ExprCXX.h revision 0cf3c0eecbff007cea2750c113894b47d9e09f33
1//===--- ExprCXX.h - Classes for representing expressions -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses for C++ expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPRCXX_H
15#define LLVM_CLANG_AST_EXPRCXX_H
16
17#include "clang/AST/Expr.h"
18#include "clang/AST/UnresolvedSet.h"
19#include "clang/AST/TemplateBase.h"
20#include "clang/Basic/ExpressionTraits.h"
21#include "clang/Basic/Lambda.h"
22#include "clang/Basic/TypeTraits.h"
23#include "llvm/Support/Compiler.h"
24
25namespace clang {
26
27class CXXConstructorDecl;
28class CXXDestructorDecl;
29class CXXMethodDecl;
30class CXXTemporary;
31class TemplateArgumentListInfo;
32
33//===--------------------------------------------------------------------===//
34// C++ Expressions.
35//===--------------------------------------------------------------------===//
36
37/// \brief A call to an overloaded operator written using operator
38/// syntax.
39///
40/// Represents a call to an overloaded operator written using operator
41/// syntax, e.g., "x + y" or "*p". While semantically equivalent to a
42/// normal call, this AST node provides better information about the
43/// syntactic representation of the call.
44///
45/// In a C++ template, this expression node kind will be used whenever
46/// any of the arguments are type-dependent. In this case, the
47/// function itself will be a (possibly empty) set of functions and
48/// function templates that were found by name lookup at template
49/// definition time.
50class CXXOperatorCallExpr : public CallExpr {
51  /// \brief The overloaded operator.
52  OverloadedOperatorKind Operator;
53  SourceRange Range;
54
55  SourceRange getSourceRangeImpl() const LLVM_READONLY;
56public:
57  CXXOperatorCallExpr(ASTContext& C, OverloadedOperatorKind Op, Expr *fn,
58                      Expr **args, unsigned numargs, QualType t,
59                      ExprValueKind VK, SourceLocation operatorloc)
60    : CallExpr(C, CXXOperatorCallExprClass, fn, 0, args, numargs, t, VK,
61               operatorloc),
62      Operator(Op) {
63    Range = getSourceRangeImpl();
64  }
65  explicit CXXOperatorCallExpr(ASTContext& C, EmptyShell Empty) :
66    CallExpr(C, CXXOperatorCallExprClass, Empty) { }
67
68
69  /// getOperator - Returns the kind of overloaded operator that this
70  /// expression refers to.
71  OverloadedOperatorKind getOperator() const { return Operator; }
72
73  /// getOperatorLoc - Returns the location of the operator symbol in
74  /// the expression. When @c getOperator()==OO_Call, this is the
75  /// location of the right parentheses; when @c
76  /// getOperator()==OO_Subscript, this is the location of the right
77  /// bracket.
78  SourceLocation getOperatorLoc() const { return getRParenLoc(); }
79
80  SourceRange getSourceRange() const { return Range; }
81
82  static bool classof(const Stmt *T) {
83    return T->getStmtClass() == CXXOperatorCallExprClass;
84  }
85  static bool classof(const CXXOperatorCallExpr *) { return true; }
86
87  friend class ASTStmtReader;
88  friend class ASTStmtWriter;
89};
90
91/// CXXMemberCallExpr - Represents a call to a member function that
92/// may be written either with member call syntax (e.g., "obj.func()"
93/// or "objptr->func()") or with normal function-call syntax
94/// ("func()") within a member function that ends up calling a member
95/// function. The callee in either case is a MemberExpr that contains
96/// both the object argument and the member function, while the
97/// arguments are the arguments within the parentheses (not including
98/// the object argument).
99class CXXMemberCallExpr : public CallExpr {
100public:
101  CXXMemberCallExpr(ASTContext &C, Expr *fn, Expr **args, unsigned numargs,
102                    QualType t, ExprValueKind VK, SourceLocation RP)
103    : CallExpr(C, CXXMemberCallExprClass, fn, 0, args, numargs, t, VK, RP) {}
104
105  CXXMemberCallExpr(ASTContext &C, EmptyShell Empty)
106    : CallExpr(C, CXXMemberCallExprClass, Empty) { }
107
108  /// getImplicitObjectArgument - Retrieves the implicit object
109  /// argument for the member call. For example, in "x.f(5)", this
110  /// operation would return "x".
111  Expr *getImplicitObjectArgument() const;
112
113  /// Retrieves the declaration of the called method.
114  CXXMethodDecl *getMethodDecl() const;
115
116  /// getRecordDecl - Retrieves the CXXRecordDecl for the underlying type of
117  /// the implicit object argument. Note that this is may not be the same
118  /// declaration as that of the class context of the CXXMethodDecl which this
119  /// function is calling.
120  /// FIXME: Returns 0 for member pointer call exprs.
121  CXXRecordDecl *getRecordDecl() const;
122
123  static bool classof(const Stmt *T) {
124    return T->getStmtClass() == CXXMemberCallExprClass;
125  }
126  static bool classof(const CXXMemberCallExpr *) { return true; }
127};
128
129/// CUDAKernelCallExpr - Represents a call to a CUDA kernel function.
130class CUDAKernelCallExpr : public CallExpr {
131private:
132  enum { CONFIG, END_PREARG };
133
134public:
135  CUDAKernelCallExpr(ASTContext &C, Expr *fn, CallExpr *Config,
136                     Expr **args, unsigned numargs, QualType t,
137                     ExprValueKind VK, SourceLocation RP)
138    : CallExpr(C, CUDAKernelCallExprClass, fn, END_PREARG, args, numargs, t, VK,
139               RP) {
140    setConfig(Config);
141  }
142
143  CUDAKernelCallExpr(ASTContext &C, EmptyShell Empty)
144    : CallExpr(C, CUDAKernelCallExprClass, END_PREARG, Empty) { }
145
146  const CallExpr *getConfig() const {
147    return cast_or_null<CallExpr>(getPreArg(CONFIG));
148  }
149  CallExpr *getConfig() { return cast_or_null<CallExpr>(getPreArg(CONFIG)); }
150  void setConfig(CallExpr *E) { setPreArg(CONFIG, E); }
151
152  static bool classof(const Stmt *T) {
153    return T->getStmtClass() == CUDAKernelCallExprClass;
154  }
155  static bool classof(const CUDAKernelCallExpr *) { return true; }
156};
157
158/// CXXNamedCastExpr - Abstract class common to all of the C++ "named"
159/// casts, @c static_cast, @c dynamic_cast, @c reinterpret_cast, or @c
160/// const_cast.
161///
162/// This abstract class is inherited by all of the classes
163/// representing "named" casts, e.g., CXXStaticCastExpr,
164/// CXXDynamicCastExpr, CXXReinterpretCastExpr, and CXXConstCastExpr.
165class CXXNamedCastExpr : public ExplicitCastExpr {
166private:
167  SourceLocation Loc; // the location of the casting op
168  SourceLocation RParenLoc; // the location of the right parenthesis
169
170protected:
171  CXXNamedCastExpr(StmtClass SC, QualType ty, ExprValueKind VK,
172                   CastKind kind, Expr *op, unsigned PathSize,
173                   TypeSourceInfo *writtenTy, SourceLocation l,
174                   SourceLocation RParenLoc)
175    : ExplicitCastExpr(SC, ty, VK, kind, op, PathSize, writtenTy), Loc(l),
176      RParenLoc(RParenLoc) {}
177
178  explicit CXXNamedCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
179    : ExplicitCastExpr(SC, Shell, PathSize) { }
180
181  friend class ASTStmtReader;
182
183public:
184  const char *getCastName() const;
185
186  /// \brief Retrieve the location of the cast operator keyword, e.g.,
187  /// "static_cast".
188  SourceLocation getOperatorLoc() const { return Loc; }
189
190  /// \brief Retrieve the location of the closing parenthesis.
191  SourceLocation getRParenLoc() const { return RParenLoc; }
192
193  SourceRange getSourceRange() const LLVM_READONLY {
194    return SourceRange(Loc, RParenLoc);
195  }
196  static bool classof(const Stmt *T) {
197    switch (T->getStmtClass()) {
198    case CXXStaticCastExprClass:
199    case CXXDynamicCastExprClass:
200    case CXXReinterpretCastExprClass:
201    case CXXConstCastExprClass:
202      return true;
203    default:
204      return false;
205    }
206  }
207  static bool classof(const CXXNamedCastExpr *) { return true; }
208};
209
210/// CXXStaticCastExpr - A C++ @c static_cast expression
211/// (C++ [expr.static.cast]).
212///
213/// This expression node represents a C++ static cast, e.g.,
214/// @c static_cast<int>(1.0).
215class CXXStaticCastExpr : public CXXNamedCastExpr {
216  CXXStaticCastExpr(QualType ty, ExprValueKind vk, CastKind kind, Expr *op,
217                    unsigned pathSize, TypeSourceInfo *writtenTy,
218                    SourceLocation l, SourceLocation RParenLoc)
219    : CXXNamedCastExpr(CXXStaticCastExprClass, ty, vk, kind, op, pathSize,
220                       writtenTy, l, RParenLoc) {}
221
222  explicit CXXStaticCastExpr(EmptyShell Empty, unsigned PathSize)
223    : CXXNamedCastExpr(CXXStaticCastExprClass, Empty, PathSize) { }
224
225public:
226  static CXXStaticCastExpr *Create(ASTContext &Context, QualType T,
227                                   ExprValueKind VK, CastKind K, Expr *Op,
228                                   const CXXCastPath *Path,
229                                   TypeSourceInfo *Written, SourceLocation L,
230                                   SourceLocation RParenLoc);
231  static CXXStaticCastExpr *CreateEmpty(ASTContext &Context,
232                                        unsigned PathSize);
233
234  static bool classof(const Stmt *T) {
235    return T->getStmtClass() == CXXStaticCastExprClass;
236  }
237  static bool classof(const CXXStaticCastExpr *) { return true; }
238};
239
240/// CXXDynamicCastExpr - A C++ @c dynamic_cast expression
241/// (C++ [expr.dynamic.cast]), which may perform a run-time check to
242/// determine how to perform the type cast.
243///
244/// This expression node represents a dynamic cast, e.g.,
245/// @c dynamic_cast<Derived*>(BasePtr).
246class CXXDynamicCastExpr : public CXXNamedCastExpr {
247  CXXDynamicCastExpr(QualType ty, ExprValueKind VK, CastKind kind,
248                     Expr *op, unsigned pathSize, TypeSourceInfo *writtenTy,
249                     SourceLocation l, SourceLocation RParenLoc)
250    : CXXNamedCastExpr(CXXDynamicCastExprClass, ty, VK, kind, op, pathSize,
251                       writtenTy, l, RParenLoc) {}
252
253  explicit CXXDynamicCastExpr(EmptyShell Empty, unsigned pathSize)
254    : CXXNamedCastExpr(CXXDynamicCastExprClass, Empty, pathSize) { }
255
256public:
257  static CXXDynamicCastExpr *Create(ASTContext &Context, QualType T,
258                                    ExprValueKind VK, CastKind Kind, Expr *Op,
259                                    const CXXCastPath *Path,
260                                    TypeSourceInfo *Written, SourceLocation L,
261                                    SourceLocation RParenLoc);
262
263  static CXXDynamicCastExpr *CreateEmpty(ASTContext &Context,
264                                         unsigned pathSize);
265
266  bool isAlwaysNull() const;
267
268  static bool classof(const Stmt *T) {
269    return T->getStmtClass() == CXXDynamicCastExprClass;
270  }
271  static bool classof(const CXXDynamicCastExpr *) { return true; }
272};
273
274/// CXXReinterpretCastExpr - A C++ @c reinterpret_cast expression (C++
275/// [expr.reinterpret.cast]), which provides a differently-typed view
276/// of a value but performs no actual work at run time.
277///
278/// This expression node represents a reinterpret cast, e.g.,
279/// @c reinterpret_cast<int>(VoidPtr).
280class CXXReinterpretCastExpr : public CXXNamedCastExpr {
281  CXXReinterpretCastExpr(QualType ty, ExprValueKind vk, CastKind kind,
282                         Expr *op, unsigned pathSize,
283                         TypeSourceInfo *writtenTy, SourceLocation l,
284                         SourceLocation RParenLoc)
285    : CXXNamedCastExpr(CXXReinterpretCastExprClass, ty, vk, kind, op,
286                       pathSize, writtenTy, l, RParenLoc) {}
287
288  CXXReinterpretCastExpr(EmptyShell Empty, unsigned pathSize)
289    : CXXNamedCastExpr(CXXReinterpretCastExprClass, Empty, pathSize) { }
290
291public:
292  static CXXReinterpretCastExpr *Create(ASTContext &Context, QualType T,
293                                        ExprValueKind VK, CastKind Kind,
294                                        Expr *Op, const CXXCastPath *Path,
295                                 TypeSourceInfo *WrittenTy, SourceLocation L,
296                                        SourceLocation RParenLoc);
297  static CXXReinterpretCastExpr *CreateEmpty(ASTContext &Context,
298                                             unsigned pathSize);
299
300  static bool classof(const Stmt *T) {
301    return T->getStmtClass() == CXXReinterpretCastExprClass;
302  }
303  static bool classof(const CXXReinterpretCastExpr *) { return true; }
304};
305
306/// CXXConstCastExpr - A C++ @c const_cast expression (C++ [expr.const.cast]),
307/// which can remove type qualifiers but does not change the underlying value.
308///
309/// This expression node represents a const cast, e.g.,
310/// @c const_cast<char*>(PtrToConstChar).
311class CXXConstCastExpr : public CXXNamedCastExpr {
312  CXXConstCastExpr(QualType ty, ExprValueKind VK, Expr *op,
313                   TypeSourceInfo *writtenTy, SourceLocation l,
314                   SourceLocation RParenLoc)
315    : CXXNamedCastExpr(CXXConstCastExprClass, ty, VK, CK_NoOp, op,
316                       0, writtenTy, l, RParenLoc) {}
317
318  explicit CXXConstCastExpr(EmptyShell Empty)
319    : CXXNamedCastExpr(CXXConstCastExprClass, Empty, 0) { }
320
321public:
322  static CXXConstCastExpr *Create(ASTContext &Context, QualType T,
323                                  ExprValueKind VK, Expr *Op,
324                                  TypeSourceInfo *WrittenTy, SourceLocation L,
325                                  SourceLocation RParenLoc);
326  static CXXConstCastExpr *CreateEmpty(ASTContext &Context);
327
328  static bool classof(const Stmt *T) {
329    return T->getStmtClass() == CXXConstCastExprClass;
330  }
331  static bool classof(const CXXConstCastExpr *) { return true; }
332};
333
334/// UserDefinedLiteral - A call to a literal operator (C++11 [over.literal])
335/// written as a user-defined literal (C++11 [lit.ext]).
336///
337/// Represents a user-defined literal, e.g. "foo"_bar or 1.23_xyz. While this
338/// is semantically equivalent to a normal call, this AST node provides better
339/// information about the syntactic representation of the literal.
340///
341/// Since literal operators are never found by ADL and can only be declared at
342/// namespace scope, a user-defined literal is never dependent.
343class UserDefinedLiteral : public CallExpr {
344  /// \brief The location of a ud-suffix within the literal.
345  SourceLocation UDSuffixLoc;
346
347public:
348  UserDefinedLiteral(ASTContext &C, Expr *Fn, Expr **Args, unsigned NumArgs,
349                     QualType T, ExprValueKind VK, SourceLocation LitEndLoc,
350                     SourceLocation SuffixLoc)
351    : CallExpr(C, UserDefinedLiteralClass, Fn, 0, Args, NumArgs, T, VK,
352               LitEndLoc), UDSuffixLoc(SuffixLoc) {}
353  explicit UserDefinedLiteral(ASTContext &C, EmptyShell Empty)
354    : CallExpr(C, UserDefinedLiteralClass, Empty) {}
355
356  /// The kind of literal operator which is invoked.
357  enum LiteralOperatorKind {
358    LOK_Raw,      ///< Raw form: operator "" X (const char *)
359    LOK_Template, ///< Raw form: operator "" X<cs...> ()
360    LOK_Integer,  ///< operator "" X (unsigned long long)
361    LOK_Floating, ///< operator "" X (long double)
362    LOK_String,   ///< operator "" X (const CharT *, size_t)
363    LOK_Character ///< operator "" X (CharT)
364  };
365
366  /// getLiteralOperatorKind - Returns the kind of literal operator invocation
367  /// which this expression represents.
368  LiteralOperatorKind getLiteralOperatorKind() const;
369
370  /// getCookedLiteral - If this is not a raw user-defined literal, get the
371  /// underlying cooked literal (representing the literal with the suffix
372  /// removed).
373  Expr *getCookedLiteral();
374  const Expr *getCookedLiteral() const {
375    return const_cast<UserDefinedLiteral*>(this)->getCookedLiteral();
376  }
377
378  /// getUDSuffixLoc - Returns the location of a ud-suffix in the expression.
379  /// For a string literal, there may be multiple identical suffixes. This
380  /// returns the first.
381  SourceLocation getUDSuffixLoc() const { return getRParenLoc(); }
382
383  /// getUDSuffix - Returns the ud-suffix specified for this literal.
384  const IdentifierInfo *getUDSuffix() const;
385
386  static bool classof(const Stmt *S) {
387    return S->getStmtClass() == UserDefinedLiteralClass;
388  }
389  static bool classof(const UserDefinedLiteral *) { return true; }
390
391  friend class ASTStmtReader;
392  friend class ASTStmtWriter;
393};
394
395/// CXXBoolLiteralExpr - [C++ 2.13.5] C++ Boolean Literal.
396///
397class CXXBoolLiteralExpr : public Expr {
398  bool Value;
399  SourceLocation Loc;
400public:
401  CXXBoolLiteralExpr(bool val, QualType Ty, SourceLocation l) :
402    Expr(CXXBoolLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
403         false, false),
404    Value(val), Loc(l) {}
405
406  explicit CXXBoolLiteralExpr(EmptyShell Empty)
407    : Expr(CXXBoolLiteralExprClass, Empty) { }
408
409  bool getValue() const { return Value; }
410  void setValue(bool V) { Value = V; }
411
412  SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(Loc); }
413
414  SourceLocation getLocation() const { return Loc; }
415  void setLocation(SourceLocation L) { Loc = L; }
416
417  static bool classof(const Stmt *T) {
418    return T->getStmtClass() == CXXBoolLiteralExprClass;
419  }
420  static bool classof(const CXXBoolLiteralExpr *) { return true; }
421
422  // Iterators
423  child_range children() { return child_range(); }
424};
425
426/// CXXNullPtrLiteralExpr - [C++0x 2.14.7] C++ Pointer Literal
427class CXXNullPtrLiteralExpr : public Expr {
428  SourceLocation Loc;
429public:
430  CXXNullPtrLiteralExpr(QualType Ty, SourceLocation l) :
431    Expr(CXXNullPtrLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
432         false, false),
433    Loc(l) {}
434
435  explicit CXXNullPtrLiteralExpr(EmptyShell Empty)
436    : Expr(CXXNullPtrLiteralExprClass, Empty) { }
437
438  SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(Loc); }
439
440  SourceLocation getLocation() const { return Loc; }
441  void setLocation(SourceLocation L) { Loc = L; }
442
443  static bool classof(const Stmt *T) {
444    return T->getStmtClass() == CXXNullPtrLiteralExprClass;
445  }
446  static bool classof(const CXXNullPtrLiteralExpr *) { return true; }
447
448  child_range children() { return child_range(); }
449};
450
451/// CXXTypeidExpr - A C++ @c typeid expression (C++ [expr.typeid]), which gets
452/// the type_info that corresponds to the supplied type, or the (possibly
453/// dynamic) type of the supplied expression.
