ExprCXX.h revision 16006c901315fa12a108b4e571f187f4b676e426
1//===--- ExprCXX.h - Classes for representing expressions -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses for C++ expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPRCXX_H
15#define LLVM_CLANG_AST_EXPRCXX_H
16
17#include "clang/Basic/TypeTraits.h"
18#include "clang/AST/Expr.h"
19#include "clang/AST/Decl.h"
20#include "clang/AST/TemplateBase.h"
21
22namespace clang {
23
24  class CXXConstructorDecl;
25  class CXXDestructorDecl;
26  class CXXMethodDecl;
27  class CXXTemporary;
28  class TemplateArgumentListInfo;
29
30//===--------------------------------------------------------------------===//
31// C++ Expressions.
32//===--------------------------------------------------------------------===//
33
34/// \brief A call to an overloaded operator written using operator
35/// syntax.
36///
37/// Represents a call to an overloaded operator written using operator
38/// syntax, e.g., "x + y" or "*p". While semantically equivalent to a
39/// normal call, this AST node provides better information about the
40/// syntactic representation of the call.
41///
42/// In a C++ template, this expression node kind will be used whenever
43/// any of the arguments are type-dependent. In this case, the
44/// function itself will be a (possibly empty) set of functions and
45/// function templates that were found by name lookup at template
46/// definition time.
47class CXXOperatorCallExpr : public CallExpr {
48  /// \brief The overloaded operator.
49  OverloadedOperatorKind Operator;
50
51public:
52  CXXOperatorCallExpr(ASTContext& C, OverloadedOperatorKind Op, Expr *fn,
53                      Expr **args, unsigned numargs, QualType t,
54                      SourceLocation operatorloc)
55    : CallExpr(C, CXXOperatorCallExprClass, fn, args, numargs, t, operatorloc),
56      Operator(Op) {}
57  explicit CXXOperatorCallExpr(ASTContext& C, EmptyShell Empty) :
58    CallExpr(C, CXXOperatorCallExprClass, Empty) { }
59
60
61  /// getOperator - Returns the kind of overloaded operator that this
62  /// expression refers to.
63  OverloadedOperatorKind getOperator() const { return Operator; }
64  void setOperator(OverloadedOperatorKind Kind) { Operator = Kind; }
65
66  /// getOperatorLoc - Returns the location of the operator symbol in
67  /// the expression. When @c getOperator()==OO_Call, this is the
68  /// location of the right parentheses; when @c
69  /// getOperator()==OO_Subscript, this is the location of the right
70  /// bracket.
71  SourceLocation getOperatorLoc() const { return getRParenLoc(); }
72
73  virtual SourceRange getSourceRange() const;
74
75  static bool classof(const Stmt *T) {
76    return T->getStmtClass() == CXXOperatorCallExprClass;
77  }
78  static bool classof(const CXXOperatorCallExpr *) { return true; }
79};
80
81/// CXXMemberCallExpr - Represents a call to a member function that
82/// may be written either with member call syntax (e.g., "obj.func()"
83/// or "objptr->func()") or with normal function-call syntax
84/// ("func()") within a member function that ends up calling a member
85/// function. The callee in either case is a MemberExpr that contains
86/// both the object argument and the member function, while the
87/// arguments are the arguments within the parentheses (not including
88/// the object argument).
89class CXXMemberCallExpr : public CallExpr {
90public:
91  CXXMemberCallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs,
92                    QualType t, SourceLocation rparenloc)
93    : CallExpr(C, CXXMemberCallExprClass, fn, args, numargs, t, rparenloc) {}
94
95  /// getImplicitObjectArgument - Retrieves the implicit object
96  /// argument for the member call. For example, in "x.f(5)", this
97  /// operation would return "x".
98  Expr *getImplicitObjectArgument();
99
100  virtual SourceRange getSourceRange() const;
101
102  static bool classof(const Stmt *T) {
103    return T->getStmtClass() == CXXMemberCallExprClass;
104  }
105  static bool classof(const CXXMemberCallExpr *) { return true; }
106};
107
108/// CXXNamedCastExpr - Abstract class common to all of the C++ "named"
109/// casts, @c static_cast, @c dynamic_cast, @c reinterpret_cast, or @c
110/// const_cast.
111///
112/// This abstract class is inherited by all of the classes
113/// representing "named" casts, e.g., CXXStaticCastExpr,
114/// CXXDynamicCastExpr, CXXReinterpretCastExpr, and CXXConstCastExpr.
115class CXXNamedCastExpr : public ExplicitCastExpr {
116private:
117  SourceLocation Loc; // the location of the casting op
118
119protected:
120  CXXNamedCastExpr(StmtClass SC, QualType ty, CastKind kind, Expr *op,
121                   QualType writtenTy, SourceLocation l)
122    : ExplicitCastExpr(SC, ty, kind, op, writtenTy), Loc(l) {}
123
124public:
125  const char *getCastName() const;
126
127  /// \brief Retrieve the location of the cast operator keyword, e.g.,
128  /// "static_cast".
129  SourceLocation getOperatorLoc() const { return Loc; }
130  void setOperatorLoc(SourceLocation L) { Loc = L; }
131
132  virtual SourceRange getSourceRange() const {
133    return SourceRange(Loc, getSubExpr()->getSourceRange().getEnd());
134  }
135  static bool classof(const Stmt *T) {
136    switch (T->getStmtClass()) {
137    case CXXNamedCastExprClass:
138    case CXXStaticCastExprClass:
139    case CXXDynamicCastExprClass:
140    case CXXReinterpretCastExprClass:
141    case CXXConstCastExprClass:
142      return true;
143    default:
144      return false;
145    }
146  }
147  static bool classof(const CXXNamedCastExpr *) { return true; }
148};
149
150/// CXXStaticCastExpr - A C++ @c static_cast expression (C++ [expr.static.cast]).
151///
152/// This expression node represents a C++ static cast, e.g.,
153/// @c static_cast<int>(1.0).
154class CXXStaticCastExpr : public CXXNamedCastExpr {
155public:
156  CXXStaticCastExpr(QualType ty, CastKind kind, Expr *op,
157                    QualType writtenTy, SourceLocation l)
158    : CXXNamedCastExpr(CXXStaticCastExprClass, ty, kind, op, writtenTy, l) {}
159
160  static bool classof(const Stmt *T) {
161    return T->getStmtClass() == CXXStaticCastExprClass;
162  }
163  static bool classof(const CXXStaticCastExpr *) { return true; }
164};
165
166/// CXXDynamicCastExpr - A C++ @c dynamic_cast expression
167/// (C++ [expr.dynamic.cast]), which may perform a run-time check to
168/// determine how to perform the type cast.
169///
170/// This expression node represents a dynamic cast, e.g.,
171/// @c dynamic_cast<Derived*>(BasePtr).
172class CXXDynamicCastExpr : public CXXNamedCastExpr {
173public:
174  CXXDynamicCastExpr(QualType ty, CastKind kind, Expr *op, QualType writtenTy,
175                     SourceLocation l)
176    : CXXNamedCastExpr(CXXDynamicCastExprClass, ty, kind, op, writtenTy, l) {}
177
178  static bool classof(const Stmt *T) {
179    return T->getStmtClass() == CXXDynamicCastExprClass;
180  }
181  static bool classof(const CXXDynamicCastExpr *) { return true; }
182};
183
184/// CXXReinterpretCastExpr - A C++ @c reinterpret_cast expression (C++
185/// [expr.reinterpret.cast]), which provides a differently-typed view
186/// of a value but performs no actual work at run time.
187///
188/// This expression node represents a reinterpret cast, e.g.,
189/// @c reinterpret_cast<int>(VoidPtr).
190class CXXReinterpretCastExpr : public CXXNamedCastExpr {
191public:
192  CXXReinterpretCastExpr(QualType ty, CastKind kind, Expr *op,
193                         QualType writtenTy, SourceLocation l)
194    : CXXNamedCastExpr(CXXReinterpretCastExprClass, ty, kind, op,
195                       writtenTy, l) {}
196
197  static bool classof(const Stmt *T) {
198    return T->getStmtClass() == CXXReinterpretCastExprClass;
199  }
200  static bool classof(const CXXReinterpretCastExpr *) { return true; }
201};
202
203/// CXXConstCastExpr - A C++ @c const_cast expression (C++ [expr.const.cast]),
204/// which can remove type qualifiers but does not change the underlying value.
205///
206/// This expression node represents a const cast, e.g.,
207/// @c const_cast<char*>(PtrToConstChar).
208class CXXConstCastExpr : public CXXNamedCastExpr {
209public:
210  CXXConstCastExpr(QualType ty, Expr *op, QualType writtenTy,
211                   SourceLocation l)
212    : CXXNamedCastExpr(CXXConstCastExprClass, ty, CK_NoOp, op, writtenTy, l) {}
213
214  static bool classof(const Stmt *T) {
215    return T->getStmtClass() == CXXConstCastExprClass;
216  }
217  static bool classof(const CXXConstCastExpr *) { return true; }
218};
219
220/// CXXBoolLiteralExpr - [C++ 2.13.5] C++ Boolean Literal.
