ExprCXX.h revision 2333f7727f97018d6742e1e0938133bcfad967ab
1//===--- ExprCXX.h - Classes for representing expressions -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses for C++ expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPRCXX_H
15#define LLVM_CLANG_AST_EXPRCXX_H
16
17#include "clang/Basic/TypeTraits.h"
18#include "clang/AST/Expr.h"
19#include "clang/AST/Decl.h"
20#include "clang/AST/TemplateBase.h"
21
22namespace clang {
23
24  class CXXConstructorDecl;
25  class CXXDestructorDecl;
26  class CXXMethodDecl;
27  class CXXTemporary;
28  class TemplateArgumentListInfo;
29
30//===--------------------------------------------------------------------===//
31// C++ Expressions.
32//===--------------------------------------------------------------------===//
33
34/// \brief A call to an overloaded operator written using operator
35/// syntax.
36///
37/// Represents a call to an overloaded operator written using operator
38/// syntax, e.g., "x + y" or "*p". While semantically equivalent to a
39/// normal call, this AST node provides better information about the
40/// syntactic representation of the call.
41///
42/// In a C++ template, this expression node kind will be used whenever
43/// any of the arguments are type-dependent. In this case, the
44/// function itself will be a (possibly empty) set of functions and
45/// function templates that were found by name lookup at template
46/// definition time.
47class CXXOperatorCallExpr : public CallExpr {
48  /// \brief The overloaded operator.
49  OverloadedOperatorKind Operator;
50
51public:
52  CXXOperatorCallExpr(ASTContext& C, OverloadedOperatorKind Op, Expr *fn,
53                      Expr **args, unsigned numargs, QualType t,
54                      SourceLocation operatorloc)
55    : CallExpr(C, CXXOperatorCallExprClass, fn, args, numargs, t, operatorloc),
56      Operator(Op) {}
57  explicit CXXOperatorCallExpr(ASTContext& C, EmptyShell Empty) :
58    CallExpr(C, CXXOperatorCallExprClass, Empty) { }
59
60
61  /// getOperator - Returns the kind of overloaded operator that this
62  /// expression refers to.
63  OverloadedOperatorKind getOperator() const { return Operator; }
64  void setOperator(OverloadedOperatorKind Kind) { Operator = Kind; }
65
66  /// getOperatorLoc - Returns the location of the operator symbol in
67  /// the expression. When @c getOperator()==OO_Call, this is the
68  /// location of the right parentheses; when @c
69  /// getOperator()==OO_Subscript, this is the location of the right
70  /// bracket.
71  SourceLocation getOperatorLoc() const { return getRParenLoc(); }
72
73  virtual SourceRange getSourceRange() const;
74
75  static bool classof(const Stmt *T) {
76    return T->getStmtClass() == CXXOperatorCallExprClass;
77  }
78  static bool classof(const CXXOperatorCallExpr *) { return true; }
79};
80
81/// CXXMemberCallExpr - Represents a call to a member function that
82/// may be written either with member call syntax (e.g., "obj.func()"
83/// or "objptr->func()") or with normal function-call syntax
84/// ("func()") within a member function that ends up calling a member
85/// function. The callee in either case is a MemberExpr that contains
86/// both the object argument and the member function, while the
87/// arguments are the arguments within the parentheses (not including
88/// the object argument).
89class CXXMemberCallExpr : public CallExpr {
90public:
91  CXXMemberCallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs,
92                    QualType t, SourceLocation rparenloc)
93    : CallExpr(C, CXXMemberCallExprClass, fn, args, numargs, t, rparenloc) {}
94
95  /// getImplicitObjectArgument - Retrieves the implicit object
96  /// argument for the member call. For example, in "x.f(5)", this
97  /// operation would return "x".
98  Expr *getImplicitObjectArgument();
99
100  virtual SourceRange getSourceRange() const;
101
102  static bool classof(const Stmt *T) {
103    return T->getStmtClass() == CXXMemberCallExprClass;
104  }
105  static bool classof(const CXXMemberCallExpr *) { return true; }
106};
107
108/// CXXNamedCastExpr - Abstract class common to all of the C++ "named"
109/// casts, @c static_cast, @c dynamic_cast, @c reinterpret_cast, or @c
110/// const_cast.
111///
112/// This abstract class is inherited by all of the classes
113/// representing "named" casts, e.g., CXXStaticCastExpr,
114/// CXXDynamicCastExpr, CXXReinterpretCastExpr, and CXXConstCastExpr.
115class CXXNamedCastExpr : public ExplicitCastExpr {
116private:
117  SourceLocation Loc; // the location of the casting op
118
119protected:
120  CXXNamedCastExpr(StmtClass SC, QualType ty, CastKind kind, Expr *op,
121                   QualType writtenTy, SourceLocation l)
122    : ExplicitCastExpr(SC, ty, kind, op, writtenTy), Loc(l) {}
123
124public:
125  const char *getCastName() const;
126
127  /// \brief Retrieve the location of the cast operator keyword, e.g.,
128  /// "static_cast".
129  SourceLocation getOperatorLoc() const { return Loc; }
130  void setOperatorLoc(SourceLocation L) { Loc = L; }
131
132  virtual SourceRange getSourceRange() const {
133    return SourceRange(Loc, getSubExpr()->getSourceRange().getEnd());
134  }
135  static bool classof(const Stmt *T) {
136    switch (T->getStmtClass()) {
137    case CXXNamedCastExprClass:
138    case CXXStaticCastExprClass:
139    case CXXDynamicCastExprClass:
140    case CXXReinterpretCastExprClass:
141    case CXXConstCastExprClass:
142      return true;
143    default:
144      return false;
145    }
146  }
147  static bool classof(const CXXNamedCastExpr *) { return true; }
148};
149
150/// CXXStaticCastExpr - A C++ @c static_cast expression (C++ [expr.static.cast]).
151///
152/// This expression node represents a C++ static cast, e.g.,
153/// @c static_cast<int>(1.0).
154class CXXStaticCastExpr : public CXXNamedCastExpr {
155public:
156  CXXStaticCastExpr(QualType ty, CastKind kind, Expr *op,
157                    QualType writtenTy, SourceLocation l)
158    : CXXNamedCastExpr(CXXStaticCastExprClass, ty, kind, op, writtenTy, l) {}
159
160  static bool classof(const Stmt *T) {
161    return T->getStmtClass() == CXXStaticCastExprClass;
162  }
163  static bool classof(const CXXStaticCastExpr *) { return true; }
164};
165
166/// CXXDynamicCastExpr - A C++ @c dynamic_cast expression
167/// (C++ [expr.dynamic.cast]), which may perform a run-time check to
168/// determine how to perform the type cast.
169///
170/// This expression node represents a dynamic cast, e.g.,
171/// @c dynamic_cast<Derived*>(BasePtr).
172class CXXDynamicCastExpr : public CXXNamedCastExpr {
173public:
174  CXXDynamicCastExpr(QualType ty, CastKind kind, Expr *op, QualType writtenTy,
175                     SourceLocation l)
176    : CXXNamedCastExpr(CXXDynamicCastExprClass, ty, kind, op, writtenTy, l) {}
177
178  static bool classof(const Stmt *T) {
179    return T->getStmtClass() == CXXDynamicCastExprClass;
180  }
181  static bool classof(const CXXDynamicCastExpr *) { return true; }
182};
183
184/// CXXReinterpretCastExpr - A C++ @c reinterpret_cast expression (C++
185/// [expr.reinterpret.cast]), which provides a differently-typed view
186/// of a value but performs no actual work at run time.
187///
188/// This expression node represents a reinterpret cast, e.g.,
189/// @c reinterpret_cast<int>(VoidPtr).
190class CXXReinterpretCastExpr : public CXXNamedCastExpr {
191public:
192  CXXReinterpretCastExpr(QualType ty, CastKind kind, Expr *op,
193                         QualType writtenTy, SourceLocation l)
194    : CXXNamedCastExpr(CXXReinterpretCastExprClass, ty, kind, op,
195                       writtenTy, l) {}
196
197  static bool classof(const Stmt *T) {
198    return T->getStmtClass() == CXXReinterpretCastExprClass;
199  }
200  static bool classof(const CXXReinterpretCastExpr *) { return true; }
201};
202
203/// CXXConstCastExpr - A C++ @c const_cast expression (C++ [expr.const.cast]),
204/// which can remove type qualifiers but does not change the underlying value.
205///
206/// This expression node represents a const cast, e.g.,
207/// @c const_cast<char*>(PtrToConstChar).
208class CXXConstCastExpr : public CXXNamedCastExpr {
209public:
210  CXXConstCastExpr(QualType ty, Expr *op, QualType writtenTy,
211                   SourceLocation l)
212    : CXXNamedCastExpr(CXXConstCastExprClass, ty, CK_NoOp, op, writtenTy, l) {}
213
214  static bool classof(const Stmt *T) {
215    return T->getStmtClass() == CXXConstCastExprClass;
216  }
217  static bool classof(const CXXConstCastExpr *) { return true; }
218};
219
220/// CXXBoolLiteralExpr - [C++ 2.13.5] C++ Boolean Literal.
