ExprCXX.h revision 1548d14f4092a817f7d90ad3e7a65266dc85fbc5
1//===--- ExprCXX.h - Classes for representing expressions -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses for C++ expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPRCXX_H
15#define LLVM_CLANG_AST_EXPRCXX_H
16
17#include "clang/AST/Expr.h"
18#include "clang/AST/UnresolvedSet.h"
19#include "clang/AST/TemplateBase.h"
20#include "clang/Basic/ExpressionTraits.h"
21#include "clang/Basic/Lambda.h"
22#include "clang/Basic/TypeTraits.h"
23
24namespace clang {
25
26class CXXConstructorDecl;
27class CXXDestructorDecl;
28class CXXMethodDecl;
29class CXXTemporary;
30class TemplateArgumentListInfo;
31
32//===--------------------------------------------------------------------===//
33// C++ Expressions.
34//===--------------------------------------------------------------------===//
35
36/// \brief A call to an overloaded operator written using operator
37/// syntax.
38///
39/// Represents a call to an overloaded operator written using operator
40/// syntax, e.g., "x + y" or "*p". While semantically equivalent to a
41/// normal call, this AST node provides better information about the
42/// syntactic representation of the call.
43///
44/// In a C++ template, this expression node kind will be used whenever
45/// any of the arguments are type-dependent. In this case, the
46/// function itself will be a (possibly empty) set of functions and
47/// function templates that were found by name lookup at template
48/// definition time.
49class CXXOperatorCallExpr : public CallExpr {
50  /// \brief The overloaded operator.
51  OverloadedOperatorKind Operator;
52
53public:
54  CXXOperatorCallExpr(ASTContext& C, OverloadedOperatorKind Op, Expr *fn,
55                      Expr **args, unsigned numargs, QualType t,
56                      ExprValueKind VK, SourceLocation operatorloc)
57    : CallExpr(C, CXXOperatorCallExprClass, fn, 0, args, numargs, t, VK,
58               operatorloc),
59      Operator(Op) {}
60  explicit CXXOperatorCallExpr(ASTContext& C, EmptyShell Empty) :
61    CallExpr(C, CXXOperatorCallExprClass, Empty) { }
62
63
64  /// getOperator - Returns the kind of overloaded operator that this
65  /// expression refers to.
66  OverloadedOperatorKind getOperator() const { return Operator; }
67  void setOperator(OverloadedOperatorKind Kind) { Operator = Kind; }
68
69  /// getOperatorLoc - Returns the location of the operator symbol in
70  /// the expression. When @c getOperator()==OO_Call, this is the
71  /// location of the right parentheses; when @c
72  /// getOperator()==OO_Subscript, this is the location of the right
73  /// bracket.
74  SourceLocation getOperatorLoc() const { return getRParenLoc(); }
75
76  SourceRange getSourceRange() const;
77
78  static bool classof(const Stmt *T) {
79    return T->getStmtClass() == CXXOperatorCallExprClass;
80  }
81  static bool classof(const CXXOperatorCallExpr *) { return true; }
82};
83
84/// CXXMemberCallExpr - Represents a call to a member function that
85/// may be written either with member call syntax (e.g., "obj.func()"
86/// or "objptr->func()") or with normal function-call syntax
87/// ("func()") within a member function that ends up calling a member
88/// function. The callee in either case is a MemberExpr that contains
89/// both the object argument and the member function, while the
90/// arguments are the arguments within the parentheses (not including
91/// the object argument).
92class CXXMemberCallExpr : public CallExpr {
93public:
94  CXXMemberCallExpr(ASTContext &C, Expr *fn, Expr **args, unsigned numargs,
95                    QualType t, ExprValueKind VK, SourceLocation RP)
96    : CallExpr(C, CXXMemberCallExprClass, fn, 0, args, numargs, t, VK, RP) {}
97
98  CXXMemberCallExpr(ASTContext &C, EmptyShell Empty)
99    : CallExpr(C, CXXMemberCallExprClass, Empty) { }
100
101  /// getImplicitObjectArgument - Retrieves the implicit object
102  /// argument for the member call. For example, in "x.f(5)", this
103  /// operation would return "x".
104  Expr *getImplicitObjectArgument() const;
105
106  /// Retrieves the declaration of the called method.
107  CXXMethodDecl *getMethodDecl() const;
108
109  /// getRecordDecl - Retrieves the CXXRecordDecl for the underlying type of
110  /// the implicit object argument. Note that this is may not be the same
111  /// declaration as that of the class context of the CXXMethodDecl which this
112  /// function is calling.
113  /// FIXME: Returns 0 for member pointer call exprs.
114  CXXRecordDecl *getRecordDecl();
115
116  static bool classof(const Stmt *T) {
117    return T->getStmtClass() == CXXMemberCallExprClass;
118  }
119  static bool classof(const CXXMemberCallExpr *) { return true; }
120};
121
122/// CUDAKernelCallExpr - Represents a call to a CUDA kernel function.
123class CUDAKernelCallExpr : public CallExpr {
124private:
125  enum { CONFIG, END_PREARG };
126
127public:
128  CUDAKernelCallExpr(ASTContext &C, Expr *fn, CallExpr *Config,
129                     Expr **args, unsigned numargs, QualType t,
130                     ExprValueKind VK, SourceLocation RP)
131    : CallExpr(C, CUDAKernelCallExprClass, fn, END_PREARG, args, numargs, t, VK,
132               RP) {
133    setConfig(Config);
134  }
135
136  CUDAKernelCallExpr(ASTContext &C, EmptyShell Empty)
137    : CallExpr(C, CUDAKernelCallExprClass, END_PREARG, Empty) { }
138
139  const CallExpr *getConfig() const {
140    return cast_or_null<CallExpr>(getPreArg(CONFIG));
141  }
142  CallExpr *getConfig() { return cast_or_null<CallExpr>(getPreArg(CONFIG)); }
143  void setConfig(CallExpr *E) { setPreArg(CONFIG, E); }
144
145  static bool classof(const Stmt *T) {
146    return T->getStmtClass() == CUDAKernelCallExprClass;
147  }
148  static bool classof(const CUDAKernelCallExpr *) { return true; }
149};
150
151/// CXXNamedCastExpr - Abstract class common to all of the C++ "named"
152/// casts, @c static_cast, @c dynamic_cast, @c reinterpret_cast, or @c
153/// const_cast.
154///
155/// This abstract class is inherited by all of the classes
156/// representing "named" casts, e.g., CXXStaticCastExpr,
157/// CXXDynamicCastExpr, CXXReinterpretCastExpr, and CXXConstCastExpr.
158class CXXNamedCastExpr : public ExplicitCastExpr {
159private:
160  SourceLocation Loc; // the location of the casting op
161  SourceLocation RParenLoc; // the location of the right parenthesis
162
163protected:
164  CXXNamedCastExpr(StmtClass SC, QualType ty, ExprValueKind VK,
165                   CastKind kind, Expr *op, unsigned PathSize,
166                   TypeSourceInfo *writtenTy, SourceLocation l,
167                   SourceLocation RParenLoc)
168    : ExplicitCastExpr(SC, ty, VK, kind, op, PathSize, writtenTy), Loc(l),
169      RParenLoc(RParenLoc) {}
170
171  explicit CXXNamedCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
172    : ExplicitCastExpr(SC, Shell, PathSize) { }
173
174  friend class ASTStmtReader;
175
176public:
177  const char *getCastName() const;
178
179  /// \brief Retrieve the location of the cast operator keyword, e.g.,
180  /// "static_cast".
181  SourceLocation getOperatorLoc() const { return Loc; }
182
183  /// \brief Retrieve the location of the closing parenthesis.
184  SourceLocation getRParenLoc() const { return RParenLoc; }
185
186  SourceRange getSourceRange() const {
187    return SourceRange(Loc, RParenLoc);
188  }
189  static bool classof(const Stmt *T) {
190    switch (T->getStmtClass()) {
191    case CXXStaticCastExprClass:
192    case CXXDynamicCastExprClass:
193    case CXXReinterpretCastExprClass:
194    case CXXConstCastExprClass:
195      return true;
196    default:
197      return false;
198    }
199  }
200  static bool classof(const CXXNamedCastExpr *) { return true; }
201};
202
203/// CXXStaticCastExpr - A C++ @c static_cast expression
204/// (C++ [expr.static.cast]).
205///
206/// This expression node represents a C++ static cast, e.g.,
207/// @c static_cast<int>(1.0).
208class CXXStaticCastExpr : public CXXNamedCastExpr {
209  CXXStaticCastExpr(QualType ty, ExprValueKind vk, CastKind kind, Expr *op,
210                    unsigned pathSize, TypeSourceInfo *writtenTy,
211                    SourceLocation l, SourceLocation RParenLoc)
212    : CXXNamedCastExpr(CXXStaticCastExprClass, ty, vk, kind, op, pathSize,
213                       writtenTy, l, RParenLoc) {}
214
215  explicit CXXStaticCastExpr(EmptyShell Empty, unsigned PathSize)
216    : CXXNamedCastExpr(CXXStaticCastExprClass, Empty, PathSize) { }
217
218public:
219  static CXXStaticCastExpr *Create(ASTContext &Context, QualType T,
220                                   ExprValueKind VK, CastKind K, Expr *Op,
221                                   const CXXCastPath *Path,
222                                   TypeSourceInfo *Written, SourceLocation L,
223                                   SourceLocation RParenLoc);
224  static CXXStaticCastExpr *CreateEmpty(ASTContext &Context,
225                                        unsigned PathSize);
226
227  static bool classof(const Stmt *T) {
228    return T->getStmtClass() == CXXStaticCastExprClass;
229  }
230  static bool classof(const CXXStaticCastExpr *) { return true; }
231};
232
233/// CXXDynamicCastExpr - A C++ @c dynamic_cast expression
234/// (C++ [expr.dynamic.cast]), which may perform a run-time check to
235/// determine how to perform the type cast.
236///
237/// This expression node represents a dynamic cast, e.g.,
238/// @c dynamic_cast<Derived*>(BasePtr).
239class CXXDynamicCastExpr : public CXXNamedCastExpr {
240  CXXDynamicCastExpr(QualType ty, ExprValueKind VK, CastKind kind,
241                     Expr *op, unsigned pathSize, TypeSourceInfo *writtenTy,
242                     SourceLocation l, SourceLocation RParenLoc)
243    : CXXNamedCastExpr(CXXDynamicCastExprClass, ty, VK, kind, op, pathSize,
244                       writtenTy, l, RParenLoc) {}
245
246  explicit CXXDynamicCastExpr(EmptyShell Empty, unsigned pathSize)
247    : CXXNamedCastExpr(CXXDynamicCastExprClass, Empty, pathSize) { }
248
249public:
250  static CXXDynamicCastExpr *Create(ASTContext &Context, QualType T,
251                                    ExprValueKind VK, CastKind Kind, Expr *Op,
252                                    const CXXCastPath *Path,
253                                    TypeSourceInfo *Written, SourceLocation L,
254                                    SourceLocation RParenLoc);
255
256  static CXXDynamicCastExpr *CreateEmpty(ASTContext &Context,
257                                         unsigned pathSize);
258
259  bool isAlwaysNull() const;
260
261  static bool classof(const Stmt *T) {
262    return T->getStmtClass() == CXXDynamicCastExprClass;
263  }
264  static bool classof(const CXXDynamicCastExpr *) { return true; }
265};
266
267/// CXXReinterpretCastExpr - A C++ @c reinterpret_cast expression (C++
268/// [expr.reinterpret.cast]), which provides a differently-typed view
269/// of a value but performs no actual work at run time.
270///
271/// This expression node represents a reinterpret cast, e.g.,
272/// @c reinterpret_cast<int>(VoidPtr).
273class CXXReinterpretCastExpr : public CXXNamedCastExpr {
274  CXXReinterpretCastExpr(QualType ty, ExprValueKind vk, CastKind kind,
275                         Expr *op, unsigned pathSize,
276                         TypeSourceInfo *writtenTy, SourceLocation l,
277                         SourceLocation RParenLoc)
278    : CXXNamedCastExpr(CXXReinterpretCastExprClass, ty, vk, kind, op,
279                       pathSize, writtenTy, l, RParenLoc) {}
280
281  CXXReinterpretCastExpr(EmptyShell Empty, unsigned pathSize)
282    : CXXNamedCastExpr(CXXReinterpretCastExprClass, Empty, pathSize) { }
283
284public:
285  static CXXReinterpretCastExpr *Create(ASTContext &Context, QualType T,
286                                        ExprValueKind VK, CastKind Kind,
287                                        Expr *Op, const CXXCastPath *Path,
288                                 TypeSourceInfo *WrittenTy, SourceLocation L,
289                                        SourceLocation RParenLoc);
290  static CXXReinterpretCastExpr *CreateEmpty(ASTContext &Context,
291                                             unsigned pathSize);
292
293  static bool classof(const Stmt *T) {
294    return T->getStmtClass() == CXXReinterpretCastExprClass;
295  }
296  static bool classof(const CXXReinterpretCastExpr *) { return true; }
297};
298
299/// CXXConstCastExpr - A C++ @c const_cast expression (C++ [expr.const.cast]),
300/// which can remove type qualifiers but does not change the underlying value.
301///
302/// This expression node represents a const cast, e.g.,
303/// @c const_cast<char*>(PtrToConstChar).
304class CXXConstCastExpr : public CXXNamedCastExpr {
305  CXXConstCastExpr(QualType ty, ExprValueKind VK, Expr *op,
306                   TypeSourceInfo *writtenTy, SourceLocation l,
307                   SourceLocation RParenLoc)
308    : CXXNamedCastExpr(CXXConstCastExprClass, ty, VK, CK_NoOp, op,
309                       0, writtenTy, l, RParenLoc) {}
310
311  explicit CXXConstCastExpr(EmptyShell Empty)
312    : CXXNamedCastExpr(CXXConstCastExprClass, Empty, 0) { }
313
314public:
315  static CXXConstCastExpr *Create(ASTContext &Context, QualType T,
316                                  ExprValueKind VK, Expr *Op,
317                                  TypeSourceInfo *WrittenTy, SourceLocation L,
318                                  SourceLocation RParenLoc);
319  static CXXConstCastExpr *CreateEmpty(ASTContext &Context);
320
321  static bool classof(const Stmt *T) {
322    return T->getStmtClass() == CXXConstCastExprClass;
323  }
324  static bool classof(const CXXConstCastExpr *) { return true; }
325};
326
327/// CXXBoolLiteralExpr - [C++ 2.13.5] C++ Boolean Literal.
328///
329class CXXBoolLiteralExpr : public Expr {
330  bool Value;
331  SourceLocation Loc;
332public:
333  CXXBoolLiteralExpr(bool val, QualType Ty, SourceLocation l) :
334    Expr(CXXBoolLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
335         false, false),
336    Value(val), Loc(l) {}
337
338  explicit CXXBoolLiteralExpr(EmptyShell Empty)
339    : Expr(CXXBoolLiteralExprClass, Empty) { }
340
341  bool getValue() const { return Value; }
342  void setValue(bool V) { Value = V; }
343
344  SourceRange getSourceRange() const { return SourceRange(Loc); }
345
346  SourceLocation getLocation() const { return Loc; }
347  void setLocation(SourceLocation L) { Loc = L; }
348
349  static bool classof(const Stmt *T) {
350    return T->getStmtClass() == CXXBoolLiteralExprClass;
351  }
352  static bool classof(const CXXBoolLiteralExpr *) { return true; }
353
354  // Iterators
355  child_range children() { return child_range(); }
356};
357
358/// CXXNullPtrLiteralExpr - [C++0x 2.14.7] C++ Pointer Literal
359class CXXNullPtrLiteralExpr : public Expr {
360  SourceLocation Loc;
361public:
362  CXXNullPtrLiteralExpr(QualType Ty, SourceLocation l) :
363    Expr(CXXNullPtrLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
364         false, false),
365    Loc(l) {}
366
367  explicit CXXNullPtrLiteralExpr(EmptyShell Empty)
368    : Expr(CXXNullPtrLiteralExprClass, Empty) { }
369
370  SourceRange getSourceRange() const { return SourceRange(Loc); }
371
372  SourceLocation getLocation() const { return Loc; }
373  void setLocation(SourceLocation L) { Loc = L; }
374
375  static bool classof(const Stmt *T) {
376    return T->getStmtClass() == CXXNullPtrLiteralExprClass;
377  }
378  static bool classof(const CXXNullPtrLiteralExpr *) { return true; }
379
380  child_range children() { return child_range(); }
381};
382
383/// CXXTypeidExpr - A C++ @c typeid expression (C++ [expr.typeid]), which gets
384/// the type_info that corresponds to the supplied type, or the (possibly
385/// dynamic) type of the supplied expression.
386///
387/// This represents code like @c typeid(int) or @c typeid(*objPtr)
388class CXXTypeidExpr : public Expr {
389private:
390  llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
391  SourceRange Range;
392
393public:
394  CXXTypeidExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
395    : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
396           // typeid is never type-dependent (C++ [temp.dep.expr]p4)
397           false,
398           // typeid is value-dependent if the type or expression are dependent
399           Operand->getType()->isDependentType(),
400           Operand->getType()->isInstantiationDependentType(),
401           Operand->getType()->containsUnexpandedParameterPack()),
402      Operand(Operand), Range(R) { }
403
404  CXXTypeidExpr(QualType Ty, Expr *Operand, SourceRange R)
405    : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
406        // typeid is never type-dependent (C++ [temp.dep.expr]p4)
407           false,
408        // typeid is value-dependent if the type or expression are dependent
409           Operand->isTypeDependent() || Operand->isValueDependent(),
410           Operand->isInstantiationDependent(),
411           Operand->containsUnexpandedParameterPack()),
412      Operand(Operand), Range(R) { }
413
414  CXXTypeidExpr(EmptyShell Empty, bool isExpr)
415    : Expr(CXXTypeidExprClass, Empty) {
416    if (isExpr)
417      Operand = (Expr*)0;
418    else
419      Operand = (TypeSourceInfo*)0;
420  }
421
422  bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
423
424  /// \brief Retrieves the type operand of this typeid() expression after
425  /// various required adjustments (removing reference types, cv-qualifiers).