221///
222class CXXBoolLiteralExpr : public Expr {
223  bool Value;
224  SourceLocation Loc;
225public:
226  CXXBoolLiteralExpr(bool val, QualType Ty, SourceLocation l) :
227    Expr(CXXBoolLiteralExprClass, Ty), Value(val), Loc(l) {}
228
229  bool getValue() const { return Value; }
230
231  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
232
233  static bool classof(const Stmt *T) {
234    return T->getStmtClass() == CXXBoolLiteralExprClass;
235  }
236  static bool classof(const CXXBoolLiteralExpr *) { return true; }
237
238  // Iterators
239  virtual child_iterator child_begin();
240  virtual child_iterator child_end();
241};
242
243/// CXXNullPtrLiteralExpr - [C++0x 2.14.7] C++ Pointer Literal
244class CXXNullPtrLiteralExpr : public Expr {
245  SourceLocation Loc;
246public:
247  CXXNullPtrLiteralExpr(QualType Ty, SourceLocation l) :
248    Expr(CXXNullPtrLiteralExprClass, Ty), Loc(l) {}
249
250  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
251
252  static bool classof(const Stmt *T) {
253    return T->getStmtClass() == CXXNullPtrLiteralExprClass;
254  }
255  static bool classof(const CXXNullPtrLiteralExpr *) { return true; }
256
257  virtual child_iterator child_begin();
258  virtual child_iterator child_end();
259};
260
261/// CXXTypeidExpr - A C++ @c typeid expression (C++ [expr.typeid]), which gets
262/// the type_info that corresponds to the supplied type, or the (possibly
263/// dynamic) type of the supplied expression.
264///
265/// This represents code like @c typeid(int) or @c typeid(*objPtr)
266class CXXTypeidExpr : public Expr {
267private:
268  bool isTypeOp : 1;
269  union {
270    void *Ty;
271    Stmt *Ex;
272  } Operand;
273  SourceRange Range;
274
275public:
276  CXXTypeidExpr(bool isTypeOp, void *op, QualType Ty, const SourceRange r) :
277      Expr(CXXTypeidExprClass, Ty,
278        // typeid is never type-dependent (C++ [temp.dep.expr]p4)
279        false,
280        // typeid is value-dependent if the type or expression are dependent
281        (isTypeOp ? QualType::getFromOpaquePtr(op)->isDependentType()
282                  : static_cast<Expr*>(op)->isValueDependent())),
283      isTypeOp(isTypeOp), Range(r) {
284    if (isTypeOp)
285      Operand.Ty = op;
286    else
287      // op was an Expr*, so cast it back to that to be safe
288      Operand.Ex = static_cast<Expr*>(op);
289  }
290
291  bool isTypeOperand() const { return isTypeOp; }
292  QualType getTypeOperand() const {
293    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
294    return QualType::getFromOpaquePtr(Operand.Ty);
295  }
296  Expr* getExprOperand() const {
297    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
298    return static_cast<Expr*>(Operand.Ex);
299  }
300
301  virtual SourceRange getSourceRange() const {
302    return Range;
303  }
304  static bool classof(const Stmt *T) {
305    return T->getStmtClass() == CXXTypeidExprClass;
306  }
307  static bool classof(const CXXTypeidExpr *) { return true; }
308
309  // Iterators
310  virtual child_iterator child_begin();
311  virtual child_iterator child_end();
312};
313
314/// CXXThisExpr - Represents the "this" expression in C++, which is a
315/// pointer to the object on which the current member function is
316/// executing (C++ [expr.prim]p3). Example:
317///
318/// @code
319/// class Foo {
320/// public:
321///   void bar();
322///   void test() { this->bar(); }
323/// };
324/// @endcode
325class CXXThisExpr : public Expr {
326  SourceLocation Loc;
327
328public:
329  CXXThisExpr(SourceLocation L, QualType Type)
330    : Expr(CXXThisExprClass, Type,
331           // 'this' is type-dependent if the class type of the enclosing
332           // member function is dependent (C++ [temp.dep.expr]p2)
333           Type->isDependentType(), Type->isDependentType()),
334      Loc(L) { }
335
336  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
337
338  static bool classof(const Stmt *T) {
339    return T->getStmtClass() == CXXThisExprClass;
340  }
341  static bool classof(const CXXThisExpr *) { return true; }
342
343  // Iterators
344  virtual child_iterator child_begin();
345  virtual child_iterator child_end();
346};
347
348///  CXXThrowExpr - [C++ 15] C++ Throw Expression.  This handles
349///  'throw' and 'throw' assignment-expression.  When
350///  assignment-expression isn't present, Op will be null.
351///
352class CXXThrowExpr : public Expr {
353  Stmt *Op;
354  SourceLocation ThrowLoc;
355public:
356  // Ty is the void type which is used as the result type of the
357  // exepression.  The l is the location of the throw keyword.  expr
358  // can by null, if the optional expression to throw isn't present.
359  CXXThrowExpr(Expr *expr, QualType Ty, SourceLocation l) :
360    Expr(CXXThrowExprClass, Ty, false, false), Op(expr), ThrowLoc(l) {}
361  const Expr *getSubExpr() const { return cast_or_null<Expr>(Op); }
362  Expr *getSubExpr() { return cast_or_null<Expr>(Op); }
363  void setSubExpr(Expr *E) { Op = E; }
364
365  SourceLocation getThrowLoc() const { return ThrowLoc; }
366  void setThrowLoc(SourceLocation L) { ThrowLoc = L; }
367
368  virtual SourceRange getSourceRange() const {
369    if (getSubExpr() == 0)
370      return SourceRange(ThrowLoc, ThrowLoc);
371    return SourceRange(ThrowLoc, getSubExpr()->getSourceRange().getEnd());
372  }
373
374  static bool classof(const Stmt *T) {
375    return T->getStmtClass() == CXXThrowExprClass;
376  }
377  static bool classof(const CXXThrowExpr *) { return true; }
378
379  // Iterators
380  virtual child_iterator child_begin();
381  virtual child_iterator child_end();
382};
383
384/// CXXDefaultArgExpr - C++ [dcl.fct.default]. This wraps up a
385/// function call argument that was created from the corresponding
386/// parameter's default argument, when the call did not explicitly
387/// supply arguments for all of the parameters.
388class CXXDefaultArgExpr : public Expr {
389  ParmVarDecl *Param;
390
391protected:
392  CXXDefaultArgExpr(StmtClass SC, ParmVarDecl *param)
393    : Expr(SC, param->hasUnparsedDefaultArg() ?
394           param->getType().getNonReferenceType()
395           : param->getDefaultArg()->getType()),
396    Param(param) { }
397
398public:
399  // Param is the parameter whose default argument is used by this
400  // expression.
401  static CXXDefaultArgExpr *Create(ASTContext &C, ParmVarDecl *Param) {
402    return new (C) CXXDefaultArgExpr(CXXDefaultArgExprClass, Param);
403  }
404
405  // Retrieve the parameter that the argument was created from.
406  const ParmVarDecl *getParam() const { return Param; }
407  ParmVarDecl *getParam() { return Param; }
408
409  // Retrieve the actual argument to the function call.
410  const Expr *getExpr() const { return Param->getDefaultArg(); }
411  Expr *getExpr() { return Param->getDefaultArg(); }
412
413  virtual SourceRange getSourceRange() const {
414    // Default argument expressions have no representation in the
415    // source, so they have an empty source range.
416    return SourceRange();
417  }
418
419  static bool classof(const Stmt *T) {
420    return T->getStmtClass() == CXXDefaultArgExprClass;
421  }
422  static bool classof(const CXXDefaultArgExpr *) { return true; }
423
424  // Iterators
425  virtual child_iterator child_begin();
426  virtual child_iterator child_end();
427};
428
429/// CXXTemporary - Represents a C++ temporary.
430class CXXTemporary {
431  /// Destructor - The destructor that needs to be called.
432  const CXXDestructorDecl *Destructor;
433
434  CXXTemporary(const CXXDestructorDecl *destructor)
435    : Destructor(destructor) { }
436  ~CXXTemporary() { }
437
438public:
439  static CXXTemporary *Create(ASTContext &C,
440                              const CXXDestructorDecl *Destructor);
441
442  void Destroy(ASTContext &Ctx);
443
444  const CXXDestructorDecl *getDestructor() const { return Destructor; }
445};
446
447/// CXXBindTemporaryExpr - Represents binding an expression to a temporary,
448/// so its destructor can be called later.
449class CXXBindTemporaryExpr : public Expr {
450  CXXTemporary *Temp;
451
452  Stmt *SubExpr;
453
454  CXXBindTemporaryExpr(CXXTemporary *temp, Expr* subexpr)
455   : Expr(CXXBindTemporaryExprClass,
456          subexpr->getType()), Temp(temp), SubExpr(subexpr) { }
457  ~CXXBindTemporaryExpr() { }
458
459protected:
460  virtual void DoDestroy(ASTContext &C);
461
462public:
463  static CXXBindTemporaryExpr *Create(ASTContext &C, CXXTemporary *Temp,
464                                      Expr* SubExpr);
465
466  CXXTemporary *getTemporary() { return Temp; }
467  const CXXTemporary *getTemporary() const { return Temp; }
468
469  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
470  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
471  void setSubExpr(Expr *E) { SubExpr = E; }
472
473  virtual SourceRange getSourceRange() const {
474    return SubExpr->getSourceRange();
475  }
476
477  // Implement isa/cast/dyncast/etc.
