {
851    ConstructKind = CK;
852  }
853
854  typedef ExprIterator arg_iterator;
855  typedef ConstExprIterator const_arg_iterator;
856
857  arg_iterator arg_begin() { return Args; }
858  arg_iterator arg_end() { return Args + NumArgs; }
859  const_arg_iterator arg_begin() const { return Args; }
860  const_arg_iterator arg_end() const { return Args + NumArgs; }
861
862  Expr **getArgs() const { return reinterpret_cast<Expr **>(Args); }
863  unsigned getNumArgs() const { return NumArgs; }
864
865  /// getArg - Return the specified argument.
866  Expr *getArg(unsigned Arg) {
867    assert(Arg < NumArgs && "Arg access out of range!");
868    return cast<Expr>(Args[Arg]);
869  }
870  const Expr *getArg(unsigned Arg) const {
871    assert(Arg < NumArgs && "Arg access out of range!");
872    return cast<Expr>(Args[Arg]);
873  }
874
875  /// setArg - Set the specified argument.
876  void setArg(unsigned Arg, Expr *ArgExpr) {
877    assert(Arg < NumArgs && "Arg access out of range!");
878    Args[Arg] = ArgExpr;
879  }
880
881  SourceRange getSourceRange() const;
882  SourceRange getParenRange() const { return ParenRange; }
883
884  static bool classof(const Stmt *T) {
885    return T->getStmtClass() == CXXConstructExprClass ||
886      T->getStmtClass() == CXXTemporaryObjectExprClass;
887  }
888  static bool classof(const CXXConstructExpr *) { return true; }
889
890  // Iterators
891  child_range children() {
892    return child_range(&Args[0], &Args[0]+NumArgs);
893  }
894
895  friend class ASTStmtReader;
896};
897
898/// CXXFunctionalCastExpr - Represents an explicit C++ type conversion
899/// that uses "functional" notion (C++ [expr.type.conv]). Example: @c
900/// x = int(0.5);
901class CXXFunctionalCastExpr : public ExplicitCastExpr {
902  SourceLocation TyBeginLoc;
903  SourceLocation RParenLoc;
904
905  CXXFunctionalCastExpr(QualType ty, ExprValueKind VK,
906                        TypeSourceInfo *writtenTy,
907                        SourceLocation tyBeginLoc, CastKind kind,
908                        Expr *castExpr, unsigned pathSize,
909                        SourceLocation rParenLoc)
910    : ExplicitCastExpr(CXXFunctionalCastExprClass, ty, VK, kind,
911                       castExpr, pathSize, writtenTy),
912      TyBeginLoc(tyBeginLoc), RParenLoc(rParenLoc) {}
913
914  explicit CXXFunctionalCastExpr(EmptyShell Shell, unsigned PathSize)
915    : ExplicitCastExpr(CXXFunctionalCastExprClass, Shell, PathSize) { }
916
917public:
918  static CXXFunctionalCastExpr *Create(ASTContext &Context, QualType T,
919                                       ExprValueKind VK,
920                                       TypeSourceInfo *Written,
921                                       SourceLocation TyBeginLoc,
922                                       CastKind Kind, Expr *Op,
923                                       const CXXCastPath *Path,
924                                       SourceLocation RPLoc);
925  static CXXFunctionalCastExpr *CreateEmpty(ASTContext &Context,
926                                            unsigned PathSize);
927
928  SourceLocation getTypeBeginLoc() const { return TyBeginLoc; }
929  void setTypeBeginLoc(SourceLocation L) { TyBeginLoc = L; }
930  SourceLocation getRParenLoc() const { return RParenLoc; }
931  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
932
933  SourceRange getSourceRange() const {
934    return SourceRange(TyBeginLoc, RParenLoc);
935  }
936  static bool classof(const Stmt *T) {
937    return T->getStmtClass() == CXXFunctionalCastExprClass;
938  }
939  static bool classof(const CXXFunctionalCastExpr *) { return true; }
940};
941
942/// @brief Represents a C++ functional cast expression that builds a
943/// temporary object.
944///
945/// This expression type represents a C++ "functional" cast
946/// (C++[expr.type.conv]) with N != 1 arguments that invokes a
947/// constructor to build a temporary object. With N == 1 arguments the
948/// functional cast expression will be represented by CXXFunctionalCastExpr.
949/// Example:
950/// @code
951/// struct X { X(int, float); }
952///
953/// X create_X() {
954///   return X(1, 3.14f); // creates a CXXTemporaryObjectExpr
955/// };
956/// @endcode
957class CXXTemporaryObjectExpr : public CXXConstructExpr {
958  TypeSourceInfo *Type;
959
960public:
961  CXXTemporaryObjectExpr(ASTContext &C, CXXConstructorDecl *Cons,
962                         TypeSourceInfo *Type,
963                         Expr **Args,unsigned NumArgs,
964                         SourceRange parenRange,
965                         bool ZeroInitialization = false);
966  explicit CXXTemporaryObjectExpr(EmptyShell Empty)
967    : CXXConstructExpr(CXXTemporaryObjectExprClass, Empty), Type() { }
968
969  TypeSourceInfo *getTypeSourceInfo() const { return Type; }
970
971  SourceRange getSourceRange() const;
972
973  static bool classof(const Stmt *T) {
974    return T->getStmtClass() == CXXTemporaryObjectExprClass;
975  }
976  static bool classof(const CXXTemporaryObjectExpr *) { return true; }
977
978  friend class ASTStmtReader;
979};
980
981/// CXXScalarValueInitExpr - [C++ 5.2.3p2]
982/// Expression "T()" which creates a value-initialized rvalue of type
983/// T, which is a non-class type.
984///
985class CXXScalarValueInitExpr : public Expr {
986  SourceLocation RParenLoc;
987  TypeSourceInfo *TypeInfo;
988
989  friend class ASTStmtReader;
990
991public:
992  /// \brief Create an explicitly-written scalar-value initialization
993  /// expression.
994  CXXScalarValueInitExpr(QualType Type,
995                         TypeSourceInfo *TypeInfo,
996                         SourceLocation rParenLoc ) :
997    Expr(CXXScalarValueInitExprClass, Type, VK_RValue, OK_Ordinary,
998         false, false, false),
999    RParenLoc(rParenLoc), TypeInfo(TypeInfo) {}
1000
1001  explicit CXXScalarValueInitExpr(EmptyShell Shell)
1002    : Expr(CXXScalarValueInitExprClass, Shell) { }
1003
1004  TypeSourceInfo *getTypeSourceInfo() const {
1005    return TypeInfo;
1006  }
1007
1008  SourceLocation getRParenLoc() const { return RParenLoc; }
1009
1010  SourceRange getSourceRange() const;
1011
1012  static bool classof(const Stmt *T) {
1013    return T->getStmtClass() == CXXScalarValueInitExprClass;
1014  }
1015  static bool classof(const CXXScalarValueInitExpr *) { return true; }
1016
1017  // Iterators
1018  child_range children() { return child_range(); }
1019};
1020
1021/// CXXNewExpr - A new expression for memory allocation and constructor calls,
1022/// e.g: "new CXXNewExpr(foo)".
1023class CXXNewExpr : public Expr {
1024  // Was the usage ::new, i.e. is the global new to be used?
1025  bool GlobalNew : 1;
1026  // Is there an initializer? If not, built-ins are uninitialized, else they're
1027  // value-initialized.
1028  bool Initializer : 1;
1029  // Do we allocate an array? If so, the first SubExpr is the size expression.
1030  bool Array : 1;
1031  // If this is an array allocation, does the usual deallocation
1032  // function for the allocated type want to know the allocated size?
1033  bool UsualArrayDeleteWantsSize : 1;
1034  // The number of placement new arguments.
1035  unsigned NumPlacementArgs : 14;
1036  // The number of constructor arguments. This may be 1 even for non-class
1037  // types; use the pseudo copy constructor.
1038  unsigned NumConstructorArgs : 14;
1039  // Contains an optional array size expression, any number of optional
1040  // placement arguments, and any number of optional constructor arguments,
1041  // in that order.
1042  Stmt **SubExprs;
1043  // Points to the allocation function used.
1044  FunctionDecl *OperatorNew;
1045  // Points to the deallocation function used in case of error. May be null.
1046  FunctionDecl *OperatorDelete;
1047  // Points to the constructor used. Cannot be null if AllocType is a record;
1048  // it would still point at the default constructor (even an implicit one).
1049  // Must be null for all other types.
1050  CXXConstructorDecl *Constructor;
1051
1052  /// \brief The allocated type-source information, as written in the source.
1053  TypeSourceInfo *AllocatedTypeInfo;
1054
1055  /// \brief If the allocated type was expressed as a parenthesized type-id,
1056  /// the source range covering the parenthesized type-id.
1057  SourceRange TypeIdParens;
1058
1059  SourceLocation StartLoc;
1060  SourceLocation EndLoc;
1061  SourceLocation ConstructorLParen;
1062  SourceLocation ConstructorRParen;
1063
1064  friend class ASTStmtReader;
1065public:
1066  CXXNewExpr(ASTContext &C, bool globalNew, FunctionDecl *operatorNew,
1067             Expr **placementArgs, unsigned numPlaceArgs,
1068             SourceRange TypeIdParens,
1069             Expr *arraySize, CXXConstructorDecl *constructor, bool initializer,
1070             Expr **constructorArgs, unsigned numConsArgs,
1071             FunctionDecl *operatorDelete, bool usualArrayDeleteWantsSize,
1072             QualType ty, TypeSourceInfo *AllocatedTypeInfo,
1073             SourceLocation startLoc, SourceLocation endLoc,
1074             SourceLocation constructorLParen,
1075             SourceLocation constructorRParen);
1076  explicit CXXNewExpr(EmptyShell Shell)
1077    : Expr(CXXNewExprClass, Shell), SubExprs(0) { }
1078
1079  void AllocateArgsArray(ASTContext &C, bool isArray, unsigned numPlaceArgs,
1080                         unsigned numConsArgs);
1081
1082  QualType getAllocatedType() const {
1083    assert(getType()->isPointerType());
1084    return getType()->getAs<PointerType>()->getPointeeType();
1085  }
1086
1087  TypeSourceInfo *getAllocatedTypeSourceInfo() const {
1088    return AllocatedTypeInfo;
1089  }
1090
1091  /// \brief True if the allocation result needs to be null-checked.
1092  /// C++0x [expr.new]p13:
1093  ///   If the allocation function returns null, initialization shall
1094  ///   not be done, the deallocation function shall not be called,
1095  ///   and the value of the new-expression shall be null.
1096  /// An allocation function is not allowed to return null unless it
1097  /// has a non-throwing exception-specification.  The '03 rule is
1098  /// identical except that the definition of a non-throwing
1099  /// exception specification is just "is it throw()?".