426  QualType getTypeOperand() const;
427
428  /// \brief Retrieve source information for the type operand.
429  TypeSourceInfo *getTypeOperandSourceInfo() const {
430    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
431    return Operand.get<TypeSourceInfo *>();
432  }
433
434  void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
435    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
436    Operand = TSI;
437  }
438
439  Expr *getExprOperand() const {
440    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
441    return static_cast<Expr*>(Operand.get<Stmt *>());
442  }
443
444  void setExprOperand(Expr *E) {
445    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
446    Operand = E;
447  }
448
449  SourceRange getSourceRange() const { return Range; }
450  void setSourceRange(SourceRange R) { Range = R; }
451
452  static bool classof(const Stmt *T) {
453    return T->getStmtClass() == CXXTypeidExprClass;
454  }
455  static bool classof(const CXXTypeidExpr *) { return true; }
456
457  // Iterators
458  child_range children() {
459    if (isTypeOperand()) return child_range();
460    Stmt **begin = reinterpret_cast<Stmt**>(&Operand);
461    return child_range(begin, begin + 1);
462  }
463};
464
465/// CXXUuidofExpr - A microsoft C++ @c __uuidof expression, which gets
466/// the _GUID that corresponds to the supplied type or expression.
467///
468/// This represents code like @c __uuidof(COMTYPE) or @c __uuidof(*comPtr)
469class CXXUuidofExpr : public Expr {
470private:
471  llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
472  SourceRange Range;
473
474public:
475  CXXUuidofExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
476    : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary,
477           false, Operand->getType()->isDependentType(),
478           Operand->getType()->isInstantiationDependentType(),
479           Operand->getType()->containsUnexpandedParameterPack()),
480      Operand(Operand), Range(R) { }
481
482  CXXUuidofExpr(QualType Ty, Expr *Operand, SourceRange R)
483    : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary,
484           false, Operand->isTypeDependent(),
485           Operand->isInstantiationDependent(),
486           Operand->containsUnexpandedParameterPack()),
487      Operand(Operand), Range(R) { }
488
489  CXXUuidofExpr(EmptyShell Empty, bool isExpr)
490    : Expr(CXXUuidofExprClass, Empty) {
491    if (isExpr)
492      Operand = (Expr*)0;
493    else
494      Operand = (TypeSourceInfo*)0;
495  }
496
497  bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
498
499  /// \brief Retrieves the type operand of this __uuidof() expression after
500  /// various required adjustments (removing reference types, cv-qualifiers).
501  QualType getTypeOperand() const;
502
503  /// \brief Retrieve source information for the type operand.
504  TypeSourceInfo *getTypeOperandSourceInfo() const {
505    assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
506    return Operand.get<TypeSourceInfo *>();
507  }
508
509  void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
510    assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
511    Operand = TSI;
512  }
513
514  Expr *getExprOperand() const {
515    assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
516    return static_cast<Expr*>(Operand.get<Stmt *>());
517  }
518
519  void setExprOperand(Expr *E) {
520    assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
521    Operand = E;
522  }
523
524  SourceRange getSourceRange() const { return Range; }
525  void setSourceRange(SourceRange R) { Range = R; }
526
527  static bool classof(const Stmt *T) {
528    return T->getStmtClass() == CXXUuidofExprClass;
529  }
530  static bool classof(const CXXUuidofExpr *) { return true; }
531
532  // Iterators
533  child_range children() {
534    if (isTypeOperand()) return child_range();
535    Stmt **begin = reinterpret_cast<Stmt**>(&Operand);
536    return child_range(begin, begin + 1);
537  }
538};
539
540/// CXXThisExpr - Represents the "this" expression in C++, which is a
541/// pointer to the object on which the current member function is
542/// executing (C++ [expr.prim]p3). Example:
543///
544/// @code
545/// class Foo {
546/// public:
547///   void bar();
548///   void test() { this->bar(); }
549/// };
550/// @endcode
551class CXXThisExpr : public Expr {
552  SourceLocation Loc;
553  bool Implicit : 1;
554
555public:
556  CXXThisExpr(SourceLocation L, QualType Type, bool isImplicit)
557    : Expr(CXXThisExprClass, Type, VK_RValue, OK_Ordinary,
558           // 'this' is type-dependent if the class type of the enclosing
559           // member function is dependent (C++ [temp.dep.expr]p2)
560           Type->isDependentType(), Type->isDependentType(),
561           Type->isInstantiationDependentType(),
562           /*ContainsUnexpandedParameterPack=*/false),
563      Loc(L), Implicit(isImplicit) { }
564
565  CXXThisExpr(EmptyShell Empty) : Expr(CXXThisExprClass, Empty) {}
566
567  SourceLocation getLocation() const { return Loc; }
568  void setLocation(SourceLocation L) { Loc = L; }
569
570  SourceRange getSourceRange() const { return SourceRange(Loc); }
571
572  bool isImplicit() const { return Implicit; }
573  void setImplicit(bool I) { Implicit = I; }
574
575  static bool classof(const Stmt *T) {
576    return T->getStmtClass() == CXXThisExprClass;
577  }
578  static bool classof(const CXXThisExpr *) { return true; }
579
580  // Iterators
581  child_range children() { return child_range(); }
582};
583
584///  CXXThrowExpr - [C++ 15] C++ Throw Expression.  This handles
585///  'throw' and 'throw' assignment-expression.  When
586///  assignment-expression isn't present, Op will be null.
587///
588class CXXThrowExpr : public Expr {
589  Stmt *Op;
590  SourceLocation ThrowLoc;
591  /// \brief Whether the thrown variable (if any) is in scope.
592  unsigned IsThrownVariableInScope : 1;
593
594  friend class ASTStmtReader;
595
596public:
597  // Ty is the void type which is used as the result type of the
598  // exepression.  The l is the location of the throw keyword.  expr
599  // can by null, if the optional expression to throw isn't present.
600  CXXThrowExpr(Expr *expr, QualType Ty, SourceLocation l,
601               bool IsThrownVariableInScope) :
602    Expr(CXXThrowExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
603         expr && expr->isInstantiationDependent(),
604         expr && expr->containsUnexpandedParameterPack()),
605    Op(expr), ThrowLoc(l), IsThrownVariableInScope(IsThrownVariableInScope) {}
606  CXXThrowExpr(EmptyShell Empty) : Expr(CXXThrowExprClass, Empty) {}
607
608  const Expr *getSubExpr() const { return cast_or_null<Expr>(Op); }
609  Expr *getSubExpr() { return cast_or_null<Expr>(Op); }
610
611  SourceLocation getThrowLoc() const { return ThrowLoc; }
612
613  /// \brief Determines whether the variable thrown by this expression (if any!)
614  /// is within the innermost try block.
615  ///
616  /// This information is required to determine whether the NRVO can apply to
617  /// this variable.
618  bool isThrownVariableInScope() const { return IsThrownVariableInScope; }
619
620  SourceRange getSourceRange() const {
621    if (getSubExpr() == 0)
622      return SourceRange(ThrowLoc, ThrowLoc);
623    return SourceRange(ThrowLoc, getSubExpr()->getSourceRange().getEnd());
624  }
625
626  static bool classof(const Stmt *T) {
627    return T->getStmtClass() == CXXThrowExprClass;
628  }
629  static bool classof(const CXXThrowExpr *) { return true; }
630
631  // Iterators
632  child_range children() {
633    return child_range(&Op, Op ? &Op+1 : &Op);
634  }
635};
636
637/// CXXDefaultArgExpr - C++ [dcl.fct.default]. This wraps up a
638/// function call argument that was created from the corresponding
639/// parameter's default argument, when the call did not explicitly
640/// supply arguments for all of the parameters.
641class CXXDefaultArgExpr : public Expr {
642  /// \brief The parameter whose default is being used.
643  ///
644  /// When the bit is set, the subexpression is stored after the
645  /// CXXDefaultArgExpr itself. When the bit is clear, the parameter's
646  /// actual default expression is the subexpression.
647  llvm::PointerIntPair<ParmVarDecl *, 1, bool> Param;
648
649  /// \brief The location where the default argument expression was used.
650  SourceLocation Loc;
651
652  CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param)
653    : Expr(SC,
654           param->hasUnparsedDefaultArg()
655             ? param->getType().getNonReferenceType()
656             : param->getDefaultArg()->getType(),
657           param->getDefaultArg()->getValueKind(),
658           param->getDefaultArg()->getObjectKind(), false, false, false, false),
659      Param(param, false), Loc(Loc) { }
660
661  CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param,
662                    Expr *SubExpr)
663    : Expr(SC, SubExpr->getType(),
664           SubExpr->getValueKind(), SubExpr->getObjectKind(),
665           false, false, false, false),
666      Param(param, true), Loc(Loc) {
667    *reinterpret_cast<Expr **>(this + 1) = SubExpr;
668  }
669
670public:
671  CXXDefaultArgExpr(EmptyShell Empty) : Expr(CXXDefaultArgExprClass, Empty) {}
672
673
674  // Param is the parameter whose default argument is used by this
675  // expression.
676  static CXXDefaultArgExpr *Create(ASTContext &C, SourceLocation Loc,
677                                   ParmVarDecl *Param) {
678    return new (C) CXXDefaultArgExpr(CXXDefaultArgExprClass, Loc, Param);
679  }
680
681  // Param is the parameter whose default argument is used by this
682  // expression, and SubExpr is the expression that will actually be used.
683  static CXXDefaultArgExpr *Create(ASTContext &C,
684                                   SourceLocation Loc,
685                                   ParmVarDecl *Param,
686                                   Expr *SubExpr);
687
688  // Retrieve the parameter that the argument was created from.
689  const ParmVarDecl *getParam() const { return Param.getPointer(); }
690  ParmVarDecl *getParam() { return Param.getPointer(); }
691
692  // Retrieve the actual argument to the function call.
693  const Expr *getExpr() const {
694    if (Param.getInt())
695      return *reinterpret_cast<Expr const * const*> (this + 1);
696    return getParam()->getDefaultArg();
697  }
698  Expr *getExpr() {
699    if (Param.getInt())
700      return *reinterpret_cast<Expr **> (this + 1);
701    return getParam()->getDefaultArg();
702  }
703
704  /// \brief Retrieve the location where this default argument was actually
705  /// used.
706  SourceLocation getUsedLocation() const { return Loc; }
707
708  SourceRange getSourceRange() const {
709    // Default argument expressions have no representation in the
710    // source, so they have an empty source range.
711    return SourceRange();
712  }
713
714  static bool classof(const Stmt *T) {
715    return T->getStmtClass() == CXXDefaultArgExprClass;
716  }
717  static bool classof(const CXXDefaultArgExpr *) { return true; }
718
719  // Iterators
720  child_range children() { return child_range(); }
721
722  friend class ASTStmtReader;
723  friend class ASTStmtWriter;
724};
725
726/// CXXTemporary - Represents a C++ temporary.
727class CXXTemporary {
728  /// Destructor - The destructor that needs to be called.
729  const CXXDestructorDecl *Destructor;
730
731  CXXTemporary(const CXXDestructorDecl *destructor)
732    : Destructor(destructor) { }
733
734public:
735  static CXXTemporary *Create(ASTContext &C,
736                              const CXXDestructorDecl *Destructor);
737
738  const CXXDestructorDecl *getDestructor() const { return Destructor; }
739};
740
741/// \brief Represents binding an expression to a temporary.
742///
743/// This ensures the destructor is called for the temporary. It should only be
744/// needed for non-POD, non-trivially destructable class types. For example:
745///
746/// \code
747///   struct S {
748///     S() { }  // User defined constructor makes S non-POD.
749///     ~S() { } // User defined destructor makes it non-trivial.
750///   };
751///   void test() {
752///     const S &s_ref = S(); // Requires a CXXBindTemporaryExpr.
753///   }
754/// \endcode
755class CXXBindTemporaryExpr : public Expr {
756  CXXTemporary *Temp;
757
758  Stmt *SubExpr;
759
760  CXXBindTemporaryExpr(CXXTemporary *temp, Expr* SubExpr)
761   : Expr(CXXBindTemporaryExprClass, SubExpr->getType(),
762          VK_RValue, OK_Ordinary, SubExpr->isTypeDependent(),
763          SubExpr->isValueDependent(),
764          SubExpr->isInstantiationDependent(),
765          SubExpr->containsUnexpandedParameterPack()),
766     Temp(temp), SubExpr(SubExpr) { }
767
768public:
769  CXXBindTemporaryExpr(EmptyShell Empty)
770    : Expr(CXXBindTemporaryExprClass, Empty), Temp(0), SubExpr(0) {}
771
772  static CXXBindTemporaryExpr *Create(ASTContext &C, CXXTemporary *Temp,
773                                      Expr* SubExpr);
774
775  CXXTemporary *getTemporary() { return Temp; }
776  const CXXTemporary *getTemporary() const { return Temp; }
777  void setTemporary(CXXTemporary *T) { Temp = T; }
778
779  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
780  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
781  void setSubExpr(Expr *E) { SubExpr = E; }
782
783  SourceRange getSourceRange() const {
784    return SubExpr->getSourceRange();
785  }
786
787  // Implement isa/cast/dyncast/etc.
788  static bool classof(const Stmt *T) {
789    return T->getStmtClass() == CXXBindTemporaryExprClass;
790  }
791  static bool classof(const CXXBindTemporaryExpr *) { return true; }
792
793  // Iterators
794  child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
795};
796
797/// CXXConstructExpr - Represents a call to a C++ constructor.
798class CXXConstructExpr : public Expr {
799public:
800  enum ConstructionKind {
801    CK_Complete,
802    CK_NonVirtualBase,
803    CK_VirtualBase,
804    CK_Delegating
805  };
806
807private:
808  CXXConstructorDecl *Constructor;
809
810  SourceLocation Loc;
811  SourceRange ParenRange;
812  unsigned NumArgs : 16;
813  bool Elidable : 1;
814  bool HadMultipleCandidates : 1;
815  bool ListInitialization : 1;
816  bool ZeroInitialization : 1;
817  unsigned ConstructKind : 2;
818  Stmt **Args;
819
820protected:
821  CXXConstructExpr(ASTContext &C, StmtClass SC, QualType T,
822                   SourceLocation Loc,
823                   CXXConstructorDecl *d, bool elidable,
824                   Expr **args, unsigned numargs,
825                   bool HadMultipleCandidates,
826                   bool ListInitialization,
827                   bool ZeroInitialization,
828                   ConstructionKind ConstructKind,
829                   SourceRange ParenRange);
830
831  /// \brief Construct an empty C++ construction expression.
832  CXXConstructExpr(StmtClass SC, EmptyShell Empty)
833    : Expr(SC, Empty), Constructor(0), NumArgs(0), Elidable(false),
834      HadMultipleCandidates(false), ListInitialization(false),
835      ZeroInitialization(false), ConstructKind(0), Args(0)
836  { }
837
838public:
839  /// \brief Construct an empty C++ construction expression.
840  explicit CXXConstructExpr(EmptyShell Empty)
841    : Expr(CXXConstructExprClass, Empty), Constructor(0),
842      NumArgs(0), Elidable(false), HadMultipleCandidates(false),
843      ListInitialization(false), ZeroInitialization(false),
844      ConstructKind(0), Args(0)
845  { }
846
847  static CXXConstructExpr *Create(ASTContext &C, QualType T,
848                                  SourceLocation Loc,
849                                  CXXConstructorDecl *D, bool Elidable,
850                                  Expr **Args, unsigned NumArgs,
851                                  bool HadMultipleCandidates,
852                                  bool ListInitialization,
853                                  bool ZeroInitialization,
854                                  ConstructionKind ConstructKind,
855                                  SourceRange ParenRange);
856
857  CXXConstructorDecl* getConstructor() const { return Constructor; }
858  void setConstructor(CXXConstructorDecl *C) { Constructor = C; }
859
860  SourceLocation getLocation() const { return Loc; }
861  void setLocation(SourceLocation Loc) { this->Loc = Loc; }
862
863  /// \brief Whether this construction is elidable.
864  bool isElidable() const { return Elidable; }
865  void setElidable(bool E) { Elidable = E; }
866
867  /// \brief Whether the referred constructor was resolved from
868  /// an overloaded set having size greater than 1.
869  bool hadMultipleCandidates() const { return HadMultipleCandidates; }
870  void setHadMultipleCandidates(bool V) { HadMultipleCandidates = V; }
871
872  /// \brief Whether this constructor call was written as list-initialization.
873  bool isListInitialization() const { return ListInitialization; }
874  void setListInitialization(bool V) { ListInitialization = V; }
875
876  /// \brief Whether this construction first requires
877  /// zero-initialization before the initializer is called.
878  bool requiresZeroInitialization() const { return ZeroInitialization; }
879  void setRequiresZeroInitialization(bool ZeroInit) {
880    ZeroInitialization = ZeroInit;
881  }
882
883  /// \brief Determines whether this constructor is actually constructing
884  /// a base class (rather than a complete object).
885  ConstructionKind getConstructionKind() const {
886    return (ConstructionKind)ConstructKind;
887  }
888  void setConstructionKind(ConstructionKind CK) {
889    ConstructKind = CK;
890  }
891
892  typedef ExprIterator arg_iterator;
893  typedef ConstExprIterator const_arg_iterator;
894
895  arg_iterator arg_begin() { return Args; }
896  arg_iterator arg_end() { return Args + NumArgs; }
897  const_arg_iterator arg_begin() const { return Args; }
898  const_arg_iterator arg_end() const { return Args + NumArgs; }
899
900  Expr **getArgs() const { return reinterpret_cast<Expr **>(Args); }
901  unsigned getNumArgs() const { return NumArgs; }
902
903  /// getArg - Return the specified argument.