478  static bool classof(const Stmt *T) {
479    return T->getStmtClass() == CXXBindTemporaryExprClass;
480  }
481  static bool classof(const CXXBindTemporaryExpr *) { return true; }
482
483  // Iterators
484  virtual child_iterator child_begin();
485  virtual child_iterator child_end();
486};
487
488/// CXXConstructExpr - Represents a call to a C++ constructor.
489class CXXConstructExpr : public Expr {
490  CXXConstructorDecl *Constructor;
491
492  SourceLocation Loc;
493  bool Elidable : 1;
494  bool ZeroInitialization : 1;
495  Stmt **Args;
496  unsigned NumArgs;
497
498protected:
499  CXXConstructExpr(ASTContext &C, StmtClass SC, QualType T,
500                   SourceLocation Loc,
501                   CXXConstructorDecl *d, bool elidable,
502                   Expr **args, unsigned numargs,
503                   bool ZeroInitialization = false);
504  ~CXXConstructExpr() { }
505
506  virtual void DoDestroy(ASTContext &C);
507
508public:
509  /// \brief Construct an empty C++ construction expression that will store
510  /// \p numargs arguments.
511  CXXConstructExpr(EmptyShell Empty, ASTContext &C, unsigned numargs);
512
513  static CXXConstructExpr *Create(ASTContext &C, QualType T,
514                                  SourceLocation Loc,
515                                  CXXConstructorDecl *D, bool Elidable,
516                                  Expr **Args, unsigned NumArgs,
517                                  bool ZeroInitialization = false);
518
519
520  CXXConstructorDecl* getConstructor() const { return Constructor; }
521  void setConstructor(CXXConstructorDecl *C) { Constructor = C; }
522
523  SourceLocation getLocation() const { return Loc; }
524  void setLocation(SourceLocation Loc) { this->Loc = Loc; }
525
526  /// \brief Whether this construction is elidable.
527  bool isElidable() const { return Elidable; }
528  void setElidable(bool E) { Elidable = E; }
529
530  /// \brief Whether this construction first requires
531  /// zero-initialization before the initializer is called.
532  bool requiresZeroInitialization() const { return ZeroInitialization; }
533  void setRequiresZeroInitialization(bool ZeroInit) {
534    ZeroInitialization = ZeroInit;
535  }
536
537  typedef ExprIterator arg_iterator;
538  typedef ConstExprIterator const_arg_iterator;
539
540  arg_iterator arg_begin() { return Args; }
541  arg_iterator arg_end() { return Args + NumArgs; }
542  const_arg_iterator arg_begin() const { return Args; }
543  const_arg_iterator arg_end() const { return Args + NumArgs; }
544
545  Expr **getArgs() const { return reinterpret_cast<Expr **>(Args); }
546  unsigned getNumArgs() const { return NumArgs; }
547
548  /// getArg - Return the specified argument.
549  Expr *getArg(unsigned Arg) {
550    assert(Arg < NumArgs && "Arg access out of range!");
551    return cast<Expr>(Args[Arg]);
552  }
553  const Expr *getArg(unsigned Arg) const {
554    assert(Arg < NumArgs && "Arg access out of range!");
555    return cast<Expr>(Args[Arg]);
556  }
557
558  /// setArg - Set the specified argument.
559  void setArg(unsigned Arg, Expr *ArgExpr) {
560    assert(Arg < NumArgs && "Arg access out of range!");
561    Args[Arg] = ArgExpr;
562  }
563
564  virtual SourceRange getSourceRange() const {
565    // FIXME: Should we know where the parentheses are, if there are any?
566    if (NumArgs == 0)
567      return SourceRange(Loc);
568
569    return SourceRange(Loc, Args[NumArgs - 1]->getLocEnd());
570  }
571
572  static bool classof(const Stmt *T) {
573    return T->getStmtClass() == CXXConstructExprClass ||
574      T->getStmtClass() == CXXTemporaryObjectExprClass;
575  }
576  static bool classof(const CXXConstructExpr *) { return true; }
577
578  // Iterators
579  virtual child_iterator child_begin();
580  virtual child_iterator child_end();
581};
582
583/// CXXFunctionalCastExpr - Represents an explicit C++ type conversion
584/// that uses "functional" notion (C++ [expr.type.conv]). Example: @c
585/// x = int(0.5);
586class CXXFunctionalCastExpr : public ExplicitCastExpr {
587  SourceLocation TyBeginLoc;
588  SourceLocation RParenLoc;
589public:
590  CXXFunctionalCastExpr(QualType ty, QualType writtenTy,
591                        SourceLocation tyBeginLoc, CastKind kind,
592                        Expr *castExpr, SourceLocation rParenLoc)
593    : ExplicitCastExpr(CXXFunctionalCastExprClass, ty, kind, castExpr,
594                       writtenTy),
595      TyBeginLoc(tyBeginLoc), RParenLoc(rParenLoc) {}
596
597  SourceLocation getTypeBeginLoc() const { return TyBeginLoc; }
598  SourceLocation getRParenLoc() const { return RParenLoc; }
599
600  virtual SourceRange getSourceRange() const {
601    return SourceRange(TyBeginLoc, RParenLoc);
602  }
603  static bool classof(const Stmt *T) {
604    return T->getStmtClass() == CXXFunctionalCastExprClass;
605  }
606  static bool classof(const CXXFunctionalCastExpr *) { return true; }
607};
608
609/// @brief Represents a C++ functional cast expression that builds a
610/// temporary object.
611///
612/// This expression type represents a C++ "functional" cast
613/// (C++[expr.type.conv]) with N != 1 arguments that invokes a
614/// constructor to build a temporary object. If N == 0 but no
615/// constructor will be called (because the functional cast is
616/// performing a value-initialized an object whose class type has no
617/// user-declared constructors), CXXZeroInitValueExpr will represent
618/// the functional cast. Finally, with N == 1 arguments the functional
619/// cast expression will be represented by CXXFunctionalCastExpr.
620/// Example:
621/// @code
622/// struct X { X(int, float); }
623///
624/// X create_X() {
625///   return X(1, 3.14f); // creates a CXXTemporaryObjectExpr
626/// };
627/// @endcode
628class CXXTemporaryObjectExpr : public CXXConstructExpr {
629  SourceLocation TyBeginLoc;
630  SourceLocation RParenLoc;
631
632public:
633  CXXTemporaryObjectExpr(ASTContext &C, CXXConstructorDecl *Cons,
634                         QualType writtenTy, SourceLocation tyBeginLoc,
635                         Expr **Args,unsigned NumArgs,
636                         SourceLocation rParenLoc);
637
638  ~CXXTemporaryObjectExpr() { }
639
640  SourceLocation getTypeBeginLoc() const { return TyBeginLoc; }
641  SourceLocation getRParenLoc() const { return RParenLoc; }
642
643  virtual SourceRange getSourceRange() const {
644    return SourceRange(TyBeginLoc, RParenLoc);
645  }
646  static bool classof(const Stmt *T) {
647    return T->getStmtClass() == CXXTemporaryObjectExprClass;
648  }
649  static bool classof(const CXXTemporaryObjectExpr *) { return true; }
650};
651
652/// CXXZeroInitValueExpr - [C++ 5.2.3p2]
653/// Expression "T()" which creates a value-initialized rvalue of type
654/// T, which is either a non-class type or a class type without any
655/// user-defined constructors.
656///
657class CXXZeroInitValueExpr : public Expr {
658  SourceLocation TyBeginLoc;
659  SourceLocation RParenLoc;
660
661public:
662  CXXZeroInitValueExpr(QualType ty, SourceLocation tyBeginLoc,
663                       SourceLocation rParenLoc ) :
664    Expr(CXXZeroInitValueExprClass, ty, false, false),
665    TyBeginLoc(tyBeginLoc), RParenLoc(rParenLoc) {}
666
667  SourceLocation getTypeBeginLoc() const { return TyBeginLoc; }
668  SourceLocation getRParenLoc() const { return RParenLoc; }
669
670  /// @brief Whether this initialization expression was
671  /// implicitly-generated.
672  bool isImplicit() const {
673    return TyBeginLoc.isInvalid() && RParenLoc.isInvalid();
674  }
675
676  virtual SourceRange getSourceRange() const {
677    return SourceRange(TyBeginLoc, RParenLoc);
678  }
679
680  static bool classof(const Stmt *T) {
681    return T->getStmtClass() == CXXZeroInitValueExprClass;
682  }
683  static bool classof(const CXXZeroInitValueExpr *) { return true; }
684
685  // Iterators
686  virtual child_iterator child_begin();
687  virtual child_iterator child_end();
688};
689
690/// CXXNewExpr - A new expression for memory allocation and constructor calls,
691/// e.g: "new CXXNewExpr(foo)".
692class CXXNewExpr : public Expr {
693  // Was the usage ::new, i.e. is the global new to be used?
694  bool GlobalNew : 1;
695  // Was the form (type-id) used? Otherwise, it was new-type-id.
696  bool ParenTypeId : 1;
697  // Is there an initializer? If not, built-ins are uninitialized, else they're
698  // value-initialized.
