ExprCXX.h revision 1bb2a93ab7b1499dda6f6b58865bd0dce1864228
1//===--- ExprCXX.h - Classes for representing expressions -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses for C++ expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPRCXX_H
15#define LLVM_CLANG_AST_EXPRCXX_H
16
17#include "clang/Basic/TypeTraits.h"
18#include "clang/AST/Expr.h"
19#include "clang/AST/UnresolvedSet.h"
20#include "clang/AST/TemplateBase.h"
21
22namespace clang {
23
24  class CXXConstructorDecl;
25  class CXXDestructorDecl;
26  class CXXMethodDecl;
27  class CXXTemporary;
28  class TemplateArgumentListInfo;
29
30//===--------------------------------------------------------------------===//
31// C++ Expressions.
32//===--------------------------------------------------------------------===//
33
34/// \brief A call to an overloaded operator written using operator
35/// syntax.
36///
37/// Represents a call to an overloaded operator written using operator
38/// syntax, e.g., "x + y" or "*p". While semantically equivalent to a
39/// normal call, this AST node provides better information about the
40/// syntactic representation of the call.
41///
42/// In a C++ template, this expression node kind will be used whenever
43/// any of the arguments are type-dependent. In this case, the
44/// function itself will be a (possibly empty) set of functions and
45/// function templates that were found by name lookup at template
46/// definition time.
47class CXXOperatorCallExpr : public CallExpr {
48  /// \brief The overloaded operator.
49  OverloadedOperatorKind Operator;
50
51public:
52  CXXOperatorCallExpr(ASTContext& C, OverloadedOperatorKind Op, Expr *fn,
53                      Expr **args, unsigned numargs, QualType t,
54                      SourceLocation operatorloc)
55    : CallExpr(C, CXXOperatorCallExprClass, fn, args, numargs, t, operatorloc),
56      Operator(Op) {}
57  explicit CXXOperatorCallExpr(ASTContext& C, EmptyShell Empty) :
58    CallExpr(C, CXXOperatorCallExprClass, Empty) { }
59
60
61  /// getOperator - Returns the kind of overloaded operator that this
62  /// expression refers to.
63  OverloadedOperatorKind getOperator() const { return Operator; }
64  void setOperator(OverloadedOperatorKind Kind) { Operator = Kind; }
65
66  /// getOperatorLoc - Returns the location of the operator symbol in
67  /// the expression. When @c getOperator()==OO_Call, this is the
68  /// location of the right parentheses; when @c
69  /// getOperator()==OO_Subscript, this is the location of the right
70  /// bracket.
71  SourceLocation getOperatorLoc() const { return getRParenLoc(); }
72
73  virtual SourceRange getSourceRange() const;
74
75  static bool classof(const Stmt *T) {
76    return T->getStmtClass() == CXXOperatorCallExprClass;
77  }
78  static bool classof(const CXXOperatorCallExpr *) { return true; }
79};
80
81/// CXXMemberCallExpr - Represents a call to a member function that
82/// may be written either with member call syntax (e.g., "obj.func()"
83/// or "objptr->func()") or with normal function-call syntax
84/// ("func()") within a member function that ends up calling a member
85/// function. The callee in either case is a MemberExpr that contains
86/// both the object argument and the member function, while the
87/// arguments are the arguments within the parentheses (not including
88/// the object argument).
89class CXXMemberCallExpr : public CallExpr {
90public:
91  CXXMemberCallExpr(ASTContext &C, Expr *fn, Expr **args, unsigned numargs,
92                    QualType t, SourceLocation rparenloc)
93    : CallExpr(C, CXXMemberCallExprClass, fn, args, numargs, t, rparenloc) {}
94
95  CXXMemberCallExpr(ASTContext &C, EmptyShell Empty)
96    : CallExpr(C, CXXMemberCallExprClass, Empty) { }
97
98  /// getImplicitObjectArgument - Retrieves the implicit object
99  /// argument for the member call. For example, in "x.f(5)", this
100  /// operation would return "x".
101  Expr *getImplicitObjectArgument();
102
103  virtual SourceRange getSourceRange() const;
104
105  static bool classof(const Stmt *T) {
106    return T->getStmtClass() == CXXMemberCallExprClass;
107  }
108  static bool classof(const CXXMemberCallExpr *) { return true; }
109};
110
111/// CXXNamedCastExpr - Abstract class common to all of the C++ "named"
112/// casts, @c static_cast, @c dynamic_cast, @c reinterpret_cast, or @c
113/// const_cast.
114///
115/// This abstract class is inherited by all of the classes
116/// representing "named" casts, e.g., CXXStaticCastExpr,
117/// CXXDynamicCastExpr, CXXReinterpretCastExpr, and CXXConstCastExpr.
118class CXXNamedCastExpr : public ExplicitCastExpr {
119private:
120  SourceLocation Loc; // the location of the casting op
121
122protected:
123  CXXNamedCastExpr(StmtClass SC, QualType ty, CastKind kind, Expr *op,
124                   unsigned PathSize, TypeSourceInfo *writtenTy,
125                   SourceLocation l)
126    : ExplicitCastExpr(SC, ty, kind, op, PathSize, writtenTy), Loc(l) {}
127
128  explicit CXXNamedCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
129    : ExplicitCastExpr(SC, Shell, PathSize) { }
130
131public:
132  const char *getCastName() const;
133
134  /// \brief Retrieve the location of the cast operator keyword, e.g.,
135  /// "static_cast".
136  SourceLocation getOperatorLoc() const { return Loc; }
137  void setOperatorLoc(SourceLocation L) { Loc = L; }
138
139  virtual SourceRange getSourceRange() const {
140    return SourceRange(Loc, getSubExpr()->getSourceRange().getEnd());
141  }
142  static bool classof(const Stmt *T) {
143    switch (T->getStmtClass()) {
144    case CXXStaticCastExprClass:
145    case CXXDynamicCastExprClass:
146    case CXXReinterpretCastExprClass:
147    case CXXConstCastExprClass:
148      return true;
149    default:
150      return false;
151    }
152  }
153  static bool classof(const CXXNamedCastExpr *) { return true; }
154};
155
156/// CXXStaticCastExpr - A C++ @c static_cast expression (C++ [expr.static.cast]).
157///
158/// This expression node represents a C++ static cast, e.g.,
159/// @c static_cast<int>(1.0).
160class CXXStaticCastExpr : public CXXNamedCastExpr {
161  CXXStaticCastExpr(QualType ty, CastKind kind, Expr *op,
162                    unsigned pathSize, TypeSourceInfo *writtenTy,
163                    SourceLocation l)
164    : CXXNamedCastExpr(CXXStaticCastExprClass, ty, kind, op, pathSize,
165                       writtenTy, l) {}
166
167  explicit CXXStaticCastExpr(EmptyShell Empty, unsigned PathSize)
168    : CXXNamedCastExpr(CXXStaticCastExprClass, Empty, PathSize) { }
169
170public:
171  static CXXStaticCastExpr *Create(ASTContext &Context, QualType T,
172                                   CastKind K, Expr *Op,
173                                   const CXXCastPath *Path,
174                                   TypeSourceInfo *Written, SourceLocation L);
175  static CXXStaticCastExpr *CreateEmpty(ASTContext &Context,
176                                        unsigned PathSize);
177
178  static bool classof(const Stmt *T) {
179    return T->getStmtClass() == CXXStaticCastExprClass;
180  }
181  static bool classof(const CXXStaticCastExpr *) { return true; }
182};
183
184/// CXXDynamicCastExpr - A C++ @c dynamic_cast expression
185/// (C++ [expr.dynamic.cast]), which may perform a run-time check to
186/// determine how to perform the type cast.
187///
188/// This expression node represents a dynamic cast, e.g.,
189/// @c dynamic_cast<Derived*>(BasePtr).
190class CXXDynamicCastExpr : public CXXNamedCastExpr {
191  CXXDynamicCastExpr(QualType ty, CastKind kind, Expr *op,
192                     unsigned pathSize, TypeSourceInfo *writtenTy,
193                     SourceLocation l)
194    : CXXNamedCastExpr(CXXDynamicCastExprClass, ty, kind, op, pathSize,
195                       writtenTy, l) {}
196
197  explicit CXXDynamicCastExpr(EmptyShell Empty, unsigned pathSize)
198    : CXXNamedCastExpr(CXXDynamicCastExprClass, Empty, pathSize) { }
199
200public:
201  static CXXDynamicCastExpr *Create(ASTContext &Context, QualType T,
202                                    CastKind Kind, Expr *Op,
203                                    const CXXCastPath *Path,
204                                    TypeSourceInfo *Written, SourceLocation L);
205
206  static CXXDynamicCastExpr *CreateEmpty(ASTContext &Context,
207                                         unsigned pathSize);
208
209  static bool classof(const Stmt *T) {
210    return T->getStmtClass() == CXXDynamicCastExprClass;
211  }
212  static bool classof(const CXXDynamicCastExpr *) { return true; }
213};
214
215/// CXXReinterpretCastExpr - A C++ @c reinterpret_cast expression (C++
216/// [expr.reinterpret.cast]), which provides a differently-typed view
217/// of a value but performs no actual work at run time.
218///
219/// This expression node represents a reinterpret cast, e.g.,
220/// @c reinterpret_cast<int>(VoidPtr).
221class CXXReinterpretCastExpr : public CXXNamedCastExpr {
222  CXXReinterpretCastExpr(QualType ty, CastKind kind, Expr *op,
223                         unsigned pathSize,
224                         TypeSourceInfo *writtenTy, SourceLocation l)
225    : CXXNamedCastExpr(CXXReinterpretCastExprClass, ty, kind, op, pathSize,
226                       writtenTy, l) {}
227
228  CXXReinterpretCastExpr(EmptyShell Empty, unsigned pathSize)
229    : CXXNamedCastExpr(CXXReinterpretCastExprClass, Empty, pathSize) { }
230
231public:
232  static CXXReinterpretCastExpr *Create(ASTContext &Context, QualType T,
233                                        CastKind Kind, Expr *Op,
234                                        const CXXCastPath *Path,
235                                 TypeSourceInfo *WrittenTy, SourceLocation L);
236  static CXXReinterpretCastExpr *CreateEmpty(ASTContext &Context,
237                                             unsigned pathSize);
238
239  static bool classof(const Stmt *T) {
240    return T->getStmtClass() == CXXReinterpretCastExprClass;
241  }
242  static bool classof(const CXXReinterpretCastExpr *) { return true; }
243};
244
245/// CXXConstCastExpr - A C++ @c const_cast expression (C++ [expr.const.cast]),
246/// which can remove type qualifiers but does not change the underlying value.
247///
248/// This expression node represents a const cast, e.g.,
249/// @c const_cast<char*>(PtrToConstChar).
250class CXXConstCastExpr : public CXXNamedCastExpr {
251  CXXConstCastExpr(QualType ty, Expr *op, TypeSourceInfo *writtenTy,
252                   SourceLocation l)
253    : CXXNamedCastExpr(CXXConstCastExprClass, ty, CK_NoOp, op,
254                       0, writtenTy, l) {}
255
256  explicit CXXConstCastExpr(EmptyShell Empty)
257    : CXXNamedCastExpr(CXXConstCastExprClass, Empty, 0) { }
258
259public:
260  static CXXConstCastExpr *Create(ASTContext &Context, QualType T, Expr *Op,
261                                  TypeSourceInfo *WrittenTy, SourceLocation L);
262  static CXXConstCastExpr *CreateEmpty(ASTContext &Context);
263
264  static bool classof(const Stmt *T) {
265    return T->getStmtClass() == CXXConstCastExprClass;
266  }
267  static bool classof(const CXXConstCastExpr *) { return true; }
268};
269
270/// CXXBoolLiteralExpr - [C++ 2.13.5] C++ Boolean Literal.
