ExprCXX.h revision 3d9efecfb174a99ffd1f7a6156f7de3ca855993f
1//===--- ExprCXX.h - Classes for representing expressions -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9///
10/// \file
11/// \brief Defines the clang::Expr interface and subclasses for C++ expressions.
12///
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_CLANG_AST_EXPRCXX_H
16#define LLVM_CLANG_AST_EXPRCXX_H
17
18#include "clang/AST/Decl.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/TemplateBase.h"
21#include "clang/AST/UnresolvedSet.h"
22#include "clang/Basic/ExpressionTraits.h"
23#include "clang/Basic/Lambda.h"
24#include "clang/Basic/TypeTraits.h"
25#include "llvm/Support/Compiler.h"
26
27namespace clang {
28
29class CXXConstructorDecl;
30class CXXDestructorDecl;
31class CXXMethodDecl;
32class CXXTemporary;
33class MSPropertyDecl;
34class TemplateArgumentListInfo;
35class UuidAttr;
36
37//===--------------------------------------------------------------------===//
38// C++ Expressions.
39//===--------------------------------------------------------------------===//
40
41/// \brief A call to an overloaded operator written using operator
42/// syntax.
43///
44/// Represents a call to an overloaded operator written using operator
45/// syntax, e.g., "x + y" or "*p". While semantically equivalent to a
46/// normal call, this AST node provides better information about the
47/// syntactic representation of the call.
48///
49/// In a C++ template, this expression node kind will be used whenever
50/// any of the arguments are type-dependent. In this case, the
51/// function itself will be a (possibly empty) set of functions and
52/// function templates that were found by name lookup at template
53/// definition time.
54class CXXOperatorCallExpr : public CallExpr {
55  /// \brief The overloaded operator.
56  OverloadedOperatorKind Operator;
57  SourceRange Range;
58
59  // Record the FP_CONTRACT state that applies to this operator call. Only
60  // meaningful for floating point types. For other types this value can be
61  // set to false.
62  unsigned FPContractable : 1;
63
64  SourceRange getSourceRangeImpl() const LLVM_READONLY;
65public:
66  CXXOperatorCallExpr(ASTContext& C, OverloadedOperatorKind Op, Expr *fn,
67                      ArrayRef<Expr*> args, QualType t, ExprValueKind VK,
68                      SourceLocation operatorloc, bool fpContractable)
69    : CallExpr(C, CXXOperatorCallExprClass, fn, 0, args, t, VK,
70               operatorloc),
71      Operator(Op), FPContractable(fpContractable) {
72    Range = getSourceRangeImpl();
73  }
74  explicit CXXOperatorCallExpr(ASTContext& C, EmptyShell Empty) :
75    CallExpr(C, CXXOperatorCallExprClass, Empty) { }
76
77
78  /// \brief Returns the kind of overloaded operator that this
79  /// expression refers to.
80  OverloadedOperatorKind getOperator() const { return Operator; }
81
82  /// \brief Returns the location of the operator symbol in the expression.
83  ///
84  /// When \c getOperator()==OO_Call, this is the location of the right
85  /// parentheses; when \c getOperator()==OO_Subscript, this is the location
86  /// of the right bracket.
87  SourceLocation getOperatorLoc() const { return getRParenLoc(); }
88
89  SourceLocation getLocStart() const LLVM_READONLY { return Range.getBegin(); }
90  SourceLocation getLocEnd() const LLVM_READONLY { return Range.getEnd(); }
91  SourceRange getSourceRange() const { return Range; }
92
93  static bool classof(const Stmt *T) {
94    return T->getStmtClass() == CXXOperatorCallExprClass;
95  }
96
97  // Set the FP contractability status of this operator. Only meaningful for
98  // operations on floating point types.
99  void setFPContractable(bool FPC) { FPContractable = FPC; }
100
101  // Get the FP contractability status of this operator. Only meaningful for
102  // operations on floating point types.
103  bool isFPContractable() const { return FPContractable; }
104
105  friend class ASTStmtReader;
106  friend class ASTStmtWriter;
107};
108
109/// Represents a call to a member function that
110/// may be written either with member call syntax (e.g., "obj.func()"
111/// or "objptr->func()") or with normal function-call syntax
112/// ("func()") within a member function that ends up calling a member
113/// function. The callee in either case is a MemberExpr that contains
114/// both the object argument and the member function, while the
115/// arguments are the arguments within the parentheses (not including
116/// the object argument).
117class CXXMemberCallExpr : public CallExpr {
118public:
119  CXXMemberCallExpr(ASTContext &C, Expr *fn, ArrayRef<Expr*> args,
120                    QualType t, ExprValueKind VK, SourceLocation RP)
121    : CallExpr(C, CXXMemberCallExprClass, fn, 0, args, t, VK, RP) {}
122
123  CXXMemberCallExpr(ASTContext &C, EmptyShell Empty)
124    : CallExpr(C, CXXMemberCallExprClass, Empty) { }
125
126  /// \brief Retrieves the implicit object argument for the member call.
127  ///
128  /// For example, in "x.f(5)", this returns the sub-expression "x".
129  Expr *getImplicitObjectArgument() const;
130
131  /// \brief Retrieves the declaration of the called method.
132  CXXMethodDecl *getMethodDecl() const;
133
134  /// \brief Retrieves the CXXRecordDecl for the underlying type of
135  /// the implicit object argument.
136  ///
137  /// Note that this is may not be the same declaration as that of the class
138  /// context of the CXXMethodDecl which this function is calling.
139  /// FIXME: Returns 0 for member pointer call exprs.
140  CXXRecordDecl *getRecordDecl() const;
141
142  static bool classof(const Stmt *T) {
143    return T->getStmtClass() == CXXMemberCallExprClass;
144  }
145};
146
147/// \brief Represents a call to a CUDA kernel function.
148class CUDAKernelCallExpr : public CallExpr {
149private:
150  enum { CONFIG, END_PREARG };
151
152public:
153  CUDAKernelCallExpr(ASTContext &C, Expr *fn, CallExpr *Config,
154                     ArrayRef<Expr*> args, QualType t, ExprValueKind VK,
155                     SourceLocation RP)
156    : CallExpr(C, CUDAKernelCallExprClass, fn, END_PREARG, args, t, VK, RP) {
157    setConfig(Config);
158  }
159
160  CUDAKernelCallExpr(ASTContext &C, EmptyShell Empty)
161    : CallExpr(C, CUDAKernelCallExprClass, END_PREARG, Empty) { }
162
163  const CallExpr *getConfig() const {
164    return cast_or_null<CallExpr>(getPreArg(CONFIG));
165  }
166  CallExpr *getConfig() { return cast_or_null<CallExpr>(getPreArg(CONFIG)); }
167  void setConfig(CallExpr *E) { setPreArg(CONFIG, E); }
168
169  static bool classof(const Stmt *T) {
170    return T->getStmtClass() == CUDAKernelCallExprClass;
171  }
172};
173
174/// \brief Abstract class common to all of the C++ "named"/"keyword" casts.
175///
176/// This abstract class is inherited by all of the classes
177/// representing "named" casts: CXXStaticCastExpr for \c static_cast,
178/// CXXDynamicCastExpr for \c dynamic_cast, CXXReinterpretCastExpr for
179/// reinterpret_cast, and CXXConstCastExpr for \c const_cast.
180class CXXNamedCastExpr : public ExplicitCastExpr {
181private:
182  SourceLocation Loc; // the location of the casting op
183  SourceLocation RParenLoc; // the location of the right parenthesis
184  SourceRange AngleBrackets; // range for '<' '>'
185
186protected:
187  CXXNamedCastExpr(StmtClass SC, QualType ty, ExprValueKind VK,
188                   CastKind kind, Expr *op, unsigned PathSize,
189                   TypeSourceInfo *writtenTy, SourceLocation l,
190                   SourceLocation RParenLoc,
191                   SourceRange AngleBrackets)
192    : ExplicitCastExpr(SC, ty, VK, kind, op, PathSize, writtenTy), Loc(l),
193      RParenLoc(RParenLoc), AngleBrackets(AngleBrackets) {}
194
195  explicit CXXNamedCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
196    : ExplicitCastExpr(SC, Shell, PathSize) { }
197
198  friend class ASTStmtReader;
199
200public:
201  const char *getCastName() const;
202
203  /// \brief Retrieve the location of the cast operator keyword, e.g.,
204  /// \c static_cast.
205  SourceLocation getOperatorLoc() const { return Loc; }
206
207  /// \brief Retrieve the location of the closing parenthesis.
208  SourceLocation getRParenLoc() const { return RParenLoc; }
209
210  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
211  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
212  SourceRange getAngleBrackets() const LLVM_READONLY { return AngleBrackets; }
213
214  static bool classof(const Stmt *T) {
215    switch (T->getStmtClass()) {
216    case CXXStaticCastExprClass:
217    case CXXDynamicCastExprClass:
218    case CXXReinterpretCastExprClass:
219    case CXXConstCastExprClass:
220      return true;
221    default:
222      return false;
223    }
224  }
225};
226
227/// \brief A C++ \c static_cast expression (C++ [expr.static.cast]).
228///
229/// This expression node represents a C++ static cast, e.g.,
230/// \c static_cast<int>(1.0).
231class CXXStaticCastExpr : public CXXNamedCastExpr {
232  CXXStaticCastExpr(QualType ty, ExprValueKind vk, CastKind kind, Expr *op,
233                    unsigned pathSize, TypeSourceInfo *writtenTy,
234                    SourceLocation l, SourceLocation RParenLoc,
235                    SourceRange AngleBrackets)
236    : CXXNamedCastExpr(CXXStaticCastExprClass, ty, vk, kind, op, pathSize,
237                       writtenTy, l, RParenLoc, AngleBrackets) {}
238
239  explicit CXXStaticCastExpr(EmptyShell Empty, unsigned PathSize)
240    : CXXNamedCastExpr(CXXStaticCastExprClass, Empty, PathSize) { }
241
242public:
243  static CXXStaticCastExpr *Create(const ASTContext &Context, QualType T,
244                                   ExprValueKind VK, CastKind K, Expr *Op,
245                                   const CXXCastPath *Path,
246                                   TypeSourceInfo *Written, SourceLocation L,
247                                   SourceLocation RParenLoc,
248                                   SourceRange AngleBrackets);
249  static CXXStaticCastExpr *CreateEmpty(const ASTContext &Context,
250                                        unsigned PathSize);
251
252  static bool classof(const Stmt *T) {
253    return T->getStmtClass() == CXXStaticCastExprClass;
254  }
255};
256
257/// \brief A C++ @c dynamic_cast expression (C++ [expr.dynamic.cast]).
258///
259/// This expression node represents a dynamic cast, e.g.,
260/// \c dynamic_cast<Derived*>(BasePtr). Such a cast may perform a run-time
261/// check to determine how to perform the type conversion.
262class CXXDynamicCastExpr : public CXXNamedCastExpr {
263  CXXDynamicCastExpr(QualType ty, ExprValueKind VK, CastKind kind,
264                     Expr *op, unsigned pathSize, TypeSourceInfo *writtenTy,
265                     SourceLocation l, SourceLocation RParenLoc,
266                     SourceRange AngleBrackets)
267    : CXXNamedCastExpr(CXXDynamicCastExprClass, ty, VK, kind, op, pathSize,
268                       writtenTy, l, RParenLoc, AngleBrackets) {}
269
270  explicit CXXDynamicCastExpr(EmptyShell Empty, unsigned pathSize)
271    : CXXNamedCastExpr(CXXDynamicCastExprClass, Empty, pathSize) { }
272
273public:
274  static CXXDynamicCastExpr *Create(const ASTContext &Context, QualType T,
275                                    ExprValueKind VK, CastKind Kind, Expr *Op,
276                                    const CXXCastPath *Path,
277                                    TypeSourceInfo *Written, SourceLocation L,
278                                    SourceLocation RParenLoc,
279                                    SourceRange AngleBrackets);
280
281  static CXXDynamicCastExpr *CreateEmpty(const ASTContext &Context,
282                                         unsigned pathSize);
283
284  bool isAlwaysNull() const;
285
286  static bool classof(const Stmt *T) {
287    return T->getStmtClass() == CXXDynamicCastExprClass;
288  }
289};
290
291/// \brief A C++ @c reinterpret_cast expression (C++ [expr.reinterpret.cast]).
292///
293/// This expression node represents a reinterpret cast, e.g.,
294/// @c reinterpret_cast<int>(VoidPtr).
295///
296/// A reinterpret_cast provides a differently-typed view of a value but
297/// (in Clang, as in most C++ implementations) performs no actual work at
298/// run time.
299class CXXReinterpretCastExpr : public CXXNamedCastExpr {
300  CXXReinterpretCastExpr(QualType ty, ExprValueKind vk, CastKind kind,
301                         Expr *op, unsigned pathSize,
302                         TypeSourceInfo *writtenTy, SourceLocation l,
303                         SourceLocation RParenLoc,
304                         SourceRange AngleBrackets)
305    : CXXNamedCastExpr(CXXReinterpretCastExprClass, ty, vk, kind, op,
306                       pathSize, writtenTy, l, RParenLoc, AngleBrackets) {}
307
308  CXXReinterpretCastExpr(EmptyShell Empty, unsigned pathSize)
309    : CXXNamedCastExpr(CXXReinterpretCastExprClass, Empty, pathSize) { }
310
311public:
312  static CXXReinterpretCastExpr *Create(const ASTContext &Context, QualType T,
313                                        ExprValueKind VK, CastKind Kind,
314                                        Expr *Op, const CXXCastPath *Path,
315                                 TypeSourceInfo *WrittenTy, SourceLocation L,
316                                        SourceLocation RParenLoc,
317                                        SourceRange AngleBrackets);
318  static CXXReinterpretCastExpr *CreateEmpty(const ASTContext &Context,
319                                             unsigned pathSize);
320
321  static bool classof(const Stmt *T) {
322    return T->getStmtClass() == CXXReinterpretCastExprClass;
323  }
324};
325
326/// \brief A C++ \c const_cast expression (C++ [expr.const.cast]).