221///
222class CXXBoolLiteralExpr : public Expr {
223  bool Value;
224  SourceLocation Loc;
225public:
226  CXXBoolLiteralExpr(bool val, QualType Ty, SourceLocation l) :
227    Expr(CXXBoolLiteralExprClass, Ty, false, false), Value(val), Loc(l) {}
228
229  bool getValue() const { return Value; }
230
231  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
232
233  static bool classof(const Stmt *T) {
234    return T->getStmtClass() == CXXBoolLiteralExprClass;
235  }
236  static bool classof(const CXXBoolLiteralExpr *) { return true; }
237
238  // Iterators
239  virtual child_iterator child_begin();
240  virtual child_iterator child_end();
241};
242
243/// CXXNullPtrLiteralExpr - [C++0x 2.14.7] C++ Pointer Literal
244class CXXNullPtrLiteralExpr : public Expr {
245  SourceLocation Loc;
246public:
247  CXXNullPtrLiteralExpr(QualType Ty, SourceLocation l) :
248    Expr(CXXNullPtrLiteralExprClass, Ty, false, false), Loc(l) {}
249
250  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
251
252  static bool classof(const Stmt *T) {
253    return T->getStmtClass() == CXXNullPtrLiteralExprClass;
254  }
255  static bool classof(const CXXNullPtrLiteralExpr *) { return true; }
256
257  virtual child_iterator child_begin();
258  virtual child_iterator child_end();
259};
260
261/// CXXTypeidExpr - A C++ @c typeid expression (C++ [expr.typeid]), which gets
262/// the type_info that corresponds to the supplied type, or the (possibly
263/// dynamic) type of the supplied expression.
264///
265/// This represents code like @c typeid(int) or @c typeid(*objPtr)
266class CXXTypeidExpr : public Expr {
267private:
268  bool isTypeOp : 1;
269  union {
270    void *Ty;
271    Stmt *Ex;
272  } Operand;
273  SourceRange Range;
274
275public:
276  CXXTypeidExpr(bool isTypeOp, void *op, QualType Ty, const SourceRange r) :
277      Expr(CXXTypeidExprClass, Ty,
278        // typeid is never type-dependent (C++ [temp.dep.expr]p4)
279        false,
280        // typeid is value-dependent if the type or expression are dependent
281        (isTypeOp ? QualType::getFromOpaquePtr(op)->isDependentType()
282                  : static_cast<Expr*>(op)->isValueDependent())),
283      isTypeOp(isTypeOp), Range(r) {
284    if (isTypeOp)
285      Operand.Ty = op;
286    else
287      // op was an Expr*, so cast it back to that to be safe
288      Operand.Ex = static_cast<Expr*>(op);
289  }
290
291  bool isTypeOperand() const { return isTypeOp; }
292  QualType getTypeOperand() const {
293    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
294    return QualType::getFromOpaquePtr(Operand.Ty);
295  }
296  Expr* getExprOperand() const {
297    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
298    return static_cast<Expr*>(Operand.Ex);
299  }
300
301  virtual SourceRange getSourceRange() const {
302    return Range;
303  }
304  static bool classof(const Stmt *T) {
305    return T->getStmtClass() == CXXTypeidExprClass;
306  }
307  static bool classof(const CXXTypeidExpr *) { return true; }
308
309  // Iterators
310  virtual child_iterator child_begin();
311  virtual child_iterator child_end();
312};
313
314/// CXXThisExpr - Represents the "this" expression in C++, which is a
315/// pointer to the object on which the current member function is
316/// executing (C++ [expr.prim]p3). Example:
317///
318/// @code
319/// class Foo {
320/// public:
321///   void bar();
322///   void test() { this->bar(); }
323/// };
324/// @endcode
325class CXXThisExpr : public Expr {
326  SourceLocation Loc;
327
328public:
329  CXXThisExpr(SourceLocation L, QualType Type)
330    : Expr(CXXThisExprClass, Type,
331           // 'this' is type-dependent if the class type of the enclosing
332           // member function is dependent (C++ [temp.dep.expr]p2)
333           Type->isDependentType(), Type->isDependentType()),
334      Loc(L) { }
335
336  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
337
338  static bool classof(const Stmt *T) {
339    return T->getStmtClass() == CXXThisExprClass;
340  }
341  static bool classof(const CXXThisExpr *) { return true; }
342
343  // Iterators
344  virtual child_iterator child_begin();
345  virtual child_iterator child_end();
346};
347
348///  CXXThrowExpr - [C++ 15] C++ Throw Expression.  This handles
349///  'throw' and 'throw' assignment-expression.  When
350///  assignment-expression isn't present, Op will be null.
351///
352class CXXThrowExpr : public Expr {
353  Stmt *Op;
354  SourceLocation ThrowLoc;
355public:
356  // Ty is the void type which is used as the result type of the
357  // exepression.  The l is the location of the throw keyword.  expr
358  // can by null, if the optional expression to throw isn't present.
359  CXXThrowExpr(Expr *expr, QualType Ty, SourceLocation l) :
360    Expr(CXXThrowExprClass, Ty, false, false), Op(expr), ThrowLoc(l) {}
361  const Expr *getSubExpr() const { return cast_or_null<Expr>(Op); }
362  Expr *getSubExpr() { return cast_or_null<Expr>(Op); }
363  void setSubExpr(Expr *E) { Op = E; }
364
365  SourceLocation getThrowLoc() const { return ThrowLoc; }
366  void setThrowLoc(SourceLocation L) { ThrowLoc = L; }
367
368  virtual SourceRange getSourceRange() const {
369    if (getSubExpr() == 0)
370      return SourceRange(ThrowLoc, ThrowLoc);
371    return SourceRange(ThrowLoc, getSubExpr()->getSourceRange().getEnd());
372  }
373
374  static bool classof(const Stmt *T) {
375    return T->getStmtClass() == CXXThrowExprClass;
376  }
377  static bool classof(const CXXThrowExpr *) { return true; }
378
379  // Iterators
380  virtual child_iterator child_begin();
381  virtual child_iterator child_end();
382};
383
384/// CXXDefaultArgExpr - C++ [dcl.fct.default]. This wraps up a
385/// function call argument that was created from the corresponding
386/// parameter's default argument, when the call did not explicitly
387/// supply arguments for all of the parameters.
388class CXXDefaultArgExpr : public Expr {
389  /// \brief The parameter whose default is being used.
390  ///
391  /// When the bit is set, the subexpression is stored after the
392  /// CXXDefaultArgExpr itself. When the bit is clear, the parameter's
393  /// actual default expression is the subexpression.
394  llvm::PointerIntPair<ParmVarDecl *, 1, bool> Param;
395
396  /// \brief The location where the default argument expression was used.
397  SourceLocation Loc;
398
399protected:
400  CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param)
401    : Expr(SC,
402           param->hasUnparsedDefaultArg()
403             ? param->getType().getNonReferenceType()
404             : param->getDefaultArg()->getType(),
405           false, false),
406      Param(param, false), Loc(Loc) { }
407
408  CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param,
409                    Expr *SubExpr)
410    : Expr(SC, SubExpr->getType(), false, false), Param(param, true), Loc(Loc)
411  {
412    *reinterpret_cast<Expr **>(this + 1) = SubExpr;
413  }
414
415protected:
416  virtual void DoDestroy(ASTContext &C);
417
418public:
419  // Param is the parameter whose default argument is used by this
420  // expression.
421  static CXXDefaultArgExpr *Create(ASTContext &C, SourceLocation Loc,
422                                   ParmVarDecl *Param) {
423    return new (C) CXXDefaultArgExpr(CXXDefaultArgExprClass, Loc, Param);
424  }
425
426  // Param is the parameter whose default argument is used by this
427  // expression, and SubExpr is the expression that will actually be used.
428  static CXXDefaultArgExpr *Create(ASTContext &C,
429                                   SourceLocation Loc,
430                                   ParmVarDecl *Param,
431                                   Expr *SubExpr);
432
433  // Retrieve the parameter that the argument was created from.
434  const ParmVarDecl *getParam() const { return Param.getPointer(); }
435  ParmVarDecl *getParam() { return Param.getPointer(); }
436
437  // Retrieve the actual argument to the function call.
438  const Expr *getExpr() const {
439    if (Param.getInt())
440      return *reinterpret_cast<Expr const * const*> (this + 1);
441    return getParam()->getDefaultArg();
442  }
443  Expr *getExpr() {
444    if (Param.getInt())
445      return *reinterpret_cast<Expr **> (this + 1);
446    return getParam()->getDefaultArg();
447  }
448
449  /// \brief Retrieve the location where this default argument was actually
450  /// used.
451  SourceLocation getUsedLocation() const { return Loc; }
452
453  virtual SourceRange getSourceRange() const {
454    // Default argument expressions have no representation in the
455    // source, so they have an empty source range.
456    return SourceRange();
457  }
458
459  static bool classof(const Stmt *T) {
460    return T->getStmtClass() == CXXDefaultArgExprClass;
461  }
462  static bool classof(const CXXDefaultArgExpr *) { return true; }
463
464  // Iterators
465  virtual child_iterator child_begin();
466  virtual child_iterator child_end();
467};
468
469/// CXXTemporary - Represents a C++ temporary.
470class CXXTemporary {
471  /// Destructor - The destructor that needs to be called.
472  const CXXDestructorDecl *Destructor;
473
474  CXXTemporary(const CXXDestructorDecl *destructor)
475    : Destructor(destructor) { }
476  ~CXXTemporary() { }
477
478public:
479  static CXXTemporary *Create(ASTContext &C,
480                              const CXXDestructorDecl *Destructor);
481
482  void Destroy(ASTContext &Ctx);
483
484  const CXXDestructorDecl *getDestructor() const { return Destructor; }
485};
486
487/// CXXBindTemporaryExpr - Represents binding an expression to a temporary,
488/// so its destructor can be called later.