271///
272class CXXBoolLiteralExpr : public Expr {
273  bool Value;
274  SourceLocation Loc;
275public:
276  CXXBoolLiteralExpr(bool val, QualType Ty, SourceLocation l) :
277    Expr(CXXBoolLiteralExprClass, Ty, false, false), Value(val), Loc(l) {}
278
279  explicit CXXBoolLiteralExpr(EmptyShell Empty)
280    : Expr(CXXBoolLiteralExprClass, Empty) { }
281
282  bool getValue() const { return Value; }
283  void setValue(bool V) { Value = V; }
284
285  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
286
287  SourceLocation getLocation() const { return Loc; }
288  void setLocation(SourceLocation L) { Loc = L; }
289
290  static bool classof(const Stmt *T) {
291    return T->getStmtClass() == CXXBoolLiteralExprClass;
292  }
293  static bool classof(const CXXBoolLiteralExpr *) { return true; }
294
295  // Iterators
296  virtual child_iterator child_begin();
297  virtual child_iterator child_end();
298};
299
300/// CXXNullPtrLiteralExpr - [C++0x 2.14.7] C++ Pointer Literal
301class CXXNullPtrLiteralExpr : public Expr {
302  SourceLocation Loc;
303public:
304  CXXNullPtrLiteralExpr(QualType Ty, SourceLocation l) :
305    Expr(CXXNullPtrLiteralExprClass, Ty, false, false), Loc(l) {}
306
307  explicit CXXNullPtrLiteralExpr(EmptyShell Empty)
308    : Expr(CXXNullPtrLiteralExprClass, Empty) { }
309
310  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
311
312  SourceLocation getLocation() const { return Loc; }
313  void setLocation(SourceLocation L) { Loc = L; }
314
315  static bool classof(const Stmt *T) {
316    return T->getStmtClass() == CXXNullPtrLiteralExprClass;
317  }
318  static bool classof(const CXXNullPtrLiteralExpr *) { return true; }
319
320  virtual child_iterator child_begin();
321  virtual child_iterator child_end();
322};
323
324/// CXXTypeidExpr - A C++ @c typeid expression (C++ [expr.typeid]), which gets
325/// the type_info that corresponds to the supplied type, or the (possibly
326/// dynamic) type of the supplied expression.
327///
328/// This represents code like @c typeid(int) or @c typeid(*objPtr)
329class CXXTypeidExpr : public Expr {
330private:
331  llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
332  SourceRange Range;
333
334public:
335  CXXTypeidExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
336    : Expr(CXXTypeidExprClass, Ty,
337           // typeid is never type-dependent (C++ [temp.dep.expr]p4)
338           false,
339           // typeid is value-dependent if the type or expression are dependent
340           Operand->getType()->isDependentType()),
341      Operand(Operand), Range(R) { }
342
343  CXXTypeidExpr(QualType Ty, Expr *Operand, SourceRange R)
344    : Expr(CXXTypeidExprClass, Ty,
345        // typeid is never type-dependent (C++ [temp.dep.expr]p4)
346        false,
347        // typeid is value-dependent if the type or expression are dependent
348        Operand->isTypeDependent() || Operand->isValueDependent()),
349      Operand(Operand), Range(R) { }
350
351  CXXTypeidExpr(EmptyShell Empty, bool isExpr)
352    : Expr(CXXTypeidExprClass, Empty) {
353    if (isExpr)
354      Operand = (Expr*)0;
355    else
356      Operand = (TypeSourceInfo*)0;
357  }
358
359  bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
360
361  /// \brief Retrieves the type operand of this typeid() expression after
362  /// various required adjustments (removing reference types, cv-qualifiers).
363  QualType getTypeOperand() const;
364
365  /// \brief Retrieve source information for the type operand.
366  TypeSourceInfo *getTypeOperandSourceInfo() const {
367    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
368    return Operand.get<TypeSourceInfo *>();
369  }
370
371  void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
372    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
373    Operand = TSI;
374  }
375
376  Expr *getExprOperand() const {
377    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
378    return static_cast<Expr*>(Operand.get<Stmt *>());
379  }
380
381  void setExprOperand(Expr *E) {
382    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
383    Operand = E;
384  }
385
386  virtual SourceRange getSourceRange() const { return Range; }
387  void setSourceRange(SourceRange R) { Range = R; }
388
389  static bool classof(const Stmt *T) {
390    return T->getStmtClass() == CXXTypeidExprClass;
391  }
392  static bool classof(const CXXTypeidExpr *) { return true; }
393
394  // Iterators
395  virtual child_iterator child_begin();
396  virtual child_iterator child_end();
397};
398
399/// CXXThisExpr - Represents the "this" expression in C++, which is a
400/// pointer to the object on which the current member function is
401/// executing (C++ [expr.prim]p3). Example:
402///
403/// @code
404/// class Foo {
405/// public:
406///   void bar();
407///   void test() { this->bar(); }
408/// };
409/// @endcode
410class CXXThisExpr : public Expr {
411  SourceLocation Loc;
412  bool Implicit : 1;
413
414public:
415  CXXThisExpr(SourceLocation L, QualType Type, bool isImplicit)
416    : Expr(CXXThisExprClass, Type,
417           // 'this' is type-dependent if the class type of the enclosing
418           // member function is dependent (C++ [temp.dep.expr]p2)
419           Type->isDependentType(), Type->isDependentType()),
420      Loc(L), Implicit(isImplicit) { }
421
422  CXXThisExpr(EmptyShell Empty) : Expr(CXXThisExprClass, Empty) {}
423
424  SourceLocation getLocation() const { return Loc; }
425  void setLocation(SourceLocation L) { Loc = L; }
426
427  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
428
429  bool isImplicit() const { return Implicit; }
430  void setImplicit(bool I) { Implicit = I; }
431
432  static bool classof(const Stmt *T) {
433    return T->getStmtClass() == CXXThisExprClass;
434  }
435  static bool classof(const CXXThisExpr *) { return true; }
436
437  // Iterators
438  virtual child_iterator child_begin();
439  virtual child_iterator child_end();
440};
441
442///  CXXThrowExpr - [C++ 15] C++ Throw Expression.  This handles
443///  'throw' and 'throw' assignment-expression.  When
444///  assignment-expression isn't present, Op will be null.
445///
446class CXXThrowExpr : public Expr {
447  Stmt *Op;
448  SourceLocation ThrowLoc;
449public:
450  // Ty is the void type which is used as the result type of the
451  // exepression.  The l is the location of the throw keyword.  expr
452  // can by null, if the optional expression to throw isn't present.
453  CXXThrowExpr(Expr *expr, QualType Ty, SourceLocation l) :
454    Expr(CXXThrowExprClass, Ty, false, false), Op(expr), ThrowLoc(l) {}
455  CXXThrowExpr(EmptyShell Empty) : Expr(CXXThrowExprClass, Empty) {}
456
457  const Expr *getSubExpr() const { return cast_or_null<Expr>(Op); }
458  Expr *getSubExpr() { return cast_or_null<Expr>(Op); }
459  void setSubExpr(Expr *E) { Op = E; }
460
461  SourceLocation getThrowLoc() const { return ThrowLoc; }
462  void setThrowLoc(SourceLocation L) { ThrowLoc = L; }
463
464  virtual SourceRange getSourceRange() const {
465    if (getSubExpr() == 0)
466      return SourceRange(ThrowLoc, ThrowLoc);
467    return SourceRange(ThrowLoc, getSubExpr()->getSourceRange().getEnd());
468  }
469
470  static bool classof(const Stmt *T) {
471    return T->getStmtClass() == CXXThrowExprClass;
472  }
473  static bool classof(const CXXThrowExpr *) { return true; }
474
475  // Iterators
476  virtual child_iterator child_begin();
477  virtual child_iterator child_end();
478};
479
480/// CXXDefaultArgExpr - C++ [dcl.fct.default]. This wraps up a
481/// function call argument that was created from the corresponding
482/// parameter's default argument, when the call did not explicitly
483/// supply arguments for all of the parameters.
484class CXXDefaultArgExpr : public Expr {
485  /// \brief The parameter whose default is being used.
486  ///
487  /// When the bit is set, the subexpression is stored after the
488  /// CXXDefaultArgExpr itself. When the bit is clear, the parameter's
489  /// actual default expression is the subexpression.
490  llvm::PointerIntPair<ParmVarDecl *, 1, bool> Param;
491
492  /// \brief The location where the default argument expression was used.
493  SourceLocation Loc;
494
495  CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param)
496    : Expr(SC,
497           param->hasUnparsedDefaultArg()
498             ? param->getType().getNonReferenceType()
499             : param->getDefaultArg()->getType(),
500           false, false),
501      Param(param, false), Loc(Loc) { }
502
503  CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param,
504                    Expr *SubExpr)
505    : Expr(SC, SubExpr->getType(), false, false), Param(param, true), Loc(Loc) {
506    *reinterpret_cast<Expr **>(this + 1) = SubExpr;
507  }
508
509public:
510  CXXDefaultArgExpr(EmptyShell Empty) : Expr(CXXDefaultArgExprClass, Empty) {}
511
512
513  // Param is the parameter whose default argument is used by this
514  // expression.
515  static CXXDefaultArgExpr *Create(ASTContext &C, SourceLocation Loc,
516                                   ParmVarDecl *Param) {
517    return new (C) CXXDefaultArgExpr(CXXDefaultArgExprClass, Loc, Param);
518  }
519
520  // Param is the parameter whose default argument is used by this
521  // expression, and SubExpr is the expression that will actually be used.
522  static CXXDefaultArgExpr *Create(ASTContext &C,
523                                   SourceLocation Loc,
524                                   ParmVarDecl *Param,
525                                   Expr *SubExpr);
526
527  // Retrieve the parameter that the argument was created from.
528  const ParmVarDecl *getParam() const { return Param.getPointer(); }
529  ParmVarDecl *getParam() { return Param.getPointer(); }
530
531  // Retrieve the actual argument to the function call.
532  const Expr *getExpr() const {
533    if (Param.getInt())
534      return *reinterpret_cast<Expr const * const*> (this + 1);
535    return getParam()->getDefaultArg();
536  }
537  Expr *getExpr() {
538    if (Param.getInt())
539      return *reinterpret_cast<Expr **> (this + 1);
540    return getParam()->getDefaultArg();
541  }
542
543  /// \brief Retrieve the location where this default argument was actually
544  /// used.
545  SourceLocation getUsedLocation() const { return Loc; }
546
547  virtual SourceRange getSourceRange() const {
548    // Default argument expressions have no representation in the
549    // source, so they have an empty source range.
550    return SourceRange();
551  }
552
553  static bool classof(const Stmt *T) {
554    return T->getStmtClass() == CXXDefaultArgExprClass;
555  }
556  static bool classof(const CXXDefaultArgExpr *) { return true; }
557
558  // Iterators
559  virtual child_iterator child_begin();
560  virtual child_iterator child_end();
561
562  friend class ASTStmtReader;
563  friend class ASTStmtWriter;
564};
565
566/// CXXTemporary - Represents a C++ temporary.
567class CXXTemporary {
568  /// Destructor - The destructor that needs to be called.
569  const CXXDestructorDecl *Destructor;
570
571  CXXTemporary(const CXXDestructorDecl *destructor)
572    : Destructor(destructor) { }
573
574public:
575  static CXXTemporary *Create(ASTContext &C,
576                              const CXXDestructorDecl *Destructor);
577
578  const CXXDestructorDecl *getDestructor() const { return Destructor; }
579};
580
581/// \brief Represents binding an expression to a temporary.
582///
583/// This ensures the destructor is called for the temporary. It should only be
584/// needed for non-POD, non-trivially destructable class types. For example:
585///
586/// \code
587///   struct S {
588///     S() { }  // User defined constructor makes S non-POD.
589///     ~S() { } // User defined destructor makes it non-trivial.
590///   };
591///   void test() {
592///     const S &s_ref = S(); // Requires a CXXBindTemporaryExpr.
593///   }
594/// \endcode
595class CXXBindTemporaryExpr : public Expr {
596  CXXTemporary *Temp;
597
598  Stmt *SubExpr;
599
600  CXXBindTemporaryExpr(CXXTemporary *temp, Expr* subexpr)
601   : Expr(CXXBindTemporaryExprClass, subexpr->getType(), false, false),
602     Temp(temp), SubExpr(subexpr) { }
603
604public:
605  CXXBindTemporaryExpr(EmptyShell Empty)
606    : Expr(CXXBindTemporaryExprClass, Empty), Temp(0), SubExpr(0) {}
607
608  static CXXBindTemporaryExpr *Create(ASTContext &C, CXXTemporary *Temp,
609                                      Expr* SubExpr);
610
611  CXXTemporary *getTemporary() { return Temp; }
612  const CXXTemporary *getTemporary() const { return Temp; }
613  void setTemporary(CXXTemporary *T) { Temp = T; }
614
615  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
616  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
617  void setSubExpr(Expr *E) { SubExpr = E; }
618
619  virtual SourceRange getSourceRange() const {
620    return SubExpr->getSourceRange();
621  }
622
623  // Implement isa/cast/dyncast/etc.