327///
328/// This expression node represents a const cast, e.g.,
329/// \c const_cast<char*>(PtrToConstChar).
330///
331/// A const_cast can remove type qualifiers but does not change the underlying
332/// value.
333class CXXConstCastExpr : public CXXNamedCastExpr {
334  CXXConstCastExpr(QualType ty, ExprValueKind VK, Expr *op,
335                   TypeSourceInfo *writtenTy, SourceLocation l,
336                   SourceLocation RParenLoc, SourceRange AngleBrackets)
337    : CXXNamedCastExpr(CXXConstCastExprClass, ty, VK, CK_NoOp, op,
338                       0, writtenTy, l, RParenLoc, AngleBrackets) {}
339
340  explicit CXXConstCastExpr(EmptyShell Empty)
341    : CXXNamedCastExpr(CXXConstCastExprClass, Empty, 0) { }
342
343public:
344  static CXXConstCastExpr *Create(const ASTContext &Context, QualType T,
345                                  ExprValueKind VK, Expr *Op,
346                                  TypeSourceInfo *WrittenTy, SourceLocation L,
347                                  SourceLocation RParenLoc,
348                                  SourceRange AngleBrackets);
349  static CXXConstCastExpr *CreateEmpty(const ASTContext &Context);
350
351  static bool classof(const Stmt *T) {
352    return T->getStmtClass() == CXXConstCastExprClass;
353  }
354};
355
356/// \brief A call to a literal operator (C++11 [over.literal])
357/// written as a user-defined literal (C++11 [lit.ext]).
358///
359/// Represents a user-defined literal, e.g. "foo"_bar or 1.23_xyz. While this
360/// is semantically equivalent to a normal call, this AST node provides better
361/// information about the syntactic representation of the literal.
362///
363/// Since literal operators are never found by ADL and can only be declared at
364/// namespace scope, a user-defined literal is never dependent.
365class UserDefinedLiteral : public CallExpr {
366  /// \brief The location of a ud-suffix within the literal.
367  SourceLocation UDSuffixLoc;
368
369public:
370  UserDefinedLiteral(const ASTContext &C, Expr *Fn, ArrayRef<Expr*> Args,
371                     QualType T, ExprValueKind VK, SourceLocation LitEndLoc,
372                     SourceLocation SuffixLoc)
373    : CallExpr(C, UserDefinedLiteralClass, Fn, 0, Args, T, VK, LitEndLoc),
374      UDSuffixLoc(SuffixLoc) {}
375  explicit UserDefinedLiteral(const ASTContext &C, EmptyShell Empty)
376    : CallExpr(C, UserDefinedLiteralClass, Empty) {}
377
378  /// The kind of literal operator which is invoked.
379  enum LiteralOperatorKind {
380    LOK_Raw,      ///< Raw form: operator "" X (const char *)
381    LOK_Template, ///< Raw form: operator "" X<cs...> ()
382    LOK_Integer,  ///< operator "" X (unsigned long long)
383    LOK_Floating, ///< operator "" X (long double)
384    LOK_String,   ///< operator "" X (const CharT *, size_t)
385    LOK_Character ///< operator "" X (CharT)
386  };
387
388  /// \brief Returns the kind of literal operator invocation
389  /// which this expression represents.
390  LiteralOperatorKind getLiteralOperatorKind() const;
391
392  /// \brief If this is not a raw user-defined literal, get the
393  /// underlying cooked literal (representing the literal with the suffix
394  /// removed).
395  Expr *getCookedLiteral();
396  const Expr *getCookedLiteral() const {
397    return const_cast<UserDefinedLiteral*>(this)->getCookedLiteral();
398  }
399
400  SourceLocation getLocStart() const {
401    if (getLiteralOperatorKind() == LOK_Template)
402      return getRParenLoc();
403    return getArg(0)->getLocStart();
404  }
405  SourceLocation getLocEnd() const { return getRParenLoc(); }
406
407
408  /// \brief Returns the location of a ud-suffix in the expression.
409  ///
410  /// For a string literal, there may be multiple identical suffixes. This
411  /// returns the first.
412  SourceLocation getUDSuffixLoc() const { return UDSuffixLoc; }
413
414  /// \brief Returns the ud-suffix specified for this literal.
415  const IdentifierInfo *getUDSuffix() const;
416
417  static bool classof(const Stmt *S) {
418    return S->getStmtClass() == UserDefinedLiteralClass;
419  }
420
421  friend class ASTStmtReader;
422  friend class ASTStmtWriter;
423};
424
425/// \brief A boolean literal, per ([C++ lex.bool] Boolean literals).
426///
427class CXXBoolLiteralExpr : public Expr {
428  bool Value;
429  SourceLocation Loc;
430public:
431  CXXBoolLiteralExpr(bool val, QualType Ty, SourceLocation l) :
432    Expr(CXXBoolLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
433         false, false),
434    Value(val), Loc(l) {}
435
436  explicit CXXBoolLiteralExpr(EmptyShell Empty)
437    : Expr(CXXBoolLiteralExprClass, Empty) { }
438
439  bool getValue() const { return Value; }
440  void setValue(bool V) { Value = V; }
441
442  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
443  SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
444
445  SourceLocation getLocation() const { return Loc; }
446  void setLocation(SourceLocation L) { Loc = L; }
447
448  static bool classof(const Stmt *T) {
449    return T->getStmtClass() == CXXBoolLiteralExprClass;
450  }
451
452  // Iterators
453  child_range children() { return child_range(); }
454};
455
456/// \brief The null pointer literal (C++11 [lex.nullptr])
457///
458/// Introduced in C++11, the only literal of type \c nullptr_t is \c nullptr.
459class CXXNullPtrLiteralExpr : public Expr {
460  SourceLocation Loc;
461public:
462  CXXNullPtrLiteralExpr(QualType Ty, SourceLocation l) :
463    Expr(CXXNullPtrLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
464         false, false),
465    Loc(l) {}
466
467  explicit CXXNullPtrLiteralExpr(EmptyShell Empty)
468    : Expr(CXXNullPtrLiteralExprClass, Empty) { }
469
470  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
471  SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
472
473  SourceLocation getLocation() const { return Loc; }
474  void setLocation(SourceLocation L) { Loc = L; }
475
476  static bool classof(const Stmt *T) {
477    return T->getStmtClass() == CXXNullPtrLiteralExprClass;
478  }
479
480  child_range children() { return child_range(); }
481};
482
483/// \brief Implicit construction of a std::initializer_list<T> object from an
484/// array temporary within list-initialization (C++11 [dcl.init.list]p5).
485class CXXStdInitializerListExpr : public Expr {
486  Stmt *SubExpr;
487
488  CXXStdInitializerListExpr(EmptyShell Empty)
489    : Expr(CXXStdInitializerListExprClass, Empty), SubExpr(0) {}
490
491public:
492  CXXStdInitializerListExpr(QualType Ty, Expr *SubExpr)
493    : Expr(CXXStdInitializerListExprClass, Ty, VK_RValue, OK_Ordinary,
494           Ty->isDependentType(), SubExpr->isValueDependent(),
495           SubExpr->isInstantiationDependent(),
496           SubExpr->containsUnexpandedParameterPack()),
497      SubExpr(SubExpr) {}
498
499  Expr *getSubExpr() { return static_cast<Expr*>(SubExpr); }
500  const Expr *getSubExpr() const { return static_cast<const Expr*>(SubExpr); }
501
502  SourceLocation getLocStart() const LLVM_READONLY {
503    return SubExpr->getLocStart();
504  }
505  SourceLocation getLocEnd() const LLVM_READONLY {
506    return SubExpr->getLocEnd();
507  }
508  SourceRange getSourceRange() const LLVM_READONLY {
509    return SubExpr->getSourceRange();
510  }
511
512  static bool classof(const Stmt *S) {
513    return S->getStmtClass() == CXXStdInitializerListExprClass;
514  }
515
516  child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
517
518  friend class ASTReader;
519  friend class ASTStmtReader;
520};
521
522/// A C++ \c typeid expression (C++ [expr.typeid]), which gets
523/// the \c type_info that corresponds to the supplied type, or the (possibly
524/// dynamic) type of the supplied expression.
525///
526/// This represents code like \c typeid(int) or \c typeid(*objPtr)
527class CXXTypeidExpr : public Expr {
528private:
529  llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
530  SourceRange Range;
531
532public:
533  CXXTypeidExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
534    : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
535           // typeid is never type-dependent (C++ [temp.dep.expr]p4)
536           false,
537           // typeid is value-dependent if the type or expression are dependent
538           Operand->getType()->isDependentType(),
539           Operand->getType()->isInstantiationDependentType(),
540           Operand->getType()->containsUnexpandedParameterPack()),
541      Operand(Operand), Range(R) { }
542
543  CXXTypeidExpr(QualType Ty, Expr *Operand, SourceRange R)
544    : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
545        // typeid is never type-dependent (C++ [temp.dep.expr]p4)
546           false,
547        // typeid is value-dependent if the type or expression are dependent
548           Operand->isTypeDependent() || Operand->isValueDependent(),
549           Operand->isInstantiationDependent(),
550           Operand->containsUnexpandedParameterPack()),
551      Operand(Operand), Range(R) { }
552
553  CXXTypeidExpr(EmptyShell Empty, bool isExpr)
554    : Expr(CXXTypeidExprClass, Empty) {
555    if (isExpr)
556      Operand = (Expr*)0;
557    else
558      Operand = (TypeSourceInfo*)0;
559  }
560
561  /// Determine whether this typeid has a type operand which is potentially
562  /// evaluated, per C++11 [expr.typeid]p3.
563  bool isPotentiallyEvaluated() const;
564
565  bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
566
567  /// \brief Retrieves the type operand of this typeid() expression after
568  /// various required adjustments (removing reference types, cv-qualifiers).
569  QualType getTypeOperand(ASTContext &Context) const;
570
571  /// \brief Retrieve source information for the type operand.
572  TypeSourceInfo *getTypeOperandSourceInfo() const {
573    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
574    return Operand.get<TypeSourceInfo *>();
575  }
576
577  void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
578    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
579    Operand = TSI;
580  }
581
582  Expr *getExprOperand() const {
583    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
584    return static_cast<Expr*>(Operand.get<Stmt *>());
585  }
586
587  void setExprOperand(Expr *E) {
588    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
589    Operand = E;
590  }
591
592  SourceLocation getLocStart() const LLVM_READONLY { return Range.getBegin(); }
593  SourceLocation getLocEnd() const LLVM_READONLY { return Range.getEnd(); }
594  SourceRange getSourceRange() const LLVM_READONLY { return Range; }
595  void setSourceRange(SourceRange R) { Range = R; }
596
597  static bool classof(const Stmt *T) {
598    return T->getStmtClass() == CXXTypeidExprClass;
599  }
600
601  // Iterators
602  child_range children() {
603    if (isTypeOperand()) return child_range();
604    Stmt **begin = reinterpret_cast<Stmt**>(&Operand);
605    return child_range(begin, begin + 1);
606  }
607};
608
609/// \brief A member reference to an MSPropertyDecl.
610///
611/// This expression always has pseudo-object type, and therefore it is
612/// typically not encountered in a fully-typechecked expression except
613/// within the syntactic form of a PseudoObjectExpr.
614class MSPropertyRefExpr : public Expr {
615  Expr *BaseExpr;
616  MSPropertyDecl *TheDecl;
617  SourceLocation MemberLoc;
618  bool IsArrow;
619  NestedNameSpecifierLoc QualifierLoc;
620
621public:
622  MSPropertyRefExpr(Expr *baseExpr, MSPropertyDecl *decl, bool isArrow,
623                    QualType ty, ExprValueKind VK,
624                    NestedNameSpecifierLoc qualifierLoc,
625                    SourceLocation nameLoc)
626  : Expr(MSPropertyRefExprClass, ty, VK, OK_Ordinary,
627         /*type-dependent*/ false, baseExpr->isValueDependent(),
628         baseExpr->isInstantiationDependent(),
629         baseExpr->containsUnexpandedParameterPack()),
630    BaseExpr(baseExpr), TheDecl(decl),
631    MemberLoc(nameLoc), IsArrow(isArrow),
632    QualifierLoc(qualifierLoc) {}
633
634  MSPropertyRefExpr(EmptyShell Empty) : Expr(MSPropertyRefExprClass, Empty) {}
635
636  SourceRange getSourceRange() const LLVM_READONLY {
637    return SourceRange(getLocStart(), getLocEnd());
638  }
639  bool isImplicitAccess() const {
640    return getBaseExpr() && getBaseExpr()->isImplicitCXXThis();
641  }
642  SourceLocation getLocStart() const {
643    if (!isImplicitAccess())
644      return BaseExpr->getLocStart();
645    else if (QualifierLoc)
646      return QualifierLoc.getBeginLoc();
647    else
648        return MemberLoc;
649  }
650  SourceLocation getLocEnd() const { return getMemberLoc(); }
651
652  child_range children() {
653    return child_range((Stmt**)&BaseExpr, (Stmt**)&BaseExpr + 1);
654  }
655  static bool classof(const Stmt *T) {
656    return T->getStmtClass() == MSPropertyRefExprClass;
657  }
658
659  Expr *getBaseExpr() const { return BaseExpr; }
660  MSPropertyDecl *getPropertyDecl() const { return TheDecl; }
661  bool isArrow() const { return IsArrow; }
662  SourceLocation getMemberLoc() const { return MemberLoc; }
663  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
664
665  friend class ASTStmtReader;
666};
667
668/// A Microsoft C++ @c __uuidof expression, which gets
669/// the _GUID that corresponds to the supplied type or expression.