489class CXXBindTemporaryExpr : public Expr {
490  CXXTemporary *Temp;
491
492  Stmt *SubExpr;
493
494  CXXBindTemporaryExpr(CXXTemporary *temp, Expr* subexpr)
495   : Expr(CXXBindTemporaryExprClass, subexpr->getType(), false, false),
496     Temp(temp), SubExpr(subexpr) { }
497  ~CXXBindTemporaryExpr() { }
498
499protected:
500  virtual void DoDestroy(ASTContext &C);
501
502public:
503  static CXXBindTemporaryExpr *Create(ASTContext &C, CXXTemporary *Temp,
504                                      Expr* SubExpr);
505
506  CXXTemporary *getTemporary() { return Temp; }
507  const CXXTemporary *getTemporary() const { return Temp; }
508
509  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
510  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
511  void setSubExpr(Expr *E) { SubExpr = E; }
512
513  virtual SourceRange getSourceRange() const {
514    return SubExpr->getSourceRange();
515  }
516
517  // Implement isa/cast/dyncast/etc.
518  static bool classof(const Stmt *T) {
519    return T->getStmtClass() == CXXBindTemporaryExprClass;
520  }
521  static bool classof(const CXXBindTemporaryExpr *) { return true; }
522
523  // Iterators
524  virtual child_iterator child_begin();
525  virtual child_iterator child_end();
526};
527
528/// CXXConstructExpr - Represents a call to a C++ constructor.
529class CXXConstructExpr : public Expr {
530  CXXConstructorDecl *Constructor;
531
532  SourceLocation Loc;
533  bool Elidable : 1;
534  bool ZeroInitialization : 1;
535  Stmt **Args;
536  unsigned NumArgs;
537
538protected:
539  CXXConstructExpr(ASTContext &C, StmtClass SC, QualType T,
540                   SourceLocation Loc,
541                   CXXConstructorDecl *d, bool elidable,
542                   Expr **args, unsigned numargs,
543                   bool ZeroInitialization = false);
544  ~CXXConstructExpr() { }
545
546  virtual void DoDestroy(ASTContext &C);
547
548public:
549  /// \brief Construct an empty C++ construction expression that will store
550  /// \p numargs arguments.
551  CXXConstructExpr(EmptyShell Empty, ASTContext &C, unsigned numargs);
552
553  static CXXConstructExpr *Create(ASTContext &C, QualType T,
554                                  SourceLocation Loc,
555                                  CXXConstructorDecl *D, bool Elidable,
556                                  Expr **Args, unsigned NumArgs,
557                                  bool ZeroInitialization = false);
558
559
560  CXXConstructorDecl* getConstructor() const { return Constructor; }
561  void setConstructor(CXXConstructorDecl *C) { Constructor = C; }
562
563  SourceLocation getLocation() const { return Loc; }
564  void setLocation(SourceLocation Loc) { this->Loc = Loc; }
565
566  /// \brief Whether this construction is elidable.
567  bool isElidable() const { return Elidable; }
568  void setElidable(bool E) { Elidable = E; }
569
570  /// \brief Whether this construction first requires
571  /// zero-initialization before the initializer is called.
572  bool requiresZeroInitialization() const { return ZeroInitialization; }
573  void setRequiresZeroInitialization(bool ZeroInit) {
574    ZeroInitialization = ZeroInit;
575  }
576
577  typedef ExprIterator arg_iterator;
578  typedef ConstExprIterator const_arg_iterator;
579
580  arg_iterator arg_begin() { return Args; }
581  arg_iterator arg_end() { return Args + NumArgs; }
582  const_arg_iterator arg_begin() const { return Args; }
583  const_arg_iterator arg_end() const { return Args + NumArgs; }
584
585  Expr **getArgs() const { return reinterpret_cast<Expr **>(Args); }
586  unsigned getNumArgs() const { return NumArgs; }
587
588  /// getArg - Return the specified argument.
589  Expr *getArg(unsigned Arg) {
590    assert(Arg < NumArgs && "Arg access out of range!");
591    return cast<Expr>(Args[Arg]);
592  }
593  const Expr *getArg(unsigned Arg) const {
594    assert(Arg < NumArgs && "Arg access out of range!");
595    return cast<Expr>(Args[Arg]);
596  }
597
598  /// setArg - Set the specified argument.
599  void setArg(unsigned Arg, Expr *ArgExpr) {
600    assert(Arg < NumArgs && "Arg access out of range!");
601    Args[Arg] = ArgExpr;
602  }
603
604  virtual SourceRange getSourceRange() const;
605
606  static bool classof(const Stmt *T) {
607    return T->getStmtClass() == CXXConstructExprClass ||
608      T->getStmtClass() == CXXTemporaryObjectExprClass;
609  }
610  static bool classof(const CXXConstructExpr *) { return true; }
611
612  // Iterators
613  virtual child_iterator child_begin();
614  virtual child_iterator child_end();
615};
616
617/// CXXFunctionalCastExpr - Represents an explicit C++ type conversion
618/// that uses "functional" notion (C++ [expr.type.conv]). Example: @c
619/// x = int(0.5);
620class CXXFunctionalCastExpr : public ExplicitCastExpr {
621  SourceLocation TyBeginLoc;
622  SourceLocation RParenLoc;
623public:
624  CXXFunctionalCastExpr(QualType ty, QualType writtenTy,
625                        SourceLocation tyBeginLoc, CastKind kind,
626                        Expr *castExpr, SourceLocation rParenLoc)
627    : ExplicitCastExpr(CXXFunctionalCastExprClass, ty, kind, castExpr,
628                       writtenTy),
629      TyBeginLoc(tyBeginLoc), RParenLoc(rParenLoc) {}
630
631  SourceLocation getTypeBeginLoc() const { return TyBeginLoc; }
632  SourceLocation getRParenLoc() const { return RParenLoc; }
633
634  virtual SourceRange getSourceRange() const {
635    return SourceRange(TyBeginLoc, RParenLoc);
636  }
637  static bool classof(const Stmt *T) {
638    return T->getStmtClass() == CXXFunctionalCastExprClass;
639  }
640  static bool classof(const CXXFunctionalCastExpr *) { return true; }
641};
642
643/// @brief Represents a C++ functional cast expression that builds a
644/// temporary object.
645///
646/// This expression type represents a C++ "functional" cast
647/// (C++[expr.type.conv]) with N != 1 arguments that invokes a
648/// constructor to build a temporary object. If N == 0 but no
649/// constructor will be called (because the functional cast is
650/// performing a value-initialized an object whose class type has no
651/// user-declared constructors), CXXZeroInitValueExpr will represent
652/// the functional cast. Finally, with N == 1 arguments the functional
653/// cast expression will be represented by CXXFunctionalCastExpr.
654/// Example:
655/// @code
656/// struct X { X(int, float); }
657///
658/// X create_X() {
659///   return X(1, 3.14f); // creates a CXXTemporaryObjectExpr
660/// };
661/// @endcode
662class CXXTemporaryObjectExpr : public CXXConstructExpr {
663  SourceLocation TyBeginLoc;
664  SourceLocation RParenLoc;
665
666public:
667  CXXTemporaryObjectExpr(ASTContext &C, CXXConstructorDecl *Cons,
668                         QualType writtenTy, SourceLocation tyBeginLoc,
669                         Expr **Args,unsigned NumArgs,
670                         SourceLocation rParenLoc);
671
672  ~CXXTemporaryObjectExpr() { }
673
674  SourceLocation getTypeBeginLoc() const { return TyBeginLoc; }
675  SourceLocation getRParenLoc() const { return RParenLoc; }
676
677  virtual SourceRange getSourceRange() const {
678    return SourceRange(TyBeginLoc, RParenLoc);
679  }
680  static bool classof(const Stmt *T) {
681    return T->getStmtClass() == CXXTemporaryObjectExprClass;
682  }
683  static bool classof(const CXXTemporaryObjectExpr *) { return true; }
684};
685
686/// CXXZeroInitValueExpr - [C++ 5.2.3p2]
687/// Expression "T()" which creates a value-initialized rvalue of type
688/// T, which is either a non-class type or a class type without any
689/// user-defined constructors.
690///
691class CXXZeroInitValueExpr : public Expr {
692  SourceLocation TyBeginLoc;
693  SourceLocation RParenLoc;
694
695public:
696  CXXZeroInitValueExpr(QualType ty, SourceLocation tyBeginLoc,
697                       SourceLocation rParenLoc ) :
698    Expr(CXXZeroInitValueExprClass, ty, false, false),
699    TyBeginLoc(tyBeginLoc), RParenLoc(rParenLoc) {}
700
701  SourceLocation getTypeBeginLoc() const { return TyBeginLoc; }
702  SourceLocation getRParenLoc() const { return RParenLoc; }
703
704  /// @brief Whether this initialization expression was
705  /// implicitly-generated.
706  bool isImplicit() const {
707    return TyBeginLoc.isInvalid() && RParenLoc.isInvalid();
708  }
709
710  virtual SourceRange getSourceRange() const {
711    return SourceRange(TyBeginLoc, RParenLoc);
712  }
713
714  static bool classof(const Stmt *T) {
715    return T->getStmtClass() == CXXZeroInitValueExprClass;
716  }
717  static bool classof(const CXXZeroInitValueExpr *) { return true; }
718
719  // Iterators
720  virtual child_iterator child_begin();
721  virtual child_iterator child_end();
722};
723
724/// CXXNewExpr - A new expression for memory allocation and constructor calls,
725/// e.g: "new CXXNewExpr(foo)".