624  static bool classof(const Stmt *T) {
625    return T->getStmtClass() == CXXBindTemporaryExprClass;
626  }
627  static bool classof(const CXXBindTemporaryExpr *) { return true; }
628
629  // Iterators
630  virtual child_iterator child_begin();
631  virtual child_iterator child_end();
632};
633
634/// CXXConstructExpr - Represents a call to a C++ constructor.
635class CXXConstructExpr : public Expr {
636public:
637  enum ConstructionKind {
638    CK_Complete,
639    CK_NonVirtualBase,
640    CK_VirtualBase
641  };
642
643private:
644  CXXConstructorDecl *Constructor;
645
646  SourceLocation Loc;
647  bool Elidable : 1;
648  bool ZeroInitialization : 1;
649  unsigned ConstructKind : 2;
650  Stmt **Args;
651  unsigned NumArgs;
652
653protected:
654  CXXConstructExpr(ASTContext &C, StmtClass SC, QualType T,
655                   SourceLocation Loc,
656                   CXXConstructorDecl *d, bool elidable,
657                   Expr **args, unsigned numargs,
658                   bool ZeroInitialization = false,
659                   ConstructionKind ConstructKind = CK_Complete);
660
661  /// \brief Construct an empty C++ construction expression.
662  CXXConstructExpr(StmtClass SC, EmptyShell Empty)
663    : Expr(SC, Empty), Constructor(0), Elidable(0), ZeroInitialization(0),
664      ConstructKind(0), Args(0), NumArgs(0) { }
665
666public:
667  /// \brief Construct an empty C++ construction expression.
668  explicit CXXConstructExpr(EmptyShell Empty)
669    : Expr(CXXConstructExprClass, Empty), Constructor(0),
670      Elidable(0), ZeroInitialization(0),
671      ConstructKind(0), Args(0), NumArgs(0) { }
672
673  static CXXConstructExpr *Create(ASTContext &C, QualType T,
674                                  SourceLocation Loc,
675                                  CXXConstructorDecl *D, bool Elidable,
676                                  Expr **Args, unsigned NumArgs,
677                                  bool ZeroInitialization = false,
678                                  ConstructionKind ConstructKind = CK_Complete);
679
680
681  CXXConstructorDecl* getConstructor() const { return Constructor; }
682  void setConstructor(CXXConstructorDecl *C) { Constructor = C; }
683
684  SourceLocation getLocation() const { return Loc; }
685  void setLocation(SourceLocation Loc) { this->Loc = Loc; }
686
687  /// \brief Whether this construction is elidable.
688  bool isElidable() const { return Elidable; }
689  void setElidable(bool E) { Elidable = E; }
690
691  /// \brief Whether this construction first requires
692  /// zero-initialization before the initializer is called.
693  bool requiresZeroInitialization() const { return ZeroInitialization; }
694  void setRequiresZeroInitialization(bool ZeroInit) {
695    ZeroInitialization = ZeroInit;
696  }
697
698  /// \brief Determines whether this constructor is actually constructing
699  /// a base class (rather than a complete object).
700  ConstructionKind getConstructionKind() const {
701    return (ConstructionKind)ConstructKind;
702  }
703  void setConstructionKind(ConstructionKind CK) {
704    ConstructKind = CK;
705  }
706
707  typedef ExprIterator arg_iterator;
708  typedef ConstExprIterator const_arg_iterator;
709
710  arg_iterator arg_begin() { return Args; }
711  arg_iterator arg_end() { return Args + NumArgs; }
712  const_arg_iterator arg_begin() const { return Args; }
713  const_arg_iterator arg_end() const { return Args + NumArgs; }
714
715  Expr **getArgs() const { return reinterpret_cast<Expr **>(Args); }
716  unsigned getNumArgs() const { return NumArgs; }
717
718  /// getArg - Return the specified argument.
719  Expr *getArg(unsigned Arg) {
720    assert(Arg < NumArgs && "Arg access out of range!");
721    return cast<Expr>(Args[Arg]);
722  }
723  const Expr *getArg(unsigned Arg) const {
724    assert(Arg < NumArgs && "Arg access out of range!");
725    return cast<Expr>(Args[Arg]);
726  }
727
728  /// setArg - Set the specified argument.
729  void setArg(unsigned Arg, Expr *ArgExpr) {
730    assert(Arg < NumArgs && "Arg access out of range!");
731    Args[Arg] = ArgExpr;
732  }
733
734  virtual SourceRange getSourceRange() const;
735
736  static bool classof(const Stmt *T) {
737    return T->getStmtClass() == CXXConstructExprClass ||
738      T->getStmtClass() == CXXTemporaryObjectExprClass;
739  }
740  static bool classof(const CXXConstructExpr *) { return true; }
741
742  // Iterators
743  virtual child_iterator child_begin();
744  virtual child_iterator child_end();
745
746  friend class ASTStmtReader;
747};
748
749/// CXXFunctionalCastExpr - Represents an explicit C++ type conversion
750/// that uses "functional" notion (C++ [expr.type.conv]). Example: @c
751/// x = int(0.5);
752class CXXFunctionalCastExpr : public ExplicitCastExpr {
753  SourceLocation TyBeginLoc;
754  SourceLocation RParenLoc;
755
756  CXXFunctionalCastExpr(QualType ty, TypeSourceInfo *writtenTy,
757                        SourceLocation tyBeginLoc, CastKind kind,
758                        Expr *castExpr, unsigned pathSize,
759                        SourceLocation rParenLoc)
760    : ExplicitCastExpr(CXXFunctionalCastExprClass, ty, kind, castExpr,
761                       pathSize, writtenTy),
762      TyBeginLoc(tyBeginLoc), RParenLoc(rParenLoc) {}
763
764  explicit CXXFunctionalCastExpr(EmptyShell Shell, unsigned PathSize)
765    : ExplicitCastExpr(CXXFunctionalCastExprClass, Shell, PathSize) { }
766
767public:
768  static CXXFunctionalCastExpr *Create(ASTContext &Context, QualType T,
769                                       TypeSourceInfo *Written,
770                                       SourceLocation TyBeginLoc,
771                                       CastKind Kind, Expr *Op,
772                                       const CXXCastPath *Path,
773                                       SourceLocation RPLoc);
774  static CXXFunctionalCastExpr *CreateEmpty(ASTContext &Context,
775                                            unsigned PathSize);
776
777  SourceLocation getTypeBeginLoc() const { return TyBeginLoc; }
778  void setTypeBeginLoc(SourceLocation L) { TyBeginLoc = L; }
779  SourceLocation getRParenLoc() const { return RParenLoc; }
780  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
781
782  virtual SourceRange getSourceRange() const {
783    return SourceRange(TyBeginLoc, RParenLoc);
784  }
785  static bool classof(const Stmt *T) {
786    return T->getStmtClass() == CXXFunctionalCastExprClass;
787  }
788  static bool classof(const CXXFunctionalCastExpr *) { return true; }
789};
790
791/// @brief Represents a C++ functional cast expression that builds a
792/// temporary object.
793///
794/// This expression type represents a C++ "functional" cast
795/// (C++[expr.type.conv]) with N != 1 arguments that invokes a
796/// constructor to build a temporary object. With N == 1 arguments the
797/// functional cast expression will be represented by CXXFunctionalCastExpr.
798/// Example:
799/// @code
800/// struct X { X(int, float); }
801///
802/// X create_X() {
803///   return X(1, 3.14f); // creates a CXXTemporaryObjectExpr
804/// };
805/// @endcode
806class CXXTemporaryObjectExpr : public CXXConstructExpr {
807  SourceLocation TyBeginLoc;
808  SourceLocation RParenLoc;
809
810public:
811  CXXTemporaryObjectExpr(ASTContext &C, CXXConstructorDecl *Cons,
812                         QualType writtenTy, SourceLocation tyBeginLoc,
813                         Expr **Args,unsigned NumArgs,
814                         SourceLocation rParenLoc,
815                         bool ZeroInitialization = false);
816  explicit CXXTemporaryObjectExpr(EmptyShell Empty)
817    : CXXConstructExpr(CXXTemporaryObjectExprClass, Empty) { }
818
819  SourceLocation getTypeBeginLoc() const { return TyBeginLoc; }
820  SourceLocation getRParenLoc() const { return RParenLoc; }
821
822  virtual SourceRange getSourceRange() const {
823    return SourceRange(TyBeginLoc, RParenLoc);
824  }
825  static bool classof(const Stmt *T) {
826    return T->getStmtClass() == CXXTemporaryObjectExprClass;
827  }
828  static bool classof(const CXXTemporaryObjectExpr *) { return true; }
829
830  friend class ASTStmtReader;
831};
832
833/// CXXScalarValueInitExpr - [C++ 5.2.3p2]
834/// Expression "T()" which creates a value-initialized rvalue of type
835/// T, which is a non-class type.
836///
837class CXXScalarValueInitExpr : public Expr {
838  SourceLocation TyBeginLoc;
839  SourceLocation RParenLoc;
840
841public:
842  CXXScalarValueInitExpr(QualType ty, SourceLocation tyBeginLoc,
843                       SourceLocation rParenLoc ) :
844    Expr(CXXScalarValueInitExprClass, ty, false, false),
845    TyBeginLoc(tyBeginLoc), RParenLoc(rParenLoc) {}
846  explicit CXXScalarValueInitExpr(EmptyShell Shell)
847    : Expr(CXXScalarValueInitExprClass, Shell) { }
848
849  SourceLocation getTypeBeginLoc() const { return TyBeginLoc; }
850  SourceLocation getRParenLoc() const { return RParenLoc; }
851
852  void setTypeBeginLoc(SourceLocation L) { TyBeginLoc = L; }
853  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
854
855  /// @brief Whether this initialization expression was
856  /// implicitly-generated.
857  bool isImplicit() const {
858    return TyBeginLoc.isInvalid() && RParenLoc.isInvalid();
859  }
860
861  virtual SourceRange getSourceRange() const {
862    return SourceRange(TyBeginLoc, RParenLoc);
863  }
864
865  static bool classof(const Stmt *T) {
866    return T->getStmtClass() == CXXScalarValueInitExprClass;
867  }
868  static bool classof(const CXXScalarValueInitExpr *) { return true; }
869
870  // Iterators
871  virtual child_iterator child_begin();
872  virtual child_iterator child_end();
873};
874
875/// CXXNewExpr - A new expression for memory allocation and constructor calls,
876/// e.g: "new CXXNewExpr(foo)".
877class CXXNewExpr : public Expr {
878  // Was the usage ::new, i.e. is the global new to be used?
879  bool GlobalNew : 1;
880  // Is there an initializer? If not, built-ins are uninitialized, else they're
881  // value-initialized.
882  bool Initializer : 1;
883  // Do we allocate an array? If so, the first SubExpr is the size expression.
884  bool Array : 1;
885  // The number of placement new arguments.
886  unsigned NumPlacementArgs : 15;
887  // The number of constructor arguments. This may be 1 even for non-class
888  // types; use the pseudo copy constructor.
889  unsigned NumConstructorArgs : 14;
890  // Contains an optional array size expression, any number of optional
891  // placement arguments, and any number of optional constructor arguments,
892  // in that order.
893  Stmt **SubExprs;
894  // Points to the allocation function used.
895  FunctionDecl *OperatorNew;
896  // Points to the deallocation function used in case of error. May be null.
897  FunctionDecl *OperatorDelete;
898  // Points to the constructor used. Cannot be null if AllocType is a record;
899  // it would still point at the default constructor (even an implicit one).
900  // Must be null for all other types.
901  CXXConstructorDecl *Constructor;
902
903  /// \brief The allocated type-source information, as written in the source.
904  TypeSourceInfo *AllocatedTypeInfo;
905
906  /// \brief If the allocated type was expressed as a parenthesized type-id,
907  /// the source range covering the parenthesized type-id.