670///
671/// This represents code like @c __uuidof(COMTYPE) or @c __uuidof(*comPtr)
672class CXXUuidofExpr : public Expr {
673private:
674  llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
675  SourceRange Range;
676
677public:
678  CXXUuidofExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
679    : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary,
680           false, Operand->getType()->isDependentType(),
681           Operand->getType()->isInstantiationDependentType(),
682           Operand->getType()->containsUnexpandedParameterPack()),
683      Operand(Operand), Range(R) { }
684
685  CXXUuidofExpr(QualType Ty, Expr *Operand, SourceRange R)
686    : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary,
687           false, Operand->isTypeDependent(),
688           Operand->isInstantiationDependent(),
689           Operand->containsUnexpandedParameterPack()),
690      Operand(Operand), Range(R) { }
691
692  CXXUuidofExpr(EmptyShell Empty, bool isExpr)
693    : Expr(CXXUuidofExprClass, Empty) {
694    if (isExpr)
695      Operand = (Expr*)0;
696    else
697      Operand = (TypeSourceInfo*)0;
698  }
699
700  bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
701
702  /// \brief Retrieves the type operand of this __uuidof() expression after
703  /// various required adjustments (removing reference types, cv-qualifiers).
704  QualType getTypeOperand(ASTContext &Context) const;
705
706  /// \brief Retrieve source information for the type operand.
707  TypeSourceInfo *getTypeOperandSourceInfo() const {
708    assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
709    return Operand.get<TypeSourceInfo *>();
710  }
711
712  void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
713    assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
714    Operand = TSI;
715  }
716
717  Expr *getExprOperand() const {
718    assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
719    return static_cast<Expr*>(Operand.get<Stmt *>());
720  }
721
722  void setExprOperand(Expr *E) {
723    assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
724    Operand = E;
725  }
726
727  StringRef getUuidAsStringRef(ASTContext &Context) const;
728
729  SourceLocation getLocStart() const LLVM_READONLY { return Range.getBegin(); }
730  SourceLocation getLocEnd() const LLVM_READONLY { return Range.getEnd(); }
731  SourceRange getSourceRange() const LLVM_READONLY { return Range; }
732  void setSourceRange(SourceRange R) { Range = R; }
733
734  static bool classof(const Stmt *T) {
735    return T->getStmtClass() == CXXUuidofExprClass;
736  }
737
738  /// Grabs __declspec(uuid()) off a type, or returns 0 if we cannot resolve to
739  /// a single GUID.
740  static UuidAttr *GetUuidAttrOfType(QualType QT,
741                                     bool *HasMultipleGUIDsPtr = 0);
742
743  // Iterators
744  child_range children() {
745    if (isTypeOperand()) return child_range();
746    Stmt **begin = reinterpret_cast<Stmt**>(&Operand);
747    return child_range(begin, begin + 1);
748  }
749};
750
751/// \brief Represents the \c this expression in C++.
752///
753/// This is a pointer to the object on which the current member function is
754/// executing (C++ [expr.prim]p3). Example:
755///
756/// \code
757/// class Foo {
758/// public:
759///   void bar();
760///   void test() { this->bar(); }
761/// };
762/// \endcode
763class CXXThisExpr : public Expr {
764  SourceLocation Loc;
765  bool Implicit : 1;
766
767public:
768  CXXThisExpr(SourceLocation L, QualType Type, bool isImplicit)
769    : Expr(CXXThisExprClass, Type, VK_RValue, OK_Ordinary,
770           // 'this' is type-dependent if the class type of the enclosing
771           // member function is dependent (C++ [temp.dep.expr]p2)
772           Type->isDependentType(), Type->isDependentType(),
773           Type->isInstantiationDependentType(),
774           /*ContainsUnexpandedParameterPack=*/false),
775      Loc(L), Implicit(isImplicit) { }
776
777  CXXThisExpr(EmptyShell Empty) : Expr(CXXThisExprClass, Empty) {}
778
779  SourceLocation getLocation() const { return Loc; }
780  void setLocation(SourceLocation L) { Loc = L; }
781
782  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
783  SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
784
785  bool isImplicit() const { return Implicit; }
786  void setImplicit(bool I) { Implicit = I; }
787
788  static bool classof(const Stmt *T) {
789    return T->getStmtClass() == CXXThisExprClass;
790  }
791
792  // Iterators
793  child_range children() { return child_range(); }
794};
795
796/// \brief A C++ throw-expression (C++ [except.throw]).
797///
798/// This handles 'throw' (for re-throwing the current exception) and
799/// 'throw' assignment-expression.  When assignment-expression isn't
800/// present, Op will be null.
801class CXXThrowExpr : public Expr {
802  Stmt *Op;
803  SourceLocation ThrowLoc;
804  /// \brief Whether the thrown variable (if any) is in scope.
805  unsigned IsThrownVariableInScope : 1;
806
807  friend class ASTStmtReader;
808
809public:
810  // \p Ty is the void type which is used as the result type of the
811  // expression.  The \p l is the location of the throw keyword.  \p expr
812  // can by null, if the optional expression to throw isn't present.
813  CXXThrowExpr(Expr *expr, QualType Ty, SourceLocation l,
814               bool IsThrownVariableInScope) :
815    Expr(CXXThrowExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
816         expr && expr->isInstantiationDependent(),
817         expr && expr->containsUnexpandedParameterPack()),
818    Op(expr), ThrowLoc(l), IsThrownVariableInScope(IsThrownVariableInScope) {}
819  CXXThrowExpr(EmptyShell Empty) : Expr(CXXThrowExprClass, Empty) {}
820
821  const Expr *getSubExpr() const { return cast_or_null<Expr>(Op); }
822  Expr *getSubExpr() { return cast_or_null<Expr>(Op); }
823
824  SourceLocation getThrowLoc() const { return ThrowLoc; }
825
826  /// \brief Determines whether the variable thrown by this expression (if any!)
827  /// is within the innermost try block.
828  ///
829  /// This information is required to determine whether the NRVO can apply to
830  /// this variable.
831  bool isThrownVariableInScope() const { return IsThrownVariableInScope; }
832
833  SourceLocation getLocStart() const LLVM_READONLY { return ThrowLoc; }
834  SourceLocation getLocEnd() const LLVM_READONLY {
835    if (getSubExpr() == 0)
836      return ThrowLoc;
837    return getSubExpr()->getLocEnd();
838  }
839
840  static bool classof(const Stmt *T) {
841    return T->getStmtClass() == CXXThrowExprClass;
842  }
843
844  // Iterators
845  child_range children() {
846    return child_range(&Op, Op ? &Op+1 : &Op);
847  }
848};
849
850/// \brief A default argument (C++ [dcl.fct.default]).
851///
852/// This wraps up a function call argument that was created from the
853/// corresponding parameter's default argument, when the call did not
854/// explicitly supply arguments for all of the parameters.
855class CXXDefaultArgExpr : public Expr {
856  /// \brief The parameter whose default is being used.
857  ///
858  /// When the bit is set, the subexpression is stored after the
859  /// CXXDefaultArgExpr itself. When the bit is clear, the parameter's
860  /// actual default expression is the subexpression.
861  llvm::PointerIntPair<ParmVarDecl *, 1, bool> Param;
862
863  /// \brief The location where the default argument expression was used.
864  SourceLocation Loc;
865
866  CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param)
867    : Expr(SC,
868           param->hasUnparsedDefaultArg()
869             ? param->getType().getNonReferenceType()
870             : param->getDefaultArg()->getType(),
871           param->getDefaultArg()->getValueKind(),
872           param->getDefaultArg()->getObjectKind(), false, false, false, false),
873      Param(param, false), Loc(Loc) { }
874
875  CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param,
876                    Expr *SubExpr)
877    : Expr(SC, SubExpr->getType(),
878           SubExpr->getValueKind(), SubExpr->getObjectKind(),
879           false, false, false, false),
880      Param(param, true), Loc(Loc) {
881    *reinterpret_cast<Expr **>(this + 1) = SubExpr;
882  }
883
884public:
885  CXXDefaultArgExpr(EmptyShell Empty) : Expr(CXXDefaultArgExprClass, Empty) {}
886
887  // \p Param is the parameter whose default argument is used by this
888  // expression.
889  static CXXDefaultArgExpr *Create(const ASTContext &C, SourceLocation Loc,
890                                   ParmVarDecl *Param) {
891    return new (C) CXXDefaultArgExpr(CXXDefaultArgExprClass, Loc, Param);
892  }
893
894  // \p Param is the parameter whose default argument is used by this
895  // expression, and \p SubExpr is the expression that will actually be used.
896  static CXXDefaultArgExpr *Create(const ASTContext &C, SourceLocation Loc,
897                                   ParmVarDecl *Param, Expr *SubExpr);
898
899  // Retrieve the parameter that the argument was created from.
900  const ParmVarDecl *getParam() const { return Param.getPointer(); }
901  ParmVarDecl *getParam() { return Param.getPointer(); }
902
903  // Retrieve the actual argument to the function call.
904  const Expr *getExpr() const {
905    if (Param.getInt())
906      return *reinterpret_cast<Expr const * const*> (this + 1);
907    return getParam()->getDefaultArg();
908  }
909  Expr *getExpr() {
910    if (Param.getInt())
911      return *reinterpret_cast<Expr **> (this + 1);
912    return getParam()->getDefaultArg();
913  }
914
915  /// \brief Retrieve the location where this default argument was actually
916  /// used.
917  SourceLocation getUsedLocation() const { return Loc; }
918
919  /// Default argument expressions have no representation in the
920  /// source, so they have an empty source range.
921  SourceLocation getLocStart() const LLVM_READONLY { return SourceLocation(); }
922  SourceLocation getLocEnd() const LLVM_READONLY { return SourceLocation(); }
923
924  SourceLocation getExprLoc() const LLVM_READONLY { return Loc; }
925
926  static bool classof(const Stmt *T) {
927    return T->getStmtClass() == CXXDefaultArgExprClass;
928  }
929
930  // Iterators
931  child_range children() { return child_range(); }
932
933  friend class ASTStmtReader;
934  friend class ASTStmtWriter;
935};
936
937/// \brief A use of a default initializer in a constructor or in aggregate
938/// initialization.
939///
940/// This wraps a use of a C++ default initializer (technically,
941/// a brace-or-equal-initializer for a non-static data member) when it
942/// is implicitly used in a mem-initializer-list in a constructor
943/// (C++11 [class.base.init]p8) or in aggregate initialization
944/// (C++1y [dcl.init.aggr]p7).
945class CXXDefaultInitExpr : public Expr {
946  /// \brief The field whose default is being used.
947  FieldDecl *Field;
948
949  /// \brief The location where the default initializer expression was used.
950  SourceLocation Loc;
951
952  CXXDefaultInitExpr(const ASTContext &C, SourceLocation Loc, FieldDecl *Field,
953                     QualType T);
954
955  CXXDefaultInitExpr(EmptyShell Empty) : Expr(CXXDefaultInitExprClass, Empty) {}
956
957public:
958  /// \p Field is the non-static data member whose default initializer is used
959  /// by this expression.
960  static CXXDefaultInitExpr *Create(const ASTContext &C, SourceLocation Loc,
961                                    FieldDecl *Field) {
962    return new (C) CXXDefaultInitExpr(C, Loc, Field, Field->getType());
963  }
964
965  /// \brief Get the field whose initializer will be used.
966  FieldDecl *getField() { return Field; }
967  const FieldDecl *getField() const { return Field; }
968
969  /// \brief Get the initialization expression that will be used.
970  const Expr *getExpr() const { return Field->getInClassInitializer(); }
971  Expr *getExpr() { return Field->getInClassInitializer(); }
972
973  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
974  SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
975
976  static bool classof(const Stmt *T) {
977    return T->getStmtClass() == CXXDefaultInitExprClass;
978  }
979
980  // Iterators
981  child_range children() { return child_range(); }
982
983  friend class ASTReader;
984  friend class ASTStmtReader;
985};
986
987/// \brief Represents a C++ temporary.
988class CXXTemporary {
989  /// \brief The destructor that needs to be called.
990  const CXXDestructorDecl *Destructor;
991
992  explicit CXXTemporary(const CXXDestructorDecl *destructor)
993    : Destructor(destructor) { }
994
995public:
996  static CXXTemporary *Create(const ASTContext &C,
997                              const CXXDestructorDecl *Destructor);
998
999  const CXXDestructorDecl *getDestructor() const { return Destructor; }
1000  void setDestructor(const CXXDestructorDecl *Dtor) {
1001    Destructor = Dtor;
1002  }
1003};
1004
1005/// \brief Represents binding an expression to a temporary.