1100  bool shouldNullCheckAllocation(ASTContext &Ctx) const;
1101
1102  FunctionDecl *getOperatorNew() const { return OperatorNew; }
1103  void setOperatorNew(FunctionDecl *D) { OperatorNew = D; }
1104  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
1105  void setOperatorDelete(FunctionDecl *D) { OperatorDelete = D; }
1106  CXXConstructorDecl *getConstructor() const { return Constructor; }
1107  void setConstructor(CXXConstructorDecl *D) { Constructor = D; }
1108
1109  bool isArray() const { return Array; }
1110  Expr *getArraySize() {
1111    return Array ? cast<Expr>(SubExprs[0]) : 0;
1112  }
1113  const Expr *getArraySize() const {
1114    return Array ? cast<Expr>(SubExprs[0]) : 0;
1115  }
1116
1117  unsigned getNumPlacementArgs() const { return NumPlacementArgs; }
1118  Expr **getPlacementArgs() {
1119    return reinterpret_cast<Expr **>(SubExprs + Array);
1120  }
1121
1122  Expr *getPlacementArg(unsigned i) {
1123    assert(i < NumPlacementArgs && "Index out of range");
1124    return cast<Expr>(SubExprs[Array + i]);
1125  }
1126  const Expr *getPlacementArg(unsigned i) const {
1127    assert(i < NumPlacementArgs && "Index out of range");
1128    return cast<Expr>(SubExprs[Array + i]);
1129  }
1130
1131  bool isParenTypeId() const { return TypeIdParens.isValid(); }
1132  SourceRange getTypeIdParens() const { return TypeIdParens; }
1133
1134  bool isGlobalNew() const { return GlobalNew; }
1135  bool hasInitializer() const { return Initializer; }
1136
1137  /// Answers whether the usual array deallocation function for the
1138  /// allocated type expects the size of the allocation as a
1139  /// parameter.
1140  bool doesUsualArrayDeleteWantSize() const {
1141    return UsualArrayDeleteWantsSize;
1142  }
1143
1144  unsigned getNumConstructorArgs() const { return NumConstructorArgs; }
1145
1146  Expr **getConstructorArgs() {
1147    return reinterpret_cast<Expr **>(SubExprs + Array + NumPlacementArgs);
1148  }
1149
1150  Expr *getConstructorArg(unsigned i) {
1151    assert(i < NumConstructorArgs && "Index out of range");
1152    return cast<Expr>(SubExprs[Array + NumPlacementArgs + i]);
1153  }
1154  const Expr *getConstructorArg(unsigned i) const {
1155    assert(i < NumConstructorArgs && "Index out of range");
1156    return cast<Expr>(SubExprs[Array + NumPlacementArgs + i]);
1157  }
1158
1159  typedef ExprIterator arg_iterator;
1160  typedef ConstExprIterator const_arg_iterator;
1161
1162  arg_iterator placement_arg_begin() {
1163    return SubExprs + Array;
1164  }
1165  arg_iterator placement_arg_end() {
1166    return SubExprs + Array + getNumPlacementArgs();
1167  }
1168  const_arg_iterator placement_arg_begin() const {
1169    return SubExprs + Array;
1170  }
1171  const_arg_iterator placement_arg_end() const {
1172    return SubExprs + Array + getNumPlacementArgs();
1173  }
1174
1175  arg_iterator constructor_arg_begin() {
1176    return SubExprs + Array + getNumPlacementArgs();
1177  }
1178  arg_iterator constructor_arg_end() {
1179    return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
1180  }
1181  const_arg_iterator constructor_arg_begin() const {
1182    return SubExprs + Array + getNumPlacementArgs();
1183  }
1184  const_arg_iterator constructor_arg_end() const {
1185    return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
1186  }
1187
1188  typedef Stmt **raw_arg_iterator;
1189  raw_arg_iterator raw_arg_begin() { return SubExprs; }
1190  raw_arg_iterator raw_arg_end() {
1191    return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
1192  }
1193  const_arg_iterator raw_arg_begin() const { return SubExprs; }
1194  const_arg_iterator raw_arg_end() const { return constructor_arg_end(); }
1195
1196  SourceLocation getStartLoc() const { return StartLoc; }
1197  SourceLocation getEndLoc() const { return EndLoc; }
1198
1199  SourceLocation getConstructorLParen() const { return ConstructorLParen; }
1200  SourceLocation getConstructorRParen() const { return ConstructorRParen; }
1201
1202  SourceRange getSourceRange() const {
1203    return SourceRange(StartLoc, EndLoc);
1204  }
1205
1206  static bool classof(const Stmt *T) {
1207    return T->getStmtClass() == CXXNewExprClass;
1208  }
1209  static bool classof(const CXXNewExpr *) { return true; }
1210
1211  // Iterators
1212  child_range children() {
1213    return child_range(&SubExprs[0],
1214                       &SubExprs[0] + Array + getNumPlacementArgs()
1215                         + getNumConstructorArgs());
1216  }
1217};
1218
1219/// CXXDeleteExpr - A delete expression for memory deallocation and destructor
1220/// calls, e.g. "delete[] pArray".
1221class CXXDeleteExpr : public Expr {
1222  // Is this a forced global delete, i.e. "::delete"?
1223  bool GlobalDelete : 1;
1224  // Is this the array form of delete, i.e. "delete[]"?
1225  bool ArrayForm : 1;
1226  // ArrayFormAsWritten can be different from ArrayForm if 'delete' is applied
1227  // to pointer-to-array type (ArrayFormAsWritten will be false while ArrayForm
1228  // will be true).
1229  bool ArrayFormAsWritten : 1;
1230  // Does the usual deallocation function for the element type require
1231  // a size_t argument?
1232  bool UsualArrayDeleteWantsSize : 1;
1233  // Points to the operator delete overload that is used. Could be a member.
1234  FunctionDecl *OperatorDelete;
1235  // The pointer expression to be deleted.
1236  Stmt *Argument;
1237  // Location of the expression.
1238  SourceLocation Loc;
1239public:
1240  CXXDeleteExpr(QualType ty, bool globalDelete, bool arrayForm,
1241                bool arrayFormAsWritten, bool usualArrayDeleteWantsSize,
1242                FunctionDecl *operatorDelete, Expr *arg, SourceLocation loc)
1243    : Expr(CXXDeleteExprClass, ty, VK_RValue, OK_Ordinary, false, false,
1244           arg->containsUnexpandedParameterPack()),
1245      GlobalDelete(globalDelete),
1246      ArrayForm(arrayForm), ArrayFormAsWritten(arrayFormAsWritten),
1247      UsualArrayDeleteWantsSize(usualArrayDeleteWantsSize),
1248      OperatorDelete(operatorDelete), Argument(arg), Loc(loc) { }
1249  explicit CXXDeleteExpr(EmptyShell Shell)
1250    : Expr(CXXDeleteExprClass, Shell), OperatorDelete(0), Argument(0) { }
1251
1252  bool isGlobalDelete() const { return GlobalDelete; }
1253  bool isArrayForm() const { return ArrayForm; }
1254  bool isArrayFormAsWritten() const { return ArrayFormAsWritten; }
1255
1256  /// Answers whether the usual array deallocation function for the
1257  /// allocated type expects the size of the allocation as a
1258  /// parameter.  This can be true even if the actual deallocation
1259  /// function that we're using doesn't want a size.
1260  bool doesUsualArrayDeleteWantSize() const {
1261    return UsualArrayDeleteWantsSize;
1262  }
1263
1264  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
1265
1266  Expr *getArgument() { return cast<Expr>(Argument); }
1267  const Expr *getArgument() const { return cast<Expr>(Argument); }
1268
1269  /// \brief Retrieve the type being destroyed.  If the type being
1270  /// destroyed is a dependent type which may or may not be a pointer,
1271  /// return an invalid type.
1272  QualType getDestroyedType() const;
1273
1274  SourceRange getSourceRange() const {
1275    return SourceRange(Loc, Argument->getLocEnd());
1276  }
1277
1278  static bool classof(const Stmt *T) {
1279    return T->getStmtClass() == CXXDeleteExprClass;
1280  }
1281  static bool classof(const CXXDeleteExpr *) { return true; }
1282
1283  // Iterators
1284  child_range children() { return child_range(&Argument, &Argument+1); }
1285
1286  friend class ASTStmtReader;
1287};
1288
1289/// \brief Structure used to store the type being destroyed by a
1290/// pseudo-destructor expression.
1291class PseudoDestructorTypeStorage {
1292  /// \brief Either the type source information or the name of the type, if
1293  /// it couldn't be resolved due to type-dependence.
1294  llvm::PointerUnion<TypeSourceInfo *, IdentifierInfo *> Type;
1295
1296  /// \brief The starting source location of the pseudo-destructor type.
1297  SourceLocation Location;
1298
1299public:
1300  PseudoDestructorTypeStorage() { }
1301
1302  PseudoDestructorTypeStorage(IdentifierInfo *II, SourceLocation Loc)
1303    : Type(II), Location(Loc) { }
1304
1305  PseudoDestructorTypeStorage(TypeSourceInfo *Info);
1306
1307  TypeSourceInfo *getTypeSourceInfo() const {
1308    return Type.dyn_cast<TypeSourceInfo *>();
1309  }
1310
1311  IdentifierInfo *getIdentifier() const {
1312    return Type.dyn_cast<IdentifierInfo *>();
1313  }
1314
1315  SourceLocation getLocation() const { return Location; }
1316};
1317
1318/// \brief Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
1319///
1320/// A pseudo-destructor is an expression that looks like a member access to a
1321/// destructor of a scalar type, except that scalar types don't have
1322/// destructors. For example:
1323///
1324/// \code
1325/// typedef int T;
1326/// void f(int *p) {
1327///   p->T::~T();
1328/// }
1329/// \endcode
1330///
1331/// Pseudo-destructors typically occur when instantiating templates such as:
1332///
1333/// \code
1334/// template<typename T>
1335/// void destroy(T* ptr) {
1336///   ptr->T::~T();
1337/// }
1338/// \endcode
1339///
1340/// for scalar types. A pseudo-destructor expression has no run-time semantics
1341/// beyond evaluating the base expression.
1342class CXXPseudoDestructorExpr : public Expr {
1343  /// \brief The base expression (that is being destroyed).
1344  Stmt *Base;
1345
1346  /// \brief Whether the operator was an arrow ('->'); otherwise, it was a
1347  /// period ('.').
1348  bool IsArrow : 1;
1349
1350  /// \brief The location of the '.' or '->' operator.
1351  SourceLocation OperatorLoc;
1352
1353  /// \brief The nested-name-specifier that follows the operator, if present.
1354  NestedNameSpecifierLoc QualifierLoc;
1355
1356  /// \brief The type that precedes the '::' in a qualified pseudo-destructor
1357  /// expression.
1358  TypeSourceInfo *ScopeType;
1359
1360  /// \brief The location of the '::' in a qualified pseudo-destructor
1361  /// expression.
1362  SourceLocation ColonColonLoc;
1363
1364  /// \brief The location of the '~'.
1365  SourceLocation TildeLoc;
1366
1367  /// \brief The type being destroyed, or its name if we were unable to
1368  /// resolve the name.