908  SourceRange TypeIdParens;
909
910  SourceLocation StartLoc;
911  SourceLocation EndLoc;
912
913  friend class ASTStmtReader;
914public:
915  CXXNewExpr(ASTContext &C, bool globalNew, FunctionDecl *operatorNew,
916             Expr **placementArgs, unsigned numPlaceArgs,
917             SourceRange TypeIdParens,
918             Expr *arraySize, CXXConstructorDecl *constructor, bool initializer,
919             Expr **constructorArgs, unsigned numConsArgs,
920             FunctionDecl *operatorDelete, QualType ty,
921             TypeSourceInfo *AllocatedTypeInfo,
922             SourceLocation startLoc, SourceLocation endLoc);
923  explicit CXXNewExpr(EmptyShell Shell)
924    : Expr(CXXNewExprClass, Shell), SubExprs(0) { }
925
926  void AllocateArgsArray(ASTContext &C, bool isArray, unsigned numPlaceArgs,
927                         unsigned numConsArgs);
928
929  QualType getAllocatedType() const {
930    assert(getType()->isPointerType());
931    return getType()->getAs<PointerType>()->getPointeeType();
932  }
933
934  TypeSourceInfo *getAllocatedTypeSourceInfo() const {
935    return AllocatedTypeInfo;
936  }
937
938  FunctionDecl *getOperatorNew() const { return OperatorNew; }
939  void setOperatorNew(FunctionDecl *D) { OperatorNew = D; }
940  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
941  void setOperatorDelete(FunctionDecl *D) { OperatorDelete = D; }
942  CXXConstructorDecl *getConstructor() const { return Constructor; }
943  void setConstructor(CXXConstructorDecl *D) { Constructor = D; }
944
945  bool isArray() const { return Array; }
946  Expr *getArraySize() {
947    return Array ? cast<Expr>(SubExprs[0]) : 0;
948  }
949  const Expr *getArraySize() const {
950    return Array ? cast<Expr>(SubExprs[0]) : 0;
951  }
952
953  unsigned getNumPlacementArgs() const { return NumPlacementArgs; }
954  Expr *getPlacementArg(unsigned i) {
955    assert(i < NumPlacementArgs && "Index out of range");
956    return cast<Expr>(SubExprs[Array + i]);
957  }
958  const Expr *getPlacementArg(unsigned i) const {
959    assert(i < NumPlacementArgs && "Index out of range");
960    return cast<Expr>(SubExprs[Array + i]);
961  }
962
963  bool isParenTypeId() const { return TypeIdParens.isValid(); }
964  SourceRange getTypeIdParens() const { return TypeIdParens; }
965
966  bool isGlobalNew() const { return GlobalNew; }
967  void setGlobalNew(bool V) { GlobalNew = V; }
968  bool hasInitializer() const { return Initializer; }
969  void setHasInitializer(bool V) { Initializer = V; }
970
971  unsigned getNumConstructorArgs() const { return NumConstructorArgs; }
972  Expr *getConstructorArg(unsigned i) {
973    assert(i < NumConstructorArgs && "Index out of range");
974    return cast<Expr>(SubExprs[Array + NumPlacementArgs + i]);
975  }
976  const Expr *getConstructorArg(unsigned i) const {
977    assert(i < NumConstructorArgs && "Index out of range");
978    return cast<Expr>(SubExprs[Array + NumPlacementArgs + i]);
979  }
980
981  typedef ExprIterator arg_iterator;
982  typedef ConstExprIterator const_arg_iterator;
983
984  arg_iterator placement_arg_begin() {
985    return SubExprs + Array;
986  }
987  arg_iterator placement_arg_end() {
988    return SubExprs + Array + getNumPlacementArgs();
989  }
990  const_arg_iterator placement_arg_begin() const {
991    return SubExprs + Array;
992  }
993  const_arg_iterator placement_arg_end() const {
994    return SubExprs + Array + getNumPlacementArgs();
995  }
996
997  arg_iterator constructor_arg_begin() {
998    return SubExprs + Array + getNumPlacementArgs();
999  }
1000  arg_iterator constructor_arg_end() {
1001    return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
1002  }
1003  const_arg_iterator constructor_arg_begin() const {
1004    return SubExprs + Array + getNumPlacementArgs();
1005  }
1006  const_arg_iterator constructor_arg_end() const {
1007    return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
1008  }
1009
1010  typedef Stmt **raw_arg_iterator;
1011  raw_arg_iterator raw_arg_begin() { return SubExprs; }
1012  raw_arg_iterator raw_arg_end() {
1013    return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
1014  }
1015  const_arg_iterator raw_arg_begin() const { return SubExprs; }
1016  const_arg_iterator raw_arg_end() const { return constructor_arg_end(); }
1017
1018
1019  SourceLocation getStartLoc() const { return StartLoc; }
1020  void setStartLoc(SourceLocation L) { StartLoc = L; }
1021  SourceLocation getEndLoc() const { return EndLoc; }
1022  void setEndLoc(SourceLocation L) { EndLoc = L; }
1023
1024  virtual SourceRange getSourceRange() const {
1025    return SourceRange(StartLoc, EndLoc);
1026  }
1027
1028  static bool classof(const Stmt *T) {
1029    return T->getStmtClass() == CXXNewExprClass;
1030  }
1031  static bool classof(const CXXNewExpr *) { return true; }
1032
1033  // Iterators
1034  virtual child_iterator child_begin();
1035  virtual child_iterator child_end();
1036};
1037
1038/// CXXDeleteExpr - A delete expression for memory deallocation and destructor
1039/// calls, e.g. "delete[] pArray".
1040class CXXDeleteExpr : public Expr {
1041  // Is this a forced global delete, i.e. "::delete"?
1042  bool GlobalDelete : 1;
1043  // Is this the array form of delete, i.e. "delete[]"?
1044  bool ArrayForm : 1;
1045  // Points to the operator delete overload that is used. Could be a member.
1046  FunctionDecl *OperatorDelete;
1047  // The pointer expression to be deleted.
1048  Stmt *Argument;
1049  // Location of the expression.
1050  SourceLocation Loc;
1051public:
1052  CXXDeleteExpr(QualType ty, bool globalDelete, bool arrayForm,
1053                FunctionDecl *operatorDelete, Expr *arg, SourceLocation loc)
1054    : Expr(CXXDeleteExprClass, ty, false, false), GlobalDelete(globalDelete),
1055      ArrayForm(arrayForm), OperatorDelete(operatorDelete), Argument(arg),
1056      Loc(loc) { }
1057  explicit CXXDeleteExpr(EmptyShell Shell)
1058    : Expr(CXXDeleteExprClass, Shell), OperatorDelete(0), Argument(0) { }
1059
1060  bool isGlobalDelete() const { return GlobalDelete; }
1061  bool isArrayForm() const { return ArrayForm; }
1062
1063  void setGlobalDelete(bool V) { GlobalDelete = V; }
1064  void setArrayForm(bool V) { ArrayForm = V; }
1065
1066  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
1067  void setOperatorDelete(FunctionDecl *D) { OperatorDelete = D; }
1068
1069  Expr *getArgument() { return cast<Expr>(Argument); }
1070  const Expr *getArgument() const { return cast<Expr>(Argument); }
1071  void setArgument(Expr *E) { Argument = E; }
1072
1073  virtual SourceRange getSourceRange() const {
1074    return SourceRange(Loc, Argument->getLocEnd());
1075  }
1076  void setStartLoc(SourceLocation L) { Loc = L; }
1077
1078  static bool classof(const Stmt *T) {
1079    return T->getStmtClass() == CXXDeleteExprClass;
1080  }
1081  static bool classof(const CXXDeleteExpr *) { return true; }
1082
1083  // Iterators
1084  virtual child_iterator child_begin();
1085  virtual child_iterator child_end();
1086};
1087
1088/// \brief Structure used to store the type being destroyed by a
1089/// pseudo-destructor expression.
1090class PseudoDestructorTypeStorage {
1091  /// \brief Either the type source information or the name of the type, if
1092  /// it couldn't be resolved due to type-dependence.
1093  llvm::PointerUnion<TypeSourceInfo *, IdentifierInfo *> Type;
1094
1095  /// \brief The starting source location of the pseudo-destructor type.
1096  SourceLocation Location;
1097
1098public:
1099  PseudoDestructorTypeStorage() { }
1100
1101  PseudoDestructorTypeStorage(IdentifierInfo *II, SourceLocation Loc)
1102    : Type(II), Location(Loc) { }
1103
1104  PseudoDestructorTypeStorage(TypeSourceInfo *Info);
1105
1106  TypeSourceInfo *getTypeSourceInfo() const {
1107    return Type.dyn_cast<TypeSourceInfo *>();
1108  }
1109
1110  IdentifierInfo *getIdentifier() const {
1111    return Type.dyn_cast<IdentifierInfo *>();
1112  }
1113
1114  SourceLocation getLocation() const { return Location; }
1115};
1116
1117/// \brief Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
1118///
1119/// A pseudo-destructor is an expression that looks like a member access to a
1120/// destructor of a scalar type, except that scalar types don't have
1121/// destructors. For example:
1122///
1123/// \code
1124/// typedef int T;
1125/// void f(int *p) {
1126///   p->T::~T();
1127/// }
1128/// \endcode
1129///
1130/// Pseudo-destructors typically occur when instantiating templates such as:
1131///
1132/// \code
1133/// template<typename T>
1134/// void destroy(T* ptr) {
1135///   ptr->T::~T();
1136/// }
1137/// \endcode
1138///
1139/// for scalar types. A pseudo-destructor expression has no run-time semantics
1140/// beyond evaluating the base expression.
1141class CXXPseudoDestructorExpr : public Expr {
1142  /// \brief The base expression (that is being destroyed).
1143  Stmt *Base;
1144
1145  /// \brief Whether the operator was an arrow ('->'); otherwise, it was a
1146  /// period ('.').
1147  bool IsArrow : 1;
1148
1149  /// \brief The location of the '.' or '->' operator.
1150  SourceLocation OperatorLoc;
1151
1152  /// \brief The nested-name-specifier that follows the operator, if present.
1153  NestedNameSpecifier *Qualifier;
1154
1155  /// \brief The source range that covers the nested-name-specifier, if
1156  /// present.
1157  SourceRange QualifierRange;
1158
1159  /// \brief The type that precedes the '::' in a qualified pseudo-destructor
1160  /// expression.
1161  TypeSourceInfo *ScopeType;
1162
1163  /// \brief The location of the '::' in a qualified pseudo-destructor
1164  /// expression.
1165  SourceLocation ColonColonLoc;
1166
1167  /// \brief The location of the '~'.
1168  SourceLocation TildeLoc;
1169
1170  /// \brief The type being destroyed, or its name if we were unable to
1171  /// resolve the name.
1172  PseudoDestructorTypeStorage DestroyedType;
1173
1174public:
1175  CXXPseudoDestructorExpr(ASTContext &Context,
1176                          Expr *Base, bool isArrow, SourceLocation OperatorLoc,
1177                          NestedNameSpecifier *Qualifier,
1178                          SourceRange QualifierRange,
1179                          TypeSourceInfo *ScopeType,
1180                          SourceLocation ColonColonLoc,
1181                          SourceLocation TildeLoc,
1182                          PseudoDestructorTypeStorage DestroyedType)
1183    : Expr(CXXPseudoDestructorExprClass,
1184           Context.getPointerType(Context.getFunctionType(Context.VoidTy, 0, 0,
1185                                                          false, 0, false,
1186                                                          false, 0, 0,
1187                                                      FunctionType::ExtInfo())),
1188           /*isTypeDependent=*/(Base->isTypeDependent() ||
1189            (DestroyedType.getTypeSourceInfo() &&
1190              DestroyedType.getTypeSourceInfo()->getType()->isDependentType())),
1191           /*isValueDependent=*/Base->isValueDependent()),
1192      Base(static_cast<Stmt *>(Base)), IsArrow(isArrow),
1193      OperatorLoc(OperatorLoc), Qualifier(Qualifier),
1194      QualifierRange(QualifierRange),
1195      ScopeType(ScopeType), ColonColonLoc(ColonColonLoc), TildeLoc(TildeLoc),
1196      DestroyedType(DestroyedType) { }
1197
1198  explicit CXXPseudoDestructorExpr(EmptyShell Shell)
1199    : Expr(CXXPseudoDestructorExprClass, Shell),
1200      Base(0), IsArrow(false), Qualifier(0), ScopeType(0) { }
1201
1202  void setBase(Expr *E) { Base = E; }
1203  Expr *getBase() const { return cast<Expr>(Base); }
1204
1205  /// \brief Determines whether this member expression actually had
1206  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
1207  /// x->Base::foo.
1208  bool hasQualifier() const { return Qualifier != 0; }
1209
1210  /// \brief If the member name was qualified, retrieves the source range of
1211  /// the nested-name-specifier that precedes the member name. Otherwise,
1212  /// returns an empty source range.