1006///
1007/// This ensures the destructor is called for the temporary. It should only be
1008/// needed for non-POD, non-trivially destructable class types. For example:
1009///
1010/// \code
1011///   struct S {
1012///     S() { }  // User defined constructor makes S non-POD.
1013///     ~S() { } // User defined destructor makes it non-trivial.
1014///   };
1015///   void test() {
1016///     const S &s_ref = S(); // Requires a CXXBindTemporaryExpr.
1017///   }
1018/// \endcode
1019class CXXBindTemporaryExpr : public Expr {
1020  CXXTemporary *Temp;
1021
1022  Stmt *SubExpr;
1023
1024  CXXBindTemporaryExpr(CXXTemporary *temp, Expr* SubExpr)
1025   : Expr(CXXBindTemporaryExprClass, SubExpr->getType(),
1026          VK_RValue, OK_Ordinary, SubExpr->isTypeDependent(),
1027          SubExpr->isValueDependent(),
1028          SubExpr->isInstantiationDependent(),
1029          SubExpr->containsUnexpandedParameterPack()),
1030     Temp(temp), SubExpr(SubExpr) { }
1031
1032public:
1033  CXXBindTemporaryExpr(EmptyShell Empty)
1034    : Expr(CXXBindTemporaryExprClass, Empty), Temp(0), SubExpr(0) {}
1035
1036  static CXXBindTemporaryExpr *Create(const ASTContext &C, CXXTemporary *Temp,
1037                                      Expr* SubExpr);
1038
1039  CXXTemporary *getTemporary() { return Temp; }
1040  const CXXTemporary *getTemporary() const { return Temp; }
1041  void setTemporary(CXXTemporary *T) { Temp = T; }
1042
1043  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
1044  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
1045  void setSubExpr(Expr *E) { SubExpr = E; }
1046
1047  SourceLocation getLocStart() const LLVM_READONLY {
1048    return SubExpr->getLocStart();
1049  }
1050  SourceLocation getLocEnd() const LLVM_READONLY { return SubExpr->getLocEnd();}
1051
1052  // Implement isa/cast/dyncast/etc.
1053  static bool classof(const Stmt *T) {
1054    return T->getStmtClass() == CXXBindTemporaryExprClass;
1055  }
1056
1057  // Iterators
1058  child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
1059};
1060
1061/// \brief Represents a call to a C++ constructor.
1062class CXXConstructExpr : public Expr {
1063public:
1064  enum ConstructionKind {
1065    CK_Complete,
1066    CK_NonVirtualBase,
1067    CK_VirtualBase,
1068    CK_Delegating
1069  };
1070
1071private:
1072  CXXConstructorDecl *Constructor;
1073
1074  SourceLocation Loc;
1075  SourceRange ParenOrBraceRange;
1076  unsigned NumArgs : 16;
1077  bool Elidable : 1;
1078  bool HadMultipleCandidates : 1;
1079  bool ListInitialization : 1;
1080  bool ZeroInitialization : 1;
1081  unsigned ConstructKind : 2;
1082  Stmt **Args;
1083
1084protected:
1085  CXXConstructExpr(const ASTContext &C, StmtClass SC, QualType T,
1086                   SourceLocation Loc,
1087                   CXXConstructorDecl *d, bool elidable,
1088                   ArrayRef<Expr *> Args,
1089                   bool HadMultipleCandidates,
1090                   bool ListInitialization,
1091                   bool ZeroInitialization,
1092                   ConstructionKind ConstructKind,
1093                   SourceRange ParenOrBraceRange);
1094
1095  /// \brief Construct an empty C++ construction expression.
1096  CXXConstructExpr(StmtClass SC, EmptyShell Empty)
1097    : Expr(SC, Empty), Constructor(0), NumArgs(0), Elidable(false),
1098      HadMultipleCandidates(false), ListInitialization(false),
1099      ZeroInitialization(false), ConstructKind(0), Args(0)
1100  { }
1101
1102public:
1103  /// \brief Construct an empty C++ construction expression.
1104  explicit CXXConstructExpr(EmptyShell Empty)
1105    : Expr(CXXConstructExprClass, Empty), Constructor(0),
1106      NumArgs(0), Elidable(false), HadMultipleCandidates(false),
1107      ListInitialization(false), ZeroInitialization(false),
1108      ConstructKind(0), Args(0)
1109  { }
1110
1111  static CXXConstructExpr *Create(const ASTContext &C, QualType T,
1112                                  SourceLocation Loc,
1113                                  CXXConstructorDecl *D, bool Elidable,
1114                                  ArrayRef<Expr *> Args,
1115                                  bool HadMultipleCandidates,
1116                                  bool ListInitialization,
1117                                  bool ZeroInitialization,
1118                                  ConstructionKind ConstructKind,
1119                                  SourceRange ParenOrBraceRange);
1120
1121  CXXConstructorDecl* getConstructor() const { return Constructor; }
1122  void setConstructor(CXXConstructorDecl *C) { Constructor = C; }
1123
1124  SourceLocation getLocation() const { return Loc; }
1125  void setLocation(SourceLocation Loc) { this->Loc = Loc; }
1126
1127  /// \brief Whether this construction is elidable.
1128  bool isElidable() const { return Elidable; }
1129  void setElidable(bool E) { Elidable = E; }
1130
1131  /// \brief Whether the referred constructor was resolved from
1132  /// an overloaded set having size greater than 1.
1133  bool hadMultipleCandidates() const { return HadMultipleCandidates; }
1134  void setHadMultipleCandidates(bool V) { HadMultipleCandidates = V; }
1135
1136  /// \brief Whether this constructor call was written as list-initialization.
1137  bool isListInitialization() const { return ListInitialization; }
1138  void setListInitialization(bool V) { ListInitialization = V; }
1139
1140  /// \brief Whether this construction first requires
1141  /// zero-initialization before the initializer is called.
1142  bool requiresZeroInitialization() const { return ZeroInitialization; }
1143  void setRequiresZeroInitialization(bool ZeroInit) {
1144    ZeroInitialization = ZeroInit;
1145  }
1146
1147  /// \brief Determine whether this constructor is actually constructing
1148  /// a base class (rather than a complete object).
1149  ConstructionKind getConstructionKind() const {
1150    return (ConstructionKind)ConstructKind;
1151  }
1152  void setConstructionKind(ConstructionKind CK) {
1153    ConstructKind = CK;
1154  }
1155
1156  typedef ExprIterator arg_iterator;
1157  typedef ConstExprIterator const_arg_iterator;
1158
1159  arg_iterator arg_begin() { return Args; }
1160  arg_iterator arg_end() { return Args + NumArgs; }
1161  const_arg_iterator arg_begin() const { return Args; }
1162  const_arg_iterator arg_end() const { return Args + NumArgs; }
1163
1164  Expr **getArgs() const { return reinterpret_cast<Expr **>(Args); }
1165  unsigned getNumArgs() const { return NumArgs; }
1166
1167  /// \brief Return the specified argument.
1168  Expr *getArg(unsigned Arg) {
1169    assert(Arg < NumArgs && "Arg access out of range!");
1170    return cast<Expr>(Args[Arg]);
1171  }
1172  const Expr *getArg(unsigned Arg) const {
1173    assert(Arg < NumArgs && "Arg access out of range!");
1174    return cast<Expr>(Args[Arg]);
1175  }
1176
1177  /// \brief Set the specified argument.
1178  void setArg(unsigned Arg, Expr *ArgExpr) {
1179    assert(Arg < NumArgs && "Arg access out of range!");
1180    Args[Arg] = ArgExpr;
1181  }
1182
1183  SourceLocation getLocStart() const LLVM_READONLY;
1184  SourceLocation getLocEnd() const LLVM_READONLY;
1185  SourceRange getParenOrBraceRange() const { return ParenOrBraceRange; }
1186  void setParenOrBraceRange(SourceRange Range) { ParenOrBraceRange = Range; }
1187
1188  static bool classof(const Stmt *T) {
1189    return T->getStmtClass() == CXXConstructExprClass ||
1190      T->getStmtClass() == CXXTemporaryObjectExprClass;
1191  }
1192
1193  // Iterators
1194  child_range children() {
1195    return child_range(&Args[0], &Args[0]+NumArgs);
1196  }
1197
1198  friend class ASTStmtReader;
1199};
1200
1201/// \brief Represents an explicit C++ type conversion that uses "functional"
1202/// notation (C++ [expr.type.conv]).
1203///
1204/// Example:
1205/// \code
1206///   x = int(0.5);
1207/// \endcode
1208class CXXFunctionalCastExpr : public ExplicitCastExpr {
1209  SourceLocation LParenLoc;
1210  SourceLocation RParenLoc;
1211
1212  CXXFunctionalCastExpr(QualType ty, ExprValueKind VK,
1213                        TypeSourceInfo *writtenTy,
1214                        CastKind kind, Expr *castExpr, unsigned pathSize,
1215                        SourceLocation lParenLoc, SourceLocation rParenLoc)
1216    : ExplicitCastExpr(CXXFunctionalCastExprClass, ty, VK, kind,
1217                       castExpr, pathSize, writtenTy),
1218      LParenLoc(lParenLoc), RParenLoc(rParenLoc) {}
1219
1220  explicit CXXFunctionalCastExpr(EmptyShell Shell, unsigned PathSize)
1221    : ExplicitCastExpr(CXXFunctionalCastExprClass, Shell, PathSize) { }
1222
1223public:
1224  static CXXFunctionalCastExpr *Create(const ASTContext &Context, QualType T,
1225                                       ExprValueKind VK,
1226                                       TypeSourceInfo *Written,
1227                                       CastKind Kind, Expr *Op,
1228                                       const CXXCastPath *Path,
1229                                       SourceLocation LPLoc,
1230                                       SourceLocation RPLoc);
1231  static CXXFunctionalCastExpr *CreateEmpty(const ASTContext &Context,
1232                                            unsigned PathSize);
1233
1234  SourceLocation getLParenLoc() const { return LParenLoc; }
1235  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
1236  SourceLocation getRParenLoc() const { return RParenLoc; }
1237  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1238
1239  SourceLocation getLocStart() const LLVM_READONLY;
1240  SourceLocation getLocEnd() const LLVM_READONLY;
1241
1242  static bool classof(const Stmt *T) {
1243    return T->getStmtClass() == CXXFunctionalCastExprClass;
1244  }
1245};
1246
1247/// @brief Represents a C++ functional cast expression that builds a
1248/// temporary object.
1249///
1250/// This expression type represents a C++ "functional" cast
1251/// (C++[expr.type.conv]) with N != 1 arguments that invokes a
1252/// constructor to build a temporary object. With N == 1 arguments the
1253/// functional cast expression will be represented by CXXFunctionalCastExpr.
1254/// Example:
1255/// \code
1256/// struct X { X(int, float); }
1257///
1258/// X create_X() {
1259///   return X(1, 3.14f); // creates a CXXTemporaryObjectExpr
1260/// };
1261/// \endcode
1262class CXXTemporaryObjectExpr : public CXXConstructExpr {
1263  TypeSourceInfo *Type;
1264
1265public:
1266  CXXTemporaryObjectExpr(const ASTContext &C, CXXConstructorDecl *Cons,
1267                         TypeSourceInfo *Type,
1268                         ArrayRef<Expr *> Args,
1269                         SourceRange ParenOrBraceRange,
1270                         bool HadMultipleCandidates,
1271                         bool ListInitialization,
1272                         bool ZeroInitialization);
1273  explicit CXXTemporaryObjectExpr(EmptyShell Empty)
1274    : CXXConstructExpr(CXXTemporaryObjectExprClass, Empty), Type() { }
1275
1276  TypeSourceInfo *getTypeSourceInfo() const { return Type; }
1277
1278  SourceLocation getLocStart() const LLVM_READONLY;
1279  SourceLocation getLocEnd() const LLVM_READONLY;
1280
1281  static bool classof(const Stmt *T) {
1282    return T->getStmtClass() == CXXTemporaryObjectExprClass;
1283  }
1284
1285  friend class ASTStmtReader;
1286};
1287
1288/// \brief A C++ lambda expression, which produces a function object
1289/// (of unspecified type) that can be invoked later.
1290///
1291/// Example:
1292/// \code
1293/// void low_pass_filter(std::vector<double> &values, double cutoff) {
1294///   values.erase(std::remove_if(values.begin(), values.end(),
1295///                               [=](double value) { return value > cutoff; });
1296/// }
1297/// \endcode
1298///
1299/// C++11 lambda expressions can capture local variables, either by copying
1300/// the values of those local variables at the time the function
1301/// object is constructed (not when it is called!) or by holding a
1302/// reference to the local variable. These captures can occur either
1303/// implicitly or can be written explicitly between the square
1304/// brackets ([...]) that start the lambda expression.
1305///
1306/// C++1y introduces a new form of "capture" called an init-capture that
1307/// includes an initializing expression (rather than capturing a variable),
1308/// and which can never occur implicitly.
1309class LambdaExpr : public Expr {
1310  enum {
1311    /// \brief Flag used by the Capture class to indicate that the given
1312    /// capture was implicit.
1313    Capture_Implicit = 0x01,
1314
1315    /// \brief Flag used by the Capture class to indicate that the
1316    /// given capture was by-copy.
1317    ///
1318    /// This includes the case of a non-reference init-capture.