1369  PseudoDestructorTypeStorage DestroyedType;
1370
1371  friend class ASTStmtReader;
1372
1373public:
1374  CXXPseudoDestructorExpr(ASTContext &Context,
1375                          Expr *Base, bool isArrow, SourceLocation OperatorLoc,
1376                          NestedNameSpecifierLoc QualifierLoc,
1377                          TypeSourceInfo *ScopeType,
1378                          SourceLocation ColonColonLoc,
1379                          SourceLocation TildeLoc,
1380                          PseudoDestructorTypeStorage DestroyedType);
1381
1382  explicit CXXPseudoDestructorExpr(EmptyShell Shell)
1383    : Expr(CXXPseudoDestructorExprClass, Shell),
1384      Base(0), IsArrow(false), QualifierLoc(), ScopeType(0) { }
1385
1386  Expr *getBase() const { return cast<Expr>(Base); }
1387
1388  /// \brief Determines whether this member expression actually had
1389  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
1390  /// x->Base::foo.
1391  bool hasQualifier() const { return QualifierLoc; }
1392
1393  /// \brief Retrieves the nested-name-specifier that qualifies the type name,
1394  /// with source-location information.
1395  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
1396
1397  /// \brief If the member name was qualified, retrieves the
1398  /// nested-name-specifier that precedes the member name. Otherwise, returns
1399  /// NULL.
1400  NestedNameSpecifier *getQualifier() const {
1401    return QualifierLoc.getNestedNameSpecifier();
1402  }
1403
1404  /// \brief Determine whether this pseudo-destructor expression was written
1405  /// using an '->' (otherwise, it used a '.').
1406  bool isArrow() const { return IsArrow; }
1407
1408  /// \brief Retrieve the location of the '.' or '->' operator.
1409  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1410
1411  /// \brief Retrieve the scope type in a qualified pseudo-destructor
1412  /// expression.
1413  ///
1414  /// Pseudo-destructor expressions can have extra qualification within them
1415  /// that is not part of the nested-name-specifier, e.g., \c p->T::~T().
1416  /// Here, if the object type of the expression is (or may be) a scalar type,
1417  /// \p T may also be a scalar type and, therefore, cannot be part of a
1418  /// nested-name-specifier. It is stored as the "scope type" of the pseudo-
1419  /// destructor expression.
1420  TypeSourceInfo *getScopeTypeInfo() const { return ScopeType; }
1421
1422  /// \brief Retrieve the location of the '::' in a qualified pseudo-destructor
1423  /// expression.
1424  SourceLocation getColonColonLoc() const { return ColonColonLoc; }
1425
1426  /// \brief Retrieve the location of the '~'.
1427  SourceLocation getTildeLoc() const { return TildeLoc; }
1428
1429  /// \brief Retrieve the source location information for the type
1430  /// being destroyed.
1431  ///
1432  /// This type-source information is available for non-dependent
1433  /// pseudo-destructor expressions and some dependent pseudo-destructor
1434  /// expressions. Returns NULL if we only have the identifier for a
1435  /// dependent pseudo-destructor expression.
1436  TypeSourceInfo *getDestroyedTypeInfo() const {
1437    return DestroyedType.getTypeSourceInfo();
1438  }
1439
1440  /// \brief In a dependent pseudo-destructor expression for which we do not
1441  /// have full type information on the destroyed type, provides the name
1442  /// of the destroyed type.
1443  IdentifierInfo *getDestroyedTypeIdentifier() const {
1444    return DestroyedType.getIdentifier();
1445  }
1446
1447  /// \brief Retrieve the type being destroyed.
1448  QualType getDestroyedType() const;
1449
1450  /// \brief Retrieve the starting location of the type being destroyed.
1451  SourceLocation getDestroyedTypeLoc() const {
1452    return DestroyedType.getLocation();
1453  }
1454
1455  /// \brief Set the name of destroyed type for a dependent pseudo-destructor
1456  /// expression.
1457  void setDestroyedType(IdentifierInfo *II, SourceLocation Loc) {
1458    DestroyedType = PseudoDestructorTypeStorage(II, Loc);
1459  }
1460
1461  /// \brief Set the destroyed type.
1462  void setDestroyedType(TypeSourceInfo *Info) {
1463    DestroyedType = PseudoDestructorTypeStorage(Info);
1464  }
1465
1466  SourceRange getSourceRange() const;
1467
1468  static bool classof(const Stmt *T) {
1469    return T->getStmtClass() == CXXPseudoDestructorExprClass;
1470  }
1471  static bool classof(const CXXPseudoDestructorExpr *) { return true; }
1472
1473  // Iterators
1474  child_range children() { return child_range(&Base, &Base + 1); }
1475};
1476
1477/// UnaryTypeTraitExpr - A GCC or MS unary type trait, as used in the
1478/// implementation of TR1/C++0x type trait templates.
1479/// Example:
1480/// __is_pod(int) == true
1481/// __is_enum(std::string) == false
1482class UnaryTypeTraitExpr : public Expr {
1483  /// UTT - The trait. A UnaryTypeTrait enum in MSVC compat unsigned.
1484  unsigned UTT : 31;
1485  /// The value of the type trait. Unspecified if dependent.
1486  bool Value : 1;
1487
1488  /// Loc - The location of the type trait keyword.
1489  SourceLocation Loc;
1490
1491  /// RParen - The location of the closing paren.
1492  SourceLocation RParen;
1493
1494  /// The type being queried.
1495  TypeSourceInfo *QueriedType;
1496
1497public:
1498  UnaryTypeTraitExpr(SourceLocation loc, UnaryTypeTrait utt,
1499                     TypeSourceInfo *queried, bool value,
1500                     SourceLocation rparen, QualType ty)
1501    : Expr(UnaryTypeTraitExprClass, ty, VK_RValue, OK_Ordinary,
1502           false,  queried->getType()->isDependentType(),
1503           queried->getType()->containsUnexpandedParameterPack()),
1504      UTT(utt), Value(value), Loc(loc), RParen(rparen), QueriedType(queried) { }
1505
1506  explicit UnaryTypeTraitExpr(EmptyShell Empty)
1507    : Expr(UnaryTypeTraitExprClass, Empty), UTT(0), Value(false),
1508      QueriedType() { }
1509
1510  SourceRange getSourceRange() const { return SourceRange(Loc, RParen);}
1511
1512  UnaryTypeTrait getTrait() const { return static_cast<UnaryTypeTrait>(UTT); }
1513
1514  QualType getQueriedType() const { return QueriedType->getType(); }
1515
1516  TypeSourceInfo *getQueriedTypeSourceInfo() const { return QueriedType; }
1517
1518  bool getValue() const { return Value; }
1519
1520  static bool classof(const Stmt *T) {
1521    return T->getStmtClass() == UnaryTypeTraitExprClass;
1522  }
1523  static bool classof(const UnaryTypeTraitExpr *) { return true; }
1524
1525  // Iterators
1526  child_range children() { return child_range(); }
1527
1528  friend class ASTStmtReader;
1529};
1530
1531/// BinaryTypeTraitExpr - A GCC or MS binary type trait, as used in the
1532/// implementation of TR1/C++0x type trait templates.
1533/// Example:
1534/// __is_base_of(Base, Derived) == true
1535class BinaryTypeTraitExpr : public Expr {
1536  /// BTT - The trait. A BinaryTypeTrait enum in MSVC compat unsigned.
1537  unsigned BTT : 8;
1538
1539  /// The value of the type trait. Unspecified if dependent.
1540  bool Value : 1;
1541
1542  /// Loc - The location of the type trait keyword.
1543  SourceLocation Loc;
1544
1545  /// RParen - The location of the closing paren.
1546  SourceLocation RParen;
1547
1548  /// The lhs type being queried.
1549  TypeSourceInfo *LhsType;
1550
1551  /// The rhs type being queried.
1552  TypeSourceInfo *RhsType;
1553
1554public:
1555  BinaryTypeTraitExpr(SourceLocation loc, BinaryTypeTrait btt,
1556                     TypeSourceInfo *lhsType, TypeSourceInfo *rhsType,
1557                     bool value, SourceLocation rparen, QualType ty)
1558    : Expr(BinaryTypeTraitExprClass, ty, VK_RValue, OK_Ordinary, false,
1559           lhsType->getType()->isDependentType() ||
1560           rhsType->getType()->isDependentType(),
1561           (lhsType->getType()->containsUnexpandedParameterPack() ||
1562            rhsType->getType()->containsUnexpandedParameterPack())),
1563      BTT(btt), Value(value), Loc(loc), RParen(rparen),
1564      LhsType(lhsType), RhsType(rhsType) { }
1565
1566
1567  explicit BinaryTypeTraitExpr(EmptyShell Empty)
1568    : Expr(BinaryTypeTraitExprClass, Empty), BTT(0), Value(false),
1569      LhsType(), RhsType() { }
1570
1571  SourceRange getSourceRange() const {
1572    return SourceRange(Loc, RParen);
1573  }
1574
1575  BinaryTypeTrait getTrait() const {
1576    return static_cast<BinaryTypeTrait>(BTT);
1577  }
1578
1579  QualType getLhsType() const { return LhsType->getType(); }
1580  QualType getRhsType() const { return RhsType->getType(); }
1581
1582  TypeSourceInfo *getLhsTypeSourceInfo() const { return LhsType; }
1583  TypeSourceInfo *getRhsTypeSourceInfo() const { return RhsType; }
1584
1585  bool getValue() const { assert(!isTypeDependent()); return Value; }
1586
1587  static bool classof(const Stmt *T) {
1588    return T->getStmtClass() == BinaryTypeTraitExprClass;
1589  }
1590  static bool classof(const BinaryTypeTraitExpr *) { return true; }
1591
1592  // Iterators
1593  child_range children() { return child_range(); }
1594
1595  friend class ASTStmtReader;
1596};
1597
1598/// ArrayTypeTraitExpr - An Embarcadero array type trait, as used in the
1599/// implementation of __array_rank and __array_extent.
1600/// Example:
1601/// __array_rank(int[10][20]) == 2
1602/// __array_extent(int, 1)    == 20
1603class ArrayTypeTraitExpr : public Expr {
1604  /// ATT - The trait. An ArrayTypeTrait enum in MSVC compat unsigned.
1605  unsigned ATT : 2;
1606
1607  /// The value of the type trait. Unspecified if dependent.
1608  uint64_t Value;
1609
1610  /// The array dimension being queried, or -1 if not used
1611  Expr *Dimension;
1612
1613  /// Loc - The location of the type trait keyword.
1614  SourceLocation Loc;
1615
1616  /// RParen - The location of the closing paren.
1617  SourceLocation RParen;
1618
1619  /// The type being queried.