454///
455/// This represents code like @c typeid(int) or @c typeid(*objPtr)
456class CXXTypeidExpr : public Expr {
457private:
458  llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
459  SourceRange Range;
460
461public:
462  CXXTypeidExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
463    : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
464           // typeid is never type-dependent (C++ [temp.dep.expr]p4)
465           false,
466           // typeid is value-dependent if the type or expression are dependent
467           Operand->getType()->isDependentType(),
468           Operand->getType()->isInstantiationDependentType(),
469           Operand->getType()->containsUnexpandedParameterPack()),
470      Operand(Operand), Range(R) { }
471
472  CXXTypeidExpr(QualType Ty, Expr *Operand, SourceRange R)
473    : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
474        // typeid is never type-dependent (C++ [temp.dep.expr]p4)
475           false,
476        // typeid is value-dependent if the type or expression are dependent
477           Operand->isTypeDependent() || Operand->isValueDependent(),
478           Operand->isInstantiationDependent(),
479           Operand->containsUnexpandedParameterPack()),
480      Operand(Operand), Range(R) { }
481
482  CXXTypeidExpr(EmptyShell Empty, bool isExpr)
483    : Expr(CXXTypeidExprClass, Empty) {
484    if (isExpr)
485      Operand = (Expr*)0;
486    else
487      Operand = (TypeSourceInfo*)0;
488  }
489
490  bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
491
492  /// \brief Retrieves the type operand of this typeid() expression after
493  /// various required adjustments (removing reference types, cv-qualifiers).
494  QualType getTypeOperand() const;
495
496  /// \brief Retrieve source information for the type operand.
497  TypeSourceInfo *getTypeOperandSourceInfo() const {
498    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
499    return Operand.get<TypeSourceInfo *>();
500  }
501
502  void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
503    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
504    Operand = TSI;
505  }
506
507  Expr *getExprOperand() const {
508    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
509    return static_cast<Expr*>(Operand.get<Stmt *>());
510  }
511
512  void setExprOperand(Expr *E) {
513    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
514    Operand = E;
515  }
516
517  SourceRange getSourceRange() const LLVM_READONLY { return Range; }
518  void setSourceRange(SourceRange R) { Range = R; }
519
520  static bool classof(const Stmt *T) {
521    return T->getStmtClass() == CXXTypeidExprClass;
522  }
523  static bool classof(const CXXTypeidExpr *) { return true; }
524
525  // Iterators
526  child_range children() {
527    if (isTypeOperand()) return child_range();
528    Stmt **begin = reinterpret_cast<Stmt**>(&Operand);
529    return child_range(begin, begin + 1);
530  }
531};
532
533/// CXXUuidofExpr - A microsoft C++ @c __uuidof expression, which gets
534/// the _GUID that corresponds to the supplied type or expression.
535///
536/// This represents code like @c __uuidof(COMTYPE) or @c __uuidof(*comPtr)
537class CXXUuidofExpr : public Expr {
538private:
539  llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
540  SourceRange Range;
541
542public:
543  CXXUuidofExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
544    : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary,
545           false, Operand->getType()->isDependentType(),
546           Operand->getType()->isInstantiationDependentType(),
547           Operand->getType()->containsUnexpandedParameterPack()),
548      Operand(Operand), Range(R) { }
549
550  CXXUuidofExpr(QualType Ty, Expr *Operand, SourceRange R)
551    : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary,
552           false, Operand->isTypeDependent(),
553           Operand->isInstantiationDependent(),
554           Operand->containsUnexpandedParameterPack()),
555      Operand(Operand), Range(R) { }
556
557  CXXUuidofExpr(EmptyShell Empty, bool isExpr)
558    : Expr(CXXUuidofExprClass, Empty) {
559    if (isExpr)
560      Operand = (Expr*)0;
561    else
562      Operand = (TypeSourceInfo*)0;
563  }
564
565  bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
566
567  /// \brief Retrieves the type operand of this __uuidof() expression after
568  /// various required adjustments (removing reference types, cv-qualifiers).
569  QualType getTypeOperand() const;
570
571  /// \brief Retrieve source information for the type operand.
572  TypeSourceInfo *getTypeOperandSourceInfo() const {
573    assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
574    return Operand.get<TypeSourceInfo *>();
575  }
576
577  void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
578    assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
579    Operand = TSI;
580  }
581
582  Expr *getExprOperand() const {
583    assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
584    return static_cast<Expr*>(Operand.get<Stmt *>());
585  }
586
587  void setExprOperand(Expr *E) {
588    assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
589    Operand = E;
590  }
591
592  SourceRange getSourceRange() const LLVM_READONLY { return Range; }
593  void setSourceRange(SourceRange R) { Range = R; }
594
595  static bool classof(const Stmt *T) {
596    return T->getStmtClass() == CXXUuidofExprClass;
597  }
598  static bool classof(const CXXUuidofExpr *) { return true; }
599
600  // Iterators
601  child_range children() {
602    if (isTypeOperand()) return child_range();
603    Stmt **begin = reinterpret_cast<Stmt**>(&Operand);
604    return child_range(begin, begin + 1);
605  }
606};
607
608/// CXXThisExpr - Represents the "this" expression in C++, which is a
609/// pointer to the object on which the current member function is
610/// executing (C++ [expr.prim]p3). Example:
611///
612/// @code
613/// class Foo {
614/// public:
615///   void bar();
616///   void test() { this->bar(); }
617/// };
618/// @endcode
619class CXXThisExpr : public Expr {
620  SourceLocation Loc;
621  bool Implicit : 1;
622
623public:
624  CXXThisExpr(SourceLocation L, QualType Type, bool isImplicit)
625    : Expr(CXXThisExprClass, Type, VK_RValue, OK_Ordinary,
626           // 'this' is type-dependent if the class type of the enclosing
627           // member function is dependent (C++ [temp.dep.expr]p2)
628           Type->isDependentType(), Type->isDependentType(),
629           Type->isInstantiationDependentType(),
630           /*ContainsUnexpandedParameterPack=*/false),
631      Loc(L), Implicit(isImplicit) { }
632
633  CXXThisExpr(EmptyShell Empty) : Expr(CXXThisExprClass, Empty) {}
634
635  SourceLocation getLocation() const { return Loc; }
636  void setLocation(SourceLocation L) { Loc = L; }
637
638  SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(Loc); }
639
640  bool isImplicit() const { return Implicit; }
641  void setImplicit(bool I) { Implicit = I; }
642
643  static bool classof(const Stmt *T) {
644    return T->getStmtClass() == CXXThisExprClass;
645  }
646  static bool classof(const CXXThisExpr *) { return true; }
647
648  // Iterators
649  child_range children() { return child_range(); }
650};
651
652///  CXXThrowExpr - [C++ 15] C++ Throw Expression.  This handles
653///  'throw' and 'throw' assignment-expression.  When
654///  assignment-expression isn't present, Op will be null.
655///
656class CXXThrowExpr : public Expr {
657  Stmt *Op;
658  SourceLocation ThrowLoc;
659  /// \brief Whether the thrown variable (if any) is in scope.
660  unsigned IsThrownVariableInScope : 1;
661
662  friend class ASTStmtReader;
663
664public:
665  // Ty is the void type which is used as the result type of the
666  // exepression.  The l is the location of the throw keyword.  expr
667  // can by null, if the optional expression to throw isn't present.
668  CXXThrowExpr(Expr *expr, QualType Ty, SourceLocation l,
669               bool IsThrownVariableInScope) :
670    Expr(CXXThrowExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
671         expr && expr->isInstantiationDependent(),
672         expr && expr->containsUnexpandedParameterPack()),
673    Op(expr), ThrowLoc(l), IsThrownVariableInScope(IsThrownVariableInScope) {}
674  CXXThrowExpr(EmptyShell Empty) : Expr(CXXThrowExprClass, Empty) {}
675
676  const Expr *getSubExpr() const { return cast_or_null<Expr>(Op); }
677  Expr *getSubExpr() { return cast_or_null<Expr>(Op); }
678
679  SourceLocation getThrowLoc() const { return ThrowLoc; }
680
681  /// \brief Determines whether the variable thrown by this expression (if any!)
682  /// is within the innermost try block.
683  ///
684  /// This information is required to determine whether the NRVO can apply to
685  /// this variable.
686  bool isThrownVariableInScope() const { return IsThrownVariableInScope; }
687
688  SourceRange getSourceRange() const LLVM_READONLY {
689    if (getSubExpr() == 0)
690      return SourceRange(ThrowLoc, ThrowLoc);
691    return SourceRange(ThrowLoc, getSubExpr()->getSourceRange().getEnd());
692  }
693
694  static bool classof(const Stmt *T) {
695    return T->getStmtClass() == CXXThrowExprClass;
696  }
697  static bool classof(const CXXThrowExpr *) { return true; }
698
699  // Iterators
700  child_range children() {
701    return child_range(&Op, Op ? &Op+1 : &Op);
702  }
703};
704
705/// CXXDefaultArgExpr - C++ [dcl.fct.default]. This wraps up a
706/// function call argument that was created from the corresponding
707/// parameter's default argument, when the call did not explicitly
708/// supply arguments for all of the parameters.
709class CXXDefaultArgExpr : public Expr {
710  /// \brief The parameter whose default is being used.
711  ///
712  /// When the bit is set, the subexpression is stored after the
713  /// CXXDefaultArgExpr itself. When the bit is clear, the parameter's
714  /// actual default expression is the subexpression.
715  llvm::PointerIntPair<ParmVarDecl *, 1, bool> Param;
716
717  /// \brief The location where the default argument expression was used.
718  SourceLocation Loc;
719
720  CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param)
721    : Expr(SC,
722           param->hasUnparsedDefaultArg()
723             ? param->getType().getNonReferenceType()
724             : param->getDefaultArg()->getType(),
725           param->getDefaultArg()->getValueKind(),
726           param->getDefaultArg()->getObjectKind(), false, false, false, false),
727      Param(param, false), Loc(Loc) { }
728
729  CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param,
730                    Expr *SubExpr)
731    : Expr(SC, SubExpr->getType(),
732           SubExpr->getValueKind(), SubExpr->getObjectKind(),
733           false, false, false, false),
734      Param(param, true), Loc(Loc) {
735    *reinterpret_cast<Expr **>(this + 1) = SubExpr;
736  }
737
738public:
739  CXXDefaultArgExpr(EmptyShell Empty) : Expr(CXXDefaultArgExprClass, Empty) {}
740
741
742  // Param is the parameter whose default argument is used by this
743  // expression.
744  static CXXDefaultArgExpr *Create(ASTContext &C, SourceLocation Loc,
745                                   ParmVarDecl *Param) {
746    return new (C) CXXDefaultArgExpr(CXXDefaultArgExprClass, Loc, Param);
747  }
748
749  // Param is the parameter whose default argument is used by this
750  // expression, and SubExpr is the expression that will actually be used.
751  static CXXDefaultArgExpr *Create(ASTContext &C,
752                                   SourceLocation Loc,
753                                   ParmVarDecl *Param,
754                                   Expr *SubExpr);
755
756  // Retrieve the parameter that the argument was created from.
757  const ParmVarDecl *getParam() const { return Param.getPointer(); }
758  ParmVarDecl *getParam() { return Param.getPointer(); }
759
760  // Retrieve the actual argument to the function call.
761  const Expr *getExpr() const {
762    if (Param.getInt())
763      return *reinterpret_cast<Expr const * const*> (this + 1);
764    return getParam()->getDefaultArg();
765  }
766  Expr *getExpr() {
767    if (Param.getInt())
768      return *reinterpret_cast<Expr **> (this + 1);
769    return getParam()->getDefaultArg();
770  }
771
772  /// \brief Retrieve the location where this default argument was actually
773  /// used.
774  SourceLocation getUsedLocation() const { return Loc; }
775
776  SourceRange getSourceRange() const LLVM_READONLY {
777    // Default argument expressions have no representation in the
778    // source, so they have an empty source range.
779    return SourceRange();
780  }
781
782  static bool classof(const Stmt *T) {
783    return T->getStmtClass() == CXXDefaultArgExprClass;
784  }
785  static bool classof(const CXXDefaultArgExpr *) { return true; }
786
787  // Iterators
788  child_range children() { return child_range(); }
789
790  friend class ASTStmtReader;
791  friend class ASTStmtWriter;
792};
793
794/// CXXTemporary - Represents a C++ temporary.
795class CXXTemporary {
796  /// Destructor - The destructor that needs to be called.
797  const CXXDestructorDecl *Destructor;
798
799  CXXTemporary(const CXXDestructorDecl *destructor)
800    : Destructor(destructor) { }
801
802public:
803  static CXXTemporary *Create(ASTContext &C,
804                              const CXXDestructorDecl *Destructor);
805
806  const CXXDestructorDecl *getDestructor() const { return Destructor; }
807  void setDestructor(const CXXDestructorDecl *Dtor) {
808    Destructor = Dtor;
809  }
810};
811
812/// \brief Represents binding an expression to a temporary.
813///
814/// This ensures the destructor is called for the temporary. It should only be
815/// needed for non-POD, non-trivially destructable class types. For example:
816///
817/// \code
818///   struct S {
819///     S() { }  // User defined constructor makes S non-POD.
820///     ~S() { } // User defined destructor makes it non-trivial.
821///   };
822///   void test() {
823///     const S &s_ref = S(); // Requires a CXXBindTemporaryExpr.
824///   }
825/// \endcode
826class CXXBindTemporaryExpr : public Expr {
827  CXXTemporary *Temp;
828
829  Stmt *SubExpr;
830
831  CXXBindTemporaryExpr(CXXTemporary *temp, Expr* SubExpr)
832   : Expr(CXXBindTemporaryExprClass, SubExpr->getType(),
833          VK_RValue, OK_Ordinary, SubExpr->isTypeDependent(),
834          SubExpr->isValueDependent(),
835          SubExpr->isInstantiationDependent(),
836          SubExpr->containsUnexpandedParameterPack()),
837     Temp(temp), SubExpr(SubExpr) { }
838
839public:
840  CXXBindTemporaryExpr(EmptyShell Empty)
841    : Expr(CXXBindTemporaryExprClass, Empty), Temp(0), SubExpr(0) {}
842
843  static CXXBindTemporaryExpr *Create(ASTContext &C, CXXTemporary *Temp,
844                                      Expr* SubExpr);
845
846  CXXTemporary *getTemporary() { return Temp; }
847  const CXXTemporary *getTemporary() const { return Temp; }
848  void setTemporary(CXXTemporary *T) { Temp = T; }
849
850  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
851  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
852  void setSubExpr(Expr *E) { SubExpr = E; }
853
854  SourceRange getSourceRange() const LLVM_READONLY {
855    return SubExpr->getSourceRange();
856  }
857
858  // Implement isa/cast/dyncast/etc.
859  static bool classof(const Stmt *T) {
860    return T->getStmtClass() == CXXBindTemporaryExprClass;
861  }
862  static bool classof(const CXXBindTemporaryExpr *) { return true; }
863
864  // Iterators
865  child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
866};
867
868/// CXXConstructExpr - Represents a call to a C++ constructor.
869class CXXConstructExpr : public Expr {
870public:
871  enum ConstructionKind {
872    CK_Complete,
873    CK_NonVirtualBase,
874    CK_VirtualBase,
875    CK_Delegating
876  };
877
878private:
879  CXXConstructorDecl *Constructor;
880
881  SourceLocation Loc;
882  SourceRange ParenRange;
883  unsigned NumArgs : 16;
884  bool Elidable : 1;
885  bool HadMultipleCandidates : 1;
886  bool ListInitialization : 1;
887  bool ZeroInitialization : 1;
888  unsigned ConstructKind : 2;
889  Stmt **Args;
890
891protected:
892  CXXConstructExpr(ASTContext &C, StmtClass SC, QualType T,
893                   SourceLocation Loc,
894                   CXXConstructorDecl *d, bool elidable,
895                   Expr **args, unsigned numargs,
896                   bool HadMultipleCandidates,
897                   bool ListInitialization,
898                   bool ZeroInitialization,
899                   ConstructionKind ConstructKind,
900                   SourceRange ParenRange);
901
902  /// \brief Construct an empty C++ construction expression.
903  CXXConstructExpr(StmtClass SC, EmptyShell Empty)
904    : Expr(SC, Empty), Constructor(0), NumArgs(0), Elidable(false),
905      HadMultipleCandidates(false), ListInitialization(false),
906      ZeroInitialization(false), ConstructKind(0), Args(0)
907  { }
908
909public:
910  /// \brief Construct an empty C++ construction expression.
911  explicit CXXConstructExpr(EmptyShell Empty)
912    : Expr(CXXConstructExprClass, Empty), Constructor(0),
913      NumArgs(0), Elidable(false), HadMultipleCandidates(false),
914      ListInitialization(false), ZeroInitialization(false),
915      ConstructKind(0), Args(0)
916  { }
917
918  static CXXConstructExpr *Create(ASTContext &C, QualType T,
919                                  SourceLocation Loc,
920                                  CXXConstructorDecl *D, bool Elidable,
921                                  Expr **Args, unsigned NumArgs,
922                                  bool HadMultipleCandidates,
923                                  bool ListInitialization,
924                                  bool ZeroInitialization,
925                                  ConstructionKind ConstructKind,
926                                  SourceRange ParenRange);
927
928  CXXConstructorDecl* getConstructor() const { return Constructor; }
929  void setConstructor(CXXConstructorDecl *C) { Constructor = C; }
930
931  SourceLocation getLocation() const { return Loc; }
932  void setLocation(SourceLocation Loc) { this->Loc = Loc; }
933
934  /// \brief Whether this construction is elidable.