1319    Capture_ByCopy = 0x02
1320  };
1321
1322  /// \brief The source range that covers the lambda introducer ([...]).
1323  SourceRange IntroducerRange;
1324
1325  /// \brief The source location of this lambda's capture-default ('=' or '&').
1326  SourceLocation CaptureDefaultLoc;
1327
1328  /// \brief The number of captures.
1329  unsigned NumCaptures : 16;
1330
1331  /// \brief The default capture kind, which is a value of type
1332  /// LambdaCaptureDefault.
1333  unsigned CaptureDefault : 2;
1334
1335  /// \brief Whether this lambda had an explicit parameter list vs. an
1336  /// implicit (and empty) parameter list.
1337  unsigned ExplicitParams : 1;
1338
1339  /// \brief Whether this lambda had the result type explicitly specified.
1340  unsigned ExplicitResultType : 1;
1341
1342  /// \brief Whether there are any array index variables stored at the end of
1343  /// this lambda expression.
1344  unsigned HasArrayIndexVars : 1;
1345
1346  /// \brief The location of the closing brace ('}') that completes
1347  /// the lambda.
1348  ///
1349  /// The location of the brace is also available by looking up the
1350  /// function call operator in the lambda class. However, it is
1351  /// stored here to improve the performance of getSourceRange(), and
1352  /// to avoid having to deserialize the function call operator from a
1353  /// module file just to determine the source range.
1354  SourceLocation ClosingBrace;
1355
1356  // Note: The capture initializers are stored directly after the lambda
1357  // expression, along with the index variables used to initialize by-copy
1358  // array captures.
1359
1360public:
1361  /// \brief Describes the capture of a variable or of \c this, or of a
1362  /// C++1y init-capture.
1363  class Capture {
1364    llvm::PointerIntPair<Decl *, 2> DeclAndBits;
1365    SourceLocation Loc;
1366    SourceLocation EllipsisLoc;
1367
1368    friend class ASTStmtReader;
1369    friend class ASTStmtWriter;
1370
1371  public:
1372    /// \brief Create a new capture of a variable or of \c this.
1373    ///
1374    /// \param Loc The source location associated with this capture.
1375    ///
1376    /// \param Kind The kind of capture (this, byref, bycopy), which must
1377    /// not be init-capture.
1378    ///
1379    /// \param Implicit Whether the capture was implicit or explicit.
1380    ///
1381    /// \param Var The local variable being captured, or null if capturing
1382    /// \c this.
1383    ///
1384    /// \param EllipsisLoc The location of the ellipsis (...) for a
1385    /// capture that is a pack expansion, or an invalid source
1386    /// location to indicate that this is not a pack expansion.
1387    Capture(SourceLocation Loc, bool Implicit,
1388            LambdaCaptureKind Kind, VarDecl *Var = 0,
1389            SourceLocation EllipsisLoc = SourceLocation());
1390
1391    /// \brief Determine the kind of capture.
1392    LambdaCaptureKind getCaptureKind() const;
1393
1394    /// \brief Determine whether this capture handles the C++ \c this
1395    /// pointer.
1396    bool capturesThis() const { return DeclAndBits.getPointer() == 0; }
1397
1398    /// \brief Determine whether this capture handles a variable.
1399    bool capturesVariable() const {
1400      return dyn_cast_or_null<VarDecl>(DeclAndBits.getPointer());
1401    }
1402
1403    /// \brief Determine whether this is an init-capture.
1404    bool isInitCapture() const {
1405      return capturesVariable() && getCapturedVar()->isInitCapture();
1406    }
1407
1408    /// \brief Retrieve the declaration of the local variable being
1409    /// captured.
1410    ///
1411    /// This operation is only valid if this capture is a variable capture
1412    /// (other than a capture of \c this).
1413    VarDecl *getCapturedVar() const {
1414      assert(capturesVariable() && "No variable available for 'this' capture");
1415      return cast<VarDecl>(DeclAndBits.getPointer());
1416    }
1417
1418    /// \brief Determine whether this was an implicit capture (not
1419    /// written between the square brackets introducing the lambda).
1420    bool isImplicit() const { return DeclAndBits.getInt() & Capture_Implicit; }
1421
1422    /// \brief Determine whether this was an explicit capture (written
1423    /// between the square brackets introducing the lambda).
1424    bool isExplicit() const { return !isImplicit(); }
1425
1426    /// \brief Retrieve the source location of the capture.
1427    ///
1428    /// For an explicit capture, this returns the location of the
1429    /// explicit capture in the source. For an implicit capture, this
1430    /// returns the location at which the variable or \c this was first
1431    /// used.
1432    SourceLocation getLocation() const { return Loc; }
1433
1434    /// \brief Determine whether this capture is a pack expansion,
1435    /// which captures a function parameter pack.
1436    bool isPackExpansion() const { return EllipsisLoc.isValid(); }
1437
1438    /// \brief Retrieve the location of the ellipsis for a capture
1439    /// that is a pack expansion.
1440    SourceLocation getEllipsisLoc() const {
1441      assert(isPackExpansion() && "No ellipsis location for a non-expansion");
1442      return EllipsisLoc;
1443    }
1444  };
1445
1446private:
1447  /// \brief Construct a lambda expression.
1448  LambdaExpr(QualType T, SourceRange IntroducerRange,
1449             LambdaCaptureDefault CaptureDefault,
1450             SourceLocation CaptureDefaultLoc,
1451             ArrayRef<Capture> Captures,
1452             bool ExplicitParams,
1453             bool ExplicitResultType,
1454             ArrayRef<Expr *> CaptureInits,
1455             ArrayRef<VarDecl *> ArrayIndexVars,
1456             ArrayRef<unsigned> ArrayIndexStarts,
1457             SourceLocation ClosingBrace,
1458             bool ContainsUnexpandedParameterPack);
1459
1460  /// \brief Construct an empty lambda expression.
1461  LambdaExpr(EmptyShell Empty, unsigned NumCaptures, bool HasArrayIndexVars)
1462    : Expr(LambdaExprClass, Empty),
1463      NumCaptures(NumCaptures), CaptureDefault(LCD_None), ExplicitParams(false),
1464      ExplicitResultType(false), HasArrayIndexVars(true) {
1465    getStoredStmts()[NumCaptures] = 0;
1466  }
1467
1468  Stmt **getStoredStmts() const {
1469    return reinterpret_cast<Stmt **>(const_cast<LambdaExpr *>(this) + 1);
1470  }
1471
1472  /// \brief Retrieve the mapping from captures to the first array index
1473  /// variable.
1474  unsigned *getArrayIndexStarts() const {
1475    return reinterpret_cast<unsigned *>(getStoredStmts() + NumCaptures + 1);
1476  }
1477
1478  /// \brief Retrieve the complete set of array-index variables.
1479  VarDecl **getArrayIndexVars() const {
1480    unsigned ArrayIndexSize =
1481        llvm::RoundUpToAlignment(sizeof(unsigned) * (NumCaptures + 1),
1482                                 llvm::alignOf<VarDecl*>());
1483    return reinterpret_cast<VarDecl **>(
1484        reinterpret_cast<char*>(getArrayIndexStarts()) + ArrayIndexSize);
1485  }
1486
1487public:
1488  /// \brief Construct a new lambda expression.
1489  static LambdaExpr *Create(const ASTContext &C,
1490                            CXXRecordDecl *Class,
1491                            SourceRange IntroducerRange,
1492                            LambdaCaptureDefault CaptureDefault,
1493                            SourceLocation CaptureDefaultLoc,
1494                            ArrayRef<Capture> Captures,
1495                            bool ExplicitParams,
1496                            bool ExplicitResultType,
1497                            ArrayRef<Expr *> CaptureInits,
1498                            ArrayRef<VarDecl *> ArrayIndexVars,
1499                            ArrayRef<unsigned> ArrayIndexStarts,
1500                            SourceLocation ClosingBrace,
1501                            bool ContainsUnexpandedParameterPack);
1502
1503  /// \brief Construct a new lambda expression that will be deserialized from
1504  /// an external source.
1505  static LambdaExpr *CreateDeserialized(const ASTContext &C,
1506                                        unsigned NumCaptures,
1507                                        unsigned NumArrayIndexVars);
1508
1509  /// \brief Determine the default capture kind for this lambda.
1510  LambdaCaptureDefault getCaptureDefault() const {
1511    return static_cast<LambdaCaptureDefault>(CaptureDefault);
1512  }
1513
1514  /// \brief Retrieve the location of this lambda's capture-default, if any.
1515  SourceLocation getCaptureDefaultLoc() const {
1516    return CaptureDefaultLoc;
1517  }
1518
1519  /// \brief An iterator that walks over the captures of the lambda,
1520  /// both implicit and explicit.
1521  typedef const Capture *capture_iterator;
1522
1523  /// \brief Retrieve an iterator pointing to the first lambda capture.
1524  capture_iterator capture_begin() const;
1525
1526  /// \brief Retrieve an iterator pointing past the end of the
1527  /// sequence of lambda captures.
1528  capture_iterator capture_end() const;
1529
1530  /// \brief Determine the number of captures in this lambda.
1531  unsigned capture_size() const { return NumCaptures; }
1532
1533  /// \brief Retrieve an iterator pointing to the first explicit
1534  /// lambda capture.
1535  capture_iterator explicit_capture_begin() const;
1536
1537  /// \brief Retrieve an iterator pointing past the end of the sequence of
1538  /// explicit lambda captures.
1539  capture_iterator explicit_capture_end() const;
1540
1541  /// \brief Retrieve an iterator pointing to the first implicit
1542  /// lambda capture.
1543  capture_iterator implicit_capture_begin() const;
1544
1545  /// \brief Retrieve an iterator pointing past the end of the sequence of
1546  /// implicit lambda captures.
1547  capture_iterator implicit_capture_end() const;
1548
1549  /// \brief Iterator that walks over the capture initialization
1550  /// arguments.
1551  typedef Expr **capture_init_iterator;
1552
1553  /// \brief Retrieve the first initialization argument for this
1554  /// lambda expression (which initializes the first capture field).
1555  capture_init_iterator capture_init_begin() const {
1556    return reinterpret_cast<Expr **>(getStoredStmts());
1557  }
1558
1559  /// \brief Retrieve the iterator pointing one past the last
1560  /// initialization argument for this lambda expression.
1561  capture_init_iterator capture_init_end() const {
1562    return capture_init_begin() + NumCaptures;
1563  }
1564
1565  /// \brief Retrieve the set of index variables used in the capture
1566  /// initializer of an array captured by copy.
1567  ///
1568  /// \param Iter The iterator that points at the capture initializer for
1569  /// which we are extracting the corresponding index variables.
1570  ArrayRef<VarDecl *> getCaptureInitIndexVars(capture_init_iterator Iter) const;
1571
1572  /// \brief Retrieve the source range covering the lambda introducer,
1573  /// which contains the explicit capture list surrounded by square
1574  /// brackets ([...]).
1575  SourceRange getIntroducerRange() const { return IntroducerRange; }
1576
1577  /// \brief Retrieve the class that corresponds to the lambda.
1578  ///
1579  /// This is the "closure type" (C++1y [expr.prim.lambda]), and stores the
1580  /// captures in its fields and provides the various operations permitted
1581  /// on a lambda (copying, calling).
1582  CXXRecordDecl *getLambdaClass() const;
1583
1584  /// \brief Retrieve the function call operator associated with this
1585  /// lambda expression.
1586  CXXMethodDecl *getCallOperator() const;
1587
1588  /// \brief If this is a generic lambda expression, retrieve the template
1589  /// parameter list associated with it, or else return null.
1590  TemplateParameterList *getTemplateParameterList() const;
1591
1592  /// \brief Whether this is a generic lambda.
1593  bool isGenericLambda() const { return getTemplateParameterList(); }
1594
1595  /// \brief Retrieve the body of the lambda.
1596  CompoundStmt *getBody() const;
1597
1598  /// \brief Determine whether the lambda is mutable, meaning that any
1599  /// captures values can be modified.
1600  bool isMutable() const;
1601
1602  /// \brief Determine whether this lambda has an explicit parameter
1603  /// list vs. an implicit (empty) parameter list.
1604  bool hasExplicitParameters() const { return ExplicitParams; }
1605
1606  /// \brief Whether this lambda had its result type explicitly specified.
1607  bool hasExplicitResultType() const { return ExplicitResultType; }
1608
1609  static bool classof(const Stmt *T) {
1610    return T->getStmtClass() == LambdaExprClass;
1611  }
1612
1613  SourceLocation getLocStart() const LLVM_READONLY {
1614    return IntroducerRange.getBegin();
1615  }
1616  SourceLocation getLocEnd() const LLVM_READONLY { return ClosingBrace; }
1617
1618  child_range children() {
1619    return child_range(getStoredStmts(), getStoredStmts() + NumCaptures + 1);
1620  }
1621
1622  friend class ASTStmtReader;
1623  friend class ASTStmtWriter;
1624};
1625
1626/// An expression "T()" which creates a value-initialized rvalue of type
1627/// T, which is a non-class type.  See (C++98 [5.2.3p2]).
1628class CXXScalarValueInitExpr : public Expr {
1629  SourceLocation RParenLoc;
1630  TypeSourceInfo *TypeInfo;
1631
1632  friend class ASTStmtReader;
1633
1634public:
1635  /// \brief Create an explicitly-written scalar-value initialization
1636  /// expression.