1620  TypeSourceInfo *QueriedType;
1621
1622public:
1623  ArrayTypeTraitExpr(SourceLocation loc, ArrayTypeTrait att,
1624                     TypeSourceInfo *queried, uint64_t value,
1625                     Expr *dimension, SourceLocation rparen, QualType ty)
1626    : Expr(ArrayTypeTraitExprClass, ty, VK_RValue, OK_Ordinary,
1627           false, queried->getType()->isDependentType(),
1628           queried->getType()->containsUnexpandedParameterPack()),
1629      ATT(att), Value(value), Dimension(dimension),
1630      Loc(loc), RParen(rparen), QueriedType(queried) { }
1631
1632
1633  explicit ArrayTypeTraitExpr(EmptyShell Empty)
1634    : Expr(ArrayTypeTraitExprClass, Empty), ATT(0), Value(false),
1635      QueriedType() { }
1636
1637  virtual ~ArrayTypeTraitExpr() { }
1638
1639  virtual SourceRange getSourceRange() const { return SourceRange(Loc, RParen); }
1640
1641  ArrayTypeTrait getTrait() const { return static_cast<ArrayTypeTrait>(ATT); }
1642
1643  QualType getQueriedType() const { return QueriedType->getType(); }
1644
1645  TypeSourceInfo *getQueriedTypeSourceInfo() const { return QueriedType; }
1646
1647  uint64_t getValue() const { assert(!isTypeDependent()); return Value; }
1648
1649  Expr *getDimensionExpression() const { return Dimension; }
1650
1651  static bool classof(const Stmt *T) {
1652    return T->getStmtClass() == ArrayTypeTraitExprClass;
1653  }
1654  static bool classof(const ArrayTypeTraitExpr *) { return true; }
1655
1656  // Iterators
1657  child_range children() { return child_range(); }
1658
1659  friend class ASTStmtReader;
1660};
1661
1662/// ExpressionTraitExpr - An expression trait intrinsic
1663/// Example:
1664/// __is_lvalue_expr(std::cout) == true
1665/// __is_lvalue_expr(1) == false
1666class ExpressionTraitExpr : public Expr {
1667  /// ET - The trait. A ExpressionTrait enum in MSVC compat unsigned.
1668  unsigned ET : 31;
1669  /// The value of the type trait. Unspecified if dependent.
1670  bool Value : 1;
1671
1672  /// Loc - The location of the type trait keyword.
1673  SourceLocation Loc;
1674
1675  /// RParen - The location of the closing paren.
1676  SourceLocation RParen;
1677
1678  Expr* QueriedExpression;
1679public:
1680  ExpressionTraitExpr(SourceLocation loc, ExpressionTrait et,
1681                     Expr *queried, bool value,
1682                     SourceLocation rparen, QualType resultType)
1683    : Expr(ExpressionTraitExprClass, resultType, VK_RValue, OK_Ordinary,
1684           false, // Not type-dependent
1685           // Value-dependent if the argument is type-dependent.
1686           queried->isTypeDependent(),
1687           queried->containsUnexpandedParameterPack()),
1688      ET(et), Value(value), Loc(loc), RParen(rparen), QueriedExpression(queried) { }
1689
1690  explicit ExpressionTraitExpr(EmptyShell Empty)
1691    : Expr(ExpressionTraitExprClass, Empty), ET(0), Value(false),
1692      QueriedExpression() { }
1693
1694  SourceRange getSourceRange() const { return SourceRange(Loc, RParen);}
1695
1696  ExpressionTrait getTrait() const { return static_cast<ExpressionTrait>(ET); }
1697
1698  Expr *getQueriedExpression() const { return QueriedExpression; }
1699
1700  bool getValue() const { return Value; }
1701
1702  static bool classof(const Stmt *T) {
1703    return T->getStmtClass() == ExpressionTraitExprClass;
1704  }
1705  static bool classof(const ExpressionTraitExpr *) { return true; }
1706
1707  // Iterators
1708  child_range children() { return child_range(); }
1709
1710  friend class ASTStmtReader;
1711};
1712
1713
1714/// \brief A reference to an overloaded function set, either an
1715/// \t UnresolvedLookupExpr or an \t UnresolvedMemberExpr.
1716class OverloadExpr : public Expr {
1717  /// The results.  These are undesugared, which is to say, they may
1718  /// include UsingShadowDecls.  Access is relative to the naming
1719  /// class.
1720  // FIXME: Allocate this data after the OverloadExpr subclass.
1721  DeclAccessPair *Results;
1722  unsigned NumResults;
1723
1724  /// The common name of these declarations.
1725  DeclarationNameInfo NameInfo;
1726
1727  /// \brief The nested-name-specifier that qualifies the name, if any.
1728  NestedNameSpecifierLoc QualifierLoc;
1729
1730protected:
1731  /// True if the name was a template-id.
1732  bool HasExplicitTemplateArgs;
1733
1734  OverloadExpr(StmtClass K, ASTContext &C,
1735               NestedNameSpecifierLoc QualifierLoc,
1736               const DeclarationNameInfo &NameInfo,
1737               const TemplateArgumentListInfo *TemplateArgs,
1738               UnresolvedSetIterator Begin, UnresolvedSetIterator End,
1739               bool KnownDependent = false,
1740               bool KnownContainsUnexpandedParameterPack = false);
1741
1742  OverloadExpr(StmtClass K, EmptyShell Empty)
1743    : Expr(K, Empty), Results(0), NumResults(0),
1744      QualifierLoc(), HasExplicitTemplateArgs(false) { }
1745
1746  void initializeResults(ASTContext &C,
1747                         UnresolvedSetIterator Begin,
1748                         UnresolvedSetIterator End);
1749
1750public:
1751  struct FindResult {
1752    OverloadExpr *Expression;
1753    bool IsAddressOfOperand;
1754    bool HasFormOfMemberPointer;
1755  };
1756
1757  /// Finds the overloaded expression in the given expression of
1758  /// OverloadTy.
1759  ///
1760  /// \return the expression (which must be there) and true if it has
1761  /// the particular form of a member pointer expression
1762  static FindResult find(Expr *E) {
1763    assert(E->getType()->isSpecificBuiltinType(BuiltinType::Overload));
1764
1765    FindResult Result;
1766
1767    E = E->IgnoreParens();
1768    if (isa<UnaryOperator>(E)) {
1769      assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
1770      E = cast<UnaryOperator>(E)->getSubExpr();
1771      OverloadExpr *Ovl = cast<OverloadExpr>(E->IgnoreParens());
1772
1773      Result.HasFormOfMemberPointer = (E == Ovl && Ovl->getQualifier());
1774      Result.IsAddressOfOperand = true;
1775      Result.Expression = Ovl;
1776    } else {
1777      Result.HasFormOfMemberPointer = false;
1778      Result.IsAddressOfOperand = false;
1779      Result.Expression = cast<OverloadExpr>(E);
1780    }
1781
1782    return Result;
1783  }
1784
1785  /// Gets the naming class of this lookup, if any.
1786  CXXRecordDecl *getNamingClass() const;
1787
1788  typedef UnresolvedSetImpl::iterator decls_iterator;
1789  decls_iterator decls_begin() const { return UnresolvedSetIterator(Results); }
1790  decls_iterator decls_end() const {
1791    return UnresolvedSetIterator(Results + NumResults);
1792  }
1793
1794  /// Gets the number of declarations in the unresolved set.
1795  unsigned getNumDecls() const { return NumResults; }
1796
1797  /// Gets the full name info.
1798  const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
1799
1800  /// Gets the name looked up.
1801  DeclarationName getName() const { return NameInfo.getName(); }
1802
1803  /// Gets the location of the name.
1804  SourceLocation getNameLoc() const { return NameInfo.getLoc(); }
1805
1806  /// Fetches the nested-name qualifier, if one was given.
1807  NestedNameSpecifier *getQualifier() const {
1808    return QualifierLoc.getNestedNameSpecifier();
1809  }
1810
1811  /// Fetches the nested-name qualifier with source-location information, if
1812  /// one was given.
1813  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
1814
1815  /// \brief Determines whether this expression had an explicit
1816  /// template argument list, e.g. f<int>.
1817  bool hasExplicitTemplateArgs() const { return HasExplicitTemplateArgs; }
1818
1819  ExplicitTemplateArgumentList &getExplicitTemplateArgs(); // defined far below
1820
1821  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
1822    return const_cast<OverloadExpr*>(this)->getExplicitTemplateArgs();
1823  }
1824
1825  /// \brief Retrieves the optional explicit template arguments.
1826  /// This points to the same data as getExplicitTemplateArgs(), but
1827  /// returns null if there are no explicit template arguments.
1828  const ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() {
1829    if (!hasExplicitTemplateArgs()) return 0;
1830    return &getExplicitTemplateArgs();
1831  }
1832
1833  static bool classof(const Stmt *T) {
1834    return T->getStmtClass() == UnresolvedLookupExprClass ||
1835           T->getStmtClass() == UnresolvedMemberExprClass;
1836  }
1837  static bool classof(const OverloadExpr *) { return true; }
1838
1839  friend class ASTStmtReader;
1840  friend class ASTStmtWriter;
1841};
1842
1843/// \brief A reference to a name which we were able to look up during
1844/// parsing but could not resolve to a specific declaration.  This
1845/// arises in several ways:
1846///   * we might be waiting for argument-dependent lookup
1847///   * the name might resolve to an overloaded function
1848/// and eventually:
1849///   * the lookup might have included a function template
1850/// These never include UnresolvedUsingValueDecls, which are always
1851/// class members and therefore appear only in
1852/// UnresolvedMemberLookupExprs.
1853class UnresolvedLookupExpr : public OverloadExpr {
1854  /// True if these lookup results should be extended by
1855  /// argument-dependent lookup if this is the operand of a function
1856  /// call.
1857  bool RequiresADL;
1858
1859  /// True if namespace ::std should be considered an associated namespace
1860  /// for the purposes of argument-dependent lookup. See C++0x [stmt.ranged]p1.
1861  bool StdIsAssociatedNamespace;
1862
1863  /// True if these lookup results are overloaded.  This is pretty
1864  /// trivially rederivable if we urgently need to kill this field.
1865  bool Overloaded;
1866
1867  /// The naming class (C++ [class.access.base]p5) of the lookup, if
1868  /// any.  This can generally be recalculated from the context chain,
1869  /// but that can be fairly expensive for unqualified lookups.  If we
1870  /// want to improve memory use here, this could go in a union
1871  /// against the qualified-lookup bits.
1872  CXXRecordDecl *NamingClass;
1873
1874  UnresolvedLookupExpr(ASTContext &C,
1875                       CXXRecordDecl *NamingClass,
1876                       NestedNameSpecifierLoc QualifierLoc,
1877                       const DeclarationNameInfo &NameInfo,
1878                       bool RequiresADL, bool Overloaded,
1879                       const TemplateArgumentListInfo *TemplateArgs,
1880                       UnresolvedSetIterator Begin, UnresolvedSetIterator End,
1881                       bool StdIsAssociatedNamespace)
1882    : OverloadExpr(UnresolvedLookupExprClass, C, QualifierLoc, NameInfo,
1883                   TemplateArgs, Begin, End),
1884      RequiresADL(RequiresADL),
1885      StdIsAssociatedNamespace(StdIsAssociatedNamespace),
1886      Overloaded(Overloaded), NamingClass(NamingClass)
1887  {}
1888
1889  UnresolvedLookupExpr(EmptyShell Empty)
1890    : OverloadExpr(UnresolvedLookupExprClass, Empty),
1891      RequiresADL(false), StdIsAssociatedNamespace(false), Overloaded(false),
1892      NamingClass(0)
1893  {}
1894
1895  friend class ASTStmtReader;
1896
1897public:
1898  static UnresolvedLookupExpr *Create(ASTContext &C,
1899                                      CXXRecordDecl *NamingClass,
1900                                      NestedNameSpecifierLoc QualifierLoc,
1901                                      const DeclarationNameInfo &NameInfo,
1902                                      bool ADL, bool Overloaded,
1903                                      UnresolvedSetIterator Begin,
1904                                      UnresolvedSetIterator End,
1905                                      bool StdIsAssociatedNamespace = false) {
1906    assert((ADL || !StdIsAssociatedNamespace) &&
1907           "std considered associated namespace when not performing ADL");
1908    return new(C) UnresolvedLookupExpr(C, NamingClass, QualifierLoc, NameInfo,
1909                                       ADL, Overloaded, 0, Begin, End,
1910                                       StdIsAssociatedNamespace);
1911  }
1912
1913  static UnresolvedLookupExpr *Create(ASTContext &C,
1914                                      CXXRecordDecl *NamingClass,
1915                                      NestedNameSpecifierLoc QualifierLoc,
1916                                      const DeclarationNameInfo &NameInfo,
1917                                      bool ADL,
1918                                      const TemplateArgumentListInfo &Args,
1919                                      UnresolvedSetIterator Begin,
1920                                      UnresolvedSetIterator End);
1921
1922  static UnresolvedLookupExpr *CreateEmpty(ASTContext &C,
1923                                           bool HasExplicitTemplateArgs,
1924                                           unsigned NumTemplateArgs);
1925
1926  /// True if this declaration should be extended by
1927  /// argument-dependent lookup.
