ExprCXX.h revision 1245a54ca6e9c5b14196461dc3f84b24ea6594b1
1//===--- ExprCXX.h - Classes for representing expressions -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9///
10/// \file
11/// \brief Defines the clang::Expr interface and subclasses for C++ expressions.
12///
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_CLANG_AST_EXPRCXX_H
16#define LLVM_CLANG_AST_EXPRCXX_H
17
18#include "clang/AST/Decl.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/TemplateBase.h"
21#include "clang/AST/UnresolvedSet.h"
22#include "clang/Basic/ExpressionTraits.h"
23#include "clang/Basic/Lambda.h"
24#include "clang/Basic/TypeTraits.h"
25#include "llvm/Support/Compiler.h"
26
27namespace clang {
28
29class CXXConstructorDecl;
30class CXXDestructorDecl;
31class CXXMethodDecl;
32class CXXTemporary;
33class MSPropertyDecl;
34class TemplateArgumentListInfo;
35class UuidAttr;
36
37//===--------------------------------------------------------------------===//
38// C++ Expressions.
39//===--------------------------------------------------------------------===//
40
41/// \brief A call to an overloaded operator written using operator
42/// syntax.
43///
44/// Represents a call to an overloaded operator written using operator
45/// syntax, e.g., "x + y" or "*p". While semantically equivalent to a
46/// normal call, this AST node provides better information about the
47/// syntactic representation of the call.
48///
49/// In a C++ template, this expression node kind will be used whenever
50/// any of the arguments are type-dependent. In this case, the
51/// function itself will be a (possibly empty) set of functions and
52/// function templates that were found by name lookup at template
53/// definition time.
54class CXXOperatorCallExpr : public CallExpr {
55  /// \brief The overloaded operator.
56  OverloadedOperatorKind Operator;
57  SourceRange Range;
58
59  // Record the FP_CONTRACT state that applies to this operator call. Only
60  // meaningful for floating point types. For other types this value can be
61  // set to false.
62  unsigned FPContractable : 1;
63
64  SourceRange getSourceRangeImpl() const LLVM_READONLY;
65public:
66  CXXOperatorCallExpr(ASTContext& C, OverloadedOperatorKind Op, Expr *fn,
67                      ArrayRef<Expr*> args, QualType t, ExprValueKind VK,
68                      SourceLocation operatorloc, bool fpContractable)
69    : CallExpr(C, CXXOperatorCallExprClass, fn, 0, args, t, VK,
70               operatorloc),
71      Operator(Op), FPContractable(fpContractable) {
72    Range = getSourceRangeImpl();
73  }
74  explicit CXXOperatorCallExpr(ASTContext& C, EmptyShell Empty) :
75    CallExpr(C, CXXOperatorCallExprClass, Empty) { }
76
77
78  /// \brief Returns the kind of overloaded operator that this
79  /// expression refers to.
80  OverloadedOperatorKind getOperator() const { return Operator; }
81
82  /// \brief Returns the location of the operator symbol in the expression.
83  ///
84  /// When \c getOperator()==OO_Call, this is the location of the right
85  /// parentheses; when \c getOperator()==OO_Subscript, this is the location
86  /// of the right bracket.
87  SourceLocation getOperatorLoc() const { return getRParenLoc(); }
88
89  SourceLocation getLocStart() const LLVM_READONLY { return Range.getBegin(); }
90  SourceLocation getLocEnd() const LLVM_READONLY { return Range.getEnd(); }
91  SourceRange getSourceRange() const { return Range; }
92
93  static bool classof(const Stmt *T) {
94    return T->getStmtClass() == CXXOperatorCallExprClass;
95  }
96
97  // Set the FP contractability status of this operator. Only meaningful for
98  // operations on floating point types.
99  void setFPContractable(bool FPC) { FPContractable = FPC; }
100
101  // Get the FP contractability status of this operator. Only meaningful for
102  // operations on floating point types.
103  bool isFPContractable() const { return FPContractable; }
104
105  friend class ASTStmtReader;
106  friend class ASTStmtWriter;
107};
108
109/// Represents a call to a member function that
110/// may be written either with member call syntax (e.g., "obj.func()"
111/// or "objptr->func()") or with normal function-call syntax
112/// ("func()") within a member function that ends up calling a member
113/// function. The callee in either case is a MemberExpr that contains
114/// both the object argument and the member function, while the
115/// arguments are the arguments within the parentheses (not including
116/// the object argument).
117class CXXMemberCallExpr : public CallExpr {
118public:
119  CXXMemberCallExpr(ASTContext &C, Expr *fn, ArrayRef<Expr*> args,
120                    QualType t, ExprValueKind VK, SourceLocation RP)
121    : CallExpr(C, CXXMemberCallExprClass, fn, 0, args, t, VK, RP) {}
122
123  CXXMemberCallExpr(ASTContext &C, EmptyShell Empty)
124    : CallExpr(C, CXXMemberCallExprClass, Empty) { }
125
126  /// \brief Retrieves the implicit object argument for the member call.
127  ///
128  /// For example, in "x.f(5)", this returns the sub-expression "x".
129  Expr *getImplicitObjectArgument() const;
130
131  /// \brief Retrieves the declaration of the called method.
132  CXXMethodDecl *getMethodDecl() const;
133
134  /// \brief Retrieves the CXXRecordDecl for the underlying type of
135  /// the implicit object argument.
136  ///
137  /// Note that this is may not be the same declaration as that of the class
138  /// context of the CXXMethodDecl which this function is calling.
139  /// FIXME: Returns 0 for member pointer call exprs.
140  CXXRecordDecl *getRecordDecl() const;
141
142  static bool classof(const Stmt *T) {
143    return T->getStmtClass() == CXXMemberCallExprClass;
144  }
145};
146
147/// \brief Represents a call to a CUDA kernel function.
148class CUDAKernelCallExpr : public CallExpr {
149private:
150  enum { CONFIG, END_PREARG };
151
152public:
153  CUDAKernelCallExpr(ASTContext &C, Expr *fn, CallExpr *Config,
154                     ArrayRef<Expr*> args, QualType t, ExprValueKind VK,
155                     SourceLocation RP)
156    : CallExpr(C, CUDAKernelCallExprClass, fn, END_PREARG, args, t, VK, RP) {
157    setConfig(Config);
158  }
159
160  CUDAKernelCallExpr(ASTContext &C, EmptyShell Empty)
161    : CallExpr(C, CUDAKernelCallExprClass, END_PREARG, Empty) { }
162
163  const CallExpr *getConfig() const {
164    return cast_or_null<CallExpr>(getPreArg(CONFIG));
165  }
166  CallExpr *getConfig() { return cast_or_null<CallExpr>(getPreArg(CONFIG)); }
167  void setConfig(CallExpr *E) { setPreArg(CONFIG, E); }
168
169  static bool classof(const Stmt *T) {
170    return T->getStmtClass() == CUDAKernelCallExprClass;
171  }
172};
173
174/// \brief Abstract class common to all of the C++ "named"/"keyword" casts.
175///
176/// This abstract class is inherited by all of the classes
177/// representing "named" casts: CXXStaticCastExpr for \c static_cast,
178/// CXXDynamicCastExpr for \c dynamic_cast, CXXReinterpretCastExpr for
179/// reinterpret_cast, and CXXConstCastExpr for \c const_cast.
180class CXXNamedCastExpr : public ExplicitCastExpr {
181private:
182  SourceLocation Loc; // the location of the casting op
183  SourceLocation RParenLoc; // the location of the right parenthesis
184  SourceRange AngleBrackets; // range for '<' '>'
185
186protected:
187  CXXNamedCastExpr(StmtClass SC, QualType ty, ExprValueKind VK,
188                   CastKind kind, Expr *op, unsigned PathSize,
189                   TypeSourceInfo *writtenTy, SourceLocation l,
190                   SourceLocation RParenLoc,
191                   SourceRange AngleBrackets)
192    : ExplicitCastExpr(SC, ty, VK, kind, op, PathSize, writtenTy), Loc(l),
193      RParenLoc(RParenLoc), AngleBrackets(AngleBrackets) {}
194
195  explicit CXXNamedCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
196    : ExplicitCastExpr(SC, Shell, PathSize) { }
197
198  friend class ASTStmtReader;
199
200public:
201  const char *getCastName() const;
202
203  /// \brief Retrieve the location of the cast operator keyword, e.g.,
204  /// \c static_cast.
205  SourceLocation getOperatorLoc() const { return Loc; }
206
207  /// \brief Retrieve the location of the closing parenthesis.
208  SourceLocation getRParenLoc() const { return RParenLoc; }
209
210  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
211  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
212  SourceRange getAngleBrackets() const LLVM_READONLY { return AngleBrackets; }
213
214  static bool classof(const Stmt *T) {
215    switch (T->getStmtClass()) {
216    case CXXStaticCastExprClass:
217    case CXXDynamicCastExprClass:
218    case CXXReinterpretCastExprClass:
219    case CXXConstCastExprClass:
220      return true;
221    default:
222      return false;
223    }
224  }
225};
226
227/// \brief A C++ \c static_cast expression (C++ [expr.static.cast]).
228///
229/// This expression node represents a C++ static cast, e.g.,
230/// \c static_cast<int>(1.0).
231class CXXStaticCastExpr : public CXXNamedCastExpr {
232  CXXStaticCastExpr(QualType ty, ExprValueKind vk, CastKind kind, Expr *op,
233                    unsigned pathSize, TypeSourceInfo *writtenTy,
234                    SourceLocation l, SourceLocation RParenLoc,
235                    SourceRange AngleBrackets)
236    : CXXNamedCastExpr(CXXStaticCastExprClass, ty, vk, kind, op, pathSize,
237                       writtenTy, l, RParenLoc, AngleBrackets) {}
238
239  explicit CXXStaticCastExpr(EmptyShell Empty, unsigned PathSize)
240    : CXXNamedCastExpr(CXXStaticCastExprClass, Empty, PathSize) { }
241
242public:
243  static CXXStaticCastExpr *Create(const ASTContext &Context, QualType T,
244                                   ExprValueKind VK, CastKind K, Expr *Op,
245                                   const CXXCastPath *Path,
246                                   TypeSourceInfo *Written, SourceLocation L,
247                                   SourceLocation RParenLoc,
248                                   SourceRange AngleBrackets);
249  static CXXStaticCastExpr *CreateEmpty(const ASTContext &Context,
250                                        unsigned PathSize);
251
252  static bool classof(const Stmt *T) {
253    return T->getStmtClass() == CXXStaticCastExprClass;
254  }
255};
256
257/// \brief A C++ @c dynamic_cast expression (C++ [expr.dynamic.cast]).
258///
259/// This expression node represents a dynamic cast, e.g.,
260/// \c dynamic_cast<Derived*>(BasePtr). Such a cast may perform a run-time
261/// check to determine how to perform the type conversion.
262class CXXDynamicCastExpr : public CXXNamedCastExpr {
263  CXXDynamicCastExpr(QualType ty, ExprValueKind VK, CastKind kind,
264                     Expr *op, unsigned pathSize, TypeSourceInfo *writtenTy,
265                     SourceLocation l, SourceLocation RParenLoc,
266                     SourceRange AngleBrackets)
267    : CXXNamedCastExpr(CXXDynamicCastExprClass, ty, VK, kind, op, pathSize,
268                       writtenTy, l, RParenLoc, AngleBrackets) {}
269
270  explicit CXXDynamicCastExpr(EmptyShell Empty, unsigned pathSize)
271    : CXXNamedCastExpr(CXXDynamicCastExprClass, Empty, pathSize) { }
272
273public:
274  static CXXDynamicCastExpr *Create(const ASTContext &Context, QualType T,
275                                    ExprValueKind VK, CastKind Kind, Expr *Op,
276                                    const CXXCastPath *Path,
277                                    TypeSourceInfo *Written, SourceLocation L,
278                                    SourceLocation RParenLoc,
279                                    SourceRange AngleBrackets);
280
281  static CXXDynamicCastExpr *CreateEmpty(const ASTContext &Context,
282                                         unsigned pathSize);
283
284  bool isAlwaysNull() const;
285
286  static bool classof(const Stmt *T) {
287    return T->getStmtClass() == CXXDynamicCastExprClass;
288  }
289};
290
291/// \brief A C++ @c reinterpret_cast expression (C++ [expr.reinterpret.cast]).
292///
293/// This expression node represents a reinterpret cast, e.g.,
294/// @c reinterpret_cast<int>(VoidPtr).
295///
296/// A reinterpret_cast provides a differently-typed view of a value but
297/// (in Clang, as in most C++ implementations) performs no actual work at
298/// run time.
299class CXXReinterpretCastExpr : public CXXNamedCastExpr {
300  CXXReinterpretCastExpr(QualType ty, ExprValueKind vk, CastKind kind,
301                         Expr *op, unsigned pathSize,
302                         TypeSourceInfo *writtenTy, SourceLocation l,
303                         SourceLocation RParenLoc,
304                         SourceRange AngleBrackets)
305    : CXXNamedCastExpr(CXXReinterpretCastExprClass, ty, vk, kind, op,
306                       pathSize, writtenTy, l, RParenLoc, AngleBrackets) {}
307
308  CXXReinterpretCastExpr(EmptyShell Empty, unsigned pathSize)
309    : CXXNamedCastExpr(CXXReinterpretCastExprClass, Empty, pathSize) { }
310
311public:
312  static CXXReinterpretCastExpr *Create(const ASTContext &Context, QualType T,
313                                        ExprValueKind VK, CastKind Kind,
314                                        Expr *Op, const CXXCastPath *Path,
315                                 TypeSourceInfo *WrittenTy, SourceLocation L,
316                                        SourceLocation RParenLoc,
317                                        SourceRange AngleBrackets);
318  static CXXReinterpretCastExpr *CreateEmpty(const ASTContext &Context,
319                                             unsigned pathSize);
320
321  static bool classof(const Stmt *T) {
322    return T->getStmtClass() == CXXReinterpretCastExprClass;
323  }
324};
325
326/// \brief A C++ \c const_cast expression (C++ [expr.const.cast]).
327///
328/// This expression node represents a const cast, e.g.,
329/// \c const_cast<char*>(PtrToConstChar).
330///
331/// A const_cast can remove type qualifiers but does not change the underlying
332/// value.
333class CXXConstCastExpr : public CXXNamedCastExpr {
334  CXXConstCastExpr(QualType ty, ExprValueKind VK, Expr *op,
335                   TypeSourceInfo *writtenTy, SourceLocation l,
336                   SourceLocation RParenLoc, SourceRange AngleBrackets)
337    : CXXNamedCastExpr(CXXConstCastExprClass, ty, VK, CK_NoOp, op,
338                       0, writtenTy, l, RParenLoc, AngleBrackets) {}
339
340  explicit CXXConstCastExpr(EmptyShell Empty)
341    : CXXNamedCastExpr(CXXConstCastExprClass, Empty, 0) { }
342
343public:
344  static CXXConstCastExpr *Create(const ASTContext &Context, QualType T,
345                                  ExprValueKind VK, Expr *Op,
346                                  TypeSourceInfo *WrittenTy, SourceLocation L,
347                                  SourceLocation RParenLoc,
348                                  SourceRange AngleBrackets);
349  static CXXConstCastExpr *CreateEmpty(const ASTContext &Context);
350
351  static bool classof(const Stmt *T) {
352    return T->getStmtClass() == CXXConstCastExprClass;
353  }
354};
355
356/// \brief A call to a literal operator (C++11 [over.literal])
357/// written as a user-defined literal (C++11 [lit.ext]).
358///
359/// Represents a user-defined literal, e.g. "foo"_bar or 1.23_xyz. While this
360/// is semantically equivalent to a normal call, this AST node provides better
361/// information about the syntactic representation of the literal.
362///
363/// Since literal operators are never found by ADL and can only be declared at
364/// namespace scope, a user-defined literal is never dependent.
365class UserDefinedLiteral : public CallExpr {
366  /// \brief The location of a ud-suffix within the literal.
367  SourceLocation UDSuffixLoc;
368
369public:
370  UserDefinedLiteral(const ASTContext &C, Expr *Fn, ArrayRef<Expr*> Args,
371                     QualType T, ExprValueKind VK, SourceLocation LitEndLoc,
372                     SourceLocation SuffixLoc)
373    : CallExpr(C, UserDefinedLiteralClass, Fn, 0, Args, T, VK, LitEndLoc),
374      UDSuffixLoc(SuffixLoc) {}
375  explicit UserDefinedLiteral(const ASTContext &C, EmptyShell Empty)
376    : CallExpr(C, UserDefinedLiteralClass, Empty) {}
377
378  /// The kind of literal operator which is invoked.
379  enum LiteralOperatorKind {
380    LOK_Raw,      ///< Raw form: operator "" X (const char *)
381    LOK_Template, ///< Raw form: operator "" X<cs...> ()
382    LOK_Integer,  ///< operator "" X (unsigned long long)
383    LOK_Floating, ///< operator "" X (long double)
384    LOK_String,   ///< operator "" X (const CharT *, size_t)
385    LOK_Character ///< operator "" X (CharT)
386  };
387
388  /// \brief Returns the kind of literal operator invocation
389  /// which this expression represents.
390  LiteralOperatorKind getLiteralOperatorKind() const;
391
392  /// \brief If this is not a raw user-defined literal, get the
393  /// underlying cooked literal (representing the literal with the suffix
394  /// removed).
395  Expr *getCookedLiteral();
396  const Expr *getCookedLiteral() const {
397    return const_cast<UserDefinedLiteral*>(this)->getCookedLiteral();
398  }
399
400  SourceLocation getLocStart() const {
401    if (getLiteralOperatorKind() == LOK_Template)
402      return getRParenLoc();
403    return getArg(0)->getLocStart();
404  }
405  SourceLocation getLocEnd() const { return getRParenLoc(); }
406
407
408  /// \brief Returns the location of a ud-suffix in the expression.
409  ///
410  /// For a string literal, there may be multiple identical suffixes. This
411  /// returns the first.
412  SourceLocation getUDSuffixLoc() const { return UDSuffixLoc; }
413
414  /// \brief Returns the ud-suffix specified for this literal.
415  const IdentifierInfo *getUDSuffix() const;
416
417  static bool classof(const Stmt *S) {
418    return S->getStmtClass() == UserDefinedLiteralClass;
419  }
420
421  friend class ASTStmtReader;
422  friend class ASTStmtWriter;
423};
424
425/// \brief A boolean literal, per ([C++ lex.bool] Boolean literals).
426///
427class CXXBoolLiteralExpr : public Expr {
428  bool Value;
429  SourceLocation Loc;
430public:
431  CXXBoolLiteralExpr(bool val, QualType Ty, SourceLocation l) :
432    Expr(CXXBoolLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
433         false, false),
434    Value(val), Loc(l) {}
435
436  explicit CXXBoolLiteralExpr(EmptyShell Empty)
437    : Expr(CXXBoolLiteralExprClass, Empty) { }
438
439  bool getValue() const { return Value; }
440  void setValue(bool V) { Value = V; }
441
442  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
443  SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
444
445  SourceLocation getLocation() const { return Loc; }
446  void setLocation(SourceLocation L) { Loc = L; }
447
448  static bool classof(const Stmt *T) {
449    return T->getStmtClass() == CXXBoolLiteralExprClass;
450  }
451
452  // Iterators
453  child_range children() { return child_range(); }
454};
455
456/// \brief The null pointer literal (C++11 [lex.nullptr])
457///
458/// Introduced in C++11, the only literal of type \c nullptr_t is \c nullptr.
459class CXXNullPtrLiteralExpr : public Expr {
460  SourceLocation Loc;
461public:
462  CXXNullPtrLiteralExpr(QualType Ty, SourceLocation l) :
463    Expr(CXXNullPtrLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
464         false, false),
465    Loc(l) {}
466
467  explicit CXXNullPtrLiteralExpr(EmptyShell Empty)
468    : Expr(CXXNullPtrLiteralExprClass, Empty) { }
469
470  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
471  SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
472
473  SourceLocation getLocation() const { return Loc; }
474  void setLocation(SourceLocation L) { Loc = L; }
475
476  static bool classof(const Stmt *T) {
477    return T->getStmtClass() == CXXNullPtrLiteralExprClass;
478  }
479
480  child_range children() { return child_range(); }
481};
482
483/// \brief Implicit construction of a std::initializer_list<T> object from an
484/// array temporary within list-initialization (C++11 [dcl.init.list]p5).