699  bool Initializer : 1;
700  // Do we allocate an array? If so, the first SubExpr is the size expression.
701  bool Array : 1;
702  // The number of placement new arguments.
703  unsigned NumPlacementArgs : 14;
704  // The number of constructor arguments. This may be 1 even for non-class
705  // types; use the pseudo copy constructor.
706  unsigned NumConstructorArgs : 14;
707  // Contains an optional array size expression, any number of optional
708  // placement arguments, and any number of optional constructor arguments,
709  // in that order.
710  Stmt **SubExprs;
711  // Points to the allocation function used.
712  FunctionDecl *OperatorNew;
713  // Points to the deallocation function used in case of error. May be null.
714  FunctionDecl *OperatorDelete;
715  // Points to the constructor used. Cannot be null if AllocType is a record;
716  // it would still point at the default constructor (even an implicit one).
717  // Must be null for all other types.
718  CXXConstructorDecl *Constructor;
719
720  SourceLocation StartLoc;
721  SourceLocation EndLoc;
722
723public:
724  CXXNewExpr(bool globalNew, FunctionDecl *operatorNew, Expr **placementArgs,
725             unsigned numPlaceArgs, bool ParenTypeId, Expr *arraySize,
726             CXXConstructorDecl *constructor, bool initializer,
727             Expr **constructorArgs, unsigned numConsArgs,
728             FunctionDecl *operatorDelete, QualType ty,
729             SourceLocation startLoc, SourceLocation endLoc);
730  ~CXXNewExpr() {
731    delete[] SubExprs;
732  }
733
734  QualType getAllocatedType() const {
735    assert(getType()->isPointerType());
736    return getType()->getAs<PointerType>()->getPointeeType();
737  }
738
739  FunctionDecl *getOperatorNew() const { return OperatorNew; }
740  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
741  CXXConstructorDecl *getConstructor() const { return Constructor; }
742
743  bool isArray() const { return Array; }
744  Expr *getArraySize() {
745    return Array ? cast<Expr>(SubExprs[0]) : 0;
746  }
747  const Expr *getArraySize() const {
748    return Array ? cast<Expr>(SubExprs[0]) : 0;
749  }
750
751  unsigned getNumPlacementArgs() const { return NumPlacementArgs; }
752  Expr *getPlacementArg(unsigned i) {
753    assert(i < NumPlacementArgs && "Index out of range");
754    return cast<Expr>(SubExprs[Array + i]);
755  }
756  const Expr *getPlacementArg(unsigned i) const {
757    assert(i < NumPlacementArgs && "Index out of range");
758    return cast<Expr>(SubExprs[Array + i]);
759  }
760
761  bool isGlobalNew() const { return GlobalNew; }
762  bool isParenTypeId() const { return ParenTypeId; }
763  bool hasInitializer() const { return Initializer; }
764
765  unsigned getNumConstructorArgs() const { return NumConstructorArgs; }
766  Expr *getConstructorArg(unsigned i) {
767    assert(i < NumConstructorArgs && "Index out of range");
768    return cast<Expr>(SubExprs[Array + NumPlacementArgs + i]);
769  }
770  const Expr *getConstructorArg(unsigned i) const {
771    assert(i < NumConstructorArgs && "Index out of range");
772    return cast<Expr>(SubExprs[Array + NumPlacementArgs + i]);
773  }
774
775  typedef ExprIterator arg_iterator;
776  typedef ConstExprIterator const_arg_iterator;
777
778  arg_iterator placement_arg_begin() {
779    return SubExprs + Array;
780  }
781  arg_iterator placement_arg_end() {
782    return SubExprs + Array + getNumPlacementArgs();
783  }
784  const_arg_iterator placement_arg_begin() const {
785    return SubExprs + Array;
786  }
787  const_arg_iterator placement_arg_end() const {
788    return SubExprs + Array + getNumPlacementArgs();
789  }
790
791  arg_iterator constructor_arg_begin() {
792    return SubExprs + Array + getNumPlacementArgs();
793  }
794  arg_iterator constructor_arg_end() {
795    return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
796  }
797  const_arg_iterator constructor_arg_begin() const {
798    return SubExprs + Array + getNumPlacementArgs();
799  }
800  const_arg_iterator constructor_arg_end() const {
801    return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
802  }
803
804  virtual SourceRange getSourceRange() const {
805    return SourceRange(StartLoc, EndLoc);
806  }
807
808  static bool classof(const Stmt *T) {
809    return T->getStmtClass() == CXXNewExprClass;
810  }
811  static bool classof(const CXXNewExpr *) { return true; }
812
813  // Iterators
814  virtual child_iterator child_begin();
815  virtual child_iterator child_end();
816};
817
818/// CXXDeleteExpr - A delete expression for memory deallocation and destructor
819/// calls, e.g. "delete[] pArray".
820class CXXDeleteExpr : public Expr {
821  // Is this a forced global delete, i.e. "::delete"?
822  bool GlobalDelete : 1;
823  // Is this the array form of delete, i.e. "delete[]"?
824  bool ArrayForm : 1;
825  // Points to the operator delete overload that is used. Could be a member.
826  FunctionDecl *OperatorDelete;
827  // The pointer expression to be deleted.
828  Stmt *Argument;
829  // Location of the expression.
830  SourceLocation Loc;
831public:
832  CXXDeleteExpr(QualType ty, bool globalDelete, bool arrayForm,
833                FunctionDecl *operatorDelete, Expr *arg, SourceLocation loc)
834    : Expr(CXXDeleteExprClass, ty, false, false), GlobalDelete(globalDelete),
835      ArrayForm(arrayForm), OperatorDelete(operatorDelete), Argument(arg),
836      Loc(loc) { }
837
838  bool isGlobalDelete() const { return GlobalDelete; }
839  bool isArrayForm() const { return ArrayForm; }
840
841  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
842
843  Expr *getArgument() { return cast<Expr>(Argument); }
844  const Expr *getArgument() const { return cast<Expr>(Argument); }
845
846  virtual SourceRange getSourceRange() const {
847    return SourceRange(Loc, Argument->getLocEnd());
848  }
849
850  static bool classof(const Stmt *T) {
851    return T->getStmtClass() == CXXDeleteExprClass;
852  }
853  static bool classof(const CXXDeleteExpr *) { return true; }
854
855  // Iterators
856  virtual child_iterator child_begin();
857  virtual child_iterator child_end();
858};
859
860/// \brief Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
861///
862/// Example:
863///
864/// \code
865/// template<typename T>
866/// void destroy(T* ptr) {
867///   ptr->~T();
868/// }
869/// \endcode
870///
871/// When the template is parsed, the expression \c ptr->~T will be stored as
872/// a member reference expression. If it then instantiated with a scalar type
873/// as a template argument for T, the resulting expression will be a
874/// pseudo-destructor expression.
875class CXXPseudoDestructorExpr : public Expr {
876  /// \brief The base expression (that is being destroyed).
877  Stmt *Base;
878
879  /// \brief Whether the operator was an arrow ('->'); otherwise, it was a
880  /// period ('.').
881  bool IsArrow : 1;
882
883  /// \brief The location of the '.' or '->' operator.
884  SourceLocation OperatorLoc;
885
886  /// \brief The nested-name-specifier that follows the operator, if present.
887  NestedNameSpecifier *Qualifier;
888
889  /// \brief The source range that covers the nested-name-specifier, if
890  /// present.
891  SourceRange QualifierRange;
892
893  /// \brief The type being destroyed.
894  QualType DestroyedType;
895
896  /// \brief The location of the type after the '~'.
897  SourceLocation DestroyedTypeLoc;
898
899public:
900  CXXPseudoDestructorExpr(ASTContext &Context,
901                          Expr *Base, bool isArrow, SourceLocation OperatorLoc,
902                          NestedNameSpecifier *Qualifier,
903                          SourceRange QualifierRange,
904                          QualType DestroyedType,
905                          SourceLocation DestroyedTypeLoc)
906    : Expr(CXXPseudoDestructorExprClass,
907           Context.getPointerType(Context.getFunctionType(Context.VoidTy, 0, 0,
908                                                          false, 0)),
909           /*isTypeDependent=*/false,
910           /*isValueDependent=*/Base->isValueDependent()),
911      Base(static_cast<Stmt *>(Base)), IsArrow(isArrow),
912      OperatorLoc(OperatorLoc), Qualifier(Qualifier),
913      QualifierRange(QualifierRange), DestroyedType(DestroyedType),
914      DestroyedTypeLoc(DestroyedTypeLoc) { }
915
916  void setBase(Expr *E) { Base = E; }
917  Expr *getBase() const { return cast<Expr>(Base); }
918
919  /// \brief Determines whether this member expression actually had
920  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
921  /// x->Base::foo.
922  bool hasQualifier() const { return Qualifier != 0; }
923
924  /// \brief If the member name was qualified, retrieves the source range of
925  /// the nested-name-specifier that precedes the member name. Otherwise,
926  /// returns an empty source range.
927  SourceRange getQualifierRange() const { return QualifierRange; }
928
929  /// \brief If the member name was qualified, retrieves the
930  /// nested-name-specifier that precedes the member name. Otherwise, returns
931  /// NULL.
932  NestedNameSpecifier *getQualifier() const { return Qualifier; }
933
934  /// \brief Determine whether this pseudo-destructor expression was written
935  /// using an '->' (otherwise, it used a '.').