904  Expr *getArg(unsigned Arg) {
905    assert(Arg < NumArgs && "Arg access out of range!");
906    return cast<Expr>(Args[Arg]);
907  }
908  const Expr *getArg(unsigned Arg) const {
909    assert(Arg < NumArgs && "Arg access out of range!");
910    return cast<Expr>(Args[Arg]);
911  }
912
913  /// setArg - Set the specified argument.
914  void setArg(unsigned Arg, Expr *ArgExpr) {
915    assert(Arg < NumArgs && "Arg access out of range!");
916    Args[Arg] = ArgExpr;
917  }
918
919  SourceRange getSourceRange() const;
920  SourceRange getParenRange() const { return ParenRange; }
921
922  static bool classof(const Stmt *T) {
923    return T->getStmtClass() == CXXConstructExprClass ||
924      T->getStmtClass() == CXXTemporaryObjectExprClass;
925  }
926  static bool classof(const CXXConstructExpr *) { return true; }
927
928  // Iterators
929  child_range children() {
930    return child_range(&Args[0], &Args[0]+NumArgs);
931  }
932
933  friend class ASTStmtReader;
934};
935
936/// CXXFunctionalCastExpr - Represents an explicit C++ type conversion
937/// that uses "functional" notion (C++ [expr.type.conv]). Example: @c
938/// x = int(0.5);
939class CXXFunctionalCastExpr : public ExplicitCastExpr {
940  SourceLocation TyBeginLoc;
941  SourceLocation RParenLoc;
942
943  CXXFunctionalCastExpr(QualType ty, ExprValueKind VK,
944                        TypeSourceInfo *writtenTy,
945                        SourceLocation tyBeginLoc, CastKind kind,
946                        Expr *castExpr, unsigned pathSize,
947                        SourceLocation rParenLoc)
948    : ExplicitCastExpr(CXXFunctionalCastExprClass, ty, VK, kind,
949                       castExpr, pathSize, writtenTy),
950      TyBeginLoc(tyBeginLoc), RParenLoc(rParenLoc) {}
951
952  explicit CXXFunctionalCastExpr(EmptyShell Shell, unsigned PathSize)
953    : ExplicitCastExpr(CXXFunctionalCastExprClass, Shell, PathSize) { }
954
955public:
956  static CXXFunctionalCastExpr *Create(ASTContext &Context, QualType T,
957                                       ExprValueKind VK,
958                                       TypeSourceInfo *Written,
959                                       SourceLocation TyBeginLoc,
960                                       CastKind Kind, Expr *Op,
961                                       const CXXCastPath *Path,
962                                       SourceLocation RPLoc);
963  static CXXFunctionalCastExpr *CreateEmpty(ASTContext &Context,
964                                            unsigned PathSize);
965
966  SourceLocation getTypeBeginLoc() const { return TyBeginLoc; }
967  void setTypeBeginLoc(SourceLocation L) { TyBeginLoc = L; }
968  SourceLocation getRParenLoc() const { return RParenLoc; }
969  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
970
971  SourceRange getSourceRange() const {
972    return SourceRange(TyBeginLoc, RParenLoc);
973  }
974  static bool classof(const Stmt *T) {
975    return T->getStmtClass() == CXXFunctionalCastExprClass;
976  }
977  static bool classof(const CXXFunctionalCastExpr *) { return true; }
978};
979
980/// @brief Represents a C++ functional cast expression that builds a
981/// temporary object.
982///
983/// This expression type represents a C++ "functional" cast
984/// (C++[expr.type.conv]) with N != 1 arguments that invokes a
985/// constructor to build a temporary object. With N == 1 arguments the
986/// functional cast expression will be represented by CXXFunctionalCastExpr.
987/// Example:
988/// @code
989/// struct X { X(int, float); }
990///
991/// X create_X() {
992///   return X(1, 3.14f); // creates a CXXTemporaryObjectExpr
993/// };
994/// @endcode
995class CXXTemporaryObjectExpr : public CXXConstructExpr {
996  TypeSourceInfo *Type;
997
998public:
999  CXXTemporaryObjectExpr(ASTContext &C, CXXConstructorDecl *Cons,
1000                         TypeSourceInfo *Type,
1001                         Expr **Args,unsigned NumArgs,
1002                         SourceRange parenRange,
1003                         bool HadMultipleCandidates,
1004                         bool ZeroInitialization = false);
1005  explicit CXXTemporaryObjectExpr(EmptyShell Empty)
1006    : CXXConstructExpr(CXXTemporaryObjectExprClass, Empty), Type() { }
1007
1008  TypeSourceInfo *getTypeSourceInfo() const { return Type; }
1009
1010  SourceRange getSourceRange() const;
1011
1012  static bool classof(const Stmt *T) {
1013    return T->getStmtClass() == CXXTemporaryObjectExprClass;
1014  }
1015  static bool classof(const CXXTemporaryObjectExpr *) { return true; }
1016
1017  friend class ASTStmtReader;
1018};
1019
1020/// \brief A C++ lambda expression, which produces a function object
1021/// (of unspecified type) that can be invoked later.
1022///
1023/// Example:
1024/// \code
1025/// void low_pass_filter(std::vector<double> &values, double cutoff) {
1026///   values.erase(std::remove_if(values.begin(), values.end(),
1027//                                [=](double value) { return value > cutoff; });
1028/// }
1029/// \endcode
1030///
1031/// Lambda expressions can capture local variables, either by copying
1032/// the values of those local variables at the time the function
1033/// object is constructed (not when it is called!) or by holding a
1034/// reference to the local variable. These captures can occur either
1035/// implicitly or can be written explicitly between the square
1036/// brackets ([...]) that start the lambda expression.
1037class LambdaExpr : public Expr {
1038  enum {
1039    /// \brief Flag used by the Capture class to indicate that the given
1040    /// capture was implicit.
1041    Capture_Implicit = 0x01,
1042
1043    /// \brief Flag used by the Capture class to indciate that the
1044    /// given capture was by-copy.
1045    Capture_ByCopy = 0x02
1046  };
1047
1048  /// \brief The source range that covers the lambda introducer ([...]).
1049  SourceRange IntroducerRange;
1050
1051  /// \brief The number of captures.
1052  unsigned NumCaptures : 16;
1053
1054  /// \brief The default capture kind, which is a value of type
1055  /// LambdaCaptureDefault.
1056  unsigned CaptureDefault : 2;
1057
1058  /// \brief Whether this lambda had an explicit parameter list vs. an
1059  /// implicit (and empty) parameter list.
1060  unsigned ExplicitParams : 1;
1061
1062  /// \brief Whether this lambda had the result type explicitly specified.
1063  unsigned ExplicitResultType : 1;
1064
1065  /// \brief Whether there are any array index variables stored at the end of
1066  /// this lambda expression.
1067  unsigned HasArrayIndexVars : 1;
1068
1069  /// \brief The location of the closing brace ('}') that completes
1070  /// the lambda.
1071  ///
1072  /// The location of the brace is also available by looking up the
1073  /// function call operator in the lambda class. However, it is
1074  /// stored here to improve the performance of getSourceRange(), and
1075  /// to avoid having to deserialize the function call operator from a
1076  /// module file just to determine the source range.
1077  SourceLocation ClosingBrace;
1078
1079  // Note: The capture initializers are stored directly after the lambda
1080  // expression, along with the index variables used to initialize by-copy
1081  // array captures.
1082
1083public:
1084  /// \brief Describes the capture of either a variable or 'this'.
1085  class Capture {
1086    llvm::PointerIntPair<VarDecl *, 2> VarAndBits;
1087    SourceLocation Loc;
1088    SourceLocation EllipsisLoc;
1089
1090    friend class ASTStmtReader;
1091    friend class ASTStmtWriter;
1092
1093  public:
1094    /// \brief Create a new capture.
1095    ///
1096    /// \param Loc The source location associated with this capture.
1097    ///
1098    /// \param Kind The kind of capture (this, byref, bycopy).
1099    ///
1100    /// \param Implicit Whether the capture was implicit or explicit.
1101    ///
1102    /// \param Var The local variable being captured, or null if capturing this.
1103    ///
1104    /// \param EllipsisLoc The location of the ellipsis (...) for a
1105    /// capture that is a pack expansion, or an invalid source
1106    /// location to indicate that this is not a pack expansion.
1107    Capture(SourceLocation Loc, bool Implicit,
1108            LambdaCaptureKind Kind, VarDecl *Var = 0,
1109            SourceLocation EllipsisLoc = SourceLocation());
1110
1111    /// \brief Determine the kind of capture.
1112    LambdaCaptureKind getCaptureKind() const;
1113
1114    /// \brief Determine whether this capture handles the C++ 'this'
1115    /// pointer.
1116    bool capturesThis() const { return VarAndBits.getPointer() == 0; }
1117
1118    /// \brief Determine whether this capture handles a variable.
1119    bool capturesVariable() const { return VarAndBits.getPointer() != 0; }
1120
1121    /// \brief Retrieve the declaration of the local variable being
1122    /// captured.
1123    ///
1124    /// This operation is only valid if this capture does not capture
1125    /// 'this'.
1126    VarDecl *getCapturedVar() const {
1127      assert(!capturesThis() && "No variable available for 'this' capture");
1128      return VarAndBits.getPointer();
1129    }
1130
1131    /// \brief Determine whether this was an implicit capture (not
1132    /// written between the square brackets introducing the lambda).
1133    bool isImplicit() const { return VarAndBits.getInt() & Capture_Implicit; }
1134
1135    /// \brief Determine whether this was an explicit capture, written
1136    /// between the square brackets introducing the lambda.
1137    bool isExplicit() const { return !isImplicit(); }
1138
1139    /// \brief Retrieve the source location of the capture.
1140    ///
1141    /// For an explicit capture, this returns the location of the
1142    /// explicit capture in the source. For an implicit capture, this
1143    /// returns the location at which the variable or 'this' was first
1144    /// used.
1145    SourceLocation getLocation() const { return Loc; }
1146
1147    /// \brief Determine whether this capture is a pack expansion,
1148    /// which captures a function parameter pack.
1149    bool isPackExpansion() const { return EllipsisLoc.isValid(); }
1150
1151    /// \brief Retrieve the location of the ellipsis for a capture
1152    /// that is a pack expansion.
1153    SourceLocation getEllipsisLoc() const {
1154      assert(isPackExpansion() && "No ellipsis location for a non-expansion");
1155      return EllipsisLoc;
1156    }
1157  };
1158
1159private:
1160  /// \brief Construct a lambda expression.
1161  LambdaExpr(QualType T, SourceRange IntroducerRange,
1162             LambdaCaptureDefault CaptureDefault,
1163             ArrayRef<Capture> Captures,
1164             bool ExplicitParams,
1165             bool ExplicitResultType,
1166             ArrayRef<Expr *> CaptureInits,
1167             ArrayRef<VarDecl *> ArrayIndexVars,
1168             ArrayRef<unsigned> ArrayIndexStarts,
1169             SourceLocation ClosingBrace);
1170
1171  /// \brief Construct an empty lambda expression.
1172  LambdaExpr(EmptyShell Empty, unsigned NumCaptures, bool HasArrayIndexVars)
1173    : Expr(LambdaExprClass, Empty),
1174      NumCaptures(NumCaptures), CaptureDefault(LCD_None), ExplicitParams(false),
1175      ExplicitResultType(false), HasArrayIndexVars(true) {
1176    getStoredStmts()[NumCaptures] = 0;
1177  }
1178
1179  Stmt **getStoredStmts() const {
1180    return reinterpret_cast<Stmt **>(const_cast<LambdaExpr *>(this) + 1);
1181  }
1182
1183  /// \brief Retrieve the mapping from captures to the first array index
1184  /// variable.
1185  unsigned *getArrayIndexStarts() const {
1186    return reinterpret_cast<unsigned *>(getStoredStmts() + NumCaptures + 1);
1187  }
1188
1189  /// \brief Retrieve the complete set of array-index variables.
1190  VarDecl **getArrayIndexVars() const {
1191    return reinterpret_cast<VarDecl **>(
1192             getArrayIndexStarts() + NumCaptures + 1);
1193  }
1194
1195public:
1196  /// \brief Construct a new lambda expression.
1197  static LambdaExpr *Create(ASTContext &C,
1198                            CXXRecordDecl *Class,
1199                            SourceRange IntroducerRange,
1200                            LambdaCaptureDefault CaptureDefault,
1201                            ArrayRef<Capture> Captures,
1202                            bool ExplicitParams,
1203                            bool ExplicitResultType,
1204                            ArrayRef<Expr *> CaptureInits,
1205                            ArrayRef<VarDecl *> ArrayIndexVars,
1206                            ArrayRef<unsigned> ArrayIndexStarts,
1207                            SourceLocation ClosingBrace);
1208
1209  /// \brief Construct a new lambda expression that will be deserialized from
1210  /// an external source.
1211  static LambdaExpr *CreateDeserialized(ASTContext &C, unsigned NumCaptures,
1212                                        unsigned NumArrayIndexVars);
1213
1214  /// \brief Determine the default capture kind for this lambda.
1215  LambdaCaptureDefault getCaptureDefault() const {
1216    return static_cast<LambdaCaptureDefault>(CaptureDefault);
1217  }
1218
1219  /// \brief An iterator that walks over the captures of the lambda,
1220  /// both implicit and explicit.
1221  typedef const Capture *capture_iterator;
1222
1223  /// \brief Retrieve an iterator pointing to the first lambda capture.
1224  capture_iterator capture_begin() const;
1225
1226  /// \brief Retrieve an iterator pointing past the end of the
1227  /// sequence of lambda captures.
1228  capture_iterator capture_end() const;
1229
1230  /// \brief Determine the number of captures in this lambda.
1231  unsigned capture_size() const { return NumCaptures; }
1232
1233  /// \brief Retrieve an iterator pointing to the first explicit
1234  /// lambda capture.
1235  capture_iterator explicit_capture_begin() const;
1236
1237  /// \brief Retrieve an iterator pointing past the end of the sequence of
1238  /// explicit lambda captures.
1239  capture_iterator explicit_capture_end() const;
1240
1241  /// \brief Retrieve an iterator pointing to the first implicit
1242  /// lambda capture.
1243  capture_iterator implicit_capture_begin() const;
1244
1245  /// \brief Retrieve an iterator pointing past the end of the sequence of
1246  /// implicit lambda captures.
1247  capture_iterator implicit_capture_end() const;
1248
1249  /// \brief Iterator that walks over the capture initialization
1250  /// arguments.
1251  typedef Expr **capture_init_iterator;
1252
1253  /// \brief Retrieve the first initialization argument for this
1254  /// lambda expression (which initializes the first capture field).
1255  capture_init_iterator capture_init_begin() const {
1256    return reinterpret_cast<Expr **>(getStoredStmts());
1257  }
1258
1259  /// \brief Retrieve the iterator pointing one past the last
1260  /// initialization argument for this lambda expression.
1261  capture_init_iterator capture_init_end() const {
1262    return capture_init_begin() + NumCaptures;
1263  }
1264
1265  /// \brief Retrieve the set of index variables used in the capture
1266  /// initializer of an array captured by copy.
1267  ///
1268  /// \param Iter The iterator that points at the capture initializer for
1269  /// which we are extracting the corresponding index variables.
1270  ArrayRef<VarDecl *> getCaptureInitIndexVars(capture_init_iterator Iter) const;
1271
1272  /// \brief Retrieve the source range covering the lambda introducer,
1273  /// which contains the explicit capture list surrounded by square
1274  /// brackets ([...]).
1275  SourceRange getIntroducerRange() const { return IntroducerRange; }
1276
1277  /// \brief Retrieve the class that corresponds to the lambda, which
1278  /// stores the captures in its fields and provides the various
1279  /// operations permitted on a lambda (copying, calling).
1280  CXXRecordDecl *getLambdaClass() const;
1281
1282  /// \brief Retrieve the function call operator associated with this
1283  /// lambda expression.
1284  CXXMethodDecl *getCallOperator() const;
1285
1286  /// \brief Retrieve the body of the lambda.
1287  CompoundStmt *getBody() const;
1288
1289  /// \brief Determine whether the lambda is mutable, meaning that any
1290  /// captures values can be modified.
1291  bool isMutable() const;
1292
1293  /// \brief Determine whether this lambda has an explicit parameter
1294  /// list vs. an implicit (empty) parameter list.
1295  bool hasExplicitParameters() const { return ExplicitParams; }
1296
1297  /// \brief Whether this lambda had its result type explicitly specified.
1298  bool hasExplicitResultType() const { return ExplicitResultType; }
1299
1300  static bool classof(const Stmt *T) {
1301    return T->getStmtClass() == LambdaExprClass;
1302  }
1303  static bool classof(const LambdaExpr *) { return true; }
1304
1305  SourceRange getSourceRange() const {
1306    return SourceRange(IntroducerRange.getBegin(), ClosingBrace);
1307  }
1308
1309  child_range children() {
1310    return child_range(getStoredStmts(), getStoredStmts() + NumCaptures + 1);
1311  }
1312
1313  friend class ASTStmtReader;
1314  friend class ASTStmtWriter;
1315};
1316
1317/// CXXScalarValueInitExpr - [C++ 5.2.3p2]
1318/// Expression "T()" which creates a value-initialized rvalue of type
1319/// T, which is a non-class type.
1320///
1321class CXXScalarValueInitExpr : public Expr {
1322  SourceLocation RParenLoc;
1323  TypeSourceInfo *TypeInfo;
1324
1325  friend class ASTStmtReader;
1326
1327public:
1328  /// \brief Create an explicitly-written scalar-value initialization
1329  /// expression.