1213  SourceRange getQualifierRange() const { return QualifierRange; }
1214  void setQualifierRange(SourceRange R) { QualifierRange = R; }
1215
1216  /// \brief If the member name was qualified, retrieves the
1217  /// nested-name-specifier that precedes the member name. Otherwise, returns
1218  /// NULL.
1219  NestedNameSpecifier *getQualifier() const { return Qualifier; }
1220  void setQualifier(NestedNameSpecifier *NNS) { Qualifier = NNS; }
1221
1222  /// \brief Determine whether this pseudo-destructor expression was written
1223  /// using an '->' (otherwise, it used a '.').
1224  bool isArrow() const { return IsArrow; }
1225  void setArrow(bool A) { IsArrow = A; }
1226
1227  /// \brief Retrieve the location of the '.' or '->' operator.
1228  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1229  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
1230
1231  /// \brief Retrieve the scope type in a qualified pseudo-destructor
1232  /// expression.
1233  ///
1234  /// Pseudo-destructor expressions can have extra qualification within them
1235  /// that is not part of the nested-name-specifier, e.g., \c p->T::~T().
1236  /// Here, if the object type of the expression is (or may be) a scalar type,
1237  /// \p T may also be a scalar type and, therefore, cannot be part of a
1238  /// nested-name-specifier. It is stored as the "scope type" of the pseudo-
1239  /// destructor expression.
1240  TypeSourceInfo *getScopeTypeInfo() const { return ScopeType; }
1241  void setScopeTypeInfo(TypeSourceInfo *Info) { ScopeType = Info; }
1242
1243  /// \brief Retrieve the location of the '::' in a qualified pseudo-destructor
1244  /// expression.
1245  SourceLocation getColonColonLoc() const { return ColonColonLoc; }
1246  void setColonColonLoc(SourceLocation L) { ColonColonLoc = L; }
1247
1248  /// \brief Retrieve the location of the '~'.
1249  SourceLocation getTildeLoc() const { return TildeLoc; }
1250  void setTildeLoc(SourceLocation L) { TildeLoc = L; }
1251
1252  /// \brief Retrieve the source location information for the type
1253  /// being destroyed.
1254  ///
1255  /// This type-source information is available for non-dependent
1256  /// pseudo-destructor expressions and some dependent pseudo-destructor
1257  /// expressions. Returns NULL if we only have the identifier for a
1258  /// dependent pseudo-destructor expression.
1259  TypeSourceInfo *getDestroyedTypeInfo() const {
1260    return DestroyedType.getTypeSourceInfo();
1261  }
1262
1263  /// \brief In a dependent pseudo-destructor expression for which we do not
1264  /// have full type information on the destroyed type, provides the name
1265  /// of the destroyed type.
1266  IdentifierInfo *getDestroyedTypeIdentifier() const {
1267    return DestroyedType.getIdentifier();
1268  }
1269
1270  /// \brief Retrieve the type being destroyed.
1271  QualType getDestroyedType() const;
1272
1273  /// \brief Retrieve the starting location of the type being destroyed.
1274  SourceLocation getDestroyedTypeLoc() const {
1275    return DestroyedType.getLocation();
1276  }
1277
1278  /// \brief Set the name of destroyed type for a dependent pseudo-destructor
1279  /// expression.
1280  void setDestroyedType(IdentifierInfo *II, SourceLocation Loc) {
1281    DestroyedType = PseudoDestructorTypeStorage(II, Loc);
1282  }
1283
1284  /// \brief Set the destroyed type.
1285  void setDestroyedType(TypeSourceInfo *Info) {
1286    DestroyedType = PseudoDestructorTypeStorage(Info);
1287  }
1288
1289  virtual SourceRange getSourceRange() const;
1290
1291  static bool classof(const Stmt *T) {
1292    return T->getStmtClass() == CXXPseudoDestructorExprClass;
1293  }
1294  static bool classof(const CXXPseudoDestructorExpr *) { return true; }
1295
1296  // Iterators
1297  virtual child_iterator child_begin();
1298  virtual child_iterator child_end();
1299};
1300
1301/// UnaryTypeTraitExpr - A GCC or MS unary type trait, as used in the
1302/// implementation of TR1/C++0x type trait templates.
1303/// Example:
1304/// __is_pod(int) == true
1305/// __is_enum(std::string) == false
1306class UnaryTypeTraitExpr : public Expr {
1307  /// UTT - The trait.
1308  UnaryTypeTrait UTT;
1309
1310  /// Loc - The location of the type trait keyword.
1311  SourceLocation Loc;
1312
1313  /// RParen - The location of the closing paren.
1314  SourceLocation RParen;
1315
1316  /// QueriedType - The type we're testing.
1317  QualType QueriedType;
1318
1319public:
1320  UnaryTypeTraitExpr(SourceLocation loc, UnaryTypeTrait utt, QualType queried,
1321                     SourceLocation rparen, QualType ty)
1322    : Expr(UnaryTypeTraitExprClass, ty, false, queried->isDependentType()),
1323      UTT(utt), Loc(loc), RParen(rparen), QueriedType(queried) { }
1324
1325  explicit UnaryTypeTraitExpr(EmptyShell Empty)
1326    : Expr(UnaryTypeTraitExprClass, Empty), UTT((UnaryTypeTrait)0) { }
1327
1328  virtual SourceRange getSourceRange() const { return SourceRange(Loc, RParen);}
1329
1330  UnaryTypeTrait getTrait() const { return UTT; }
1331
1332  QualType getQueriedType() const { return QueriedType; }
1333
1334  bool EvaluateTrait(ASTContext&) const;
1335
1336  static bool classof(const Stmt *T) {
1337    return T->getStmtClass() == UnaryTypeTraitExprClass;
1338  }
1339  static bool classof(const UnaryTypeTraitExpr *) { return true; }
1340
1341  // Iterators
1342  virtual child_iterator child_begin();
1343  virtual child_iterator child_end();
1344
1345  friend class ASTStmtReader;
1346};
1347
1348/// \brief A reference to an overloaded function set, either an
1349/// \t UnresolvedLookupExpr or an \t UnresolvedMemberExpr.
1350class OverloadExpr : public Expr {
1351  /// The results.  These are undesugared, which is to say, they may
1352  /// include UsingShadowDecls.  Access is relative to the naming
1353  /// class.
1354  // FIXME: Allocate this data after the OverloadExpr subclass.
1355  DeclAccessPair *Results;
1356  unsigned NumResults;
1357
1358  /// The common name of these declarations.
1359  DeclarationNameInfo NameInfo;
1360
1361  /// The scope specifier, if any.
1362  NestedNameSpecifier *Qualifier;
1363
1364  /// The source range of the scope specifier.
1365  SourceRange QualifierRange;
1366
1367protected:
1368  /// True if the name was a template-id.
1369  bool HasExplicitTemplateArgs;
1370
1371  OverloadExpr(StmtClass K, ASTContext &C, QualType T, bool Dependent,
1372               NestedNameSpecifier *Qualifier, SourceRange QRange,
1373               const DeclarationNameInfo &NameInfo,
1374               bool HasTemplateArgs,
1375               UnresolvedSetIterator Begin, UnresolvedSetIterator End);
1376
1377  OverloadExpr(StmtClass K, EmptyShell Empty)
1378    : Expr(K, Empty), Results(0), NumResults(0),
1379      Qualifier(0), HasExplicitTemplateArgs(false) { }
1380
1381public:
1382  /// Computes whether an unresolved lookup on the given declarations
1383  /// and optional template arguments is type- and value-dependent.
1384  static bool ComputeDependence(UnresolvedSetIterator Begin,
1385                                UnresolvedSetIterator End,
1386                                const TemplateArgumentListInfo *Args);
1387
1388  struct FindResult {
1389    OverloadExpr *Expression;
1390    bool IsAddressOfOperand;
1391    bool HasFormOfMemberPointer;
1392  };
1393
1394  /// Finds the overloaded expression in the given expression of
1395  /// OverloadTy.
1396  ///
1397  /// \return the expression (which must be there) and true if it has
1398  /// the particular form of a member pointer expression
1399  static FindResult find(Expr *E) {
1400    assert(E->getType()->isSpecificBuiltinType(BuiltinType::Overload));
1401
1402    FindResult Result;
1403
1404    E = E->IgnoreParens();
1405    if (isa<UnaryOperator>(E)) {
1406      assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
1407      E = cast<UnaryOperator>(E)->getSubExpr();
1408      OverloadExpr *Ovl = cast<OverloadExpr>(E->IgnoreParens());
1409
1410      Result.HasFormOfMemberPointer = (E == Ovl && Ovl->getQualifier());
1411      Result.IsAddressOfOperand = true;
1412      Result.Expression = Ovl;
1413    } else {
1414      Result.HasFormOfMemberPointer = false;
1415      Result.IsAddressOfOperand = false;
1416      Result.Expression = cast<OverloadExpr>(E);
1417    }
1418
1419    return Result;
1420  }
1421
1422  /// Gets the naming class of this lookup, if any.
1423  CXXRecordDecl *getNamingClass() const;
1424
1425  typedef UnresolvedSetImpl::iterator decls_iterator;
1426  decls_iterator decls_begin() const { return UnresolvedSetIterator(Results); }
1427  decls_iterator decls_end() const {
1428    return UnresolvedSetIterator(Results + NumResults);
1429  }
1430
1431  void initializeResults(ASTContext &C,
1432                         UnresolvedSetIterator Begin,UnresolvedSetIterator End);
1433
1434  /// Gets the number of declarations in the unresolved set.
1435  unsigned getNumDecls() const { return NumResults; }
1436
1437  /// Gets the full name info.
1438  const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
1439  void setNameInfo(const DeclarationNameInfo &N) { NameInfo = N; }
1440
1441  /// Gets the name looked up.
1442  DeclarationName getName() const { return NameInfo.getName(); }
1443  void setName(DeclarationName N) { NameInfo.setName(N); }
1444
1445  /// Gets the location of the name.
1446  SourceLocation getNameLoc() const { return NameInfo.getLoc(); }
1447  void setNameLoc(SourceLocation Loc) { NameInfo.setLoc(Loc); }
1448
1449  /// Fetches the nested-name qualifier, if one was given.
1450  NestedNameSpecifier *getQualifier() const { return Qualifier; }
1451  void setQualifier(NestedNameSpecifier *NNS) { Qualifier = NNS; }
1452
1453  /// Fetches the range of the nested-name qualifier.
1454  SourceRange getQualifierRange() const { return QualifierRange; }
1455  void setQualifierRange(SourceRange R) { QualifierRange = R; }
1456
1457  /// \brief Determines whether this expression had an explicit
1458  /// template argument list, e.g. f<int>.
1459  bool hasExplicitTemplateArgs() const { return HasExplicitTemplateArgs; }
1460
1461  ExplicitTemplateArgumentList &getExplicitTemplateArgs(); // defined far below
1462
1463  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
1464    return const_cast<OverloadExpr*>(this)->getExplicitTemplateArgs();
1465  }
1466
1467  /// \brief Retrieves the optional explicit template arguments.
1468  /// This points to the same data as getExplicitTemplateArgs(), but
1469  /// returns null if there are no explicit template arguments.
1470  const ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() {
1471    if (!hasExplicitTemplateArgs()) return 0;
1472    return &getExplicitTemplateArgs();
1473  }
1474
1475  static bool classof(const Stmt *T) {
1476    return T->getStmtClass() == UnresolvedLookupExprClass ||
1477           T->getStmtClass() == UnresolvedMemberExprClass;
1478  }
1479  static bool classof(const OverloadExpr *) { return true; }
1480};
1481
1482/// \brief A reference to a name which we were able to look up during
1483/// parsing but could not resolve to a specific declaration.  This
1484/// arises in several ways:
1485///   * we might be waiting for argument-dependent lookup
1486///   * the name might resolve to an overloaded function
1487/// and eventually:
1488///   * the lookup might have included a function template
1489/// These never include UnresolvedUsingValueDecls, which are always
1490/// class members and therefore appear only in
1491/// UnresolvedMemberLookupExprs.
1492class UnresolvedLookupExpr : public OverloadExpr {
1493  /// True if these lookup results should be extended by
1494  /// argument-dependent lookup if this is the operand of a function
1495  /// call.
1496  bool RequiresADL;
1497
1498  /// True if these lookup results are overloaded.  This is pretty
1499  /// trivially rederivable if we urgently need to kill this field.