726class CXXNewExpr : public Expr {
727  // Was the usage ::new, i.e. is the global new to be used?
728  bool GlobalNew : 1;
729  // Was the form (type-id) used? Otherwise, it was new-type-id.
730  bool ParenTypeId : 1;
731  // Is there an initializer? If not, built-ins are uninitialized, else they're
732  // value-initialized.
733  bool Initializer : 1;
734  // Do we allocate an array? If so, the first SubExpr is the size expression.
735  bool Array : 1;
736  // The number of placement new arguments.
737  unsigned NumPlacementArgs : 14;
738  // The number of constructor arguments. This may be 1 even for non-class
739  // types; use the pseudo copy constructor.
740  unsigned NumConstructorArgs : 14;
741  // Contains an optional array size expression, any number of optional
742  // placement arguments, and any number of optional constructor arguments,
743  // in that order.
744  Stmt **SubExprs;
745  // Points to the allocation function used.
746  FunctionDecl *OperatorNew;
747  // Points to the deallocation function used in case of error. May be null.
748  FunctionDecl *OperatorDelete;
749  // Points to the constructor used. Cannot be null if AllocType is a record;
750  // it would still point at the default constructor (even an implicit one).
751  // Must be null for all other types.
752  CXXConstructorDecl *Constructor;
753
754  SourceLocation StartLoc;
755  SourceLocation EndLoc;
756
757public:
758  CXXNewExpr(bool globalNew, FunctionDecl *operatorNew, Expr **placementArgs,
759             unsigned numPlaceArgs, bool ParenTypeId, Expr *arraySize,
760             CXXConstructorDecl *constructor, bool initializer,
761             Expr **constructorArgs, unsigned numConsArgs,
762             FunctionDecl *operatorDelete, QualType ty,
763             SourceLocation startLoc, SourceLocation endLoc);
764  ~CXXNewExpr() {
765    delete[] SubExprs;
766  }
767
768  QualType getAllocatedType() const {
769    assert(getType()->isPointerType());
770    return getType()->getAs<PointerType>()->getPointeeType();
771  }
772
773  FunctionDecl *getOperatorNew() const { return OperatorNew; }
774  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
775  CXXConstructorDecl *getConstructor() const { return Constructor; }
776
777  bool isArray() const { return Array; }
778  Expr *getArraySize() {
779    return Array ? cast<Expr>(SubExprs[0]) : 0;
780  }
781  const Expr *getArraySize() const {
782    return Array ? cast<Expr>(SubExprs[0]) : 0;
783  }
784
785  unsigned getNumPlacementArgs() const { return NumPlacementArgs; }
786  Expr *getPlacementArg(unsigned i) {
787    assert(i < NumPlacementArgs && "Index out of range");
788    return cast<Expr>(SubExprs[Array + i]);
789  }
790  const Expr *getPlacementArg(unsigned i) const {
791    assert(i < NumPlacementArgs && "Index out of range");
792    return cast<Expr>(SubExprs[Array + i]);
793  }
794
795  bool isGlobalNew() const { return GlobalNew; }
796  bool isParenTypeId() const { return ParenTypeId; }
797  bool hasInitializer() const { return Initializer; }
798
799  unsigned getNumConstructorArgs() const { return NumConstructorArgs; }
800  Expr *getConstructorArg(unsigned i) {
801    assert(i < NumConstructorArgs && "Index out of range");
802    return cast<Expr>(SubExprs[Array + NumPlacementArgs + i]);
803  }
804  const Expr *getConstructorArg(unsigned i) const {
805    assert(i < NumConstructorArgs && "Index out of range");
806    return cast<Expr>(SubExprs[Array + NumPlacementArgs + i]);
807  }
808
809  typedef ExprIterator arg_iterator;
810  typedef ConstExprIterator const_arg_iterator;
811
812  arg_iterator placement_arg_begin() {
813    return SubExprs + Array;
814  }
815  arg_iterator placement_arg_end() {
816    return SubExprs + Array + getNumPlacementArgs();
817  }
818  const_arg_iterator placement_arg_begin() const {
819    return SubExprs + Array;
820  }
821  const_arg_iterator placement_arg_end() const {
822    return SubExprs + Array + getNumPlacementArgs();
823  }
824
825  arg_iterator constructor_arg_begin() {
826    return SubExprs + Array + getNumPlacementArgs();
827  }
828  arg_iterator constructor_arg_end() {
829    return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
830  }
831  const_arg_iterator constructor_arg_begin() const {
832    return SubExprs + Array + getNumPlacementArgs();
833  }
834  const_arg_iterator constructor_arg_end() const {
835    return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
836  }
837
838  virtual SourceRange getSourceRange() const {
839    return SourceRange(StartLoc, EndLoc);
840  }
841
842  static bool classof(const Stmt *T) {
843    return T->getStmtClass() == CXXNewExprClass;
844  }
845  static bool classof(const CXXNewExpr *) { return true; }
846
847  // Iterators
848  virtual child_iterator child_begin();
849  virtual child_iterator child_end();
850};
851
852/// CXXDeleteExpr - A delete expression for memory deallocation and destructor
853/// calls, e.g. "delete[] pArray".
854class CXXDeleteExpr : public Expr {
855  // Is this a forced global delete, i.e. "::delete"?
856  bool GlobalDelete : 1;
857  // Is this the array form of delete, i.e. "delete[]"?
858  bool ArrayForm : 1;
859  // Points to the operator delete overload that is used. Could be a member.
860  FunctionDecl *OperatorDelete;
861  // The pointer expression to be deleted.
862  Stmt *Argument;
863  // Location of the expression.
864  SourceLocation Loc;
865public:
866  CXXDeleteExpr(QualType ty, bool globalDelete, bool arrayForm,
867                FunctionDecl *operatorDelete, Expr *arg, SourceLocation loc)
868    : Expr(CXXDeleteExprClass, ty, false, false), GlobalDelete(globalDelete),
869      ArrayForm(arrayForm), OperatorDelete(operatorDelete), Argument(arg),
870      Loc(loc) { }
871
872  bool isGlobalDelete() const { return GlobalDelete; }
873  bool isArrayForm() const { return ArrayForm; }
874
875  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
876
877  Expr *getArgument() { return cast<Expr>(Argument); }
878  const Expr *getArgument() const { return cast<Expr>(Argument); }
879
880  virtual SourceRange getSourceRange() const {
881    return SourceRange(Loc, Argument->getLocEnd());
882  }
883
884  static bool classof(const Stmt *T) {
885    return T->getStmtClass() == CXXDeleteExprClass;
886  }
887  static bool classof(const CXXDeleteExpr *) { return true; }
888
889  // Iterators
890  virtual child_iterator child_begin();
891  virtual child_iterator child_end();
892};
893
894/// \brief Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
895///
896/// Example:
897///
898/// \code
899/// template<typename T>
900/// void destroy(T* ptr) {
901///   ptr->~T();
902/// }
903/// \endcode
904///
905/// When the template is parsed, the expression \c ptr->~T will be stored as
906/// a member reference expression. If it then instantiated with a scalar type
907/// as a template argument for T, the resulting expression will be a
908/// pseudo-destructor expression.
909class CXXPseudoDestructorExpr : public Expr {
910  /// \brief The base expression (that is being destroyed).
911  Stmt *Base;
912
913  /// \brief Whether the operator was an arrow ('->'); otherwise, it was a
914  /// period ('.').
915  bool IsArrow : 1;
916
917  /// \brief The location of the '.' or '->' operator.
918  SourceLocation OperatorLoc;
919
920  /// \brief The nested-name-specifier that follows the operator, if present.
921  NestedNameSpecifier *Qualifier;
922
923  /// \brief The source range that covers the nested-name-specifier, if
924  /// present.
925  SourceRange QualifierRange;
926
927  /// \brief The type being destroyed.
928  QualType DestroyedType;
929
930  /// \brief The location of the type after the '~'.
931  SourceLocation DestroyedTypeLoc;
932
933public:
934  CXXPseudoDestructorExpr(ASTContext &Context,
935                          Expr *Base, bool isArrow, SourceLocation OperatorLoc,
936                          NestedNameSpecifier *Qualifier,
937                          SourceRange QualifierRange,
938                          QualType DestroyedType,
939                          SourceLocation DestroyedTypeLoc)
940    : Expr(CXXPseudoDestructorExprClass,
941           Context.getPointerType(Context.getFunctionType(Context.VoidTy, 0, 0,
942                                                          false, 0)),
943           /*isTypeDependent=*/false,
944           /*isValueDependent=*/Base->isValueDependent()),
945      Base(static_cast<Stmt *>(Base)), IsArrow(isArrow),
946      OperatorLoc(OperatorLoc), Qualifier(Qualifier),
947      QualifierRange(QualifierRange), DestroyedType(DestroyedType),
948      DestroyedTypeLoc(DestroyedTypeLoc) { }
949
950  void setBase(Expr *E) { Base = E; }
951  Expr *getBase() const { return cast<Expr>(Base); }
952
953  /// \brief Determines whether this member expression actually had
954  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
955  /// x->Base::foo.