935  bool isElidable() const { return Elidable; }
936  void setElidable(bool E) { Elidable = E; }
937
938  /// \brief Whether the referred constructor was resolved from
939  /// an overloaded set having size greater than 1.
940  bool hadMultipleCandidates() const { return HadMultipleCandidates; }
941  void setHadMultipleCandidates(bool V) { HadMultipleCandidates = V; }
942
943  /// \brief Whether this constructor call was written as list-initialization.
944  bool isListInitialization() const { return ListInitialization; }
945  void setListInitialization(bool V) { ListInitialization = V; }
946
947  /// \brief Whether this construction first requires
948  /// zero-initialization before the initializer is called.
949  bool requiresZeroInitialization() const { return ZeroInitialization; }
950  void setRequiresZeroInitialization(bool ZeroInit) {
951    ZeroInitialization = ZeroInit;
952  }
953
954  /// \brief Determines whether this constructor is actually constructing
955  /// a base class (rather than a complete object).
956  ConstructionKind getConstructionKind() const {
957    return (ConstructionKind)ConstructKind;
958  }
959  void setConstructionKind(ConstructionKind CK) {
960    ConstructKind = CK;
961  }
962
963  typedef ExprIterator arg_iterator;
964  typedef ConstExprIterator const_arg_iterator;
965
966  arg_iterator arg_begin() { return Args; }
967  arg_iterator arg_end() { return Args + NumArgs; }
968  const_arg_iterator arg_begin() const { return Args; }
969  const_arg_iterator arg_end() const { return Args + NumArgs; }
970
971  Expr **getArgs() const { return reinterpret_cast<Expr **>(Args); }
972  unsigned getNumArgs() const { return NumArgs; }
973
974  /// getArg - Return the specified argument.
975  Expr *getArg(unsigned Arg) {
976    assert(Arg < NumArgs && "Arg access out of range!");
977    return cast<Expr>(Args[Arg]);
978  }
979  const Expr *getArg(unsigned Arg) const {
980    assert(Arg < NumArgs && "Arg access out of range!");
981    return cast<Expr>(Args[Arg]);
982  }
983
984  /// setArg - Set the specified argument.
985  void setArg(unsigned Arg, Expr *ArgExpr) {
986    assert(Arg < NumArgs && "Arg access out of range!");
987    Args[Arg] = ArgExpr;
988  }
989
990  SourceRange getSourceRange() const LLVM_READONLY;
991  SourceRange getParenRange() const { return ParenRange; }
992
993  static bool classof(const Stmt *T) {
994    return T->getStmtClass() == CXXConstructExprClass ||
995      T->getStmtClass() == CXXTemporaryObjectExprClass;
996  }
997  static bool classof(const CXXConstructExpr *) { return true; }
998
999  // Iterators
1000  child_range children() {
1001    return child_range(&Args[0], &Args[0]+NumArgs);
1002  }
1003
1004  friend class ASTStmtReader;
1005};
1006
1007/// CXXFunctionalCastExpr - Represents an explicit C++ type conversion
1008/// that uses "functional" notion (C++ [expr.type.conv]). Example: @c
1009/// x = int(0.5);
1010class CXXFunctionalCastExpr : public ExplicitCastExpr {
1011  SourceLocation TyBeginLoc;
1012  SourceLocation RParenLoc;
1013
1014  CXXFunctionalCastExpr(QualType ty, ExprValueKind VK,
1015                        TypeSourceInfo *writtenTy,
1016                        SourceLocation tyBeginLoc, CastKind kind,
1017                        Expr *castExpr, unsigned pathSize,
1018                        SourceLocation rParenLoc)
1019    : ExplicitCastExpr(CXXFunctionalCastExprClass, ty, VK, kind,
1020                       castExpr, pathSize, writtenTy),
1021      TyBeginLoc(tyBeginLoc), RParenLoc(rParenLoc) {}
1022
1023  explicit CXXFunctionalCastExpr(EmptyShell Shell, unsigned PathSize)
1024    : ExplicitCastExpr(CXXFunctionalCastExprClass, Shell, PathSize) { }
1025
1026public:
1027  static CXXFunctionalCastExpr *Create(ASTContext &Context, QualType T,
1028                                       ExprValueKind VK,
1029                                       TypeSourceInfo *Written,
1030                                       SourceLocation TyBeginLoc,
1031                                       CastKind Kind, Expr *Op,
1032                                       const CXXCastPath *Path,
1033                                       SourceLocation RPLoc);
1034  static CXXFunctionalCastExpr *CreateEmpty(ASTContext &Context,
1035                                            unsigned PathSize);
1036
1037  SourceLocation getTypeBeginLoc() const { return TyBeginLoc; }
1038  void setTypeBeginLoc(SourceLocation L) { TyBeginLoc = L; }
1039  SourceLocation getRParenLoc() const { return RParenLoc; }
1040  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1041
1042  SourceRange getSourceRange() const LLVM_READONLY {
1043    return SourceRange(TyBeginLoc, RParenLoc);
1044  }
1045  static bool classof(const Stmt *T) {
1046    return T->getStmtClass() == CXXFunctionalCastExprClass;
1047  }
1048  static bool classof(const CXXFunctionalCastExpr *) { return true; }
1049};
1050
1051/// @brief Represents a C++ functional cast expression that builds a
1052/// temporary object.
1053///
1054/// This expression type represents a C++ "functional" cast
1055/// (C++[expr.type.conv]) with N != 1 arguments that invokes a
1056/// constructor to build a temporary object. With N == 1 arguments the
1057/// functional cast expression will be represented by CXXFunctionalCastExpr.
1058/// Example:
1059/// @code
1060/// struct X { X(int, float); }
1061///
1062/// X create_X() {
1063///   return X(1, 3.14f); // creates a CXXTemporaryObjectExpr
1064/// };
1065/// @endcode
1066class CXXTemporaryObjectExpr : public CXXConstructExpr {
1067  TypeSourceInfo *Type;
1068
1069public:
1070  CXXTemporaryObjectExpr(ASTContext &C, CXXConstructorDecl *Cons,
1071                         TypeSourceInfo *Type,
1072                         Expr **Args,unsigned NumArgs,
1073                         SourceRange parenRange,
1074                         bool HadMultipleCandidates,
1075                         bool ZeroInitialization = false);
1076  explicit CXXTemporaryObjectExpr(EmptyShell Empty)
1077    : CXXConstructExpr(CXXTemporaryObjectExprClass, Empty), Type() { }
1078
1079  TypeSourceInfo *getTypeSourceInfo() const { return Type; }
1080
1081  SourceRange getSourceRange() const LLVM_READONLY;
1082
1083  static bool classof(const Stmt *T) {
1084    return T->getStmtClass() == CXXTemporaryObjectExprClass;
1085  }
1086  static bool classof(const CXXTemporaryObjectExpr *) { return true; }
1087
1088  friend class ASTStmtReader;
1089};
1090
1091/// \brief A C++ lambda expression, which produces a function object
1092/// (of unspecified type) that can be invoked later.
1093///
1094/// Example:
1095/// \code
1096/// void low_pass_filter(std::vector<double> &values, double cutoff) {
1097///   values.erase(std::remove_if(values.begin(), values.end(),
1098//                                [=](double value) { return value > cutoff; });
1099/// }
1100/// \endcode
1101///
1102/// Lambda expressions can capture local variables, either by copying
1103/// the values of those local variables at the time the function
1104/// object is constructed (not when it is called!) or by holding a
1105/// reference to the local variable. These captures can occur either
1106/// implicitly or can be written explicitly between the square
1107/// brackets ([...]) that start the lambda expression.
1108class LambdaExpr : public Expr {
1109  enum {
1110    /// \brief Flag used by the Capture class to indicate that the given
1111    /// capture was implicit.
1112    Capture_Implicit = 0x01,
1113
1114    /// \brief Flag used by the Capture class to indciate that the
1115    /// given capture was by-copy.
1116    Capture_ByCopy = 0x02
1117  };
1118
1119  /// \brief The source range that covers the lambda introducer ([...]).
1120  SourceRange IntroducerRange;
1121
1122  /// \brief The number of captures.
1123  unsigned NumCaptures : 16;
1124
1125  /// \brief The default capture kind, which is a value of type
1126  /// LambdaCaptureDefault.
1127  unsigned CaptureDefault : 2;
1128
1129  /// \brief Whether this lambda had an explicit parameter list vs. an
1130  /// implicit (and empty) parameter list.
1131  unsigned ExplicitParams : 1;
1132
1133  /// \brief Whether this lambda had the result type explicitly specified.
1134  unsigned ExplicitResultType : 1;
1135
1136  /// \brief Whether there are any array index variables stored at the end of
1137  /// this lambda expression.
1138  unsigned HasArrayIndexVars : 1;
1139
1140  /// \brief The location of the closing brace ('}') that completes
1141  /// the lambda.
1142  ///
1143  /// The location of the brace is also available by looking up the
1144  /// function call operator in the lambda class. However, it is
1145  /// stored here to improve the performance of getSourceRange(), and
1146  /// to avoid having to deserialize the function call operator from a
1147  /// module file just to determine the source range.
1148  SourceLocation ClosingBrace;
1149
1150  // Note: The capture initializers are stored directly after the lambda
1151  // expression, along with the index variables used to initialize by-copy
1152  // array captures.
1153
1154public:
1155  /// \brief Describes the capture of either a variable or 'this'.
1156  class Capture {
1157    llvm::PointerIntPair<VarDecl *, 2> VarAndBits;
1158    SourceLocation Loc;
1159    SourceLocation EllipsisLoc;
1160
1161    friend class ASTStmtReader;
1162    friend class ASTStmtWriter;
1163
1164  public:
1165    /// \brief Create a new capture.
1166    ///
1167    /// \param Loc The source location associated with this capture.
1168    ///
1169    /// \param Kind The kind of capture (this, byref, bycopy).
1170    ///
1171    /// \param Implicit Whether the capture was implicit or explicit.
1172    ///
1173    /// \param Var The local variable being captured, or null if capturing this.
1174    ///
1175    /// \param EllipsisLoc The location of the ellipsis (...) for a
1176    /// capture that is a pack expansion, or an invalid source
1177    /// location to indicate that this is not a pack expansion.
1178    Capture(SourceLocation Loc, bool Implicit,
1179            LambdaCaptureKind Kind, VarDecl *Var = 0,
1180            SourceLocation EllipsisLoc = SourceLocation());
1181
1182    /// \brief Determine the kind of capture.
1183    LambdaCaptureKind getCaptureKind() const;
1184
1185    /// \brief Determine whether this capture handles the C++ 'this'
1186    /// pointer.
1187    bool capturesThis() const { return VarAndBits.getPointer() == 0; }
1188
1189    /// \brief Determine whether this capture handles a variable.
1190    bool capturesVariable() const { return VarAndBits.getPointer() != 0; }
1191
1192    /// \brief Retrieve the declaration of the local variable being
1193    /// captured.
1194    ///
1195    /// This operation is only valid if this capture does not capture
1196    /// 'this'.
1197    VarDecl *getCapturedVar() const {
1198      assert(!capturesThis() && "No variable available for 'this' capture");
1199      return VarAndBits.getPointer();
1200    }
1201
1202    /// \brief Determine whether this was an implicit capture (not
1203    /// written between the square brackets introducing the lambda).
1204    bool isImplicit() const { return VarAndBits.getInt() & Capture_Implicit; }
1205
1206    /// \brief Determine whether this was an explicit capture, written
1207    /// between the square brackets introducing the lambda.
1208    bool isExplicit() const { return !isImplicit(); }
1209
1210    /// \brief Retrieve the source location of the capture.
1211    ///
1212    /// For an explicit capture, this returns the location of the
1213    /// explicit capture in the source. For an implicit capture, this
1214    /// returns the location at which the variable or 'this' was first
1215    /// used.
1216    SourceLocation getLocation() const { return Loc; }
1217
1218    /// \brief Determine whether this capture is a pack expansion,
1219    /// which captures a function parameter pack.
1220    bool isPackExpansion() const { return EllipsisLoc.isValid(); }
1221
1222    /// \brief Retrieve the location of the ellipsis for a capture
1223    /// that is a pack expansion.
1224    SourceLocation getEllipsisLoc() const {
1225      assert(isPackExpansion() && "No ellipsis location for a non-expansion");
1226      return EllipsisLoc;
1227    }
1228  };
1229
1230private:
1231  /// \brief Construct a lambda expression.
1232  LambdaExpr(QualType T, SourceRange IntroducerRange,
1233             LambdaCaptureDefault CaptureDefault,
1234             ArrayRef<Capture> Captures,
1235             bool ExplicitParams,
1236             bool ExplicitResultType,
1237             ArrayRef<Expr *> CaptureInits,
1238             ArrayRef<VarDecl *> ArrayIndexVars,
1239             ArrayRef<unsigned> ArrayIndexStarts,
1240             SourceLocation ClosingBrace);
1241
1242  /// \brief Construct an empty lambda expression.
1243  LambdaExpr(EmptyShell Empty, unsigned NumCaptures, bool HasArrayIndexVars)
1244    : Expr(LambdaExprClass, Empty),
1245      NumCaptures(NumCaptures), CaptureDefault(LCD_None), ExplicitParams(false),
1246      ExplicitResultType(false), HasArrayIndexVars(true) {
1247    getStoredStmts()[NumCaptures] = 0;
1248  }
1249
1250  Stmt **getStoredStmts() const {
1251    return reinterpret_cast<Stmt **>(const_cast<LambdaExpr *>(this) + 1);
1252  }
1253
1254  /// \brief Retrieve the mapping from captures to the first array index
1255  /// variable.
1256  unsigned *getArrayIndexStarts() const {
1257    return reinterpret_cast<unsigned *>(getStoredStmts() + NumCaptures + 1);
1258  }
1259
1260  /// \brief Retrieve the complete set of array-index variables.
1261  VarDecl **getArrayIndexVars() const {
1262    return reinterpret_cast<VarDecl **>(
1263             getArrayIndexStarts() + NumCaptures + 1);
1264  }
1265
1266public:
1267  /// \brief Construct a new lambda expression.
1268  static LambdaExpr *Create(ASTContext &C,
1269                            CXXRecordDecl *Class,
1270                            SourceRange IntroducerRange,
1271                            LambdaCaptureDefault CaptureDefault,
1272                            ArrayRef<Capture> Captures,
1273                            bool ExplicitParams,
1274                            bool ExplicitResultType,
1275                            ArrayRef<Expr *> CaptureInits,
1276                            ArrayRef<VarDecl *> ArrayIndexVars,
1277                            ArrayRef<unsigned> ArrayIndexStarts,
1278                            SourceLocation ClosingBrace);
1279
1280  /// \brief Construct a new lambda expression that will be deserialized from
1281  /// an external source.
1282  static LambdaExpr *CreateDeserialized(ASTContext &C, unsigned NumCaptures,
1283                                        unsigned NumArrayIndexVars);
1284
1285  /// \brief Determine the default capture kind for this lambda.
1286  LambdaCaptureDefault getCaptureDefault() const {
1287    return static_cast<LambdaCaptureDefault>(CaptureDefault);
1288  }
1289
1290  /// \brief An iterator that walks over the captures of the lambda,
1291  /// both implicit and explicit.
1292  typedef const Capture *capture_iterator;
1293
1294  /// \brief Retrieve an iterator pointing to the first lambda capture.
1295  capture_iterator capture_begin() const;
1296
1297  /// \brief Retrieve an iterator pointing past the end of the
1298  /// sequence of lambda captures.
1299  capture_iterator capture_end() const;
1300
1301  /// \brief Determine the number of captures in this lambda.
1302  unsigned capture_size() const { return NumCaptures; }
1303
1304  /// \brief Retrieve an iterator pointing to the first explicit
1305  /// lambda capture.
1306  capture_iterator explicit_capture_begin() const;
1307
1308  /// \brief Retrieve an iterator pointing past the end of the sequence of
1309  /// explicit lambda captures.
1310  capture_iterator explicit_capture_end() const;
1311
1312  /// \brief Retrieve an iterator pointing to the first implicit
1313  /// lambda capture.
1314  capture_iterator implicit_capture_begin() const;
1315
1316  /// \brief Retrieve an iterator pointing past the end of the sequence of
1317  /// implicit lambda captures.
1318  capture_iterator implicit_capture_end() const;
1319
1320  /// \brief Iterator that walks over the capture initialization
1321  /// arguments.
1322  typedef Expr **capture_init_iterator;
1323
1324  /// \brief Retrieve the first initialization argument for this
1325  /// lambda expression (which initializes the first capture field).
1326  capture_init_iterator capture_init_begin() const {
1327    return reinterpret_cast<Expr **>(getStoredStmts());
1328  }
1329
1330  /// \brief Retrieve the iterator pointing one past the last
1331  /// initialization argument for this lambda expression.
1332  capture_init_iterator capture_init_end() const {
1333    return capture_init_begin() + NumCaptures;
1334  }
1335
1336  /// \brief Retrieve the set of index variables used in the capture
1337  /// initializer of an array captured by copy.
1338  ///
1339  /// \param Iter The iterator that points at the capture initializer for
1340  /// which we are extracting the corresponding index variables.
1341  ArrayRef<VarDecl *> getCaptureInitIndexVars(capture_init_iterator Iter) const;
1342
1343  /// \brief Retrieve the source range covering the lambda introducer,
1344  /// which contains the explicit capture list surrounded by square
1345  /// brackets ([...]).
1346  SourceRange getIntroducerRange() const { return IntroducerRange; }
1347
1348  /// \brief Retrieve the class that corresponds to the lambda, which
1349  /// stores the captures in its fields and provides the various
1350  /// operations permitted on a lambda (copying, calling).
1351  CXXRecordDecl *getLambdaClass() const;
1352
1353  /// \brief Retrieve the function call operator associated with this
1354  /// lambda expression.
1355  CXXMethodDecl *getCallOperator() const;
1356
1357  /// \brief Retrieve the body of the lambda.
1358  CompoundStmt *getBody() const;
1359
1360  /// \brief Determine whether the lambda is mutable, meaning that any
1361  /// captures values can be modified.
1362  bool isMutable() const;
1363
1364  /// \brief Determine whether this lambda has an explicit parameter
1365  /// list vs. an implicit (empty) parameter list.
1366  bool hasExplicitParameters() const { return ExplicitParams; }
1367
1368  /// \brief Whether this lambda had its result type explicitly specified.