485class CXXStdInitializerListExpr : public Expr {
486  Stmt *SubExpr;
487
488  CXXStdInitializerListExpr(EmptyShell Empty)
489    : Expr(CXXStdInitializerListExprClass, Empty), SubExpr(0) {}
490
491public:
492  CXXStdInitializerListExpr(QualType Ty, Expr *SubExpr)
493    : Expr(CXXStdInitializerListExprClass, Ty, VK_RValue, OK_Ordinary,
494           Ty->isDependentType(), SubExpr->isValueDependent(),
495           SubExpr->isInstantiationDependent(),
496           SubExpr->containsUnexpandedParameterPack()),
497      SubExpr(SubExpr) {}
498
499  Expr *getSubExpr() { return static_cast<Expr*>(SubExpr); }
500  const Expr *getSubExpr() const { return static_cast<const Expr*>(SubExpr); }
501
502  SourceLocation getLocStart() const LLVM_READONLY {
503    return SubExpr->getLocStart();
504  }
505  SourceLocation getLocEnd() const LLVM_READONLY {
506    return SubExpr->getLocEnd();
507  }
508  SourceRange getSourceRange() const LLVM_READONLY {
509    return SubExpr->getSourceRange();
510  }
511
512  static bool classof(const Stmt *S) {
513    return S->getStmtClass() == CXXStdInitializerListExprClass;
514  }
515
516  child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
517
518  friend class ASTReader;
519  friend class ASTStmtReader;
520};
521
522/// A C++ \c typeid expression (C++ [expr.typeid]), which gets
523/// the \c type_info that corresponds to the supplied type, or the (possibly
524/// dynamic) type of the supplied expression.
525///
526/// This represents code like \c typeid(int) or \c typeid(*objPtr)
527class CXXTypeidExpr : public Expr {
528private:
529  llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
530  SourceRange Range;
531
532public:
533  CXXTypeidExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
534    : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
535           // typeid is never type-dependent (C++ [temp.dep.expr]p4)
536           false,
537           // typeid is value-dependent if the type or expression are dependent
538           Operand->getType()->isDependentType(),
539           Operand->getType()->isInstantiationDependentType(),
540           Operand->getType()->containsUnexpandedParameterPack()),
541      Operand(Operand), Range(R) { }
542
543  CXXTypeidExpr(QualType Ty, Expr *Operand, SourceRange R)
544    : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
545        // typeid is never type-dependent (C++ [temp.dep.expr]p4)
546           false,
547        // typeid is value-dependent if the type or expression are dependent
548           Operand->isTypeDependent() || Operand->isValueDependent(),
549           Operand->isInstantiationDependent(),
550           Operand->containsUnexpandedParameterPack()),
551      Operand(Operand), Range(R) { }
552
553  CXXTypeidExpr(EmptyShell Empty, bool isExpr)
554    : Expr(CXXTypeidExprClass, Empty) {
555    if (isExpr)
556      Operand = (Expr*)0;
557    else
558      Operand = (TypeSourceInfo*)0;
559  }
560
561  /// Determine whether this typeid has a type operand which is potentially
562  /// evaluated, per C++11 [expr.typeid]p3.
563  bool isPotentiallyEvaluated() const;
564
565  bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
566
567  /// \brief Retrieves the type operand of this typeid() expression after
568  /// various required adjustments (removing reference types, cv-qualifiers).
569  QualType getTypeOperand() const;
570
571  /// \brief Retrieve source information for the type operand.
572  TypeSourceInfo *getTypeOperandSourceInfo() const {
573    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
574    return Operand.get<TypeSourceInfo *>();
575  }
576
577  void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
578    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
579    Operand = TSI;
580  }
581
582  Expr *getExprOperand() const {
583    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
584    return static_cast<Expr*>(Operand.get<Stmt *>());
585  }
586
587  void setExprOperand(Expr *E) {
588    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
589    Operand = E;
590  }
591
592  SourceLocation getLocStart() const LLVM_READONLY { return Range.getBegin(); }
593  SourceLocation getLocEnd() const LLVM_READONLY { return Range.getEnd(); }
594  SourceRange getSourceRange() const LLVM_READONLY { return Range; }
595  void setSourceRange(SourceRange R) { Range = R; }
596
597  static bool classof(const Stmt *T) {
598    return T->getStmtClass() == CXXTypeidExprClass;
599  }
600
601  // Iterators
602  child_range children() {
603    if (isTypeOperand()) return child_range();
604    Stmt **begin = reinterpret_cast<Stmt**>(&Operand);
605    return child_range(begin, begin + 1);
606  }
607};
608
609/// \brief A member reference to an MSPropertyDecl.
610///
611/// This expression always has pseudo-object type, and therefore it is
612/// typically not encountered in a fully-typechecked expression except
613/// within the syntactic form of a PseudoObjectExpr.
614class MSPropertyRefExpr : public Expr {
615  Expr *BaseExpr;
616  MSPropertyDecl *TheDecl;
617  SourceLocation MemberLoc;
618  bool IsArrow;
619  NestedNameSpecifierLoc QualifierLoc;
620
621public:
622  MSPropertyRefExpr(Expr *baseExpr, MSPropertyDecl *decl, bool isArrow,
623                    QualType ty, ExprValueKind VK,
624                    NestedNameSpecifierLoc qualifierLoc,
625                    SourceLocation nameLoc)
626  : Expr(MSPropertyRefExprClass, ty, VK, OK_Ordinary,
627         /*type-dependent*/ false, baseExpr->isValueDependent(),
628         baseExpr->isInstantiationDependent(),
629         baseExpr->containsUnexpandedParameterPack()),
630    BaseExpr(baseExpr), TheDecl(decl),
631    MemberLoc(nameLoc), IsArrow(isArrow),
632    QualifierLoc(qualifierLoc) {}
633
634  MSPropertyRefExpr(EmptyShell Empty) : Expr(MSPropertyRefExprClass, Empty) {}
635
636  SourceRange getSourceRange() const LLVM_READONLY {
637    return SourceRange(getLocStart(), getLocEnd());
638  }
639  bool isImplicitAccess() const {
640    return getBaseExpr() && getBaseExpr()->isImplicitCXXThis();
641  }
642  SourceLocation getLocStart() const {
643    if (!isImplicitAccess())
644      return BaseExpr->getLocStart();
645    else if (QualifierLoc)
646      return QualifierLoc.getBeginLoc();
647    else
648        return MemberLoc;
649  }
650  SourceLocation getLocEnd() const { return getMemberLoc(); }
651
652  child_range children() {
653    return child_range((Stmt**)&BaseExpr, (Stmt**)&BaseExpr + 1);
654  }
655  static bool classof(const Stmt *T) {
656    return T->getStmtClass() == MSPropertyRefExprClass;
657  }
658
659  Expr *getBaseExpr() const { return BaseExpr; }
660  MSPropertyDecl *getPropertyDecl() const { return TheDecl; }
661  bool isArrow() const { return IsArrow; }
662  SourceLocation getMemberLoc() const { return MemberLoc; }
663  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
664
665  friend class ASTStmtReader;
666};
667
668/// A Microsoft C++ @c __uuidof expression, which gets
669/// the _GUID that corresponds to the supplied type or expression.
670///
671/// This represents code like @c __uuidof(COMTYPE) or @c __uuidof(*comPtr)
672class CXXUuidofExpr : public Expr {
673private:
674  llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
675  SourceRange Range;
676
677public:
678  CXXUuidofExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
679    : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary,
680           false, Operand->getType()->isDependentType(),
681           Operand->getType()->isInstantiationDependentType(),
682           Operand->getType()->containsUnexpandedParameterPack()),
683      Operand(Operand), Range(R) { }
684
685  CXXUuidofExpr(QualType Ty, Expr *Operand, SourceRange R)
686    : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary,
687           false, Operand->isTypeDependent(),
688           Operand->isInstantiationDependent(),
689           Operand->containsUnexpandedParameterPack()),
690      Operand(Operand), Range(R) { }
691
692  CXXUuidofExpr(EmptyShell Empty, bool isExpr)
693    : Expr(CXXUuidofExprClass, Empty) {
694    if (isExpr)
695      Operand = (Expr*)0;
696    else
697      Operand = (TypeSourceInfo*)0;
698  }
699
700  bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
701
702  /// \brief Retrieves the type operand of this __uuidof() expression after
703  /// various required adjustments (removing reference types, cv-qualifiers).
704  QualType getTypeOperand() const;
705
706  /// \brief Retrieve source information for the type operand.
707  TypeSourceInfo *getTypeOperandSourceInfo() const {
708    assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
709    return Operand.get<TypeSourceInfo *>();
710  }
711
712  void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
713    assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
714    Operand = TSI;
715  }
716
717  Expr *getExprOperand() const {
718    assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
719    return static_cast<Expr*>(Operand.get<Stmt *>());
720  }
721
722  void setExprOperand(Expr *E) {
723    assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
724    Operand = E;
725  }
726
727  StringRef getUuidAsStringRef(ASTContext &Context) const;
728
729  SourceLocation getLocStart() const LLVM_READONLY { return Range.getBegin(); }
730  SourceLocation getLocEnd() const LLVM_READONLY { return Range.getEnd(); }
731  SourceRange getSourceRange() const LLVM_READONLY { return Range; }
732  void setSourceRange(SourceRange R) { Range = R; }
733
734  static bool classof(const Stmt *T) {
735    return T->getStmtClass() == CXXUuidofExprClass;
736  }
737
738  /// Grabs __declspec(uuid()) off a type, or returns 0 if there is none.
739  static UuidAttr *GetUuidAttrOfType(QualType QT);
740
741  // Iterators
742  child_range children() {
743    if (isTypeOperand()) return child_range();
744    Stmt **begin = reinterpret_cast<Stmt**>(&Operand);
745    return child_range(begin, begin + 1);
746  }
747};
748
749/// \brief Represents the \c this expression in C++.
750///
751/// This is a pointer to the object on which the current member function is
752/// executing (C++ [expr.prim]p3). Example:
753///
754/// \code
755/// class Foo {
756/// public:
757///   void bar();
758///   void test() { this->bar(); }
759/// };
760/// \endcode
761class CXXThisExpr : public Expr {
762  SourceLocation Loc;
763  bool Implicit : 1;
764
765public:
766  CXXThisExpr(SourceLocation L, QualType Type, bool isImplicit)
767    : Expr(CXXThisExprClass, Type, VK_RValue, OK_Ordinary,
768           // 'this' is type-dependent if the class type of the enclosing
769           // member function is dependent (C++ [temp.dep.expr]p2)
770           Type->isDependentType(), Type->isDependentType(),
771           Type->isInstantiationDependentType(),
772           /*ContainsUnexpandedParameterPack=*/false),
773      Loc(L), Implicit(isImplicit) { }
774
775  CXXThisExpr(EmptyShell Empty) : Expr(CXXThisExprClass, Empty) {}
776
777  SourceLocation getLocation() const { return Loc; }
778  void setLocation(SourceLocation L) { Loc = L; }
779
780  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
781  SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
782
783  bool isImplicit() const { return Implicit; }
784  void setImplicit(bool I) { Implicit = I; }
785
786  static bool classof(const Stmt *T) {
787    return T->getStmtClass() == CXXThisExprClass;
788  }
789
790  // Iterators
791  child_range children() { return child_range(); }
792};
793
794/// \brief A C++ throw-expression (C++ [except.throw]).
795///
796/// This handles 'throw' (for re-throwing the current exception) and
797/// 'throw' assignment-expression.  When assignment-expression isn't
798/// present, Op will be null.
799class CXXThrowExpr : public Expr {
800  Stmt *Op;
801  SourceLocation ThrowLoc;
802  /// \brief Whether the thrown variable (if any) is in scope.
803  unsigned IsThrownVariableInScope : 1;
804
805  friend class ASTStmtReader;
806
807public:
808  // \p Ty is the void type which is used as the result type of the
809  // expression.  The \p l is the location of the throw keyword.  \p expr
810  // can by null, if the optional expression to throw isn't present.
811  CXXThrowExpr(Expr *expr, QualType Ty, SourceLocation l,
812               bool IsThrownVariableInScope) :
813    Expr(CXXThrowExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
814         expr && expr->isInstantiationDependent(),
815         expr && expr->containsUnexpandedParameterPack()),
816    Op(expr), ThrowLoc(l), IsThrownVariableInScope(IsThrownVariableInScope) {}
817  CXXThrowExpr(EmptyShell Empty) : Expr(CXXThrowExprClass, Empty) {}
818
819  const Expr *getSubExpr() const { return cast_or_null<Expr>(Op); }
820  Expr *getSubExpr() { return cast_or_null<Expr>(Op); }
821
822  SourceLocation getThrowLoc() const { return ThrowLoc; }
823
824  /// \brief Determines whether the variable thrown by this expression (if any!)
825  /// is within the innermost try block.
826  ///
827  /// This information is required to determine whether the NRVO can apply to
828  /// this variable.
829  bool isThrownVariableInScope() const { return IsThrownVariableInScope; }
830
831  SourceLocation getLocStart() const LLVM_READONLY { return ThrowLoc; }
832  SourceLocation getLocEnd() const LLVM_READONLY {
833    if (getSubExpr() == 0)
834      return ThrowLoc;
835    return getSubExpr()->getLocEnd();
836  }
837
838  static bool classof(const Stmt *T) {
839    return T->getStmtClass() == CXXThrowExprClass;
840  }
841
842  // Iterators
843  child_range children() {
844    return child_range(&Op, Op ? &Op+1 : &Op);
845  }
846};
847
848/// \brief A default argument (C++ [dcl.fct.default]).
849///
850/// This wraps up a function call argument that was created from the
851/// corresponding parameter's default argument, when the call did not
852/// explicitly supply arguments for all of the parameters.
853class CXXDefaultArgExpr : public Expr {
854  /// \brief The parameter whose default is being used.
855  ///
856  /// When the bit is set, the subexpression is stored after the
857  /// CXXDefaultArgExpr itself. When the bit is clear, the parameter's
858  /// actual default expression is the subexpression.
859  llvm::PointerIntPair<ParmVarDecl *, 1, bool> Param;
860
861  /// \brief The location where the default argument expression was used.
862  SourceLocation Loc;
863
864  CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param)
865    : Expr(SC,
866           param->hasUnparsedDefaultArg()
867             ? param->getType().getNonReferenceType()
868             : param->getDefaultArg()->getType(),
869           param->getDefaultArg()->getValueKind(),
870           param->getDefaultArg()->getObjectKind(), false, false, false, false),
871      Param(param, false), Loc(Loc) { }
872
873  CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param,
874                    Expr *SubExpr)
875    : Expr(SC, SubExpr->getType(),
876           SubExpr->getValueKind(), SubExpr->getObjectKind(),
877           false, false, false, false),
878      Param(param, true), Loc(Loc) {
879    *reinterpret_cast<Expr **>(this + 1) = SubExpr;
880  }
881
882public:
883  CXXDefaultArgExpr(EmptyShell Empty) : Expr(CXXDefaultArgExprClass, Empty) {}
884
885  // \p Param is the parameter whose default argument is used by this
886  // expression.
887  static CXXDefaultArgExpr *Create(const ASTContext &C, SourceLocation Loc,
888                                   ParmVarDecl *Param) {
889    return new (C) CXXDefaultArgExpr(CXXDefaultArgExprClass, Loc, Param);
890  }
891
892  // \p Param is the parameter whose default argument is used by this
893  // expression, and \p SubExpr is the expression that will actually be used.
894  static CXXDefaultArgExpr *Create(const ASTContext &C, SourceLocation Loc,
895                                   ParmVarDecl *Param, Expr *SubExpr);
896
897  // Retrieve the parameter that the argument was created from.
898  const ParmVarDecl *getParam() const { return Param.getPointer(); }
899  ParmVarDecl *getParam() { return Param.getPointer(); }
900
901  // Retrieve the actual argument to the function call.
902  const Expr *getExpr() const {
903    if (Param.getInt())
904      return *reinterpret_cast<Expr const * const*> (this + 1);
905    return getParam()->getDefaultArg();
906  }
907  Expr *getExpr() {
908    if (Param.getInt())
909      return *reinterpret_cast<Expr **> (this + 1);
910    return getParam()->getDefaultArg();
911  }
912
913  /// \brief Retrieve the location where this default argument was actually
914  /// used.
915  SourceLocation getUsedLocation() const { return Loc; }
916
917  /// Default argument expressions have no representation in the
918  /// source, so they have an empty source range.
919  SourceLocation getLocStart() const LLVM_READONLY { return SourceLocation(); }
920  SourceLocation getLocEnd() const LLVM_READONLY { return SourceLocation(); }
921
922  SourceLocation getExprLoc() const LLVM_READONLY { return Loc; }
923
924  static bool classof(const Stmt *T) {
925    return T->getStmtClass() == CXXDefaultArgExprClass;
926  }
927
928  // Iterators
929  child_range children() { return child_range(); }
930
931  friend class ASTStmtReader;
932  friend class ASTStmtWriter;
933};
934
935/// \brief A use of a default initializer in a constructor or in aggregate
936/// initialization.
937///
938/// This wraps a use of a C++ default initializer (technically,
939/// a brace-or-equal-initializer for a non-static data member) when it
940/// is implicitly used in a mem-initializer-list in a constructor
941/// (C++11 [class.base.init]p8) or in aggregate initialization
942/// (C++1y [dcl.init.aggr]p7).
943class CXXDefaultInitExpr : public Expr {
944  /// \brief The field whose default is being used.
945  FieldDecl *Field;
946
947  /// \brief The location where the default initializer expression was used.
948  SourceLocation Loc;
949
950  CXXDefaultInitExpr(const ASTContext &C, SourceLocation Loc, FieldDecl *Field,
951                     QualType T);
952
953  CXXDefaultInitExpr(EmptyShell Empty) : Expr(CXXDefaultInitExprClass, Empty) {}
954
955public:
956  /// \p Field is the non-static data member whose default initializer is used
957  /// by this expression.
958  static CXXDefaultInitExpr *Create(const ASTContext &C, SourceLocation Loc,
959                                    FieldDecl *Field) {
960    return new (C) CXXDefaultInitExpr(C, Loc, Field, Field->getType());
961  }
962
963  /// \brief Get the field whose initializer will be used.
964  FieldDecl *getField() { return Field; }
965  const FieldDecl *getField() const { return Field; }
966
967  /// \brief Get the initialization expression that will be used.
968  const Expr *getExpr() const { return Field->getInClassInitializer(); }
969  Expr *getExpr() { return Field->getInClassInitializer(); }
970
971  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
972  SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
973
974  static bool classof(const Stmt *T) {
975    return T->getStmtClass() == CXXDefaultInitExprClass;
976  }
977
978  // Iterators
979  child_range children() { return child_range(); }
980
981  friend class ASTReader;
982  friend class ASTStmtReader;
983};
984
985/// \brief Represents a C++ temporary.
986class CXXTemporary {
987  /// \brief The destructor that needs to be called.
988  const CXXDestructorDecl *Destructor;
989
990  explicit CXXTemporary(const CXXDestructorDecl *destructor)
991    : Destructor(destructor) { }
992
993public:
994  static CXXTemporary *Create(const ASTContext &C,
995                              const CXXDestructorDecl *Destructor);
996
997  const CXXDestructorDecl *getDestructor() const { return Destructor; }
998  void setDestructor(const CXXDestructorDecl *Dtor) {
999    Destructor = Dtor;
1000  }
1001};
1002
1003/// \brief Represents binding an expression to a temporary.
1004///
1005/// This ensures the destructor is called for the temporary. It should only be
1006/// needed for non-POD, non-trivially destructable class types. For example:
1007///
1008/// \code
1009///   struct S {
1010///     S() { }  // User defined constructor makes S non-POD.
1011///     ~S() { } // User defined destructor makes it non-trivial.
1012///   };
1013///   void test() {
1014///     const S &s_ref = S(); // Requires a CXXBindTemporaryExpr.