1330  CXXScalarValueInitExpr(QualType Type,
1331                         TypeSourceInfo *TypeInfo,
1332                         SourceLocation rParenLoc ) :
1333    Expr(CXXScalarValueInitExprClass, Type, VK_RValue, OK_Ordinary,
1334         false, false, Type->isInstantiationDependentType(), false),
1335    RParenLoc(rParenLoc), TypeInfo(TypeInfo) {}
1336
1337  explicit CXXScalarValueInitExpr(EmptyShell Shell)
1338    : Expr(CXXScalarValueInitExprClass, Shell) { }
1339
1340  TypeSourceInfo *getTypeSourceInfo() const {
1341    return TypeInfo;
1342  }
1343
1344  SourceLocation getRParenLoc() const { return RParenLoc; }
1345
1346  SourceRange getSourceRange() const;
1347
1348  static bool classof(const Stmt *T) {
1349    return T->getStmtClass() == CXXScalarValueInitExprClass;
1350  }
1351  static bool classof(const CXXScalarValueInitExpr *) { return true; }
1352
1353  // Iterators
1354  child_range children() { return child_range(); }
1355};
1356
1357/// CXXNewExpr - A new expression for memory allocation and constructor calls,
1358/// e.g: "new CXXNewExpr(foo)".
1359class CXXNewExpr : public Expr {
1360  // Was the usage ::new, i.e. is the global new to be used?
1361  bool GlobalNew : 1;
1362  // Is there an initializer? If not, built-ins are uninitialized, else they're
1363  // value-initialized.
1364  bool Initializer : 1;
1365  // Do we allocate an array? If so, the first SubExpr is the size expression.
1366  bool Array : 1;
1367  // If this is an array allocation, does the usual deallocation
1368  // function for the allocated type want to know the allocated size?
1369  bool UsualArrayDeleteWantsSize : 1;
1370  // Whether the referred constructor (if any) was resolved from an
1371  // overload set having size greater than 1.
1372  bool HadMultipleCandidates : 1;
1373  // The number of placement new arguments.
1374  unsigned NumPlacementArgs : 13;
1375  // The number of constructor arguments. This may be 1 even for non-class
1376  // types; use the pseudo copy constructor.
1377  unsigned NumConstructorArgs : 14;
1378  // Contains an optional array size expression, any number of optional
1379  // placement arguments, and any number of optional constructor arguments,
1380  // in that order.
1381  Stmt **SubExprs;
1382  // Points to the allocation function used.
1383  FunctionDecl *OperatorNew;
1384  // Points to the deallocation function used in case of error. May be null.
1385  FunctionDecl *OperatorDelete;
1386  // Points to the constructor used. Cannot be null if AllocType is a record;
1387  // it would still point at the default constructor (even an implicit one).
1388  // Must be null for all other types.
1389  CXXConstructorDecl *Constructor;
1390
1391  /// \brief The allocated type-source information, as written in the source.
1392  TypeSourceInfo *AllocatedTypeInfo;
1393
1394  /// \brief If the allocated type was expressed as a parenthesized type-id,
1395  /// the source range covering the parenthesized type-id.
1396  SourceRange TypeIdParens;
1397
1398  SourceLocation StartLoc;
1399  SourceLocation EndLoc;
1400  SourceLocation ConstructorLParen;
1401  SourceLocation ConstructorRParen;
1402
1403  friend class ASTStmtReader;
1404public:
1405  CXXNewExpr(ASTContext &C, bool globalNew, FunctionDecl *operatorNew,
1406             Expr **placementArgs, unsigned numPlaceArgs,
1407             SourceRange TypeIdParens,
1408             Expr *arraySize, CXXConstructorDecl *constructor, bool initializer,
1409             Expr **constructorArgs, unsigned numConsArgs,
1410             bool HadMultipleCandidates,
1411             FunctionDecl *operatorDelete, bool usualArrayDeleteWantsSize,
1412             QualType ty, TypeSourceInfo *AllocatedTypeInfo,
1413             SourceLocation startLoc, SourceLocation endLoc,
1414             SourceLocation constructorLParen,
1415             SourceLocation constructorRParen);
1416  explicit CXXNewExpr(EmptyShell Shell)
1417    : Expr(CXXNewExprClass, Shell), SubExprs(0) { }
1418
1419  void AllocateArgsArray(ASTContext &C, bool isArray, unsigned numPlaceArgs,
1420                         unsigned numConsArgs);
1421
1422  QualType getAllocatedType() const {
1423    assert(getType()->isPointerType());
1424    return getType()->getAs<PointerType>()->getPointeeType();
1425  }
1426
1427  TypeSourceInfo *getAllocatedTypeSourceInfo() const {
1428    return AllocatedTypeInfo;
1429  }
1430
1431  /// \brief True if the allocation result needs to be null-checked.
1432  /// C++0x [expr.new]p13:
1433  ///   If the allocation function returns null, initialization shall
1434  ///   not be done, the deallocation function shall not be called,
1435  ///   and the value of the new-expression shall be null.
1436  /// An allocation function is not allowed to return null unless it
1437  /// has a non-throwing exception-specification.  The '03 rule is
1438  /// identical except that the definition of a non-throwing
1439  /// exception specification is just "is it throw()?".
1440  bool shouldNullCheckAllocation(ASTContext &Ctx) const;
1441
1442  FunctionDecl *getOperatorNew() const { return OperatorNew; }
1443  void setOperatorNew(FunctionDecl *D) { OperatorNew = D; }
1444  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
1445  void setOperatorDelete(FunctionDecl *D) { OperatorDelete = D; }
1446  CXXConstructorDecl *getConstructor() const { return Constructor; }
1447  void setConstructor(CXXConstructorDecl *D) { Constructor = D; }
1448
1449  bool isArray() const { return Array; }
1450  Expr *getArraySize() {
1451    return Array ? cast<Expr>(SubExprs[0]) : 0;
1452  }
1453  const Expr *getArraySize() const {
1454    return Array ? cast<Expr>(SubExprs[0]) : 0;
1455  }
1456
1457  unsigned getNumPlacementArgs() const { return NumPlacementArgs; }
1458  Expr **getPlacementArgs() {
1459    return reinterpret_cast<Expr **>(SubExprs + Array);
1460  }
1461
1462  Expr *getPlacementArg(unsigned i) {
1463    assert(i < NumPlacementArgs && "Index out of range");
1464    return cast<Expr>(SubExprs[Array + i]);
1465  }
1466  const Expr *getPlacementArg(unsigned i) const {
1467    assert(i < NumPlacementArgs && "Index out of range");
1468    return cast<Expr>(SubExprs[Array + i]);
1469  }
1470
1471  bool isParenTypeId() const { return TypeIdParens.isValid(); }
1472  SourceRange getTypeIdParens() const { return TypeIdParens; }
1473
1474  bool isGlobalNew() const { return GlobalNew; }
1475  bool hasInitializer() const { return Initializer; }
1476
1477  /// Answers whether the usual array deallocation function for the
1478  /// allocated type expects the size of the allocation as a
1479  /// parameter.
1480  bool doesUsualArrayDeleteWantSize() const {
1481    return UsualArrayDeleteWantsSize;
1482  }
1483
1484  unsigned getNumConstructorArgs() const { return NumConstructorArgs; }
1485
1486  Expr **getConstructorArgs() {
1487    return reinterpret_cast<Expr **>(SubExprs + Array + NumPlacementArgs);
1488  }
1489
1490  Expr *getConstructorArg(unsigned i) {
1491    assert(i < NumConstructorArgs && "Index out of range");
1492    return cast<Expr>(SubExprs[Array + NumPlacementArgs + i]);
1493  }
1494  const Expr *getConstructorArg(unsigned i) const {
1495    assert(i < NumConstructorArgs && "Index out of range");
1496    return cast<Expr>(SubExprs[Array + NumPlacementArgs + i]);
1497  }
1498
1499  /// \brief Whether the new expression refers a constructor that was
1500  /// resolved from an overloaded set having size greater than 1.
1501  bool hadMultipleCandidates() const { return HadMultipleCandidates; }
1502  void setHadMultipleCandidates(bool V) { HadMultipleCandidates = V; }
1503
1504  typedef ExprIterator arg_iterator;
1505  typedef ConstExprIterator const_arg_iterator;
1506
1507  arg_iterator placement_arg_begin() {
1508    return SubExprs + Array;
1509  }
1510  arg_iterator placement_arg_end() {
1511    return SubExprs + Array + getNumPlacementArgs();
1512  }
1513  const_arg_iterator placement_arg_begin() const {
1514    return SubExprs + Array;
1515  }
1516  const_arg_iterator placement_arg_end() const {
1517    return SubExprs + Array + getNumPlacementArgs();
1518  }
1519
1520  arg_iterator constructor_arg_begin() {
1521    return SubExprs + Array + getNumPlacementArgs();
1522  }
1523  arg_iterator constructor_arg_end() {
1524    return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
1525  }
1526  const_arg_iterator constructor_arg_begin() const {
1527    return SubExprs + Array + getNumPlacementArgs();
1528  }
1529  const_arg_iterator constructor_arg_end() const {
1530    return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
1531  }
1532
1533  typedef Stmt **raw_arg_iterator;
1534  raw_arg_iterator raw_arg_begin() { return SubExprs; }
1535  raw_arg_iterator raw_arg_end() {
1536    return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
1537  }
1538  const_arg_iterator raw_arg_begin() const { return SubExprs; }
1539  const_arg_iterator raw_arg_end() const { return constructor_arg_end(); }
1540
1541  SourceLocation getStartLoc() const { return StartLoc; }
1542  SourceLocation getEndLoc() const { return EndLoc; }
1543
1544  SourceLocation getConstructorLParen() const { return ConstructorLParen; }
1545  SourceLocation getConstructorRParen() const { return ConstructorRParen; }
1546
1547  SourceRange getSourceRange() const {
1548    return SourceRange(StartLoc, EndLoc);
1549  }
1550
1551  static bool classof(const Stmt *T) {
1552    return T->getStmtClass() == CXXNewExprClass;
1553  }
1554  static bool classof(const CXXNewExpr *) { return true; }
1555
1556  // Iterators
1557  child_range children() {
1558    return child_range(&SubExprs[0],
1559                       &SubExprs[0] + Array + getNumPlacementArgs()
1560                         + getNumConstructorArgs());
1561  }
1562};
1563
1564/// CXXDeleteExpr - A delete expression for memory deallocation and destructor
1565/// calls, e.g. "delete[] pArray".
1566class CXXDeleteExpr : public Expr {
1567  // Is this a forced global delete, i.e. "::delete"?
1568  bool GlobalDelete : 1;
1569  // Is this the array form of delete, i.e. "delete[]"?
1570  bool ArrayForm : 1;
1571  // ArrayFormAsWritten can be different from ArrayForm if 'delete' is applied
1572  // to pointer-to-array type (ArrayFormAsWritten will be false while ArrayForm
1573  // will be true).
1574  bool ArrayFormAsWritten : 1;
1575  // Does the usual deallocation function for the element type require
1576  // a size_t argument?
1577  bool UsualArrayDeleteWantsSize : 1;
1578  // Points to the operator delete overload that is used. Could be a member.
1579  FunctionDecl *OperatorDelete;
1580  // The pointer expression to be deleted.
1581  Stmt *Argument;
1582  // Location of the expression.
1583  SourceLocation Loc;
1584public:
1585  CXXDeleteExpr(QualType ty, bool globalDelete, bool arrayForm,
1586                bool arrayFormAsWritten, bool usualArrayDeleteWantsSize,
1587                FunctionDecl *operatorDelete, Expr *arg, SourceLocation loc)
1588    : Expr(CXXDeleteExprClass, ty, VK_RValue, OK_Ordinary, false, false,
1589           arg->isInstantiationDependent(),
1590           arg->containsUnexpandedParameterPack()),
1591      GlobalDelete(globalDelete),
1592      ArrayForm(arrayForm), ArrayFormAsWritten(arrayFormAsWritten),
1593      UsualArrayDeleteWantsSize(usualArrayDeleteWantsSize),
1594      OperatorDelete(operatorDelete), Argument(arg), Loc(loc) { }
1595  explicit CXXDeleteExpr(EmptyShell Shell)
1596    : Expr(CXXDeleteExprClass, Shell), OperatorDelete(0), Argument(0) { }
1597
1598  bool isGlobalDelete() const { return GlobalDelete; }
1599  bool isArrayForm() const { return ArrayForm; }
1600  bool isArrayFormAsWritten() const { return ArrayFormAsWritten; }
1601
1602  /// Answers whether the usual array deallocation function for the
1603  /// allocated type expects the size of the allocation as a
1604  /// parameter.  This can be true even if the actual deallocation
1605  /// function that we're using doesn't want a size.
1606  bool doesUsualArrayDeleteWantSize() const {
1607    return UsualArrayDeleteWantsSize;
1608  }
1609
1610  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
1611
1612  Expr *getArgument() { return cast<Expr>(Argument); }
1613  const Expr *getArgument() const { return cast<Expr>(Argument); }
1614
1615  /// \brief Retrieve the type being destroyed.  If the type being
1616  /// destroyed is a dependent type which may or may not be a pointer,
1617  /// return an invalid type.
1618  QualType getDestroyedType() const;
1619
1620  SourceRange getSourceRange() const {
1621    return SourceRange(Loc, Argument->getLocEnd());
1622  }
1623
1624  static bool classof(const Stmt *T) {
1625    return T->getStmtClass() == CXXDeleteExprClass;
1626  }
1627  static bool classof(const CXXDeleteExpr *) { return true; }
1628
1629  // Iterators
1630  child_range children() { return child_range(&Argument, &Argument+1); }
1631
1632  friend class ASTStmtReader;
1633};
1634
1635/// \brief Structure used to store the type being destroyed by a
1636/// pseudo-destructor expression.
1637class PseudoDestructorTypeStorage {
1638  /// \brief Either the type source information or the name of the type, if
1639  /// it couldn't be resolved due to type-dependence.
1640  llvm::PointerUnion<TypeSourceInfo *, IdentifierInfo *> Type;
1641
1642  /// \brief The starting source location of the pseudo-destructor type.
1643  SourceLocation Location;
1644
1645public:
1646  PseudoDestructorTypeStorage() { }
1647
1648  PseudoDestructorTypeStorage(IdentifierInfo *II, SourceLocation Loc)
1649    : Type(II), Location(Loc) { }
1650
1651  PseudoDestructorTypeStorage(TypeSourceInfo *Info);
1652
1653  TypeSourceInfo *getTypeSourceInfo() const {
1654    return Type.dyn_cast<TypeSourceInfo *>();
1655  }
1656
1657  IdentifierInfo *getIdentifier() const {
1658    return Type.dyn_cast<IdentifierInfo *>();
1659  }
1660
1661  SourceLocation getLocation() const { return Location; }
1662};
1663
1664/// \brief Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
1665///
1666/// A pseudo-destructor is an expression that looks like a member access to a
1667/// destructor of a scalar type, except that scalar types don't have
1668/// destructors. For example:
1669///
1670/// \code
1671/// typedef int T;
1672/// void f(int *p) {
1673///   p->T::~T();
1674/// }
1675/// \endcode
1676///
1677/// Pseudo-destructors typically occur when instantiating templates such as:
1678///
1679/// \code
1680/// template<typename T>
1681/// void destroy(T* ptr) {
1682///   ptr->T::~T();
1683/// }
1684/// \endcode
1685///
1686/// for scalar types. A pseudo-destructor expression has no run-time semantics
1687/// beyond evaluating the base expression.
1688class CXXPseudoDestructorExpr : public Expr {
1689  /// \brief The base expression (that is being destroyed).
1690  Stmt *Base;
1691
1692  /// \brief Whether the operator was an arrow ('->'); otherwise, it was a
1693  /// period ('.').
1694  bool IsArrow : 1;
1695
1696  /// \brief The location of the '.' or '->' operator.
1697  SourceLocation OperatorLoc;
1698
1699  /// \brief The nested-name-specifier that follows the operator, if present.
1700  NestedNameSpecifierLoc QualifierLoc;
1701
1702  /// \brief The type that precedes the '::' in a qualified pseudo-destructor
1703  /// expression.
1704  TypeSourceInfo *ScopeType;
1705
1706  /// \brief The location of the '::' in a qualified pseudo-destructor
1707  /// expression.
1708  SourceLocation ColonColonLoc;
1709
1710  /// \brief The location of the '~'.
1711  SourceLocation TildeLoc;
1712
1713  /// \brief The type being destroyed, or its name if we were unable to
1714  /// resolve the name.
1715  PseudoDestructorTypeStorage DestroyedType;
1716
1717  friend class ASTStmtReader;
1718
1719public:
1720  CXXPseudoDestructorExpr(ASTContext &Context,
1721                          Expr *Base, bool isArrow, SourceLocation OperatorLoc,
1722                          NestedNameSpecifierLoc QualifierLoc,
1723                          TypeSourceInfo *ScopeType,
1724                          SourceLocation ColonColonLoc,
1725                          SourceLocation TildeLoc,
1726                          PseudoDestructorTypeStorage DestroyedType);
1727
1728  explicit CXXPseudoDestructorExpr(EmptyShell Shell)
1729    : Expr(CXXPseudoDestructorExprClass, Shell),
1730      Base(0), IsArrow(false), QualifierLoc(), ScopeType(0) { }
1731
1732  Expr *getBase() const { return cast<Expr>(Base); }
1733
1734  /// \brief Determines whether this member expression actually had
1735  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
1736  /// x->Base::foo.
1737  bool hasQualifier() const { return QualifierLoc; }
1738
1739  /// \brief Retrieves the nested-name-specifier that qualifies the type name,
1740  /// with source-location information.
1741  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
1742
1743  /// \brief If the member name was qualified, retrieves the
1744  /// nested-name-specifier that precedes the member name. Otherwise, returns
1745  /// NULL.
1746  NestedNameSpecifier *getQualifier() const {
1747    return QualifierLoc.getNestedNameSpecifier();
1748  }
1749
1750  /// \brief Determine whether this pseudo-destructor expression was written
1751  /// using an '->' (otherwise, it used a '.').