936  bool isArrow() const { return IsArrow; }
937  void setArrow(bool A) { IsArrow = A; }
938
939  /// \brief Retrieve the location of the '.' or '->' operator.
940  SourceLocation getOperatorLoc() const { return OperatorLoc; }
941
942  /// \brief Retrieve the type that is being destroyed.
943  QualType getDestroyedType() const { return DestroyedType; }
944
945  /// \brief Retrieve the location of the type being destroyed.
946  SourceLocation getDestroyedTypeLoc() const { return DestroyedTypeLoc; }
947
948  virtual SourceRange getSourceRange() const {
949    return SourceRange(Base->getLocStart(), DestroyedTypeLoc);
950  }
951
952  static bool classof(const Stmt *T) {
953    return T->getStmtClass() == CXXPseudoDestructorExprClass;
954  }
955  static bool classof(const CXXPseudoDestructorExpr *) { return true; }
956
957  // Iterators
958  virtual child_iterator child_begin();
959  virtual child_iterator child_end();
960};
961
962/// UnaryTypeTraitExpr - A GCC or MS unary type trait, as used in the
963/// implementation of TR1/C++0x type trait templates.
964/// Example:
965/// __is_pod(int) == true
966/// __is_enum(std::string) == false
967class UnaryTypeTraitExpr : public Expr {
968  /// UTT - The trait.
969  UnaryTypeTrait UTT;
970
971  /// Loc - The location of the type trait keyword.
972  SourceLocation Loc;
973
974  /// RParen - The location of the closing paren.
975  SourceLocation RParen;
976
977  /// QueriedType - The type we're testing.
978  QualType QueriedType;
979
980public:
981  UnaryTypeTraitExpr(SourceLocation loc, UnaryTypeTrait utt, QualType queried,
982                     SourceLocation rparen, QualType ty)
983    : Expr(UnaryTypeTraitExprClass, ty, false, queried->isDependentType()),
984      UTT(utt), Loc(loc), RParen(rparen), QueriedType(queried) { }
985
986  virtual SourceRange getSourceRange() const { return SourceRange(Loc, RParen);}
987
988  UnaryTypeTrait getTrait() const { return UTT; }
989
990  QualType getQueriedType() const { return QueriedType; }
991
992  bool EvaluateTrait(ASTContext&) const;
993
994  static bool classof(const Stmt *T) {
995    return T->getStmtClass() == UnaryTypeTraitExprClass;
996  }
997  static bool classof(const UnaryTypeTraitExpr *) { return true; }
998
999  // Iterators
1000  virtual child_iterator child_begin();
1001  virtual child_iterator child_end();
1002};
1003
1004/// \brief A reference to a name which we were able to look up during
1005/// parsing but could not resolve to a specific declaration.  This
1006/// arises in several ways:
1007///   * we might be waiting for argument-dependent lookup
1008///   * the name might resolve to an overloaded function
1009/// and eventually:
1010///   * the lookup might have included a function template
1011/// These never include UnresolvedUsingValueDecls, which are always
1012/// class members and therefore appear only in
1013/// UnresolvedMemberLookupExprs.
1014class UnresolvedLookupExpr : public Expr {
1015  /// The results.  These are undesugared, which is to say, they may
1016  /// include UsingShadowDecls.
1017  UnresolvedSet Results;
1018
1019  /// The name declared.
1020  DeclarationName Name;
1021
1022  /// The qualifier given, if any.
1023  NestedNameSpecifier *Qualifier;
1024
1025  /// The source range of the nested name specifier.
1026  SourceRange QualifierRange;
1027
1028  /// The location of the name.
1029  SourceLocation NameLoc;
1030
1031  /// True if these lookup results should be extended by
1032  /// argument-dependent lookup if this is the operand of a function
1033  /// call.
1034  bool RequiresADL;
1035
1036  /// True if these lookup results are overloaded.  This is pretty
1037  /// trivially rederivable if we urgently need to kill this field.
1038  bool Overloaded;
1039
1040  /// True if the name looked up had explicit template arguments.
1041  /// This requires all the results to be function templates.
1042  bool HasExplicitTemplateArgs;
1043
1044  UnresolvedLookupExpr(QualType T, bool Dependent,
1045                       NestedNameSpecifier *Qualifier, SourceRange QRange,
1046                       DeclarationName Name, SourceLocation NameLoc,
1047                       bool RequiresADL, bool Overloaded, bool HasTemplateArgs)
1048    : Expr(UnresolvedLookupExprClass, T, Dependent, Dependent),
1049      Name(Name), Qualifier(Qualifier), QualifierRange(QRange),
1050      NameLoc(NameLoc), RequiresADL(RequiresADL), Overloaded(Overloaded),
1051      HasExplicitTemplateArgs(HasTemplateArgs)
1052  {}
1053
1054public:
1055  static UnresolvedLookupExpr *Create(ASTContext &C,
1056                                      bool Dependent,
1057                                      NestedNameSpecifier *Qualifier,
1058                                      SourceRange QualifierRange,
1059                                      DeclarationName Name,
1060                                      SourceLocation NameLoc,
1061                                      bool ADL, bool Overloaded) {
1062    return new(C) UnresolvedLookupExpr(Dependent ? C.DependentTy : C.OverloadTy,
1063                                       Dependent, Qualifier, QualifierRange,
1064                                       Name, NameLoc, ADL, Overloaded, false);
1065  }
1066
1067  static UnresolvedLookupExpr *Create(ASTContext &C,
1068                                      bool Dependent,
1069                                      NestedNameSpecifier *Qualifier,
1070                                      SourceRange QualifierRange,
1071                                      DeclarationName Name,
1072                                      SourceLocation NameLoc,
1073                                      bool ADL,
1074                                      const TemplateArgumentListInfo &Args);
1075
1076  /// Computes whether an unresolved lookup on the given declarations
1077  /// and optional template arguments is type- and value-dependent.
1078  static bool ComputeDependence(NamedDecl * const *Begin,
1079                                NamedDecl * const *End,
1080                                const TemplateArgumentListInfo *Args);
1081
1082  void addDecl(NamedDecl *Decl) {
1083    Results.addDecl(Decl);
1084  }
1085
1086  typedef UnresolvedSet::iterator decls_iterator;
1087  decls_iterator decls_begin() const { return Results.begin(); }
1088  decls_iterator decls_end() const { return Results.end(); }
1089
1090  /// True if this declaration should be extended by
1091  /// argument-dependent lookup.
1092  bool requiresADL() const { return RequiresADL; }
1093
1094  /// True if this lookup is overloaded.
1095  bool isOverloaded() const { return Overloaded; }
1096
1097  /// Fetches the name looked up.
1098  DeclarationName getName() const { return Name; }
1099
1100  /// Gets the location of the name.
1101  SourceLocation getNameLoc() const { return NameLoc; }
1102
1103  /// Fetches the nested-name qualifier, if one was given.
1104  NestedNameSpecifier *getQualifier() const { return Qualifier; }
1105
1106  /// Fetches the range of the nested-name qualifier.
1107  SourceRange getQualifierRange() const { return QualifierRange; }
1108
1109  /// Determines whether this lookup had explicit template arguments.
1110  bool hasExplicitTemplateArgs() const { return HasExplicitTemplateArgs; }
1111
1112  // Note that, inconsistently with the explicit-template-argument AST
1113  // nodes, users are *forbidden* from calling these methods on objects
1114  // without explicit template arguments.
1115
1116  /// Gets a reference to the explicit template argument list.
1117  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
1118    assert(hasExplicitTemplateArgs());
1119    return *reinterpret_cast<const ExplicitTemplateArgumentList*>(this + 1);
1120  }
1121
1122  /// \brief Copies the template arguments (if present) into the given
1123  /// structure.
1124  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1125    getExplicitTemplateArgs().copyInto(List);
1126  }
1127
1128  SourceLocation getLAngleLoc() const {
1129    return getExplicitTemplateArgs().LAngleLoc;
1130  }
1131
1132  SourceLocation getRAngleLoc() const {
1133    return getExplicitTemplateArgs().RAngleLoc;
1134  }
1135
1136  TemplateArgumentLoc const *getTemplateArgs() const {
1137    return getExplicitTemplateArgs().getTemplateArgs();
1138  }
1139
1140  unsigned getNumTemplateArgs() const {
1141    return getExplicitTemplateArgs().NumTemplateArgs;
1142  }
1143
1144  virtual SourceRange getSourceRange() const {
1145    SourceRange Range(NameLoc);
1146    if (Qualifier) Range.setBegin(QualifierRange.getBegin());
1147    if (hasExplicitTemplateArgs()) Range.setEnd(getRAngleLoc());
1148    return Range;
1149  }
1150
1151  virtual StmtIterator child_begin();
1152  virtual StmtIterator child_end();
1153
1154  static bool classof(const Stmt *T) {
1155    return T->getStmtClass() == UnresolvedLookupExprClass;
1156  }
1157  static bool classof(const UnresolvedLookupExpr *) { return true; }
1158};
1159
1160/// \brief A qualified reference to a name whose declaration cannot
1161/// yet be resolved.