1015///   }
1016/// \endcode
1017class CXXBindTemporaryExpr : public Expr {
1018  CXXTemporary *Temp;
1019
1020  Stmt *SubExpr;
1021
1022  CXXBindTemporaryExpr(CXXTemporary *temp, Expr* SubExpr)
1023   : Expr(CXXBindTemporaryExprClass, SubExpr->getType(),
1024          VK_RValue, OK_Ordinary, SubExpr->isTypeDependent(),
1025          SubExpr->isValueDependent(),
1026          SubExpr->isInstantiationDependent(),
1027          SubExpr->containsUnexpandedParameterPack()),
1028     Temp(temp), SubExpr(SubExpr) { }
1029
1030public:
1031  CXXBindTemporaryExpr(EmptyShell Empty)
1032    : Expr(CXXBindTemporaryExprClass, Empty), Temp(0), SubExpr(0) {}
1033
1034  static CXXBindTemporaryExpr *Create(const ASTContext &C, CXXTemporary *Temp,
1035                                      Expr* SubExpr);
1036
1037  CXXTemporary *getTemporary() { return Temp; }
1038  const CXXTemporary *getTemporary() const { return Temp; }
1039  void setTemporary(CXXTemporary *T) { Temp = T; }
1040
1041  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
1042  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
1043  void setSubExpr(Expr *E) { SubExpr = E; }
1044
1045  SourceLocation getLocStart() const LLVM_READONLY {
1046    return SubExpr->getLocStart();
1047  }
1048  SourceLocation getLocEnd() const LLVM_READONLY { return SubExpr->getLocEnd();}
1049
1050  // Implement isa/cast/dyncast/etc.
1051  static bool classof(const Stmt *T) {
1052    return T->getStmtClass() == CXXBindTemporaryExprClass;
1053  }
1054
1055  // Iterators
1056  child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
1057};
1058
1059/// \brief Represents a call to a C++ constructor.
1060class CXXConstructExpr : public Expr {
1061public:
1062  enum ConstructionKind {
1063    CK_Complete,
1064    CK_NonVirtualBase,
1065    CK_VirtualBase,
1066    CK_Delegating
1067  };
1068
1069private:
1070  CXXConstructorDecl *Constructor;
1071
1072  SourceLocation Loc;
1073  SourceRange ParenOrBraceRange;
1074  unsigned NumArgs : 16;
1075  bool Elidable : 1;
1076  bool HadMultipleCandidates : 1;
1077  bool ListInitialization : 1;
1078  bool ZeroInitialization : 1;
1079  unsigned ConstructKind : 2;
1080  Stmt **Args;
1081
1082protected:
1083  CXXConstructExpr(const ASTContext &C, StmtClass SC, QualType T,
1084                   SourceLocation Loc,
1085                   CXXConstructorDecl *d, bool elidable,
1086                   ArrayRef<Expr *> Args,
1087                   bool HadMultipleCandidates,
1088                   bool ListInitialization,
1089                   bool ZeroInitialization,
1090                   ConstructionKind ConstructKind,
1091                   SourceRange ParenOrBraceRange);
1092
1093  /// \brief Construct an empty C++ construction expression.
1094  CXXConstructExpr(StmtClass SC, EmptyShell Empty)
1095    : Expr(SC, Empty), Constructor(0), NumArgs(0), Elidable(false),
1096      HadMultipleCandidates(false), ListInitialization(false),
1097      ZeroInitialization(false), ConstructKind(0), Args(0)
1098  { }
1099
1100public:
1101  /// \brief Construct an empty C++ construction expression.
1102  explicit CXXConstructExpr(EmptyShell Empty)
1103    : Expr(CXXConstructExprClass, Empty), Constructor(0),
1104      NumArgs(0), Elidable(false), HadMultipleCandidates(false),
1105      ListInitialization(false), ZeroInitialization(false),
1106      ConstructKind(0), Args(0)
1107  { }
1108
1109  static CXXConstructExpr *Create(const ASTContext &C, QualType T,
1110                                  SourceLocation Loc,
1111                                  CXXConstructorDecl *D, bool Elidable,
1112                                  ArrayRef<Expr *> Args,
1113                                  bool HadMultipleCandidates,
1114                                  bool ListInitialization,
1115                                  bool ZeroInitialization,
1116                                  ConstructionKind ConstructKind,
1117                                  SourceRange ParenOrBraceRange);
1118
1119  CXXConstructorDecl* getConstructor() const { return Constructor; }
1120  void setConstructor(CXXConstructorDecl *C) { Constructor = C; }
1121
1122  SourceLocation getLocation() const { return Loc; }
1123  void setLocation(SourceLocation Loc) { this->Loc = Loc; }
1124
1125  /// \brief Whether this construction is elidable.
1126  bool isElidable() const { return Elidable; }
1127  void setElidable(bool E) { Elidable = E; }
1128
1129  /// \brief Whether the referred constructor was resolved from
1130  /// an overloaded set having size greater than 1.
1131  bool hadMultipleCandidates() const { return HadMultipleCandidates; }
1132  void setHadMultipleCandidates(bool V) { HadMultipleCandidates = V; }
1133
1134  /// \brief Whether this constructor call was written as list-initialization.
1135  bool isListInitialization() const { return ListInitialization; }
1136  void setListInitialization(bool V) { ListInitialization = V; }
1137
1138  /// \brief Whether this construction first requires
1139  /// zero-initialization before the initializer is called.
1140  bool requiresZeroInitialization() const { return ZeroInitialization; }
1141  void setRequiresZeroInitialization(bool ZeroInit) {
1142    ZeroInitialization = ZeroInit;
1143  }
1144
1145  /// \brief Determine whether this constructor is actually constructing
1146  /// a base class (rather than a complete object).
1147  ConstructionKind getConstructionKind() const {
1148    return (ConstructionKind)ConstructKind;
1149  }
1150  void setConstructionKind(ConstructionKind CK) {
1151    ConstructKind = CK;
1152  }
1153
1154  typedef ExprIterator arg_iterator;
1155  typedef ConstExprIterator const_arg_iterator;
1156
1157  arg_iterator arg_begin() { return Args; }
1158  arg_iterator arg_end() { return Args + NumArgs; }
1159  const_arg_iterator arg_begin() const { return Args; }
1160  const_arg_iterator arg_end() const { return Args + NumArgs; }
1161
1162  Expr **getArgs() const { return reinterpret_cast<Expr **>(Args); }
1163  unsigned getNumArgs() const { return NumArgs; }
1164
1165  /// \brief Return the specified argument.
1166  Expr *getArg(unsigned Arg) {
1167    assert(Arg < NumArgs && "Arg access out of range!");
1168    return cast<Expr>(Args[Arg]);
1169  }
1170  const Expr *getArg(unsigned Arg) const {
1171    assert(Arg < NumArgs && "Arg access out of range!");
1172    return cast<Expr>(Args[Arg]);
1173  }
1174
1175  /// \brief Set the specified argument.
1176  void setArg(unsigned Arg, Expr *ArgExpr) {
1177    assert(Arg < NumArgs && "Arg access out of range!");
1178    Args[Arg] = ArgExpr;
1179  }
1180
1181  SourceLocation getLocStart() const LLVM_READONLY;
1182  SourceLocation getLocEnd() const LLVM_READONLY;
1183  SourceRange getParenOrBraceRange() const { return ParenOrBraceRange; }
1184  void setParenOrBraceRange(SourceRange Range) { ParenOrBraceRange = Range; }
1185
1186  static bool classof(const Stmt *T) {
1187    return T->getStmtClass() == CXXConstructExprClass ||
1188      T->getStmtClass() == CXXTemporaryObjectExprClass;
1189  }
1190
1191  // Iterators
1192  child_range children() {
1193    return child_range(&Args[0], &Args[0]+NumArgs);
1194  }
1195
1196  friend class ASTStmtReader;
1197};
1198
1199/// \brief Represents an explicit C++ type conversion that uses "functional"
1200/// notation (C++ [expr.type.conv]).
1201///
1202/// Example:
1203/// \code
1204///   x = int(0.5);
1205/// \endcode
1206class CXXFunctionalCastExpr : public ExplicitCastExpr {
1207  SourceLocation LParenLoc;
1208  SourceLocation RParenLoc;
1209
1210  CXXFunctionalCastExpr(QualType ty, ExprValueKind VK,
1211                        TypeSourceInfo *writtenTy,
1212                        CastKind kind, Expr *castExpr, unsigned pathSize,
1213                        SourceLocation lParenLoc, SourceLocation rParenLoc)
1214    : ExplicitCastExpr(CXXFunctionalCastExprClass, ty, VK, kind,
1215                       castExpr, pathSize, writtenTy),
1216      LParenLoc(lParenLoc), RParenLoc(rParenLoc) {}
1217
1218  explicit CXXFunctionalCastExpr(EmptyShell Shell, unsigned PathSize)
1219    : ExplicitCastExpr(CXXFunctionalCastExprClass, Shell, PathSize) { }
1220
1221public:
1222  static CXXFunctionalCastExpr *Create(const ASTContext &Context, QualType T,
1223                                       ExprValueKind VK,
1224                                       TypeSourceInfo *Written,
1225                                       CastKind Kind, Expr *Op,
1226                                       const CXXCastPath *Path,
1227                                       SourceLocation LPLoc,
1228                                       SourceLocation RPLoc);
1229  static CXXFunctionalCastExpr *CreateEmpty(const ASTContext &Context,
1230                                            unsigned PathSize);
1231
1232  SourceLocation getLParenLoc() const { return LParenLoc; }
1233  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
1234  SourceLocation getRParenLoc() const { return RParenLoc; }
1235  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1236
1237  SourceLocation getLocStart() const LLVM_READONLY;
1238  SourceLocation getLocEnd() const LLVM_READONLY;
1239
1240  static bool classof(const Stmt *T) {
1241    return T->getStmtClass() == CXXFunctionalCastExprClass;
1242  }
1243};
1244
1245/// @brief Represents a C++ functional cast expression that builds a
1246/// temporary object.
1247///
1248/// This expression type represents a C++ "functional" cast
1249/// (C++[expr.type.conv]) with N != 1 arguments that invokes a
1250/// constructor to build a temporary object. With N == 1 arguments the
1251/// functional cast expression will be represented by CXXFunctionalCastExpr.
1252/// Example:
1253/// \code
1254/// struct X { X(int, float); }
1255///
1256/// X create_X() {
1257///   return X(1, 3.14f); // creates a CXXTemporaryObjectExpr
1258/// };
1259/// \endcode
1260class CXXTemporaryObjectExpr : public CXXConstructExpr {
1261  TypeSourceInfo *Type;
1262
1263public:
1264  CXXTemporaryObjectExpr(const ASTContext &C, CXXConstructorDecl *Cons,
1265                         TypeSourceInfo *Type,
1266                         ArrayRef<Expr *> Args,
1267                         SourceRange ParenOrBraceRange,
1268                         bool HadMultipleCandidates,
1269                         bool ListInitialization,
1270                         bool ZeroInitialization);
1271  explicit CXXTemporaryObjectExpr(EmptyShell Empty)
1272    : CXXConstructExpr(CXXTemporaryObjectExprClass, Empty), Type() { }
1273
1274  TypeSourceInfo *getTypeSourceInfo() const { return Type; }
1275
1276  SourceLocation getLocStart() const LLVM_READONLY;
1277  SourceLocation getLocEnd() const LLVM_READONLY;
1278
1279  static bool classof(const Stmt *T) {
1280    return T->getStmtClass() == CXXTemporaryObjectExprClass;
1281  }
1282
1283  friend class ASTStmtReader;
1284};
1285
1286/// \brief A C++ lambda expression, which produces a function object
1287/// (of unspecified type) that can be invoked later.
1288///
1289/// Example:
1290/// \code
1291/// void low_pass_filter(std::vector<double> &values, double cutoff) {
1292///   values.erase(std::remove_if(values.begin(), values.end(),
1293///                               [=](double value) { return value > cutoff; });
1294/// }
1295/// \endcode
1296///
1297/// C++11 lambda expressions can capture local variables, either by copying
1298/// the values of those local variables at the time the function
1299/// object is constructed (not when it is called!) or by holding a
1300/// reference to the local variable. These captures can occur either
1301/// implicitly or can be written explicitly between the square
1302/// brackets ([...]) that start the lambda expression.
1303///
1304/// C++1y introduces a new form of "capture" called an init-capture that
1305/// includes an initializing expression (rather than capturing a variable),
1306/// and which can never occur implicitly.
1307class LambdaExpr : public Expr {
1308  enum {
1309    /// \brief Flag used by the Capture class to indicate that the given
1310    /// capture was implicit.
1311    Capture_Implicit = 0x01,
1312
1313    /// \brief Flag used by the Capture class to indicate that the
1314    /// given capture was by-copy.
1315    ///
1316    /// This includes the case of a non-reference init-capture.
1317    Capture_ByCopy = 0x02
1318  };
1319
1320  /// \brief The source range that covers the lambda introducer ([...]).
1321  SourceRange IntroducerRange;
1322
1323  /// \brief The source location of this lambda's capture-default ('=' or '&').
1324  SourceLocation CaptureDefaultLoc;
1325
1326  /// \brief The number of captures.
1327  unsigned NumCaptures : 16;
1328
1329  /// \brief The default capture kind, which is a value of type
1330  /// LambdaCaptureDefault.
1331  unsigned CaptureDefault : 2;
1332
1333  /// \brief Whether this lambda had an explicit parameter list vs. an
1334  /// implicit (and empty) parameter list.
1335  unsigned ExplicitParams : 1;
1336
1337  /// \brief Whether this lambda had the result type explicitly specified.
1338  unsigned ExplicitResultType : 1;
1339
1340  /// \brief Whether there are any array index variables stored at the end of
1341  /// this lambda expression.
1342  unsigned HasArrayIndexVars : 1;
1343
1344  /// \brief The location of the closing brace ('}') that completes
1345  /// the lambda.
1346  ///
1347  /// The location of the brace is also available by looking up the
1348  /// function call operator in the lambda class. However, it is
1349  /// stored here to improve the performance of getSourceRange(), and
1350  /// to avoid having to deserialize the function call operator from a
1351  /// module file just to determine the source range.
1352  SourceLocation ClosingBrace;
1353
1354  // Note: The capture initializers are stored directly after the lambda
1355  // expression, along with the index variables used to initialize by-copy
1356  // array captures.
1357
1358public:
1359  /// \brief Describes the capture of a variable or of \c this, or of a
1360  /// C++1y init-capture.
1361  class Capture {
1362    llvm::PointerIntPair<Decl *, 2> DeclAndBits;
1363    SourceLocation Loc;
1364    SourceLocation EllipsisLoc;
1365
1366    friend class ASTStmtReader;
1367    friend class ASTStmtWriter;
1368
1369  public:
1370    /// \brief Create a new capture of a variable or of \c this.
1371    ///
1372    /// \param Loc The source location associated with this capture.
1373    ///
1374    /// \param Kind The kind of capture (this, byref, bycopy), which must
1375    /// not be init-capture.
1376    ///
1377    /// \param Implicit Whether the capture was implicit or explicit.
1378    ///
1379    /// \param Var The local variable being captured, or null if capturing
1380    /// \c this.
1381    ///
1382    /// \param EllipsisLoc The location of the ellipsis (...) for a
1383    /// capture that is a pack expansion, or an invalid source
1384    /// location to indicate that this is not a pack expansion.
1385    Capture(SourceLocation Loc, bool Implicit,
1386            LambdaCaptureKind Kind, VarDecl *Var = 0,
1387            SourceLocation EllipsisLoc = SourceLocation());
1388
1389    /// \brief Create a new init-capture.
1390    Capture(FieldDecl *Field);
1391
1392    /// \brief Determine the kind of capture.
1393    LambdaCaptureKind getCaptureKind() const;
1394
1395    /// \brief Determine whether this capture handles the C++ \c this
1396    /// pointer.
1397    bool capturesThis() const { return DeclAndBits.getPointer() == 0; }
1398
1399    /// \brief Determine whether this capture handles a variable.
1400    bool capturesVariable() const {
1401      return dyn_cast_or_null<VarDecl>(DeclAndBits.getPointer());
1402    }
1403
1404    /// \brief Determine whether this is an init-capture.
1405    bool isInitCapture() const { return getCaptureKind() == LCK_Init; }
1406
1407    /// \brief Retrieve the declaration of the local variable being
1408    /// captured.
1409    ///
1410    /// This operation is only valid if this capture is a variable capture
1411    /// (other than a capture of \c this).
1412    VarDecl *getCapturedVar() const {
1413      assert(capturesVariable() && "No variable available for 'this' capture");
1414      return cast<VarDecl>(DeclAndBits.getPointer());
1415    }
1416
1417    /// \brief Retrieve the field for an init-capture.
1418    ///
1419    /// This works only for an init-capture.  To retrieve the FieldDecl for
1420    /// a captured variable or for a capture of \c this, use
1421    /// LambdaExpr::getLambdaClass and CXXRecordDecl::getCaptureFields.
1422    FieldDecl *getInitCaptureField() const {
1423      assert(getCaptureKind() == LCK_Init && "no field for non-init-capture");
1424      return cast<FieldDecl>(DeclAndBits.getPointer());
1425    }
1426
1427    /// \brief Determine whether this was an implicit capture (not
1428    /// written between the square brackets introducing the lambda).
1429    bool isImplicit() const { return DeclAndBits.getInt() & Capture_Implicit; }
1430
1431    /// \brief Determine whether this was an explicit capture (written
1432    /// between the square brackets introducing the lambda).
1433    bool isExplicit() const { return !isImplicit(); }
1434
1435    /// \brief Retrieve the source location of the capture.
1436    ///
1437    /// For an explicit capture, this returns the location of the
1438    /// explicit capture in the source. For an implicit capture, this
1439    /// returns the location at which the variable or \c this was first
1440    /// used.
1441    SourceLocation getLocation() const { return Loc; }
1442
1443    /// \brief Determine whether this capture is a pack expansion,
1444    /// which captures a function parameter pack.
1445    bool isPackExpansion() const { return EllipsisLoc.isValid(); }
1446
1447    /// \brief Retrieve the location of the ellipsis for a capture
1448    /// that is a pack expansion.
1449    SourceLocation getEllipsisLoc() const {
1450      assert(isPackExpansion() && "No ellipsis location for a non-expansion");
1451      return EllipsisLoc;
1452    }
1453  };
1454
1455private:
1456  /// \brief Construct a lambda expression.
1457  LambdaExpr(QualType T, SourceRange IntroducerRange,
1458             LambdaCaptureDefault CaptureDefault,
1459             SourceLocation CaptureDefaultLoc,
1460             ArrayRef<Capture> Captures,
1461             bool ExplicitParams,
1462             bool ExplicitResultType,
1463             ArrayRef<Expr *> CaptureInits,
1464             ArrayRef<VarDecl *> ArrayIndexVars,
1465             ArrayRef<unsigned> ArrayIndexStarts,
1466             SourceLocation ClosingBrace,
1467             bool ContainsUnexpandedParameterPack);
1468
1469  /// \brief Construct an empty lambda expression.
1470  LambdaExpr(EmptyShell Empty, unsigned NumCaptures, bool HasArrayIndexVars)
1471    : Expr(LambdaExprClass, Empty),
1472      NumCaptures(NumCaptures), CaptureDefault(LCD_None), ExplicitParams(false),
1473      ExplicitResultType(false), HasArrayIndexVars(true) {
1474    getStoredStmts()[NumCaptures] = 0;
1475  }
1476
1477  Stmt **getStoredStmts() const {
1478    return reinterpret_cast<Stmt **>(const_cast<LambdaExpr *>(this) + 1);
1479  }
1480
1481  /// \brief Retrieve the mapping from captures to the first array index
1482  /// variable.
1483  unsigned *getArrayIndexStarts() const {
1484    return reinterpret_cast<unsigned *>(getStoredStmts() + NumCaptures + 1);
1485  }
1486
1487  /// \brief Retrieve the complete set of array-index variables.
1488  VarDecl **getArrayIndexVars() const {
1489    unsigned ArrayIndexSize =
1490        llvm::RoundUpToAlignment(sizeof(unsigned) * (NumCaptures + 1),
1491                                 llvm::alignOf<VarDecl*>());
1492    return reinterpret_cast<VarDecl **>(
1493        reinterpret_cast<char*>(getArrayIndexStarts()) + ArrayIndexSize);
1494  }
1495
1496public:
1497  /// \brief Construct a new lambda expression.
1498  static LambdaExpr *Create(const ASTContext &C,
1499                            CXXRecordDecl *Class,
1500                            SourceRange IntroducerRange,
1501                            LambdaCaptureDefault CaptureDefault,
1502                            SourceLocation CaptureDefaultLoc,
1503                            ArrayRef<Capture> Captures,
1504                            bool ExplicitParams,
1505                            bool ExplicitResultType,
1506                            ArrayRef<Expr *> CaptureInits,
1507                            ArrayRef<VarDecl *> ArrayIndexVars,
1508                            ArrayRef<unsigned> ArrayIndexStarts,
1509                            SourceLocation ClosingBrace,
1510                            bool ContainsUnexpandedParameterPack);
1511
1512  /// \brief Construct a new lambda expression that will be deserialized from
1513  /// an external source.