1752  bool isArrow() const { return IsArrow; }
1753
1754  /// \brief Retrieve the location of the '.' or '->' operator.
1755  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1756
1757  /// \brief Retrieve the scope type in a qualified pseudo-destructor
1758  /// expression.
1759  ///
1760  /// Pseudo-destructor expressions can have extra qualification within them
1761  /// that is not part of the nested-name-specifier, e.g., \c p->T::~T().
1762  /// Here, if the object type of the expression is (or may be) a scalar type,
1763  /// \p T may also be a scalar type and, therefore, cannot be part of a
1764  /// nested-name-specifier. It is stored as the "scope type" of the pseudo-
1765  /// destructor expression.
1766  TypeSourceInfo *getScopeTypeInfo() const { return ScopeType; }
1767
1768  /// \brief Retrieve the location of the '::' in a qualified pseudo-destructor
1769  /// expression.
1770  SourceLocation getColonColonLoc() const { return ColonColonLoc; }
1771
1772  /// \brief Retrieve the location of the '~'.
1773  SourceLocation getTildeLoc() const { return TildeLoc; }
1774
1775  /// \brief Retrieve the source location information for the type
1776  /// being destroyed.
1777  ///
1778  /// This type-source information is available for non-dependent
1779  /// pseudo-destructor expressions and some dependent pseudo-destructor
1780  /// expressions. Returns NULL if we only have the identifier for a
1781  /// dependent pseudo-destructor expression.
1782  TypeSourceInfo *getDestroyedTypeInfo() const {
1783    return DestroyedType.getTypeSourceInfo();
1784  }
1785
1786  /// \brief In a dependent pseudo-destructor expression for which we do not
1787  /// have full type information on the destroyed type, provides the name
1788  /// of the destroyed type.
1789  IdentifierInfo *getDestroyedTypeIdentifier() const {
1790    return DestroyedType.getIdentifier();
1791  }
1792
1793  /// \brief Retrieve the type being destroyed.
1794  QualType getDestroyedType() const;
1795
1796  /// \brief Retrieve the starting location of the type being destroyed.
1797  SourceLocation getDestroyedTypeLoc() const {
1798    return DestroyedType.getLocation();
1799  }
1800
1801  /// \brief Set the name of destroyed type for a dependent pseudo-destructor
1802  /// expression.
1803  void setDestroyedType(IdentifierInfo *II, SourceLocation Loc) {
1804    DestroyedType = PseudoDestructorTypeStorage(II, Loc);
1805  }
1806
1807  /// \brief Set the destroyed type.
1808  void setDestroyedType(TypeSourceInfo *Info) {
1809    DestroyedType = PseudoDestructorTypeStorage(Info);
1810  }
1811
1812  SourceRange getSourceRange() const;
1813
1814  static bool classof(const Stmt *T) {
1815    return T->getStmtClass() == CXXPseudoDestructorExprClass;
1816  }
1817  static bool classof(const CXXPseudoDestructorExpr *) { return true; }
1818
1819  // Iterators
1820  child_range children() { return child_range(&Base, &Base + 1); }
1821};
1822
1823/// UnaryTypeTraitExpr - A GCC or MS unary type trait, as used in the
1824/// implementation of TR1/C++0x type trait templates.
1825/// Example:
1826/// __is_pod(int) == true
1827/// __is_enum(std::string) == false
1828class UnaryTypeTraitExpr : public Expr {
1829  /// UTT - The trait. A UnaryTypeTrait enum in MSVC compat unsigned.
1830  unsigned UTT : 31;
1831  /// The value of the type trait. Unspecified if dependent.
1832  bool Value : 1;
1833
1834  /// Loc - The location of the type trait keyword.
1835  SourceLocation Loc;
1836
1837  /// RParen - The location of the closing paren.
1838  SourceLocation RParen;
1839
1840  /// The type being queried.
1841  TypeSourceInfo *QueriedType;
1842
1843public:
1844  UnaryTypeTraitExpr(SourceLocation loc, UnaryTypeTrait utt,
1845                     TypeSourceInfo *queried, bool value,
1846                     SourceLocation rparen, QualType ty)
1847    : Expr(UnaryTypeTraitExprClass, ty, VK_RValue, OK_Ordinary,
1848           false,  queried->getType()->isDependentType(),
1849           queried->getType()->isInstantiationDependentType(),
1850           queried->getType()->containsUnexpandedParameterPack()),
1851      UTT(utt), Value(value), Loc(loc), RParen(rparen), QueriedType(queried) { }
1852
1853  explicit UnaryTypeTraitExpr(EmptyShell Empty)
1854    : Expr(UnaryTypeTraitExprClass, Empty), UTT(0), Value(false),
1855      QueriedType() { }
1856
1857  SourceRange getSourceRange() const { return SourceRange(Loc, RParen);}
1858
1859  UnaryTypeTrait getTrait() const { return static_cast<UnaryTypeTrait>(UTT); }
1860
1861  QualType getQueriedType() const { return QueriedType->getType(); }
1862
1863  TypeSourceInfo *getQueriedTypeSourceInfo() const { return QueriedType; }
1864
1865  bool getValue() const { return Value; }
1866
1867  static bool classof(const Stmt *T) {
1868    return T->getStmtClass() == UnaryTypeTraitExprClass;
1869  }
1870  static bool classof(const UnaryTypeTraitExpr *) { return true; }
1871
1872  // Iterators
1873  child_range children() { return child_range(); }
1874
1875  friend class ASTStmtReader;
1876};
1877
1878/// BinaryTypeTraitExpr - A GCC or MS binary type trait, as used in the
1879/// implementation of TR1/C++0x type trait templates.
1880/// Example:
1881/// __is_base_of(Base, Derived) == true
1882class BinaryTypeTraitExpr : public Expr {
1883  /// BTT - The trait. A BinaryTypeTrait enum in MSVC compat unsigned.
1884  unsigned BTT : 8;
1885
1886  /// The value of the type trait. Unspecified if dependent.
1887  bool Value : 1;
1888
1889  /// Loc - The location of the type trait keyword.
1890  SourceLocation Loc;
1891
1892  /// RParen - The location of the closing paren.
1893  SourceLocation RParen;
1894
1895  /// The lhs type being queried.
1896  TypeSourceInfo *LhsType;
1897
1898  /// The rhs type being queried.
1899  TypeSourceInfo *RhsType;
1900
1901public:
1902  BinaryTypeTraitExpr(SourceLocation loc, BinaryTypeTrait btt,
1903                     TypeSourceInfo *lhsType, TypeSourceInfo *rhsType,
1904                     bool value, SourceLocation rparen, QualType ty)
1905    : Expr(BinaryTypeTraitExprClass, ty, VK_RValue, OK_Ordinary, false,
1906           lhsType->getType()->isDependentType() ||
1907           rhsType->getType()->isDependentType(),
1908           (lhsType->getType()->isInstantiationDependentType() ||
1909            rhsType->getType()->isInstantiationDependentType()),
1910           (lhsType->getType()->containsUnexpandedParameterPack() ||
1911            rhsType->getType()->containsUnexpandedParameterPack())),
1912      BTT(btt), Value(value), Loc(loc), RParen(rparen),
1913      LhsType(lhsType), RhsType(rhsType) { }
1914
1915
1916  explicit BinaryTypeTraitExpr(EmptyShell Empty)
1917    : Expr(BinaryTypeTraitExprClass, Empty), BTT(0), Value(false),
1918      LhsType(), RhsType() { }
1919
1920  SourceRange getSourceRange() const {
1921    return SourceRange(Loc, RParen);
1922  }
1923
1924  BinaryTypeTrait getTrait() const {
1925    return static_cast<BinaryTypeTrait>(BTT);
1926  }
1927
1928  QualType getLhsType() const { return LhsType->getType(); }
1929  QualType getRhsType() const { return RhsType->getType(); }
1930
1931  TypeSourceInfo *getLhsTypeSourceInfo() const { return LhsType; }
1932  TypeSourceInfo *getRhsTypeSourceInfo() const { return RhsType; }
1933
1934  bool getValue() const { assert(!isTypeDependent()); return Value; }
1935
1936  static bool classof(const Stmt *T) {
1937    return T->getStmtClass() == BinaryTypeTraitExprClass;
1938  }
1939  static bool classof(const BinaryTypeTraitExpr *) { return true; }
1940
1941  // Iterators
1942  child_range children() { return child_range(); }
1943
1944  friend class ASTStmtReader;
1945};
1946
1947/// ArrayTypeTraitExpr - An Embarcadero array type trait, as used in the
1948/// implementation of __array_rank and __array_extent.
1949/// Example:
1950/// __array_rank(int[10][20]) == 2
1951/// __array_extent(int, 1)    == 20
1952class ArrayTypeTraitExpr : public Expr {
1953  virtual void anchor();
1954
1955  /// ATT - The trait. An ArrayTypeTrait enum in MSVC compat unsigned.
1956  unsigned ATT : 2;
1957
1958  /// The value of the type trait. Unspecified if dependent.
1959  uint64_t Value;
1960
1961  /// The array dimension being queried, or -1 if not used
1962  Expr *Dimension;
1963
1964  /// Loc - The location of the type trait keyword.
1965  SourceLocation Loc;
1966
1967  /// RParen - The location of the closing paren.
1968  SourceLocation RParen;
1969
1970  /// The type being queried.
1971  TypeSourceInfo *QueriedType;
1972
1973public:
1974  ArrayTypeTraitExpr(SourceLocation loc, ArrayTypeTrait att,
1975                     TypeSourceInfo *queried, uint64_t value,
1976                     Expr *dimension, SourceLocation rparen, QualType ty)
1977    : Expr(ArrayTypeTraitExprClass, ty, VK_RValue, OK_Ordinary,
1978           false, queried->getType()->isDependentType(),
1979           (queried->getType()->isInstantiationDependentType() ||
1980            (dimension && dimension->isInstantiationDependent())),
1981           queried->getType()->containsUnexpandedParameterPack()),
1982      ATT(att), Value(value), Dimension(dimension),
1983      Loc(loc), RParen(rparen), QueriedType(queried) { }
1984
1985
1986  explicit ArrayTypeTraitExpr(EmptyShell Empty)
1987    : Expr(ArrayTypeTraitExprClass, Empty), ATT(0), Value(false),
1988      QueriedType() { }
1989
1990  virtual ~ArrayTypeTraitExpr() { }
1991
1992  virtual SourceRange getSourceRange() const {
1993    return SourceRange(Loc, RParen);
1994  }
1995
1996  ArrayTypeTrait getTrait() const { return static_cast<ArrayTypeTrait>(ATT); }
1997
1998  QualType getQueriedType() const { return QueriedType->getType(); }
1999
2000  TypeSourceInfo *getQueriedTypeSourceInfo() const { return QueriedType; }
2001
2002  uint64_t getValue() const { assert(!isTypeDependent()); return Value; }
2003
2004  Expr *getDimensionExpression() const { return Dimension; }
2005
2006  static bool classof(const Stmt *T) {
2007    return T->getStmtClass() == ArrayTypeTraitExprClass;
2008  }
2009  static bool classof(const ArrayTypeTraitExpr *) { return true; }
2010
2011  // Iterators
2012  child_range children() { return child_range(); }
2013
2014  friend class ASTStmtReader;
2015};
2016
2017/// ExpressionTraitExpr - An expression trait intrinsic
2018/// Example:
2019/// __is_lvalue_expr(std::cout) == true
2020/// __is_lvalue_expr(1) == false
2021class ExpressionTraitExpr : public Expr {
2022  /// ET - The trait. A ExpressionTrait enum in MSVC compat unsigned.
2023  unsigned ET : 31;
2024  /// The value of the type trait. Unspecified if dependent.
2025  bool Value : 1;
2026
2027  /// Loc - The location of the type trait keyword.
2028  SourceLocation Loc;
2029
2030  /// RParen - The location of the closing paren.
2031  SourceLocation RParen;
2032
2033  Expr* QueriedExpression;
2034public:
2035  ExpressionTraitExpr(SourceLocation loc, ExpressionTrait et,
2036                     Expr *queried, bool value,
2037                     SourceLocation rparen, QualType resultType)
2038    : Expr(ExpressionTraitExprClass, resultType, VK_RValue, OK_Ordinary,
2039           false, // Not type-dependent
2040           // Value-dependent if the argument is type-dependent.
2041           queried->isTypeDependent(),
2042           queried->isInstantiationDependent(),
2043           queried->containsUnexpandedParameterPack()),
2044      ET(et), Value(value), Loc(loc), RParen(rparen),
2045      QueriedExpression(queried) { }
2046
2047  explicit ExpressionTraitExpr(EmptyShell Empty)
2048    : Expr(ExpressionTraitExprClass, Empty), ET(0), Value(false),
2049      QueriedExpression() { }
2050
2051  SourceRange getSourceRange() const { return SourceRange(Loc, RParen);}
2052
2053  ExpressionTrait getTrait() const { return static_cast<ExpressionTrait>(ET); }
2054
2055  Expr *getQueriedExpression() const { return QueriedExpression; }
2056
2057  bool getValue() const { return Value; }
2058
2059  static bool classof(const Stmt *T) {
2060    return T->getStmtClass() == ExpressionTraitExprClass;
2061  }
2062  static bool classof(const ExpressionTraitExpr *) { return true; }
2063
2064  // Iterators
2065  child_range children() { return child_range(); }
2066
2067  friend class ASTStmtReader;
2068};
2069
2070
2071/// \brief A reference to an overloaded function set, either an
2072/// \t UnresolvedLookupExpr or an \t UnresolvedMemberExpr.
2073class OverloadExpr : public Expr {
2074  /// The results.  These are undesugared, which is to say, they may
2075  /// include UsingShadowDecls.  Access is relative to the naming
2076  /// class.
2077  // FIXME: Allocate this data after the OverloadExpr subclass.
2078  DeclAccessPair *Results;
2079  unsigned NumResults;
2080
2081  /// The common name of these declarations.
2082  DeclarationNameInfo NameInfo;
2083
2084  /// \brief The nested-name-specifier that qualifies the name, if any.
2085  NestedNameSpecifierLoc QualifierLoc;
2086
2087protected:
2088  /// \brief Whether the name includes info for explicit template
2089  /// keyword and arguments.
2090  bool HasTemplateKWAndArgsInfo;
2091
2092  /// \brief Return the optional template keyword and arguments info.
2093  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo(); // defined far below.
2094
2095  /// \brief Return the optional template keyword and arguments info.
2096  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
2097    return const_cast<OverloadExpr*>(this)->getTemplateKWAndArgsInfo();
2098  }
2099
2100  OverloadExpr(StmtClass K, ASTContext &C,
2101               NestedNameSpecifierLoc QualifierLoc,
2102               SourceLocation TemplateKWLoc,
2103               const DeclarationNameInfo &NameInfo,
2104               const TemplateArgumentListInfo *TemplateArgs,
2105               UnresolvedSetIterator Begin, UnresolvedSetIterator End,
2106               bool KnownDependent,
2107               bool KnownInstantiationDependent,
2108               bool KnownContainsUnexpandedParameterPack);
2109
2110  OverloadExpr(StmtClass K, EmptyShell Empty)
2111    : Expr(K, Empty), Results(0), NumResults(0),
2112      QualifierLoc(), HasTemplateKWAndArgsInfo(false) { }
2113
2114  void initializeResults(ASTContext &C,
2115                         UnresolvedSetIterator Begin,
2116                         UnresolvedSetIterator End);
2117
2118public:
2119  struct FindResult {
2120    OverloadExpr *Expression;
2121    bool IsAddressOfOperand;
2122    bool HasFormOfMemberPointer;
2123  };
2124
2125  /// Finds the overloaded expression in the given expression of
2126  /// OverloadTy.
2127  ///
2128  /// \return the expression (which must be there) and true if it has
2129  /// the particular form of a member pointer expression
2130  static FindResult find(Expr *E) {
2131    assert(E->getType()->isSpecificBuiltinType(BuiltinType::Overload));
2132
2133    FindResult Result;
2134
2135    E = E->IgnoreParens();
2136    if (isa<UnaryOperator>(E)) {
2137      assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
2138      E = cast<UnaryOperator>(E)->getSubExpr();
2139      OverloadExpr *Ovl = cast<OverloadExpr>(E->IgnoreParens());
2140
2141      Result.HasFormOfMemberPointer = (E == Ovl && Ovl->getQualifier());
2142      Result.IsAddressOfOperand = true;
2143      Result.Expression = Ovl;
2144    } else {
2145      Result.HasFormOfMemberPointer = false;
2146      Result.IsAddressOfOperand = false;
2147      Result.Expression = cast<OverloadExpr>(E);
2148    }
2149
2150    return Result;
2151  }
2152
2153  /// Gets the naming class of this lookup, if any.
2154  CXXRecordDecl *getNamingClass() const;
2155
2156  typedef UnresolvedSetImpl::iterator decls_iterator;
2157  decls_iterator decls_begin() const { return UnresolvedSetIterator(Results); }
2158  decls_iterator decls_end() const {
2159    return UnresolvedSetIterator(Results + NumResults);
2160  }
2161
2162  /// Gets the number of declarations in the unresolved set.
2163  unsigned getNumDecls() const { return NumResults; }
2164
2165  /// Gets the full name info.
2166  const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
2167
2168  /// Gets the name looked up.
2169  DeclarationName getName() const { return NameInfo.getName(); }
2170
2171  /// Gets the location of the name.
2172  SourceLocation getNameLoc() const { return NameInfo.getLoc(); }
2173
2174  /// Fetches the nested-name qualifier, if one was given.
2175  NestedNameSpecifier *getQualifier() const {
2176    return QualifierLoc.getNestedNameSpecifier();
2177  }
2178
2179  /// Fetches the nested-name qualifier with source-location information, if
2180  /// one was given.
2181  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2182
2183  /// \brief Retrieve the location of the template keyword preceding
2184  /// this name, if any.