1637  CXXScalarValueInitExpr(QualType Type,
1638                         TypeSourceInfo *TypeInfo,
1639                         SourceLocation rParenLoc ) :
1640    Expr(CXXScalarValueInitExprClass, Type, VK_RValue, OK_Ordinary,
1641         false, false, Type->isInstantiationDependentType(), false),
1642    RParenLoc(rParenLoc), TypeInfo(TypeInfo) {}
1643
1644  explicit CXXScalarValueInitExpr(EmptyShell Shell)
1645    : Expr(CXXScalarValueInitExprClass, Shell) { }
1646
1647  TypeSourceInfo *getTypeSourceInfo() const {
1648    return TypeInfo;
1649  }
1650
1651  SourceLocation getRParenLoc() const { return RParenLoc; }
1652
1653  SourceLocation getLocStart() const LLVM_READONLY;
1654  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
1655
1656  static bool classof(const Stmt *T) {
1657    return T->getStmtClass() == CXXScalarValueInitExprClass;
1658  }
1659
1660  // Iterators
1661  child_range children() { return child_range(); }
1662};
1663
1664/// \brief Represents a new-expression for memory allocation and constructor
1665/// calls, e.g: "new CXXNewExpr(foo)".
1666class CXXNewExpr : public Expr {
1667  /// Contains an optional array size expression, an optional initialization
1668  /// expression, and any number of optional placement arguments, in that order.
1669  Stmt **SubExprs;
1670  /// \brief Points to the allocation function used.
1671  FunctionDecl *OperatorNew;
1672  /// \brief Points to the deallocation function used in case of error. May be
1673  /// null.
1674  FunctionDecl *OperatorDelete;
1675
1676  /// \brief The allocated type-source information, as written in the source.
1677  TypeSourceInfo *AllocatedTypeInfo;
1678
1679  /// \brief If the allocated type was expressed as a parenthesized type-id,
1680  /// the source range covering the parenthesized type-id.
1681  SourceRange TypeIdParens;
1682
1683  /// \brief Range of the entire new expression.
1684  SourceRange Range;
1685
1686  /// \brief Source-range of a paren-delimited initializer.
1687  SourceRange DirectInitRange;
1688
1689  /// Was the usage ::new, i.e. is the global new to be used?
1690  bool GlobalNew : 1;
1691  /// Do we allocate an array? If so, the first SubExpr is the size expression.
1692  bool Array : 1;
1693  /// If this is an array allocation, does the usual deallocation
1694  /// function for the allocated type want to know the allocated size?
1695  bool UsualArrayDeleteWantsSize : 1;
1696  /// The number of placement new arguments.
1697  unsigned NumPlacementArgs : 13;
1698  /// What kind of initializer do we have? Could be none, parens, or braces.
1699  /// In storage, we distinguish between "none, and no initializer expr", and
1700  /// "none, but an implicit initializer expr".
1701  unsigned StoredInitializationStyle : 2;
1702
1703  friend class ASTStmtReader;
1704  friend class ASTStmtWriter;
1705public:
1706  enum InitializationStyle {
1707    NoInit,   ///< New-expression has no initializer as written.
1708    CallInit, ///< New-expression has a C++98 paren-delimited initializer.
1709    ListInit  ///< New-expression has a C++11 list-initializer.
1710  };
1711
1712  CXXNewExpr(const ASTContext &C, bool globalNew, FunctionDecl *operatorNew,
1713             FunctionDecl *operatorDelete, bool usualArrayDeleteWantsSize,
1714             ArrayRef<Expr*> placementArgs,
1715             SourceRange typeIdParens, Expr *arraySize,
1716             InitializationStyle initializationStyle, Expr *initializer,
1717             QualType ty, TypeSourceInfo *AllocatedTypeInfo,
1718             SourceRange Range, SourceRange directInitRange);
1719  explicit CXXNewExpr(EmptyShell Shell)
1720    : Expr(CXXNewExprClass, Shell), SubExprs(0) { }
1721
1722  void AllocateArgsArray(const ASTContext &C, bool isArray,
1723                         unsigned numPlaceArgs, bool hasInitializer);
1724
1725  QualType getAllocatedType() const {
1726    assert(getType()->isPointerType());
1727    return getType()->getAs<PointerType>()->getPointeeType();
1728  }
1729
1730  TypeSourceInfo *getAllocatedTypeSourceInfo() const {
1731    return AllocatedTypeInfo;
1732  }
1733
1734  /// \brief True if the allocation result needs to be null-checked.
1735  ///
1736  /// C++11 [expr.new]p13:
1737  ///   If the allocation function returns null, initialization shall
1738  ///   not be done, the deallocation function shall not be called,
1739  ///   and the value of the new-expression shall be null.
1740  ///
1741  /// An allocation function is not allowed to return null unless it
1742  /// has a non-throwing exception-specification.  The '03 rule is
1743  /// identical except that the definition of a non-throwing
1744  /// exception specification is just "is it throw()?".
1745  bool shouldNullCheckAllocation(const ASTContext &Ctx) const;
1746
1747  FunctionDecl *getOperatorNew() const { return OperatorNew; }
1748  void setOperatorNew(FunctionDecl *D) { OperatorNew = D; }
1749  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
1750  void setOperatorDelete(FunctionDecl *D) { OperatorDelete = D; }
1751
1752  bool isArray() const { return Array; }
1753  Expr *getArraySize() {
1754    return Array ? cast<Expr>(SubExprs[0]) : 0;
1755  }
1756  const Expr *getArraySize() const {
1757    return Array ? cast<Expr>(SubExprs[0]) : 0;
1758  }
1759
1760  unsigned getNumPlacementArgs() const { return NumPlacementArgs; }
1761  Expr **getPlacementArgs() {
1762    return reinterpret_cast<Expr **>(SubExprs + Array + hasInitializer());
1763  }
1764
1765  Expr *getPlacementArg(unsigned i) {
1766    assert(i < NumPlacementArgs && "Index out of range");
1767    return getPlacementArgs()[i];
1768  }
1769  const Expr *getPlacementArg(unsigned i) const {
1770    assert(i < NumPlacementArgs && "Index out of range");
1771    return const_cast<CXXNewExpr*>(this)->getPlacementArg(i);
1772  }
1773
1774  bool isParenTypeId() const { return TypeIdParens.isValid(); }
1775  SourceRange getTypeIdParens() const { return TypeIdParens; }
1776
1777  bool isGlobalNew() const { return GlobalNew; }
1778
1779  /// \brief Whether this new-expression has any initializer at all.
1780  bool hasInitializer() const { return StoredInitializationStyle > 0; }
1781
1782  /// \brief The kind of initializer this new-expression has.
1783  InitializationStyle getInitializationStyle() const {
1784    if (StoredInitializationStyle == 0)
1785      return NoInit;
1786    return static_cast<InitializationStyle>(StoredInitializationStyle-1);
1787  }
1788
1789  /// \brief The initializer of this new-expression.
1790  Expr *getInitializer() {
1791    return hasInitializer() ? cast<Expr>(SubExprs[Array]) : 0;
1792  }
1793  const Expr *getInitializer() const {
1794    return hasInitializer() ? cast<Expr>(SubExprs[Array]) : 0;
1795  }
1796
1797  /// \brief Returns the CXXConstructExpr from this new-expression, or null.
1798  const CXXConstructExpr* getConstructExpr() const {
1799    return dyn_cast_or_null<CXXConstructExpr>(getInitializer());
1800  }
1801
1802  /// Answers whether the usual array deallocation function for the
1803  /// allocated type expects the size of the allocation as a
1804  /// parameter.
1805  bool doesUsualArrayDeleteWantSize() const {
1806    return UsualArrayDeleteWantsSize;
1807  }
1808
1809  typedef ExprIterator arg_iterator;
1810  typedef ConstExprIterator const_arg_iterator;
1811
1812  arg_iterator placement_arg_begin() {
1813    return SubExprs + Array + hasInitializer();
1814  }
1815  arg_iterator placement_arg_end() {
1816    return SubExprs + Array + hasInitializer() + getNumPlacementArgs();
1817  }
1818  const_arg_iterator placement_arg_begin() const {
1819    return SubExprs + Array + hasInitializer();
1820  }
1821  const_arg_iterator placement_arg_end() const {
1822    return SubExprs + Array + hasInitializer() + getNumPlacementArgs();
1823  }
1824
1825  typedef Stmt **raw_arg_iterator;
1826  raw_arg_iterator raw_arg_begin() { return SubExprs; }
1827  raw_arg_iterator raw_arg_end() {
1828    return SubExprs + Array + hasInitializer() + getNumPlacementArgs();
1829  }
1830  const_arg_iterator raw_arg_begin() const { return SubExprs; }
1831  const_arg_iterator raw_arg_end() const {
1832    return SubExprs + Array + hasInitializer() + getNumPlacementArgs();
1833  }
1834
1835  SourceLocation getStartLoc() const { return Range.getBegin(); }
1836  SourceLocation getEndLoc() const { return Range.getEnd(); }
1837
1838  SourceRange getDirectInitRange() const { return DirectInitRange; }
1839
1840  SourceRange getSourceRange() const LLVM_READONLY {
1841    return Range;
1842  }
1843  SourceLocation getLocStart() const LLVM_READONLY { return getStartLoc(); }
1844  SourceLocation getLocEnd() const LLVM_READONLY { return getEndLoc(); }
1845
1846  static bool classof(const Stmt *T) {
1847    return T->getStmtClass() == CXXNewExprClass;
1848  }
1849
1850  // Iterators
1851  child_range children() {
1852    return child_range(raw_arg_begin(), raw_arg_end());
1853  }
1854};
1855
1856/// \brief Represents a \c delete expression for memory deallocation and
1857/// destructor calls, e.g. "delete[] pArray".
1858class CXXDeleteExpr : public Expr {
1859  /// Points to the operator delete overload that is used. Could be a member.
1860  FunctionDecl *OperatorDelete;
1861  /// The pointer expression to be deleted.
1862  Stmt *Argument;
1863  /// Location of the expression.
1864  SourceLocation Loc;
1865  /// Is this a forced global delete, i.e. "::delete"?
1866  bool GlobalDelete : 1;
1867  /// Is this the array form of delete, i.e. "delete[]"?
1868  bool ArrayForm : 1;
1869  /// ArrayFormAsWritten can be different from ArrayForm if 'delete' is applied
1870  /// to pointer-to-array type (ArrayFormAsWritten will be false while ArrayForm
1871  /// will be true).
1872  bool ArrayFormAsWritten : 1;
1873  /// Does the usual deallocation function for the element type require
1874  /// a size_t argument?
1875  bool UsualArrayDeleteWantsSize : 1;
1876public:
1877  CXXDeleteExpr(QualType ty, bool globalDelete, bool arrayForm,
1878                bool arrayFormAsWritten, bool usualArrayDeleteWantsSize,
1879                FunctionDecl *operatorDelete, Expr *arg, SourceLocation loc)
1880    : Expr(CXXDeleteExprClass, ty, VK_RValue, OK_Ordinary, false, false,
1881           arg->isInstantiationDependent(),
1882           arg->containsUnexpandedParameterPack()),
1883      OperatorDelete(operatorDelete), Argument(arg), Loc(loc),
1884      GlobalDelete(globalDelete),
1885      ArrayForm(arrayForm), ArrayFormAsWritten(arrayFormAsWritten),
1886      UsualArrayDeleteWantsSize(usualArrayDeleteWantsSize) { }
1887  explicit CXXDeleteExpr(EmptyShell Shell)
1888    : Expr(CXXDeleteExprClass, Shell), OperatorDelete(0), Argument(0) { }
1889
1890  bool isGlobalDelete() const { return GlobalDelete; }
1891  bool isArrayForm() const { return ArrayForm; }
1892  bool isArrayFormAsWritten() const { return ArrayFormAsWritten; }
1893
1894  /// Answers whether the usual array deallocation function for the
1895  /// allocated type expects the size of the allocation as a
1896  /// parameter.  This can be true even if the actual deallocation
1897  /// function that we're using doesn't want a size.
1898  bool doesUsualArrayDeleteWantSize() const {
1899    return UsualArrayDeleteWantsSize;
1900  }
1901
1902  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
1903
1904  Expr *getArgument() { return cast<Expr>(Argument); }
1905  const Expr *getArgument() const { return cast<Expr>(Argument); }
1906
1907  /// \brief Retrieve the type being destroyed.
1908  ///
1909  /// If the type being destroyed is a dependent type which may or may not
1910  /// be a pointer, return an invalid type.
1911  QualType getDestroyedType() const;
1912
1913  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
1914  SourceLocation getLocEnd() const LLVM_READONLY {return Argument->getLocEnd();}
1915
1916  static bool classof(const Stmt *T) {
1917    return T->getStmtClass() == CXXDeleteExprClass;
1918  }
1919
1920  // Iterators
1921  child_range children() { return child_range(&Argument, &Argument+1); }
1922
1923  friend class ASTStmtReader;
1924};
1925
1926/// \brief Stores the type being destroyed by a pseudo-destructor expression.
1927class PseudoDestructorTypeStorage {
1928  /// \brief Either the type source information or the name of the type, if
1929  /// it couldn't be resolved due to type-dependence.
1930  llvm::PointerUnion<TypeSourceInfo *, IdentifierInfo *> Type;
1931
1932  /// \brief The starting source location of the pseudo-destructor type.