956  bool hasQualifier() const { return Qualifier != 0; }
957
958  /// \brief If the member name was qualified, retrieves the source range of
959  /// the nested-name-specifier that precedes the member name. Otherwise,
960  /// returns an empty source range.
961  SourceRange getQualifierRange() const { return QualifierRange; }
962
963  /// \brief If the member name was qualified, retrieves the
964  /// nested-name-specifier that precedes the member name. Otherwise, returns
965  /// NULL.
966  NestedNameSpecifier *getQualifier() const { return Qualifier; }
967
968  /// \brief Determine whether this pseudo-destructor expression was written
969  /// using an '->' (otherwise, it used a '.').
970  bool isArrow() const { return IsArrow; }
971  void setArrow(bool A) { IsArrow = A; }
972
973  /// \brief Retrieve the location of the '.' or '->' operator.
974  SourceLocation getOperatorLoc() const { return OperatorLoc; }
975
976  /// \brief Retrieve the type that is being destroyed.
977  QualType getDestroyedType() const { return DestroyedType; }
978
979  /// \brief Retrieve the location of the type being destroyed.
980  SourceLocation getDestroyedTypeLoc() const { return DestroyedTypeLoc; }
981
982  virtual SourceRange getSourceRange() const {
983    return SourceRange(Base->getLocStart(), DestroyedTypeLoc);
984  }
985
986  static bool classof(const Stmt *T) {
987    return T->getStmtClass() == CXXPseudoDestructorExprClass;
988  }
989  static bool classof(const CXXPseudoDestructorExpr *) { return true; }
990
991  // Iterators
992  virtual child_iterator child_begin();
993  virtual child_iterator child_end();
994};
995
996/// UnaryTypeTraitExpr - A GCC or MS unary type trait, as used in the
997/// implementation of TR1/C++0x type trait templates.
998/// Example:
999/// __is_pod(int) == true
1000/// __is_enum(std::string) == false
1001class UnaryTypeTraitExpr : public Expr {
1002  /// UTT - The trait.
1003  UnaryTypeTrait UTT;
1004
1005  /// Loc - The location of the type trait keyword.
1006  SourceLocation Loc;
1007
1008  /// RParen - The location of the closing paren.
1009  SourceLocation RParen;
1010
1011  /// QueriedType - The type we're testing.
1012  QualType QueriedType;
1013
1014public:
1015  UnaryTypeTraitExpr(SourceLocation loc, UnaryTypeTrait utt, QualType queried,
1016                     SourceLocation rparen, QualType ty)
1017    : Expr(UnaryTypeTraitExprClass, ty, false, queried->isDependentType()),
1018      UTT(utt), Loc(loc), RParen(rparen), QueriedType(queried) { }
1019
1020  virtual SourceRange getSourceRange() const { return SourceRange(Loc, RParen);}
1021
1022  UnaryTypeTrait getTrait() const { return UTT; }
1023
1024  QualType getQueriedType() const { return QueriedType; }
1025
1026  bool EvaluateTrait(ASTContext&) const;
1027
1028  static bool classof(const Stmt *T) {
1029    return T->getStmtClass() == UnaryTypeTraitExprClass;
1030  }
1031  static bool classof(const UnaryTypeTraitExpr *) { return true; }
1032
1033  // Iterators
1034  virtual child_iterator child_begin();
1035  virtual child_iterator child_end();
1036};
1037
1038/// \brief A reference to a name which we were able to look up during
1039/// parsing but could not resolve to a specific declaration.  This
1040/// arises in several ways:
1041///   * we might be waiting for argument-dependent lookup
1042///   * the name might resolve to an overloaded function
1043/// and eventually:
1044///   * the lookup might have included a function template
1045/// These never include UnresolvedUsingValueDecls, which are always
1046/// class members and therefore appear only in
1047/// UnresolvedMemberLookupExprs.
1048class UnresolvedLookupExpr : public Expr {
1049  /// The results.  These are undesugared, which is to say, they may
1050  /// include UsingShadowDecls.
1051  UnresolvedSet Results;
1052
1053  /// The name declared.
1054  DeclarationName Name;
1055
1056  /// The qualifier given, if any.
1057  NestedNameSpecifier *Qualifier;
1058
1059  /// The source range of the nested name specifier.
1060  SourceRange QualifierRange;
1061
1062  /// The location of the name.
1063  SourceLocation NameLoc;
1064
1065  /// True if these lookup results should be extended by
1066  /// argument-dependent lookup if this is the operand of a function
1067  /// call.
1068  bool RequiresADL;
1069
1070  /// True if these lookup results are overloaded.  This is pretty
1071  /// trivially rederivable if we urgently need to kill this field.
1072  bool Overloaded;
1073
1074  /// True if the name looked up had explicit template arguments.
1075  /// This requires all the results to be function templates.
1076  bool HasExplicitTemplateArgs;
1077
1078  UnresolvedLookupExpr(QualType T, bool Dependent,
1079                       NestedNameSpecifier *Qualifier, SourceRange QRange,
1080                       DeclarationName Name, SourceLocation NameLoc,
1081                       bool RequiresADL, bool Overloaded, bool HasTemplateArgs)
1082    : Expr(UnresolvedLookupExprClass, T, Dependent, Dependent),
1083      Name(Name), Qualifier(Qualifier), QualifierRange(QRange),
1084      NameLoc(NameLoc), RequiresADL(RequiresADL), Overloaded(Overloaded),
1085      HasExplicitTemplateArgs(HasTemplateArgs)
1086  {}
1087
1088public:
1089  static UnresolvedLookupExpr *Create(ASTContext &C,
1090                                      bool Dependent,
1091                                      NestedNameSpecifier *Qualifier,
1092                                      SourceRange QualifierRange,
1093                                      DeclarationName Name,
1094                                      SourceLocation NameLoc,
1095                                      bool ADL, bool Overloaded) {
1096    return new(C) UnresolvedLookupExpr(Dependent ? C.DependentTy : C.OverloadTy,
1097                                       Dependent, Qualifier, QualifierRange,
1098                                       Name, NameLoc, ADL, Overloaded, false);
1099  }
1100
1101  static UnresolvedLookupExpr *Create(ASTContext &C,
1102                                      bool Dependent,
1103                                      NestedNameSpecifier *Qualifier,
1104                                      SourceRange QualifierRange,
1105                                      DeclarationName Name,
1106                                      SourceLocation NameLoc,
1107                                      bool ADL,
1108                                      const TemplateArgumentListInfo &Args);
1109
1110  /// Computes whether an unresolved lookup on the given declarations
1111  /// and optional template arguments is type- and value-dependent.
1112  static bool ComputeDependence(NamedDecl * const *Begin,
1113                                NamedDecl * const *End,
1114                                const TemplateArgumentListInfo *Args);
1115
1116  void addDecl(NamedDecl *Decl) {
1117    Results.addDecl(Decl);
1118  }
1119
1120  typedef UnresolvedSet::iterator decls_iterator;
1121  decls_iterator decls_begin() const { return Results.begin(); }
1122  decls_iterator decls_end() const { return Results.end(); }
1123
1124  /// True if this declaration should be extended by
1125  /// argument-dependent lookup.
1126  bool requiresADL() const { return RequiresADL; }
1127
1128  /// True if this lookup is overloaded.
1129  bool isOverloaded() const { return Overloaded; }
1130
1131  /// Fetches the name looked up.
1132  DeclarationName getName() const { return Name; }
1133
1134  /// Gets the location of the name.
1135  SourceLocation getNameLoc() const { return NameLoc; }
1136
1137  /// Fetches the nested-name qualifier, if one was given.
1138  NestedNameSpecifier *getQualifier() const { return Qualifier; }
1139
1140  /// Fetches the range of the nested-name qualifier.
1141  SourceRange getQualifierRange() const { return QualifierRange; }
1142
1143  /// Determines whether this lookup had explicit template arguments.
1144  bool hasExplicitTemplateArgs() const { return HasExplicitTemplateArgs; }
1145
1146  // Note that, inconsistently with the explicit-template-argument AST
1147  // nodes, users are *forbidden* from calling these methods on objects
1148  // without explicit template arguments.
1149
1150  /// Gets a reference to the explicit template argument list.
1151  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
1152    assert(hasExplicitTemplateArgs());
1153    return *reinterpret_cast<const ExplicitTemplateArgumentList*>(this + 1);
1154  }
1155
1156  /// \brief Copies the template arguments (if present) into the given
1157  /// structure.
1158  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1159    getExplicitTemplateArgs().copyInto(List);
1160  }
1161
1162  SourceLocation getLAngleLoc() const {
1163    return getExplicitTemplateArgs().LAngleLoc;
1164  }
1165
1166  SourceLocation getRAngleLoc() const {
1167    return getExplicitTemplateArgs().RAngleLoc;
1168  }
1169
1170  TemplateArgumentLoc const *getTemplateArgs() const {
1171    return getExplicitTemplateArgs().getTemplateArgs();
1172  }
1173
1174  unsigned getNumTemplateArgs() const {
1175    return getExplicitTemplateArgs().NumTemplateArgs;
1176  }
1177
1178  virtual SourceRange getSourceRange() const {
1179    SourceRange Range(NameLoc);
1180    if (Qualifier) Range.setBegin(QualifierRange.getBegin());
1181    if (hasExplicitTemplateArgs()) Range.setEnd(getRAngleLoc());
1182    return Range;
1183  }
1184
1185  virtual StmtIterator child_begin();
1186  virtual StmtIterator child_end();
1187
1188  static bool classof(const Stmt *T) {
1189    return T->getStmtClass() == UnresolvedLookupExprClass;
1190  }
1191  static bool classof(const UnresolvedLookupExpr *) { return true; }
1192};
1193
1194/// \brief A qualified reference to a name whose declaration cannot
1195/// yet be resolved.