1514  static LambdaExpr *CreateDeserialized(const ASTContext &C,
1515                                        unsigned NumCaptures,
1516                                        unsigned NumArrayIndexVars);
1517
1518  /// \brief Determine the default capture kind for this lambda.
1519  LambdaCaptureDefault getCaptureDefault() const {
1520    return static_cast<LambdaCaptureDefault>(CaptureDefault);
1521  }
1522
1523  /// \brief Retrieve the location of this lambda's capture-default, if any.
1524  SourceLocation getCaptureDefaultLoc() const {
1525    return CaptureDefaultLoc;
1526  }
1527
1528  /// \brief An iterator that walks over the captures of the lambda,
1529  /// both implicit and explicit.
1530  typedef const Capture *capture_iterator;
1531
1532  /// \brief Retrieve an iterator pointing to the first lambda capture.
1533  capture_iterator capture_begin() const;
1534
1535  /// \brief Retrieve an iterator pointing past the end of the
1536  /// sequence of lambda captures.
1537  capture_iterator capture_end() const;
1538
1539  /// \brief Determine the number of captures in this lambda.
1540  unsigned capture_size() const { return NumCaptures; }
1541
1542  /// \brief Retrieve an iterator pointing to the first explicit
1543  /// lambda capture.
1544  capture_iterator explicit_capture_begin() const;
1545
1546  /// \brief Retrieve an iterator pointing past the end of the sequence of
1547  /// explicit lambda captures.
1548  capture_iterator explicit_capture_end() const;
1549
1550  /// \brief Retrieve an iterator pointing to the first implicit
1551  /// lambda capture.
1552  capture_iterator implicit_capture_begin() const;
1553
1554  /// \brief Retrieve an iterator pointing past the end of the sequence of
1555  /// implicit lambda captures.
1556  capture_iterator implicit_capture_end() const;
1557
1558  /// \brief Iterator that walks over the capture initialization
1559  /// arguments.
1560  typedef Expr **capture_init_iterator;
1561
1562  /// \brief Retrieve the first initialization argument for this
1563  /// lambda expression (which initializes the first capture field).
1564  capture_init_iterator capture_init_begin() const {
1565    return reinterpret_cast<Expr **>(getStoredStmts());
1566  }
1567
1568  /// \brief Retrieve the iterator pointing one past the last
1569  /// initialization argument for this lambda expression.
1570  capture_init_iterator capture_init_end() const {
1571    return capture_init_begin() + NumCaptures;
1572  }
1573
1574  /// \brief Retrieve the initializer for an init-capture.
1575  Expr *getInitCaptureInit(capture_iterator Capture) {
1576    assert(Capture >= explicit_capture_begin() &&
1577           Capture <= explicit_capture_end() && Capture->isInitCapture());
1578    return capture_init_begin()[Capture - capture_begin()];
1579  }
1580  const Expr *getInitCaptureInit(capture_iterator Capture) const {
1581    return const_cast<LambdaExpr*>(this)->getInitCaptureInit(Capture);
1582  }
1583
1584  /// \brief Retrieve the set of index variables used in the capture
1585  /// initializer of an array captured by copy.
1586  ///
1587  /// \param Iter The iterator that points at the capture initializer for
1588  /// which we are extracting the corresponding index variables.
1589  ArrayRef<VarDecl *> getCaptureInitIndexVars(capture_init_iterator Iter) const;
1590
1591  /// \brief Retrieve the source range covering the lambda introducer,
1592  /// which contains the explicit capture list surrounded by square
1593  /// brackets ([...]).
1594  SourceRange getIntroducerRange() const { return IntroducerRange; }
1595
1596  /// \brief Retrieve the class that corresponds to the lambda.
1597  ///
1598  /// This is the "closure type" (C++1y [expr.prim.lambda]), and stores the
1599  /// captures in its fields and provides the various operations permitted
1600  /// on a lambda (copying, calling).
1601  CXXRecordDecl *getLambdaClass() const;
1602
1603  /// \brief Retrieve the function call operator associated with this
1604  /// lambda expression.
1605  CXXMethodDecl *getCallOperator() const;
1606
1607  /// \brief Retrieve the body of the lambda.
1608  CompoundStmt *getBody() const;
1609
1610  /// \brief Determine whether the lambda is mutable, meaning that any
1611  /// captures values can be modified.
1612  bool isMutable() const;
1613
1614  /// \brief Determine whether this lambda has an explicit parameter
1615  /// list vs. an implicit (empty) parameter list.
1616  bool hasExplicitParameters() const { return ExplicitParams; }
1617
1618  /// \brief Whether this lambda had its result type explicitly specified.
1619  bool hasExplicitResultType() const { return ExplicitResultType; }
1620
1621  static bool classof(const Stmt *T) {
1622    return T->getStmtClass() == LambdaExprClass;
1623  }
1624
1625  SourceLocation getLocStart() const LLVM_READONLY {
1626    return IntroducerRange.getBegin();
1627  }
1628  SourceLocation getLocEnd() const LLVM_READONLY { return ClosingBrace; }
1629
1630  child_range children() {
1631    return child_range(getStoredStmts(), getStoredStmts() + NumCaptures + 1);
1632  }
1633
1634  friend class ASTStmtReader;
1635  friend class ASTStmtWriter;
1636};
1637
1638/// An expression "T()" which creates a value-initialized rvalue of type
1639/// T, which is a non-class type.  See (C++98 [5.2.3p2]).
1640class CXXScalarValueInitExpr : public Expr {
1641  SourceLocation RParenLoc;
1642  TypeSourceInfo *TypeInfo;
1643
1644  friend class ASTStmtReader;
1645
1646public:
1647  /// \brief Create an explicitly-written scalar-value initialization
1648  /// expression.
1649  CXXScalarValueInitExpr(QualType Type,
1650                         TypeSourceInfo *TypeInfo,
1651                         SourceLocation rParenLoc ) :
1652    Expr(CXXScalarValueInitExprClass, Type, VK_RValue, OK_Ordinary,
1653         false, false, Type->isInstantiationDependentType(), false),
1654    RParenLoc(rParenLoc), TypeInfo(TypeInfo) {}
1655
1656  explicit CXXScalarValueInitExpr(EmptyShell Shell)
1657    : Expr(CXXScalarValueInitExprClass, Shell) { }
1658
1659  TypeSourceInfo *getTypeSourceInfo() const {
1660    return TypeInfo;
1661  }
1662
1663  SourceLocation getRParenLoc() const { return RParenLoc; }
1664
1665  SourceLocation getLocStart() const LLVM_READONLY;
1666  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
1667
1668  static bool classof(const Stmt *T) {
1669    return T->getStmtClass() == CXXScalarValueInitExprClass;
1670  }
1671
1672  // Iterators
1673  child_range children() { return child_range(); }
1674};
1675
1676/// \brief Represents a new-expression for memory allocation and constructor
1677/// calls, e.g: "new CXXNewExpr(foo)".
1678class CXXNewExpr : public Expr {
1679  /// Contains an optional array size expression, an optional initialization
1680  /// expression, and any number of optional placement arguments, in that order.
1681  Stmt **SubExprs;
1682  /// \brief Points to the allocation function used.
1683  FunctionDecl *OperatorNew;
1684  /// \brief Points to the deallocation function used in case of error. May be
1685  /// null.
1686  FunctionDecl *OperatorDelete;
1687
1688  /// \brief The allocated type-source information, as written in the source.
1689  TypeSourceInfo *AllocatedTypeInfo;
1690
1691  /// \brief If the allocated type was expressed as a parenthesized type-id,
1692  /// the source range covering the parenthesized type-id.
1693  SourceRange TypeIdParens;
1694
1695  /// \brief Range of the entire new expression.
1696  SourceRange Range;
1697
1698  /// \brief Source-range of a paren-delimited initializer.
1699  SourceRange DirectInitRange;
1700
1701  /// Was the usage ::new, i.e. is the global new to be used?
1702  bool GlobalNew : 1;
1703  /// Do we allocate an array? If so, the first SubExpr is the size expression.
1704  bool Array : 1;
1705  /// If this is an array allocation, does the usual deallocation
1706  /// function for the allocated type want to know the allocated size?
1707  bool UsualArrayDeleteWantsSize : 1;
1708  /// The number of placement new arguments.
1709  unsigned NumPlacementArgs : 13;
1710  /// What kind of initializer do we have? Could be none, parens, or braces.
1711  /// In storage, we distinguish between "none, and no initializer expr", and
1712  /// "none, but an implicit initializer expr".
1713  unsigned StoredInitializationStyle : 2;
1714
1715  friend class ASTStmtReader;
1716  friend class ASTStmtWriter;
1717public:
1718  enum InitializationStyle {
1719    NoInit,   ///< New-expression has no initializer as written.
1720    CallInit, ///< New-expression has a C++98 paren-delimited initializer.
1721    ListInit  ///< New-expression has a C++11 list-initializer.
1722  };
1723
1724  CXXNewExpr(const ASTContext &C, bool globalNew, FunctionDecl *operatorNew,
1725             FunctionDecl *operatorDelete, bool usualArrayDeleteWantsSize,
1726             ArrayRef<Expr*> placementArgs,
1727             SourceRange typeIdParens, Expr *arraySize,
1728             InitializationStyle initializationStyle, Expr *initializer,
1729             QualType ty, TypeSourceInfo *AllocatedTypeInfo,
1730             SourceRange Range, SourceRange directInitRange);
1731  explicit CXXNewExpr(EmptyShell Shell)
1732    : Expr(CXXNewExprClass, Shell), SubExprs(0) { }
1733
1734  void AllocateArgsArray(const ASTContext &C, bool isArray,
1735                         unsigned numPlaceArgs, bool hasInitializer);
1736
1737  QualType getAllocatedType() const {
1738    assert(getType()->isPointerType());
1739    return getType()->getAs<PointerType>()->getPointeeType();
1740  }
1741
1742  TypeSourceInfo *getAllocatedTypeSourceInfo() const {
1743    return AllocatedTypeInfo;
1744  }
1745
1746  /// \brief True if the allocation result needs to be null-checked.
1747  ///
1748  /// C++11 [expr.new]p13:
1749  ///   If the allocation function returns null, initialization shall
1750  ///   not be done, the deallocation function shall not be called,
1751  ///   and the value of the new-expression shall be null.
1752  ///
1753  /// An allocation function is not allowed to return null unless it
1754  /// has a non-throwing exception-specification.  The '03 rule is
1755  /// identical except that the definition of a non-throwing
1756  /// exception specification is just "is it throw()?".
1757  bool shouldNullCheckAllocation(const ASTContext &Ctx) const;
1758
1759  FunctionDecl *getOperatorNew() const { return OperatorNew; }
1760  void setOperatorNew(FunctionDecl *D) { OperatorNew = D; }
1761  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
1762  void setOperatorDelete(FunctionDecl *D) { OperatorDelete = D; }
1763
1764  bool isArray() const { return Array; }
1765  Expr *getArraySize() {
1766    return Array ? cast<Expr>(SubExprs[0]) : 0;
1767  }
1768  const Expr *getArraySize() const {
1769    return Array ? cast<Expr>(SubExprs[0]) : 0;
1770  }
1771
1772  unsigned getNumPlacementArgs() const { return NumPlacementArgs; }
1773  Expr **getPlacementArgs() {
1774    return reinterpret_cast<Expr **>(SubExprs + Array + hasInitializer());
1775  }
1776
1777  Expr *getPlacementArg(unsigned i) {
1778    assert(i < NumPlacementArgs && "Index out of range");
1779    return getPlacementArgs()[i];
1780  }
1781  const Expr *getPlacementArg(unsigned i) const {
1782    assert(i < NumPlacementArgs && "Index out of range");
1783    return const_cast<CXXNewExpr*>(this)->getPlacementArg(i);
1784  }
1785
1786  bool isParenTypeId() const { return TypeIdParens.isValid(); }
1787  SourceRange getTypeIdParens() const { return TypeIdParens; }
1788
1789  bool isGlobalNew() const { return GlobalNew; }
1790
1791  /// \brief Whether this new-expression has any initializer at all.
1792  bool hasInitializer() const { return StoredInitializationStyle > 0; }
1793
1794  /// \brief The kind of initializer this new-expression has.
1795  InitializationStyle getInitializationStyle() const {
1796    if (StoredInitializationStyle == 0)
1797      return NoInit;
1798    return static_cast<InitializationStyle>(StoredInitializationStyle-1);
1799  }
1800
1801  /// \brief The initializer of this new-expression.
1802  Expr *getInitializer() {
1803    return hasInitializer() ? cast<Expr>(SubExprs[Array]) : 0;
1804  }
1805  const Expr *getInitializer() const {
1806    return hasInitializer() ? cast<Expr>(SubExprs[Array]) : 0;
1807  }
1808
1809  /// \brief Returns the CXXConstructExpr from this new-expression, or null.
1810  const CXXConstructExpr* getConstructExpr() const {
1811    return dyn_cast_or_null<CXXConstructExpr>(getInitializer());
1812  }
1813
1814  /// Answers whether the usual array deallocation function for the
1815  /// allocated type expects the size of the allocation as a
1816  /// parameter.
1817  bool doesUsualArrayDeleteWantSize() const {
1818    return UsualArrayDeleteWantsSize;
1819  }
1820
1821  typedef ExprIterator arg_iterator;
1822  typedef ConstExprIterator const_arg_iterator;
1823
1824  arg_iterator placement_arg_begin() {
1825    return SubExprs + Array + hasInitializer();
1826  }
1827  arg_iterator placement_arg_end() {
1828    return SubExprs + Array + hasInitializer() + getNumPlacementArgs();
1829  }
1830  const_arg_iterator placement_arg_begin() const {
1831    return SubExprs + Array + hasInitializer();
1832  }
1833  const_arg_iterator placement_arg_end() const {
1834    return SubExprs + Array + hasInitializer() + getNumPlacementArgs();
1835  }
1836
1837  typedef Stmt **raw_arg_iterator;
1838  raw_arg_iterator raw_arg_begin() { return SubExprs; }
1839  raw_arg_iterator raw_arg_end() {
1840    return SubExprs + Array + hasInitializer() + getNumPlacementArgs();
1841  }
1842  const_arg_iterator raw_arg_begin() const { return SubExprs; }
1843  const_arg_iterator raw_arg_end() const {
1844    return SubExprs + Array + hasInitializer() + getNumPlacementArgs();
1845  }
1846
1847  SourceLocation getStartLoc() const { return Range.getBegin(); }
1848  SourceLocation getEndLoc() const { return Range.getEnd(); }
1849
1850  SourceRange getDirectInitRange() const { return DirectInitRange; }
1851
1852  SourceRange getSourceRange() const LLVM_READONLY {
1853    return Range;
1854  }
1855  SourceLocation getLocStart() const LLVM_READONLY { return getStartLoc(); }
1856  SourceLocation getLocEnd() const LLVM_READONLY { return getEndLoc(); }
1857
1858  static bool classof(const Stmt *T) {
1859    return T->getStmtClass() == CXXNewExprClass;
1860  }
1861
1862  // Iterators
1863  child_range children() {
1864    return child_range(raw_arg_begin(), raw_arg_end());
1865  }
1866};
1867
1868/// \brief Represents a \c delete expression for memory deallocation and
1869/// destructor calls, e.g. "delete[] pArray".
1870class CXXDeleteExpr : public Expr {
1871  /// Points to the operator delete overload that is used. Could be a member.
1872  FunctionDecl *OperatorDelete;
1873  /// The pointer expression to be deleted.
1874  Stmt *Argument;
1875  /// Location of the expression.
1876  SourceLocation Loc;
1877  /// Is this a forced global delete, i.e. "::delete"?
1878  bool GlobalDelete : 1;
1879  /// Is this the array form of delete, i.e. "delete[]"?
1880  bool ArrayForm : 1;
1881  /// ArrayFormAsWritten can be different from ArrayForm if 'delete' is applied
1882  /// to pointer-to-array type (ArrayFormAsWritten will be false while ArrayForm
1883  /// will be true).
1884  bool ArrayFormAsWritten : 1;
1885  /// Does the usual deallocation function for the element type require
1886  /// a size_t argument?
1887  bool UsualArrayDeleteWantsSize : 1;
1888public:
1889  CXXDeleteExpr(QualType ty, bool globalDelete, bool arrayForm,
1890                bool arrayFormAsWritten, bool usualArrayDeleteWantsSize,
1891                FunctionDecl *operatorDelete, Expr *arg, SourceLocation loc)
1892    : Expr(CXXDeleteExprClass, ty, VK_RValue, OK_Ordinary, false, false,
1893           arg->isInstantiationDependent(),
1894           arg->containsUnexpandedParameterPack()),
1895      OperatorDelete(operatorDelete), Argument(arg), Loc(loc),
1896      GlobalDelete(globalDelete),
1897      ArrayForm(arrayForm), ArrayFormAsWritten(arrayFormAsWritten),
1898      UsualArrayDeleteWantsSize(usualArrayDeleteWantsSize) { }
1899  explicit CXXDeleteExpr(EmptyShell Shell)
1900    : Expr(CXXDeleteExprClass, Shell), OperatorDelete(0), Argument(0) { }
1901
1902  bool isGlobalDelete() const { return GlobalDelete; }
1903  bool isArrayForm() const { return ArrayForm; }
1904  bool isArrayFormAsWritten() const { return ArrayFormAsWritten; }
1905
1906  /// Answers whether the usual array deallocation function for the
1907  /// allocated type expects the size of the allocation as a
1908  /// parameter.  This can be true even if the actual deallocation
1909  /// function that we're using doesn't want a size.
1910  bool doesUsualArrayDeleteWantSize() const {
1911    return UsualArrayDeleteWantsSize;
1912  }
1913
1914  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
1915
1916  Expr *getArgument() { return cast<Expr>(Argument); }
1917  const Expr *getArgument() const { return cast<Expr>(Argument); }
1918
1919  /// \brief Retrieve the type being destroyed.
1920  ///
1921  /// If the type being destroyed is a dependent type which may or may not
1922  /// be a pointer, return an invalid type.
1923  QualType getDestroyedType() const;
1924
1925  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
1926  SourceLocation getLocEnd() const LLVM_READONLY {return Argument->getLocEnd();}
1927
1928  static bool classof(const Stmt *T) {
1929    return T->getStmtClass() == CXXDeleteExprClass;
1930  }
1931
1932  // Iterators
1933  child_range children() { return child_range(&Argument, &Argument+1); }
1934
1935  friend class ASTStmtReader;
1936};
1937
1938/// \brief Stores the type being destroyed by a pseudo-destructor expression.
1939class PseudoDestructorTypeStorage {
1940  /// \brief Either the type source information or the name of the type, if
1941  /// it couldn't be resolved due to type-dependence.
1942  llvm::PointerUnion<TypeSourceInfo *, IdentifierInfo *> Type;
1943
1944  /// \brief The starting source location of the pseudo-destructor type.
1945  SourceLocation Location;
1946
1947public:
1948  PseudoDestructorTypeStorage() { }
1949
1950  PseudoDestructorTypeStorage(IdentifierInfo *II, SourceLocation Loc)
1951    : Type(II), Location(Loc) { }
1952
1953  PseudoDestructorTypeStorage(TypeSourceInfo *Info);
1954
1955  TypeSourceInfo *getTypeSourceInfo() const {
1956    return Type.dyn_cast<TypeSourceInfo *>();
1957  }
1958
1959  IdentifierInfo *getIdentifier() const {
1960    return Type.dyn_cast<IdentifierInfo *>();
1961  }
1962
1963  SourceLocation getLocation() const { return Location; }
1964};
1965
1966/// \brief Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
1967///
1968/// A pseudo-destructor is an expression that looks like a member access to a
1969/// destructor of a scalar type, except that scalar types don't have
1970/// destructors. For example:
1971///
1972/// \code
1973/// typedef int T;
1974/// void f(int *p) {
1975///   p->T::~T();
1976/// }
1977/// \endcode
1978///
1979/// Pseudo-destructors typically occur when instantiating templates such as:
1980///
1981/// \code
1982/// template<typename T>
1983/// void destroy(T* ptr) {
1984///   ptr->T::~T();
1985/// }
1986/// \endcode
1987///
1988/// for scalar types. A pseudo-destructor expression has no run-time semantics
1989/// beyond evaluating the base expression.