1369  bool hasExplicitResultType() const { return ExplicitResultType; }
1370
1371  static bool classof(const Stmt *T) {
1372    return T->getStmtClass() == LambdaExprClass;
1373  }
1374  static bool classof(const LambdaExpr *) { return true; }
1375
1376  SourceRange getSourceRange() const LLVM_READONLY {
1377    return SourceRange(IntroducerRange.getBegin(), ClosingBrace);
1378  }
1379
1380  child_range children() {
1381    return child_range(getStoredStmts(), getStoredStmts() + NumCaptures + 1);
1382  }
1383
1384  friend class ASTStmtReader;
1385  friend class ASTStmtWriter;
1386};
1387
1388/// CXXScalarValueInitExpr - [C++ 5.2.3p2]
1389/// Expression "T()" which creates a value-initialized rvalue of type
1390/// T, which is a non-class type.
1391///
1392class CXXScalarValueInitExpr : public Expr {
1393  SourceLocation RParenLoc;
1394  TypeSourceInfo *TypeInfo;
1395
1396  friend class ASTStmtReader;
1397
1398public:
1399  /// \brief Create an explicitly-written scalar-value initialization
1400  /// expression.
1401  CXXScalarValueInitExpr(QualType Type,
1402                         TypeSourceInfo *TypeInfo,
1403                         SourceLocation rParenLoc ) :
1404    Expr(CXXScalarValueInitExprClass, Type, VK_RValue, OK_Ordinary,
1405         false, false, Type->isInstantiationDependentType(), false),
1406    RParenLoc(rParenLoc), TypeInfo(TypeInfo) {}
1407
1408  explicit CXXScalarValueInitExpr(EmptyShell Shell)
1409    : Expr(CXXScalarValueInitExprClass, Shell) { }
1410
1411  TypeSourceInfo *getTypeSourceInfo() const {
1412    return TypeInfo;
1413  }
1414
1415  SourceLocation getRParenLoc() const { return RParenLoc; }
1416
1417  SourceRange getSourceRange() const LLVM_READONLY;
1418
1419  static bool classof(const Stmt *T) {
1420    return T->getStmtClass() == CXXScalarValueInitExprClass;
1421  }
1422  static bool classof(const CXXScalarValueInitExpr *) { return true; }
1423
1424  // Iterators
1425  child_range children() { return child_range(); }
1426};
1427
1428/// CXXNewExpr - A new expression for memory allocation and constructor calls,
1429/// e.g: "new CXXNewExpr(foo)".
1430class CXXNewExpr : public Expr {
1431  // Contains an optional array size expression, an optional initialization
1432  // expression, and any number of optional placement arguments, in that order.
1433  Stmt **SubExprs;
1434  // Points to the allocation function used.
1435  FunctionDecl *OperatorNew;
1436  // Points to the deallocation function used in case of error. May be null.
1437  FunctionDecl *OperatorDelete;
1438
1439  /// \brief The allocated type-source information, as written in the source.
1440  TypeSourceInfo *AllocatedTypeInfo;
1441
1442  /// \brief If the allocated type was expressed as a parenthesized type-id,
1443  /// the source range covering the parenthesized type-id.
1444  SourceRange TypeIdParens;
1445
1446  /// \brief Location of the first token.
1447  SourceLocation StartLoc;
1448
1449  /// \brief Source-range of a paren-delimited initializer.
1450  SourceRange DirectInitRange;
1451
1452  // Was the usage ::new, i.e. is the global new to be used?
1453  bool GlobalNew : 1;
1454  // Do we allocate an array? If so, the first SubExpr is the size expression.
1455  bool Array : 1;
1456  // If this is an array allocation, does the usual deallocation
1457  // function for the allocated type want to know the allocated size?
1458  bool UsualArrayDeleteWantsSize : 1;
1459  // The number of placement new arguments.
1460  unsigned NumPlacementArgs : 13;
1461  // What kind of initializer do we have? Could be none, parens, or braces.
1462  // In storage, we distinguish between "none, and no initializer expr", and
1463  // "none, but an implicit initializer expr".
1464  unsigned StoredInitializationStyle : 2;
1465
1466  friend class ASTStmtReader;
1467  friend class ASTStmtWriter;
1468public:
1469  enum InitializationStyle {
1470    NoInit,   ///< New-expression has no initializer as written.
1471    CallInit, ///< New-expression has a C++98 paren-delimited initializer.
1472    ListInit  ///< New-expression has a C++11 list-initializer.
1473  };
1474
1475  CXXNewExpr(ASTContext &C, bool globalNew, FunctionDecl *operatorNew,
1476             FunctionDecl *operatorDelete, bool usualArrayDeleteWantsSize,
1477             Expr **placementArgs, unsigned numPlaceArgs,
1478             SourceRange typeIdParens, Expr *arraySize,
1479             InitializationStyle initializationStyle, Expr *initializer,
1480             QualType ty, TypeSourceInfo *AllocatedTypeInfo,
1481             SourceLocation startLoc, SourceRange directInitRange);
1482  explicit CXXNewExpr(EmptyShell Shell)
1483    : Expr(CXXNewExprClass, Shell), SubExprs(0) { }
1484
1485  void AllocateArgsArray(ASTContext &C, bool isArray, unsigned numPlaceArgs,
1486                         bool hasInitializer);
1487
1488  QualType getAllocatedType() const {
1489    assert(getType()->isPointerType());
1490    return getType()->getAs<PointerType>()->getPointeeType();
1491  }
1492
1493  TypeSourceInfo *getAllocatedTypeSourceInfo() const {
1494    return AllocatedTypeInfo;
1495  }
1496
1497  /// \brief True if the allocation result needs to be null-checked.
1498  /// C++0x [expr.new]p13:
1499  ///   If the allocation function returns null, initialization shall
1500  ///   not be done, the deallocation function shall not be called,
1501  ///   and the value of the new-expression shall be null.
1502  /// An allocation function is not allowed to return null unless it
1503  /// has a non-throwing exception-specification.  The '03 rule is
1504  /// identical except that the definition of a non-throwing
1505  /// exception specification is just "is it throw()?".
1506  bool shouldNullCheckAllocation(ASTContext &Ctx) const;
1507
1508  FunctionDecl *getOperatorNew() const { return OperatorNew; }
1509  void setOperatorNew(FunctionDecl *D) { OperatorNew = D; }
1510  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
1511  void setOperatorDelete(FunctionDecl *D) { OperatorDelete = D; }
1512
1513  bool isArray() const { return Array; }
1514  Expr *getArraySize() {
1515    return Array ? cast<Expr>(SubExprs[0]) : 0;
1516  }
1517  const Expr *getArraySize() const {
1518    return Array ? cast<Expr>(SubExprs[0]) : 0;
1519  }
1520
1521  unsigned getNumPlacementArgs() const { return NumPlacementArgs; }
1522  Expr **getPlacementArgs() {
1523    return reinterpret_cast<Expr **>(SubExprs + Array + hasInitializer());
1524  }
1525
1526  Expr *getPlacementArg(unsigned i) {
1527    assert(i < NumPlacementArgs && "Index out of range");
1528    return getPlacementArgs()[i];
1529  }
1530  const Expr *getPlacementArg(unsigned i) const {
1531    assert(i < NumPlacementArgs && "Index out of range");
1532    return const_cast<CXXNewExpr*>(this)->getPlacementArg(i);
1533  }
1534
1535  bool isParenTypeId() const { return TypeIdParens.isValid(); }
1536  SourceRange getTypeIdParens() const { return TypeIdParens; }
1537
1538  bool isGlobalNew() const { return GlobalNew; }
1539
1540  /// \brief Whether this new-expression has any initializer at all.
1541  bool hasInitializer() const { return StoredInitializationStyle > 0; }
1542
1543  /// \brief The kind of initializer this new-expression has.
1544  InitializationStyle getInitializationStyle() const {
1545    if (StoredInitializationStyle == 0)
1546      return NoInit;
1547    return static_cast<InitializationStyle>(StoredInitializationStyle-1);
1548  }
1549
1550  /// \brief The initializer of this new-expression.
1551  Expr *getInitializer() {
1552    return hasInitializer() ? cast<Expr>(SubExprs[Array]) : 0;
1553  }
1554  const Expr *getInitializer() const {
1555    return hasInitializer() ? cast<Expr>(SubExprs[Array]) : 0;
1556  }
1557
1558  /// \brief Returns the CXXConstructExpr from this new-expression, or NULL.
1559  const CXXConstructExpr* getConstructExpr() {
1560    return dyn_cast_or_null<CXXConstructExpr>(getInitializer());
1561  }
1562
1563  /// Answers whether the usual array deallocation function for the
1564  /// allocated type expects the size of the allocation as a
1565  /// parameter.
1566  bool doesUsualArrayDeleteWantSize() const {
1567    return UsualArrayDeleteWantsSize;
1568  }
1569
1570  typedef ExprIterator arg_iterator;
1571  typedef ConstExprIterator const_arg_iterator;
1572
1573  arg_iterator placement_arg_begin() {
1574    return SubExprs + Array + hasInitializer();
1575  }
1576  arg_iterator placement_arg_end() {
1577    return SubExprs + Array + hasInitializer() + getNumPlacementArgs();
1578  }
1579  const_arg_iterator placement_arg_begin() const {
1580    return SubExprs + Array + hasInitializer();
1581  }
1582  const_arg_iterator placement_arg_end() const {
1583    return SubExprs + Array + hasInitializer() + getNumPlacementArgs();
1584  }
1585
1586  typedef Stmt **raw_arg_iterator;
1587  raw_arg_iterator raw_arg_begin() { return SubExprs; }
1588  raw_arg_iterator raw_arg_end() {
1589    return SubExprs + Array + hasInitializer() + getNumPlacementArgs();
1590  }
1591  const_arg_iterator raw_arg_begin() const { return SubExprs; }
1592  const_arg_iterator raw_arg_end() const {
1593    return SubExprs + Array + hasInitializer() + getNumPlacementArgs();
1594  }
1595
1596  SourceLocation getStartLoc() const { return StartLoc; }
1597  SourceLocation getEndLoc() const;
1598
1599  SourceRange getDirectInitRange() const { return DirectInitRange; }
1600
1601  SourceRange getSourceRange() const LLVM_READONLY {
1602    return SourceRange(getStartLoc(), getEndLoc());
1603  }
1604
1605  static bool classof(const Stmt *T) {
1606    return T->getStmtClass() == CXXNewExprClass;
1607  }
1608  static bool classof(const CXXNewExpr *) { return true; }
1609
1610  // Iterators
1611  child_range children() {
1612    return child_range(raw_arg_begin(), raw_arg_end());
1613  }
1614};
1615
1616/// CXXDeleteExpr - A delete expression for memory deallocation and destructor
1617/// calls, e.g. "delete[] pArray".
1618class CXXDeleteExpr : public Expr {
1619  // Points to the operator delete overload that is used. Could be a member.
1620  FunctionDecl *OperatorDelete;
1621  // The pointer expression to be deleted.
1622  Stmt *Argument;
1623  // Location of the expression.
1624  SourceLocation Loc;
1625  // Is this a forced global delete, i.e. "::delete"?
1626  bool GlobalDelete : 1;
1627  // Is this the array form of delete, i.e. "delete[]"?
1628  bool ArrayForm : 1;
1629  // ArrayFormAsWritten can be different from ArrayForm if 'delete' is applied
1630  // to pointer-to-array type (ArrayFormAsWritten will be false while ArrayForm
1631  // will be true).
1632  bool ArrayFormAsWritten : 1;
1633  // Does the usual deallocation function for the element type require
1634  // a size_t argument?
1635  bool UsualArrayDeleteWantsSize : 1;
1636public:
1637  CXXDeleteExpr(QualType ty, bool globalDelete, bool arrayForm,
1638                bool arrayFormAsWritten, bool usualArrayDeleteWantsSize,
1639                FunctionDecl *operatorDelete, Expr *arg, SourceLocation loc)
1640    : Expr(CXXDeleteExprClass, ty, VK_RValue, OK_Ordinary, false, false,
1641           arg->isInstantiationDependent(),
1642           arg->containsUnexpandedParameterPack()),
1643      OperatorDelete(operatorDelete), Argument(arg), Loc(loc),
1644      GlobalDelete(globalDelete),
1645      ArrayForm(arrayForm), ArrayFormAsWritten(arrayFormAsWritten),
1646      UsualArrayDeleteWantsSize(usualArrayDeleteWantsSize) { }
1647  explicit CXXDeleteExpr(EmptyShell Shell)
1648    : Expr(CXXDeleteExprClass, Shell), OperatorDelete(0), Argument(0) { }
1649
1650  bool isGlobalDelete() const { return GlobalDelete; }
1651  bool isArrayForm() const { return ArrayForm; }
1652  bool isArrayFormAsWritten() const { return ArrayFormAsWritten; }
1653
1654  /// Answers whether the usual array deallocation function for the
1655  /// allocated type expects the size of the allocation as a
1656  /// parameter.  This can be true even if the actual deallocation
1657  /// function that we're using doesn't want a size.
1658  bool doesUsualArrayDeleteWantSize() const {
1659    return UsualArrayDeleteWantsSize;
1660  }
1661
1662  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
1663
1664  Expr *getArgument() { return cast<Expr>(Argument); }
1665  const Expr *getArgument() const { return cast<Expr>(Argument); }
1666
1667  /// \brief Retrieve the type being destroyed.  If the type being
1668  /// destroyed is a dependent type which may or may not be a pointer,
1669  /// return an invalid type.
1670  QualType getDestroyedType() const;
1671
1672  SourceRange getSourceRange() const LLVM_READONLY {
1673    return SourceRange(Loc, Argument->getLocEnd());
1674  }
1675
1676  static bool classof(const Stmt *T) {
1677    return T->getStmtClass() == CXXDeleteExprClass;
1678  }
1679  static bool classof(const CXXDeleteExpr *) { return true; }
1680
1681  // Iterators
1682  child_range children() { return child_range(&Argument, &Argument+1); }
1683
1684  friend class ASTStmtReader;
1685};
1686
1687/// \brief Structure used to store the type being destroyed by a
1688/// pseudo-destructor expression.
1689class PseudoDestructorTypeStorage {
1690  /// \brief Either the type source information or the name of the type, if
1691  /// it couldn't be resolved due to type-dependence.
1692  llvm::PointerUnion<TypeSourceInfo *, IdentifierInfo *> Type;
1693
1694  /// \brief The starting source location of the pseudo-destructor type.
1695  SourceLocation Location;
1696
1697public:
1698  PseudoDestructorTypeStorage() { }
1699
1700  PseudoDestructorTypeStorage(IdentifierInfo *II, SourceLocation Loc)
1701    : Type(II), Location(Loc) { }
1702
1703  PseudoDestructorTypeStorage(TypeSourceInfo *Info);
1704
1705  TypeSourceInfo *getTypeSourceInfo() const {
1706    return Type.dyn_cast<TypeSourceInfo *>();
1707  }
1708
1709  IdentifierInfo *getIdentifier() const {
1710    return Type.dyn_cast<IdentifierInfo *>();
1711  }
1712
1713  SourceLocation getLocation() const { return Location; }
1714};
1715
1716/// \brief Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
1717///
1718/// A pseudo-destructor is an expression that looks like a member access to a
1719/// destructor of a scalar type, except that scalar types don't have
1720/// destructors. For example:
1721///
1722/// \code
1723/// typedef int T;
1724/// void f(int *p) {
1725///   p->T::~T();
1726/// }
1727/// \endcode
1728///
1729/// Pseudo-destructors typically occur when instantiating templates such as:
1730///
1731/// \code
1732/// template<typename T>
1733/// void destroy(T* ptr) {
1734///   ptr->T::~T();
1735/// }
1736/// \endcode
1737///
1738/// for scalar types. A pseudo-destructor expression has no run-time semantics
1739/// beyond evaluating the base expression.
1740class CXXPseudoDestructorExpr : public Expr {
1741  /// \brief The base expression (that is being destroyed).
1742  Stmt *Base;
1743
1744  /// \brief Whether the operator was an arrow ('->'); otherwise, it was a
1745  /// period ('.').
1746  bool IsArrow : 1;
1747
1748  /// \brief The location of the '.' or '->' operator.
1749  SourceLocation OperatorLoc;
1750
1751  /// \brief The nested-name-specifier that follows the operator, if present.
1752  NestedNameSpecifierLoc QualifierLoc;
1753
1754  /// \brief The type that precedes the '::' in a qualified pseudo-destructor
1755  /// expression.
1756  TypeSourceInfo *ScopeType;
1757
1758  /// \brief The location of the '::' in a qualified pseudo-destructor
1759  /// expression.
1760  SourceLocation ColonColonLoc;
1761
1762  /// \brief The location of the '~'.
1763  SourceLocation TildeLoc;
1764
1765  /// \brief The type being destroyed, or its name if we were unable to
1766  /// resolve the name.
1767  PseudoDestructorTypeStorage DestroyedType;
1768
1769  friend class ASTStmtReader;
1770
1771public:
1772  CXXPseudoDestructorExpr(ASTContext &Context,
1773                          Expr *Base, bool isArrow, SourceLocation OperatorLoc,
1774                          NestedNameSpecifierLoc QualifierLoc,
1775                          TypeSourceInfo *ScopeType,
1776                          SourceLocation ColonColonLoc,
1777                          SourceLocation TildeLoc,
1778                          PseudoDestructorTypeStorage DestroyedType);
1779
1780  explicit CXXPseudoDestructorExpr(EmptyShell Shell)
1781    : Expr(CXXPseudoDestructorExprClass, Shell),
1782      Base(0), IsArrow(false), QualifierLoc(), ScopeType(0) { }
1783
1784  Expr *getBase() const { return cast<Expr>(Base); }
1785
1786  /// \brief Determines whether this member expression actually had
1787  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
1788  /// x->Base::foo.
1789  bool hasQualifier() const { return QualifierLoc; }
1790
1791  /// \brief Retrieves the nested-name-specifier that qualifies the type name,
1792  /// with source-location information.
1793  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
1794
1795  /// \brief If the member name was qualified, retrieves the
1796  /// nested-name-specifier that precedes the member name. Otherwise, returns
1797  /// NULL.
1798  NestedNameSpecifier *getQualifier() const {
1799    return QualifierLoc.getNestedNameSpecifier();
1800  }
1801
1802  /// \brief Determine whether this pseudo-destructor expression was written
1803  /// using an '->' (otherwise, it used a '.').
1804  bool isArrow() const { return IsArrow; }
1805
1806  /// \brief Retrieve the location of the '.' or '->' operator.
1807  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1808
1809  /// \brief Retrieve the scope type in a qualified pseudo-destructor
1810  /// expression.
1811  ///
1812  /// Pseudo-destructor expressions can have extra qualification within them
1813  /// that is not part of the nested-name-specifier, e.g., \c p->T::~T().
1814  /// Here, if the object type of the expression is (or may be) a scalar type,
1815  /// \p T may also be a scalar type and, therefore, cannot be part of a
1816  /// nested-name-specifier. It is stored as the "scope type" of the pseudo-
1817  /// destructor expression.