1928  bool requiresADL() const { return RequiresADL; }
1929
1930  /// True if namespace ::std should be artificially added to the set of
1931  /// associated namespaecs for argument-dependent lookup purposes.
1932  bool isStdAssociatedNamespace() const { return StdIsAssociatedNamespace; }
1933
1934  /// True if this lookup is overloaded.
1935  bool isOverloaded() const { return Overloaded; }
1936
1937  /// Gets the 'naming class' (in the sense of C++0x
1938  /// [class.access.base]p5) of the lookup.  This is the scope
1939  /// that was looked in to find these results.
1940  CXXRecordDecl *getNamingClass() const { return NamingClass; }
1941
1942  // Note that, inconsistently with the explicit-template-argument AST
1943  // nodes, users are *forbidden* from calling these methods on objects
1944  // without explicit template arguments.
1945
1946  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
1947    assert(hasExplicitTemplateArgs());
1948    return *reinterpret_cast<ExplicitTemplateArgumentList*>(this + 1);
1949  }
1950
1951  /// Gets a reference to the explicit template argument list.
1952  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
1953    assert(hasExplicitTemplateArgs());
1954    return *reinterpret_cast<const ExplicitTemplateArgumentList*>(this + 1);
1955  }
1956
1957  /// \brief Retrieves the optional explicit template arguments.
1958  /// This points to the same data as getExplicitTemplateArgs(), but
1959  /// returns null if there are no explicit template arguments.
1960  const ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() {
1961    if (!hasExplicitTemplateArgs()) return 0;
1962    return &getExplicitTemplateArgs();
1963  }
1964
1965  /// \brief Copies the template arguments (if present) into the given
1966  /// structure.
1967  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1968    getExplicitTemplateArgs().copyInto(List);
1969  }
1970
1971  SourceLocation getLAngleLoc() const {
1972    return getExplicitTemplateArgs().LAngleLoc;
1973  }
1974
1975  SourceLocation getRAngleLoc() const {
1976    return getExplicitTemplateArgs().RAngleLoc;
1977  }
1978
1979  TemplateArgumentLoc const *getTemplateArgs() const {
1980    return getExplicitTemplateArgs().getTemplateArgs();
1981  }
1982
1983  unsigned getNumTemplateArgs() const {
1984    return getExplicitTemplateArgs().NumTemplateArgs;
1985  }
1986
1987  SourceRange getSourceRange() const {
1988    SourceRange Range(getNameInfo().getSourceRange());
1989    if (getQualifierLoc())
1990      Range.setBegin(getQualifierLoc().getBeginLoc());
1991    if (hasExplicitTemplateArgs())
1992      Range.setEnd(getRAngleLoc());
1993    return Range;
1994  }
1995
1996  child_range children() { return child_range(); }
1997
1998  static bool classof(const Stmt *T) {
1999    return T->getStmtClass() == UnresolvedLookupExprClass;
2000  }
2001  static bool classof(const UnresolvedLookupExpr *) { return true; }
2002};
2003
2004/// \brief A qualified reference to a name whose declaration cannot
2005/// yet be resolved.
2006///
2007/// DependentScopeDeclRefExpr is similar to DeclRefExpr in that
2008/// it expresses a reference to a declaration such as
2009/// X<T>::value. The difference, however, is that an
2010/// DependentScopeDeclRefExpr node is used only within C++ templates when
2011/// the qualification (e.g., X<T>::) refers to a dependent type. In
2012/// this case, X<T>::value cannot resolve to a declaration because the
2013/// declaration will differ from on instantiation of X<T> to the
2014/// next. Therefore, DependentScopeDeclRefExpr keeps track of the
2015/// qualifier (X<T>::) and the name of the entity being referenced
2016/// ("value"). Such expressions will instantiate to a DeclRefExpr once the
2017/// declaration can be found.
2018class DependentScopeDeclRefExpr : public Expr {
2019  /// \brief The nested-name-specifier that qualifies this unresolved
2020  /// declaration name.
2021  NestedNameSpecifierLoc QualifierLoc;
2022
2023  /// The name of the entity we will be referencing.
2024  DeclarationNameInfo NameInfo;
2025
2026  /// \brief Whether the name includes explicit template arguments.
2027  bool HasExplicitTemplateArgs;
2028
2029  DependentScopeDeclRefExpr(QualType T,
2030                            NestedNameSpecifierLoc QualifierLoc,
2031                            const DeclarationNameInfo &NameInfo,
2032                            const TemplateArgumentListInfo *Args);
2033
2034public:
2035  static DependentScopeDeclRefExpr *Create(ASTContext &C,
2036                                           NestedNameSpecifierLoc QualifierLoc,
2037                                           const DeclarationNameInfo &NameInfo,
2038                              const TemplateArgumentListInfo *TemplateArgs = 0);
2039
2040  static DependentScopeDeclRefExpr *CreateEmpty(ASTContext &C,
2041                                                bool HasExplicitTemplateArgs,
2042                                                unsigned NumTemplateArgs);
2043
2044  /// \brief Retrieve the name that this expression refers to.
2045  const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
2046
2047  /// \brief Retrieve the name that this expression refers to.
2048  DeclarationName getDeclName() const { return NameInfo.getName(); }
2049
2050  /// \brief Retrieve the location of the name within the expression.
2051  SourceLocation getLocation() const { return NameInfo.getLoc(); }
2052
2053  /// \brief Retrieve the nested-name-specifier that qualifies the
2054  /// name, with source location information.
2055  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2056
2057
2058  /// \brief Retrieve the nested-name-specifier that qualifies this
2059  /// declaration.
2060  NestedNameSpecifier *getQualifier() const {
2061    return QualifierLoc.getNestedNameSpecifier();
2062  }
2063
2064  /// Determines whether this lookup had explicit template arguments.
2065  bool hasExplicitTemplateArgs() const { return HasExplicitTemplateArgs; }
2066
2067  // Note that, inconsistently with the explicit-template-argument AST
2068  // nodes, users are *forbidden* from calling these methods on objects
2069  // without explicit template arguments.
2070
2071  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
2072    assert(hasExplicitTemplateArgs());
2073    return *reinterpret_cast<ExplicitTemplateArgumentList*>(this + 1);
2074  }
2075
2076  /// Gets a reference to the explicit template argument list.
2077  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
2078    assert(hasExplicitTemplateArgs());
2079    return *reinterpret_cast<const ExplicitTemplateArgumentList*>(this + 1);
2080  }
2081
2082  /// \brief Retrieves the optional explicit template arguments.
2083  /// This points to the same data as getExplicitTemplateArgs(), but
2084  /// returns null if there are no explicit template arguments.
2085  const ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() {
2086    if (!hasExplicitTemplateArgs()) return 0;
2087    return &getExplicitTemplateArgs();
2088  }
2089
2090  /// \brief Copies the template arguments (if present) into the given
2091  /// structure.
2092  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2093    getExplicitTemplateArgs().copyInto(List);
2094  }
2095
2096  SourceLocation getLAngleLoc() const {
2097    return getExplicitTemplateArgs().LAngleLoc;
2098  }
2099
2100  SourceLocation getRAngleLoc() const {
2101    return getExplicitTemplateArgs().RAngleLoc;
2102  }
2103
2104  TemplateArgumentLoc const *getTemplateArgs() const {
2105    return getExplicitTemplateArgs().getTemplateArgs();
2106  }
2107
2108  unsigned getNumTemplateArgs() const {
2109    return getExplicitTemplateArgs().NumTemplateArgs;
2110  }
2111
2112  SourceRange getSourceRange() const {
2113    SourceRange Range(QualifierLoc.getBeginLoc(), getLocation());
2114    if (hasExplicitTemplateArgs())
2115      Range.setEnd(getRAngleLoc());
2116    return Range;
2117  }
2118
2119  static bool classof(const Stmt *T) {
2120    return T->getStmtClass() == DependentScopeDeclRefExprClass;
2121  }
2122  static bool classof(const DependentScopeDeclRefExpr *) { return true; }
2123
2124  child_range children() { return child_range(); }
2125
2126  friend class ASTStmtReader;
2127  friend class ASTStmtWriter;
2128};
2129
2130/// Represents an expression --- generally a full-expression --- which
2131/// introduces cleanups to be run at the end of the sub-expression's
2132/// evaluation.  The most common source of expression-introduced
2133/// cleanups is temporary objects in C++, but several other C++
2134/// expressions can create cleanups.
2135class ExprWithCleanups : public Expr {
2136  Stmt *SubExpr;
2137
2138  CXXTemporary **Temps;
2139  unsigned NumTemps;
2140
2141  ExprWithCleanups(ASTContext &C, Expr *SubExpr,
2142                   CXXTemporary **Temps, unsigned NumTemps);
2143
2144public:
2145  ExprWithCleanups(EmptyShell Empty)
2146    : Expr(ExprWithCleanupsClass, Empty),
2147      SubExpr(0), Temps(0), NumTemps(0) {}
2148
2149  static ExprWithCleanups *Create(ASTContext &C, Expr *SubExpr,
2150                                        CXXTemporary **Temps,
2151                                        unsigned NumTemps);
2152
2153  unsigned getNumTemporaries() const { return NumTemps; }
2154  void setNumTemporaries(ASTContext &C, unsigned N);
2155
2156  CXXTemporary *getTemporary(unsigned i) {
2157    assert(i < NumTemps && "Index out of range");
2158    return Temps[i];
2159  }
2160  const CXXTemporary *getTemporary(unsigned i) const {
2161    return const_cast<ExprWithCleanups*>(this)->getTemporary(i);
2162  }
2163  void setTemporary(unsigned i, CXXTemporary *T) {
2164    assert(i < NumTemps && "Index out of range");
2165    Temps[i] = T;
2166  }
2167
2168  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
2169  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
2170  void setSubExpr(Expr *E) { SubExpr = E; }
2171
2172  SourceRange getSourceRange() const {
2173    return SubExpr->getSourceRange();
2174  }
2175
2176  // Implement isa/cast/dyncast/etc.