1990class CXXPseudoDestructorExpr : public Expr {
1991  /// \brief The base expression (that is being destroyed).
1992  Stmt *Base;
1993
1994  /// \brief Whether the operator was an arrow ('->'); otherwise, it was a
1995  /// period ('.').
1996  bool IsArrow : 1;
1997
1998  /// \brief The location of the '.' or '->' operator.
1999  SourceLocation OperatorLoc;
2000
2001  /// \brief The nested-name-specifier that follows the operator, if present.
2002  NestedNameSpecifierLoc QualifierLoc;
2003
2004  /// \brief The type that precedes the '::' in a qualified pseudo-destructor
2005  /// expression.
2006  TypeSourceInfo *ScopeType;
2007
2008  /// \brief The location of the '::' in a qualified pseudo-destructor
2009  /// expression.
2010  SourceLocation ColonColonLoc;
2011
2012  /// \brief The location of the '~'.
2013  SourceLocation TildeLoc;
2014
2015  /// \brief The type being destroyed, or its name if we were unable to
2016  /// resolve the name.
2017  PseudoDestructorTypeStorage DestroyedType;
2018
2019  friend class ASTStmtReader;
2020
2021public:
2022  CXXPseudoDestructorExpr(const ASTContext &Context,
2023                          Expr *Base, bool isArrow, SourceLocation OperatorLoc,
2024                          NestedNameSpecifierLoc QualifierLoc,
2025                          TypeSourceInfo *ScopeType,
2026                          SourceLocation ColonColonLoc,
2027                          SourceLocation TildeLoc,
2028                          PseudoDestructorTypeStorage DestroyedType);
2029
2030  explicit CXXPseudoDestructorExpr(EmptyShell Shell)
2031    : Expr(CXXPseudoDestructorExprClass, Shell),
2032      Base(0), IsArrow(false), QualifierLoc(), ScopeType(0) { }
2033
2034  Expr *getBase() const { return cast<Expr>(Base); }
2035
2036  /// \brief Determines whether this member expression actually had
2037  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
2038  /// x->Base::foo.
2039  bool hasQualifier() const { return QualifierLoc.hasQualifier(); }
2040
2041  /// \brief Retrieves the nested-name-specifier that qualifies the type name,
2042  /// with source-location information.
2043  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2044
2045  /// \brief If the member name was qualified, retrieves the
2046  /// nested-name-specifier that precedes the member name. Otherwise, returns
2047  /// null.
2048  NestedNameSpecifier *getQualifier() const {
2049    return QualifierLoc.getNestedNameSpecifier();
2050  }
2051
2052  /// \brief Determine whether this pseudo-destructor expression was written
2053  /// using an '->' (otherwise, it used a '.').
2054  bool isArrow() const { return IsArrow; }
2055
2056  /// \brief Retrieve the location of the '.' or '->' operator.
2057  SourceLocation getOperatorLoc() const { return OperatorLoc; }
2058
2059  /// \brief Retrieve the scope type in a qualified pseudo-destructor
2060  /// expression.
2061  ///
2062  /// Pseudo-destructor expressions can have extra qualification within them
2063  /// that is not part of the nested-name-specifier, e.g., \c p->T::~T().
2064  /// Here, if the object type of the expression is (or may be) a scalar type,
2065  /// \p T may also be a scalar type and, therefore, cannot be part of a
2066  /// nested-name-specifier. It is stored as the "scope type" of the pseudo-
2067  /// destructor expression.
2068  TypeSourceInfo *getScopeTypeInfo() const { return ScopeType; }
2069
2070  /// \brief Retrieve the location of the '::' in a qualified pseudo-destructor
2071  /// expression.
2072  SourceLocation getColonColonLoc() const { return ColonColonLoc; }
2073
2074  /// \brief Retrieve the location of the '~'.
2075  SourceLocation getTildeLoc() const { return TildeLoc; }
2076
2077  /// \brief Retrieve the source location information for the type
2078  /// being destroyed.
2079  ///
2080  /// This type-source information is available for non-dependent
2081  /// pseudo-destructor expressions and some dependent pseudo-destructor
2082  /// expressions. Returns null if we only have the identifier for a
2083  /// dependent pseudo-destructor expression.
2084  TypeSourceInfo *getDestroyedTypeInfo() const {
2085    return DestroyedType.getTypeSourceInfo();
2086  }
2087
2088  /// \brief In a dependent pseudo-destructor expression for which we do not
2089  /// have full type information on the destroyed type, provides the name
2090  /// of the destroyed type.
2091  IdentifierInfo *getDestroyedTypeIdentifier() const {
2092    return DestroyedType.getIdentifier();
2093  }
2094
2095  /// \brief Retrieve the type being destroyed.
2096  QualType getDestroyedType() const;
2097
2098  /// \brief Retrieve the starting location of the type being destroyed.
2099  SourceLocation getDestroyedTypeLoc() const {
2100    return DestroyedType.getLocation();
2101  }
2102
2103  /// \brief Set the name of destroyed type for a dependent pseudo-destructor
2104  /// expression.
2105  void setDestroyedType(IdentifierInfo *II, SourceLocation Loc) {
2106    DestroyedType = PseudoDestructorTypeStorage(II, Loc);
2107  }
2108
2109  /// \brief Set the destroyed type.
2110  void setDestroyedType(TypeSourceInfo *Info) {
2111    DestroyedType = PseudoDestructorTypeStorage(Info);
2112  }
2113
2114  SourceLocation getLocStart() const LLVM_READONLY {return Base->getLocStart();}
2115  SourceLocation getLocEnd() const LLVM_READONLY;
2116
2117  static bool classof(const Stmt *T) {
2118    return T->getStmtClass() == CXXPseudoDestructorExprClass;
2119  }
2120
2121  // Iterators
2122  child_range children() { return child_range(&Base, &Base + 1); }
2123};
2124
2125/// \brief Represents a GCC or MS unary type trait, as used in the
2126/// implementation of TR1/C++11 type trait templates.
2127///
2128/// Example:
2129/// \code
2130///   __is_pod(int) == true
2131///   __is_enum(std::string) == false
2132/// \endcode
2133class UnaryTypeTraitExpr : public Expr {
2134  /// \brief The trait. A UnaryTypeTrait enum in MSVC compatible unsigned.
2135  unsigned UTT : 31;
2136  /// The value of the type trait. Unspecified if dependent.
2137  bool Value : 1;
2138
2139  /// \brief The location of the type trait keyword.
2140  SourceLocation Loc;
2141
2142  /// \brief The location of the closing paren.
2143  SourceLocation RParen;
2144
2145  /// \brief The type being queried.
2146  TypeSourceInfo *QueriedType;
2147
2148public:
2149  UnaryTypeTraitExpr(SourceLocation loc, UnaryTypeTrait utt,
2150                     TypeSourceInfo *queried, bool value,
2151                     SourceLocation rparen, QualType ty)
2152    : Expr(UnaryTypeTraitExprClass, ty, VK_RValue, OK_Ordinary,
2153           false,  queried->getType()->isDependentType(),
2154           queried->getType()->isInstantiationDependentType(),
2155           queried->getType()->containsUnexpandedParameterPack()),
2156      UTT(utt), Value(value), Loc(loc), RParen(rparen), QueriedType(queried) { }
2157
2158  explicit UnaryTypeTraitExpr(EmptyShell Empty)
2159    : Expr(UnaryTypeTraitExprClass, Empty), UTT(0), Value(false),
2160      QueriedType() { }
2161
2162  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
2163  SourceLocation getLocEnd() const LLVM_READONLY { return RParen; }
2164
2165  UnaryTypeTrait getTrait() const { return static_cast<UnaryTypeTrait>(UTT); }
2166
2167  QualType getQueriedType() const { return QueriedType->getType(); }
2168
2169  TypeSourceInfo *getQueriedTypeSourceInfo() const { return QueriedType; }
2170
2171  bool getValue() const { return Value; }
2172
2173  static bool classof(const Stmt *T) {
2174    return T->getStmtClass() == UnaryTypeTraitExprClass;
2175  }
2176
2177  // Iterators
2178  child_range children() { return child_range(); }
2179
2180  friend class ASTStmtReader;
2181};
2182
2183/// \brief Represents a GCC or MS binary type trait, as used in the
2184/// implementation of TR1/C++11 type trait templates.
2185///
2186/// Example:
2187/// \code
2188///   __is_base_of(Base, Derived) == true
2189/// \endcode
2190class BinaryTypeTraitExpr : public Expr {
2191  /// \brief The trait. A BinaryTypeTrait enum in MSVC compatible unsigned.
2192  unsigned BTT : 8;
2193
2194  /// The value of the type trait. Unspecified if dependent.
2195  bool Value : 1;
2196
2197  /// \brief The location of the type trait keyword.
2198  SourceLocation Loc;
2199
2200  /// \brief The location of the closing paren.
2201  SourceLocation RParen;
2202
2203  /// \brief The lhs type being queried.
2204  TypeSourceInfo *LhsType;
2205
2206  /// \brief The rhs type being queried.
2207  TypeSourceInfo *RhsType;
2208
2209public:
2210  BinaryTypeTraitExpr(SourceLocation loc, BinaryTypeTrait btt,
2211                     TypeSourceInfo *lhsType, TypeSourceInfo *rhsType,
2212                     bool value, SourceLocation rparen, QualType ty)
2213    : Expr(BinaryTypeTraitExprClass, ty, VK_RValue, OK_Ordinary, false,
2214           lhsType->getType()->isDependentType() ||
2215           rhsType->getType()->isDependentType(),
2216           (lhsType->getType()->isInstantiationDependentType() ||
2217            rhsType->getType()->isInstantiationDependentType()),
2218           (lhsType->getType()->containsUnexpandedParameterPack() ||
2219            rhsType->getType()->containsUnexpandedParameterPack())),
2220      BTT(btt), Value(value), Loc(loc), RParen(rparen),
2221      LhsType(lhsType), RhsType(rhsType) { }
2222
2223
2224  explicit BinaryTypeTraitExpr(EmptyShell Empty)
2225    : Expr(BinaryTypeTraitExprClass, Empty), BTT(0), Value(false),
2226      LhsType(), RhsType() { }
2227
2228  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
2229  SourceLocation getLocEnd() const LLVM_READONLY { return RParen; }
2230
2231  BinaryTypeTrait getTrait() const {
2232    return static_cast<BinaryTypeTrait>(BTT);
2233  }
2234
2235  QualType getLhsType() const { return LhsType->getType(); }
2236  QualType getRhsType() const { return RhsType->getType(); }
2237
2238  TypeSourceInfo *getLhsTypeSourceInfo() const { return LhsType; }
2239  TypeSourceInfo *getRhsTypeSourceInfo() const { return RhsType; }
2240
2241  bool getValue() const { assert(!isTypeDependent()); return Value; }
2242
2243  static bool classof(const Stmt *T) {
2244    return T->getStmtClass() == BinaryTypeTraitExprClass;
2245  }
2246
2247  // Iterators
2248  child_range children() { return child_range(); }
2249
2250  friend class ASTStmtReader;
2251};
2252
2253/// \brief A type trait used in the implementation of various C++11 and
2254/// Library TR1 trait templates.
2255///
2256/// \code
2257///   __is_trivially_constructible(vector<int>, int*, int*)
2258/// \endcode
2259class TypeTraitExpr : public Expr {
2260  /// \brief The location of the type trait keyword.
2261  SourceLocation Loc;
2262
2263  /// \brief  The location of the closing parenthesis.
2264  SourceLocation RParenLoc;
2265
2266  // Note: The TypeSourceInfos for the arguments are allocated after the
2267  // TypeTraitExpr.
2268
2269  TypeTraitExpr(QualType T, SourceLocation Loc, TypeTrait Kind,
2270                ArrayRef<TypeSourceInfo *> Args,
2271                SourceLocation RParenLoc,
2272                bool Value);
2273
2274  TypeTraitExpr(EmptyShell Empty) : Expr(TypeTraitExprClass, Empty) { }
2275
2276  /// \brief Retrieve the argument types.
2277  TypeSourceInfo **getTypeSourceInfos() {
2278    return reinterpret_cast<TypeSourceInfo **>(this+1);
2279  }
2280
2281  /// \brief Retrieve the argument types.
2282  TypeSourceInfo * const *getTypeSourceInfos() const {
2283    return reinterpret_cast<TypeSourceInfo * const*>(this+1);
2284  }
2285
2286public:
2287  /// \brief Create a new type trait expression.
2288  static TypeTraitExpr *Create(const ASTContext &C, QualType T,
2289                               SourceLocation Loc, TypeTrait Kind,
2290                               ArrayRef<TypeSourceInfo *> Args,
2291                               SourceLocation RParenLoc,
2292                               bool Value);
2293
2294  static TypeTraitExpr *CreateDeserialized(const ASTContext &C,
2295                                           unsigned NumArgs);
2296
2297  /// \brief Determine which type trait this expression uses.
2298  TypeTrait getTrait() const {
2299    return static_cast<TypeTrait>(TypeTraitExprBits.Kind);
2300  }
2301
2302  bool getValue() const {
2303    assert(!isValueDependent());
2304    return TypeTraitExprBits.Value;
2305  }
2306
2307  /// \brief Determine the number of arguments to this type trait.
2308  unsigned getNumArgs() const { return TypeTraitExprBits.NumArgs; }
2309
2310  /// \brief Retrieve the Ith argument.
2311  TypeSourceInfo *getArg(unsigned I) const {
2312    assert(I < getNumArgs() && "Argument out-of-range");
2313    return getArgs()[I];
2314  }
2315
2316  /// \brief Retrieve the argument types.
2317  ArrayRef<TypeSourceInfo *> getArgs() const {
2318    return ArrayRef<TypeSourceInfo *>(getTypeSourceInfos(), getNumArgs());
2319  }
2320
2321  typedef TypeSourceInfo **arg_iterator;
2322  arg_iterator arg_begin() {
2323    return getTypeSourceInfos();
2324  }
2325  arg_iterator arg_end() {
2326    return getTypeSourceInfos() + getNumArgs();
2327  }
2328
2329  typedef TypeSourceInfo const * const *arg_const_iterator;
2330  arg_const_iterator arg_begin() const { return getTypeSourceInfos(); }
2331  arg_const_iterator arg_end() const {
2332    return getTypeSourceInfos() + getNumArgs();
2333  }
2334
2335  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
2336  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
2337
2338  static bool classof(const Stmt *T) {
2339    return T->getStmtClass() == TypeTraitExprClass;
2340  }
2341
2342  // Iterators
2343  child_range children() { return child_range(); }
2344
2345  friend class ASTStmtReader;
2346  friend class ASTStmtWriter;
2347
2348};
2349
2350/// \brief An Embarcadero array type trait, as used in the implementation of
2351/// __array_rank and __array_extent.
2352///
2353/// Example:
2354/// \code
2355///   __array_rank(int[10][20]) == 2
2356///   __array_extent(int, 1)    == 20
2357/// \endcode
2358class ArrayTypeTraitExpr : public Expr {
2359  virtual void anchor();
2360
2361  /// \brief The trait. An ArrayTypeTrait enum in MSVC compat unsigned.
2362  unsigned ATT : 2;
2363
2364  /// \brief The value of the type trait. Unspecified if dependent.
2365  uint64_t Value;
2366
2367  /// \brief The array dimension being queried, or -1 if not used.
2368  Expr *Dimension;
2369
2370  /// \brief The location of the type trait keyword.
2371  SourceLocation Loc;
2372
2373  /// \brief The location of the closing paren.
2374  SourceLocation RParen;
2375
2376  /// \brief The type being queried.
2377  TypeSourceInfo *QueriedType;
2378
2379public:
2380  ArrayTypeTraitExpr(SourceLocation loc, ArrayTypeTrait att,
2381                     TypeSourceInfo *queried, uint64_t value,
2382                     Expr *dimension, SourceLocation rparen, QualType ty)
2383    : Expr(ArrayTypeTraitExprClass, ty, VK_RValue, OK_Ordinary,
2384           false, queried->getType()->isDependentType(),
2385           (queried->getType()->isInstantiationDependentType() ||
2386            (dimension && dimension->isInstantiationDependent())),
2387           queried->getType()->containsUnexpandedParameterPack()),
2388      ATT(att), Value(value), Dimension(dimension),
2389      Loc(loc), RParen(rparen), QueriedType(queried) { }
2390
2391
2392  explicit ArrayTypeTraitExpr(EmptyShell Empty)
2393    : Expr(ArrayTypeTraitExprClass, Empty), ATT(0), Value(false),
2394      QueriedType() { }
2395
2396  virtual ~ArrayTypeTraitExpr() { }
2397
2398  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
2399  SourceLocation getLocEnd() const LLVM_READONLY { return RParen; }
2400
2401  ArrayTypeTrait getTrait() const { return static_cast<ArrayTypeTrait>(ATT); }
2402
2403  QualType getQueriedType() const { return QueriedType->getType(); }
2404
2405  TypeSourceInfo *getQueriedTypeSourceInfo() const { return QueriedType; }
2406
2407  uint64_t getValue() const { assert(!isTypeDependent()); return Value; }
2408
2409  Expr *getDimensionExpression() const { return Dimension; }
2410
2411  static bool classof(const Stmt *T) {
2412    return T->getStmtClass() == ArrayTypeTraitExprClass;
2413  }
2414
2415  // Iterators
2416  child_range children() { return child_range(); }
2417
2418  friend class ASTStmtReader;
2419};
2420
2421/// \brief An expression trait intrinsic.
2422///
2423/// Example:
2424/// \code
2425///   __is_lvalue_expr(std::cout) == true
2426///   __is_lvalue_expr(1) == false
2427/// \endcode
2428class ExpressionTraitExpr : public Expr {
2429  /// \brief The trait. A ExpressionTrait enum in MSVC compatible unsigned.
2430  unsigned ET : 31;
2431  /// \brief The value of the type trait. Unspecified if dependent.
2432  bool Value : 1;
2433
2434  /// \brief The location of the type trait keyword.
2435  SourceLocation Loc;
2436
2437  /// \brief The location of the closing paren.
2438  SourceLocation RParen;
2439
2440  /// \brief The expression being queried.
2441  Expr* QueriedExpression;
2442public:
2443  ExpressionTraitExpr(SourceLocation loc, ExpressionTrait et,
2444                     Expr *queried, bool value,
2445                     SourceLocation rparen, QualType resultType)
2446    : Expr(ExpressionTraitExprClass, resultType, VK_RValue, OK_Ordinary,
2447           false, // Not type-dependent
2448           // Value-dependent if the argument is type-dependent.
2449           queried->isTypeDependent(),
2450           queried->isInstantiationDependent(),
2451           queried->containsUnexpandedParameterPack()),
2452      ET(et), Value(value), Loc(loc), RParen(rparen),
2453      QueriedExpression(queried) { }
2454
2455  explicit ExpressionTraitExpr(EmptyShell Empty)
2456    : Expr(ExpressionTraitExprClass, Empty), ET(0), Value(false),
2457      QueriedExpression() { }
2458
2459  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
2460  SourceLocation getLocEnd() const LLVM_READONLY { return RParen; }
2461
2462  ExpressionTrait getTrait() const { return static_cast<ExpressionTrait>(ET); }
2463
2464  Expr *getQueriedExpression() const { return QueriedExpression; }
2465
2466  bool getValue() const { return Value; }
2467
2468  static bool classof(const Stmt *T) {
2469    return T->getStmtClass() == ExpressionTraitExprClass;
2470  }
2471
2472  // Iterators
2473  child_range children() { return child_range(); }
2474
2475  friend class ASTStmtReader;
2476};
2477
2478
2479/// \brief A reference to an overloaded function set, either an
2480/// \c UnresolvedLookupExpr or an \c UnresolvedMemberExpr.
2481class OverloadExpr : public Expr {
2482  /// \brief The common name of these declarations.
2483  DeclarationNameInfo NameInfo;
2484
2485  /// \brief The nested-name-specifier that qualifies the name, if any.
2486  NestedNameSpecifierLoc QualifierLoc;
2487
2488  /// The results.  These are undesugared, which is to say, they may
2489  /// include UsingShadowDecls.  Access is relative to the naming
2490  /// class.
2491  // FIXME: Allocate this data after the OverloadExpr subclass.