1500  bool Overloaded;
1501
1502  /// The naming class (C++ [class.access.base]p5) of the lookup, if
1503  /// any.  This can generally be recalculated from the context chain,
1504  /// but that can be fairly expensive for unqualified lookups.  If we
1505  /// want to improve memory use here, this could go in a union
1506  /// against the qualified-lookup bits.
1507  CXXRecordDecl *NamingClass;
1508
1509  UnresolvedLookupExpr(ASTContext &C, QualType T, bool Dependent,
1510                       CXXRecordDecl *NamingClass,
1511                       NestedNameSpecifier *Qualifier, SourceRange QRange,
1512                       const DeclarationNameInfo &NameInfo,
1513                       bool RequiresADL, bool Overloaded, bool HasTemplateArgs,
1514                       UnresolvedSetIterator Begin, UnresolvedSetIterator End)
1515    : OverloadExpr(UnresolvedLookupExprClass, C, T, Dependent, Qualifier,
1516                   QRange, NameInfo, HasTemplateArgs, Begin, End),
1517      RequiresADL(RequiresADL), Overloaded(Overloaded), NamingClass(NamingClass)
1518  {}
1519
1520  UnresolvedLookupExpr(EmptyShell Empty)
1521    : OverloadExpr(UnresolvedLookupExprClass, Empty),
1522      RequiresADL(false), Overloaded(false), NamingClass(0)
1523  {}
1524
1525public:
1526  static UnresolvedLookupExpr *Create(ASTContext &C,
1527                                      bool Dependent,
1528                                      CXXRecordDecl *NamingClass,
1529                                      NestedNameSpecifier *Qualifier,
1530                                      SourceRange QualifierRange,
1531                                      const DeclarationNameInfo &NameInfo,
1532                                      bool ADL, bool Overloaded,
1533                                      UnresolvedSetIterator Begin,
1534                                      UnresolvedSetIterator End) {
1535    return new(C) UnresolvedLookupExpr(C,
1536                                       Dependent ? C.DependentTy : C.OverloadTy,
1537                                       Dependent, NamingClass,
1538                                       Qualifier, QualifierRange, NameInfo,
1539                                       ADL, Overloaded, false,
1540                                       Begin, End);
1541  }
1542
1543  static UnresolvedLookupExpr *Create(ASTContext &C,
1544                                      bool Dependent,
1545                                      CXXRecordDecl *NamingClass,
1546                                      NestedNameSpecifier *Qualifier,
1547                                      SourceRange QualifierRange,
1548                                      const DeclarationNameInfo &NameInfo,
1549                                      bool ADL,
1550                                      const TemplateArgumentListInfo &Args,
1551                                      UnresolvedSetIterator Begin,
1552                                      UnresolvedSetIterator End);
1553
1554  static UnresolvedLookupExpr *CreateEmpty(ASTContext &C,
1555                                           unsigned NumTemplateArgs);
1556
1557  /// True if this declaration should be extended by
1558  /// argument-dependent lookup.
1559  bool requiresADL() const { return RequiresADL; }
1560  void setRequiresADL(bool V) { RequiresADL = V; }
1561
1562  /// True if this lookup is overloaded.
1563  bool isOverloaded() const { return Overloaded; }
1564  void setOverloaded(bool V) { Overloaded = V; }
1565
1566  /// Gets the 'naming class' (in the sense of C++0x
1567  /// [class.access.base]p5) of the lookup.  This is the scope
1568  /// that was looked in to find these results.
1569  CXXRecordDecl *getNamingClass() const { return NamingClass; }
1570  void setNamingClass(CXXRecordDecl *D) { NamingClass = D; }
1571
1572  // Note that, inconsistently with the explicit-template-argument AST
1573  // nodes, users are *forbidden* from calling these methods on objects
1574  // without explicit template arguments.
1575
1576  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
1577    assert(hasExplicitTemplateArgs());
1578    return *reinterpret_cast<ExplicitTemplateArgumentList*>(this + 1);
1579  }
1580
1581  /// Gets a reference to the explicit template argument list.
1582  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
1583    assert(hasExplicitTemplateArgs());
1584    return *reinterpret_cast<const ExplicitTemplateArgumentList*>(this + 1);
1585  }
1586
1587  /// \brief Retrieves the optional explicit template arguments.
1588  /// This points to the same data as getExplicitTemplateArgs(), but
1589  /// returns null if there are no explicit template arguments.
1590  const ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() {
1591    if (!hasExplicitTemplateArgs()) return 0;
1592    return &getExplicitTemplateArgs();
1593  }
1594
1595  /// \brief Copies the template arguments (if present) into the given
1596  /// structure.
1597  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1598    getExplicitTemplateArgs().copyInto(List);
1599  }
1600
1601  SourceLocation getLAngleLoc() const {
1602    return getExplicitTemplateArgs().LAngleLoc;
1603  }
1604
1605  SourceLocation getRAngleLoc() const {
1606    return getExplicitTemplateArgs().RAngleLoc;
1607  }
1608
1609  TemplateArgumentLoc const *getTemplateArgs() const {
1610    return getExplicitTemplateArgs().getTemplateArgs();
1611  }
1612
1613  unsigned getNumTemplateArgs() const {
1614    return getExplicitTemplateArgs().NumTemplateArgs;
1615  }
1616
1617  virtual SourceRange getSourceRange() const {
1618    SourceRange Range(getNameInfo().getSourceRange());
1619    if (getQualifier()) Range.setBegin(getQualifierRange().getBegin());
1620    if (hasExplicitTemplateArgs()) Range.setEnd(getRAngleLoc());
1621    return Range;
1622  }
1623
1624  virtual StmtIterator child_begin();
1625  virtual StmtIterator child_end();
1626
1627  static bool classof(const Stmt *T) {
1628    return T->getStmtClass() == UnresolvedLookupExprClass;
1629  }
1630  static bool classof(const UnresolvedLookupExpr *) { return true; }
1631};
1632
1633/// \brief A qualified reference to a name whose declaration cannot
1634/// yet be resolved.
1635///
1636/// DependentScopeDeclRefExpr is similar to DeclRefExpr in that
1637/// it expresses a reference to a declaration such as
1638/// X<T>::value. The difference, however, is that an
1639/// DependentScopeDeclRefExpr node is used only within C++ templates when
1640/// the qualification (e.g., X<T>::) refers to a dependent type. In
1641/// this case, X<T>::value cannot resolve to a declaration because the
1642/// declaration will differ from on instantiation of X<T> to the
1643/// next. Therefore, DependentScopeDeclRefExpr keeps track of the
1644/// qualifier (X<T>::) and the name of the entity being referenced
1645/// ("value"). Such expressions will instantiate to a DeclRefExpr once the
1646/// declaration can be found.
1647class DependentScopeDeclRefExpr : public Expr {
1648  /// The name of the entity we will be referencing.
1649  DeclarationNameInfo NameInfo;
1650
1651  /// QualifierRange - The source range that covers the
1652  /// nested-name-specifier.
1653  SourceRange QualifierRange;
1654
1655  /// \brief The nested-name-specifier that qualifies this unresolved
1656  /// declaration name.
1657  NestedNameSpecifier *Qualifier;
1658
1659  /// \brief Whether the name includes explicit template arguments.
1660  bool HasExplicitTemplateArgs;
1661
1662  DependentScopeDeclRefExpr(QualType T,
1663                            NestedNameSpecifier *Qualifier,
1664                            SourceRange QualifierRange,
1665                            const DeclarationNameInfo &NameInfo,
1666                            bool HasExplicitTemplateArgs)
1667    : Expr(DependentScopeDeclRefExprClass, T, true, true),
1668      NameInfo(NameInfo), QualifierRange(QualifierRange), Qualifier(Qualifier),
1669      HasExplicitTemplateArgs(HasExplicitTemplateArgs)
1670  {}
1671
1672public:
1673  static DependentScopeDeclRefExpr *Create(ASTContext &C,
1674                                           NestedNameSpecifier *Qualifier,
1675                                           SourceRange QualifierRange,
1676                                           const DeclarationNameInfo &NameInfo,
1677                              const TemplateArgumentListInfo *TemplateArgs = 0);
1678
1679  static DependentScopeDeclRefExpr *CreateEmpty(ASTContext &C,
1680                                                unsigned NumTemplateArgs);
1681
1682  /// \brief Retrieve the name that this expression refers to.
1683  const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
1684  void setNameInfo(const DeclarationNameInfo &N) { NameInfo =  N; }
1685
1686  /// \brief Retrieve the name that this expression refers to.
1687  DeclarationName getDeclName() const { return NameInfo.getName(); }
1688  void setDeclName(DeclarationName N) { NameInfo.setName(N); }
1689
1690  /// \brief Retrieve the location of the name within the expression.
1691  SourceLocation getLocation() const { return NameInfo.getLoc(); }
1692  void setLocation(SourceLocation L) { NameInfo.setLoc(L); }
1693
1694  /// \brief Retrieve the source range of the nested-name-specifier.
1695  SourceRange getQualifierRange() const { return QualifierRange; }
1696  void setQualifierRange(SourceRange R) { QualifierRange = R; }
1697
1698  /// \brief Retrieve the nested-name-specifier that qualifies this
1699  /// declaration.
1700  NestedNameSpecifier *getQualifier() const { return Qualifier; }
1701  void setQualifier(NestedNameSpecifier *NNS) { Qualifier = NNS; }
1702
1703  /// Determines whether this lookup had explicit template arguments.
1704  bool hasExplicitTemplateArgs() const { return HasExplicitTemplateArgs; }
1705
1706  // Note that, inconsistently with the explicit-template-argument AST
1707  // nodes, users are *forbidden* from calling these methods on objects
1708  // without explicit template arguments.
1709
1710  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
1711    assert(hasExplicitTemplateArgs());
1712    return *reinterpret_cast<ExplicitTemplateArgumentList*>(this + 1);
1713  }
1714
1715  /// Gets a reference to the explicit template argument list.
1716  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
1717    assert(hasExplicitTemplateArgs());
1718    return *reinterpret_cast<const ExplicitTemplateArgumentList*>(this + 1);
1719  }
1720
1721  /// \brief Retrieves the optional explicit template arguments.
1722  /// This points to the same data as getExplicitTemplateArgs(), but
1723  /// returns null if there are no explicit template arguments.
1724  const ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() {
1725    if (!hasExplicitTemplateArgs()) return 0;
1726    return &getExplicitTemplateArgs();
1727  }
1728
1729  /// \brief Copies the template arguments (if present) into the given
1730  /// structure.
1731  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1732    getExplicitTemplateArgs().copyInto(List);
1733  }
1734
1735  SourceLocation getLAngleLoc() const {
1736    return getExplicitTemplateArgs().LAngleLoc;
1737  }
1738
1739  SourceLocation getRAngleLoc() const {
1740    return getExplicitTemplateArgs().RAngleLoc;
1741  }
1742
1743  TemplateArgumentLoc const *getTemplateArgs() const {
1744    return getExplicitTemplateArgs().getTemplateArgs();
1745  }
1746
1747  unsigned getNumTemplateArgs() const {
1748    return getExplicitTemplateArgs().NumTemplateArgs;
1749  }
1750
1751  virtual SourceRange getSourceRange() const {
1752    SourceRange Range(QualifierRange.getBegin(), getLocation());
1753    if (hasExplicitTemplateArgs())
1754      Range.setEnd(getRAngleLoc());
1755    return Range;
1756  }
1757
1758  static bool classof(const Stmt *T) {
1759    return T->getStmtClass() == DependentScopeDeclRefExprClass;
1760  }
1761  static bool classof(const DependentScopeDeclRefExpr *) { return true; }
1762
1763  virtual StmtIterator child_begin();
1764  virtual StmtIterator child_end();
1765};
1766
1767class CXXExprWithTemporaries : public Expr {
1768  Stmt *SubExpr;
1769
1770  CXXTemporary **Temps;
1771  unsigned NumTemps;
1772
1773  CXXExprWithTemporaries(ASTContext &C, Expr *SubExpr, CXXTemporary **Temps,
1774                         unsigned NumTemps);
1775
1776public:
1777  CXXExprWithTemporaries(EmptyShell Empty)
1778    : Expr(CXXExprWithTemporariesClass, Empty),
1779      SubExpr(0), Temps(0), NumTemps(0) {}
1780
1781  static CXXExprWithTemporaries *Create(ASTContext &C, Expr *SubExpr,
1782                                        CXXTemporary **Temps,
1783                                        unsigned NumTemps);
1784
1785  unsigned getNumTemporaries() const { return NumTemps; }
1786  void setNumTemporaries(ASTContext &C, unsigned N);
1787
1788  CXXTemporary *getTemporary(unsigned i) {
1789    assert(i < NumTemps && "Index out of range");
1790    return Temps[i];
1791  }
1792  const CXXTemporary *getTemporary(unsigned i) const {
1793    return const_cast<CXXExprWithTemporaries*>(this)->getTemporary(i);
1794  }
1795  void setTemporary(unsigned i, CXXTemporary *T) {
1796    assert(i < NumTemps && "Index out of range");
1797    Temps[i] = T;
1798  }
1799
1800  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
1801  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
1802  void setSubExpr(Expr *E) { SubExpr = E; }
1803
1804  virtual SourceRange getSourceRange() const {
1805    return SubExpr->getSourceRange();
1806  }
1807
1808  // Implement isa/cast/dyncast/etc.