1196///
1197/// DependentScopeDeclRefExpr is similar to DeclRefExpr in that
1198/// it expresses a reference to a declaration such as
1199/// X<T>::value. The difference, however, is that an
1200/// DependentScopeDeclRefExpr node is used only within C++ templates when
1201/// the qualification (e.g., X<T>::) refers to a dependent type. In
1202/// this case, X<T>::value cannot resolve to a declaration because the
1203/// declaration will differ from on instantiation of X<T> to the
1204/// next. Therefore, DependentScopeDeclRefExpr keeps track of the
1205/// qualifier (X<T>::) and the name of the entity being referenced
1206/// ("value"). Such expressions will instantiate to a DeclRefExpr once the
1207/// declaration can be found.
1208class DependentScopeDeclRefExpr : public Expr {
1209  /// The name of the entity we will be referencing.
1210  DeclarationName Name;
1211
1212  /// Location of the name of the declaration we're referencing.
1213  SourceLocation Loc;
1214
1215  /// QualifierRange - The source range that covers the
1216  /// nested-name-specifier.
1217  SourceRange QualifierRange;
1218
1219  /// \brief The nested-name-specifier that qualifies this unresolved
1220  /// declaration name.
1221  NestedNameSpecifier *Qualifier;
1222
1223  /// \brief Whether the name includes explicit template arguments.
1224  bool HasExplicitTemplateArgs;
1225
1226  DependentScopeDeclRefExpr(QualType T,
1227                            NestedNameSpecifier *Qualifier,
1228                            SourceRange QualifierRange,
1229                            DeclarationName Name,
1230                            SourceLocation NameLoc,
1231                            bool HasExplicitTemplateArgs)
1232    : Expr(DependentScopeDeclRefExprClass, T, true, true),
1233      Name(Name), Loc(NameLoc),
1234      QualifierRange(QualifierRange), Qualifier(Qualifier),
1235      HasExplicitTemplateArgs(HasExplicitTemplateArgs)
1236  {}
1237
1238public:
1239  static DependentScopeDeclRefExpr *Create(ASTContext &C,
1240                                           NestedNameSpecifier *Qualifier,
1241                                           SourceRange QualifierRange,
1242                                           DeclarationName Name,
1243                                           SourceLocation NameLoc,
1244                              const TemplateArgumentListInfo *TemplateArgs = 0);
1245
1246  /// \brief Retrieve the name that this expression refers to.
1247  DeclarationName getDeclName() const { return Name; }
1248
1249  /// \brief Retrieve the location of the name within the expression.
1250  SourceLocation getLocation() const { return Loc; }
1251
1252  /// \brief Retrieve the source range of the nested-name-specifier.
1253  SourceRange getQualifierRange() const { return QualifierRange; }
1254
1255  /// \brief Retrieve the nested-name-specifier that qualifies this
1256  /// declaration.
1257  NestedNameSpecifier *getQualifier() const { return Qualifier; }
1258
1259  /// Determines whether this lookup had explicit template arguments.
1260  bool hasExplicitTemplateArgs() const { return HasExplicitTemplateArgs; }
1261
1262  // Note that, inconsistently with the explicit-template-argument AST
1263  // nodes, users are *forbidden* from calling these methods on objects
1264  // without explicit template arguments.
1265
1266  /// Gets a reference to the explicit template argument list.
1267  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
1268    assert(hasExplicitTemplateArgs());
1269    return *reinterpret_cast<const ExplicitTemplateArgumentList*>(this + 1);
1270  }
1271
1272  /// \brief Copies the template arguments (if present) into the given
1273  /// structure.
1274  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1275    getExplicitTemplateArgs().copyInto(List);
1276  }
1277
1278  SourceLocation getLAngleLoc() const {
1279    return getExplicitTemplateArgs().LAngleLoc;
1280  }
1281
1282  SourceLocation getRAngleLoc() const {
1283    return getExplicitTemplateArgs().RAngleLoc;
1284  }
1285
1286  TemplateArgumentLoc const *getTemplateArgs() const {
1287    return getExplicitTemplateArgs().getTemplateArgs();
1288  }
1289
1290  unsigned getNumTemplateArgs() const {
1291    return getExplicitTemplateArgs().NumTemplateArgs;
1292  }
1293
1294  virtual SourceRange getSourceRange() const {
1295    SourceRange Range(QualifierRange.getBegin(), getLocation());
1296    if (hasExplicitTemplateArgs())
1297      Range.setEnd(getRAngleLoc());
1298    return Range;
1299  }
1300
1301  static bool classof(const Stmt *T) {
1302    return T->getStmtClass() == DependentScopeDeclRefExprClass;
1303  }
1304  static bool classof(const DependentScopeDeclRefExpr *) { return true; }
1305
1306  virtual StmtIterator child_begin();
1307  virtual StmtIterator child_end();
1308};
1309
1310class CXXExprWithTemporaries : public Expr {
1311  Stmt *SubExpr;
1312
1313  CXXTemporary **Temps;
1314  unsigned NumTemps;
1315
1316  CXXExprWithTemporaries(Expr *SubExpr, CXXTemporary **Temps,
1317                         unsigned NumTemps);
1318  ~CXXExprWithTemporaries();
1319
1320protected:
1321  virtual void DoDestroy(ASTContext &C);
1322
1323public:
1324  static CXXExprWithTemporaries *Create(ASTContext &C, Expr *SubExpr,
1325                                        CXXTemporary **Temps,
1326                                        unsigned NumTemps);
1327
1328  unsigned getNumTemporaries() const { return NumTemps; }
1329  CXXTemporary *getTemporary(unsigned i) {
1330    assert(i < NumTemps && "Index out of range");
1331    return Temps[i];
1332  }
1333  const CXXTemporary *getTemporary(unsigned i) const {
1334    return const_cast<CXXExprWithTemporaries*>(this)->getTemporary(i);
1335  }
1336
1337  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
1338  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
1339  void setSubExpr(Expr *E) { SubExpr = E; }
1340
1341  virtual SourceRange getSourceRange() const {
1342    return SubExpr->getSourceRange();
1343  }
1344
1345  // Implement isa/cast/dyncast/etc.
1346  static bool classof(const Stmt *T) {
1347    return T->getStmtClass() == CXXExprWithTemporariesClass;
1348  }
1349  static bool classof(const CXXExprWithTemporaries *) { return true; }
1350
1351  // Iterators
1352  virtual child_iterator child_begin();
1353  virtual child_iterator child_end();
1354};
1355
1356/// \brief Describes an explicit type conversion that uses functional
1357/// notion but could not be resolved because one or more arguments are
1358/// type-dependent.
1359///
1360/// The explicit type conversions expressed by
1361/// CXXUnresolvedConstructExpr have the form \c T(a1, a2, ..., aN),
1362/// where \c T is some type and \c a1, a2, ..., aN are values, and
1363/// either \C T is a dependent type or one or more of the \c a's is
1364/// type-dependent. For example, this would occur in a template such
1365/// as:
1366///
1367/// \code
1368///   template<typename T, typename A1>
1369///   inline T make_a(const A1& a1) {
1370///     return T(a1);
1371///   }
1372/// \endcode
1373///
1374/// When the returned expression is instantiated, it may resolve to a
1375/// constructor call, conversion function call, or some kind of type
1376/// conversion.
1377class CXXUnresolvedConstructExpr : public Expr {
1378  /// \brief The starting location of the type
1379  SourceLocation TyBeginLoc;
1380
1381  /// \brief The type being constructed.
1382  QualType Type;
1383
1384  /// \brief The location of the left parentheses ('(').
1385  SourceLocation LParenLoc;
1386
1387  /// \brief The location of the right parentheses (')').
1388  SourceLocation RParenLoc;
1389
1390  /// \brief The number of arguments used to construct the type.
1391  unsigned NumArgs;
1392
1393  CXXUnresolvedConstructExpr(SourceLocation TyBegin,
1394                             QualType T,
1395                             SourceLocation LParenLoc,
1396                             Expr **Args,
1397                             unsigned NumArgs,
1398                             SourceLocation RParenLoc);
1399
1400public:
1401  static CXXUnresolvedConstructExpr *Create(ASTContext &C,
1402                                            SourceLocation TyBegin,
1403                                            QualType T,
1404                                            SourceLocation LParenLoc,
1405                                            Expr **Args,
1406                                            unsigned NumArgs,
1407                                            SourceLocation RParenLoc);
1408
1409  /// \brief Retrieve the source location where the type begins.
1410  SourceLocation getTypeBeginLoc() const { return TyBeginLoc; }
1411  void setTypeBeginLoc(SourceLocation L) { TyBeginLoc = L; }
1412
1413  /// \brief Retrieve the type that is being constructed, as specified
1414  /// in the source code.
1415  QualType getTypeAsWritten() const { return Type; }
1416  void setTypeAsWritten(QualType T) { Type = T; }
1417
1418  /// \brief Retrieve the location of the left parentheses ('(') that
1419  /// precedes the argument list.