2492  DeclAccessPair *Results;
2493  unsigned NumResults;
2494
2495protected:
2496  /// \brief Whether the name includes info for explicit template
2497  /// keyword and arguments.
2498  bool HasTemplateKWAndArgsInfo;
2499
2500  /// \brief Return the optional template keyword and arguments info.
2501  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo(); // defined far below.
2502
2503  /// \brief Return the optional template keyword and arguments info.
2504  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
2505    return const_cast<OverloadExpr*>(this)->getTemplateKWAndArgsInfo();
2506  }
2507
2508  OverloadExpr(StmtClass K, const ASTContext &C,
2509               NestedNameSpecifierLoc QualifierLoc,
2510               SourceLocation TemplateKWLoc,
2511               const DeclarationNameInfo &NameInfo,
2512               const TemplateArgumentListInfo *TemplateArgs,
2513               UnresolvedSetIterator Begin, UnresolvedSetIterator End,
2514               bool KnownDependent,
2515               bool KnownInstantiationDependent,
2516               bool KnownContainsUnexpandedParameterPack);
2517
2518  OverloadExpr(StmtClass K, EmptyShell Empty)
2519    : Expr(K, Empty), QualifierLoc(), Results(0), NumResults(0),
2520      HasTemplateKWAndArgsInfo(false) { }
2521
2522  void initializeResults(const ASTContext &C,
2523                         UnresolvedSetIterator Begin,
2524                         UnresolvedSetIterator End);
2525
2526public:
2527  struct FindResult {
2528    OverloadExpr *Expression;
2529    bool IsAddressOfOperand;
2530    bool HasFormOfMemberPointer;
2531  };
2532
2533  /// \brief Finds the overloaded expression in the given expression \p E of
2534  /// OverloadTy.
2535  ///
2536  /// \return the expression (which must be there) and true if it has
2537  /// the particular form of a member pointer expression
2538  static FindResult find(Expr *E) {
2539    assert(E->getType()->isSpecificBuiltinType(BuiltinType::Overload));
2540
2541    FindResult Result;
2542
2543    E = E->IgnoreParens();
2544    if (isa<UnaryOperator>(E)) {
2545      assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
2546      E = cast<UnaryOperator>(E)->getSubExpr();
2547      OverloadExpr *Ovl = cast<OverloadExpr>(E->IgnoreParens());
2548
2549      Result.HasFormOfMemberPointer = (E == Ovl && Ovl->getQualifier());
2550      Result.IsAddressOfOperand = true;
2551      Result.Expression = Ovl;
2552    } else {
2553      Result.HasFormOfMemberPointer = false;
2554      Result.IsAddressOfOperand = false;
2555      Result.Expression = cast<OverloadExpr>(E);
2556    }
2557
2558    return Result;
2559  }
2560
2561  /// \brief Gets the naming class of this lookup, if any.
2562  CXXRecordDecl *getNamingClass() const;
2563
2564  typedef UnresolvedSetImpl::iterator decls_iterator;
2565  decls_iterator decls_begin() const { return UnresolvedSetIterator(Results); }
2566  decls_iterator decls_end() const {
2567    return UnresolvedSetIterator(Results + NumResults);
2568  }
2569
2570  /// \brief Gets the number of declarations in the unresolved set.
2571  unsigned getNumDecls() const { return NumResults; }
2572
2573  /// \brief Gets the full name info.
2574  const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
2575
2576  /// \brief Gets the name looked up.
2577  DeclarationName getName() const { return NameInfo.getName(); }
2578
2579  /// \brief Gets the location of the name.
2580  SourceLocation getNameLoc() const { return NameInfo.getLoc(); }
2581
2582  /// \brief Fetches the nested-name qualifier, if one was given.
2583  NestedNameSpecifier *getQualifier() const {
2584    return QualifierLoc.getNestedNameSpecifier();
2585  }
2586
2587  /// \brief Fetches the nested-name qualifier with source-location
2588  /// information, if one was given.
2589  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2590
2591  /// \brief Retrieve the location of the template keyword preceding
2592  /// this name, if any.
2593  SourceLocation getTemplateKeywordLoc() const {
2594    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2595    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
2596  }
2597
2598  /// \brief Retrieve the location of the left angle bracket starting the
2599  /// explicit template argument list following the name, if any.
2600  SourceLocation getLAngleLoc() const {
2601    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2602    return getTemplateKWAndArgsInfo()->LAngleLoc;
2603  }
2604
2605  /// \brief Retrieve the location of the right angle bracket ending the
2606  /// explicit template argument list following the name, if any.
2607  SourceLocation getRAngleLoc() const {
2608    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2609    return getTemplateKWAndArgsInfo()->RAngleLoc;
2610  }
2611
2612  /// \brief Determines whether the name was preceded by the template keyword.
2613  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
2614
2615  /// \brief Determines whether this expression had explicit template arguments.
2616  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
2617
2618  // Note that, inconsistently with the explicit-template-argument AST
2619  // nodes, users are *forbidden* from calling these methods on objects
2620  // without explicit template arguments.
2621
2622  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
2623    assert(hasExplicitTemplateArgs());
2624    return *getTemplateKWAndArgsInfo();
2625  }
2626
2627  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2628    return const_cast<OverloadExpr*>(this)->getExplicitTemplateArgs();
2629  }
2630
2631  TemplateArgumentLoc const *getTemplateArgs() const {
2632    return getExplicitTemplateArgs().getTemplateArgs();
2633  }
2634
2635  unsigned getNumTemplateArgs() const {
2636    return getExplicitTemplateArgs().NumTemplateArgs;
2637  }
2638
2639  /// \brief Copies the template arguments into the given structure.
2640  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2641    getExplicitTemplateArgs().copyInto(List);
2642  }
2643
2644  /// \brief Retrieves the optional explicit template arguments.
2645  ///
2646  /// This points to the same data as getExplicitTemplateArgs(), but
2647  /// returns null if there are no explicit template arguments.
2648  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() const {
2649    if (!hasExplicitTemplateArgs()) return 0;
2650    return &getExplicitTemplateArgs();
2651  }
2652
2653  static bool classof(const Stmt *T) {
2654    return T->getStmtClass() == UnresolvedLookupExprClass ||
2655           T->getStmtClass() == UnresolvedMemberExprClass;
2656  }
2657
2658  friend class ASTStmtReader;
2659  friend class ASTStmtWriter;
2660};
2661
2662/// \brief A reference to a name which we were able to look up during
2663/// parsing but could not resolve to a specific declaration.
2664///
2665/// This arises in several ways:
2666///   * we might be waiting for argument-dependent lookup;
2667///   * the name might resolve to an overloaded function;
2668/// and eventually:
2669///   * the lookup might have included a function template.
2670///
2671/// These never include UnresolvedUsingValueDecls, which are always class
2672/// members and therefore appear only in UnresolvedMemberLookupExprs.
2673class UnresolvedLookupExpr : public OverloadExpr {
2674  /// True if these lookup results should be extended by
2675  /// argument-dependent lookup if this is the operand of a function
2676  /// call.
2677  bool RequiresADL;
2678
2679  /// True if these lookup results are overloaded.  This is pretty
2680  /// trivially rederivable if we urgently need to kill this field.
2681  bool Overloaded;
2682
2683  /// The naming class (C++ [class.access.base]p5) of the lookup, if
2684  /// any.  This can generally be recalculated from the context chain,
2685  /// but that can be fairly expensive for unqualified lookups.  If we
2686  /// want to improve memory use here, this could go in a union
2687  /// against the qualified-lookup bits.
2688  CXXRecordDecl *NamingClass;
2689
2690  UnresolvedLookupExpr(const ASTContext &C,
2691                       CXXRecordDecl *NamingClass,
2692                       NestedNameSpecifierLoc QualifierLoc,
2693                       SourceLocation TemplateKWLoc,
2694                       const DeclarationNameInfo &NameInfo,
2695                       bool RequiresADL, bool Overloaded,
2696                       const TemplateArgumentListInfo *TemplateArgs,
2697                       UnresolvedSetIterator Begin, UnresolvedSetIterator End)
2698    : OverloadExpr(UnresolvedLookupExprClass, C, QualifierLoc, TemplateKWLoc,
2699                   NameInfo, TemplateArgs, Begin, End, false, false, false),
2700      RequiresADL(RequiresADL),
2701      Overloaded(Overloaded), NamingClass(NamingClass)
2702  {}
2703
2704  UnresolvedLookupExpr(EmptyShell Empty)
2705    : OverloadExpr(UnresolvedLookupExprClass, Empty),
2706      RequiresADL(false), Overloaded(false), NamingClass(0)
2707  {}
2708
2709  friend class ASTStmtReader;
2710
2711public:
2712  static UnresolvedLookupExpr *Create(const ASTContext &C,
2713                                      CXXRecordDecl *NamingClass,
2714                                      NestedNameSpecifierLoc QualifierLoc,
2715                                      const DeclarationNameInfo &NameInfo,
2716                                      bool ADL, bool Overloaded,
2717                                      UnresolvedSetIterator Begin,
2718                                      UnresolvedSetIterator End) {
2719    return new(C) UnresolvedLookupExpr(C, NamingClass, QualifierLoc,
2720                                       SourceLocation(), NameInfo,
2721                                       ADL, Overloaded, 0, Begin, End);
2722  }
2723
2724  static UnresolvedLookupExpr *Create(const ASTContext &C,
2725                                      CXXRecordDecl *NamingClass,
2726                                      NestedNameSpecifierLoc QualifierLoc,
2727                                      SourceLocation TemplateKWLoc,
2728                                      const DeclarationNameInfo &NameInfo,
2729                                      bool ADL,
2730                                      const TemplateArgumentListInfo *Args,
2731                                      UnresolvedSetIterator Begin,
2732                                      UnresolvedSetIterator End);
2733
2734  static UnresolvedLookupExpr *CreateEmpty(const ASTContext &C,
2735                                           bool HasTemplateKWAndArgsInfo,
2736                                           unsigned NumTemplateArgs);
2737
2738  /// True if this declaration should be extended by
2739  /// argument-dependent lookup.
2740  bool requiresADL() const { return RequiresADL; }
2741
2742  /// True if this lookup is overloaded.
2743  bool isOverloaded() const { return Overloaded; }
2744
2745  /// Gets the 'naming class' (in the sense of C++0x
2746  /// [class.access.base]p5) of the lookup.  This is the scope
2747  /// that was looked in to find these results.
2748  CXXRecordDecl *getNamingClass() const { return NamingClass; }
2749
2750  SourceLocation getLocStart() const LLVM_READONLY {
2751    if (NestedNameSpecifierLoc l = getQualifierLoc())
2752      return l.getBeginLoc();
2753    return getNameInfo().getLocStart();
2754  }
2755  SourceLocation getLocEnd() const LLVM_READONLY {
2756    if (hasExplicitTemplateArgs())
2757      return getRAngleLoc();
2758    return getNameInfo().getLocEnd();
2759  }
2760
2761  child_range children() { return child_range(); }
2762
2763  static bool classof(const Stmt *T) {
2764    return T->getStmtClass() == UnresolvedLookupExprClass;
2765  }
2766};
2767
2768/// \brief A qualified reference to a name whose declaration cannot
2769/// yet be resolved.
2770///
2771/// DependentScopeDeclRefExpr is similar to DeclRefExpr in that
2772/// it expresses a reference to a declaration such as
2773/// X<T>::value. The difference, however, is that an
2774/// DependentScopeDeclRefExpr node is used only within C++ templates when
2775/// the qualification (e.g., X<T>::) refers to a dependent type. In
2776/// this case, X<T>::value cannot resolve to a declaration because the
2777/// declaration will differ from on instantiation of X<T> to the
2778/// next. Therefore, DependentScopeDeclRefExpr keeps track of the
2779/// qualifier (X<T>::) and the name of the entity being referenced
2780/// ("value"). Such expressions will instantiate to a DeclRefExpr once the
2781/// declaration can be found.
2782class DependentScopeDeclRefExpr : public Expr {
2783  /// \brief The nested-name-specifier that qualifies this unresolved
2784  /// declaration name.
2785  NestedNameSpecifierLoc QualifierLoc;
2786
2787  /// \brief The name of the entity we will be referencing.
2788  DeclarationNameInfo NameInfo;
2789
2790  /// \brief Whether the name includes info for explicit template
2791  /// keyword and arguments.
2792  bool HasTemplateKWAndArgsInfo;
2793
2794  /// \brief Return the optional template keyword and arguments info.
2795  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
2796    if (!HasTemplateKWAndArgsInfo) return 0;
2797    return reinterpret_cast<ASTTemplateKWAndArgsInfo*>(this + 1);
2798  }
2799  /// \brief Return the optional template keyword and arguments info.
2800  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
2801    return const_cast<DependentScopeDeclRefExpr*>(this)
2802      ->getTemplateKWAndArgsInfo();
2803  }
2804
2805  DependentScopeDeclRefExpr(QualType T,
2806                            NestedNameSpecifierLoc QualifierLoc,
2807                            SourceLocation TemplateKWLoc,
2808                            const DeclarationNameInfo &NameInfo,
2809                            const TemplateArgumentListInfo *Args);
2810
2811public:
2812  static DependentScopeDeclRefExpr *Create(const ASTContext &C,
2813                                           NestedNameSpecifierLoc QualifierLoc,
2814                                           SourceLocation TemplateKWLoc,
2815                                           const DeclarationNameInfo &NameInfo,
2816                              const TemplateArgumentListInfo *TemplateArgs);
2817
2818  static DependentScopeDeclRefExpr *CreateEmpty(const ASTContext &C,
2819                                                bool HasTemplateKWAndArgsInfo,
2820                                                unsigned NumTemplateArgs);
2821
2822  /// \brief Retrieve the name that this expression refers to.
2823  const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
2824
2825  /// \brief Retrieve the name that this expression refers to.
2826  DeclarationName getDeclName() const { return NameInfo.getName(); }
2827
2828  /// \brief Retrieve the location of the name within the expression.
2829  SourceLocation getLocation() const { return NameInfo.getLoc(); }
2830
2831  /// \brief Retrieve the nested-name-specifier that qualifies the
2832  /// name, with source location information.
2833  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2834
2835
2836  /// \brief Retrieve the nested-name-specifier that qualifies this
2837  /// declaration.
2838  NestedNameSpecifier *getQualifier() const {
2839    return QualifierLoc.getNestedNameSpecifier();
2840  }
2841
2842  /// \brief Retrieve the location of the template keyword preceding
2843  /// this name, if any.
2844  SourceLocation getTemplateKeywordLoc() const {
2845    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2846    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
2847  }
2848
2849  /// \brief Retrieve the location of the left angle bracket starting the
2850  /// explicit template argument list following the name, if any.
2851  SourceLocation getLAngleLoc() const {
2852    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2853    return getTemplateKWAndArgsInfo()->LAngleLoc;
2854  }
2855
2856  /// \brief Retrieve the location of the right angle bracket ending the
2857  /// explicit template argument list following the name, if any.
2858  SourceLocation getRAngleLoc() const {
2859    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2860    return getTemplateKWAndArgsInfo()->RAngleLoc;
2861  }
2862
2863  /// Determines whether the name was preceded by the template keyword.
2864  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
2865
2866  /// Determines whether this lookup had explicit template arguments.
2867  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
2868
2869  // Note that, inconsistently with the explicit-template-argument AST
2870  // nodes, users are *forbidden* from calling these methods on objects
2871  // without explicit template arguments.
2872
2873  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
2874    assert(hasExplicitTemplateArgs());
2875    return *reinterpret_cast<ASTTemplateArgumentListInfo*>(this + 1);
2876  }
2877
2878  /// Gets a reference to the explicit template argument list.
2879  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2880    assert(hasExplicitTemplateArgs());
2881    return *reinterpret_cast<const ASTTemplateArgumentListInfo*>(this + 1);
2882  }
2883
2884  /// \brief Retrieves the optional explicit template arguments.
2885  ///
2886  /// This points to the same data as getExplicitTemplateArgs(), but
2887  /// returns null if there are no explicit template arguments.
2888  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() const {
2889    if (!hasExplicitTemplateArgs()) return 0;
2890    return &getExplicitTemplateArgs();
2891  }
2892
2893  /// \brief Copies the template arguments (if present) into the given
2894  /// structure.
2895  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2896    getExplicitTemplateArgs().copyInto(List);
2897  }
2898
2899  TemplateArgumentLoc const *getTemplateArgs() const {
2900    return getExplicitTemplateArgs().getTemplateArgs();
2901  }
2902
2903  unsigned getNumTemplateArgs() const {
2904    return getExplicitTemplateArgs().NumTemplateArgs;
2905  }
2906
2907  SourceLocation getLocStart() const LLVM_READONLY {
2908    return QualifierLoc.getBeginLoc();
2909  }
2910  SourceLocation getLocEnd() const LLVM_READONLY {
2911    if (hasExplicitTemplateArgs())
2912      return getRAngleLoc();
2913    return getLocation();
2914  }
2915
2916  static bool classof(const Stmt *T) {
2917    return T->getStmtClass() == DependentScopeDeclRefExprClass;
2918  }
2919
2920  child_range children() { return child_range(); }
2921
2922  friend class ASTStmtReader;
2923  friend class ASTStmtWriter;
2924};
2925
2926/// Represents an expression -- generally a full-expression -- that
2927/// introduces cleanups to be run at the end of the sub-expression's
2928/// evaluation.  The most common source of expression-introduced
2929/// cleanups is temporary objects in C++, but several other kinds of
2930/// expressions can create cleanups, including basically every
2931/// call in ARC that returns an Objective-C pointer.
2932///
2933/// This expression also tracks whether the sub-expression contains a
2934/// potentially-evaluated block literal.  The lifetime of a block
2935/// literal is the extent of the enclosing scope.
2936class ExprWithCleanups : public Expr {
2937public:
2938  /// The type of objects that are kept in the cleanup.
2939  /// It's useful to remember the set of blocks;  we could also
2940  /// remember the set of temporaries, but there's currently
2941  /// no need.
2942  typedef BlockDecl *CleanupObject;
2943
2944private:
2945  Stmt *SubExpr;
2946
2947  ExprWithCleanups(EmptyShell, unsigned NumObjects);
2948  ExprWithCleanups(Expr *SubExpr, ArrayRef<CleanupObject> Objects);
2949
2950  CleanupObject *getObjectsBuffer() {
2951    return reinterpret_cast<CleanupObject*>(this + 1);
2952  }
2953  const CleanupObject *getObjectsBuffer() const {
2954    return reinterpret_cast<const CleanupObject*>(this + 1);
2955  }
2956  friend class ASTStmtReader;
2957
2958public:
2959  static ExprWithCleanups *Create(const ASTContext &C, EmptyShell empty,
2960                                  unsigned numObjects);
2961
2962  static ExprWithCleanups *Create(const ASTContext &C, Expr *subexpr,
2963                                  ArrayRef<CleanupObject> objects);
2964
2965  ArrayRef<CleanupObject> getObjects() const {
2966    return ArrayRef<CleanupObject>(getObjectsBuffer(), getNumObjects());
2967  }
2968
2969  unsigned getNumObjects() const { return ExprWithCleanupsBits.NumObjects; }
2970
2971  CleanupObject getObject(unsigned i) const {
2972    assert(i < getNumObjects() && "Index out of range");
2973    return getObjects()[i];
2974  }
2975
2976  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
2977  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
2978
2979  /// As with any mutator of the AST, be very careful
2980  /// when modifying an existing AST to preserve its invariants.
2981  void setSubExpr(Expr *E) { SubExpr = E; }
2982
2983  SourceLocation getLocStart() const LLVM_READONLY {
2984    return SubExpr->getLocStart();
2985  }
2986  SourceLocation getLocEnd() const LLVM_READONLY { return SubExpr->getLocEnd();}
2987
2988  // Implement isa/cast/dyncast/etc.
2989  static bool classof(const Stmt *T) {
2990    return T->getStmtClass() == ExprWithCleanupsClass;
2991  }
2992
2993  // Iterators
2994  child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
2995};
2996
2997/// \brief Describes an explicit type conversion that uses functional
2998/// notion but could not be resolved because one or more arguments are
2999/// type-dependent.