1162///
1163/// DependentScopeDeclRefExpr is similar to DeclRefExpr in that
1164/// it expresses a reference to a declaration such as
1165/// X<T>::value. The difference, however, is that an
1166/// DependentScopeDeclRefExpr node is used only within C++ templates when
1167/// the qualification (e.g., X<T>::) refers to a dependent type. In
1168/// this case, X<T>::value cannot resolve to a declaration because the
1169/// declaration will differ from on instantiation of X<T> to the
1170/// next. Therefore, DependentScopeDeclRefExpr keeps track of the
1171/// qualifier (X<T>::) and the name of the entity being referenced
1172/// ("value"). Such expressions will instantiate to a DeclRefExpr once the
1173/// declaration can be found.
1174class DependentScopeDeclRefExpr : public Expr {
1175  /// The name of the entity we will be referencing.
1176  DeclarationName Name;
1177
1178  /// Location of the name of the declaration we're referencing.
1179  SourceLocation Loc;
1180
1181  /// QualifierRange - The source range that covers the
1182  /// nested-name-specifier.
1183  SourceRange QualifierRange;
1184
1185  /// \brief The nested-name-specifier that qualifies this unresolved
1186  /// declaration name.
1187  NestedNameSpecifier *Qualifier;
1188
1189  /// \brief Whether the name includes explicit template arguments.
1190  bool HasExplicitTemplateArgs;
1191
1192  DependentScopeDeclRefExpr(QualType T,
1193                            NestedNameSpecifier *Qualifier,
1194                            SourceRange QualifierRange,
1195                            DeclarationName Name,
1196                            SourceLocation NameLoc,
1197                            bool HasExplicitTemplateArgs)
1198    : Expr(DependentScopeDeclRefExprClass, T, true, true),
1199      Name(Name), Loc(NameLoc),
1200      QualifierRange(QualifierRange), Qualifier(Qualifier),
1201      HasExplicitTemplateArgs(HasExplicitTemplateArgs)
1202  {}
1203
1204public:
1205  static DependentScopeDeclRefExpr *Create(ASTContext &C,
1206                                           NestedNameSpecifier *Qualifier,
1207                                           SourceRange QualifierRange,
1208                                           DeclarationName Name,
1209                                           SourceLocation NameLoc,
1210                              const TemplateArgumentListInfo *TemplateArgs = 0);
1211
1212  /// \brief Retrieve the name that this expression refers to.
1213  DeclarationName getDeclName() const { return Name; }
1214
1215  /// \brief Retrieve the location of the name within the expression.
1216  SourceLocation getLocation() const { return Loc; }
1217
1218  /// \brief Retrieve the source range of the nested-name-specifier.
1219  SourceRange getQualifierRange() const { return QualifierRange; }
1220
1221  /// \brief Retrieve the nested-name-specifier that qualifies this
1222  /// declaration.
1223  NestedNameSpecifier *getQualifier() const { return Qualifier; }
1224
1225  /// Determines whether this lookup had explicit template arguments.
1226  bool hasExplicitTemplateArgs() const { return HasExplicitTemplateArgs; }
1227
1228  // Note that, inconsistently with the explicit-template-argument AST
1229  // nodes, users are *forbidden* from calling these methods on objects
1230  // without explicit template arguments.
1231
1232  /// Gets a reference to the explicit template argument list.
1233  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
1234    assert(hasExplicitTemplateArgs());
1235    return *reinterpret_cast<const ExplicitTemplateArgumentList*>(this + 1);
1236  }
1237
1238  /// \brief Copies the template arguments (if present) into the given
1239  /// structure.
1240  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1241    getExplicitTemplateArgs().copyInto(List);
1242  }
1243
1244  SourceLocation getLAngleLoc() const {
1245    return getExplicitTemplateArgs().LAngleLoc;
1246  }
1247
1248  SourceLocation getRAngleLoc() const {
1249    return getExplicitTemplateArgs().RAngleLoc;
1250  }
1251
1252  TemplateArgumentLoc const *getTemplateArgs() const {
1253    return getExplicitTemplateArgs().getTemplateArgs();
1254  }
1255
1256  unsigned getNumTemplateArgs() const {
1257    return getExplicitTemplateArgs().NumTemplateArgs;
1258  }
1259
1260  virtual SourceRange getSourceRange() const {
1261    SourceRange Range(QualifierRange.getBegin(), getLocation());
1262    if (hasExplicitTemplateArgs())
1263      Range.setEnd(getRAngleLoc());
1264    return Range;
1265  }
1266
1267  static bool classof(const Stmt *T) {
1268    return T->getStmtClass() == DependentScopeDeclRefExprClass;
1269  }
1270  static bool classof(const DependentScopeDeclRefExpr *) { return true; }
1271
1272  virtual StmtIterator child_begin();
1273  virtual StmtIterator child_end();
1274};
1275
1276class CXXExprWithTemporaries : public Expr {
1277  Stmt *SubExpr;
1278
1279  CXXTemporary **Temps;
1280  unsigned NumTemps;
1281
1282  CXXExprWithTemporaries(Expr *SubExpr, CXXTemporary **Temps,
1283                         unsigned NumTemps);
1284  ~CXXExprWithTemporaries();
1285
1286protected:
1287  virtual void DoDestroy(ASTContext &C);
1288
1289public:
1290  static CXXExprWithTemporaries *Create(ASTContext &C, Expr *SubExpr,
1291                                        CXXTemporary **Temps,
1292                                        unsigned NumTemps);
1293
1294  unsigned getNumTemporaries() const { return NumTemps; }
1295  CXXTemporary *getTemporary(unsigned i) {
1296    assert(i < NumTemps && "Index out of range");
1297    return Temps[i];
1298  }
1299  const CXXTemporary *getTemporary(unsigned i) const {
1300    return const_cast<CXXExprWithTemporaries*>(this)->getTemporary(i);
1301  }
1302
1303  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
1304  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
1305  void setSubExpr(Expr *E) { SubExpr = E; }
1306
1307  virtual SourceRange getSourceRange() const {
1308    return SubExpr->getSourceRange();
1309  }
1310
1311  // Implement isa/cast/dyncast/etc.
1312  static bool classof(const Stmt *T) {
1313    return T->getStmtClass() == CXXExprWithTemporariesClass;
1314  }
1315  static bool classof(const CXXExprWithTemporaries *) { return true; }
1316
1317  // Iterators
1318  virtual child_iterator child_begin();
1319  virtual child_iterator child_end();
1320};
1321
1322/// \brief Describes an explicit type conversion that uses functional
1323/// notion but could not be resolved because one or more arguments are
1324/// type-dependent.
1325///
1326/// The explicit type conversions expressed by
1327/// CXXUnresolvedConstructExpr have the form \c T(a1, a2, ..., aN),
1328/// where \c T is some type and \c a1, a2, ..., aN are values, and
1329/// either \C T is a dependent type or one or more of the \c a's is
1330/// type-dependent. For example, this would occur in a template such
1331/// as:
1332///
1333/// \code
1334///   template<typename T, typename A1>
1335///   inline T make_a(const A1& a1) {
1336///     return T(a1);
1337///   }
1338/// \endcode
1339///
1340/// When the returned expression is instantiated, it may resolve to a
1341/// constructor call, conversion function call, or some kind of type
1342/// conversion.
1343class CXXUnresolvedConstructExpr : public Expr {
1344  /// \brief The starting location of the type
1345  SourceLocation TyBeginLoc;
1346
1347  /// \brief The type being constructed.
1348  QualType Type;
1349
1350  /// \brief The location of the left parentheses ('(').
1351  SourceLocation LParenLoc;
1352
1353  /// \brief The location of the right parentheses (')').
1354  SourceLocation RParenLoc;
1355
1356  /// \brief The number of arguments used to construct the type.
1357  unsigned NumArgs;
1358
1359  CXXUnresolvedConstructExpr(SourceLocation TyBegin,
1360                             QualType T,
1361                             SourceLocation LParenLoc,
1362                             Expr **Args,
1363                             unsigned NumArgs,
1364                             SourceLocation RParenLoc);
1365
1366public:
1367  static CXXUnresolvedConstructExpr *Create(ASTContext &C,
1368                                            SourceLocation TyBegin,
1369                                            QualType T,
1370                                            SourceLocation LParenLoc,
1371                                            Expr **Args,
1372                                            unsigned NumArgs,
1373                                            SourceLocation RParenLoc);
1374
1375  /// \brief Retrieve the source location where the type begins.
1376  SourceLocation getTypeBeginLoc() const { return TyBeginLoc; }
1377  void setTypeBeginLoc(SourceLocation L) { TyBeginLoc = L; }
1378
1379  /// \brief Retrieve the type that is being constructed, as specified
1380  /// in the source code.
1381  QualType getTypeAsWritten() const { return Type; }
1382  void setTypeAsWritten(QualType T) { Type = T; }
1383
1384  /// \brief Retrieve the location of the left parentheses ('(') that
1385  /// precedes the argument list.
1386  SourceLocation getLParenLoc() const { return LParenLoc; }
1387  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
1388
1389  /// \brief Retrieve the location of the right parentheses (')') that
1390  /// follows the argument list.
1391  SourceLocation getRParenLoc() const { return RParenLoc; }
1392  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1393
1394  /// \brief Retrieve the number of arguments.