1420  SourceLocation getLParenLoc() const { return LParenLoc; }
1421  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
1422
1423  /// \brief Retrieve the location of the right parentheses (')') that
1424  /// follows the argument list.
1425  SourceLocation getRParenLoc() const { return RParenLoc; }
1426  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1427
1428  /// \brief Retrieve the number of arguments.
1429  unsigned arg_size() const { return NumArgs; }
1430
1431  typedef Expr** arg_iterator;
1432  arg_iterator arg_begin() { return reinterpret_cast<Expr**>(this + 1); }
1433  arg_iterator arg_end() { return arg_begin() + NumArgs; }
1434
1435  Expr *getArg(unsigned I) {
1436    assert(I < NumArgs && "Argument index out-of-range");
1437    return *(arg_begin() + I);
1438  }
1439
1440  virtual SourceRange getSourceRange() const {
1441    return SourceRange(TyBeginLoc, RParenLoc);
1442  }
1443  static bool classof(const Stmt *T) {
1444    return T->getStmtClass() == CXXUnresolvedConstructExprClass;
1445  }
1446  static bool classof(const CXXUnresolvedConstructExpr *) { return true; }
1447
1448  // Iterators
1449  virtual child_iterator child_begin();
1450  virtual child_iterator child_end();
1451};
1452
1453/// \brief Represents a C++ member access expression where the actual
1454/// member referenced could not be resolved because the base
1455/// expression or the member name was dependent.
1456///
1457/// Like UnresolvedMemberExprs, these can be either implicit or
1458/// explicit accesses.  It is only possible to get one of these with
1459/// an implicit access if a qualifier is provided.
1460class CXXDependentScopeMemberExpr : public Expr {
1461  /// \brief The expression for the base pointer or class reference,
1462  /// e.g., the \c x in x.f.  Can be null in implicit accesses.
1463  Stmt *Base;
1464
1465  /// \brief The type of the base expression.  Never null, even for
1466  /// implicit accesses.
1467  QualType BaseType;
1468
1469  /// \brief Whether this member expression used the '->' operator or
1470  /// the '.' operator.
1471  bool IsArrow : 1;
1472
1473  /// \brief Whether this member expression has explicitly-specified template
1474  /// arguments.
1475  bool HasExplicitTemplateArgs : 1;
1476
1477  /// \brief The location of the '->' or '.' operator.
1478  SourceLocation OperatorLoc;
1479
1480  /// \brief The nested-name-specifier that precedes the member name, if any.
1481  NestedNameSpecifier *Qualifier;
1482
1483  /// \brief The source range covering the nested name specifier.
1484  SourceRange QualifierRange;
1485
1486  /// \brief In a qualified member access expression such as t->Base::f, this
1487  /// member stores the resolves of name lookup in the context of the member
1488  /// access expression, to be used at instantiation time.
1489  ///
1490  /// FIXME: This member, along with the Qualifier and QualifierRange, could
1491  /// be stuck into a structure that is optionally allocated at the end of
1492  /// the CXXDependentScopeMemberExpr, to save space in the common case.
1493  NamedDecl *FirstQualifierFoundInScope;
1494
1495  /// \brief The member to which this member expression refers, which
1496  /// can be name, overloaded operator, or destructor.
1497  /// FIXME: could also be a template-id
1498  DeclarationName Member;
1499
1500  /// \brief The location of the member name.
1501  SourceLocation MemberLoc;
1502
1503  /// \brief Retrieve the explicit template argument list that followed the
1504  /// member template name, if any.
1505  ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() {
1506    assert(HasExplicitTemplateArgs);
1507    return reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
1508  }
1509
1510  /// \brief Retrieve the explicit template argument list that followed the
1511  /// member template name, if any.
1512  const ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() const {
1513    return const_cast<CXXDependentScopeMemberExpr *>(this)
1514             ->getExplicitTemplateArgumentList();
1515  }
1516
1517  CXXDependentScopeMemberExpr(ASTContext &C,
1518                          Expr *Base, QualType BaseType, bool IsArrow,
1519                          SourceLocation OperatorLoc,
1520                          NestedNameSpecifier *Qualifier,
1521                          SourceRange QualifierRange,
1522                          NamedDecl *FirstQualifierFoundInScope,
1523                          DeclarationName Member,
1524                          SourceLocation MemberLoc,
1525                          const TemplateArgumentListInfo *TemplateArgs);
1526
1527public:
1528  CXXDependentScopeMemberExpr(ASTContext &C,
1529                          Expr *Base, QualType BaseType,
1530                          bool IsArrow,
1531                          SourceLocation OperatorLoc,
1532                          NestedNameSpecifier *Qualifier,
1533                          SourceRange QualifierRange,
1534                          NamedDecl *FirstQualifierFoundInScope,
1535                          DeclarationName Member,
1536                          SourceLocation MemberLoc)
1537  : Expr(CXXDependentScopeMemberExprClass, C.DependentTy, true, true),
1538    Base(Base), BaseType(BaseType), IsArrow(IsArrow),
1539    HasExplicitTemplateArgs(false), OperatorLoc(OperatorLoc),
1540    Qualifier(Qualifier), QualifierRange(QualifierRange),
1541    FirstQualifierFoundInScope(FirstQualifierFoundInScope),
1542    Member(Member), MemberLoc(MemberLoc) { }
1543
1544  static CXXDependentScopeMemberExpr *
1545  Create(ASTContext &C,
1546         Expr *Base, QualType BaseType, bool IsArrow,
1547         SourceLocation OperatorLoc,
1548         NestedNameSpecifier *Qualifier,
1549         SourceRange QualifierRange,
1550         NamedDecl *FirstQualifierFoundInScope,
1551         DeclarationName Member,
1552         SourceLocation MemberLoc,
1553         const TemplateArgumentListInfo *TemplateArgs);
1554
1555  /// \brief True if this is an implicit access, i.e. one in which the
1556  /// member being accessed was not written in the source.  The source
1557  /// location of the operator is invalid in this case.
1558  bool isImplicitAccess() const { return Base == 0; }
1559
1560  /// \brief Retrieve the base object of this member expressions,
1561  /// e.g., the \c x in \c x.m.
1562  Expr *getBase() const {
1563    assert(!isImplicitAccess());
1564    return cast<Expr>(Base);
1565  }
1566  void setBase(Expr *E) { Base = E; }
1567
1568  QualType getBaseType() const { return BaseType; }
1569
1570  /// \brief Determine whether this member expression used the '->'
1571  /// operator; otherwise, it used the '.' operator.
1572  bool isArrow() const { return IsArrow; }
1573  void setArrow(bool A) { IsArrow = A; }
1574
1575  /// \brief Retrieve the location of the '->' or '.' operator.
1576  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1577  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
1578
1579  /// \brief Retrieve the nested-name-specifier that qualifies the member
1580  /// name.
1581  NestedNameSpecifier *getQualifier() const { return Qualifier; }
1582
1583  /// \brief Retrieve the source range covering the nested-name-specifier
1584  /// that qualifies the member name.
1585  SourceRange getQualifierRange() const { return QualifierRange; }
1586
1587  /// \brief Retrieve the first part of the nested-name-specifier that was
1588  /// found in the scope of the member access expression when the member access
1589  /// was initially parsed.
1590  ///
1591  /// This function only returns a useful result when member access expression
1592  /// uses a qualified member name, e.g., "x.Base::f". Here, the declaration
1593  /// returned by this function describes what was found by unqualified name
1594  /// lookup for the identifier "Base" within the scope of the member access
1595  /// expression itself. At template instantiation time, this information is
1596  /// combined with the results of name lookup into the type of the object
1597  /// expression itself (the class type of x).
1598  NamedDecl *getFirstQualifierFoundInScope() const {
1599    return FirstQualifierFoundInScope;
1600  }
1601
1602  /// \brief Retrieve the name of the member that this expression
1603  /// refers to.
1604  DeclarationName getMember() const { return Member; }
1605  void setMember(DeclarationName N) { Member = N; }
1606
1607  // \brief Retrieve the location of the name of the member that this
1608  // expression refers to.
1609  SourceLocation getMemberLoc() const { return MemberLoc; }
1610  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
1611
1612  /// \brief Determines whether this member expression actually had a C++
1613  /// template argument list explicitly specified, e.g., x.f<int>.
1614  bool hasExplicitTemplateArgs() const {
1615    return HasExplicitTemplateArgs;
1616  }
1617
1618  /// \brief Copies the template arguments (if present) into the given
1619  /// structure.
1620  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1621    assert(HasExplicitTemplateArgs);
1622    getExplicitTemplateArgumentList()->copyInto(List);
1623  }
1624
1625  /// \brief Retrieve the location of the left angle bracket following the
1626  /// member name ('<'), if any.
1627  SourceLocation getLAngleLoc() const {
1628    assert(HasExplicitTemplateArgs);
1629    return getExplicitTemplateArgumentList()->LAngleLoc;
1630  }
1631
1632  /// \brief Retrieve the template arguments provided as part of this
1633  /// template-id.
1634  const TemplateArgumentLoc *getTemplateArgs() const {
1635    assert(HasExplicitTemplateArgs);
1636    return getExplicitTemplateArgumentList()->getTemplateArgs();
1637  }
1638
1639  /// \brief Retrieve the number of template arguments provided as part of this
1640  /// template-id.