2177  static bool classof(const Stmt *T) {
2178    return T->getStmtClass() == ExprWithCleanupsClass;
2179  }
2180  static bool classof(const ExprWithCleanups *) { return true; }
2181
2182  // Iterators
2183  child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
2184};
2185
2186/// \brief Describes an explicit type conversion that uses functional
2187/// notion but could not be resolved because one or more arguments are
2188/// type-dependent.
2189///
2190/// The explicit type conversions expressed by
2191/// CXXUnresolvedConstructExpr have the form \c T(a1, a2, ..., aN),
2192/// where \c T is some type and \c a1, a2, ..., aN are values, and
2193/// either \C T is a dependent type or one or more of the \c a's is
2194/// type-dependent. For example, this would occur in a template such
2195/// as:
2196///
2197/// \code
2198///   template<typename T, typename A1>
2199///   inline T make_a(const A1& a1) {
2200///     return T(a1);
2201///   }
2202/// \endcode
2203///
2204/// When the returned expression is instantiated, it may resolve to a
2205/// constructor call, conversion function call, or some kind of type
2206/// conversion.
2207class CXXUnresolvedConstructExpr : public Expr {
2208  /// \brief The type being constructed.
2209  TypeSourceInfo *Type;
2210
2211  /// \brief The location of the left parentheses ('(').
2212  SourceLocation LParenLoc;
2213
2214  /// \brief The location of the right parentheses (')').
2215  SourceLocation RParenLoc;
2216
2217  /// \brief The number of arguments used to construct the type.
2218  unsigned NumArgs;
2219
2220  CXXUnresolvedConstructExpr(TypeSourceInfo *Type,
2221                             SourceLocation LParenLoc,
2222                             Expr **Args,
2223                             unsigned NumArgs,
2224                             SourceLocation RParenLoc);
2225
2226  CXXUnresolvedConstructExpr(EmptyShell Empty, unsigned NumArgs)
2227    : Expr(CXXUnresolvedConstructExprClass, Empty), Type(), NumArgs(NumArgs) { }
2228
2229  friend class ASTStmtReader;
2230
2231public:
2232  static CXXUnresolvedConstructExpr *Create(ASTContext &C,
2233                                            TypeSourceInfo *Type,
2234                                            SourceLocation LParenLoc,
2235                                            Expr **Args,
2236                                            unsigned NumArgs,
2237                                            SourceLocation RParenLoc);
2238
2239  static CXXUnresolvedConstructExpr *CreateEmpty(ASTContext &C,
2240                                                 unsigned NumArgs);
2241
2242  /// \brief Retrieve the type that is being constructed, as specified
2243  /// in the source code.
2244  QualType getTypeAsWritten() const { return Type->getType(); }
2245
2246  /// \brief Retrieve the type source information for the type being
2247  /// constructed.
2248  TypeSourceInfo *getTypeSourceInfo() const { return Type; }
2249
2250  /// \brief Retrieve the location of the left parentheses ('(') that
2251  /// precedes the argument list.
2252  SourceLocation getLParenLoc() const { return LParenLoc; }
2253  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2254
2255  /// \brief Retrieve the location of the right parentheses (')') that
2256  /// follows the argument list.
2257  SourceLocation getRParenLoc() const { return RParenLoc; }
2258  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2259
2260  /// \brief Retrieve the number of arguments.
2261  unsigned arg_size() const { return NumArgs; }
2262
2263  typedef Expr** arg_iterator;
2264  arg_iterator arg_begin() { return reinterpret_cast<Expr**>(this + 1); }
2265  arg_iterator arg_end() { return arg_begin() + NumArgs; }
2266
2267  typedef const Expr* const * const_arg_iterator;
2268  const_arg_iterator arg_begin() const {
2269    return reinterpret_cast<const Expr* const *>(this + 1);
2270  }
2271  const_arg_iterator arg_end() const {
2272    return arg_begin() + NumArgs;
2273  }
2274
2275  Expr *getArg(unsigned I) {
2276    assert(I < NumArgs && "Argument index out-of-range");
2277    return *(arg_begin() + I);
2278  }
2279
2280  const Expr *getArg(unsigned I) const {
2281    assert(I < NumArgs && "Argument index out-of-range");
2282    return *(arg_begin() + I);
2283  }
2284
2285  void setArg(unsigned I, Expr *E) {
2286    assert(I < NumArgs && "Argument index out-of-range");
2287    *(arg_begin() + I) = E;
2288  }
2289
2290  SourceRange getSourceRange() const;
2291
2292  static bool classof(const Stmt *T) {
2293    return T->getStmtClass() == CXXUnresolvedConstructExprClass;
2294  }
2295  static bool classof(const CXXUnresolvedConstructExpr *) { return true; }
2296
2297  // Iterators
2298  child_range children() {
2299    Stmt **begin = reinterpret_cast<Stmt**>(this+1);
2300    return child_range(begin, begin + NumArgs);
2301  }
2302};
2303
2304/// \brief Represents a C++ member access expression where the actual
2305/// member referenced could not be resolved because the base
2306/// expression or the member name was dependent.
2307///
2308/// Like UnresolvedMemberExprs, these can be either implicit or
2309/// explicit accesses.  It is only possible to get one of these with
2310/// an implicit access if a qualifier is provided.
2311class CXXDependentScopeMemberExpr : public Expr {
2312  /// \brief The expression for the base pointer or class reference,
2313  /// e.g., the \c x in x.f.  Can be null in implicit accesses.
2314  Stmt *Base;
2315
2316  /// \brief The type of the base expression.  Never null, even for
2317  /// implicit accesses.
2318  QualType BaseType;
2319
2320  /// \brief Whether this member expression used the '->' operator or
2321  /// the '.' operator.
2322  bool IsArrow : 1;
2323
2324  /// \brief Whether this member expression has explicitly-specified template
2325  /// arguments.
2326  bool HasExplicitTemplateArgs : 1;
2327
2328  /// \brief The location of the '->' or '.' operator.
2329  SourceLocation OperatorLoc;
2330
2331  /// \brief The nested-name-specifier that precedes the member name, if any.
2332  NestedNameSpecifierLoc QualifierLoc;
2333
2334  /// \brief In a qualified member access expression such as t->Base::f, this
2335  /// member stores the resolves of name lookup in the context of the member
2336  /// access expression, to be used at instantiation time.
2337  ///
2338  /// FIXME: This member, along with the QualifierLoc, could
2339  /// be stuck into a structure that is optionally allocated at the end of
2340  /// the CXXDependentScopeMemberExpr, to save space in the common case.
2341  NamedDecl *FirstQualifierFoundInScope;
2342
2343  /// \brief The member to which this member expression refers, which
2344  /// can be name, overloaded operator, or destructor.
2345  /// FIXME: could also be a template-id
2346  DeclarationNameInfo MemberNameInfo;
2347
2348  CXXDependentScopeMemberExpr(ASTContext &C,
2349                          Expr *Base, QualType BaseType, bool IsArrow,
2350                          SourceLocation OperatorLoc,
2351                          NestedNameSpecifierLoc QualifierLoc,
2352                          NamedDecl *FirstQualifierFoundInScope,
2353                          DeclarationNameInfo MemberNameInfo,
2354                          const TemplateArgumentListInfo *TemplateArgs);
2355
2356public:
2357  CXXDependentScopeMemberExpr(ASTContext &C,
2358                              Expr *Base, QualType BaseType,
2359                              bool IsArrow,
2360                              SourceLocation OperatorLoc,
2361                              NestedNameSpecifierLoc QualifierLoc,
2362                              NamedDecl *FirstQualifierFoundInScope,
2363                              DeclarationNameInfo MemberNameInfo);
2364
2365  static CXXDependentScopeMemberExpr *
2366  Create(ASTContext &C,
2367         Expr *Base, QualType BaseType, bool IsArrow,
2368         SourceLocation OperatorLoc,
2369         NestedNameSpecifierLoc QualifierLoc,
2370         NamedDecl *FirstQualifierFoundInScope,
2371         DeclarationNameInfo MemberNameInfo,
2372         const TemplateArgumentListInfo *TemplateArgs);
2373
2374  static CXXDependentScopeMemberExpr *
2375  CreateEmpty(ASTContext &C, bool HasExplicitTemplateArgs,
2376              unsigned NumTemplateArgs);
2377
2378  /// \brief True if this is an implicit access, i.e. one in which the
2379  /// member being accessed was not written in the source.  The source
2380  /// location of the operator is invalid in this case.
2381  bool isImplicitAccess() const;
2382
2383  /// \brief Retrieve the base object of this member expressions,
2384  /// e.g., the \c x in \c x.m.
2385  Expr *getBase() const {
2386    assert(!isImplicitAccess());
2387    return cast<Expr>(Base);
2388  }
2389
2390  QualType getBaseType() const { return BaseType; }
2391
2392  /// \brief Determine whether this member expression used the '->'
2393  /// operator; otherwise, it used the '.' operator.
2394  bool isArrow() const { return IsArrow; }
2395
2396  /// \brief Retrieve the location of the '->' or '.' operator.
2397  SourceLocation getOperatorLoc() const { return OperatorLoc; }
2398
2399  /// \brief Retrieve the nested-name-specifier that qualifies the member
2400  /// name.
2401  NestedNameSpecifier *getQualifier() const {
2402    return QualifierLoc.getNestedNameSpecifier();
2403  }
2404
2405  /// \brief Retrieve the nested-name-specifier that qualifies the member
2406  /// name, with source location information.
2407  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2408
2409
2410  /// \brief Retrieve the first part of the nested-name-specifier that was
2411  /// found in the scope of the member access expression when the member access
2412  /// was initially parsed.
2413  ///
2414  /// This function only returns a useful result when member access expression
2415  /// uses a qualified member name, e.g., "x.Base::f". Here, the declaration
2416  /// returned by this function describes what was found by unqualified name
2417  /// lookup for the identifier "Base" within the scope of the member access
2418  /// expression itself. At template instantiation time, this information is
2419  /// combined with the results of name lookup into the type of the object
2420  /// expression itself (the class type of x).
2421  NamedDecl *getFirstQualifierFoundInScope() const {
2422    return FirstQualifierFoundInScope;
2423  }
2424
2425  /// \brief Retrieve the name of the member that this expression
2426  /// refers to.
2427  const DeclarationNameInfo &getMemberNameInfo() const {
2428    return MemberNameInfo;
2429  }
2430
2431  /// \brief Retrieve the name of the member that this expression
2432  /// refers to.
2433  DeclarationName getMember() const { return MemberNameInfo.getName(); }
2434
2435  // \brief Retrieve the location of the name of the member that this
2436  // expression refers to.
2437  SourceLocation getMemberLoc() const { return MemberNameInfo.getLoc(); }
2438
2439  /// \brief Determines whether this member expression actually had a C++
2440  /// template argument list explicitly specified, e.g., x.f<int>.