2185  SourceLocation getTemplateKeywordLoc() const {
2186    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2187    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
2188  }
2189
2190  /// \brief Retrieve the location of the left angle bracket starting the
2191  /// explicit template argument list following the name, if any.
2192  SourceLocation getLAngleLoc() const {
2193    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2194    return getTemplateKWAndArgsInfo()->LAngleLoc;
2195  }
2196
2197  /// \brief Retrieve the location of the right angle bracket ending the
2198  /// explicit template argument list following the name, if any.
2199  SourceLocation getRAngleLoc() const {
2200    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2201    return getTemplateKWAndArgsInfo()->RAngleLoc;
2202  }
2203
2204  /// Determines whether the name was preceded by the template keyword.
2205  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
2206
2207  /// Determines whether this expression had explicit template arguments.
2208  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
2209
2210  // Note that, inconsistently with the explicit-template-argument AST
2211  // nodes, users are *forbidden* from calling these methods on objects
2212  // without explicit template arguments.
2213
2214  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
2215    assert(hasExplicitTemplateArgs());
2216    return *getTemplateKWAndArgsInfo();
2217  }
2218
2219  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2220    return const_cast<OverloadExpr*>(this)->getExplicitTemplateArgs();
2221  }
2222
2223  TemplateArgumentLoc const *getTemplateArgs() const {
2224    return getExplicitTemplateArgs().getTemplateArgs();
2225  }
2226
2227  unsigned getNumTemplateArgs() const {
2228    return getExplicitTemplateArgs().NumTemplateArgs;
2229  }
2230
2231  /// Copies the template arguments into the given structure.
2232  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2233    getExplicitTemplateArgs().copyInto(List);
2234  }
2235
2236  /// \brief Retrieves the optional explicit template arguments.
2237  /// This points to the same data as getExplicitTemplateArgs(), but
2238  /// returns null if there are no explicit template arguments.
2239  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() {
2240    if (!hasExplicitTemplateArgs()) return 0;
2241    return &getExplicitTemplateArgs();
2242  }
2243
2244  static bool classof(const Stmt *T) {
2245    return T->getStmtClass() == UnresolvedLookupExprClass ||
2246           T->getStmtClass() == UnresolvedMemberExprClass;
2247  }
2248  static bool classof(const OverloadExpr *) { return true; }
2249
2250  friend class ASTStmtReader;
2251  friend class ASTStmtWriter;
2252};
2253
2254/// \brief A reference to a name which we were able to look up during
2255/// parsing but could not resolve to a specific declaration.  This
2256/// arises in several ways:
2257///   * we might be waiting for argument-dependent lookup
2258///   * the name might resolve to an overloaded function
2259/// and eventually:
2260///   * the lookup might have included a function template
2261/// These never include UnresolvedUsingValueDecls, which are always
2262/// class members and therefore appear only in
2263/// UnresolvedMemberLookupExprs.
2264class UnresolvedLookupExpr : public OverloadExpr {
2265  /// True if these lookup results should be extended by
2266  /// argument-dependent lookup if this is the operand of a function
2267  /// call.
2268  bool RequiresADL;
2269
2270  /// True if namespace ::std should be considered an associated namespace
2271  /// for the purposes of argument-dependent lookup. See C++0x [stmt.ranged]p1.
2272  bool StdIsAssociatedNamespace;
2273
2274  /// True if these lookup results are overloaded.  This is pretty
2275  /// trivially rederivable if we urgently need to kill this field.
2276  bool Overloaded;
2277
2278  /// The naming class (C++ [class.access.base]p5) of the lookup, if
2279  /// any.  This can generally be recalculated from the context chain,
2280  /// but that can be fairly expensive for unqualified lookups.  If we
2281  /// want to improve memory use here, this could go in a union
2282  /// against the qualified-lookup bits.
2283  CXXRecordDecl *NamingClass;
2284
2285  UnresolvedLookupExpr(ASTContext &C,
2286                       CXXRecordDecl *NamingClass,
2287                       NestedNameSpecifierLoc QualifierLoc,
2288                       SourceLocation TemplateKWLoc,
2289                       const DeclarationNameInfo &NameInfo,
2290                       bool RequiresADL, bool Overloaded,
2291                       const TemplateArgumentListInfo *TemplateArgs,
2292                       UnresolvedSetIterator Begin, UnresolvedSetIterator End,
2293                       bool StdIsAssociatedNamespace)
2294    : OverloadExpr(UnresolvedLookupExprClass, C, QualifierLoc, TemplateKWLoc,
2295                   NameInfo, TemplateArgs, Begin, End, false, false, false),
2296      RequiresADL(RequiresADL),
2297      StdIsAssociatedNamespace(StdIsAssociatedNamespace),
2298      Overloaded(Overloaded), NamingClass(NamingClass)
2299  {}
2300
2301  UnresolvedLookupExpr(EmptyShell Empty)
2302    : OverloadExpr(UnresolvedLookupExprClass, Empty),
2303      RequiresADL(false), StdIsAssociatedNamespace(false), Overloaded(false),
2304      NamingClass(0)
2305  {}
2306
2307  friend class ASTStmtReader;
2308
2309public:
2310  static UnresolvedLookupExpr *Create(ASTContext &C,
2311                                      CXXRecordDecl *NamingClass,
2312                                      NestedNameSpecifierLoc QualifierLoc,
2313                                      const DeclarationNameInfo &NameInfo,
2314                                      bool ADL, bool Overloaded,
2315                                      UnresolvedSetIterator Begin,
2316                                      UnresolvedSetIterator End,
2317                                      bool StdIsAssociatedNamespace = false) {
2318    assert((ADL || !StdIsAssociatedNamespace) &&
2319           "std considered associated namespace when not performing ADL");
2320    return new(C) UnresolvedLookupExpr(C, NamingClass, QualifierLoc,
2321                                       SourceLocation(), NameInfo,
2322                                       ADL, Overloaded, 0, Begin, End,
2323                                       StdIsAssociatedNamespace);
2324  }
2325
2326  static UnresolvedLookupExpr *Create(ASTContext &C,
2327                                      CXXRecordDecl *NamingClass,
2328                                      NestedNameSpecifierLoc QualifierLoc,
2329                                      SourceLocation TemplateKWLoc,
2330                                      const DeclarationNameInfo &NameInfo,
2331                                      bool ADL,
2332                                      const TemplateArgumentListInfo *Args,
2333                                      UnresolvedSetIterator Begin,
2334                                      UnresolvedSetIterator End);
2335
2336  static UnresolvedLookupExpr *CreateEmpty(ASTContext &C,
2337                                           bool HasTemplateKWAndArgsInfo,
2338                                           unsigned NumTemplateArgs);
2339
2340  /// True if this declaration should be extended by
2341  /// argument-dependent lookup.
2342  bool requiresADL() const { return RequiresADL; }
2343
2344  /// True if namespace ::std should be artificially added to the set of
2345  /// associated namespaecs for argument-dependent lookup purposes.
2346  bool isStdAssociatedNamespace() const { return StdIsAssociatedNamespace; }
2347
2348  /// True if this lookup is overloaded.
2349  bool isOverloaded() const { return Overloaded; }
2350
2351  /// Gets the 'naming class' (in the sense of C++0x
2352  /// [class.access.base]p5) of the lookup.  This is the scope
2353  /// that was looked in to find these results.
2354  CXXRecordDecl *getNamingClass() const { return NamingClass; }
2355
2356  SourceRange getSourceRange() const {
2357    SourceRange Range(getNameInfo().getSourceRange());
2358    if (getQualifierLoc())
2359      Range.setBegin(getQualifierLoc().getBeginLoc());
2360    if (hasExplicitTemplateArgs())
2361      Range.setEnd(getRAngleLoc());
2362    return Range;
2363  }
2364
2365  child_range children() { return child_range(); }
2366
2367  static bool classof(const Stmt *T) {
2368    return T->getStmtClass() == UnresolvedLookupExprClass;
2369  }
2370  static bool classof(const UnresolvedLookupExpr *) { return true; }
2371};
2372
2373/// \brief A qualified reference to a name whose declaration cannot
2374/// yet be resolved.
2375///
2376/// DependentScopeDeclRefExpr is similar to DeclRefExpr in that
2377/// it expresses a reference to a declaration such as
2378/// X<T>::value. The difference, however, is that an
2379/// DependentScopeDeclRefExpr node is used only within C++ templates when
2380/// the qualification (e.g., X<T>::) refers to a dependent type. In
2381/// this case, X<T>::value cannot resolve to a declaration because the
2382/// declaration will differ from on instantiation of X<T> to the
2383/// next. Therefore, DependentScopeDeclRefExpr keeps track of the
2384/// qualifier (X<T>::) and the name of the entity being referenced
2385/// ("value"). Such expressions will instantiate to a DeclRefExpr once the
2386/// declaration can be found.
2387class DependentScopeDeclRefExpr : public Expr {
2388  /// \brief The nested-name-specifier that qualifies this unresolved
2389  /// declaration name.
2390  NestedNameSpecifierLoc QualifierLoc;
2391
2392  /// The name of the entity we will be referencing.
2393  DeclarationNameInfo NameInfo;
2394
2395  /// \brief Whether the name includes info for explicit template
2396  /// keyword and arguments.
2397  bool HasTemplateKWAndArgsInfo;
2398
2399  /// \brief Return the optional template keyword and arguments info.
2400  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
2401    if (!HasTemplateKWAndArgsInfo) return 0;
2402    return reinterpret_cast<ASTTemplateKWAndArgsInfo*>(this + 1);
2403  }
2404  /// \brief Return the optional template keyword and arguments info.
2405  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
2406    return const_cast<DependentScopeDeclRefExpr*>(this)
2407      ->getTemplateKWAndArgsInfo();
2408  }
2409
2410  DependentScopeDeclRefExpr(QualType T,
2411                            NestedNameSpecifierLoc QualifierLoc,
2412                            SourceLocation TemplateKWLoc,
2413                            const DeclarationNameInfo &NameInfo,
2414                            const TemplateArgumentListInfo *Args);
2415
2416public:
2417  static DependentScopeDeclRefExpr *Create(ASTContext &C,
2418                                           NestedNameSpecifierLoc QualifierLoc,
2419                                           SourceLocation TemplateKWLoc,
2420                                           const DeclarationNameInfo &NameInfo,
2421                              const TemplateArgumentListInfo *TemplateArgs);
2422
2423  static DependentScopeDeclRefExpr *CreateEmpty(ASTContext &C,
2424                                                bool HasTemplateKWAndArgsInfo,
2425                                                unsigned NumTemplateArgs);
2426
2427  /// \brief Retrieve the name that this expression refers to.
2428  const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
2429
2430  /// \brief Retrieve the name that this expression refers to.
2431  DeclarationName getDeclName() const { return NameInfo.getName(); }
2432
2433  /// \brief Retrieve the location of the name within the expression.
2434  SourceLocation getLocation() const { return NameInfo.getLoc(); }
2435
2436  /// \brief Retrieve the nested-name-specifier that qualifies the
2437  /// name, with source location information.
2438  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2439
2440
2441  /// \brief Retrieve the nested-name-specifier that qualifies this
2442  /// declaration.
2443  NestedNameSpecifier *getQualifier() const {
2444    return QualifierLoc.getNestedNameSpecifier();
2445  }
2446
2447  /// \brief Retrieve the location of the template keyword preceding
2448  /// this name, if any.
2449  SourceLocation getTemplateKeywordLoc() const {
2450    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2451    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
2452  }
2453
2454  /// \brief Retrieve the location of the left angle bracket starting the
2455  /// explicit template argument list following the name, if any.
2456  SourceLocation getLAngleLoc() const {
2457    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2458    return getTemplateKWAndArgsInfo()->LAngleLoc;
2459  }
2460
2461  /// \brief Retrieve the location of the right angle bracket ending the
2462  /// explicit template argument list following the name, if any.
2463  SourceLocation getRAngleLoc() const {
2464    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2465    return getTemplateKWAndArgsInfo()->RAngleLoc;
2466  }
2467
2468  /// Determines whether the name was preceded by the template keyword.
2469  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
2470
2471  /// Determines whether this lookup had explicit template arguments.
2472  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
2473
2474  // Note that, inconsistently with the explicit-template-argument AST
2475  // nodes, users are *forbidden* from calling these methods on objects
2476  // without explicit template arguments.
2477
2478  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
2479    assert(hasExplicitTemplateArgs());
2480    return *reinterpret_cast<ASTTemplateArgumentListInfo*>(this + 1);
2481  }
2482
2483  /// Gets a reference to the explicit template argument list.
2484  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2485    assert(hasExplicitTemplateArgs());
2486    return *reinterpret_cast<const ASTTemplateArgumentListInfo*>(this + 1);
2487  }
2488
2489  /// \brief Retrieves the optional explicit template arguments.
2490  /// This points to the same data as getExplicitTemplateArgs(), but
2491  /// returns null if there are no explicit template arguments.
2492  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() {
2493    if (!hasExplicitTemplateArgs()) return 0;
2494    return &getExplicitTemplateArgs();
2495  }
2496
2497  /// \brief Copies the template arguments (if present) into the given
2498  /// structure.
2499  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2500    getExplicitTemplateArgs().copyInto(List);
2501  }
2502
2503  TemplateArgumentLoc const *getTemplateArgs() const {
2504    return getExplicitTemplateArgs().getTemplateArgs();
2505  }
2506
2507  unsigned getNumTemplateArgs() const {
2508    return getExplicitTemplateArgs().NumTemplateArgs;
2509  }
2510
2511  SourceRange getSourceRange() const {
2512    SourceRange Range(QualifierLoc.getBeginLoc(), getLocation());
2513    if (hasExplicitTemplateArgs())
2514      Range.setEnd(getRAngleLoc());
2515    return Range;
2516  }
2517
2518  static bool classof(const Stmt *T) {
2519    return T->getStmtClass() == DependentScopeDeclRefExprClass;
2520  }
2521  static bool classof(const DependentScopeDeclRefExpr *) { return true; }
2522
2523  child_range children() { return child_range(); }
2524
2525  friend class ASTStmtReader;
2526  friend class ASTStmtWriter;
2527};
2528
2529/// Represents an expression --- generally a full-expression --- which
2530/// introduces cleanups to be run at the end of the sub-expression's
2531/// evaluation.  The most common source of expression-introduced
2532/// cleanups is temporary objects in C++, but several other kinds of
2533/// expressions can create cleanups, including basically every
2534/// call in ARC that returns an Objective-C pointer.
2535///
2536/// This expression also tracks whether the sub-expression contains a
2537/// potentially-evaluated block literal.  The lifetime of a block
2538/// literal is the extent of the enclosing scope.
2539class ExprWithCleanups : public Expr {
2540public:
2541  /// The type of objects that are kept in the cleanup.
2542  /// It's useful to remember the set of blocks;  we could also
2543  /// remember the set of temporaries, but there's currently
2544  /// no need.
2545  typedef BlockDecl *CleanupObject;
2546
2547private:
2548  Stmt *SubExpr;
2549
2550  ExprWithCleanups(EmptyShell, unsigned NumObjects);
2551  ExprWithCleanups(Expr *SubExpr, ArrayRef<CleanupObject> Objects);
2552
2553  CleanupObject *getObjectsBuffer() {
2554    return reinterpret_cast<CleanupObject*>(this + 1);
2555  }
2556  const CleanupObject *getObjectsBuffer() const {
2557    return reinterpret_cast<const CleanupObject*>(this + 1);
2558  }
2559  friend class ASTStmtReader;
2560
2561public:
2562  static ExprWithCleanups *Create(ASTContext &C, EmptyShell empty,
2563                                  unsigned numObjects);
2564
2565  static ExprWithCleanups *Create(ASTContext &C, Expr *subexpr,
2566                                  ArrayRef<CleanupObject> objects);
2567
2568  ArrayRef<CleanupObject> getObjects() const {
2569    return ArrayRef<CleanupObject>(getObjectsBuffer(), getNumObjects());
2570  }
2571
2572  unsigned getNumObjects() const { return ExprWithCleanupsBits.NumObjects; }
2573
2574  CleanupObject getObject(unsigned i) const {
2575    assert(i < getNumObjects() && "Index out of range");
2576    return getObjects()[i];
2577  }
2578
2579  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
2580  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
2581
2582  /// setSubExpr - As with any mutator of the AST, be very careful
2583  /// when modifying an existing AST to preserve its invariants.
2584  void setSubExpr(Expr *E) { SubExpr = E; }
2585
2586  SourceRange getSourceRange() const {
2587    return SubExpr->getSourceRange();
2588  }
2589
2590  // Implement isa/cast/dyncast/etc.
2591  static bool classof(const Stmt *T) {
2592    return T->getStmtClass() == ExprWithCleanupsClass;
2593  }
2594  static bool classof(const ExprWithCleanups *) { return true; }
2595
2596  // Iterators
2597  child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
2598};
2599
2600/// \brief Describes an explicit type conversion that uses functional
2601/// notion but could not be resolved because one or more arguments are
2602/// type-dependent.
2603///
2604/// The explicit type conversions expressed by
2605/// CXXUnresolvedConstructExpr have the form \c T(a1, a2, ..., aN),
2606/// where \c T is some type and \c a1, a2, ..., aN are values, and
2607/// either \C T is a dependent type or one or more of the \c a's is
2608/// type-dependent. For example, this would occur in a template such
2609/// as:
2610///
2611/// \code
2612///   template<typename T, typename A1>
2613///   inline T make_a(const A1& a1) {
2614///     return T(a1);
2615///   }
2616/// \endcode
2617///
2618/// When the returned expression is instantiated, it may resolve to a
2619/// constructor call, conversion function call, or some kind of type
2620/// conversion.
2621class CXXUnresolvedConstructExpr : public Expr {
2622  /// \brief The type being constructed.
2623  TypeSourceInfo *Type;
2624
2625  /// \brief The location of the left parentheses ('(').