1933  SourceLocation Location;
1934
1935public:
1936  PseudoDestructorTypeStorage() { }
1937
1938  PseudoDestructorTypeStorage(IdentifierInfo *II, SourceLocation Loc)
1939    : Type(II), Location(Loc) { }
1940
1941  PseudoDestructorTypeStorage(TypeSourceInfo *Info);
1942
1943  TypeSourceInfo *getTypeSourceInfo() const {
1944    return Type.dyn_cast<TypeSourceInfo *>();
1945  }
1946
1947  IdentifierInfo *getIdentifier() const {
1948    return Type.dyn_cast<IdentifierInfo *>();
1949  }
1950
1951  SourceLocation getLocation() const { return Location; }
1952};
1953
1954/// \brief Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
1955///
1956/// A pseudo-destructor is an expression that looks like a member access to a
1957/// destructor of a scalar type, except that scalar types don't have
1958/// destructors. For example:
1959///
1960/// \code
1961/// typedef int T;
1962/// void f(int *p) {
1963///   p->T::~T();
1964/// }
1965/// \endcode
1966///
1967/// Pseudo-destructors typically occur when instantiating templates such as:
1968///
1969/// \code
1970/// template<typename T>
1971/// void destroy(T* ptr) {
1972///   ptr->T::~T();
1973/// }
1974/// \endcode
1975///
1976/// for scalar types. A pseudo-destructor expression has no run-time semantics
1977/// beyond evaluating the base expression.
1978class CXXPseudoDestructorExpr : public Expr {
1979  /// \brief The base expression (that is being destroyed).
1980  Stmt *Base;
1981
1982  /// \brief Whether the operator was an arrow ('->'); otherwise, it was a
1983  /// period ('.').
1984  bool IsArrow : 1;
1985
1986  /// \brief The location of the '.' or '->' operator.
1987  SourceLocation OperatorLoc;
1988
1989  /// \brief The nested-name-specifier that follows the operator, if present.
1990  NestedNameSpecifierLoc QualifierLoc;
1991
1992  /// \brief The type that precedes the '::' in a qualified pseudo-destructor
1993  /// expression.
1994  TypeSourceInfo *ScopeType;
1995
1996  /// \brief The location of the '::' in a qualified pseudo-destructor
1997  /// expression.
1998  SourceLocation ColonColonLoc;
1999
2000  /// \brief The location of the '~'.
2001  SourceLocation TildeLoc;
2002
2003  /// \brief The type being destroyed, or its name if we were unable to
2004  /// resolve the name.
2005  PseudoDestructorTypeStorage DestroyedType;
2006
2007  friend class ASTStmtReader;
2008
2009public:
2010  CXXPseudoDestructorExpr(const ASTContext &Context,
2011                          Expr *Base, bool isArrow, SourceLocation OperatorLoc,
2012                          NestedNameSpecifierLoc QualifierLoc,
2013                          TypeSourceInfo *ScopeType,
2014                          SourceLocation ColonColonLoc,
2015                          SourceLocation TildeLoc,
2016                          PseudoDestructorTypeStorage DestroyedType);
2017
2018  explicit CXXPseudoDestructorExpr(EmptyShell Shell)
2019    : Expr(CXXPseudoDestructorExprClass, Shell),
2020      Base(0), IsArrow(false), QualifierLoc(), ScopeType(0) { }
2021
2022  Expr *getBase() const { return cast<Expr>(Base); }
2023
2024  /// \brief Determines whether this member expression actually had
2025  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
2026  /// x->Base::foo.
2027  bool hasQualifier() const { return QualifierLoc.hasQualifier(); }
2028
2029  /// \brief Retrieves the nested-name-specifier that qualifies the type name,
2030  /// with source-location information.
2031  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2032
2033  /// \brief If the member name was qualified, retrieves the
2034  /// nested-name-specifier that precedes the member name. Otherwise, returns
2035  /// null.
2036  NestedNameSpecifier *getQualifier() const {
2037    return QualifierLoc.getNestedNameSpecifier();
2038  }
2039
2040  /// \brief Determine whether this pseudo-destructor expression was written
2041  /// using an '->' (otherwise, it used a '.').
2042  bool isArrow() const { return IsArrow; }
2043
2044  /// \brief Retrieve the location of the '.' or '->' operator.
2045  SourceLocation getOperatorLoc() const { return OperatorLoc; }
2046
2047  /// \brief Retrieve the scope type in a qualified pseudo-destructor
2048  /// expression.
2049  ///
2050  /// Pseudo-destructor expressions can have extra qualification within them
2051  /// that is not part of the nested-name-specifier, e.g., \c p->T::~T().
2052  /// Here, if the object type of the expression is (or may be) a scalar type,
2053  /// \p T may also be a scalar type and, therefore, cannot be part of a
2054  /// nested-name-specifier. It is stored as the "scope type" of the pseudo-
2055  /// destructor expression.
2056  TypeSourceInfo *getScopeTypeInfo() const { return ScopeType; }
2057
2058  /// \brief Retrieve the location of the '::' in a qualified pseudo-destructor
2059  /// expression.
2060  SourceLocation getColonColonLoc() const { return ColonColonLoc; }
2061
2062  /// \brief Retrieve the location of the '~'.
2063  SourceLocation getTildeLoc() const { return TildeLoc; }
2064
2065  /// \brief Retrieve the source location information for the type
2066  /// being destroyed.
2067  ///
2068  /// This type-source information is available for non-dependent
2069  /// pseudo-destructor expressions and some dependent pseudo-destructor
2070  /// expressions. Returns null if we only have the identifier for a
2071  /// dependent pseudo-destructor expression.
2072  TypeSourceInfo *getDestroyedTypeInfo() const {
2073    return DestroyedType.getTypeSourceInfo();
2074  }
2075
2076  /// \brief In a dependent pseudo-destructor expression for which we do not
2077  /// have full type information on the destroyed type, provides the name
2078  /// of the destroyed type.
2079  IdentifierInfo *getDestroyedTypeIdentifier() const {
2080    return DestroyedType.getIdentifier();
2081  }
2082
2083  /// \brief Retrieve the type being destroyed.
2084  QualType getDestroyedType() const;
2085
2086  /// \brief Retrieve the starting location of the type being destroyed.
2087  SourceLocation getDestroyedTypeLoc() const {
2088    return DestroyedType.getLocation();
2089  }
2090
2091  /// \brief Set the name of destroyed type for a dependent pseudo-destructor
2092  /// expression.
2093  void setDestroyedType(IdentifierInfo *II, SourceLocation Loc) {
2094    DestroyedType = PseudoDestructorTypeStorage(II, Loc);
2095  }
2096
2097  /// \brief Set the destroyed type.
2098  void setDestroyedType(TypeSourceInfo *Info) {
2099    DestroyedType = PseudoDestructorTypeStorage(Info);
2100  }
2101
2102  SourceLocation getLocStart() const LLVM_READONLY {return Base->getLocStart();}
2103  SourceLocation getLocEnd() const LLVM_READONLY;
2104
2105  static bool classof(const Stmt *T) {
2106    return T->getStmtClass() == CXXPseudoDestructorExprClass;
2107  }
2108
2109  // Iterators
2110  child_range children() { return child_range(&Base, &Base + 1); }
2111};
2112
2113/// \brief Represents a GCC or MS unary type trait, as used in the
2114/// implementation of TR1/C++11 type trait templates.
2115///
2116/// Example:
2117/// \code
2118///   __is_pod(int) == true
2119///   __is_enum(std::string) == false
2120/// \endcode
2121class UnaryTypeTraitExpr : public Expr {
2122  /// \brief The trait. A UnaryTypeTrait enum in MSVC compatible unsigned.
2123  unsigned UTT : 31;
2124  /// The value of the type trait. Unspecified if dependent.
2125  bool Value : 1;
2126
2127  /// \brief The location of the type trait keyword.
2128  SourceLocation Loc;
2129
2130  /// \brief The location of the closing paren.
2131  SourceLocation RParen;
2132
2133  /// \brief The type being queried.
2134  TypeSourceInfo *QueriedType;
2135
2136public:
2137  UnaryTypeTraitExpr(SourceLocation loc, UnaryTypeTrait utt,
2138                     TypeSourceInfo *queried, bool value,
2139                     SourceLocation rparen, QualType ty)
2140    : Expr(UnaryTypeTraitExprClass, ty, VK_RValue, OK_Ordinary,
2141           false,  queried->getType()->isDependentType(),
2142           queried->getType()->isInstantiationDependentType(),
2143           queried->getType()->containsUnexpandedParameterPack()),
2144      UTT(utt), Value(value), Loc(loc), RParen(rparen), QueriedType(queried) { }
2145
2146  explicit UnaryTypeTraitExpr(EmptyShell Empty)
2147    : Expr(UnaryTypeTraitExprClass, Empty), UTT(0), Value(false),
2148      QueriedType() { }
2149
2150  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
2151  SourceLocation getLocEnd() const LLVM_READONLY { return RParen; }
2152
2153  UnaryTypeTrait getTrait() const { return static_cast<UnaryTypeTrait>(UTT); }
2154
2155  QualType getQueriedType() const { return QueriedType->getType(); }
2156
2157  TypeSourceInfo *getQueriedTypeSourceInfo() const { return QueriedType; }
2158
2159  bool getValue() const { return Value; }
2160
2161  static bool classof(const Stmt *T) {
2162    return T->getStmtClass() == UnaryTypeTraitExprClass;
2163  }
2164
2165  // Iterators
2166  child_range children() { return child_range(); }
2167
2168  friend class ASTStmtReader;
2169};
2170
2171/// \brief Represents a GCC or MS binary type trait, as used in the
2172/// implementation of TR1/C++11 type trait templates.
2173///
2174/// Example:
2175/// \code
2176///   __is_base_of(Base, Derived) == true
2177/// \endcode
2178class BinaryTypeTraitExpr : public Expr {
2179  /// \brief The trait. A BinaryTypeTrait enum in MSVC compatible unsigned.
2180  unsigned BTT : 8;
2181
2182  /// The value of the type trait. Unspecified if dependent.
2183  bool Value : 1;
2184
2185  /// \brief The location of the type trait keyword.
2186  SourceLocation Loc;
2187
2188  /// \brief The location of the closing paren.
2189  SourceLocation RParen;
2190
2191  /// \brief The lhs type being queried.
2192  TypeSourceInfo *LhsType;
2193
2194  /// \brief The rhs type being queried.
2195  TypeSourceInfo *RhsType;
2196
2197public:
2198  BinaryTypeTraitExpr(SourceLocation loc, BinaryTypeTrait btt,
2199                     TypeSourceInfo *lhsType, TypeSourceInfo *rhsType,
2200                     bool value, SourceLocation rparen, QualType ty)
2201    : Expr(BinaryTypeTraitExprClass, ty, VK_RValue, OK_Ordinary, false,
2202           lhsType->getType()->isDependentType() ||
2203           rhsType->getType()->isDependentType(),
2204           (lhsType->getType()->isInstantiationDependentType() ||
2205            rhsType->getType()->isInstantiationDependentType()),
2206           (lhsType->getType()->containsUnexpandedParameterPack() ||
2207            rhsType->getType()->containsUnexpandedParameterPack())),
2208      BTT(btt), Value(value), Loc(loc), RParen(rparen),
2209      LhsType(lhsType), RhsType(rhsType) { }
2210
2211
2212  explicit BinaryTypeTraitExpr(EmptyShell Empty)
2213    : Expr(BinaryTypeTraitExprClass, Empty), BTT(0), Value(false),
2214      LhsType(), RhsType() { }
2215
2216  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
2217  SourceLocation getLocEnd() const LLVM_READONLY { return RParen; }
2218
2219  BinaryTypeTrait getTrait() const {
2220    return static_cast<BinaryTypeTrait>(BTT);
2221  }
2222
2223  QualType getLhsType() const { return LhsType->getType(); }
2224  QualType getRhsType() const { return RhsType->getType(); }
2225
2226  TypeSourceInfo *getLhsTypeSourceInfo() const { return LhsType; }
2227  TypeSourceInfo *getRhsTypeSourceInfo() const { return RhsType; }
2228
2229  bool getValue() const { assert(!isTypeDependent()); return Value; }
2230
2231  static bool classof(const Stmt *T) {
2232    return T->getStmtClass() == BinaryTypeTraitExprClass;
2233  }
2234
2235  // Iterators
2236  child_range children() { return child_range(); }
2237
2238  friend class ASTStmtReader;
2239};
2240
2241/// \brief A type trait used in the implementation of various C++11 and
2242/// Library TR1 trait templates.
2243///
2244/// \code
2245///   __is_trivially_constructible(vector<int>, int*, int*)
2246/// \endcode
2247class TypeTraitExpr : public Expr {
2248  /// \brief The location of the type trait keyword.
2249  SourceLocation Loc;
2250
2251  /// \brief  The location of the closing parenthesis.
2252  SourceLocation RParenLoc;
2253
2254  // Note: The TypeSourceInfos for the arguments are allocated after the
2255  // TypeTraitExpr.
2256
2257  TypeTraitExpr(QualType T, SourceLocation Loc, TypeTrait Kind,
2258                ArrayRef<TypeSourceInfo *> Args,
2259                SourceLocation RParenLoc,
2260                bool Value);
2261
2262  TypeTraitExpr(EmptyShell Empty) : Expr(TypeTraitExprClass, Empty) { }
2263
2264  /// \brief Retrieve the argument types.
2265  TypeSourceInfo **getTypeSourceInfos() {
2266    return reinterpret_cast<TypeSourceInfo **>(this+1);
2267  }
2268
2269  /// \brief Retrieve the argument types.