1818  TypeSourceInfo *getScopeTypeInfo() const { return ScopeType; }
1819
1820  /// \brief Retrieve the location of the '::' in a qualified pseudo-destructor
1821  /// expression.
1822  SourceLocation getColonColonLoc() const { return ColonColonLoc; }
1823
1824  /// \brief Retrieve the location of the '~'.
1825  SourceLocation getTildeLoc() const { return TildeLoc; }
1826
1827  /// \brief Retrieve the source location information for the type
1828  /// being destroyed.
1829  ///
1830  /// This type-source information is available for non-dependent
1831  /// pseudo-destructor expressions and some dependent pseudo-destructor
1832  /// expressions. Returns NULL if we only have the identifier for a
1833  /// dependent pseudo-destructor expression.
1834  TypeSourceInfo *getDestroyedTypeInfo() const {
1835    return DestroyedType.getTypeSourceInfo();
1836  }
1837
1838  /// \brief In a dependent pseudo-destructor expression for which we do not
1839  /// have full type information on the destroyed type, provides the name
1840  /// of the destroyed type.
1841  IdentifierInfo *getDestroyedTypeIdentifier() const {
1842    return DestroyedType.getIdentifier();
1843  }
1844
1845  /// \brief Retrieve the type being destroyed.
1846  QualType getDestroyedType() const;
1847
1848  /// \brief Retrieve the starting location of the type being destroyed.
1849  SourceLocation getDestroyedTypeLoc() const {
1850    return DestroyedType.getLocation();
1851  }
1852
1853  /// \brief Set the name of destroyed type for a dependent pseudo-destructor
1854  /// expression.
1855  void setDestroyedType(IdentifierInfo *II, SourceLocation Loc) {
1856    DestroyedType = PseudoDestructorTypeStorage(II, Loc);
1857  }
1858
1859  /// \brief Set the destroyed type.
1860  void setDestroyedType(TypeSourceInfo *Info) {
1861    DestroyedType = PseudoDestructorTypeStorage(Info);
1862  }
1863
1864  SourceRange getSourceRange() const LLVM_READONLY;
1865
1866  static bool classof(const Stmt *T) {
1867    return T->getStmtClass() == CXXPseudoDestructorExprClass;
1868  }
1869  static bool classof(const CXXPseudoDestructorExpr *) { return true; }
1870
1871  // Iterators
1872  child_range children() { return child_range(&Base, &Base + 1); }
1873};
1874
1875/// UnaryTypeTraitExpr - A GCC or MS unary type trait, as used in the
1876/// implementation of TR1/C++0x type trait templates.
1877/// Example:
1878/// __is_pod(int) == true
1879/// __is_enum(std::string) == false
1880class UnaryTypeTraitExpr : public Expr {
1881  /// UTT - The trait. A UnaryTypeTrait enum in MSVC compat unsigned.
1882  unsigned UTT : 31;
1883  /// The value of the type trait. Unspecified if dependent.
1884  bool Value : 1;
1885
1886  /// Loc - The location of the type trait keyword.
1887  SourceLocation Loc;
1888
1889  /// RParen - The location of the closing paren.
1890  SourceLocation RParen;
1891
1892  /// The type being queried.
1893  TypeSourceInfo *QueriedType;
1894
1895public:
1896  UnaryTypeTraitExpr(SourceLocation loc, UnaryTypeTrait utt,
1897                     TypeSourceInfo *queried, bool value,
1898                     SourceLocation rparen, QualType ty)
1899    : Expr(UnaryTypeTraitExprClass, ty, VK_RValue, OK_Ordinary,
1900           false,  queried->getType()->isDependentType(),
1901           queried->getType()->isInstantiationDependentType(),
1902           queried->getType()->containsUnexpandedParameterPack()),
1903      UTT(utt), Value(value), Loc(loc), RParen(rparen), QueriedType(queried) { }
1904
1905  explicit UnaryTypeTraitExpr(EmptyShell Empty)
1906    : Expr(UnaryTypeTraitExprClass, Empty), UTT(0), Value(false),
1907      QueriedType() { }
1908
1909  SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(Loc, RParen);}
1910
1911  UnaryTypeTrait getTrait() const { return static_cast<UnaryTypeTrait>(UTT); }
1912
1913  QualType getQueriedType() const { return QueriedType->getType(); }
1914
1915  TypeSourceInfo *getQueriedTypeSourceInfo() const { return QueriedType; }
1916
1917  bool getValue() const { return Value; }
1918
1919  static bool classof(const Stmt *T) {
1920    return T->getStmtClass() == UnaryTypeTraitExprClass;
1921  }
1922  static bool classof(const UnaryTypeTraitExpr *) { return true; }
1923
1924  // Iterators
1925  child_range children() { return child_range(); }
1926
1927  friend class ASTStmtReader;
1928};
1929
1930/// BinaryTypeTraitExpr - A GCC or MS binary type trait, as used in the
1931/// implementation of TR1/C++0x type trait templates.
1932/// Example:
1933/// __is_base_of(Base, Derived) == true
1934class BinaryTypeTraitExpr : public Expr {
1935  /// BTT - The trait. A BinaryTypeTrait enum in MSVC compat unsigned.
1936  unsigned BTT : 8;
1937
1938  /// The value of the type trait. Unspecified if dependent.
1939  bool Value : 1;
1940
1941  /// Loc - The location of the type trait keyword.
1942  SourceLocation Loc;
1943
1944  /// RParen - The location of the closing paren.
1945  SourceLocation RParen;
1946
1947  /// The lhs type being queried.
1948  TypeSourceInfo *LhsType;
1949
1950  /// The rhs type being queried.
1951  TypeSourceInfo *RhsType;
1952
1953public:
1954  BinaryTypeTraitExpr(SourceLocation loc, BinaryTypeTrait btt,
1955                     TypeSourceInfo *lhsType, TypeSourceInfo *rhsType,
1956                     bool value, SourceLocation rparen, QualType ty)
1957    : Expr(BinaryTypeTraitExprClass, ty, VK_RValue, OK_Ordinary, false,
1958           lhsType->getType()->isDependentType() ||
1959           rhsType->getType()->isDependentType(),
1960           (lhsType->getType()->isInstantiationDependentType() ||
1961            rhsType->getType()->isInstantiationDependentType()),
1962           (lhsType->getType()->containsUnexpandedParameterPack() ||
1963            rhsType->getType()->containsUnexpandedParameterPack())),
1964      BTT(btt), Value(value), Loc(loc), RParen(rparen),
1965      LhsType(lhsType), RhsType(rhsType) { }
1966
1967
1968  explicit BinaryTypeTraitExpr(EmptyShell Empty)
1969    : Expr(BinaryTypeTraitExprClass, Empty), BTT(0), Value(false),
1970      LhsType(), RhsType() { }
1971
1972  SourceRange getSourceRange() const LLVM_READONLY {
1973    return SourceRange(Loc, RParen);
1974  }
1975
1976  BinaryTypeTrait getTrait() const {
1977    return static_cast<BinaryTypeTrait>(BTT);
1978  }
1979
1980  QualType getLhsType() const { return LhsType->getType(); }
1981  QualType getRhsType() const { return RhsType->getType(); }
1982
1983  TypeSourceInfo *getLhsTypeSourceInfo() const { return LhsType; }
1984  TypeSourceInfo *getRhsTypeSourceInfo() const { return RhsType; }
1985
1986  bool getValue() const { assert(!isTypeDependent()); return Value; }
1987
1988  static bool classof(const Stmt *T) {
1989    return T->getStmtClass() == BinaryTypeTraitExprClass;
1990  }
1991  static bool classof(const BinaryTypeTraitExpr *) { return true; }
1992
1993  // Iterators
1994  child_range children() { return child_range(); }
1995
1996  friend class ASTStmtReader;
1997};
1998
1999/// \brief A type trait used in the implementation of various C++11 and
2000/// Library TR1 trait templates.
2001///
2002/// \code
2003///   __is_trivially_constructible(vector<int>, int*, int*)
2004/// \endcode
2005class TypeTraitExpr : public Expr {
2006  /// \brief The location of the type trait keyword.
2007  SourceLocation Loc;
2008
2009  /// \brief  The location of the closing parenthesis.
2010  SourceLocation RParenLoc;
2011
2012  // Note: The TypeSourceInfos for the arguments are allocated after the
2013  // TypeTraitExpr.
2014
2015  TypeTraitExpr(QualType T, SourceLocation Loc, TypeTrait Kind,
2016                ArrayRef<TypeSourceInfo *> Args,
2017                SourceLocation RParenLoc,
2018                bool Value);
2019
2020  TypeTraitExpr(EmptyShell Empty) : Expr(TypeTraitExprClass, Empty) { }
2021
2022  /// \brief Retrieve the argument types.
2023  TypeSourceInfo **getTypeSourceInfos() {
2024    return reinterpret_cast<TypeSourceInfo **>(this+1);
2025  }
2026
2027  /// \brief Retrieve the argument types.
2028  TypeSourceInfo * const *getTypeSourceInfos() const {
2029    return reinterpret_cast<TypeSourceInfo * const*>(this+1);
2030  }
2031
2032public:
2033  /// \brief Create a new type trait expression.
2034  static TypeTraitExpr *Create(ASTContext &C, QualType T, SourceLocation Loc,
2035                               TypeTrait Kind,
2036                               ArrayRef<TypeSourceInfo *> Args,
2037                               SourceLocation RParenLoc,
2038                               bool Value);
2039
2040  static TypeTraitExpr *CreateDeserialized(ASTContext &C, unsigned NumArgs);
2041
2042  /// \brief Determine which type trait this expression uses.
2043  TypeTrait getTrait() const {
2044    return static_cast<TypeTrait>(TypeTraitExprBits.Kind);
2045  }
2046
2047  bool getValue() const {
2048    assert(!isValueDependent());
2049    return TypeTraitExprBits.Value;
2050  }
2051
2052  /// \brief Determine the number of arguments to this type trait.
2053  unsigned getNumArgs() const { return TypeTraitExprBits.NumArgs; }
2054
2055  /// \brief Retrieve the Ith argument.
2056  TypeSourceInfo *getArg(unsigned I) const {
2057    assert(I < getNumArgs() && "Argument out-of-range");
2058    return getArgs()[I];
2059  }
2060
2061  /// \brief Retrieve the argument types.
2062  ArrayRef<TypeSourceInfo *> getArgs() const {
2063    return ArrayRef<TypeSourceInfo *>(getTypeSourceInfos(), getNumArgs());
2064  }
2065
2066  typedef TypeSourceInfo **arg_iterator;
2067  arg_iterator arg_begin() {
2068    return getTypeSourceInfos();
2069  }
2070  arg_iterator arg_end() {
2071    return getTypeSourceInfos() + getNumArgs();
2072  }
2073
2074  typedef TypeSourceInfo const * const *arg_const_iterator;
2075  arg_const_iterator arg_begin() const { return getTypeSourceInfos(); }
2076  arg_const_iterator arg_end() const {
2077    return getTypeSourceInfos() + getNumArgs();
2078  }
2079
2080  SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(Loc, RParenLoc); }
2081
2082  static bool classof(const Stmt *T) {
2083    return T->getStmtClass() == TypeTraitExprClass;
2084  }
2085  static bool classof(const TypeTraitExpr *) { return true; }
2086
2087  // Iterators
2088  child_range children() { return child_range(); }
2089
2090  friend class ASTStmtReader;
2091  friend class ASTStmtWriter;
2092
2093};
2094
2095/// ArrayTypeTraitExpr - An Embarcadero array type trait, as used in the
2096/// implementation of __array_rank and __array_extent.
2097/// Example:
2098/// __array_rank(int[10][20]) == 2
2099/// __array_extent(int, 1)    == 20
2100class ArrayTypeTraitExpr : public Expr {
2101  virtual void anchor();
2102
2103  /// ATT - The trait. An ArrayTypeTrait enum in MSVC compat unsigned.
2104  unsigned ATT : 2;
2105
2106  /// The value of the type trait. Unspecified if dependent.
2107  uint64_t Value;
2108
2109  /// The array dimension being queried, or -1 if not used
2110  Expr *Dimension;
2111
2112  /// Loc - The location of the type trait keyword.
2113  SourceLocation Loc;
2114
2115  /// RParen - The location of the closing paren.
2116  SourceLocation RParen;
2117
2118  /// The type being queried.
2119  TypeSourceInfo *QueriedType;
2120
2121public:
2122  ArrayTypeTraitExpr(SourceLocation loc, ArrayTypeTrait att,
2123                     TypeSourceInfo *queried, uint64_t value,
2124                     Expr *dimension, SourceLocation rparen, QualType ty)
2125    : Expr(ArrayTypeTraitExprClass, ty, VK_RValue, OK_Ordinary,
2126           false, queried->getType()->isDependentType(),
2127           (queried->getType()->isInstantiationDependentType() ||
2128            (dimension && dimension->isInstantiationDependent())),
2129           queried->getType()->containsUnexpandedParameterPack()),
2130      ATT(att), Value(value), Dimension(dimension),
2131      Loc(loc), RParen(rparen), QueriedType(queried) { }
2132
2133
2134  explicit ArrayTypeTraitExpr(EmptyShell Empty)
2135    : Expr(ArrayTypeTraitExprClass, Empty), ATT(0), Value(false),
2136      QueriedType() { }
2137
2138  virtual ~ArrayTypeTraitExpr() { }
2139
2140  virtual SourceRange getSourceRange() const LLVM_READONLY {
2141    return SourceRange(Loc, RParen);
2142  }
2143
2144  ArrayTypeTrait getTrait() const { return static_cast<ArrayTypeTrait>(ATT); }
2145
2146  QualType getQueriedType() const { return QueriedType->getType(); }
2147
2148  TypeSourceInfo *getQueriedTypeSourceInfo() const { return QueriedType; }
2149
2150  uint64_t getValue() const { assert(!isTypeDependent()); return Value; }
2151
2152  Expr *getDimensionExpression() const { return Dimension; }
2153
2154  static bool classof(const Stmt *T) {
2155    return T->getStmtClass() == ArrayTypeTraitExprClass;
2156  }
2157  static bool classof(const ArrayTypeTraitExpr *) { return true; }
2158
2159  // Iterators
2160  child_range children() { return child_range(); }
2161
2162  friend class ASTStmtReader;
2163};
2164
2165/// ExpressionTraitExpr - An expression trait intrinsic
2166/// Example:
2167/// __is_lvalue_expr(std::cout) == true
2168/// __is_lvalue_expr(1) == false
2169class ExpressionTraitExpr : public Expr {
2170  /// ET - The trait. A ExpressionTrait enum in MSVC compat unsigned.
2171  unsigned ET : 31;
2172  /// The value of the type trait. Unspecified if dependent.
2173  bool Value : 1;
2174
2175  /// Loc - The location of the type trait keyword.
2176  SourceLocation Loc;
2177
2178  /// RParen - The location of the closing paren.
2179  SourceLocation RParen;
2180
2181  Expr* QueriedExpression;
2182public:
2183  ExpressionTraitExpr(SourceLocation loc, ExpressionTrait et,
2184                     Expr *queried, bool value,
2185                     SourceLocation rparen, QualType resultType)
2186    : Expr(ExpressionTraitExprClass, resultType, VK_RValue, OK_Ordinary,
2187           false, // Not type-dependent
2188           // Value-dependent if the argument is type-dependent.
2189           queried->isTypeDependent(),
2190           queried->isInstantiationDependent(),
2191           queried->containsUnexpandedParameterPack()),
2192      ET(et), Value(value), Loc(loc), RParen(rparen),
2193      QueriedExpression(queried) { }
2194
2195  explicit ExpressionTraitExpr(EmptyShell Empty)
2196    : Expr(ExpressionTraitExprClass, Empty), ET(0), Value(false),
2197      QueriedExpression() { }
2198
2199  SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(Loc, RParen);}
2200
2201  ExpressionTrait getTrait() const { return static_cast<ExpressionTrait>(ET); }
2202
2203  Expr *getQueriedExpression() const { return QueriedExpression; }
2204
2205  bool getValue() const { return Value; }
2206
2207  static bool classof(const Stmt *T) {
2208    return T->getStmtClass() == ExpressionTraitExprClass;
2209  }
2210  static bool classof(const ExpressionTraitExpr *) { return true; }
2211
2212  // Iterators
2213  child_range children() { return child_range(); }
2214
2215  friend class ASTStmtReader;
2216};
2217
2218
2219/// \brief A reference to an overloaded function set, either an
2220/// \t UnresolvedLookupExpr or an \t UnresolvedMemberExpr.
2221class OverloadExpr : public Expr {
2222  /// The common name of these declarations.
2223  DeclarationNameInfo NameInfo;
2224
2225  /// \brief The nested-name-specifier that qualifies the name, if any.
2226  NestedNameSpecifierLoc QualifierLoc;
2227
2228  /// The results.  These are undesugared, which is to say, they may
2229  /// include UsingShadowDecls.  Access is relative to the naming
2230  /// class.
2231  // FIXME: Allocate this data after the OverloadExpr subclass.
2232  DeclAccessPair *Results;
2233  unsigned NumResults;
2234
2235protected:
2236  /// \brief Whether the name includes info for explicit template
2237  /// keyword and arguments.
2238  bool HasTemplateKWAndArgsInfo;
2239
2240  /// \brief Return the optional template keyword and arguments info.
2241  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo(); // defined far below.
2242
2243  /// \brief Return the optional template keyword and arguments info.
2244  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
2245    return const_cast<OverloadExpr*>(this)->getTemplateKWAndArgsInfo();
2246  }
2247
2248  OverloadExpr(StmtClass K, ASTContext &C,
2249               NestedNameSpecifierLoc QualifierLoc,
2250               SourceLocation TemplateKWLoc,
2251               const DeclarationNameInfo &NameInfo,
2252               const TemplateArgumentListInfo *TemplateArgs,
2253               UnresolvedSetIterator Begin, UnresolvedSetIterator End,
2254               bool KnownDependent,
2255               bool KnownInstantiationDependent,
2256               bool KnownContainsUnexpandedParameterPack);
2257
2258  OverloadExpr(StmtClass K, EmptyShell Empty)
2259    : Expr(K, Empty), QualifierLoc(), Results(0), NumResults(0),
2260      HasTemplateKWAndArgsInfo(false) { }
2261
2262  void initializeResults(ASTContext &C,
2263                         UnresolvedSetIterator Begin,
2264                         UnresolvedSetIterator End);
2265
2266public:
2267  struct FindResult {
2268    OverloadExpr *Expression;
2269    bool IsAddressOfOperand;
2270    bool HasFormOfMemberPointer;
2271  };
2272
2273  /// Finds the overloaded expression in the given expression of
2274  /// OverloadTy.