2441  bool hasExplicitTemplateArgs() const {
2442    return HasExplicitTemplateArgs;
2443  }
2444
2445  /// \brief Retrieve the explicit template argument list that followed the
2446  /// member template name, if any.
2447  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
2448    assert(HasExplicitTemplateArgs);
2449    return *reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
2450  }
2451
2452  /// \brief Retrieve the explicit template argument list that followed the
2453  /// member template name, if any.
2454  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
2455    return const_cast<CXXDependentScopeMemberExpr *>(this)
2456             ->getExplicitTemplateArgs();
2457  }
2458
2459  /// \brief Retrieves the optional explicit template arguments.
2460  /// This points to the same data as getExplicitTemplateArgs(), but
2461  /// returns null if there are no explicit template arguments.
2462  const ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() {
2463    if (!hasExplicitTemplateArgs()) return 0;
2464    return &getExplicitTemplateArgs();
2465  }
2466
2467  /// \brief Copies the template arguments (if present) into the given
2468  /// structure.
2469  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2470    getExplicitTemplateArgs().copyInto(List);
2471  }
2472
2473  /// \brief Initializes the template arguments using the given structure.
2474  void initializeTemplateArgumentsFrom(const TemplateArgumentListInfo &List) {
2475    getExplicitTemplateArgs().initializeFrom(List);
2476  }
2477
2478  /// \brief Retrieve the location of the left angle bracket following the
2479  /// member name ('<'), if any.
2480  SourceLocation getLAngleLoc() const {
2481    return getExplicitTemplateArgs().LAngleLoc;
2482  }
2483
2484  /// \brief Retrieve the template arguments provided as part of this
2485  /// template-id.
2486  const TemplateArgumentLoc *getTemplateArgs() const {
2487    return getExplicitTemplateArgs().getTemplateArgs();
2488  }
2489
2490  /// \brief Retrieve the number of template arguments provided as part of this
2491  /// template-id.
2492  unsigned getNumTemplateArgs() const {
2493    return getExplicitTemplateArgs().NumTemplateArgs;
2494  }
2495
2496  /// \brief Retrieve the location of the right angle bracket following the
2497  /// template arguments ('>').
2498  SourceLocation getRAngleLoc() const {
2499    return getExplicitTemplateArgs().RAngleLoc;
2500  }
2501
2502  SourceRange getSourceRange() const {
2503    SourceRange Range;
2504    if (!isImplicitAccess())
2505      Range.setBegin(Base->getSourceRange().getBegin());
2506    else if (getQualifier())
2507      Range.setBegin(getQualifierLoc().getBeginLoc());
2508    else
2509      Range.setBegin(MemberNameInfo.getBeginLoc());
2510
2511    if (hasExplicitTemplateArgs())
2512      Range.setEnd(getRAngleLoc());
2513    else
2514      Range.setEnd(MemberNameInfo.getEndLoc());
2515    return Range;
2516  }
2517
2518  static bool classof(const Stmt *T) {
2519    return T->getStmtClass() == CXXDependentScopeMemberExprClass;
2520  }
2521  static bool classof(const CXXDependentScopeMemberExpr *) { return true; }
2522
2523  // Iterators
2524  child_range children() {
2525    if (isImplicitAccess()) return child_range();
2526    return child_range(&Base, &Base + 1);
2527  }
2528
2529  friend class ASTStmtReader;
2530  friend class ASTStmtWriter;
2531};
2532
2533/// \brief Represents a C++ member access expression for which lookup
2534/// produced a set of overloaded functions.
2535///
2536/// The member access may be explicit or implicit:
2537///    struct A {
2538///      int a, b;
2539///      int explicitAccess() { return this->a + this->A::b; }
2540///      int implicitAccess() { return a + A::b; }
2541///    };
2542///
2543/// In the final AST, an explicit access always becomes a MemberExpr.
2544/// An implicit access may become either a MemberExpr or a
2545/// DeclRefExpr, depending on whether the member is static.
2546class UnresolvedMemberExpr : public OverloadExpr {
2547  /// \brief Whether this member expression used the '->' operator or
2548  /// the '.' operator.
2549  bool IsArrow : 1;
2550
2551  /// \brief Whether the lookup results contain an unresolved using
2552  /// declaration.
2553  bool HasUnresolvedUsing : 1;
2554
2555  /// \brief The expression for the base pointer or class reference,
2556  /// e.g., the \c x in x.f.  This can be null if this is an 'unbased'
2557  /// member expression
2558  Stmt *Base;
2559
2560  /// \brief The type of the base expression;  never null.
2561  QualType BaseType;
2562
2563  /// \brief The location of the '->' or '.' operator.
2564  SourceLocation OperatorLoc;
2565
2566  UnresolvedMemberExpr(ASTContext &C, bool HasUnresolvedUsing,
2567                       Expr *Base, QualType BaseType, bool IsArrow,
2568                       SourceLocation OperatorLoc,
2569                       NestedNameSpecifierLoc QualifierLoc,
2570                       const DeclarationNameInfo &MemberNameInfo,
2571                       const TemplateArgumentListInfo *TemplateArgs,
2572                       UnresolvedSetIterator Begin, UnresolvedSetIterator End);
2573
2574  UnresolvedMemberExpr(EmptyShell Empty)
2575    : OverloadExpr(UnresolvedMemberExprClass, Empty), IsArrow(false),
2576      HasUnresolvedUsing(false), Base(0) { }
2577
2578  friend class ASTStmtReader;
2579
2580public:
2581  static UnresolvedMemberExpr *
2582  Create(ASTContext &C, bool HasUnresolvedUsing,
2583         Expr *Base, QualType BaseType, bool IsArrow,
2584         SourceLocation OperatorLoc,
2585         NestedNameSpecifierLoc QualifierLoc,
2586         const DeclarationNameInfo &MemberNameInfo,
2587         const TemplateArgumentListInfo *TemplateArgs,
2588         UnresolvedSetIterator Begin, UnresolvedSetIterator End);
2589
2590  static UnresolvedMemberExpr *
2591  CreateEmpty(ASTContext &C, bool HasExplicitTemplateArgs,
2592              unsigned NumTemplateArgs);
2593
2594  /// \brief True if this is an implicit access, i.e. one in which the
2595  /// member being accessed was not written in the source.  The source
2596  /// location of the operator is invalid in this case.
2597  bool isImplicitAccess() const;
2598
2599  /// \brief Retrieve the base object of this member expressions,
2600  /// e.g., the \c x in \c x.m.
2601  Expr *getBase() {
2602    assert(!isImplicitAccess());
2603    return cast<Expr>(Base);
2604  }
2605  const Expr *getBase() const {
2606    assert(!isImplicitAccess());
2607    return cast<Expr>(Base);
2608  }
2609
2610  QualType getBaseType() const { return BaseType; }
2611
2612  /// \brief Determine whether the lookup results contain an unresolved using
2613  /// declaration.
2614  bool hasUnresolvedUsing() const { return HasUnresolvedUsing; }
2615
2616  /// \brief Determine whether this member expression used the '->'
2617  /// operator; otherwise, it used the '.' operator.
2618  bool isArrow() const { return IsArrow; }
2619
2620  /// \brief Retrieve the location of the '->' or '.' operator.
2621  SourceLocation getOperatorLoc() const { return OperatorLoc; }
2622
2623  /// \brief Retrieves the naming class of this lookup.
2624  CXXRecordDecl *getNamingClass() const;
2625
2626  /// \brief Retrieve the full name info for the member that this expression
2627  /// refers to.
2628  const DeclarationNameInfo &getMemberNameInfo() const { return getNameInfo(); }
2629
2630  /// \brief Retrieve the name of the member that this expression
2631  /// refers to.
2632  DeclarationName getMemberName() const { return getName(); }
2633
2634  // \brief Retrieve the location of the name of the member that this
2635  // expression refers to.
2636  SourceLocation getMemberLoc() const { return getNameLoc(); }
2637
2638  /// \brief Retrieve the explicit template argument list that followed the
2639  /// member template name.
2640  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
2641    assert(hasExplicitTemplateArgs());
2642    return *reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
2643  }
2644
2645  /// \brief Retrieve the explicit template argument list that followed the
2646  /// member template name, if any.
2647  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
2648    assert(hasExplicitTemplateArgs());
2649    return *reinterpret_cast<const ExplicitTemplateArgumentList *>(this + 1);
2650  }
2651
2652  /// \brief Retrieves the optional explicit template arguments.
2653  /// This points to the same data as getExplicitTemplateArgs(), but
2654  /// returns null if there are no explicit template arguments.
2655  const ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() {
2656    if (!hasExplicitTemplateArgs()) return 0;
2657    return &getExplicitTemplateArgs();
2658  }
2659
2660  /// \brief Copies the template arguments into the given structure.
2661  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2662    getExplicitTemplateArgs().copyInto(List);
2663  }
2664
2665  /// \brief Retrieve the location of the left angle bracket following
2666  /// the member name ('<').
2667  SourceLocation getLAngleLoc() const {
2668    return getExplicitTemplateArgs().LAngleLoc;
2669  }
2670
2671  /// \brief Retrieve the template arguments provided as part of this
2672  /// template-id.
2673  const TemplateArgumentLoc *getTemplateArgs() const {
2674    return getExplicitTemplateArgs().getTemplateArgs();
2675  }
2676
2677  /// \brief Retrieve the number of template arguments provided as
2678  /// part of this template-id.
2679  unsigned getNumTemplateArgs() const {
2680    return getExplicitTemplateArgs().NumTemplateArgs;
2681  }
2682
2683  /// \brief Retrieve the location of the right angle bracket
2684  /// following the template arguments ('>').
2685  SourceLocation getRAngleLoc() const {
2686    return getExplicitTemplateArgs().RAngleLoc;
2687  }
2688
2689  SourceRange getSourceRange() const {
2690    SourceRange Range = getMemberNameInfo().getSourceRange();
2691    if (!isImplicitAccess())
2692      Range.setBegin(Base->getSourceRange().getBegin());
2693    else if (getQualifierLoc())
2694      Range.setBegin(getQualifierLoc().getBeginLoc());
2695
2696    if (hasExplicitTemplateArgs())
2697      Range.setEnd(getRAngleLoc());
2698    return Range;
2699  }
2700
2701  static bool classof(const Stmt *T) {
2702    return T->getStmtClass() == UnresolvedMemberExprClass;
2703  }
2704  static bool classof(const UnresolvedMemberExpr *) { return true; }
2705
2706  // Iterators
2707  child_range children() {
2708    if (isImplicitAccess()) return child_range();
2709    return child_range(&Base, &Base + 1);
2710  }
2711};
2712
2713/// \brief Represents a C++0x noexcept expression (C++ [expr.unary.noexcept]).
2714///
2715/// The noexcept expression tests whether a given expression might throw. Its
2716/// result is a boolean constant.