1641  unsigned getNumTemplateArgs() const {
1642    assert(HasExplicitTemplateArgs);
1643    return getExplicitTemplateArgumentList()->NumTemplateArgs;
1644  }
1645
1646  /// \brief Retrieve the location of the right angle bracket following the
1647  /// template arguments ('>').
1648  SourceLocation getRAngleLoc() const {
1649    assert(HasExplicitTemplateArgs);
1650    return getExplicitTemplateArgumentList()->RAngleLoc;
1651  }
1652
1653  virtual SourceRange getSourceRange() const {
1654    SourceRange Range;
1655    if (!isImplicitAccess())
1656      Range.setBegin(Base->getSourceRange().getBegin());
1657    else if (getQualifier())
1658      Range.setBegin(getQualifierRange().getBegin());
1659    else
1660      Range.setBegin(MemberLoc);
1661
1662    if (hasExplicitTemplateArgs())
1663      Range.setEnd(getRAngleLoc());
1664    else
1665      Range.setEnd(MemberLoc);
1666    return Range;
1667  }
1668
1669  static bool classof(const Stmt *T) {
1670    return T->getStmtClass() == CXXDependentScopeMemberExprClass;
1671  }
1672  static bool classof(const CXXDependentScopeMemberExpr *) { return true; }
1673
1674  // Iterators
1675  virtual child_iterator child_begin();
1676  virtual child_iterator child_end();
1677};
1678
1679/// \brief Represents a C++ member access expression for which lookup
1680/// produced a set of overloaded functions.
1681///
1682/// The member access may be explicit or implicit:
1683///    struct A {
1684///      int a, b;
1685///      int explicitAccess() { return this->a + this->A::b; }
1686///      int implicitAccess() { return a + A::b; }
1687///    };
1688///
1689/// In the final AST, an explicit access always becomes a MemberExpr.
1690/// An implicit access may become either a MemberExpr or a
1691/// DeclRefExpr, depending on whether the member is static.
1692class UnresolvedMemberExpr : public Expr {
1693  /// The results.  These are undesugared, which is to say, they may
1694  /// include UsingShadowDecls.
1695  UnresolvedSet Results;
1696
1697  /// \brief The expression for the base pointer or class reference,
1698  /// e.g., the \c x in x.f.  This can be null if this is an 'unbased'
1699  /// member expression
1700  Stmt *Base;
1701
1702  /// \brief The type of the base expression;  never null.
1703  QualType BaseType;
1704
1705  /// \brief Whether this member expression used the '->' operator or
1706  /// the '.' operator.
1707  bool IsArrow : 1;
1708
1709  /// \brief Whether the lookup results contain an unresolved using
1710  /// declaration.
1711  bool HasUnresolvedUsing : 1;
1712
1713  /// \brief Whether this member expression has explicitly-specified template
1714  /// arguments.
1715  bool HasExplicitTemplateArgs : 1;
1716
1717  /// \brief The location of the '->' or '.' operator.
1718  SourceLocation OperatorLoc;
1719
1720  /// \brief The nested-name-specifier that precedes the member name, if any.
1721  NestedNameSpecifier *Qualifier;
1722
1723  /// \brief The source range covering the nested name specifier.
1724  SourceRange QualifierRange;
1725
1726  /// \brief The member to which this member expression refers, which
1727  /// can be a name or an overloaded operator.
1728  DeclarationName MemberName;
1729
1730  /// \brief The location of the member name.
1731  SourceLocation MemberLoc;
1732
1733  /// \brief Retrieve the explicit template argument list that followed the
1734  /// member template name.
1735  ExplicitTemplateArgumentList *getExplicitTemplateArgs() {
1736    assert(HasExplicitTemplateArgs);
1737    return reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
1738  }
1739
1740  /// \brief Retrieve the explicit template argument list that followed the
1741  /// member template name, if any.
1742  const ExplicitTemplateArgumentList *getExplicitTemplateArgs() const {
1743    return const_cast<UnresolvedMemberExpr*>(this)->getExplicitTemplateArgs();
1744  }
1745
1746  UnresolvedMemberExpr(QualType T, bool Dependent,
1747                       bool HasUnresolvedUsing,
1748                       Expr *Base, QualType BaseType, bool IsArrow,
1749                       SourceLocation OperatorLoc,
1750                       NestedNameSpecifier *Qualifier,
1751                       SourceRange QualifierRange,
1752                       DeclarationName Member,
1753                       SourceLocation MemberLoc,
1754                       const TemplateArgumentListInfo *TemplateArgs);
1755
1756public:
1757  static UnresolvedMemberExpr *
1758  Create(ASTContext &C, bool Dependent, bool HasUnresolvedUsing,
1759         Expr *Base, QualType BaseType, bool IsArrow,
1760         SourceLocation OperatorLoc,
1761         NestedNameSpecifier *Qualifier,
1762         SourceRange QualifierRange,
1763         DeclarationName Member,
1764         SourceLocation MemberLoc,
1765         const TemplateArgumentListInfo *TemplateArgs);
1766
1767  /// Adds a declaration to the unresolved set.  By assumption, all of
1768  /// these happen at initialization time and properties like
1769  /// 'Dependent' and 'HasUnresolvedUsing' take them into account.
1770  void addDecl(NamedDecl *Decl) {
1771    Results.addDecl(Decl);
1772  }
1773
1774  typedef UnresolvedSet::iterator decls_iterator;
1775  decls_iterator decls_begin() const { return Results.begin(); }
1776  decls_iterator decls_end() const { return Results.end(); }
1777
1778  unsigned getNumDecls() const { return Results.size(); }
1779
1780  /// \brief True if this is an implicit access, i.e. one in which the
1781  /// member being accessed was not written in the source.  The source
1782  /// location of the operator is invalid in this case.
1783  bool isImplicitAccess() const { return Base == 0; }
1784
1785  /// \brief Retrieve the base object of this member expressions,
1786  /// e.g., the \c x in \c x.m.
1787  Expr *getBase() {
1788    assert(!isImplicitAccess());
1789    return cast<Expr>(Base);
1790  }
1791  void setBase(Expr *E) { Base = E; }
1792
1793  QualType getBaseType() const { return BaseType; }
1794
1795  /// \brief Determine whether this member expression used the '->'
1796  /// operator; otherwise, it used the '.' operator.
1797  bool isArrow() const { return IsArrow; }
1798  void setArrow(bool A) { IsArrow = A; }
1799
1800  /// \brief Retrieve the location of the '->' or '.' operator.
1801  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1802  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
1803
1804  /// \brief Retrieve the nested-name-specifier that qualifies the member
1805  /// name.
1806  NestedNameSpecifier *getQualifier() const { return Qualifier; }
1807
1808  /// \brief Retrieve the source range covering the nested-name-specifier
1809  /// that qualifies the member name.
1810  SourceRange getQualifierRange() const { return QualifierRange; }
1811
1812  /// \brief Retrieve the name of the member that this expression
1813  /// refers to.
1814  DeclarationName getMemberName() const { return MemberName; }
1815  void setMemberName(DeclarationName N) { MemberName = N; }
1816
1817  // \brief Retrieve the location of the name of the member that this
1818  // expression refers to.
1819  SourceLocation getMemberLoc() const { return MemberLoc; }
1820  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
1821
1822  /// \brief Determines whether this member expression actually had a C++
1823  /// template argument list explicitly specified, e.g., x.f<int>.
1824  bool hasExplicitTemplateArgs() const {
1825    return HasExplicitTemplateArgs;
1826  }
1827
1828  /// \brief Copies the template arguments into the given structure.
1829  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1830    getExplicitTemplateArgs()->copyInto(List);
1831  }
1832
1833  /// \brief Retrieve the location of the left angle bracket following
1834  /// the member name ('<').
1835  SourceLocation getLAngleLoc() const {
1836    return getExplicitTemplateArgs()->LAngleLoc;
1837  }
1838
1839  /// \brief Retrieve the template arguments provided as part of this
1840  /// template-id.
1841  const TemplateArgumentLoc *getTemplateArgs() const {
1842    return getExplicitTemplateArgs()->getTemplateArgs();
1843  }
1844
1845  /// \brief Retrieve the number of template arguments provided as
1846  /// part of this template-id.
1847  unsigned getNumTemplateArgs() const {
1848    return getExplicitTemplateArgs()->NumTemplateArgs;
1849  }
1850
1851  /// \brief Retrieve the location of the right angle bracket
1852  /// following the template arguments ('>').
1853  SourceLocation getRAngleLoc() const {
1854    return getExplicitTemplateArgs()->RAngleLoc;
1855  }
1856
1857  virtual SourceRange getSourceRange() const {
1858    SourceRange Range;
1859    if (!isImplicitAccess())
1860      Range.setBegin(Base->getSourceRange().getBegin());
1861    else if (getQualifier())
1862      Range.setBegin(getQualifierRange().getBegin());
1863    else
1864      Range.setBegin(MemberLoc);
1865
1866    if (hasExplicitTemplateArgs())
1867      Range.setEnd(getRAngleLoc());
1868    else
1869      Range.setEnd(MemberLoc);
1870    return Range;
1871  }
1872
1873  static bool classof(const Stmt *T) {
1874    return T->getStmtClass() == UnresolvedMemberExprClass;
1875  }
1876  static bool classof(const UnresolvedMemberExpr *) { return true; }
1877
1878  // Iterators
1879  virtual child_iterator child_begin();
1880  virtual child_iterator child_end();
1881};
1882
1883}  // end namespace clang
1884
1885#endif
1886