2275  ///
2276  /// \return the expression (which must be there) and true if it has
2277  /// the particular form of a member pointer expression
2278  static FindResult find(Expr *E) {
2279    assert(E->getType()->isSpecificBuiltinType(BuiltinType::Overload));
2280
2281    FindResult Result;
2282
2283    E = E->IgnoreParens();
2284    if (isa<UnaryOperator>(E)) {
2285      assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
2286      E = cast<UnaryOperator>(E)->getSubExpr();
2287      OverloadExpr *Ovl = cast<OverloadExpr>(E->IgnoreParens());
2288
2289      Result.HasFormOfMemberPointer = (E == Ovl && Ovl->getQualifier());
2290      Result.IsAddressOfOperand = true;
2291      Result.Expression = Ovl;
2292    } else {
2293      Result.HasFormOfMemberPointer = false;
2294      Result.IsAddressOfOperand = false;
2295      Result.Expression = cast<OverloadExpr>(E);
2296    }
2297
2298    return Result;
2299  }
2300
2301  /// Gets the naming class of this lookup, if any.
2302  CXXRecordDecl *getNamingClass() const;
2303
2304  typedef UnresolvedSetImpl::iterator decls_iterator;
2305  decls_iterator decls_begin() const { return UnresolvedSetIterator(Results); }
2306  decls_iterator decls_end() const {
2307    return UnresolvedSetIterator(Results + NumResults);
2308  }
2309
2310  /// Gets the number of declarations in the unresolved set.
2311  unsigned getNumDecls() const { return NumResults; }
2312
2313  /// Gets the full name info.
2314  const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
2315
2316  /// Gets the name looked up.
2317  DeclarationName getName() const { return NameInfo.getName(); }
2318
2319  /// Gets the location of the name.
2320  SourceLocation getNameLoc() const { return NameInfo.getLoc(); }
2321
2322  /// Fetches the nested-name qualifier, if one was given.
2323  NestedNameSpecifier *getQualifier() const {
2324    return QualifierLoc.getNestedNameSpecifier();
2325  }
2326
2327  /// Fetches the nested-name qualifier with source-location information, if
2328  /// one was given.
2329  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2330
2331  /// \brief Retrieve the location of the template keyword preceding
2332  /// this name, if any.
2333  SourceLocation getTemplateKeywordLoc() const {
2334    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2335    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
2336  }
2337
2338  /// \brief Retrieve the location of the left angle bracket starting the
2339  /// explicit template argument list following the name, if any.
2340  SourceLocation getLAngleLoc() const {
2341    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2342    return getTemplateKWAndArgsInfo()->LAngleLoc;
2343  }
2344
2345  /// \brief Retrieve the location of the right angle bracket ending the
2346  /// explicit template argument list following the name, if any.
2347  SourceLocation getRAngleLoc() const {
2348    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2349    return getTemplateKWAndArgsInfo()->RAngleLoc;
2350  }
2351
2352  /// Determines whether the name was preceded by the template keyword.
2353  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
2354
2355  /// Determines whether this expression had explicit template arguments.
2356  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
2357
2358  // Note that, inconsistently with the explicit-template-argument AST
2359  // nodes, users are *forbidden* from calling these methods on objects
2360  // without explicit template arguments.
2361
2362  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
2363    assert(hasExplicitTemplateArgs());
2364    return *getTemplateKWAndArgsInfo();
2365  }
2366
2367  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2368    return const_cast<OverloadExpr*>(this)->getExplicitTemplateArgs();
2369  }
2370
2371  TemplateArgumentLoc const *getTemplateArgs() const {
2372    return getExplicitTemplateArgs().getTemplateArgs();
2373  }
2374
2375  unsigned getNumTemplateArgs() const {
2376    return getExplicitTemplateArgs().NumTemplateArgs;
2377  }
2378
2379  /// Copies the template arguments into the given structure.
2380  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2381    getExplicitTemplateArgs().copyInto(List);
2382  }
2383
2384  /// \brief Retrieves the optional explicit template arguments.
2385  /// This points to the same data as getExplicitTemplateArgs(), but
2386  /// returns null if there are no explicit template arguments.
2387  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() {
2388    if (!hasExplicitTemplateArgs()) return 0;
2389    return &getExplicitTemplateArgs();
2390  }
2391
2392  static bool classof(const Stmt *T) {
2393    return T->getStmtClass() == UnresolvedLookupExprClass ||
2394           T->getStmtClass() == UnresolvedMemberExprClass;
2395  }
2396  static bool classof(const OverloadExpr *) { return true; }
2397
2398  friend class ASTStmtReader;
2399  friend class ASTStmtWriter;
2400};
2401
2402/// \brief A reference to a name which we were able to look up during
2403/// parsing but could not resolve to a specific declaration.  This
2404/// arises in several ways:
2405///   * we might be waiting for argument-dependent lookup
2406///   * the name might resolve to an overloaded function
2407/// and eventually:
2408///   * the lookup might have included a function template
2409/// These never include UnresolvedUsingValueDecls, which are always
2410/// class members and therefore appear only in
2411/// UnresolvedMemberLookupExprs.
2412class UnresolvedLookupExpr : public OverloadExpr {
2413  /// True if these lookup results should be extended by
2414  /// argument-dependent lookup if this is the operand of a function
2415  /// call.
2416  bool RequiresADL;
2417
2418  /// True if namespace ::std should be considered an associated namespace
2419  /// for the purposes of argument-dependent lookup. See C++0x [stmt.ranged]p1.
2420  bool StdIsAssociatedNamespace;
2421
2422  /// True if these lookup results are overloaded.  This is pretty
2423  /// trivially rederivable if we urgently need to kill this field.
2424  bool Overloaded;
2425
2426  /// The naming class (C++ [class.access.base]p5) of the lookup, if
2427  /// any.  This can generally be recalculated from the context chain,
2428  /// but that can be fairly expensive for unqualified lookups.  If we
2429  /// want to improve memory use here, this could go in a union
2430  /// against the qualified-lookup bits.
2431  CXXRecordDecl *NamingClass;
2432
2433  UnresolvedLookupExpr(ASTContext &C,
2434                       CXXRecordDecl *NamingClass,
2435                       NestedNameSpecifierLoc QualifierLoc,
2436                       SourceLocation TemplateKWLoc,
2437                       const DeclarationNameInfo &NameInfo,
2438                       bool RequiresADL, bool Overloaded,
2439                       const TemplateArgumentListInfo *TemplateArgs,
2440                       UnresolvedSetIterator Begin, UnresolvedSetIterator End,
2441                       bool StdIsAssociatedNamespace)
2442    : OverloadExpr(UnresolvedLookupExprClass, C, QualifierLoc, TemplateKWLoc,
2443                   NameInfo, TemplateArgs, Begin, End, false, false, false),
2444      RequiresADL(RequiresADL),
2445      StdIsAssociatedNamespace(StdIsAssociatedNamespace),
2446      Overloaded(Overloaded), NamingClass(NamingClass)
2447  {}
2448
2449  UnresolvedLookupExpr(EmptyShell Empty)
2450    : OverloadExpr(UnresolvedLookupExprClass, Empty),
2451      RequiresADL(false), StdIsAssociatedNamespace(false), Overloaded(false),
2452      NamingClass(0)
2453  {}
2454
2455  friend class ASTStmtReader;
2456
2457public:
2458  static UnresolvedLookupExpr *Create(ASTContext &C,
2459                                      CXXRecordDecl *NamingClass,
2460                                      NestedNameSpecifierLoc QualifierLoc,
2461                                      const DeclarationNameInfo &NameInfo,
2462                                      bool ADL, bool Overloaded,
2463                                      UnresolvedSetIterator Begin,
2464                                      UnresolvedSetIterator End,
2465                                      bool StdIsAssociatedNamespace = false) {
2466    assert((ADL || !StdIsAssociatedNamespace) &&
2467           "std considered associated namespace when not performing ADL");
2468    return new(C) UnresolvedLookupExpr(C, NamingClass, QualifierLoc,
2469                                       SourceLocation(), NameInfo,
2470                                       ADL, Overloaded, 0, Begin, End,
2471                                       StdIsAssociatedNamespace);
2472  }
2473
2474  static UnresolvedLookupExpr *Create(ASTContext &C,
2475                                      CXXRecordDecl *NamingClass,
2476                                      NestedNameSpecifierLoc QualifierLoc,
2477                                      SourceLocation TemplateKWLoc,
2478                                      const DeclarationNameInfo &NameInfo,
2479                                      bool ADL,
2480                                      const TemplateArgumentListInfo *Args,
2481                                      UnresolvedSetIterator Begin,
2482                                      UnresolvedSetIterator End);
2483
2484  static UnresolvedLookupExpr *CreateEmpty(ASTContext &C,
2485                                           bool HasTemplateKWAndArgsInfo,
2486                                           unsigned NumTemplateArgs);
2487
2488  /// True if this declaration should be extended by
2489  /// argument-dependent lookup.
2490  bool requiresADL() const { return RequiresADL; }
2491
2492  /// True if namespace ::std should be artificially added to the set of
2493  /// associated namespaecs for argument-dependent lookup purposes.
2494  bool isStdAssociatedNamespace() const { return StdIsAssociatedNamespace; }
2495
2496  /// True if this lookup is overloaded.
2497  bool isOverloaded() const { return Overloaded; }
2498
2499  /// Gets the 'naming class' (in the sense of C++0x
2500  /// [class.access.base]p5) of the lookup.  This is the scope
2501  /// that was looked in to find these results.
2502  CXXRecordDecl *getNamingClass() const { return NamingClass; }
2503
2504  SourceRange getSourceRange() const LLVM_READONLY {
2505    SourceRange Range(getNameInfo().getSourceRange());
2506    if (getQualifierLoc())
2507      Range.setBegin(getQualifierLoc().getBeginLoc());
2508    if (hasExplicitTemplateArgs())
2509      Range.setEnd(getRAngleLoc());
2510    return Range;
2511  }
2512
2513  child_range children() { return child_range(); }
2514
2515  static bool classof(const Stmt *T) {
2516    return T->getStmtClass() == UnresolvedLookupExprClass;
2517  }
2518  static bool classof(const UnresolvedLookupExpr *) { return true; }
2519};
2520
2521/// \brief A qualified reference to a name whose declaration cannot
2522/// yet be resolved.
2523///
2524/// DependentScopeDeclRefExpr is similar to DeclRefExpr in that
2525/// it expresses a reference to a declaration such as
2526/// X<T>::value. The difference, however, is that an
2527/// DependentScopeDeclRefExpr node is used only within C++ templates when
2528/// the qualification (e.g., X<T>::) refers to a dependent type. In
2529/// this case, X<T>::value cannot resolve to a declaration because the
2530/// declaration will differ from on instantiation of X<T> to the
2531/// next. Therefore, DependentScopeDeclRefExpr keeps track of the
2532/// qualifier (X<T>::) and the name of the entity being referenced
2533/// ("value"). Such expressions will instantiate to a DeclRefExpr once the
2534/// declaration can be found.
2535class DependentScopeDeclRefExpr : public Expr {
2536  /// \brief The nested-name-specifier that qualifies this unresolved
2537  /// declaration name.
2538  NestedNameSpecifierLoc QualifierLoc;
2539
2540  /// The name of the entity we will be referencing.
2541  DeclarationNameInfo NameInfo;
2542
2543  /// \brief Whether the name includes info for explicit template
2544  /// keyword and arguments.
2545  bool HasTemplateKWAndArgsInfo;
2546
2547  /// \brief Return the optional template keyword and arguments info.
2548  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
2549    if (!HasTemplateKWAndArgsInfo) return 0;
2550    return reinterpret_cast<ASTTemplateKWAndArgsInfo*>(this + 1);
2551  }
2552  /// \brief Return the optional template keyword and arguments info.
2553  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
2554    return const_cast<DependentScopeDeclRefExpr*>(this)
2555      ->getTemplateKWAndArgsInfo();
2556  }
2557
2558  DependentScopeDeclRefExpr(QualType T,
2559                            NestedNameSpecifierLoc QualifierLoc,
2560                            SourceLocation TemplateKWLoc,
2561                            const DeclarationNameInfo &NameInfo,
2562                            const TemplateArgumentListInfo *Args);
2563
2564public:
2565  static DependentScopeDeclRefExpr *Create(ASTContext &C,
2566                                           NestedNameSpecifierLoc QualifierLoc,
2567                                           SourceLocation TemplateKWLoc,
2568                                           const DeclarationNameInfo &NameInfo,
2569                              const TemplateArgumentListInfo *TemplateArgs);
2570
2571  static DependentScopeDeclRefExpr *CreateEmpty(ASTContext &C,
2572                                                bool HasTemplateKWAndArgsInfo,
2573                                                unsigned NumTemplateArgs);
2574
2575  /// \brief Retrieve the name that this expression refers to.
2576  const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
2577
2578  /// \brief Retrieve the name that this expression refers to.
2579  DeclarationName getDeclName() const { return NameInfo.getName(); }
2580
2581  /// \brief Retrieve the location of the name within the expression.
2582  SourceLocation getLocation() const { return NameInfo.getLoc(); }
2583
2584  /// \brief Retrieve the nested-name-specifier that qualifies the
2585  /// name, with source location information.
2586  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2587
2588
2589  /// \brief Retrieve the nested-name-specifier that qualifies this
2590  /// declaration.
2591  NestedNameSpecifier *getQualifier() const {
2592    return QualifierLoc.getNestedNameSpecifier();
2593  }
2594
2595  /// \brief Retrieve the location of the template keyword preceding
2596  /// this name, if any.
2597  SourceLocation getTemplateKeywordLoc() const {
2598    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2599    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
2600  }
2601
2602  /// \brief Retrieve the location of the left angle bracket starting the
2603  /// explicit template argument list following the name, if any.
2604  SourceLocation getLAngleLoc() const {
2605    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2606    return getTemplateKWAndArgsInfo()->LAngleLoc;
2607  }
2608
2609  /// \brief Retrieve the location of the right angle bracket ending the
2610  /// explicit template argument list following the name, if any.
2611  SourceLocation getRAngleLoc() const {
2612    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2613    return getTemplateKWAndArgsInfo()->RAngleLoc;
2614  }
2615
2616  /// Determines whether the name was preceded by the template keyword.
2617  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
2618
2619  /// Determines whether this lookup had explicit template arguments.
2620  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
2621
2622  // Note that, inconsistently with the explicit-template-argument AST
2623  // nodes, users are *forbidden* from calling these methods on objects
2624  // without explicit template arguments.
2625
2626  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
2627    assert(hasExplicitTemplateArgs());
2628    return *reinterpret_cast<ASTTemplateArgumentListInfo*>(this + 1);
2629  }
2630
2631  /// Gets a reference to the explicit template argument list.
2632  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2633    assert(hasExplicitTemplateArgs());
2634    return *reinterpret_cast<const ASTTemplateArgumentListInfo*>(this + 1);
2635  }
2636
2637  /// \brief Retrieves the optional explicit template arguments.
2638  /// This points to the same data as getExplicitTemplateArgs(), but
2639  /// returns null if there are no explicit template arguments.
2640  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() {
2641    if (!hasExplicitTemplateArgs()) return 0;
2642    return &getExplicitTemplateArgs();
2643  }
2644
2645  /// \brief Copies the template arguments (if present) into the given
2646  /// structure.
2647  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2648    getExplicitTemplateArgs().copyInto(List);
2649  }
2650
2651  TemplateArgumentLoc const *getTemplateArgs() const {
2652    return getExplicitTemplateArgs().getTemplateArgs();
2653  }
2654
2655  unsigned getNumTemplateArgs() const {
2656    return getExplicitTemplateArgs().NumTemplateArgs;
2657  }
2658
2659  SourceRange getSourceRange() const LLVM_READONLY {
2660    SourceRange Range(QualifierLoc.getBeginLoc(), getLocation());
2661    if (hasExplicitTemplateArgs())
2662      Range.setEnd(getRAngleLoc());
2663    return Range;
2664  }
2665
2666  static bool classof(const Stmt *T) {
2667    return T->getStmtClass() == DependentScopeDeclRefExprClass;
2668  }
2669  static bool classof(const DependentScopeDeclRefExpr *) { return true; }
2670
2671  child_range children() { return child_range(); }
2672
2673  friend class ASTStmtReader;
2674  friend class ASTStmtWriter;
2675};
2676
2677/// Represents an expression --- generally a full-expression --- which
2678/// introduces cleanups to be run at the end of the sub-expression's
2679/// evaluation.  The most common source of expression-introduced
2680/// cleanups is temporary objects in C++, but several other kinds of
2681/// expressions can create cleanups, including basically every
2682/// call in ARC that returns an Objective-C pointer.
2683///
2684/// This expression also tracks whether the sub-expression contains a
2685/// potentially-evaluated block literal.  The lifetime of a block
2686/// literal is the extent of the enclosing scope.
2687class ExprWithCleanups : public Expr {
2688public:
2689  /// The type of objects that are kept in the cleanup.
2690  /// It's useful to remember the set of blocks;  we could also
2691  /// remember the set of temporaries, but there's currently
2692  /// no need.
2693  typedef BlockDecl *CleanupObject;
2694
2695private:
2696  Stmt *SubExpr;
2697
2698  ExprWithCleanups(EmptyShell, unsigned NumObjects);
2699  ExprWithCleanups(Expr *SubExpr, ArrayRef<CleanupObject> Objects);
2700
2701  CleanupObject *getObjectsBuffer() {
2702    return reinterpret_cast<CleanupObject*>(this + 1);
2703  }
2704  const CleanupObject *getObjectsBuffer() const {
2705    return reinterpret_cast<const CleanupObject*>(this + 1);
2706  }
2707  friend class ASTStmtReader;
2708
2709public:
2710  static ExprWithCleanups *Create(ASTContext &C, EmptyShell empty,
2711                                  unsigned numObjects);
2712
2713  static ExprWithCleanups *Create(ASTContext &C, Expr *subexpr,
2714                                  ArrayRef<CleanupObject> objects);
2715
2716  ArrayRef<CleanupObject> getObjects() const {
2717    return ArrayRef<CleanupObject>(getObjectsBuffer(), getNumObjects());
2718  }
2719
2720  unsigned getNumObjects() const { return ExprWithCleanupsBits.NumObjects; }
2721
2722  CleanupObject getObject(unsigned i) const {
2723    assert(i < getNumObjects() && "Index out of range");
2724    return getObjects()[i];
2725  }
2726
2727  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
2728  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
2729
2730  /// setSubExpr - As with any mutator of the AST, be very careful
2731  /// when modifying an existing AST to preserve its invariants.