1809  static bool classof(const Stmt *T) {
1810    return T->getStmtClass() == CXXExprWithTemporariesClass;
1811  }
1812  static bool classof(const CXXExprWithTemporaries *) { return true; }
1813
1814  // Iterators
1815  virtual child_iterator child_begin();
1816  virtual child_iterator child_end();
1817};
1818
1819/// \brief Describes an explicit type conversion that uses functional
1820/// notion but could not be resolved because one or more arguments are
1821/// type-dependent.
1822///
1823/// The explicit type conversions expressed by
1824/// CXXUnresolvedConstructExpr have the form \c T(a1, a2, ..., aN),
1825/// where \c T is some type and \c a1, a2, ..., aN are values, and
1826/// either \C T is a dependent type or one or more of the \c a's is
1827/// type-dependent. For example, this would occur in a template such
1828/// as:
1829///
1830/// \code
1831///   template<typename T, typename A1>
1832///   inline T make_a(const A1& a1) {
1833///     return T(a1);
1834///   }
1835/// \endcode
1836///
1837/// When the returned expression is instantiated, it may resolve to a
1838/// constructor call, conversion function call, or some kind of type
1839/// conversion.
1840class CXXUnresolvedConstructExpr : public Expr {
1841  /// \brief The starting location of the type
1842  SourceLocation TyBeginLoc;
1843
1844  /// \brief The type being constructed.
1845  QualType Type;
1846
1847  /// \brief The location of the left parentheses ('(').
1848  SourceLocation LParenLoc;
1849
1850  /// \brief The location of the right parentheses (')').
1851  SourceLocation RParenLoc;
1852
1853  /// \brief The number of arguments used to construct the type.
1854  unsigned NumArgs;
1855
1856  CXXUnresolvedConstructExpr(SourceLocation TyBegin,
1857                             QualType T,
1858                             SourceLocation LParenLoc,
1859                             Expr **Args,
1860                             unsigned NumArgs,
1861                             SourceLocation RParenLoc);
1862
1863  CXXUnresolvedConstructExpr(EmptyShell Empty, unsigned NumArgs)
1864    : Expr(CXXUnresolvedConstructExprClass, Empty), NumArgs(NumArgs) { }
1865
1866public:
1867  static CXXUnresolvedConstructExpr *Create(ASTContext &C,
1868                                            SourceLocation TyBegin,
1869                                            QualType T,
1870                                            SourceLocation LParenLoc,
1871                                            Expr **Args,
1872                                            unsigned NumArgs,
1873                                            SourceLocation RParenLoc);
1874
1875  static CXXUnresolvedConstructExpr *CreateEmpty(ASTContext &C,
1876                                                 unsigned NumArgs);
1877
1878  /// \brief Retrieve the source location where the type begins.
1879  SourceLocation getTypeBeginLoc() const { return TyBeginLoc; }
1880  void setTypeBeginLoc(SourceLocation L) { TyBeginLoc = L; }
1881
1882  /// \brief Retrieve the type that is being constructed, as specified
1883  /// in the source code.
1884  QualType getTypeAsWritten() const { return Type; }
1885  void setTypeAsWritten(QualType T) { Type = T; }
1886
1887  /// \brief Retrieve the location of the left parentheses ('(') that
1888  /// precedes the argument list.
1889  SourceLocation getLParenLoc() const { return LParenLoc; }
1890  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
1891
1892  /// \brief Retrieve the location of the right parentheses (')') that
1893  /// follows the argument list.
1894  SourceLocation getRParenLoc() const { return RParenLoc; }
1895  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1896
1897  /// \brief Retrieve the number of arguments.
1898  unsigned arg_size() const { return NumArgs; }
1899
1900  typedef Expr** arg_iterator;
1901  arg_iterator arg_begin() { return reinterpret_cast<Expr**>(this + 1); }
1902  arg_iterator arg_end() { return arg_begin() + NumArgs; }
1903
1904  typedef const Expr* const * const_arg_iterator;
1905  const_arg_iterator arg_begin() const {
1906    return reinterpret_cast<const Expr* const *>(this + 1);
1907  }
1908  const_arg_iterator arg_end() const {
1909    return arg_begin() + NumArgs;
1910  }
1911
1912  Expr *getArg(unsigned I) {
1913    assert(I < NumArgs && "Argument index out-of-range");
1914    return *(arg_begin() + I);
1915  }
1916
1917  const Expr *getArg(unsigned I) const {
1918    assert(I < NumArgs && "Argument index out-of-range");
1919    return *(arg_begin() + I);
1920  }
1921
1922  void setArg(unsigned I, Expr *E) {
1923    assert(I < NumArgs && "Argument index out-of-range");
1924    *(arg_begin() + I) = E;
1925  }
1926
1927  virtual SourceRange getSourceRange() const {
1928    return SourceRange(TyBeginLoc, RParenLoc);
1929  }
1930  static bool classof(const Stmt *T) {
1931    return T->getStmtClass() == CXXUnresolvedConstructExprClass;
1932  }
1933  static bool classof(const CXXUnresolvedConstructExpr *) { return true; }
1934
1935  // Iterators
1936  virtual child_iterator child_begin();
1937  virtual child_iterator child_end();
1938};
1939
1940/// \brief Represents a C++ member access expression where the actual
1941/// member referenced could not be resolved because the base
1942/// expression or the member name was dependent.
1943///
1944/// Like UnresolvedMemberExprs, these can be either implicit or
1945/// explicit accesses.  It is only possible to get one of these with
1946/// an implicit access if a qualifier is provided.
1947class CXXDependentScopeMemberExpr : public Expr {
1948  /// \brief The expression for the base pointer or class reference,
1949  /// e.g., the \c x in x.f.  Can be null in implicit accesses.
1950  Stmt *Base;
1951
1952  /// \brief The type of the base expression.  Never null, even for
1953  /// implicit accesses.
1954  QualType BaseType;
1955
1956  /// \brief Whether this member expression used the '->' operator or
1957  /// the '.' operator.
1958  bool IsArrow : 1;
1959
1960  /// \brief Whether this member expression has explicitly-specified template
1961  /// arguments.
1962  bool HasExplicitTemplateArgs : 1;
1963
1964  /// \brief The location of the '->' or '.' operator.
1965  SourceLocation OperatorLoc;
1966
1967  /// \brief The nested-name-specifier that precedes the member name, if any.
1968  NestedNameSpecifier *Qualifier;
1969
1970  /// \brief The source range covering the nested name specifier.
1971  SourceRange QualifierRange;
1972
1973  /// \brief In a qualified member access expression such as t->Base::f, this
1974  /// member stores the resolves of name lookup in the context of the member
1975  /// access expression, to be used at instantiation time.
1976  ///
1977  /// FIXME: This member, along with the Qualifier and QualifierRange, could
1978  /// be stuck into a structure that is optionally allocated at the end of
1979  /// the CXXDependentScopeMemberExpr, to save space in the common case.
1980  NamedDecl *FirstQualifierFoundInScope;
1981
1982  /// \brief The member to which this member expression refers, which
1983  /// can be name, overloaded operator, or destructor.
1984  /// FIXME: could also be a template-id
1985  DeclarationNameInfo MemberNameInfo;
1986
1987  CXXDependentScopeMemberExpr(ASTContext &C,
1988                          Expr *Base, QualType BaseType, bool IsArrow,
1989                          SourceLocation OperatorLoc,
1990                          NestedNameSpecifier *Qualifier,
1991                          SourceRange QualifierRange,
1992                          NamedDecl *FirstQualifierFoundInScope,
1993                          DeclarationNameInfo MemberNameInfo,
1994                          const TemplateArgumentListInfo *TemplateArgs);
1995
1996public:
1997  CXXDependentScopeMemberExpr(ASTContext &C,
1998                          Expr *Base, QualType BaseType,
1999                          bool IsArrow,
2000                          SourceLocation OperatorLoc,
2001                          NestedNameSpecifier *Qualifier,
2002                          SourceRange QualifierRange,
2003                          NamedDecl *FirstQualifierFoundInScope,
2004                          DeclarationNameInfo MemberNameInfo)
2005  : Expr(CXXDependentScopeMemberExprClass, C.DependentTy, true, true),
2006    Base(Base), BaseType(BaseType), IsArrow(IsArrow),
2007    HasExplicitTemplateArgs(false), OperatorLoc(OperatorLoc),
2008    Qualifier(Qualifier), QualifierRange(QualifierRange),
2009    FirstQualifierFoundInScope(FirstQualifierFoundInScope),
2010    MemberNameInfo(MemberNameInfo) { }
2011
2012  static CXXDependentScopeMemberExpr *
2013  Create(ASTContext &C,
2014         Expr *Base, QualType BaseType, bool IsArrow,
2015         SourceLocation OperatorLoc,
2016         NestedNameSpecifier *Qualifier,
2017         SourceRange QualifierRange,
2018         NamedDecl *FirstQualifierFoundInScope,
2019         DeclarationNameInfo MemberNameInfo,
2020         const TemplateArgumentListInfo *TemplateArgs);
2021
2022  static CXXDependentScopeMemberExpr *
2023  CreateEmpty(ASTContext &C, unsigned NumTemplateArgs);
2024
2025  /// \brief True if this is an implicit access, i.e. one in which the
2026  /// member being accessed was not written in the source.  The source
2027  /// location of the operator is invalid in this case.
2028  bool isImplicitAccess() const { return Base == 0; }
2029
2030  /// \brief Retrieve the base object of this member expressions,
2031  /// e.g., the \c x in \c x.m.
2032  Expr *getBase() const {
2033    assert(!isImplicitAccess());
2034    return cast<Expr>(Base);
2035  }
2036  void setBase(Expr *E) { Base = E; }
2037
2038  QualType getBaseType() const { return BaseType; }
2039  void setBaseType(QualType T) { BaseType = T; }
2040
2041  /// \brief Determine whether this member expression used the '->'
2042  /// operator; otherwise, it used the '.' operator.
2043  bool isArrow() const { return IsArrow; }
2044  void setArrow(bool A) { IsArrow = A; }
2045
2046  /// \brief Retrieve the location of the '->' or '.' operator.
2047  SourceLocation getOperatorLoc() const { return OperatorLoc; }
2048  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
2049
2050  /// \brief Retrieve the nested-name-specifier that qualifies the member
2051  /// name.
2052  NestedNameSpecifier *getQualifier() const { return Qualifier; }
2053  void setQualifier(NestedNameSpecifier *NNS) { Qualifier = NNS; }
2054
2055  /// \brief Retrieve the source range covering the nested-name-specifier
2056  /// that qualifies the member name.
2057  SourceRange getQualifierRange() const { return QualifierRange; }
2058  void setQualifierRange(SourceRange R) { QualifierRange = R; }
2059
2060  /// \brief Retrieve the first part of the nested-name-specifier that was
2061  /// found in the scope of the member access expression when the member access
2062  /// was initially parsed.
2063  ///
2064  /// This function only returns a useful result when member access expression
2065  /// uses a qualified member name, e.g., "x.Base::f". Here, the declaration
2066  /// returned by this function describes what was found by unqualified name
2067  /// lookup for the identifier "Base" within the scope of the member access
2068  /// expression itself. At template instantiation time, this information is
2069  /// combined with the results of name lookup into the type of the object
2070  /// expression itself (the class type of x).
2071  NamedDecl *getFirstQualifierFoundInScope() const {
2072    return FirstQualifierFoundInScope;
2073  }
2074  void setFirstQualifierFoundInScope(NamedDecl *D) {
2075    FirstQualifierFoundInScope = D;
2076  }
2077
2078  /// \brief Retrieve the name of the member that this expression
2079  /// refers to.