3000///
3001/// The explicit type conversions expressed by
3002/// CXXUnresolvedConstructExpr have the form <tt>T(a1, a2, ..., aN)</tt>,
3003/// where \c T is some type and \c a1, \c a2, ..., \c aN are values, and
3004/// either \c T is a dependent type or one or more of the <tt>a</tt>'s is
3005/// type-dependent. For example, this would occur in a template such
3006/// as:
3007///
3008/// \code
3009///   template<typename T, typename A1>
3010///   inline T make_a(const A1& a1) {
3011///     return T(a1);
3012///   }
3013/// \endcode
3014///
3015/// When the returned expression is instantiated, it may resolve to a
3016/// constructor call, conversion function call, or some kind of type
3017/// conversion.
3018class CXXUnresolvedConstructExpr : public Expr {
3019  /// \brief The type being constructed.
3020  TypeSourceInfo *Type;
3021
3022  /// \brief The location of the left parentheses ('(').
3023  SourceLocation LParenLoc;
3024
3025  /// \brief The location of the right parentheses (')').
3026  SourceLocation RParenLoc;
3027
3028  /// \brief The number of arguments used to construct the type.
3029  unsigned NumArgs;
3030
3031  CXXUnresolvedConstructExpr(TypeSourceInfo *Type,
3032                             SourceLocation LParenLoc,
3033                             ArrayRef<Expr*> Args,
3034                             SourceLocation RParenLoc);
3035
3036  CXXUnresolvedConstructExpr(EmptyShell Empty, unsigned NumArgs)
3037    : Expr(CXXUnresolvedConstructExprClass, Empty), Type(), NumArgs(NumArgs) { }
3038
3039  friend class ASTStmtReader;
3040
3041public:
3042  static CXXUnresolvedConstructExpr *Create(const ASTContext &C,
3043                                            TypeSourceInfo *Type,
3044                                            SourceLocation LParenLoc,
3045                                            ArrayRef<Expr*> Args,
3046                                            SourceLocation RParenLoc);
3047
3048  static CXXUnresolvedConstructExpr *CreateEmpty(const ASTContext &C,
3049                                                 unsigned NumArgs);
3050
3051  /// \brief Retrieve the type that is being constructed, as specified
3052  /// in the source code.
3053  QualType getTypeAsWritten() const { return Type->getType(); }
3054
3055  /// \brief Retrieve the type source information for the type being
3056  /// constructed.
3057  TypeSourceInfo *getTypeSourceInfo() const { return Type; }
3058
3059  /// \brief Retrieve the location of the left parentheses ('(') that
3060  /// precedes the argument list.
3061  SourceLocation getLParenLoc() const { return LParenLoc; }
3062  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
3063
3064  /// \brief Retrieve the location of the right parentheses (')') that
3065  /// follows the argument list.
3066  SourceLocation getRParenLoc() const { return RParenLoc; }
3067  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3068
3069  /// \brief Retrieve the number of arguments.
3070  unsigned arg_size() const { return NumArgs; }
3071
3072  typedef Expr** arg_iterator;
3073  arg_iterator arg_begin() { return reinterpret_cast<Expr**>(this + 1); }
3074  arg_iterator arg_end() { return arg_begin() + NumArgs; }
3075
3076  typedef const Expr* const * const_arg_iterator;
3077  const_arg_iterator arg_begin() const {
3078    return reinterpret_cast<const Expr* const *>(this + 1);
3079  }
3080  const_arg_iterator arg_end() const {
3081    return arg_begin() + NumArgs;
3082  }
3083
3084  Expr *getArg(unsigned I) {
3085    assert(I < NumArgs && "Argument index out-of-range");
3086    return *(arg_begin() + I);
3087  }
3088
3089  const Expr *getArg(unsigned I) const {
3090    assert(I < NumArgs && "Argument index out-of-range");
3091    return *(arg_begin() + I);
3092  }
3093
3094  void setArg(unsigned I, Expr *E) {
3095    assert(I < NumArgs && "Argument index out-of-range");
3096    *(arg_begin() + I) = E;
3097  }
3098
3099  SourceLocation getLocStart() const LLVM_READONLY;
3100  SourceLocation getLocEnd() const LLVM_READONLY {
3101    assert(RParenLoc.isValid() || NumArgs == 1);
3102    return RParenLoc.isValid() ? RParenLoc : getArg(0)->getLocEnd();
3103  }
3104
3105  static bool classof(const Stmt *T) {
3106    return T->getStmtClass() == CXXUnresolvedConstructExprClass;
3107  }
3108
3109  // Iterators
3110  child_range children() {
3111    Stmt **begin = reinterpret_cast<Stmt**>(this+1);
3112    return child_range(begin, begin + NumArgs);
3113  }
3114};
3115
3116/// \brief Represents a C++ member access expression where the actual
3117/// member referenced could not be resolved because the base
3118/// expression or the member name was dependent.
3119///
3120/// Like UnresolvedMemberExprs, these can be either implicit or
3121/// explicit accesses.  It is only possible to get one of these with
3122/// an implicit access if a qualifier is provided.
3123class CXXDependentScopeMemberExpr : public Expr {
3124  /// \brief The expression for the base pointer or class reference,
3125  /// e.g., the \c x in x.f.  Can be null in implicit accesses.
3126  Stmt *Base;
3127
3128  /// \brief The type of the base expression.  Never null, even for
3129  /// implicit accesses.
3130  QualType BaseType;
3131
3132  /// \brief Whether this member expression used the '->' operator or
3133  /// the '.' operator.
3134  bool IsArrow : 1;
3135
3136  /// \brief Whether this member expression has info for explicit template
3137  /// keyword and arguments.
3138  bool HasTemplateKWAndArgsInfo : 1;
3139
3140  /// \brief The location of the '->' or '.' operator.
3141  SourceLocation OperatorLoc;
3142
3143  /// \brief The nested-name-specifier that precedes the member name, if any.
3144  NestedNameSpecifierLoc QualifierLoc;
3145
3146  /// \brief In a qualified member access expression such as t->Base::f, this
3147  /// member stores the resolves of name lookup in the context of the member
3148  /// access expression, to be used at instantiation time.
3149  ///
3150  /// FIXME: This member, along with the QualifierLoc, could
3151  /// be stuck into a structure that is optionally allocated at the end of
3152  /// the CXXDependentScopeMemberExpr, to save space in the common case.
3153  NamedDecl *FirstQualifierFoundInScope;
3154
3155  /// \brief The member to which this member expression refers, which
3156  /// can be name, overloaded operator, or destructor.
3157  ///
3158  /// FIXME: could also be a template-id
3159  DeclarationNameInfo MemberNameInfo;
3160
3161  /// \brief Return the optional template keyword and arguments info.
3162  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
3163    if (!HasTemplateKWAndArgsInfo) return 0;
3164    return reinterpret_cast<ASTTemplateKWAndArgsInfo*>(this + 1);
3165  }
3166  /// \brief Return the optional template keyword and arguments info.
3167  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
3168    return const_cast<CXXDependentScopeMemberExpr*>(this)
3169      ->getTemplateKWAndArgsInfo();
3170  }
3171
3172  CXXDependentScopeMemberExpr(const ASTContext &C, Expr *Base,
3173                              QualType BaseType, bool IsArrow,
3174                              SourceLocation OperatorLoc,
3175                              NestedNameSpecifierLoc QualifierLoc,
3176                              SourceLocation TemplateKWLoc,
3177                              NamedDecl *FirstQualifierFoundInScope,
3178                              DeclarationNameInfo MemberNameInfo,
3179                              const TemplateArgumentListInfo *TemplateArgs);
3180
3181public:
3182  CXXDependentScopeMemberExpr(const ASTContext &C, Expr *Base,
3183                              QualType BaseType, bool IsArrow,
3184                              SourceLocation OperatorLoc,
3185                              NestedNameSpecifierLoc QualifierLoc,
3186                              NamedDecl *FirstQualifierFoundInScope,
3187                              DeclarationNameInfo MemberNameInfo);
3188
3189  static CXXDependentScopeMemberExpr *
3190  Create(const ASTContext &C, Expr *Base, QualType BaseType, bool IsArrow,
3191         SourceLocation OperatorLoc, NestedNameSpecifierLoc QualifierLoc,
3192         SourceLocation TemplateKWLoc, NamedDecl *FirstQualifierFoundInScope,
3193         DeclarationNameInfo MemberNameInfo,
3194         const TemplateArgumentListInfo *TemplateArgs);
3195
3196  static CXXDependentScopeMemberExpr *
3197  CreateEmpty(const ASTContext &C, bool HasTemplateKWAndArgsInfo,
3198              unsigned NumTemplateArgs);
3199
3200  /// \brief True if this is an implicit access, i.e. one in which the
3201  /// member being accessed was not written in the source.  The source
3202  /// location of the operator is invalid in this case.
3203  bool isImplicitAccess() const;
3204
3205  /// \brief Retrieve the base object of this member expressions,
3206  /// e.g., the \c x in \c x.m.
3207  Expr *getBase() const {
3208    assert(!isImplicitAccess());
3209    return cast<Expr>(Base);
3210  }
3211
3212  QualType getBaseType() const { return BaseType; }
3213
3214  /// \brief Determine whether this member expression used the '->'
3215  /// operator; otherwise, it used the '.' operator.
3216  bool isArrow() const { return IsArrow; }
3217
3218  /// \brief Retrieve the location of the '->' or '.' operator.
3219  SourceLocation getOperatorLoc() const { return OperatorLoc; }
3220
3221  /// \brief Retrieve the nested-name-specifier that qualifies the member
3222  /// name.
3223  NestedNameSpecifier *getQualifier() const {
3224    return QualifierLoc.getNestedNameSpecifier();
3225  }
3226
3227  /// \brief Retrieve the nested-name-specifier that qualifies the member
3228  /// name, with source location information.
3229  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
3230
3231
3232  /// \brief Retrieve the first part of the nested-name-specifier that was
3233  /// found in the scope of the member access expression when the member access
3234  /// was initially parsed.
3235  ///
3236  /// This function only returns a useful result when member access expression
3237  /// uses a qualified member name, e.g., "x.Base::f". Here, the declaration
3238  /// returned by this function describes what was found by unqualified name
3239  /// lookup for the identifier "Base" within the scope of the member access
3240  /// expression itself. At template instantiation time, this information is
3241  /// combined with the results of name lookup into the type of the object
3242  /// expression itself (the class type of x).
3243  NamedDecl *getFirstQualifierFoundInScope() const {
3244    return FirstQualifierFoundInScope;
3245  }
3246
3247  /// \brief Retrieve the name of the member that this expression
3248  /// refers to.
3249  const DeclarationNameInfo &getMemberNameInfo() const {
3250    return MemberNameInfo;
3251  }
3252
3253  /// \brief Retrieve the name of the member that this expression
3254  /// refers to.
3255  DeclarationName getMember() const { return MemberNameInfo.getName(); }
3256
3257  // \brief Retrieve the location of the name of the member that this
3258  // expression refers to.
3259  SourceLocation getMemberLoc() const { return MemberNameInfo.getLoc(); }
3260
3261  /// \brief Retrieve the location of the template keyword preceding the
3262  /// member name, if any.
3263  SourceLocation getTemplateKeywordLoc() const {
3264    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
3265    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
3266  }
3267
3268  /// \brief Retrieve the location of the left angle bracket starting the
3269  /// explicit template argument list following the member name, if any.
3270  SourceLocation getLAngleLoc() const {
3271    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
3272    return getTemplateKWAndArgsInfo()->LAngleLoc;
3273  }
3274
3275  /// \brief Retrieve the location of the right angle bracket ending the
3276  /// explicit template argument list following the member name, if any.
3277  SourceLocation getRAngleLoc() const {
3278    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
3279    return getTemplateKWAndArgsInfo()->RAngleLoc;
3280  }
3281
3282  /// Determines whether the member name was preceded by the template keyword.
3283  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
3284
3285  /// \brief Determines whether this member expression actually had a C++
3286  /// template argument list explicitly specified, e.g., x.f<int>.
3287  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
3288
3289  /// \brief Retrieve the explicit template argument list that followed the
3290  /// member template name, if any.
3291  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
3292    assert(hasExplicitTemplateArgs());
3293    return *reinterpret_cast<ASTTemplateArgumentListInfo *>(this + 1);
3294  }
3295
3296  /// \brief Retrieve the explicit template argument list that followed the
3297  /// member template name, if any.
3298  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
3299    return const_cast<CXXDependentScopeMemberExpr *>(this)
3300             ->getExplicitTemplateArgs();
3301  }
3302
3303  /// \brief Retrieves the optional explicit template arguments.
3304  ///
3305  /// This points to the same data as getExplicitTemplateArgs(), but
3306  /// returns null if there are no explicit template arguments.
3307  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() const {
3308    if (!hasExplicitTemplateArgs()) return 0;
3309    return &getExplicitTemplateArgs();
3310  }
3311
3312  /// \brief Copies the template arguments (if present) into the given
3313  /// structure.
3314  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
3315    getExplicitTemplateArgs().copyInto(List);
3316  }
3317
3318  /// \brief Initializes the template arguments using the given structure.
3319  void initializeTemplateArgumentsFrom(const TemplateArgumentListInfo &List) {
3320    getExplicitTemplateArgs().initializeFrom(List);
3321  }
3322
3323  /// \brief Retrieve the template arguments provided as part of this
3324  /// template-id.
3325  const TemplateArgumentLoc *getTemplateArgs() const {
3326    return getExplicitTemplateArgs().getTemplateArgs();
3327  }
3328
3329  /// \brief Retrieve the number of template arguments provided as part of this
3330  /// template-id.
3331  unsigned getNumTemplateArgs() const {
3332    return getExplicitTemplateArgs().NumTemplateArgs;
3333  }
3334
3335  SourceLocation getLocStart() const LLVM_READONLY {
3336    if (!isImplicitAccess())
3337      return Base->getLocStart();
3338    if (getQualifier())
3339      return getQualifierLoc().getBeginLoc();
3340    return MemberNameInfo.getBeginLoc();
3341
3342  }
3343  SourceLocation getLocEnd() const LLVM_READONLY {
3344    if (hasExplicitTemplateArgs())
3345      return getRAngleLoc();
3346    return MemberNameInfo.getEndLoc();
3347  }
3348
3349  static bool classof(const Stmt *T) {
3350    return T->getStmtClass() == CXXDependentScopeMemberExprClass;
3351  }
3352
3353  // Iterators
3354  child_range children() {
3355    if (isImplicitAccess()) return child_range();
3356    return child_range(&Base, &Base + 1);
3357  }
3358
3359  friend class ASTStmtReader;
3360  friend class ASTStmtWriter;
3361};
3362
3363/// \brief Represents a C++ member access expression for which lookup
3364/// produced a set of overloaded functions.
3365///
3366/// The member access may be explicit or implicit:
3367/// \code
3368///    struct A {
3369///      int a, b;
3370///      int explicitAccess() { return this->a + this->A::b; }
3371///      int implicitAccess() { return a + A::b; }
3372///    };
3373/// \endcode
3374///
3375/// In the final AST, an explicit access always becomes a MemberExpr.
3376/// An implicit access may become either a MemberExpr or a
3377/// DeclRefExpr, depending on whether the member is static.
3378class UnresolvedMemberExpr : public OverloadExpr {
3379  /// \brief Whether this member expression used the '->' operator or
3380  /// the '.' operator.
3381  bool IsArrow : 1;
3382
3383  /// \brief Whether the lookup results contain an unresolved using
3384  /// declaration.
3385  bool HasUnresolvedUsing : 1;
3386
3387  /// \brief The expression for the base pointer or class reference,
3388  /// e.g., the \c x in x.f.
3389  ///
3390  /// This can be null if this is an 'unbased' member expression.
3391  Stmt *Base;
3392
3393  /// \brief The type of the base expression; never null.
3394  QualType BaseType;
3395
3396  /// \brief The location of the '->' or '.' operator.
3397  SourceLocation OperatorLoc;
3398
3399  UnresolvedMemberExpr(const ASTContext &C, bool HasUnresolvedUsing,
3400                       Expr *Base, QualType BaseType, bool IsArrow,
3401                       SourceLocation OperatorLoc,
3402                       NestedNameSpecifierLoc QualifierLoc,
3403                       SourceLocation TemplateKWLoc,
3404                       const DeclarationNameInfo &MemberNameInfo,
3405                       const TemplateArgumentListInfo *TemplateArgs,
3406                       UnresolvedSetIterator Begin, UnresolvedSetIterator End);
3407
3408  UnresolvedMemberExpr(EmptyShell Empty)
3409    : OverloadExpr(UnresolvedMemberExprClass, Empty), IsArrow(false),
3410      HasUnresolvedUsing(false), Base(0) { }
3411
3412  friend class ASTStmtReader;
3413
3414public:
3415  static UnresolvedMemberExpr *
3416  Create(const ASTContext &C, bool HasUnresolvedUsing,
3417         Expr *Base, QualType BaseType, bool IsArrow,
3418         SourceLocation OperatorLoc,
3419         NestedNameSpecifierLoc QualifierLoc,
3420         SourceLocation TemplateKWLoc,
3421         const DeclarationNameInfo &MemberNameInfo,
3422         const TemplateArgumentListInfo *TemplateArgs,
3423         UnresolvedSetIterator Begin, UnresolvedSetIterator End);
3424
3425  static UnresolvedMemberExpr *
3426  CreateEmpty(const ASTContext &C, bool HasTemplateKWAndArgsInfo,
3427              unsigned NumTemplateArgs);
3428
3429  /// \brief True if this is an implicit access, i.e., one in which the
3430  /// member being accessed was not written in the source.
3431  ///
3432  /// The source location of the operator is invalid in this case.
3433  bool isImplicitAccess() const;
3434
3435  /// \brief Retrieve the base object of this member expressions,
3436  /// e.g., the \c x in \c x.m.
3437  Expr *getBase() {
3438    assert(!isImplicitAccess());
3439    return cast<Expr>(Base);
3440  }
3441  const Expr *getBase() const {
3442    assert(!isImplicitAccess());
3443    return cast<Expr>(Base);
3444  }
3445
3446  QualType getBaseType() const { return BaseType; }
3447
3448  /// \brief Determine whether the lookup results contain an unresolved using
3449  /// declaration.
3450  bool hasUnresolvedUsing() const { return HasUnresolvedUsing; }
3451
3452  /// \brief Determine whether this member expression used the '->'
3453  /// operator; otherwise, it used the '.' operator.
3454  bool isArrow() const { return IsArrow; }
3455
3456  /// \brief Retrieve the location of the '->' or '.' operator.
3457  SourceLocation getOperatorLoc() const { return OperatorLoc; }
3458
3459  /// \brief Retrieve the naming class of this lookup.
3460  CXXRecordDecl *getNamingClass() const;
3461
3462  /// \brief Retrieve the full name info for the member that this expression
3463  /// refers to.
3464  const DeclarationNameInfo &getMemberNameInfo() const { return getNameInfo(); }
3465
3466  /// \brief Retrieve the name of the member that this expression
3467  /// refers to.
3468  DeclarationName getMemberName() const { return getName(); }
3469
3470  // \brief Retrieve the location of the name of the member that this
3471  // expression refers to.
3472  SourceLocation getMemberLoc() const { return getNameLoc(); }
3473
3474  // \brief Return the preferred location (the member name) for the arrow when
3475  // diagnosing a problem with this expression.
3476  SourceLocation getExprLoc() const LLVM_READONLY { return getMemberLoc(); }
3477
3478  SourceLocation getLocStart() const LLVM_READONLY {
3479    if (!isImplicitAccess())
3480      return Base->getLocStart();
3481    if (NestedNameSpecifierLoc l = getQualifierLoc())
3482      return l.getBeginLoc();
3483    return getMemberNameInfo().getLocStart();
3484  }
3485  SourceLocation getLocEnd() const LLVM_READONLY {
3486    if (hasExplicitTemplateArgs())
3487      return getRAngleLoc();
3488    return getMemberNameInfo().getLocEnd();
3489  }
3490
3491  static bool classof(const Stmt *T) {
3492    return T->getStmtClass() == UnresolvedMemberExprClass;
3493  }
3494
3495  // Iterators
3496  child_range children() {
3497    if (isImplicitAccess()) return child_range();
3498    return child_range(&Base, &Base + 1);
3499  }
3500};
3501
3502/// \brief Represents a C++11 noexcept expression (C++ [expr.unary.noexcept]).
3503///
3504/// The noexcept expression tests whether a given expression might throw. Its
3505/// result is a boolean constant.