2732  void setSubExpr(Expr *E) { SubExpr = E; }
2733
2734  SourceRange getSourceRange() const LLVM_READONLY {
2735    return SubExpr->getSourceRange();
2736  }
2737
2738  // Implement isa/cast/dyncast/etc.
2739  static bool classof(const Stmt *T) {
2740    return T->getStmtClass() == ExprWithCleanupsClass;
2741  }
2742  static bool classof(const ExprWithCleanups *) { return true; }
2743
2744  // Iterators
2745  child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
2746};
2747
2748/// \brief Describes an explicit type conversion that uses functional
2749/// notion but could not be resolved because one or more arguments are
2750/// type-dependent.
2751///
2752/// The explicit type conversions expressed by
2753/// CXXUnresolvedConstructExpr have the form \c T(a1, a2, ..., aN),
2754/// where \c T is some type and \c a1, a2, ..., aN are values, and
2755/// either \C T is a dependent type or one or more of the \c a's is
2756/// type-dependent. For example, this would occur in a template such
2757/// as:
2758///
2759/// \code
2760///   template<typename T, typename A1>
2761///   inline T make_a(const A1& a1) {
2762///     return T(a1);
2763///   }
2764/// \endcode
2765///
2766/// When the returned expression is instantiated, it may resolve to a
2767/// constructor call, conversion function call, or some kind of type
2768/// conversion.
2769class CXXUnresolvedConstructExpr : public Expr {
2770  /// \brief The type being constructed.
2771  TypeSourceInfo *Type;
2772
2773  /// \brief The location of the left parentheses ('(').
2774  SourceLocation LParenLoc;
2775
2776  /// \brief The location of the right parentheses (')').
2777  SourceLocation RParenLoc;
2778
2779  /// \brief The number of arguments used to construct the type.
2780  unsigned NumArgs;
2781
2782  CXXUnresolvedConstructExpr(TypeSourceInfo *Type,
2783                             SourceLocation LParenLoc,
2784                             Expr **Args,
2785                             unsigned NumArgs,
2786                             SourceLocation RParenLoc);
2787
2788  CXXUnresolvedConstructExpr(EmptyShell Empty, unsigned NumArgs)
2789    : Expr(CXXUnresolvedConstructExprClass, Empty), Type(), NumArgs(NumArgs) { }
2790
2791  friend class ASTStmtReader;
2792
2793public:
2794  static CXXUnresolvedConstructExpr *Create(ASTContext &C,
2795                                            TypeSourceInfo *Type,
2796                                            SourceLocation LParenLoc,
2797                                            Expr **Args,
2798                                            unsigned NumArgs,
2799                                            SourceLocation RParenLoc);
2800
2801  static CXXUnresolvedConstructExpr *CreateEmpty(ASTContext &C,
2802                                                 unsigned NumArgs);
2803
2804  /// \brief Retrieve the type that is being constructed, as specified
2805  /// in the source code.
2806  QualType getTypeAsWritten() const { return Type->getType(); }
2807
2808  /// \brief Retrieve the type source information for the type being
2809  /// constructed.
2810  TypeSourceInfo *getTypeSourceInfo() const { return Type; }
2811
2812  /// \brief Retrieve the location of the left parentheses ('(') that
2813  /// precedes the argument list.
2814  SourceLocation getLParenLoc() const { return LParenLoc; }
2815  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2816
2817  /// \brief Retrieve the location of the right parentheses (')') that
2818  /// follows the argument list.
2819  SourceLocation getRParenLoc() const { return RParenLoc; }
2820  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2821
2822  /// \brief Retrieve the number of arguments.
2823  unsigned arg_size() const { return NumArgs; }
2824
2825  typedef Expr** arg_iterator;
2826  arg_iterator arg_begin() { return reinterpret_cast<Expr**>(this + 1); }
2827  arg_iterator arg_end() { return arg_begin() + NumArgs; }
2828
2829  typedef const Expr* const * const_arg_iterator;
2830  const_arg_iterator arg_begin() const {
2831    return reinterpret_cast<const Expr* const *>(this + 1);
2832  }
2833  const_arg_iterator arg_end() const {
2834    return arg_begin() + NumArgs;
2835  }
2836
2837  Expr *getArg(unsigned I) {
2838    assert(I < NumArgs && "Argument index out-of-range");
2839    return *(arg_begin() + I);
2840  }
2841
2842  const Expr *getArg(unsigned I) const {
2843    assert(I < NumArgs && "Argument index out-of-range");
2844    return *(arg_begin() + I);
2845  }
2846
2847  void setArg(unsigned I, Expr *E) {
2848    assert(I < NumArgs && "Argument index out-of-range");
2849    *(arg_begin() + I) = E;
2850  }
2851
2852  SourceRange getSourceRange() const LLVM_READONLY;
2853
2854  static bool classof(const Stmt *T) {
2855    return T->getStmtClass() == CXXUnresolvedConstructExprClass;
2856  }
2857  static bool classof(const CXXUnresolvedConstructExpr *) { return true; }
2858
2859  // Iterators
2860  child_range children() {
2861    Stmt **begin = reinterpret_cast<Stmt**>(this+1);
2862    return child_range(begin, begin + NumArgs);
2863  }
2864};
2865
2866/// \brief Represents a C++ member access expression where the actual
2867/// member referenced could not be resolved because the base
2868/// expression or the member name was dependent.
2869///
2870/// Like UnresolvedMemberExprs, these can be either implicit or
2871/// explicit accesses.  It is only possible to get one of these with
2872/// an implicit access if a qualifier is provided.
2873class CXXDependentScopeMemberExpr : public Expr {
2874  /// \brief The expression for the base pointer or class reference,
2875  /// e.g., the \c x in x.f.  Can be null in implicit accesses.
2876  Stmt *Base;
2877
2878  /// \brief The type of the base expression.  Never null, even for
2879  /// implicit accesses.
2880  QualType BaseType;
2881
2882  /// \brief Whether this member expression used the '->' operator or
2883  /// the '.' operator.
2884  bool IsArrow : 1;
2885
2886  /// \brief Whether this member expression has info for explicit template
2887  /// keyword and arguments.
2888  bool HasTemplateKWAndArgsInfo : 1;
2889
2890  /// \brief The location of the '->' or '.' operator.
2891  SourceLocation OperatorLoc;
2892
2893  /// \brief The nested-name-specifier that precedes the member name, if any.
2894  NestedNameSpecifierLoc QualifierLoc;
2895
2896  /// \brief In a qualified member access expression such as t->Base::f, this
2897  /// member stores the resolves of name lookup in the context of the member
2898  /// access expression, to be used at instantiation time.
2899  ///
2900  /// FIXME: This member, along with the QualifierLoc, could
2901  /// be stuck into a structure that is optionally allocated at the end of
2902  /// the CXXDependentScopeMemberExpr, to save space in the common case.
2903  NamedDecl *FirstQualifierFoundInScope;
2904
2905  /// \brief The member to which this member expression refers, which
2906  /// can be name, overloaded operator, or destructor.
2907  /// FIXME: could also be a template-id
2908  DeclarationNameInfo MemberNameInfo;
2909
2910  /// \brief Return the optional template keyword and arguments info.
2911  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
2912    if (!HasTemplateKWAndArgsInfo) return 0;
2913    return reinterpret_cast<ASTTemplateKWAndArgsInfo*>(this + 1);
2914  }
2915  /// \brief Return the optional template keyword and arguments info.
2916  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
2917    return const_cast<CXXDependentScopeMemberExpr*>(this)
2918      ->getTemplateKWAndArgsInfo();
2919  }
2920
2921  CXXDependentScopeMemberExpr(ASTContext &C,
2922                          Expr *Base, QualType BaseType, bool IsArrow,
2923                          SourceLocation OperatorLoc,
2924                          NestedNameSpecifierLoc QualifierLoc,
2925                          SourceLocation TemplateKWLoc,
2926                          NamedDecl *FirstQualifierFoundInScope,
2927                          DeclarationNameInfo MemberNameInfo,
2928                          const TemplateArgumentListInfo *TemplateArgs);
2929
2930public:
2931  CXXDependentScopeMemberExpr(ASTContext &C,
2932                              Expr *Base, QualType BaseType,
2933                              bool IsArrow,
2934                              SourceLocation OperatorLoc,
2935                              NestedNameSpecifierLoc QualifierLoc,
2936                              NamedDecl *FirstQualifierFoundInScope,
2937                              DeclarationNameInfo MemberNameInfo);
2938
2939  static CXXDependentScopeMemberExpr *
2940  Create(ASTContext &C,
2941         Expr *Base, QualType BaseType, bool IsArrow,
2942         SourceLocation OperatorLoc,
2943         NestedNameSpecifierLoc QualifierLoc,
2944         SourceLocation TemplateKWLoc,
2945         NamedDecl *FirstQualifierFoundInScope,
2946         DeclarationNameInfo MemberNameInfo,
2947         const TemplateArgumentListInfo *TemplateArgs);
2948
2949  static CXXDependentScopeMemberExpr *
2950  CreateEmpty(ASTContext &C, bool HasTemplateKWAndArgsInfo,
2951              unsigned NumTemplateArgs);
2952
2953  /// \brief True if this is an implicit access, i.e. one in which the
2954  /// member being accessed was not written in the source.  The source
2955  /// location of the operator is invalid in this case.
2956  bool isImplicitAccess() const;
2957
2958  /// \brief Retrieve the base object of this member expressions,
2959  /// e.g., the \c x in \c x.m.
2960  Expr *getBase() const {
2961    assert(!isImplicitAccess());
2962    return cast<Expr>(Base);
2963  }
2964
2965  QualType getBaseType() const { return BaseType; }
2966
2967  /// \brief Determine whether this member expression used the '->'
2968  /// operator; otherwise, it used the '.' operator.
2969  bool isArrow() const { return IsArrow; }
2970
2971  /// \brief Retrieve the location of the '->' or '.' operator.
2972  SourceLocation getOperatorLoc() const { return OperatorLoc; }
2973
2974  /// \brief Retrieve the nested-name-specifier that qualifies the member
2975  /// name.
2976  NestedNameSpecifier *getQualifier() const {
2977    return QualifierLoc.getNestedNameSpecifier();
2978  }
2979
2980  /// \brief Retrieve the nested-name-specifier that qualifies the member
2981  /// name, with source location information.
2982  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2983
2984
2985  /// \brief Retrieve the first part of the nested-name-specifier that was
2986  /// found in the scope of the member access expression when the member access
2987  /// was initially parsed.
2988  ///
2989  /// This function only returns a useful result when member access expression
2990  /// uses a qualified member name, e.g., "x.Base::f". Here, the declaration
2991  /// returned by this function describes what was found by unqualified name
2992  /// lookup for the identifier "Base" within the scope of the member access
2993  /// expression itself. At template instantiation time, this information is
2994  /// combined with the results of name lookup into the type of the object
2995  /// expression itself (the class type of x).
2996  NamedDecl *getFirstQualifierFoundInScope() const {
2997    return FirstQualifierFoundInScope;
2998  }
2999
3000  /// \brief Retrieve the name of the member that this expression
3001  /// refers to.
3002  const DeclarationNameInfo &getMemberNameInfo() const {
3003    return MemberNameInfo;
3004  }
3005
3006  /// \brief Retrieve the name of the member that this expression
3007  /// refers to.
3008  DeclarationName getMember() const { return MemberNameInfo.getName(); }
3009
3010  // \brief Retrieve the location of the name of the member that this
3011  // expression refers to.
3012  SourceLocation getMemberLoc() const { return MemberNameInfo.getLoc(); }
3013
3014  /// \brief Retrieve the location of the template keyword preceding the
3015  /// member name, if any.
3016  SourceLocation getTemplateKeywordLoc() const {
3017    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
3018    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
3019  }
3020
3021  /// \brief Retrieve the location of the left angle bracket starting the
3022  /// explicit template argument list following the member name, if any.
3023  SourceLocation getLAngleLoc() const {
3024    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
3025    return getTemplateKWAndArgsInfo()->LAngleLoc;
3026  }
3027
3028  /// \brief Retrieve the location of the right angle bracket ending the
3029  /// explicit template argument list following the member name, if any.
3030  SourceLocation getRAngleLoc() const {
3031    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
3032    return getTemplateKWAndArgsInfo()->RAngleLoc;
3033  }
3034
3035  /// Determines whether the member name was preceded by the template keyword.
3036  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
3037
3038  /// \brief Determines whether this member expression actually had a C++
3039  /// template argument list explicitly specified, e.g., x.f<int>.
3040  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
3041
3042  /// \brief Retrieve the explicit template argument list that followed the
3043  /// member template name, if any.
3044  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
3045    assert(hasExplicitTemplateArgs());
3046    return *reinterpret_cast<ASTTemplateArgumentListInfo *>(this + 1);
3047  }
3048
3049  /// \brief Retrieve the explicit template argument list that followed the
3050  /// member template name, if any.
3051  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
3052    return const_cast<CXXDependentScopeMemberExpr *>(this)
3053             ->getExplicitTemplateArgs();
3054  }
3055
3056  /// \brief Retrieves the optional explicit template arguments.
3057  /// This points to the same data as getExplicitTemplateArgs(), but
3058  /// returns null if there are no explicit template arguments.
3059  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() {
3060    if (!hasExplicitTemplateArgs()) return 0;
3061    return &getExplicitTemplateArgs();
3062  }
3063
3064  /// \brief Copies the template arguments (if present) into the given
3065  /// structure.
3066  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
3067    getExplicitTemplateArgs().copyInto(List);
3068  }
3069
3070  /// \brief Initializes the template arguments using the given structure.
3071  void initializeTemplateArgumentsFrom(const TemplateArgumentListInfo &List) {
3072    getExplicitTemplateArgs().initializeFrom(List);
3073  }
3074
3075  /// \brief Retrieve the template arguments provided as part of this
3076  /// template-id.
3077  const TemplateArgumentLoc *getTemplateArgs() const {
3078    return getExplicitTemplateArgs().getTemplateArgs();
3079  }
3080
3081  /// \brief Retrieve the number of template arguments provided as part of this
3082  /// template-id.
3083  unsigned getNumTemplateArgs() const {
3084    return getExplicitTemplateArgs().NumTemplateArgs;
3085  }
3086
3087  SourceRange getSourceRange() const LLVM_READONLY {
3088    SourceRange Range;
3089    if (!isImplicitAccess())
3090      Range.setBegin(Base->getSourceRange().getBegin());
3091    else if (getQualifier())
3092      Range.setBegin(getQualifierLoc().getBeginLoc());
3093    else
3094      Range.setBegin(MemberNameInfo.getBeginLoc());
3095
3096    if (hasExplicitTemplateArgs())
3097      Range.setEnd(getRAngleLoc());
3098    else
3099      Range.setEnd(MemberNameInfo.getEndLoc());
3100    return Range;
3101  }
3102
3103  static bool classof(const Stmt *T) {
3104    return T->getStmtClass() == CXXDependentScopeMemberExprClass;
3105  }
3106  static bool classof(const CXXDependentScopeMemberExpr *) { return true; }
3107
3108  // Iterators
3109  child_range children() {
3110    if (isImplicitAccess()) return child_range();
3111    return child_range(&Base, &Base + 1);
3112  }
3113
3114  friend class ASTStmtReader;
3115  friend class ASTStmtWriter;
3116};
3117
3118/// \brief Represents a C++ member access expression for which lookup
3119/// produced a set of overloaded functions.
3120///
3121/// The member access may be explicit or implicit:
3122///    struct A {
3123///      int a, b;
3124///      int explicitAccess() { return this->a + this->A::b; }
3125///      int implicitAccess() { return a + A::b; }
3126///    };
3127///
3128/// In the final AST, an explicit access always becomes a MemberExpr.
3129/// An implicit access may become either a MemberExpr or a
3130/// DeclRefExpr, depending on whether the member is static.
3131class UnresolvedMemberExpr : public OverloadExpr {
3132  /// \brief Whether this member expression used the '->' operator or
3133  /// the '.' operator.
3134  bool IsArrow : 1;
3135
3136  /// \brief Whether the lookup results contain an unresolved using
3137  /// declaration.
3138  bool HasUnresolvedUsing : 1;
3139
3140  /// \brief The expression for the base pointer or class reference,
3141  /// e.g., the \c x in x.f.  This can be null if this is an 'unbased'
3142  /// member expression
3143  Stmt *Base;
3144
3145  /// \brief The type of the base expression;  never null.
3146  QualType BaseType;
3147
3148  /// \brief The location of the '->' or '.' operator.
3149  SourceLocation OperatorLoc;
3150
3151  UnresolvedMemberExpr(ASTContext &C, bool HasUnresolvedUsing,
3152                       Expr *Base, QualType BaseType, bool IsArrow,
3153                       SourceLocation OperatorLoc,
3154                       NestedNameSpecifierLoc QualifierLoc,
3155                       SourceLocation TemplateKWLoc,
3156                       const DeclarationNameInfo &MemberNameInfo,
3157                       const TemplateArgumentListInfo *TemplateArgs,
3158                       UnresolvedSetIterator Begin, UnresolvedSetIterator End);
3159
3160  UnresolvedMemberExpr(EmptyShell Empty)
3161    : OverloadExpr(UnresolvedMemberExprClass, Empty), IsArrow(false),
3162      HasUnresolvedUsing(false), Base(0) { }
3163
3164  friend class ASTStmtReader;
3165
3166public:
3167  static UnresolvedMemberExpr *
3168  Create(ASTContext &C, bool HasUnresolvedUsing,
3169         Expr *Base, QualType BaseType, bool IsArrow,
3170         SourceLocation OperatorLoc,
3171         NestedNameSpecifierLoc QualifierLoc,
3172         SourceLocation TemplateKWLoc,
3173         const DeclarationNameInfo &MemberNameInfo,
3174         const TemplateArgumentListInfo *TemplateArgs,
3175         UnresolvedSetIterator Begin, UnresolvedSetIterator End);
3176
3177  static UnresolvedMemberExpr *
3178  CreateEmpty(ASTContext &C, bool HasTemplateKWAndArgsInfo,
3179              unsigned NumTemplateArgs);
3180
3181  /// \brief True if this is an implicit access, i.e. one in which the
3182  /// member being accessed was not written in the source.  The source
3183  /// location of the operator is invalid in this case.
3184  bool isImplicitAccess() const;
3185
3186  /// \brief Retrieve the base object of this member expressions,
3187  /// e.g., the \c x in \c x.m.
3188  Expr *getBase() {
3189    assert(!isImplicitAccess());
3190    return cast<Expr>(Base);
3191  }
3192  const Expr *getBase() const {
3193    assert(!isImplicitAccess());
3194    return cast<Expr>(Base);
3195  }
3196
3197  QualType getBaseType() const { return BaseType; }
3198
3199  /// \brief Determine whether the lookup results contain an unresolved using
3200  /// declaration.