2080  const DeclarationNameInfo &getMemberNameInfo() const {
2081    return MemberNameInfo;
2082  }
2083  void setMemberNameInfo(const DeclarationNameInfo &N) { MemberNameInfo = N; }
2084
2085  /// \brief Retrieve the name of the member that this expression
2086  /// refers to.
2087  DeclarationName getMember() const { return MemberNameInfo.getName(); }
2088  void setMember(DeclarationName N) { MemberNameInfo.setName(N); }
2089
2090  // \brief Retrieve the location of the name of the member that this
2091  // expression refers to.
2092  SourceLocation getMemberLoc() const { return MemberNameInfo.getLoc(); }
2093  void setMemberLoc(SourceLocation L) { MemberNameInfo.setLoc(L); }
2094
2095  /// \brief Determines whether this member expression actually had a C++
2096  /// template argument list explicitly specified, e.g., x.f<int>.
2097  bool hasExplicitTemplateArgs() const {
2098    return HasExplicitTemplateArgs;
2099  }
2100
2101  /// \brief Retrieve the explicit template argument list that followed the
2102  /// member template name, if any.
2103  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
2104    assert(HasExplicitTemplateArgs);
2105    return *reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
2106  }
2107
2108  /// \brief Retrieve the explicit template argument list that followed the
2109  /// member template name, if any.
2110  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
2111    return const_cast<CXXDependentScopeMemberExpr *>(this)
2112             ->getExplicitTemplateArgs();
2113  }
2114
2115  /// \brief Retrieves the optional explicit template arguments.
2116  /// This points to the same data as getExplicitTemplateArgs(), but
2117  /// returns null if there are no explicit template arguments.
2118  const ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() {
2119    if (!hasExplicitTemplateArgs()) return 0;
2120    return &getExplicitTemplateArgs();
2121  }
2122
2123  /// \brief Copies the template arguments (if present) into the given
2124  /// structure.
2125  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2126    getExplicitTemplateArgs().copyInto(List);
2127  }
2128
2129  /// \brief Initializes the template arguments using the given structure.
2130  void initializeTemplateArgumentsFrom(const TemplateArgumentListInfo &List) {
2131    getExplicitTemplateArgs().initializeFrom(List);
2132  }
2133
2134  /// \brief Retrieve the location of the left angle bracket following the
2135  /// member name ('<'), if any.
2136  SourceLocation getLAngleLoc() const {
2137    return getExplicitTemplateArgs().LAngleLoc;
2138  }
2139
2140  /// \brief Retrieve the template arguments provided as part of this
2141  /// template-id.
2142  const TemplateArgumentLoc *getTemplateArgs() const {
2143    return getExplicitTemplateArgs().getTemplateArgs();
2144  }
2145
2146  /// \brief Retrieve the number of template arguments provided as part of this
2147  /// template-id.
2148  unsigned getNumTemplateArgs() const {
2149    return getExplicitTemplateArgs().NumTemplateArgs;
2150  }
2151
2152  /// \brief Retrieve the location of the right angle bracket following the
2153  /// template arguments ('>').
2154  SourceLocation getRAngleLoc() const {
2155    return getExplicitTemplateArgs().RAngleLoc;
2156  }
2157
2158  virtual SourceRange getSourceRange() const {
2159    SourceRange Range;
2160    if (!isImplicitAccess())
2161      Range.setBegin(Base->getSourceRange().getBegin());
2162    else if (getQualifier())
2163      Range.setBegin(getQualifierRange().getBegin());
2164    else
2165      Range.setBegin(MemberNameInfo.getBeginLoc());
2166
2167    if (hasExplicitTemplateArgs())
2168      Range.setEnd(getRAngleLoc());
2169    else
2170      Range.setEnd(MemberNameInfo.getEndLoc());
2171    return Range;
2172  }
2173
2174  static bool classof(const Stmt *T) {
2175    return T->getStmtClass() == CXXDependentScopeMemberExprClass;
2176  }
2177  static bool classof(const CXXDependentScopeMemberExpr *) { return true; }
2178
2179  // Iterators
2180  virtual child_iterator child_begin();
2181  virtual child_iterator child_end();
2182};
2183
2184/// \brief Represents a C++ member access expression for which lookup
2185/// produced a set of overloaded functions.
2186///
2187/// The member access may be explicit or implicit:
2188///    struct A {
2189///      int a, b;
2190///      int explicitAccess() { return this->a + this->A::b; }
2191///      int implicitAccess() { return a + A::b; }
2192///    };
2193///
2194/// In the final AST, an explicit access always becomes a MemberExpr.
2195/// An implicit access may become either a MemberExpr or a
2196/// DeclRefExpr, depending on whether the member is static.
2197class UnresolvedMemberExpr : public OverloadExpr {
2198  /// \brief Whether this member expression used the '->' operator or
2199  /// the '.' operator.
2200  bool IsArrow : 1;
2201
2202  /// \brief Whether the lookup results contain an unresolved using
2203  /// declaration.
2204  bool HasUnresolvedUsing : 1;
2205
2206  /// \brief The expression for the base pointer or class reference,
2207  /// e.g., the \c x in x.f.  This can be null if this is an 'unbased'
2208  /// member expression
2209  Stmt *Base;
2210
2211  /// \brief The type of the base expression;  never null.
2212  QualType BaseType;
2213
2214  /// \brief The location of the '->' or '.' operator.
2215  SourceLocation OperatorLoc;
2216
2217  UnresolvedMemberExpr(ASTContext &C, QualType T, bool Dependent,
2218                       bool HasUnresolvedUsing,
2219                       Expr *Base, QualType BaseType, bool IsArrow,
2220                       SourceLocation OperatorLoc,
2221                       NestedNameSpecifier *Qualifier,
2222                       SourceRange QualifierRange,
2223                       const DeclarationNameInfo &MemberNameInfo,
2224                       const TemplateArgumentListInfo *TemplateArgs,
2225                       UnresolvedSetIterator Begin, UnresolvedSetIterator End);
2226
2227  UnresolvedMemberExpr(EmptyShell Empty)
2228    : OverloadExpr(UnresolvedMemberExprClass, Empty), IsArrow(false),
2229      HasUnresolvedUsing(false), Base(0) { }
2230
2231public:
2232  static UnresolvedMemberExpr *
2233  Create(ASTContext &C, bool Dependent, bool HasUnresolvedUsing,
2234         Expr *Base, QualType BaseType, bool IsArrow,
2235         SourceLocation OperatorLoc,
2236         NestedNameSpecifier *Qualifier,
2237         SourceRange QualifierRange,
2238         const DeclarationNameInfo &MemberNameInfo,
2239         const TemplateArgumentListInfo *TemplateArgs,
2240         UnresolvedSetIterator Begin, UnresolvedSetIterator End);
2241
2242  static UnresolvedMemberExpr *
2243  CreateEmpty(ASTContext &C, unsigned NumTemplateArgs);
2244
2245  /// \brief True if this is an implicit access, i.e. one in which the
2246  /// member being accessed was not written in the source.  The source
2247  /// location of the operator is invalid in this case.
2248  bool isImplicitAccess() const { return Base == 0; }
2249
2250  /// \brief Retrieve the base object of this member expressions,
2251  /// e.g., the \c x in \c x.m.
2252  Expr *getBase() {
2253    assert(!isImplicitAccess());
2254    return cast<Expr>(Base);
2255  }
2256  const Expr *getBase() const {
2257    assert(!isImplicitAccess());
2258    return cast<Expr>(Base);
2259  }
2260  void setBase(Expr *E) { Base = E; }
2261
2262  QualType getBaseType() const { return BaseType; }
2263  void setBaseType(QualType T) { BaseType = T; }
2264
2265  /// \brief Determine whether the lookup results contain an unresolved using
2266  /// declaration.
2267  bool hasUnresolvedUsing() const { return HasUnresolvedUsing; }
2268  void setHasUnresolvedUsing(bool V) { HasUnresolvedUsing = V; }
2269
2270  /// \brief Determine whether this member expression used the '->'
2271  /// operator; otherwise, it used the '.' operator.
2272  bool isArrow() const { return IsArrow; }
2273  void setArrow(bool A) { IsArrow = A; }
2274
2275  /// \brief Retrieve the location of the '->' or '.' operator.
2276  SourceLocation getOperatorLoc() const { return OperatorLoc; }
2277  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
2278
2279  /// \brief Retrieves the naming class of this lookup.
2280  CXXRecordDecl *getNamingClass() const;
2281
2282  /// \brief Retrieve the full name info for the member that this expression
2283  /// refers to.
2284  const DeclarationNameInfo &getMemberNameInfo() const { return getNameInfo(); }
2285  void setMemberNameInfo(const DeclarationNameInfo &N) { setNameInfo(N); }
2286
2287  /// \brief Retrieve the name of the member that this expression
2288  /// refers to.
2289  DeclarationName getMemberName() const { return getName(); }
2290  void setMemberName(DeclarationName N) { setName(N); }
2291
2292  // \brief Retrieve the location of the name of the member that this
2293  // expression refers to.
2294  SourceLocation getMemberLoc() const { return getNameLoc(); }
2295  void setMemberLoc(SourceLocation L) { setNameLoc(L); }
2296
2297  /// \brief Retrieve the explicit template argument list that followed the
2298  /// member template name.
2299  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
2300    assert(hasExplicitTemplateArgs());
2301    return *reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
2302  }
2303
2304  /// \brief Retrieve the explicit template argument list that followed the
2305  /// member template name, if any.
2306  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
2307    assert(hasExplicitTemplateArgs());
2308    return *reinterpret_cast<const ExplicitTemplateArgumentList *>(this + 1);
2309  }
2310
2311  /// \brief Retrieves the optional explicit template arguments.
2312  /// This points to the same data as getExplicitTemplateArgs(), but
2313  /// returns null if there are no explicit template arguments.
2314  const ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() {
2315    if (!hasExplicitTemplateArgs()) return 0;
2316    return &getExplicitTemplateArgs();
2317  }
2318
2319  /// \brief Copies the template arguments into the given structure.
2320  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2321    getExplicitTemplateArgs().copyInto(List);
2322  }
2323
2324  /// \brief Retrieve the location of the left angle bracket following
2325  /// the member name ('<').
2326  SourceLocation getLAngleLoc() const {
2327    return getExplicitTemplateArgs().LAngleLoc;
2328  }
2329
2330  /// \brief Retrieve the template arguments provided as part of this
2331  /// template-id.
2332  const TemplateArgumentLoc *getTemplateArgs() const {
2333    return getExplicitTemplateArgs().getTemplateArgs();
2334  }
2335
2336  /// \brief Retrieve the number of template arguments provided as
2337  /// part of this template-id.
2338  unsigned getNumTemplateArgs() const {
2339    return getExplicitTemplateArgs().NumTemplateArgs;
2340  }
2341
2342  /// \brief Retrieve the location of the right angle bracket
2343  /// following the template arguments ('>').
2344  SourceLocation getRAngleLoc() const {
2345    return getExplicitTemplateArgs().RAngleLoc;
2346  }
2347
2348  virtual SourceRange getSourceRange() const {
2349    SourceRange Range = getMemberNameInfo().getSourceRange();
2350    if (!isImplicitAccess())
2351      Range.setBegin(Base->getSourceRange().getBegin());
2352    else if (getQualifier())
2353      Range.setBegin(getQualifierRange().getBegin());
2354
2355    if (hasExplicitTemplateArgs())
2356      Range.setEnd(getRAngleLoc());
2357    return Range;
2358  }
2359
2360  static bool classof(const Stmt *T) {
2361    return T->getStmtClass() == UnresolvedMemberExprClass;
2362  }
2363  static bool classof(const UnresolvedMemberExpr *) { return true; }
2364
2365  // Iterators
2366  virtual child_iterator child_begin();
2367  virtual child_iterator child_end();
2368};
2369
2370inline ExplicitTemplateArgumentList &OverloadExpr::getExplicitTemplateArgs() {
2371  if (isa<UnresolvedLookupExpr>(this))
2372    return cast<UnresolvedLookupExpr>(this)->getExplicitTemplateArgs();
2373  else
2374    return cast<UnresolvedMemberExpr>(this)->getExplicitTemplateArgs();
2375}
2376
2377}  // end namespace clang
2378
2379#endif
2380