1395  unsigned arg_size() const { return NumArgs; }
1396
1397  typedef Expr** arg_iterator;
1398  arg_iterator arg_begin() { return reinterpret_cast<Expr**>(this + 1); }
1399  arg_iterator arg_end() { return arg_begin() + NumArgs; }
1400
1401  Expr *getArg(unsigned I) {
1402    assert(I < NumArgs && "Argument index out-of-range");
1403    return *(arg_begin() + I);
1404  }
1405
1406  virtual SourceRange getSourceRange() const {
1407    return SourceRange(TyBeginLoc, RParenLoc);
1408  }
1409  static bool classof(const Stmt *T) {
1410    return T->getStmtClass() == CXXUnresolvedConstructExprClass;
1411  }
1412  static bool classof(const CXXUnresolvedConstructExpr *) { return true; }
1413
1414  // Iterators
1415  virtual child_iterator child_begin();
1416  virtual child_iterator child_end();
1417};
1418
1419/// \brief Represents a C++ member access expression where the actual
1420/// member referenced could not be resolved because the base
1421/// expression or the member name was dependent.
1422///
1423/// Like UnresolvedMemberExprs, these can be either implicit or
1424/// explicit accesses.  It is only possible to get one of these with
1425/// an implicit access if a qualifier is provided.
1426class CXXDependentScopeMemberExpr : public Expr {
1427  /// \brief The expression for the base pointer or class reference,
1428  /// e.g., the \c x in x.f.  Can be null in implicit accesses.
1429  Stmt *Base;
1430
1431  /// \brief The type of the base expression.  Never null, even for
1432  /// implicit accesses.
1433  QualType BaseType;
1434
1435  /// \brief Whether this member expression used the '->' operator or
1436  /// the '.' operator.
1437  bool IsArrow : 1;
1438
1439  /// \brief Whether this member expression has explicitly-specified template
1440  /// arguments.
1441  bool HasExplicitTemplateArgs : 1;
1442
1443  /// \brief The location of the '->' or '.' operator.
1444  SourceLocation OperatorLoc;
1445
1446  /// \brief The nested-name-specifier that precedes the member name, if any.
1447  NestedNameSpecifier *Qualifier;
1448
1449  /// \brief The source range covering the nested name specifier.
1450  SourceRange QualifierRange;
1451
1452  /// \brief In a qualified member access expression such as t->Base::f, this
1453  /// member stores the resolves of name lookup in the context of the member
1454  /// access expression, to be used at instantiation time.
1455  ///
1456  /// FIXME: This member, along with the Qualifier and QualifierRange, could
1457  /// be stuck into a structure that is optionally allocated at the end of
1458  /// the CXXDependentScopeMemberExpr, to save space in the common case.
1459  NamedDecl *FirstQualifierFoundInScope;
1460
1461  /// \brief The member to which this member expression refers, which
1462  /// can be name, overloaded operator, or destructor.
1463  /// FIXME: could also be a template-id
1464  DeclarationName Member;
1465
1466  /// \brief The location of the member name.
1467  SourceLocation MemberLoc;
1468
1469  /// \brief Retrieve the explicit template argument list that followed the
1470  /// member template name, if any.
1471  ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() {
1472    assert(HasExplicitTemplateArgs);
1473    return reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
1474  }
1475
1476  /// \brief Retrieve the explicit template argument list that followed the
1477  /// member template name, if any.
1478  const ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() const {
1479    return const_cast<CXXDependentScopeMemberExpr *>(this)
1480             ->getExplicitTemplateArgumentList();
1481  }
1482
1483  CXXDependentScopeMemberExpr(ASTContext &C,
1484                          Expr *Base, QualType BaseType, bool IsArrow,
1485                          SourceLocation OperatorLoc,
1486                          NestedNameSpecifier *Qualifier,
1487                          SourceRange QualifierRange,
1488                          NamedDecl *FirstQualifierFoundInScope,
1489                          DeclarationName Member,
1490                          SourceLocation MemberLoc,
1491                          const TemplateArgumentListInfo *TemplateArgs);
1492
1493public:
1494  CXXDependentScopeMemberExpr(ASTContext &C,
1495                          Expr *Base, QualType BaseType,
1496                          bool IsArrow,
1497                          SourceLocation OperatorLoc,
1498                          NestedNameSpecifier *Qualifier,
1499                          SourceRange QualifierRange,
1500                          NamedDecl *FirstQualifierFoundInScope,
1501                          DeclarationName Member,
1502                          SourceLocation MemberLoc)
1503  : Expr(CXXDependentScopeMemberExprClass, C.DependentTy, true, true),
1504    Base(Base), BaseType(BaseType), IsArrow(IsArrow),
1505    HasExplicitTemplateArgs(false), OperatorLoc(OperatorLoc),
1506    Qualifier(Qualifier), QualifierRange(QualifierRange),
1507    FirstQualifierFoundInScope(FirstQualifierFoundInScope),
1508    Member(Member), MemberLoc(MemberLoc) { }
1509
1510  static CXXDependentScopeMemberExpr *
1511  Create(ASTContext &C,
1512         Expr *Base, QualType BaseType, bool IsArrow,
1513         SourceLocation OperatorLoc,
1514         NestedNameSpecifier *Qualifier,
1515         SourceRange QualifierRange,
1516         NamedDecl *FirstQualifierFoundInScope,
1517         DeclarationName Member,
1518         SourceLocation MemberLoc,
1519         const TemplateArgumentListInfo *TemplateArgs);
1520
1521  /// \brief True if this is an implicit access, i.e. one in which the
1522  /// member being accessed was not written in the source.  The source
1523  /// location of the operator is invalid in this case.
1524  bool isImplicitAccess() const { return Base == 0; }
1525
1526  /// \brief Retrieve the base object of this member expressions,
1527  /// e.g., the \c x in \c x.m.
1528  Expr *getBase() const {
1529    assert(!isImplicitAccess());
1530    return cast<Expr>(Base);
1531  }
1532  void setBase(Expr *E) { Base = E; }
1533
1534  QualType getBaseType() const { return BaseType; }
1535
1536  /// \brief Determine whether this member expression used the '->'
1537  /// operator; otherwise, it used the '.' operator.
1538  bool isArrow() const { return IsArrow; }
1539  void setArrow(bool A) { IsArrow = A; }
1540
1541  /// \brief Retrieve the location of the '->' or '.' operator.
1542  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1543  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
1544
1545  /// \brief Retrieve the nested-name-specifier that qualifies the member
1546  /// name.
1547  NestedNameSpecifier *getQualifier() const { return Qualifier; }
1548
1549  /// \brief Retrieve the source range covering the nested-name-specifier
1550  /// that qualifies the member name.
1551  SourceRange getQualifierRange() const { return QualifierRange; }
1552
1553  /// \brief Retrieve the first part of the nested-name-specifier that was
1554  /// found in the scope of the member access expression when the member access
1555  /// was initially parsed.
1556  ///
1557  /// This function only returns a useful result when member access expression
1558  /// uses a qualified member name, e.g., "x.Base::f". Here, the declaration
1559  /// returned by this function describes what was found by unqualified name
1560  /// lookup for the identifier "Base" within the scope of the member access
1561  /// expression itself. At template instantiation time, this information is
1562  /// combined with the results of name lookup into the type of the object
1563  /// expression itself (the class type of x).
1564  NamedDecl *getFirstQualifierFoundInScope() const {
1565    return FirstQualifierFoundInScope;
1566  }
1567
1568  /// \brief Retrieve the name of the member that this expression
1569  /// refers to.
1570  DeclarationName getMember() const { return Member; }
1571  void setMember(DeclarationName N) { Member = N; }
1572
1573  // \brief Retrieve the location of the name of the member that this
1574  // expression refers to.
1575  SourceLocation getMemberLoc() const { return MemberLoc; }
1576  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
1577
1578  /// \brief Determines whether this member expression actually had a C++
1579  /// template argument list explicitly specified, e.g., x.f<int>.
1580  bool hasExplicitTemplateArgs() const {
1581    return HasExplicitTemplateArgs;
1582  }
1583
1584  /// \brief Copies the template arguments (if present) into the given
1585  /// structure.
1586  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1587    assert(HasExplicitTemplateArgs);
1588    getExplicitTemplateArgumentList()->copyInto(List);
1589  }
1590
1591  /// \brief Retrieve the location of the left angle bracket following the
1592  /// member name ('<'), if any.
1593  SourceLocation getLAngleLoc() const {
1594    assert(HasExplicitTemplateArgs);
1595    return getExplicitTemplateArgumentList()->LAngleLoc;
1596  }
1597
1598  /// \brief Retrieve the template arguments provided as part of this
1599  /// template-id.
1600  const TemplateArgumentLoc *getTemplateArgs() const {
1601    assert(HasExplicitTemplateArgs);
1602    return getExplicitTemplateArgumentList()->getTemplateArgs();
1603  }
1604
1605  /// \brief Retrieve the number of template arguments provided as part of this
1606  /// template-id.
1607  unsigned getNumTemplateArgs() const {
1608    assert(HasExplicitTemplateArgs);
1609    return getExplicitTemplateArgumentList()->NumTemplateArgs;
1610  }
1611
1612  /// \brief Retrieve the location of the right angle bracket following the
1613  /// template arguments ('>').