3506class CXXNoexceptExpr : public Expr {
3507  bool Value : 1;
3508  Stmt *Operand;
3509  SourceRange Range;
3510
3511  friend class ASTStmtReader;
3512
3513public:
3514  CXXNoexceptExpr(QualType Ty, Expr *Operand, CanThrowResult Val,
3515                  SourceLocation Keyword, SourceLocation RParen)
3516    : Expr(CXXNoexceptExprClass, Ty, VK_RValue, OK_Ordinary,
3517           /*TypeDependent*/false,
3518           /*ValueDependent*/Val == CT_Dependent,
3519           Val == CT_Dependent || Operand->isInstantiationDependent(),
3520           Operand->containsUnexpandedParameterPack()),
3521      Value(Val == CT_Cannot), Operand(Operand), Range(Keyword, RParen)
3522  { }
3523
3524  CXXNoexceptExpr(EmptyShell Empty)
3525    : Expr(CXXNoexceptExprClass, Empty)
3526  { }
3527
3528  Expr *getOperand() const { return static_cast<Expr*>(Operand); }
3529
3530  SourceLocation getLocStart() const LLVM_READONLY { return Range.getBegin(); }
3531  SourceLocation getLocEnd() const LLVM_READONLY { return Range.getEnd(); }
3532  SourceRange getSourceRange() const LLVM_READONLY { return Range; }
3533
3534  bool getValue() const { return Value; }
3535
3536  static bool classof(const Stmt *T) {
3537    return T->getStmtClass() == CXXNoexceptExprClass;
3538  }
3539
3540  // Iterators
3541  child_range children() { return child_range(&Operand, &Operand + 1); }
3542};
3543
3544/// \brief Represents a C++11 pack expansion that produces a sequence of
3545/// expressions.
3546///
3547/// A pack expansion expression contains a pattern (which itself is an
3548/// expression) followed by an ellipsis. For example:
3549///
3550/// \code
3551/// template<typename F, typename ...Types>
3552/// void forward(F f, Types &&...args) {
3553///   f(static_cast<Types&&>(args)...);
3554/// }
3555/// \endcode
3556///
3557/// Here, the argument to the function object \c f is a pack expansion whose
3558/// pattern is \c static_cast<Types&&>(args). When the \c forward function
3559/// template is instantiated, the pack expansion will instantiate to zero or
3560/// or more function arguments to the function object \c f.
3561class PackExpansionExpr : public Expr {
3562  SourceLocation EllipsisLoc;
3563
3564  /// \brief The number of expansions that will be produced by this pack
3565  /// expansion expression, if known.
3566  ///
3567  /// When zero, the number of expansions is not known. Otherwise, this value
3568  /// is the number of expansions + 1.
3569  unsigned NumExpansions;
3570
3571  Stmt *Pattern;
3572
3573  friend class ASTStmtReader;
3574  friend class ASTStmtWriter;
3575
3576public:
3577  PackExpansionExpr(QualType T, Expr *Pattern, SourceLocation EllipsisLoc,
3578                    Optional<unsigned> NumExpansions)
3579    : Expr(PackExpansionExprClass, T, Pattern->getValueKind(),
3580           Pattern->getObjectKind(), /*TypeDependent=*/true,
3581           /*ValueDependent=*/true, /*InstantiationDependent=*/true,
3582           /*ContainsUnexpandedParameterPack=*/false),
3583      EllipsisLoc(EllipsisLoc),
3584      NumExpansions(NumExpansions? *NumExpansions + 1 : 0),
3585      Pattern(Pattern) { }
3586
3587  PackExpansionExpr(EmptyShell Empty) : Expr(PackExpansionExprClass, Empty) { }
3588
3589  /// \brief Retrieve the pattern of the pack expansion.
3590  Expr *getPattern() { return reinterpret_cast<Expr *>(Pattern); }
3591
3592  /// \brief Retrieve the pattern of the pack expansion.
3593  const Expr *getPattern() const { return reinterpret_cast<Expr *>(Pattern); }
3594
3595  /// \brief Retrieve the location of the ellipsis that describes this pack
3596  /// expansion.
3597  SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
3598
3599  /// \brief Determine the number of expansions that will be produced when
3600  /// this pack expansion is instantiated, if already known.
3601  Optional<unsigned> getNumExpansions() const {
3602    if (NumExpansions)
3603      return NumExpansions - 1;
3604
3605    return None;
3606  }
3607
3608  SourceLocation getLocStart() const LLVM_READONLY {
3609    return Pattern->getLocStart();
3610  }
3611  SourceLocation getLocEnd() const LLVM_READONLY { return EllipsisLoc; }
3612
3613  static bool classof(const Stmt *T) {
3614    return T->getStmtClass() == PackExpansionExprClass;
3615  }
3616
3617  // Iterators
3618  child_range children() {
3619    return child_range(&Pattern, &Pattern + 1);
3620  }
3621};
3622
3623inline ASTTemplateKWAndArgsInfo *OverloadExpr::getTemplateKWAndArgsInfo() {
3624  if (!HasTemplateKWAndArgsInfo) return 0;
3625  if (isa<UnresolvedLookupExpr>(this))
3626    return reinterpret_cast<ASTTemplateKWAndArgsInfo*>
3627      (cast<UnresolvedLookupExpr>(this) + 1);
3628  else
3629    return reinterpret_cast<ASTTemplateKWAndArgsInfo*>
3630      (cast<UnresolvedMemberExpr>(this) + 1);
3631}
3632
3633/// \brief Represents an expression that computes the length of a parameter
3634/// pack.
3635///
3636/// \code
3637/// template<typename ...Types>
3638/// struct count {
3639///   static const unsigned value = sizeof...(Types);
3640/// };
3641/// \endcode
3642class SizeOfPackExpr : public Expr {
3643  /// \brief The location of the \c sizeof keyword.
3644  SourceLocation OperatorLoc;
3645
3646  /// \brief The location of the name of the parameter pack.
3647  SourceLocation PackLoc;
3648
3649  /// \brief The location of the closing parenthesis.
3650  SourceLocation RParenLoc;
3651
3652  /// \brief The length of the parameter pack, if known.
3653  ///
3654  /// When this expression is value-dependent, the length of the parameter pack
3655  /// is unknown. When this expression is not value-dependent, the length is
3656  /// known.
3657  unsigned Length;
3658
3659  /// \brief The parameter pack itself.
3660  NamedDecl *Pack;
3661
3662  friend class ASTStmtReader;
3663  friend class ASTStmtWriter;
3664
3665public:
3666  /// \brief Create a value-dependent expression that computes the length of
3667  /// the given parameter pack.
3668  SizeOfPackExpr(QualType SizeType, SourceLocation OperatorLoc, NamedDecl *Pack,
3669                 SourceLocation PackLoc, SourceLocation RParenLoc)
3670    : Expr(SizeOfPackExprClass, SizeType, VK_RValue, OK_Ordinary,
3671           /*TypeDependent=*/false, /*ValueDependent=*/true,
3672           /*InstantiationDependent=*/true,
3673           /*ContainsUnexpandedParameterPack=*/false),
3674      OperatorLoc(OperatorLoc), PackLoc(PackLoc), RParenLoc(RParenLoc),
3675      Length(0), Pack(Pack) { }
3676
3677  /// \brief Create an expression that computes the length of
3678  /// the given parameter pack, which is already known.
3679  SizeOfPackExpr(QualType SizeType, SourceLocation OperatorLoc, NamedDecl *Pack,
3680                 SourceLocation PackLoc, SourceLocation RParenLoc,
3681                 unsigned Length)
3682  : Expr(SizeOfPackExprClass, SizeType, VK_RValue, OK_Ordinary,
3683         /*TypeDependent=*/false, /*ValueDependent=*/false,
3684         /*InstantiationDependent=*/false,
3685         /*ContainsUnexpandedParameterPack=*/false),
3686    OperatorLoc(OperatorLoc), PackLoc(PackLoc), RParenLoc(RParenLoc),
3687    Length(Length), Pack(Pack) { }
3688
3689  /// \brief Create an empty expression.
3690  SizeOfPackExpr(EmptyShell Empty) : Expr(SizeOfPackExprClass, Empty) { }
3691
3692  /// \brief Determine the location of the 'sizeof' keyword.
3693  SourceLocation getOperatorLoc() const { return OperatorLoc; }
3694
3695  /// \brief Determine the location of the parameter pack.
3696  SourceLocation getPackLoc() const { return PackLoc; }
3697
3698  /// \brief Determine the location of the right parenthesis.
3699  SourceLocation getRParenLoc() const { return RParenLoc; }
3700
3701  /// \brief Retrieve the parameter pack.
3702  NamedDecl *getPack() const { return Pack; }
3703
3704  /// \brief Retrieve the length of the parameter pack.
3705  ///
3706  /// This routine may only be invoked when the expression is not
3707  /// value-dependent.
3708  unsigned getPackLength() const {
3709    assert(!isValueDependent() &&
3710           "Cannot get the length of a value-dependent pack size expression");
3711    return Length;
3712  }
3713
3714  SourceLocation getLocStart() const LLVM_READONLY { return OperatorLoc; }
3715  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
3716
3717  static bool classof(const Stmt *T) {
3718    return T->getStmtClass() == SizeOfPackExprClass;
3719  }
3720
3721  // Iterators
3722  child_range children() { return child_range(); }
3723};
3724
3725/// \brief Represents a reference to a non-type template parameter
3726/// that has been substituted with a template argument.
3727class SubstNonTypeTemplateParmExpr : public Expr {
3728  /// \brief The replaced parameter.
3729  NonTypeTemplateParmDecl *Param;
3730
3731  /// \brief The replacement expression.
3732  Stmt *Replacement;
3733
3734  /// \brief The location of the non-type template parameter reference.
3735  SourceLocation NameLoc;
3736
3737  friend class ASTReader;
3738  friend class ASTStmtReader;
3739  explicit SubstNonTypeTemplateParmExpr(EmptyShell Empty)
3740    : Expr(SubstNonTypeTemplateParmExprClass, Empty) { }
3741
3742public:
3743  SubstNonTypeTemplateParmExpr(QualType type,
3744                               ExprValueKind valueKind,
3745                               SourceLocation loc,
3746                               NonTypeTemplateParmDecl *param,
3747                               Expr *replacement)
3748    : Expr(SubstNonTypeTemplateParmExprClass, type, valueKind, OK_Ordinary,
3749           replacement->isTypeDependent(), replacement->isValueDependent(),
3750           replacement->isInstantiationDependent(),
3751           replacement->containsUnexpandedParameterPack()),
3752      Param(param), Replacement(replacement), NameLoc(loc) {}
3753
3754  SourceLocation getNameLoc() const { return NameLoc; }
3755  SourceLocation getLocStart() const LLVM_READONLY { return NameLoc; }
3756  SourceLocation getLocEnd() const LLVM_READONLY { return NameLoc; }
3757
3758  Expr *getReplacement() const { return cast<Expr>(Replacement); }
3759
3760  NonTypeTemplateParmDecl *getParameter() const { return Param; }
3761
3762  static bool classof(const Stmt *s) {
3763    return s->getStmtClass() == SubstNonTypeTemplateParmExprClass;
3764  }
3765
3766  // Iterators
3767  child_range children() { return child_range(&Replacement, &Replacement+1); }
3768};
3769
3770/// \brief Represents a reference to a non-type template parameter pack that
3771/// has been substituted with a non-template argument pack.
3772///
3773/// When a pack expansion in the source code contains multiple parameter packs
3774/// and those parameter packs correspond to different levels of template
3775/// parameter lists, this node is used to represent a non-type template
3776/// parameter pack from an outer level, which has already had its argument pack
3777/// substituted but that still lives within a pack expansion that itself
3778/// could not be instantiated. When actually performing a substitution into
3779/// that pack expansion (e.g., when all template parameters have corresponding
3780/// arguments), this type will be replaced with the appropriate underlying
3781/// expression at the current pack substitution index.
3782class SubstNonTypeTemplateParmPackExpr : public Expr {
3783  /// \brief The non-type template parameter pack itself.
3784  NonTypeTemplateParmDecl *Param;
3785
3786  /// \brief A pointer to the set of template arguments that this
3787  /// parameter pack is instantiated with.
3788  const TemplateArgument *Arguments;
3789
3790  /// \brief The number of template arguments in \c Arguments.
3791  unsigned NumArguments;
3792
3793  /// \brief The location of the non-type template parameter pack reference.
3794  SourceLocation NameLoc;
3795
3796  friend class ASTReader;
3797  friend class ASTStmtReader;
3798  explicit SubstNonTypeTemplateParmPackExpr(EmptyShell Empty)
3799    : Expr(SubstNonTypeTemplateParmPackExprClass, Empty) { }
3800
3801public:
3802  SubstNonTypeTemplateParmPackExpr(QualType T,
3803                                   NonTypeTemplateParmDecl *Param,
3804                                   SourceLocation NameLoc,
3805                                   const TemplateArgument &ArgPack);
3806
3807  /// \brief Retrieve the non-type template parameter pack being substituted.
3808  NonTypeTemplateParmDecl *getParameterPack() const { return Param; }
3809
3810  /// \brief Retrieve the location of the parameter pack name.
3811  SourceLocation getParameterPackLocation() const { return NameLoc; }
3812
3813  /// \brief Retrieve the template argument pack containing the substituted
3814  /// template arguments.
3815  TemplateArgument getArgumentPack() const;
3816
3817  SourceLocation getLocStart() const LLVM_READONLY { return NameLoc; }
3818  SourceLocation getLocEnd() const LLVM_READONLY { return NameLoc; }
3819
3820  static bool classof(const Stmt *T) {
3821    return T->getStmtClass() == SubstNonTypeTemplateParmPackExprClass;
3822  }
3823
3824  // Iterators
3825  child_range children() { return child_range(); }
3826};
3827
3828/// \brief Represents a reference to a function parameter pack that has been
3829/// substituted but not yet expanded.
3830///
3831/// When a pack expansion contains multiple parameter packs at different levels,
3832/// this node is used to represent a function parameter pack at an outer level
3833/// which we have already substituted to refer to expanded parameters, but where
3834/// the containing pack expansion cannot yet be expanded.
3835///
3836/// \code
3837/// template<typename...Ts> struct S {
3838///   template<typename...Us> auto f(Ts ...ts) -> decltype(g(Us(ts)...));
3839/// };
3840/// template struct S<int, int>;
3841/// \endcode
3842class FunctionParmPackExpr : public Expr {
3843  /// \brief The function parameter pack which was referenced.
3844  ParmVarDecl *ParamPack;
3845
3846  /// \brief The location of the function parameter pack reference.
3847  SourceLocation NameLoc;
3848
3849  /// \brief The number of expansions of this pack.
3850  unsigned NumParameters;
3851
3852  FunctionParmPackExpr(QualType T, ParmVarDecl *ParamPack,
3853                       SourceLocation NameLoc, unsigned NumParams,
3854                       Decl * const *Params);
3855
3856  friend class ASTReader;
3857  friend class ASTStmtReader;
3858
3859public:
3860  static FunctionParmPackExpr *Create(const ASTContext &Context, QualType T,
3861                                      ParmVarDecl *ParamPack,
3862                                      SourceLocation NameLoc,
3863                                      ArrayRef<Decl *> Params);
3864  static FunctionParmPackExpr *CreateEmpty(const ASTContext &Context,
3865                                           unsigned NumParams);
3866
3867  /// \brief Get the parameter pack which this expression refers to.
3868  ParmVarDecl *getParameterPack() const { return ParamPack; }
3869
3870  /// \brief Get the location of the parameter pack.
3871  SourceLocation getParameterPackLocation() const { return NameLoc; }
3872
3873  /// \brief Iterators over the parameters which the parameter pack expanded
3874  /// into.
3875  typedef ParmVarDecl * const *iterator;
3876  iterator begin() const { return reinterpret_cast<iterator>(this+1); }
3877  iterator end() const { return begin() + NumParameters; }
3878
3879  /// \brief Get the number of parameters in this parameter pack.
3880  unsigned getNumExpansions() const { return NumParameters; }
3881
3882  /// \brief Get an expansion of the parameter pack by index.
3883  ParmVarDecl *getExpansion(unsigned I) const { return begin()[I]; }
3884
3885  SourceLocation getLocStart() const LLVM_READONLY { return NameLoc; }
3886  SourceLocation getLocEnd() const LLVM_READONLY { return NameLoc; }
3887
3888  static bool classof(const Stmt *T) {
3889    return T->getStmtClass() == FunctionParmPackExprClass;
3890  }
3891
3892  child_range children() { return child_range(); }
3893};
3894
3895/// \brief Represents a prvalue temporary that is written into memory so that
3896/// a reference can bind to it.
3897///
3898/// Prvalue expressions are materialized when they need to have an address
3899/// in memory for a reference to bind to. This happens when binding a
3900/// reference to the result of a conversion, e.g.,
3901///
3902/// \code
3903/// const int &r = 1.0;
3904/// \endcode
3905///
3906/// Here, 1.0 is implicitly converted to an \c int. That resulting \c int is
3907/// then materialized via a \c MaterializeTemporaryExpr, and the reference
3908/// binds to the temporary. \c MaterializeTemporaryExprs are always glvalues
3909/// (either an lvalue or an xvalue, depending on the kind of reference binding
3910/// to it), maintaining the invariant that references always bind to glvalues.
3911///
3912/// Reference binding and copy-elision can both extend the lifetime of a
3913/// temporary. When either happens, the expression will also track the
3914/// declaration which is responsible for the lifetime extension.
3915class MaterializeTemporaryExpr : public Expr {
3916public:
3917  /// \brief The temporary-generating expression whose value will be
3918  /// materialized.
3919  Stmt *Temporary;
3920
3921  /// \brief The declaration which lifetime-extended this reference, if any.
3922  /// Either a VarDecl, or (for a ctor-initializer) a FieldDecl.
3923  const ValueDecl *ExtendingDecl;
3924
3925  friend class ASTStmtReader;
3926  friend class ASTStmtWriter;
3927
3928public:
3929  MaterializeTemporaryExpr(QualType T, Expr *Temporary,
3930                           bool BoundToLvalueReference,
3931                           const ValueDecl *ExtendedBy)
3932    : Expr(MaterializeTemporaryExprClass, T,
3933           BoundToLvalueReference? VK_LValue : VK_XValue, OK_Ordinary,
3934           Temporary->isTypeDependent(), Temporary->isValueDependent(),
3935           Temporary->isInstantiationDependent(),
3936           Temporary->containsUnexpandedParameterPack()),
3937      Temporary(Temporary), ExtendingDecl(ExtendedBy) {
3938  }
3939
3940  MaterializeTemporaryExpr(EmptyShell Empty)
3941    : Expr(MaterializeTemporaryExprClass, Empty) { }
3942
3943  /// \brief Retrieve the temporary-generating subexpression whose value will
3944  /// be materialized into a glvalue.
3945  Expr *GetTemporaryExpr() const { return static_cast<Expr *>(Temporary); }
3946
3947  /// \brief Retrieve the storage duration for the materialized temporary.
3948  StorageDuration getStorageDuration() const {
3949    if (!ExtendingDecl)
3950      return SD_FullExpression;
3951    // FIXME: This is not necessarily correct for a temporary materialized
3952    // within a default initializer.
3953    if (isa<FieldDecl>(ExtendingDecl))
3954      return SD_Automatic;
3955    return cast<VarDecl>(ExtendingDecl)->getStorageDuration();
3956  }
3957
3958  /// \brief Get the declaration which triggered the lifetime-extension of this
3959  /// temporary, if any.
3960  const ValueDecl *getExtendingDecl() const { return ExtendingDecl; }
3961
3962  void setExtendingDecl(const ValueDecl *ExtendedBy) {
3963    ExtendingDecl = ExtendedBy;
3964  }
3965
3966  /// \brief Determine whether this materialized temporary is bound to an
3967  /// lvalue reference; otherwise, it's bound to an rvalue reference.
3968  bool isBoundToLvalueReference() const {
3969    return getValueKind() == VK_LValue;
3970  }
3971
3972  SourceLocation getLocStart() const LLVM_READONLY {
3973    return Temporary->getLocStart();
3974  }
3975  SourceLocation getLocEnd() const LLVM_READONLY {
3976    return Temporary->getLocEnd();
3977  }
3978
3979  static bool classof(const Stmt *T) {
3980    return T->getStmtClass() == MaterializeTemporaryExprClass;
3981  }
3982
3983  // Iterators
3984  child_range children() { return child_range(&Temporary, &Temporary + 1); }
3985};
3986
3987}  // end namespace clang
3988
3989#endif
3990