2626  SourceLocation LParenLoc;
2627
2628  /// \brief The location of the right parentheses (')').
2629  SourceLocation RParenLoc;
2630
2631  /// \brief The number of arguments used to construct the type.
2632  unsigned NumArgs;
2633
2634  CXXUnresolvedConstructExpr(TypeSourceInfo *Type,
2635                             SourceLocation LParenLoc,
2636                             Expr **Args,
2637                             unsigned NumArgs,
2638                             SourceLocation RParenLoc);
2639
2640  CXXUnresolvedConstructExpr(EmptyShell Empty, unsigned NumArgs)
2641    : Expr(CXXUnresolvedConstructExprClass, Empty), Type(), NumArgs(NumArgs) { }
2642
2643  friend class ASTStmtReader;
2644
2645public:
2646  static CXXUnresolvedConstructExpr *Create(ASTContext &C,
2647                                            TypeSourceInfo *Type,
2648                                            SourceLocation LParenLoc,
2649                                            Expr **Args,
2650                                            unsigned NumArgs,
2651                                            SourceLocation RParenLoc);
2652
2653  static CXXUnresolvedConstructExpr *CreateEmpty(ASTContext &C,
2654                                                 unsigned NumArgs);
2655
2656  /// \brief Retrieve the type that is being constructed, as specified
2657  /// in the source code.
2658  QualType getTypeAsWritten() const { return Type->getType(); }
2659
2660  /// \brief Retrieve the type source information for the type being
2661  /// constructed.
2662  TypeSourceInfo *getTypeSourceInfo() const { return Type; }
2663
2664  /// \brief Retrieve the location of the left parentheses ('(') that
2665  /// precedes the argument list.
2666  SourceLocation getLParenLoc() const { return LParenLoc; }
2667  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2668
2669  /// \brief Retrieve the location of the right parentheses (')') that
2670  /// follows the argument list.
2671  SourceLocation getRParenLoc() const { return RParenLoc; }
2672  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2673
2674  /// \brief Retrieve the number of arguments.
2675  unsigned arg_size() const { return NumArgs; }
2676
2677  typedef Expr** arg_iterator;
2678  arg_iterator arg_begin() { return reinterpret_cast<Expr**>(this + 1); }
2679  arg_iterator arg_end() { return arg_begin() + NumArgs; }
2680
2681  typedef const Expr* const * const_arg_iterator;
2682  const_arg_iterator arg_begin() const {
2683    return reinterpret_cast<const Expr* const *>(this + 1);
2684  }
2685  const_arg_iterator arg_end() const {
2686    return arg_begin() + NumArgs;
2687  }
2688
2689  Expr *getArg(unsigned I) {
2690    assert(I < NumArgs && "Argument index out-of-range");
2691    return *(arg_begin() + I);
2692  }
2693
2694  const Expr *getArg(unsigned I) const {
2695    assert(I < NumArgs && "Argument index out-of-range");
2696    return *(arg_begin() + I);
2697  }
2698
2699  void setArg(unsigned I, Expr *E) {
2700    assert(I < NumArgs && "Argument index out-of-range");
2701    *(arg_begin() + I) = E;
2702  }
2703
2704  SourceRange getSourceRange() const;
2705
2706  static bool classof(const Stmt *T) {
2707    return T->getStmtClass() == CXXUnresolvedConstructExprClass;
2708  }
2709  static bool classof(const CXXUnresolvedConstructExpr *) { return true; }
2710
2711  // Iterators
2712  child_range children() {
2713    Stmt **begin = reinterpret_cast<Stmt**>(this+1);
2714    return child_range(begin, begin + NumArgs);
2715  }
2716};
2717
2718/// \brief Represents a C++ member access expression where the actual
2719/// member referenced could not be resolved because the base
2720/// expression or the member name was dependent.
2721///
2722/// Like UnresolvedMemberExprs, these can be either implicit or
2723/// explicit accesses.  It is only possible to get one of these with
2724/// an implicit access if a qualifier is provided.
2725class CXXDependentScopeMemberExpr : public Expr {
2726  /// \brief The expression for the base pointer or class reference,
2727  /// e.g., the \c x in x.f.  Can be null in implicit accesses.
2728  Stmt *Base;
2729
2730  /// \brief The type of the base expression.  Never null, even for
2731  /// implicit accesses.
2732  QualType BaseType;
2733
2734  /// \brief Whether this member expression used the '->' operator or
2735  /// the '.' operator.
2736  bool IsArrow : 1;
2737
2738  /// \brief Whether this member expression has info for explicit template
2739  /// keyword and arguments.
2740  bool HasTemplateKWAndArgsInfo : 1;
2741
2742  /// \brief The location of the '->' or '.' operator.
2743  SourceLocation OperatorLoc;
2744
2745  /// \brief The nested-name-specifier that precedes the member name, if any.
2746  NestedNameSpecifierLoc QualifierLoc;
2747
2748  /// \brief In a qualified member access expression such as t->Base::f, this
2749  /// member stores the resolves of name lookup in the context of the member
2750  /// access expression, to be used at instantiation time.
2751  ///
2752  /// FIXME: This member, along with the QualifierLoc, could
2753  /// be stuck into a structure that is optionally allocated at the end of
2754  /// the CXXDependentScopeMemberExpr, to save space in the common case.
2755  NamedDecl *FirstQualifierFoundInScope;
2756
2757  /// \brief The member to which this member expression refers, which
2758  /// can be name, overloaded operator, or destructor.
2759  /// FIXME: could also be a template-id
2760  DeclarationNameInfo MemberNameInfo;
2761
2762  /// \brief Return the optional template keyword and arguments info.
2763  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
2764    if (!HasTemplateKWAndArgsInfo) return 0;
2765    return reinterpret_cast<ASTTemplateKWAndArgsInfo*>(this + 1);
2766  }
2767  /// \brief Return the optional template keyword and arguments info.
2768  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
2769    return const_cast<CXXDependentScopeMemberExpr*>(this)
2770      ->getTemplateKWAndArgsInfo();
2771  }
2772
2773  CXXDependentScopeMemberExpr(ASTContext &C,
2774                          Expr *Base, QualType BaseType, bool IsArrow,
2775                          SourceLocation OperatorLoc,
2776                          NestedNameSpecifierLoc QualifierLoc,
2777                          SourceLocation TemplateKWLoc,
2778                          NamedDecl *FirstQualifierFoundInScope,
2779                          DeclarationNameInfo MemberNameInfo,
2780                          const TemplateArgumentListInfo *TemplateArgs);
2781
2782public:
2783  CXXDependentScopeMemberExpr(ASTContext &C,
2784                              Expr *Base, QualType BaseType,
2785                              bool IsArrow,
2786                              SourceLocation OperatorLoc,
2787                              NestedNameSpecifierLoc QualifierLoc,
2788                              NamedDecl *FirstQualifierFoundInScope,
2789                              DeclarationNameInfo MemberNameInfo);
2790
2791  static CXXDependentScopeMemberExpr *
2792  Create(ASTContext &C,
2793         Expr *Base, QualType BaseType, bool IsArrow,
2794         SourceLocation OperatorLoc,
2795         NestedNameSpecifierLoc QualifierLoc,
2796         SourceLocation TemplateKWLoc,
2797         NamedDecl *FirstQualifierFoundInScope,
2798         DeclarationNameInfo MemberNameInfo,
2799         const TemplateArgumentListInfo *TemplateArgs);
2800
2801  static CXXDependentScopeMemberExpr *
2802  CreateEmpty(ASTContext &C, bool HasTemplateKWAndArgsInfo,
2803              unsigned NumTemplateArgs);
2804
2805  /// \brief True if this is an implicit access, i.e. one in which the
2806  /// member being accessed was not written in the source.  The source
2807  /// location of the operator is invalid in this case.
2808  bool isImplicitAccess() const;
2809
2810  /// \brief Retrieve the base object of this member expressions,
2811  /// e.g., the \c x in \c x.m.
2812  Expr *getBase() const {
2813    assert(!isImplicitAccess());
2814    return cast<Expr>(Base);
2815  }
2816
2817  QualType getBaseType() const { return BaseType; }
2818
2819  /// \brief Determine whether this member expression used the '->'
2820  /// operator; otherwise, it used the '.' operator.
2821  bool isArrow() const { return IsArrow; }
2822
2823  /// \brief Retrieve the location of the '->' or '.' operator.
2824  SourceLocation getOperatorLoc() const { return OperatorLoc; }
2825
2826  /// \brief Retrieve the nested-name-specifier that qualifies the member
2827  /// name.
2828  NestedNameSpecifier *getQualifier() const {
2829    return QualifierLoc.getNestedNameSpecifier();
2830  }
2831
2832  /// \brief Retrieve the nested-name-specifier that qualifies the member
2833  /// name, with source location information.
2834  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2835
2836
2837  /// \brief Retrieve the first part of the nested-name-specifier that was
2838  /// found in the scope of the member access expression when the member access
2839  /// was initially parsed.
2840  ///
2841  /// This function only returns a useful result when member access expression
2842  /// uses a qualified member name, e.g., "x.Base::f". Here, the declaration
2843  /// returned by this function describes what was found by unqualified name
2844  /// lookup for the identifier "Base" within the scope of the member access
2845  /// expression itself. At template instantiation time, this information is
2846  /// combined with the results of name lookup into the type of the object
2847  /// expression itself (the class type of x).
2848  NamedDecl *getFirstQualifierFoundInScope() const {
2849    return FirstQualifierFoundInScope;
2850  }
2851
2852  /// \brief Retrieve the name of the member that this expression
2853  /// refers to.
2854  const DeclarationNameInfo &getMemberNameInfo() const {
2855    return MemberNameInfo;
2856  }
2857
2858  /// \brief Retrieve the name of the member that this expression
2859  /// refers to.
2860  DeclarationName getMember() const { return MemberNameInfo.getName(); }
2861
2862  // \brief Retrieve the location of the name of the member that this
2863  // expression refers to.
2864  SourceLocation getMemberLoc() const { return MemberNameInfo.getLoc(); }
2865
2866  /// \brief Retrieve the location of the template keyword preceding the
2867  /// member name, if any.
2868  SourceLocation getTemplateKeywordLoc() const {
2869    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2870    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
2871  }
2872
2873  /// \brief Retrieve the location of the left angle bracket starting the
2874  /// explicit template argument list following the member name, if any.
2875  SourceLocation getLAngleLoc() const {
2876    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2877    return getTemplateKWAndArgsInfo()->LAngleLoc;
2878  }
2879
2880  /// \brief Retrieve the location of the right angle bracket ending the
2881  /// explicit template argument list following the member name, if any.
2882  SourceLocation getRAngleLoc() const {
2883    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2884    return getTemplateKWAndArgsInfo()->RAngleLoc;
2885  }
2886
2887  /// Determines whether the member name was preceded by the template keyword.
2888  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
2889
2890  /// \brief Determines whether this member expression actually had a C++
2891  /// template argument list explicitly specified, e.g., x.f<int>.
2892  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
2893
2894  /// \brief Retrieve the explicit template argument list that followed the
2895  /// member template name, if any.
2896  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
2897    assert(hasExplicitTemplateArgs());
2898    return *reinterpret_cast<ASTTemplateArgumentListInfo *>(this + 1);
2899  }
2900
2901  /// \brief Retrieve the explicit template argument list that followed the
2902  /// member template name, if any.
2903  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2904    return const_cast<CXXDependentScopeMemberExpr *>(this)
2905             ->getExplicitTemplateArgs();
2906  }
2907
2908  /// \brief Retrieves the optional explicit template arguments.
2909  /// This points to the same data as getExplicitTemplateArgs(), but
2910  /// returns null if there are no explicit template arguments.
2911  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() {
2912    if (!hasExplicitTemplateArgs()) return 0;
2913    return &getExplicitTemplateArgs();
2914  }
2915
2916  /// \brief Copies the template arguments (if present) into the given
2917  /// structure.
2918  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2919    getExplicitTemplateArgs().copyInto(List);
2920  }
2921
2922  /// \brief Initializes the template arguments using the given structure.
2923  void initializeTemplateArgumentsFrom(const TemplateArgumentListInfo &List) {
2924    getExplicitTemplateArgs().initializeFrom(List);
2925  }
2926
2927  /// \brief Retrieve the template arguments provided as part of this
2928  /// template-id.
2929  const TemplateArgumentLoc *getTemplateArgs() const {
2930    return getExplicitTemplateArgs().getTemplateArgs();
2931  }
2932
2933  /// \brief Retrieve the number of template arguments provided as part of this
2934  /// template-id.
2935  unsigned getNumTemplateArgs() const {
2936    return getExplicitTemplateArgs().NumTemplateArgs;
2937  }
2938
2939  SourceRange getSourceRange() const {
2940    SourceRange Range;
2941    if (!isImplicitAccess())
2942      Range.setBegin(Base->getSourceRange().getBegin());
2943    else if (getQualifier())
2944      Range.setBegin(getQualifierLoc().getBeginLoc());
2945    else
2946      Range.setBegin(MemberNameInfo.getBeginLoc());
2947
2948    if (hasExplicitTemplateArgs())
2949      Range.setEnd(getRAngleLoc());
2950    else
2951      Range.setEnd(MemberNameInfo.getEndLoc());
2952    return Range;
2953  }
2954
2955  static bool classof(const Stmt *T) {
2956    return T->getStmtClass() == CXXDependentScopeMemberExprClass;
2957  }
2958  static bool classof(const CXXDependentScopeMemberExpr *) { return true; }
2959
2960  // Iterators
2961  child_range children() {
2962    if (isImplicitAccess()) return child_range();
2963    return child_range(&Base, &Base + 1);
2964  }
2965
2966  friend class ASTStmtReader;
2967  friend class ASTStmtWriter;
2968};
2969
2970/// \brief Represents a C++ member access expression for which lookup
2971/// produced a set of overloaded functions.
2972///
2973/// The member access may be explicit or implicit:
2974///    struct A {
2975///      int a, b;
2976///      int explicitAccess() { return this->a + this->A::b; }
2977///      int implicitAccess() { return a + A::b; }
2978///    };
2979///
2980/// In the final AST, an explicit access always becomes a MemberExpr.
2981/// An implicit access may become either a MemberExpr or a
2982/// DeclRefExpr, depending on whether the member is static.
2983class UnresolvedMemberExpr : public OverloadExpr {
2984  /// \brief Whether this member expression used the '->' operator or
2985  /// the '.' operator.
2986  bool IsArrow : 1;
2987
2988  /// \brief Whether the lookup results contain an unresolved using
2989  /// declaration.
2990  bool HasUnresolvedUsing : 1;
2991
2992  /// \brief The expression for the base pointer or class reference,
2993  /// e.g., the \c x in x.f.  This can be null if this is an 'unbased'
2994  /// member expression
2995  Stmt *Base;
2996
2997  /// \brief The type of the base expression;  never null.
2998  QualType BaseType;
2999
3000  /// \brief The location of the '->' or '.' operator.
3001  SourceLocation OperatorLoc;
3002
3003  UnresolvedMemberExpr(ASTContext &C, bool HasUnresolvedUsing,
3004                       Expr *Base, QualType BaseType, bool IsArrow,
3005                       SourceLocation OperatorLoc,
3006                       NestedNameSpecifierLoc QualifierLoc,
3007                       SourceLocation TemplateKWLoc,
3008                       const DeclarationNameInfo &MemberNameInfo,
3009                       const TemplateArgumentListInfo *TemplateArgs,
3010                       UnresolvedSetIterator Begin, UnresolvedSetIterator End);
3011
3012  UnresolvedMemberExpr(EmptyShell Empty)
3013    : OverloadExpr(UnresolvedMemberExprClass, Empty), IsArrow(false),
3014      HasUnresolvedUsing(false), Base(0) { }
3015
3016  friend class ASTStmtReader;
3017
3018public:
3019  static UnresolvedMemberExpr *
3020  Create(ASTContext &C, bool HasUnresolvedUsing,
3021         Expr *Base, QualType BaseType, bool IsArrow,
3022         SourceLocation OperatorLoc,
3023         NestedNameSpecifierLoc QualifierLoc,
3024         SourceLocation TemplateKWLoc,
3025         const DeclarationNameInfo &MemberNameInfo,
3026         const TemplateArgumentListInfo *TemplateArgs,
3027         UnresolvedSetIterator Begin, UnresolvedSetIterator End);
3028
3029  static UnresolvedMemberExpr *
3030  CreateEmpty(ASTContext &C, bool HasTemplateKWAndArgsInfo,
3031              unsigned NumTemplateArgs);
3032
3033  /// \brief True if this is an implicit access, i.e. one in which the
3034  /// member being accessed was not written in the source.  The source
3035  /// location of the operator is invalid in this case.
3036  bool isImplicitAccess() const;
3037
3038  /// \brief Retrieve the base object of this member expressions,
3039  /// e.g., the \c x in \c x.m.
3040  Expr *getBase() {
3041    assert(!isImplicitAccess());
3042    return cast<Expr>(Base);
3043  }
3044  const Expr *getBase() const {
3045    assert(!isImplicitAccess());
3046    return cast<Expr>(Base);
3047  }
3048
3049  QualType getBaseType() const { return BaseType; }
3050
3051  /// \brief Determine whether the lookup results contain an unresolved using
3052  /// declaration.
3053  bool hasUnresolvedUsing() const { return HasUnresolvedUsing; }
3054
3055  /// \brief Determine whether this member expression used the '->'
3056  /// operator; otherwise, it used the '.' operator.
3057  bool isArrow() const { return IsArrow; }
3058
3059  /// \brief Retrieve the location of the '->' or '.' operator.
3060  SourceLocation getOperatorLoc() const { return OperatorLoc; }
3061
3062  /// \brief Retrieves the naming class of this lookup.
3063  CXXRecordDecl *getNamingClass() const;
3064
3065  /// \brief Retrieve the full name info for the member that this expression
3066  /// refers to.