1614  SourceLocation getRAngleLoc() const {
1615    assert(HasExplicitTemplateArgs);
1616    return getExplicitTemplateArgumentList()->RAngleLoc;
1617  }
1618
1619  virtual SourceRange getSourceRange() const {
1620    SourceRange Range;
1621    if (!isImplicitAccess())
1622      Range.setBegin(Base->getSourceRange().getBegin());
1623    else if (getQualifier())
1624      Range.setBegin(getQualifierRange().getBegin());
1625    else
1626      Range.setBegin(MemberLoc);
1627
1628    if (hasExplicitTemplateArgs())
1629      Range.setEnd(getRAngleLoc());
1630    else
1631      Range.setEnd(MemberLoc);
1632    return Range;
1633  }
1634
1635  static bool classof(const Stmt *T) {
1636    return T->getStmtClass() == CXXDependentScopeMemberExprClass;
1637  }
1638  static bool classof(const CXXDependentScopeMemberExpr *) { return true; }
1639
1640  // Iterators
1641  virtual child_iterator child_begin();
1642  virtual child_iterator child_end();
1643};
1644
1645/// \brief Represents a C++ member access expression for which lookup
1646/// produced a set of overloaded functions.
1647///
1648/// The member access may be explicit or implicit:
1649///    struct A {
1650///      int a, b;
1651///      int explicitAccess() { return this->a + this->A::b; }
1652///      int implicitAccess() { return a + A::b; }
1653///    };
1654///
1655/// In the final AST, an explicit access always becomes a MemberExpr.
1656/// An implicit access may become either a MemberExpr or a
1657/// DeclRefExpr, depending on whether the member is static.
1658class UnresolvedMemberExpr : public Expr {
1659  /// The results.  These are undesugared, which is to say, they may
1660  /// include UsingShadowDecls.
1661  UnresolvedSet Results;
1662
1663  /// \brief The expression for the base pointer or class reference,
1664  /// e.g., the \c x in x.f.  This can be null if this is an 'unbased'
1665  /// member expression
1666  Stmt *Base;
1667
1668  /// \brief The type of the base expression;  never null.
1669  QualType BaseType;
1670
1671  /// \brief Whether this member expression used the '->' operator or
1672  /// the '.' operator.
1673  bool IsArrow : 1;
1674
1675  /// \brief Whether the lookup results contain an unresolved using
1676  /// declaration.
1677  bool HasUnresolvedUsing : 1;
1678
1679  /// \brief Whether this member expression has explicitly-specified template
1680  /// arguments.
1681  bool HasExplicitTemplateArgs : 1;
1682
1683  /// \brief The location of the '->' or '.' operator.
1684  SourceLocation OperatorLoc;
1685
1686  /// \brief The nested-name-specifier that precedes the member name, if any.
1687  NestedNameSpecifier *Qualifier;
1688
1689  /// \brief The source range covering the nested name specifier.
1690  SourceRange QualifierRange;
1691
1692  /// \brief The member to which this member expression refers, which
1693  /// can be a name or an overloaded operator.
1694  DeclarationName MemberName;
1695
1696  /// \brief The location of the member name.
1697  SourceLocation MemberLoc;
1698
1699  /// \brief Retrieve the explicit template argument list that followed the
1700  /// member template name.
1701  ExplicitTemplateArgumentList *getExplicitTemplateArgs() {
1702    assert(HasExplicitTemplateArgs);
1703    return reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
1704  }
1705
1706  /// \brief Retrieve the explicit template argument list that followed the
1707  /// member template name, if any.
1708  const ExplicitTemplateArgumentList *getExplicitTemplateArgs() const {
1709    return const_cast<UnresolvedMemberExpr*>(this)->getExplicitTemplateArgs();
1710  }
1711
1712  UnresolvedMemberExpr(QualType T, bool Dependent,
1713                       bool HasUnresolvedUsing,
1714                       Expr *Base, QualType BaseType, bool IsArrow,
1715                       SourceLocation OperatorLoc,
1716                       NestedNameSpecifier *Qualifier,
1717                       SourceRange QualifierRange,
1718                       DeclarationName Member,
1719                       SourceLocation MemberLoc,
1720                       const TemplateArgumentListInfo *TemplateArgs);
1721
1722public:
1723  static UnresolvedMemberExpr *
1724  Create(ASTContext &C, bool Dependent, bool HasUnresolvedUsing,
1725         Expr *Base, QualType BaseType, bool IsArrow,
1726         SourceLocation OperatorLoc,
1727         NestedNameSpecifier *Qualifier,
1728         SourceRange QualifierRange,
1729         DeclarationName Member,
1730         SourceLocation MemberLoc,
1731         const TemplateArgumentListInfo *TemplateArgs);
1732
1733  /// Adds a declaration to the unresolved set.  By assumption, all of
1734  /// these happen at initialization time and properties like
1735  /// 'Dependent' and 'HasUnresolvedUsing' take them into account.
1736  void addDecl(NamedDecl *Decl) {
1737    Results.addDecl(Decl);
1738  }
1739
1740  typedef UnresolvedSet::iterator decls_iterator;
1741  decls_iterator decls_begin() const { return Results.begin(); }
1742  decls_iterator decls_end() const { return Results.end(); }
1743
1744  unsigned getNumDecls() const { return Results.size(); }
1745
1746  /// \brief True if this is an implicit access, i.e. one in which the
1747  /// member being accessed was not written in the source.  The source
1748  /// location of the operator is invalid in this case.
1749  bool isImplicitAccess() const { return Base == 0; }
1750
1751  /// \brief Retrieve the base object of this member expressions,
1752  /// e.g., the \c x in \c x.m.
1753  Expr *getBase() {
1754    assert(!isImplicitAccess());
1755    return cast<Expr>(Base);
1756  }
1757  void setBase(Expr *E) { Base = E; }
1758
1759  QualType getBaseType() const { return BaseType; }
1760
1761  /// \brief Determine whether this member expression used the '->'
1762  /// operator; otherwise, it used the '.' operator.
1763  bool isArrow() const { return IsArrow; }
1764  void setArrow(bool A) { IsArrow = A; }
1765
1766  /// \brief Retrieve the location of the '->' or '.' operator.
1767  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1768  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
1769
1770  /// \brief Retrieve the nested-name-specifier that qualifies the member
1771  /// name.
1772  NestedNameSpecifier *getQualifier() const { return Qualifier; }
1773
1774  /// \brief Retrieve the source range covering the nested-name-specifier
1775  /// that qualifies the member name.
1776  SourceRange getQualifierRange() const { return QualifierRange; }
1777
1778  /// \brief Retrieve the name of the member that this expression
1779  /// refers to.
1780  DeclarationName getMemberName() const { return MemberName; }
1781  void setMemberName(DeclarationName N) { MemberName = N; }
1782
1783  // \brief Retrieve the location of the name of the member that this
1784  // expression refers to.
1785  SourceLocation getMemberLoc() const { return MemberLoc; }
1786  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
1787
1788  /// \brief Determines whether this member expression actually had a C++
1789  /// template argument list explicitly specified, e.g., x.f<int>.
1790  bool hasExplicitTemplateArgs() const {
1791    return HasExplicitTemplateArgs;
1792  }
1793
1794  /// \brief Copies the template arguments into the given structure.
1795  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1796    getExplicitTemplateArgs()->copyInto(List);
1797  }
1798
1799  /// \brief Retrieve the location of the left angle bracket following
1800  /// the member name ('<').
1801  SourceLocation getLAngleLoc() const {
1802    return getExplicitTemplateArgs()->LAngleLoc;
1803  }
1804
1805  /// \brief Retrieve the template arguments provided as part of this
1806  /// template-id.
1807  const TemplateArgumentLoc *getTemplateArgs() const {
1808    return getExplicitTemplateArgs()->getTemplateArgs();
1809  }
1810
1811  /// \brief Retrieve the number of template arguments provided as
1812  /// part of this template-id.
1813  unsigned getNumTemplateArgs() const {
1814    return getExplicitTemplateArgs()->NumTemplateArgs;
1815  }
1816
1817  /// \brief Retrieve the location of the right angle bracket
1818  /// following the template arguments ('>').
1819  SourceLocation getRAngleLoc() const {
1820    return getExplicitTemplateArgs()->RAngleLoc;
1821  }
1822
1823  virtual SourceRange getSourceRange() const {
1824    SourceRange Range;
1825    if (!isImplicitAccess())
1826      Range.setBegin(Base->getSourceRange().getBegin());
1827    else if (getQualifier())
1828      Range.setBegin(getQualifierRange().getBegin());
1829    else
1830      Range.setBegin(MemberLoc);
1831
1832    if (hasExplicitTemplateArgs())
1833      Range.setEnd(getRAngleLoc());
1834    else
1835      Range.setEnd(MemberLoc);
1836    return Range;
1837  }
1838
1839  static bool classof(const Stmt *T) {
1840    return T->getStmtClass() == UnresolvedMemberExprClass;
1841  }
1842  static bool classof(const UnresolvedMemberExpr *) { return true; }
1843
1844  // Iterators
1845  virtual child_iterator child_begin();
1846  virtual child_iterator child_end();
1847};
1848
1849}  // end namespace clang
1850
1851#endif
1852