3201  bool hasUnresolvedUsing() const { return HasUnresolvedUsing; }
3202
3203  /// \brief Determine whether this member expression used the '->'
3204  /// operator; otherwise, it used the '.' operator.
3205  bool isArrow() const { return IsArrow; }
3206
3207  /// \brief Retrieve the location of the '->' or '.' operator.
3208  SourceLocation getOperatorLoc() const { return OperatorLoc; }
3209
3210  /// \brief Retrieves the naming class of this lookup.
3211  CXXRecordDecl *getNamingClass() const;
3212
3213  /// \brief Retrieve the full name info for the member that this expression
3214  /// refers to.
3215  const DeclarationNameInfo &getMemberNameInfo() const { return getNameInfo(); }
3216
3217  /// \brief Retrieve the name of the member that this expression
3218  /// refers to.
3219  DeclarationName getMemberName() const { return getName(); }
3220
3221  // \brief Retrieve the location of the name of the member that this
3222  // expression refers to.
3223  SourceLocation getMemberLoc() const { return getNameLoc(); }
3224
3225  SourceRange getSourceRange() const LLVM_READONLY {
3226    SourceRange Range = getMemberNameInfo().getSourceRange();
3227    if (!isImplicitAccess())
3228      Range.setBegin(Base->getSourceRange().getBegin());
3229    else if (getQualifierLoc())
3230      Range.setBegin(getQualifierLoc().getBeginLoc());
3231
3232    if (hasExplicitTemplateArgs())
3233      Range.setEnd(getRAngleLoc());
3234    return Range;
3235  }
3236
3237  static bool classof(const Stmt *T) {
3238    return T->getStmtClass() == UnresolvedMemberExprClass;
3239  }
3240  static bool classof(const UnresolvedMemberExpr *) { return true; }
3241
3242  // Iterators
3243  child_range children() {
3244    if (isImplicitAccess()) return child_range();
3245    return child_range(&Base, &Base + 1);
3246  }
3247};
3248
3249/// \brief Represents a C++0x noexcept expression (C++ [expr.unary.noexcept]).
3250///
3251/// The noexcept expression tests whether a given expression might throw. Its
3252/// result is a boolean constant.
3253class CXXNoexceptExpr : public Expr {
3254  bool Value : 1;
3255  Stmt *Operand;
3256  SourceRange Range;
3257
3258  friend class ASTStmtReader;
3259
3260public:
3261  CXXNoexceptExpr(QualType Ty, Expr *Operand, CanThrowResult Val,
3262                  SourceLocation Keyword, SourceLocation RParen)
3263    : Expr(CXXNoexceptExprClass, Ty, VK_RValue, OK_Ordinary,
3264           /*TypeDependent*/false,
3265           /*ValueDependent*/Val == CT_Dependent,
3266           Val == CT_Dependent || Operand->isInstantiationDependent(),
3267           Operand->containsUnexpandedParameterPack()),
3268      Value(Val == CT_Cannot), Operand(Operand), Range(Keyword, RParen)
3269  { }
3270
3271  CXXNoexceptExpr(EmptyShell Empty)
3272    : Expr(CXXNoexceptExprClass, Empty)
3273  { }
3274
3275  Expr *getOperand() const { return static_cast<Expr*>(Operand); }
3276
3277  SourceRange getSourceRange() const LLVM_READONLY { return Range; }
3278
3279  bool getValue() const { return Value; }
3280
3281  static bool classof(const Stmt *T) {
3282    return T->getStmtClass() == CXXNoexceptExprClass;
3283  }
3284  static bool classof(const CXXNoexceptExpr *) { return true; }
3285
3286  // Iterators
3287  child_range children() { return child_range(&Operand, &Operand + 1); }
3288};
3289
3290/// \brief Represents a C++0x pack expansion that produces a sequence of
3291/// expressions.
3292///
3293/// A pack expansion expression contains a pattern (which itself is an
3294/// expression) followed by an ellipsis. For example:
3295///
3296/// \code
3297/// template<typename F, typename ...Types>
3298/// void forward(F f, Types &&...args) {
3299///   f(static_cast<Types&&>(args)...);
3300/// }
3301/// \endcode
3302///
3303/// Here, the argument to the function object \c f is a pack expansion whose
3304/// pattern is \c static_cast<Types&&>(args). When the \c forward function
3305/// template is instantiated, the pack expansion will instantiate to zero or
3306/// or more function arguments to the function object \c f.
3307class PackExpansionExpr : public Expr {
3308  SourceLocation EllipsisLoc;
3309
3310  /// \brief The number of expansions that will be produced by this pack
3311  /// expansion expression, if known.
3312  ///
3313  /// When zero, the number of expansions is not known. Otherwise, this value
3314  /// is the number of expansions + 1.
3315  unsigned NumExpansions;
3316
3317  Stmt *Pattern;
3318
3319  friend class ASTStmtReader;
3320  friend class ASTStmtWriter;
3321
3322public:
3323  PackExpansionExpr(QualType T, Expr *Pattern, SourceLocation EllipsisLoc,
3324                    llvm::Optional<unsigned> NumExpansions)
3325    : Expr(PackExpansionExprClass, T, Pattern->getValueKind(),
3326           Pattern->getObjectKind(), /*TypeDependent=*/true,
3327           /*ValueDependent=*/true, /*InstantiationDependent=*/true,
3328           /*ContainsUnexpandedParameterPack=*/false),
3329      EllipsisLoc(EllipsisLoc),
3330      NumExpansions(NumExpansions? *NumExpansions + 1 : 0),
3331      Pattern(Pattern) { }
3332
3333  PackExpansionExpr(EmptyShell Empty) : Expr(PackExpansionExprClass, Empty) { }
3334
3335  /// \brief Retrieve the pattern of the pack expansion.
3336  Expr *getPattern() { return reinterpret_cast<Expr *>(Pattern); }
3337
3338  /// \brief Retrieve the pattern of the pack expansion.
3339  const Expr *getPattern() const { return reinterpret_cast<Expr *>(Pattern); }
3340
3341  /// \brief Retrieve the location of the ellipsis that describes this pack
3342  /// expansion.
3343  SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
3344
3345  /// \brief Determine the number of expansions that will be produced when
3346  /// this pack expansion is instantiated, if already known.
3347  llvm::Optional<unsigned> getNumExpansions() const {
3348    if (NumExpansions)
3349      return NumExpansions - 1;
3350
3351    return llvm::Optional<unsigned>();
3352  }
3353
3354  SourceRange getSourceRange() const LLVM_READONLY {
3355    return SourceRange(Pattern->getLocStart(), EllipsisLoc);
3356  }
3357
3358  static bool classof(const Stmt *T) {
3359    return T->getStmtClass() == PackExpansionExprClass;
3360  }
3361  static bool classof(const PackExpansionExpr *) { return true; }
3362
3363  // Iterators
3364  child_range children() {
3365    return child_range(&Pattern, &Pattern + 1);
3366  }
3367};
3368
3369inline ASTTemplateKWAndArgsInfo *OverloadExpr::getTemplateKWAndArgsInfo() {
3370  if (!HasTemplateKWAndArgsInfo) return 0;
3371  if (isa<UnresolvedLookupExpr>(this))
3372    return reinterpret_cast<ASTTemplateKWAndArgsInfo*>
3373      (cast<UnresolvedLookupExpr>(this) + 1);
3374  else
3375    return reinterpret_cast<ASTTemplateKWAndArgsInfo*>
3376      (cast<UnresolvedMemberExpr>(this) + 1);
3377}
3378
3379/// \brief Represents an expression that computes the length of a parameter
3380/// pack.
3381///
3382/// \code
3383/// template<typename ...Types>
3384/// struct count {
3385///   static const unsigned value = sizeof...(Types);
3386/// };
3387/// \endcode
3388class SizeOfPackExpr : public Expr {
3389  /// \brief The location of the 'sizeof' keyword.
3390  SourceLocation OperatorLoc;
3391
3392  /// \brief The location of the name of the parameter pack.
3393  SourceLocation PackLoc;
3394
3395  /// \brief The location of the closing parenthesis.
3396  SourceLocation RParenLoc;
3397
3398  /// \brief The length of the parameter pack, if known.
3399  ///
3400  /// When this expression is value-dependent, the length of the parameter pack
3401  /// is unknown. When this expression is not value-dependent, the length is
3402  /// known.
3403  unsigned Length;
3404
3405  /// \brief The parameter pack itself.
3406  NamedDecl *Pack;
3407
3408  friend class ASTStmtReader;
3409  friend class ASTStmtWriter;
3410
3411public:
3412  /// \brief Creates a value-dependent expression that computes the length of
3413  /// the given parameter pack.
3414  SizeOfPackExpr(QualType SizeType, SourceLocation OperatorLoc, NamedDecl *Pack,
3415                 SourceLocation PackLoc, SourceLocation RParenLoc)
3416    : Expr(SizeOfPackExprClass, SizeType, VK_RValue, OK_Ordinary,
3417           /*TypeDependent=*/false, /*ValueDependent=*/true,
3418           /*InstantiationDependent=*/true,
3419           /*ContainsUnexpandedParameterPack=*/false),
3420      OperatorLoc(OperatorLoc), PackLoc(PackLoc), RParenLoc(RParenLoc),
3421      Length(0), Pack(Pack) { }
3422
3423  /// \brief Creates an expression that computes the length of
3424  /// the given parameter pack, which is already known.
3425  SizeOfPackExpr(QualType SizeType, SourceLocation OperatorLoc, NamedDecl *Pack,
3426                 SourceLocation PackLoc, SourceLocation RParenLoc,
3427                 unsigned Length)
3428  : Expr(SizeOfPackExprClass, SizeType, VK_RValue, OK_Ordinary,
3429         /*TypeDependent=*/false, /*ValueDependent=*/false,
3430         /*InstantiationDependent=*/false,
3431         /*ContainsUnexpandedParameterPack=*/false),
3432    OperatorLoc(OperatorLoc), PackLoc(PackLoc), RParenLoc(RParenLoc),
3433    Length(Length), Pack(Pack) { }
3434
3435  /// \brief Create an empty expression.
3436  SizeOfPackExpr(EmptyShell Empty) : Expr(SizeOfPackExprClass, Empty) { }
3437
3438  /// \brief Determine the location of the 'sizeof' keyword.
3439  SourceLocation getOperatorLoc() const { return OperatorLoc; }
3440
3441  /// \brief Determine the location of the parameter pack.
3442  SourceLocation getPackLoc() const { return PackLoc; }
3443
3444  /// \brief Determine the location of the right parenthesis.
3445  SourceLocation getRParenLoc() const { return RParenLoc; }
3446
3447  /// \brief Retrieve the parameter pack.
3448  NamedDecl *getPack() const { return Pack; }
3449
3450  /// \brief Retrieve the length of the parameter pack.
3451  ///
3452  /// This routine may only be invoked when the expression is not
3453  /// value-dependent.
3454  unsigned getPackLength() const {
3455    assert(!isValueDependent() &&
3456           "Cannot get the length of a value-dependent pack size expression");
3457    return Length;
3458  }
3459
3460  SourceRange getSourceRange() const LLVM_READONLY {
3461    return SourceRange(OperatorLoc, RParenLoc);
3462  }
3463
3464  static bool classof(const Stmt *T) {
3465    return T->getStmtClass() == SizeOfPackExprClass;
3466  }
3467  static bool classof(const SizeOfPackExpr *) { return true; }
3468
3469  // Iterators
3470  child_range children() { return child_range(); }
3471};
3472
3473/// \brief Represents a reference to a non-type template parameter
3474/// that has been substituted with a template argument.
3475class SubstNonTypeTemplateParmExpr : public Expr {
3476  /// \brief The replaced parameter.
3477  NonTypeTemplateParmDecl *Param;
3478
3479  /// \brief The replacement expression.
3480  Stmt *Replacement;
3481
3482  /// \brief The location of the non-type template parameter reference.
3483  SourceLocation NameLoc;
3484
3485  friend class ASTReader;
3486  friend class ASTStmtReader;
3487  explicit SubstNonTypeTemplateParmExpr(EmptyShell Empty)
3488    : Expr(SubstNonTypeTemplateParmExprClass, Empty) { }
3489
3490public:
3491  SubstNonTypeTemplateParmExpr(QualType type,
3492                               ExprValueKind valueKind,
3493                               SourceLocation loc,
3494                               NonTypeTemplateParmDecl *param,
3495                               Expr *replacement)
3496    : Expr(SubstNonTypeTemplateParmExprClass, type, valueKind, OK_Ordinary,
3497           replacement->isTypeDependent(), replacement->isValueDependent(),
3498           replacement->isInstantiationDependent(),
3499           replacement->containsUnexpandedParameterPack()),
3500      Param(param), Replacement(replacement), NameLoc(loc) {}
3501
3502  SourceLocation getNameLoc() const { return NameLoc; }
3503  SourceRange getSourceRange() const LLVM_READONLY { return NameLoc; }
3504
3505  Expr *getReplacement() const { return cast<Expr>(Replacement); }
3506
3507  NonTypeTemplateParmDecl *getParameter() const { return Param; }
3508
3509  static bool classof(const Stmt *s) {
3510    return s->getStmtClass() == SubstNonTypeTemplateParmExprClass;
3511  }
3512  static bool classof(const SubstNonTypeTemplateParmExpr *) {
3513    return true;
3514  }
3515
3516  // Iterators
3517  child_range children() { return child_range(&Replacement, &Replacement+1); }
3518};
3519
3520/// \brief Represents a reference to a non-type template parameter pack that
3521/// has been substituted with a non-template argument pack.
3522///
3523/// When a pack expansion in the source code contains multiple parameter packs
3524/// and those parameter packs correspond to different levels of template
3525/// parameter lists, this node node is used to represent a non-type template
3526/// parameter pack from an outer level, which has already had its argument pack
3527/// substituted but that still lives within a pack expansion that itself
3528/// could not be instantiated. When actually performing a substitution into
3529/// that pack expansion (e.g., when all template parameters have corresponding
3530/// arguments), this type will be replaced with the appropriate underlying
3531/// expression at the current pack substitution index.
3532class SubstNonTypeTemplateParmPackExpr : public Expr {
3533  /// \brief The non-type template parameter pack itself.
3534  NonTypeTemplateParmDecl *Param;
3535
3536  /// \brief A pointer to the set of template arguments that this
3537  /// parameter pack is instantiated with.
3538  const TemplateArgument *Arguments;
3539
3540  /// \brief The number of template arguments in \c Arguments.
3541  unsigned NumArguments;
3542
3543  /// \brief The location of the non-type template parameter pack reference.
3544  SourceLocation NameLoc;
3545
3546  friend class ASTReader;
3547  friend class ASTStmtReader;
3548  explicit SubstNonTypeTemplateParmPackExpr(EmptyShell Empty)
3549    : Expr(SubstNonTypeTemplateParmPackExprClass, Empty) { }
3550
3551public:
3552  SubstNonTypeTemplateParmPackExpr(QualType T,
3553                                   NonTypeTemplateParmDecl *Param,
3554                                   SourceLocation NameLoc,
3555                                   const TemplateArgument &ArgPack);
3556
3557  /// \brief Retrieve the non-type template parameter pack being substituted.
3558  NonTypeTemplateParmDecl *getParameterPack() const { return Param; }
3559
3560  /// \brief Retrieve the location of the parameter pack name.
3561  SourceLocation getParameterPackLocation() const { return NameLoc; }
3562
3563  /// \brief Retrieve the template argument pack containing the substituted
3564  /// template arguments.
3565  TemplateArgument getArgumentPack() const;
3566
3567  SourceRange getSourceRange() const LLVM_READONLY { return NameLoc; }
3568
3569  static bool classof(const Stmt *T) {
3570    return T->getStmtClass() == SubstNonTypeTemplateParmPackExprClass;
3571  }
3572  static bool classof(const SubstNonTypeTemplateParmPackExpr *) {
3573    return true;
3574  }
3575
3576  // Iterators
3577  child_range children() { return child_range(); }
3578};
3579
3580/// \brief Represents a prvalue temporary that written into memory so that
3581/// a reference can bind to it.
3582///
3583/// Prvalue expressions are materialized when they need to have an address
3584/// in memory for a reference to bind to. This happens when binding a
3585/// reference to the result of a conversion, e.g.,
3586///
3587/// \code
3588/// const int &r = 1.0;
3589/// \endcode
3590///
3591/// Here, 1.0 is implicitly converted to an \c int. That resulting \c int is
3592/// then materialized via a \c MaterializeTemporaryExpr, and the reference
3593/// binds to the temporary. \c MaterializeTemporaryExprs are always glvalues
3594/// (either an lvalue or an xvalue, depending on the kind of reference binding
3595/// to it), maintaining the invariant that references always bind to glvalues.
3596class MaterializeTemporaryExpr : public Expr {
3597  /// \brief The temporary-generating expression whose value will be
3598  /// materialized.
3599  Stmt *Temporary;
3600
3601  friend class ASTStmtReader;
3602  friend class ASTStmtWriter;
3603
3604public:
3605  MaterializeTemporaryExpr(QualType T, Expr *Temporary,
3606                           bool BoundToLvalueReference)
3607    : Expr(MaterializeTemporaryExprClass, T,
3608           BoundToLvalueReference? VK_LValue : VK_XValue, OK_Ordinary,
3609           Temporary->isTypeDependent(), Temporary->isValueDependent(),
3610           Temporary->isInstantiationDependent(),
3611           Temporary->containsUnexpandedParameterPack()),
3612      Temporary(Temporary) { }
3613
3614  MaterializeTemporaryExpr(EmptyShell Empty)
3615    : Expr(MaterializeTemporaryExprClass, Empty) { }
3616
3617  /// \brief Retrieve the temporary-generating subexpression whose value will
3618  /// be materialized into a glvalue.
3619  Expr *GetTemporaryExpr() const { return reinterpret_cast<Expr *>(Temporary); }
3620
3621  /// \brief Determine whether this materialized temporary is bound to an
3622  /// lvalue reference; otherwise, it's bound to an rvalue reference.
3623  bool isBoundToLvalueReference() const {
3624    return getValueKind() == VK_LValue;
3625  }
3626
3627  SourceRange getSourceRange() const LLVM_READONLY {
3628    return Temporary->getSourceRange();
3629  }
3630
3631  static bool classof(const Stmt *T) {
3632    return T->getStmtClass() == MaterializeTemporaryExprClass;
3633  }
3634  static bool classof(const MaterializeTemporaryExpr *) {
3635    return true;
3636  }
3637
3638  // Iterators
3639  child_range children() { return child_range(&Temporary, &Temporary + 1); }
3640};
3641
3642}  // end namespace clang
3643
3644#endif
3645