3067  const DeclarationNameInfo &getMemberNameInfo() const { return getNameInfo(); }
3068
3069  /// \brief Retrieve the name of the member that this expression
3070  /// refers to.
3071  DeclarationName getMemberName() const { return getName(); }
3072
3073  // \brief Retrieve the location of the name of the member that this
3074  // expression refers to.
3075  SourceLocation getMemberLoc() const { return getNameLoc(); }
3076
3077  SourceRange getSourceRange() const {
3078    SourceRange Range = getMemberNameInfo().getSourceRange();
3079    if (!isImplicitAccess())
3080      Range.setBegin(Base->getSourceRange().getBegin());
3081    else if (getQualifierLoc())
3082      Range.setBegin(getQualifierLoc().getBeginLoc());
3083
3084    if (hasExplicitTemplateArgs())
3085      Range.setEnd(getRAngleLoc());
3086    return Range;
3087  }
3088
3089  static bool classof(const Stmt *T) {
3090    return T->getStmtClass() == UnresolvedMemberExprClass;
3091  }
3092  static bool classof(const UnresolvedMemberExpr *) { return true; }
3093
3094  // Iterators
3095  child_range children() {
3096    if (isImplicitAccess()) return child_range();
3097    return child_range(&Base, &Base + 1);
3098  }
3099};
3100
3101/// \brief Represents a C++0x noexcept expression (C++ [expr.unary.noexcept]).
3102///
3103/// The noexcept expression tests whether a given expression might throw. Its
3104/// result is a boolean constant.
3105class CXXNoexceptExpr : public Expr {
3106  bool Value : 1;
3107  Stmt *Operand;
3108  SourceRange Range;
3109
3110  friend class ASTStmtReader;
3111
3112public:
3113  CXXNoexceptExpr(QualType Ty, Expr *Operand, CanThrowResult Val,
3114                  SourceLocation Keyword, SourceLocation RParen)
3115    : Expr(CXXNoexceptExprClass, Ty, VK_RValue, OK_Ordinary,
3116           /*TypeDependent*/false,
3117           /*ValueDependent*/Val == CT_Dependent,
3118           Val == CT_Dependent || Operand->isInstantiationDependent(),
3119           Operand->containsUnexpandedParameterPack()),
3120      Value(Val == CT_Cannot), Operand(Operand), Range(Keyword, RParen)
3121  { }
3122
3123  CXXNoexceptExpr(EmptyShell Empty)
3124    : Expr(CXXNoexceptExprClass, Empty)
3125  { }
3126
3127  Expr *getOperand() const { return static_cast<Expr*>(Operand); }
3128
3129  SourceRange getSourceRange() const { return Range; }
3130
3131  bool getValue() const { return Value; }
3132
3133  static bool classof(const Stmt *T) {
3134    return T->getStmtClass() == CXXNoexceptExprClass;
3135  }
3136  static bool classof(const CXXNoexceptExpr *) { return true; }
3137
3138  // Iterators
3139  child_range children() { return child_range(&Operand, &Operand + 1); }
3140};
3141
3142/// \brief Represents a C++0x pack expansion that produces a sequence of
3143/// expressions.
3144///
3145/// A pack expansion expression contains a pattern (which itself is an
3146/// expression) followed by an ellipsis. For example:
3147///
3148/// \code
3149/// template<typename F, typename ...Types>
3150/// void forward(F f, Types &&...args) {
3151///   f(static_cast<Types&&>(args)...);
3152/// }
3153/// \endcode
3154///
3155/// Here, the argument to the function object \c f is a pack expansion whose
3156/// pattern is \c static_cast<Types&&>(args). When the \c forward function
3157/// template is instantiated, the pack expansion will instantiate to zero or
3158/// or more function arguments to the function object \c f.
3159class PackExpansionExpr : public Expr {
3160  SourceLocation EllipsisLoc;
3161
3162  /// \brief The number of expansions that will be produced by this pack
3163  /// expansion expression, if known.
3164  ///
3165  /// When zero, the number of expansions is not known. Otherwise, this value
3166  /// is the number of expansions + 1.
3167  unsigned NumExpansions;
3168
3169  Stmt *Pattern;
3170
3171  friend class ASTStmtReader;
3172  friend class ASTStmtWriter;
3173
3174public:
3175  PackExpansionExpr(QualType T, Expr *Pattern, SourceLocation EllipsisLoc,
3176                    llvm::Optional<unsigned> NumExpansions)
3177    : Expr(PackExpansionExprClass, T, Pattern->getValueKind(),
3178           Pattern->getObjectKind(), /*TypeDependent=*/true,
3179           /*ValueDependent=*/true, /*InstantiationDependent=*/true,
3180           /*ContainsUnexpandedParameterPack=*/false),
3181      EllipsisLoc(EllipsisLoc),
3182      NumExpansions(NumExpansions? *NumExpansions + 1 : 0),
3183      Pattern(Pattern) { }
3184
3185  PackExpansionExpr(EmptyShell Empty) : Expr(PackExpansionExprClass, Empty) { }
3186
3187  /// \brief Retrieve the pattern of the pack expansion.
3188  Expr *getPattern() { return reinterpret_cast<Expr *>(Pattern); }
3189
3190  /// \brief Retrieve the pattern of the pack expansion.
3191  const Expr *getPattern() const { return reinterpret_cast<Expr *>(Pattern); }
3192
3193  /// \brief Retrieve the location of the ellipsis that describes this pack
3194  /// expansion.
3195  SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
3196
3197  /// \brief Determine the number of expansions that will be produced when
3198  /// this pack expansion is instantiated, if already known.
3199  llvm::Optional<unsigned> getNumExpansions() const {
3200    if (NumExpansions)
3201      return NumExpansions - 1;
3202
3203    return llvm::Optional<unsigned>();
3204  }
3205
3206  SourceRange getSourceRange() const {
3207    return SourceRange(Pattern->getLocStart(), EllipsisLoc);
3208  }
3209
3210  static bool classof(const Stmt *T) {
3211    return T->getStmtClass() == PackExpansionExprClass;
3212  }
3213  static bool classof(const PackExpansionExpr *) { return true; }
3214
3215  // Iterators
3216  child_range children() {
3217    return child_range(&Pattern, &Pattern + 1);
3218  }
3219};
3220
3221inline ASTTemplateKWAndArgsInfo *OverloadExpr::getTemplateKWAndArgsInfo() {
3222  if (!HasTemplateKWAndArgsInfo) return 0;
3223  if (isa<UnresolvedLookupExpr>(this))
3224    return reinterpret_cast<ASTTemplateKWAndArgsInfo*>
3225      (cast<UnresolvedLookupExpr>(this) + 1);
3226  else
3227    return reinterpret_cast<ASTTemplateKWAndArgsInfo*>
3228      (cast<UnresolvedMemberExpr>(this) + 1);
3229}
3230
3231/// \brief Represents an expression that computes the length of a parameter
3232/// pack.
3233///
3234/// \code
3235/// template<typename ...Types>
3236/// struct count {
3237///   static const unsigned value = sizeof...(Types);
3238/// };
3239/// \endcode
3240class SizeOfPackExpr : public Expr {
3241  /// \brief The location of the 'sizeof' keyword.
3242  SourceLocation OperatorLoc;
3243
3244  /// \brief The location of the name of the parameter pack.
3245  SourceLocation PackLoc;
3246
3247  /// \brief The location of the closing parenthesis.
3248  SourceLocation RParenLoc;
3249
3250  /// \brief The length of the parameter pack, if known.
3251  ///
3252  /// When this expression is value-dependent, the length of the parameter pack
3253  /// is unknown. When this expression is not value-dependent, the length is
3254  /// known.
3255  unsigned Length;
3256
3257  /// \brief The parameter pack itself.
3258  NamedDecl *Pack;
3259
3260  friend class ASTStmtReader;
3261  friend class ASTStmtWriter;
3262
3263public:
3264  /// \brief Creates a value-dependent expression that computes the length of
3265  /// the given parameter pack.
3266  SizeOfPackExpr(QualType SizeType, SourceLocation OperatorLoc, NamedDecl *Pack,
3267                 SourceLocation PackLoc, SourceLocation RParenLoc)
3268    : Expr(SizeOfPackExprClass, SizeType, VK_RValue, OK_Ordinary,
3269           /*TypeDependent=*/false, /*ValueDependent=*/true,
3270           /*InstantiationDependent=*/true,
3271           /*ContainsUnexpandedParameterPack=*/false),
3272      OperatorLoc(OperatorLoc), PackLoc(PackLoc), RParenLoc(RParenLoc),
3273      Length(0), Pack(Pack) { }
3274
3275  /// \brief Creates an expression that computes the length of
3276  /// the given parameter pack, which is already known.
3277  SizeOfPackExpr(QualType SizeType, SourceLocation OperatorLoc, NamedDecl *Pack,
3278                 SourceLocation PackLoc, SourceLocation RParenLoc,
3279                 unsigned Length)
3280  : Expr(SizeOfPackExprClass, SizeType, VK_RValue, OK_Ordinary,
3281         /*TypeDependent=*/false, /*ValueDependent=*/false,
3282         /*InstantiationDependent=*/false,
3283         /*ContainsUnexpandedParameterPack=*/false),
3284    OperatorLoc(OperatorLoc), PackLoc(PackLoc), RParenLoc(RParenLoc),
3285    Length(Length), Pack(Pack) { }
3286
3287  /// \brief Create an empty expression.
3288  SizeOfPackExpr(EmptyShell Empty) : Expr(SizeOfPackExprClass, Empty) { }
3289
3290  /// \brief Determine the location of the 'sizeof' keyword.
3291  SourceLocation getOperatorLoc() const { return OperatorLoc; }
3292
3293  /// \brief Determine the location of the parameter pack.
3294  SourceLocation getPackLoc() const { return PackLoc; }
3295
3296  /// \brief Determine the location of the right parenthesis.
3297  SourceLocation getRParenLoc() const { return RParenLoc; }
3298
3299  /// \brief Retrieve the parameter pack.
3300  NamedDecl *getPack() const { return Pack; }
3301
3302  /// \brief Retrieve the length of the parameter pack.
3303  ///
3304  /// This routine may only be invoked when the expression is not
3305  /// value-dependent.
3306  unsigned getPackLength() const {
3307    assert(!isValueDependent() &&
3308           "Cannot get the length of a value-dependent pack size expression");
3309    return Length;
3310  }
3311
3312  SourceRange getSourceRange() const {
3313    return SourceRange(OperatorLoc, RParenLoc);
3314  }
3315
3316  static bool classof(const Stmt *T) {
3317    return T->getStmtClass() == SizeOfPackExprClass;
3318  }
3319  static bool classof(const SizeOfPackExpr *) { return true; }
3320
3321  // Iterators
3322  child_range children() { return child_range(); }
3323};
3324
3325/// \brief Represents a reference to a non-type template parameter
3326/// that has been substituted with a template argument.
3327class SubstNonTypeTemplateParmExpr : public Expr {
3328  /// \brief The replaced parameter.
3329  NonTypeTemplateParmDecl *Param;
3330
3331  /// \brief The replacement expression.
3332  Stmt *Replacement;
3333
3334  /// \brief The location of the non-type template parameter reference.
3335  SourceLocation NameLoc;
3336
3337  friend class ASTReader;
3338  friend class ASTStmtReader;
3339  explicit SubstNonTypeTemplateParmExpr(EmptyShell Empty)
3340    : Expr(SubstNonTypeTemplateParmExprClass, Empty) { }
3341
3342public:
3343  SubstNonTypeTemplateParmExpr(QualType type,
3344                               ExprValueKind valueKind,
3345                               SourceLocation loc,
3346                               NonTypeTemplateParmDecl *param,
3347                               Expr *replacement)
3348    : Expr(SubstNonTypeTemplateParmExprClass, type, valueKind, OK_Ordinary,
3349           replacement->isTypeDependent(), replacement->isValueDependent(),
3350           replacement->isInstantiationDependent(),
3351           replacement->containsUnexpandedParameterPack()),
3352      Param(param), Replacement(replacement), NameLoc(loc) {}
3353
3354  SourceLocation getNameLoc() const { return NameLoc; }
3355  SourceRange getSourceRange() const { return NameLoc; }
3356
3357  Expr *getReplacement() const { return cast<Expr>(Replacement); }
3358
3359  NonTypeTemplateParmDecl *getParameter() const { return Param; }
3360
3361  static bool classof(const Stmt *s) {
3362    return s->getStmtClass() == SubstNonTypeTemplateParmExprClass;
3363  }
3364  static bool classof(const SubstNonTypeTemplateParmExpr *) {
3365    return true;
3366  }
3367
3368  // Iterators
3369  child_range children() { return child_range(&Replacement, &Replacement+1); }
3370};
3371
3372/// \brief Represents a reference to a non-type template parameter pack that
3373/// has been substituted with a non-template argument pack.
3374///
3375/// When a pack expansion in the source code contains multiple parameter packs
3376/// and those parameter packs correspond to different levels of template
3377/// parameter lists, this node node is used to represent a non-type template
3378/// parameter pack from an outer level, which has already had its argument pack
3379/// substituted but that still lives within a pack expansion that itself
3380/// could not be instantiated. When actually performing a substitution into
3381/// that pack expansion (e.g., when all template parameters have corresponding
3382/// arguments), this type will be replaced with the appropriate underlying
3383/// expression at the current pack substitution index.
3384class SubstNonTypeTemplateParmPackExpr : public Expr {
3385  /// \brief The non-type template parameter pack itself.
3386  NonTypeTemplateParmDecl *Param;
3387
3388  /// \brief A pointer to the set of template arguments that this
3389  /// parameter pack is instantiated with.
3390  const TemplateArgument *Arguments;
3391
3392  /// \brief The number of template arguments in \c Arguments.
3393  unsigned NumArguments;
3394
3395  /// \brief The location of the non-type template parameter pack reference.
3396  SourceLocation NameLoc;
3397
3398  friend class ASTReader;
3399  friend class ASTStmtReader;
3400  explicit SubstNonTypeTemplateParmPackExpr(EmptyShell Empty)
3401    : Expr(SubstNonTypeTemplateParmPackExprClass, Empty) { }
3402
3403public:
3404  SubstNonTypeTemplateParmPackExpr(QualType T,
3405                                   NonTypeTemplateParmDecl *Param,
3406                                   SourceLocation NameLoc,
3407                                   const TemplateArgument &ArgPack);
3408
3409  /// \brief Retrieve the non-type template parameter pack being substituted.
3410  NonTypeTemplateParmDecl *getParameterPack() const { return Param; }
3411
3412  /// \brief Retrieve the location of the parameter pack name.
3413  SourceLocation getParameterPackLocation() const { return NameLoc; }
3414
3415  /// \brief Retrieve the template argument pack containing the substituted
3416  /// template arguments.
3417  TemplateArgument getArgumentPack() const;
3418
3419  SourceRange getSourceRange() const { return NameLoc; }
3420
3421  static bool classof(const Stmt *T) {
3422    return T->getStmtClass() == SubstNonTypeTemplateParmPackExprClass;
3423  }
3424  static bool classof(const SubstNonTypeTemplateParmPackExpr *) {
3425    return true;
3426  }
3427
3428  // Iterators
3429  child_range children() { return child_range(); }
3430};
3431
3432/// \brief Represents a prvalue temporary that written into memory so that
3433/// a reference can bind to it.
3434///
3435/// Prvalue expressions are materialized when they need to have an address
3436/// in memory for a reference to bind to. This happens when binding a
3437/// reference to the result of a conversion, e.g.,
3438///
3439/// \code
3440/// const int &r = 1.0;
3441/// \endcode
3442///
3443/// Here, 1.0 is implicitly converted to an \c int. That resulting \c int is
3444/// then materialized via a \c MaterializeTemporaryExpr, and the reference
3445/// binds to the temporary. \c MaterializeTemporaryExprs are always glvalues
3446/// (either an lvalue or an xvalue, depending on the kind of reference binding
3447/// to it), maintaining the invariant that references always bind to glvalues.
3448class MaterializeTemporaryExpr : public Expr {
3449  /// \brief The temporary-generating expression whose value will be
3450  /// materialized.
3451 Stmt *Temporary;
3452
3453  friend class ASTStmtReader;
3454  friend class ASTStmtWriter;
3455
3456public:
3457  MaterializeTemporaryExpr(QualType T, Expr *Temporary,
3458                           bool BoundToLvalueReference)
3459    : Expr(MaterializeTemporaryExprClass, T,
3460           BoundToLvalueReference? VK_LValue : VK_XValue, OK_Ordinary,
3461           Temporary->isTypeDependent(), Temporary->isValueDependent(),
3462           Temporary->isInstantiationDependent(),
3463           Temporary->containsUnexpandedParameterPack()),
3464      Temporary(Temporary) { }
3465
3466  MaterializeTemporaryExpr(EmptyShell Empty)
3467    : Expr(MaterializeTemporaryExprClass, Empty) { }
3468
3469  /// \brief Retrieve the temporary-generating subexpression whose value will
3470  /// be materialized into a glvalue.
3471  Expr *GetTemporaryExpr() const { return reinterpret_cast<Expr *>(Temporary); }
3472
3473  /// \brief Determine whether this materialized temporary is bound to an
3474  /// lvalue reference; otherwise, it's bound to an rvalue reference.
3475  bool isBoundToLvalueReference() const {
3476    return getValueKind() == VK_LValue;
3477  }
3478
3479  SourceRange getSourceRange() const { return Temporary->getSourceRange(); }
3480
3481  static bool classof(const Stmt *T) {
3482    return T->getStmtClass() == MaterializeTemporaryExprClass;
3483  }
3484  static bool classof(const MaterializeTemporaryExpr *) {
3485    return true;
3486  }
3487
3488  // Iterators
3489  child_range children() { return child_range(&Temporary, &Temporary + 1); }
3490};
3491
3492}  // end namespace clang
3493
3494#endif
3495