2717class CXXNoexceptExpr : public Expr {
2718  bool Value : 1;
2719  Stmt *Operand;
2720  SourceRange Range;
2721
2722  friend class ASTStmtReader;
2723
2724public:
2725  CXXNoexceptExpr(QualType Ty, Expr *Operand, CanThrowResult Val,
2726                  SourceLocation Keyword, SourceLocation RParen)
2727    : Expr(CXXNoexceptExprClass, Ty, VK_RValue, OK_Ordinary,
2728           /*TypeDependent*/false,
2729           /*ValueDependent*/Val == CT_Dependent,
2730           Operand->containsUnexpandedParameterPack()),
2731      Value(Val == CT_Cannot), Operand(Operand), Range(Keyword, RParen)
2732  { }
2733
2734  CXXNoexceptExpr(EmptyShell Empty)
2735    : Expr(CXXNoexceptExprClass, Empty)
2736  { }
2737
2738  Expr *getOperand() const { return static_cast<Expr*>(Operand); }
2739
2740  SourceRange getSourceRange() const { return Range; }
2741
2742  bool getValue() const { return Value; }
2743
2744  static bool classof(const Stmt *T) {
2745    return T->getStmtClass() == CXXNoexceptExprClass;
2746  }
2747  static bool classof(const CXXNoexceptExpr *) { return true; }
2748
2749  // Iterators
2750  child_range children() { return child_range(&Operand, &Operand + 1); }
2751};
2752
2753/// \brief Represents a C++0x pack expansion that produces a sequence of
2754/// expressions.
2755///
2756/// A pack expansion expression contains a pattern (which itself is an
2757/// expression) followed by an ellipsis. For example:
2758///
2759/// \code
2760/// template<typename F, typename ...Types>
2761/// void forward(F f, Types &&...args) {
2762///   f(static_cast<Types&&>(args)...);
2763/// }
2764/// \endcode
2765///
2766/// Here, the argument to the function object \c f is a pack expansion whose
2767/// pattern is \c static_cast<Types&&>(args). When the \c forward function
2768/// template is instantiated, the pack expansion will instantiate to zero or
2769/// or more function arguments to the function object \c f.
2770class PackExpansionExpr : public Expr {
2771  SourceLocation EllipsisLoc;
2772
2773  /// \brief The number of expansions that will be produced by this pack
2774  /// expansion expression, if known.
2775  ///
2776  /// When zero, the number of expansions is not known. Otherwise, this value
2777  /// is the number of expansions + 1.
2778  unsigned NumExpansions;
2779
2780  Stmt *Pattern;
2781
2782  friend class ASTStmtReader;
2783  friend class ASTStmtWriter;
2784
2785public:
2786  PackExpansionExpr(QualType T, Expr *Pattern, SourceLocation EllipsisLoc,
2787                    llvm::Optional<unsigned> NumExpansions)
2788    : Expr(PackExpansionExprClass, T, Pattern->getValueKind(),
2789           Pattern->getObjectKind(), /*TypeDependent=*/true,
2790           /*ValueDependent=*/true, /*ContainsUnexpandedParameterPack=*/false),
2791      EllipsisLoc(EllipsisLoc),
2792      NumExpansions(NumExpansions? *NumExpansions + 1 : 0),
2793      Pattern(Pattern) { }
2794
2795  PackExpansionExpr(EmptyShell Empty) : Expr(PackExpansionExprClass, Empty) { }
2796
2797  /// \brief Retrieve the pattern of the pack expansion.
2798  Expr *getPattern() { return reinterpret_cast<Expr *>(Pattern); }
2799
2800  /// \brief Retrieve the pattern of the pack expansion.
2801  const Expr *getPattern() const { return reinterpret_cast<Expr *>(Pattern); }
2802
2803  /// \brief Retrieve the location of the ellipsis that describes this pack
2804  /// expansion.
2805  SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
2806
2807  /// \brief Determine the number of expansions that will be produced when
2808  /// this pack expansion is instantiated, if already known.
2809  llvm::Optional<unsigned> getNumExpansions() const {
2810    if (NumExpansions)
2811      return NumExpansions - 1;
2812
2813    return llvm::Optional<unsigned>();
2814  }
2815
2816  SourceRange getSourceRange() const {
2817    return SourceRange(Pattern->getLocStart(), EllipsisLoc);
2818  }
2819
2820  static bool classof(const Stmt *T) {
2821    return T->getStmtClass() == PackExpansionExprClass;
2822  }
2823  static bool classof(const PackExpansionExpr *) { return true; }
2824
2825  // Iterators
2826  child_range children() {
2827    return child_range(&Pattern, &Pattern + 1);
2828  }
2829};
2830
2831inline ExplicitTemplateArgumentList &OverloadExpr::getExplicitTemplateArgs() {
2832  if (isa<UnresolvedLookupExpr>(this))
2833    return cast<UnresolvedLookupExpr>(this)->getExplicitTemplateArgs();
2834  else
2835    return cast<UnresolvedMemberExpr>(this)->getExplicitTemplateArgs();
2836}
2837
2838/// \brief Represents an expression that computes the length of a parameter
2839/// pack.
2840///
2841/// \code
2842/// template<typename ...Types>
2843/// struct count {
2844///   static const unsigned value = sizeof...(Types);
2845/// };
2846/// \endcode
2847class SizeOfPackExpr : public Expr {
2848  /// \brief The location of the 'sizeof' keyword.
2849  SourceLocation OperatorLoc;
2850
2851  /// \brief The location of the name of the parameter pack.
2852  SourceLocation PackLoc;
2853
2854  /// \brief The location of the closing parenthesis.
2855  SourceLocation RParenLoc;
2856
2857  /// \brief The length of the parameter pack, if known.
2858  ///
2859  /// When this expression is value-dependent, the length of the parameter pack
2860  /// is unknown. When this expression is not value-dependent, the length is
2861  /// known.
2862  unsigned Length;
2863
2864  /// \brief The parameter pack itself.
2865  NamedDecl *Pack;
2866
2867  friend class ASTStmtReader;
2868  friend class ASTStmtWriter;
2869
2870public:
2871  /// \brief Creates a value-dependent expression that computes the length of
2872  /// the given parameter pack.
2873  SizeOfPackExpr(QualType SizeType, SourceLocation OperatorLoc, NamedDecl *Pack,
2874                 SourceLocation PackLoc, SourceLocation RParenLoc)
2875    : Expr(SizeOfPackExprClass, SizeType, VK_RValue, OK_Ordinary,
2876           /*TypeDependent=*/false, /*ValueDependent=*/true,
2877           /*ContainsUnexpandedParameterPack=*/false),
2878      OperatorLoc(OperatorLoc), PackLoc(PackLoc), RParenLoc(RParenLoc),
2879      Length(0), Pack(Pack) { }
2880
2881  /// \brief Creates an expression that computes the length of
2882  /// the given parameter pack, which is already known.
2883  SizeOfPackExpr(QualType SizeType, SourceLocation OperatorLoc, NamedDecl *Pack,
2884                 SourceLocation PackLoc, SourceLocation RParenLoc,
2885                 unsigned Length)
2886  : Expr(SizeOfPackExprClass, SizeType, VK_RValue, OK_Ordinary,
2887         /*TypeDependent=*/false, /*ValueDependent=*/false,
2888         /*ContainsUnexpandedParameterPack=*/false),
2889    OperatorLoc(OperatorLoc), PackLoc(PackLoc), RParenLoc(RParenLoc),
2890    Length(Length), Pack(Pack) { }
2891
2892  /// \brief Create an empty expression.
2893  SizeOfPackExpr(EmptyShell Empty) : Expr(SizeOfPackExprClass, Empty) { }
2894
2895  /// \brief Determine the location of the 'sizeof' keyword.
2896  SourceLocation getOperatorLoc() const { return OperatorLoc; }
2897
2898  /// \brief Determine the location of the parameter pack.
2899  SourceLocation getPackLoc() const { return PackLoc; }
2900
2901  /// \brief Determine the location of the right parenthesis.
2902  SourceLocation getRParenLoc() const { return RParenLoc; }
2903
2904  /// \brief Retrieve the parameter pack.
2905  NamedDecl *getPack() const { return Pack; }
2906
2907  /// \brief Retrieve the length of the parameter pack.
2908  ///
2909  /// This routine may only be invoked when the expression is not
2910  /// value-dependent.
2911  unsigned getPackLength() const {
2912    assert(!isValueDependent() &&
2913           "Cannot get the length of a value-dependent pack size expression");
2914    return Length;
2915  }
2916
2917  SourceRange getSourceRange() const {
2918    return SourceRange(OperatorLoc, RParenLoc);
2919  }
2920
2921  static bool classof(const Stmt *T) {
2922    return T->getStmtClass() == SizeOfPackExprClass;
2923  }
2924  static bool classof(const SizeOfPackExpr *) { return true; }
2925
2926  // Iterators
2927  child_range children() { return child_range(); }
2928};
2929
2930/// \brief Represents a reference to a non-type template parameter pack that
2931/// has been substituted with a non-template argument pack.
2932///
2933/// When a pack expansion in the source code contains multiple parameter packs
2934/// and those parameter packs correspond to different levels of template
2935/// parameter lists, this node node is used to represent a non-type template
2936/// parameter pack from an outer level, which has already had its argument pack
2937/// substituted but that still lives within a pack expansion that itself
2938/// could not be instantiated. When actually performing a substitution into
2939/// that pack expansion (e.g., when all template parameters have corresponding
2940/// arguments), this type will be replaced with the appropriate underlying
2941/// expression at the current pack substitution index.
2942class SubstNonTypeTemplateParmPackExpr : public Expr {
2943  /// \brief The non-type template parameter pack itself.
2944  NonTypeTemplateParmDecl *Param;
2945
2946  /// \brief A pointer to the set of template arguments that this
2947  /// parameter pack is instantiated with.
2948  const TemplateArgument *Arguments;
2949
2950  /// \brief The number of template arguments in \c Arguments.
2951  unsigned NumArguments;
2952
2953  /// \brief The location of the non-type template parameter pack reference.
2954  SourceLocation NameLoc;
2955
2956  friend class ASTStmtReader;
2957  friend class ASTStmtWriter;
2958
2959public:
2960  SubstNonTypeTemplateParmPackExpr(QualType T,
2961                                   NonTypeTemplateParmDecl *Param,
2962                                   SourceLocation NameLoc,
2963                                   const TemplateArgument &ArgPack);
2964
2965  SubstNonTypeTemplateParmPackExpr(EmptyShell Empty)
2966    : Expr(SubstNonTypeTemplateParmPackExprClass, Empty) { }
2967
2968  /// \brief Retrieve the non-type template parameter pack being substituted.
2969  NonTypeTemplateParmDecl *getParameterPack() const { return Param; }
2970
2971  /// \brief Retrieve the location of the parameter pack name.
2972  SourceLocation getParameterPackLocation() const { return NameLoc; }
2973
2974  /// \brief Retrieve the template argument pack containing the substituted
2975  /// template arguments.
2976  TemplateArgument getArgumentPack() const;
2977
2978  SourceRange getSourceRange() const { return NameLoc; }
2979
2980  static bool classof(const Stmt *T) {
2981    return T->getStmtClass() == SubstNonTypeTemplateParmPackExprClass;
2982  }
2983  static bool classof(const SubstNonTypeTemplateParmPackExpr *) {
2984    return true;
2985  }
2986
2987  // Iterators
2988  child_range children() { return child_range(); }
2989};
2990
2991}  // end namespace clang
2992
2993#endif
2994