2270  TypeSourceInfo * const *getTypeSourceInfos() const {
2271    return reinterpret_cast<TypeSourceInfo * const*>(this+1);
2272  }
2273
2274public:
2275  /// \brief Create a new type trait expression.
2276  static TypeTraitExpr *Create(const ASTContext &C, QualType T,
2277                               SourceLocation Loc, TypeTrait Kind,
2278                               ArrayRef<TypeSourceInfo *> Args,
2279                               SourceLocation RParenLoc,
2280                               bool Value);
2281
2282  static TypeTraitExpr *CreateDeserialized(const ASTContext &C,
2283                                           unsigned NumArgs);
2284
2285  /// \brief Determine which type trait this expression uses.
2286  TypeTrait getTrait() const {
2287    return static_cast<TypeTrait>(TypeTraitExprBits.Kind);
2288  }
2289
2290  bool getValue() const {
2291    assert(!isValueDependent());
2292    return TypeTraitExprBits.Value;
2293  }
2294
2295  /// \brief Determine the number of arguments to this type trait.
2296  unsigned getNumArgs() const { return TypeTraitExprBits.NumArgs; }
2297
2298  /// \brief Retrieve the Ith argument.
2299  TypeSourceInfo *getArg(unsigned I) const {
2300    assert(I < getNumArgs() && "Argument out-of-range");
2301    return getArgs()[I];
2302  }
2303
2304  /// \brief Retrieve the argument types.
2305  ArrayRef<TypeSourceInfo *> getArgs() const {
2306    return ArrayRef<TypeSourceInfo *>(getTypeSourceInfos(), getNumArgs());
2307  }
2308
2309  typedef TypeSourceInfo **arg_iterator;
2310  arg_iterator arg_begin() {
2311    return getTypeSourceInfos();
2312  }
2313  arg_iterator arg_end() {
2314    return getTypeSourceInfos() + getNumArgs();
2315  }
2316
2317  typedef TypeSourceInfo const * const *arg_const_iterator;
2318  arg_const_iterator arg_begin() const { return getTypeSourceInfos(); }
2319  arg_const_iterator arg_end() const {
2320    return getTypeSourceInfos() + getNumArgs();
2321  }
2322
2323  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
2324  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
2325
2326  static bool classof(const Stmt *T) {
2327    return T->getStmtClass() == TypeTraitExprClass;
2328  }
2329
2330  // Iterators
2331  child_range children() { return child_range(); }
2332
2333  friend class ASTStmtReader;
2334  friend class ASTStmtWriter;
2335
2336};
2337
2338/// \brief An Embarcadero array type trait, as used in the implementation of
2339/// __array_rank and __array_extent.
2340///
2341/// Example:
2342/// \code
2343///   __array_rank(int[10][20]) == 2
2344///   __array_extent(int, 1)    == 20
2345/// \endcode
2346class ArrayTypeTraitExpr : public Expr {
2347  virtual void anchor();
2348
2349  /// \brief The trait. An ArrayTypeTrait enum in MSVC compat unsigned.
2350  unsigned ATT : 2;
2351
2352  /// \brief The value of the type trait. Unspecified if dependent.
2353  uint64_t Value;
2354
2355  /// \brief The array dimension being queried, or -1 if not used.
2356  Expr *Dimension;
2357
2358  /// \brief The location of the type trait keyword.
2359  SourceLocation Loc;
2360
2361  /// \brief The location of the closing paren.
2362  SourceLocation RParen;
2363
2364  /// \brief The type being queried.
2365  TypeSourceInfo *QueriedType;
2366
2367public:
2368  ArrayTypeTraitExpr(SourceLocation loc, ArrayTypeTrait att,
2369                     TypeSourceInfo *queried, uint64_t value,
2370                     Expr *dimension, SourceLocation rparen, QualType ty)
2371    : Expr(ArrayTypeTraitExprClass, ty, VK_RValue, OK_Ordinary,
2372           false, queried->getType()->isDependentType(),
2373           (queried->getType()->isInstantiationDependentType() ||
2374            (dimension && dimension->isInstantiationDependent())),
2375           queried->getType()->containsUnexpandedParameterPack()),
2376      ATT(att), Value(value), Dimension(dimension),
2377      Loc(loc), RParen(rparen), QueriedType(queried) { }
2378
2379
2380  explicit ArrayTypeTraitExpr(EmptyShell Empty)
2381    : Expr(ArrayTypeTraitExprClass, Empty), ATT(0), Value(false),
2382      QueriedType() { }
2383
2384  virtual ~ArrayTypeTraitExpr() { }
2385
2386  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
2387  SourceLocation getLocEnd() const LLVM_READONLY { return RParen; }
2388
2389  ArrayTypeTrait getTrait() const { return static_cast<ArrayTypeTrait>(ATT); }
2390
2391  QualType getQueriedType() const { return QueriedType->getType(); }
2392
2393  TypeSourceInfo *getQueriedTypeSourceInfo() const { return QueriedType; }
2394
2395  uint64_t getValue() const { assert(!isTypeDependent()); return Value; }
2396
2397  Expr *getDimensionExpression() const { return Dimension; }
2398
2399  static bool classof(const Stmt *T) {
2400    return T->getStmtClass() == ArrayTypeTraitExprClass;
2401  }
2402
2403  // Iterators
2404  child_range children() { return child_range(); }
2405
2406  friend class ASTStmtReader;
2407};
2408
2409/// \brief An expression trait intrinsic.
2410///
2411/// Example:
2412/// \code
2413///   __is_lvalue_expr(std::cout) == true
2414///   __is_lvalue_expr(1) == false
2415/// \endcode
2416class ExpressionTraitExpr : public Expr {
2417  /// \brief The trait. A ExpressionTrait enum in MSVC compatible unsigned.
2418  unsigned ET : 31;
2419  /// \brief The value of the type trait. Unspecified if dependent.
2420  bool Value : 1;
2421
2422  /// \brief The location of the type trait keyword.
2423  SourceLocation Loc;
2424
2425  /// \brief The location of the closing paren.
2426  SourceLocation RParen;
2427
2428  /// \brief The expression being queried.
2429  Expr* QueriedExpression;
2430public:
2431  ExpressionTraitExpr(SourceLocation loc, ExpressionTrait et,
2432                     Expr *queried, bool value,
2433                     SourceLocation rparen, QualType resultType)
2434    : Expr(ExpressionTraitExprClass, resultType, VK_RValue, OK_Ordinary,
2435           false, // Not type-dependent
2436           // Value-dependent if the argument is type-dependent.
2437           queried->isTypeDependent(),
2438           queried->isInstantiationDependent(),
2439           queried->containsUnexpandedParameterPack()),
2440      ET(et), Value(value), Loc(loc), RParen(rparen),
2441      QueriedExpression(queried) { }
2442
2443  explicit ExpressionTraitExpr(EmptyShell Empty)
2444    : Expr(ExpressionTraitExprClass, Empty), ET(0), Value(false),
2445      QueriedExpression() { }
2446
2447  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
2448  SourceLocation getLocEnd() const LLVM_READONLY { return RParen; }
2449
2450  ExpressionTrait getTrait() const { return static_cast<ExpressionTrait>(ET); }
2451
2452  Expr *getQueriedExpression() const { return QueriedExpression; }
2453
2454  bool getValue() const { return Value; }
2455
2456  static bool classof(const Stmt *T) {
2457    return T->getStmtClass() == ExpressionTraitExprClass;
2458  }
2459
2460  // Iterators
2461  child_range children() { return child_range(); }
2462
2463  friend class ASTStmtReader;
2464};
2465
2466
2467/// \brief A reference to an overloaded function set, either an
2468/// \c UnresolvedLookupExpr or an \c UnresolvedMemberExpr.
2469class OverloadExpr : public Expr {
2470  /// \brief The common name of these declarations.
2471  DeclarationNameInfo NameInfo;
2472
2473  /// \brief The nested-name-specifier that qualifies the name, if any.
2474  NestedNameSpecifierLoc QualifierLoc;
2475
2476  /// The results.  These are undesugared, which is to say, they may
2477  /// include UsingShadowDecls.  Access is relative to the naming
2478  /// class.
2479  // FIXME: Allocate this data after the OverloadExpr subclass.
2480  DeclAccessPair *Results;
2481  unsigned NumResults;
2482
2483protected:
2484  /// \brief Whether the name includes info for explicit template
2485  /// keyword and arguments.
2486  bool HasTemplateKWAndArgsInfo;
2487
2488  /// \brief Return the optional template keyword and arguments info.
2489  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo(); // defined far below.
2490
2491  /// \brief Return the optional template keyword and arguments info.
2492  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
2493    return const_cast<OverloadExpr*>(this)->getTemplateKWAndArgsInfo();
2494  }
2495
2496  OverloadExpr(StmtClass K, const ASTContext &C,
2497               NestedNameSpecifierLoc QualifierLoc,
2498               SourceLocation TemplateKWLoc,
2499               const DeclarationNameInfo &NameInfo,
2500               const TemplateArgumentListInfo *TemplateArgs,
2501               UnresolvedSetIterator Begin, UnresolvedSetIterator End,
2502               bool KnownDependent,
2503               bool KnownInstantiationDependent,
2504               bool KnownContainsUnexpandedParameterPack);
2505
2506  OverloadExpr(StmtClass K, EmptyShell Empty)
2507    : Expr(K, Empty), QualifierLoc(), Results(0), NumResults(0),
2508      HasTemplateKWAndArgsInfo(false) { }
2509
2510  void initializeResults(const ASTContext &C,
2511                         UnresolvedSetIterator Begin,
2512                         UnresolvedSetIterator End);
2513
2514public:
2515  struct FindResult {
2516    OverloadExpr *Expression;
2517    bool IsAddressOfOperand;
2518    bool HasFormOfMemberPointer;
2519  };
2520
2521  /// \brief Finds the overloaded expression in the given expression \p E of
2522  /// OverloadTy.
2523  ///
2524  /// \return the expression (which must be there) and true if it has
2525  /// the particular form of a member pointer expression
2526  static FindResult find(Expr *E) {
2527    assert(E->getType()->isSpecificBuiltinType(BuiltinType::Overload));
2528
2529    FindResult Result;
2530
2531    E = E->IgnoreParens();
2532    if (isa<UnaryOperator>(E)) {
2533      assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
2534      E = cast<UnaryOperator>(E)->getSubExpr();
2535      OverloadExpr *Ovl = cast<OverloadExpr>(E->IgnoreParens());
2536
2537      Result.HasFormOfMemberPointer = (E == Ovl && Ovl->getQualifier());
2538      Result.IsAddressOfOperand = true;
2539      Result.Expression = Ovl;
2540    } else {
2541      Result.HasFormOfMemberPointer = false;
2542      Result.IsAddressOfOperand = false;
2543      Result.Expression = cast<OverloadExpr>(E);
2544    }
2545
2546    return Result;
2547  }
2548
2549  /// \brief Gets the naming class of this lookup, if any.
2550  CXXRecordDecl *getNamingClass() const;
2551
2552  typedef UnresolvedSetImpl::iterator decls_iterator;
2553  decls_iterator decls_begin() const { return UnresolvedSetIterator(Results); }
2554  decls_iterator decls_end() const {
2555    return UnresolvedSetIterator(Results + NumResults);
2556  }
2557
2558  /// \brief Gets the number of declarations in the unresolved set.
2559  unsigned getNumDecls() const { return NumResults; }
2560
2561  /// \brief Gets the full name info.
2562  const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
2563
2564  /// \brief Gets the name looked up.
2565  DeclarationName getName() const { return NameInfo.getName(); }
2566
2567  /// \brief Gets the location of the name.
2568  SourceLocation getNameLoc() const { return NameInfo.getLoc(); }
2569
2570  /// \brief Fetches the nested-name qualifier, if one was given.
2571  NestedNameSpecifier *getQualifier() const {
2572    return QualifierLoc.getNestedNameSpecifier();
2573  }
2574
2575  /// \brief Fetches the nested-name qualifier with source-location
2576  /// information, if one was given.
2577  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2578
2579  /// \brief Retrieve the location of the template keyword preceding
2580  /// this name, if any.
2581  SourceLocation getTemplateKeywordLoc() const {
2582    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2583    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
2584  }
2585
2586  /// \brief Retrieve the location of the left angle bracket starting the
2587  /// explicit template argument list following the name, if any.
2588  SourceLocation getLAngleLoc() const {
2589    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2590    return getTemplateKWAndArgsInfo()->LAngleLoc;
2591  }
2592
2593  /// \brief Retrieve the location of the right angle bracket ending the
2594  /// explicit template argument list following the name, if any.
2595  SourceLocation getRAngleLoc() const {
2596    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2597    return getTemplateKWAndArgsInfo()->RAngleLoc;
2598  }
2599
2600  /// \brief Determines whether the name was preceded by the template keyword.
2601  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
2602
2603  /// \brief Determines whether this expression had explicit template arguments.
2604  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
2605
2606  // Note that, inconsistently with the explicit-template-argument AST
2607  // nodes, users are *forbidden* from calling these methods on objects
2608  // without explicit template arguments.
2609
2610  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
2611    assert(hasExplicitTemplateArgs());
2612    return *getTemplateKWAndArgsInfo();
2613  }
2614
2615  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2616    return const_cast<OverloadExpr*>(this)->getExplicitTemplateArgs();
2617  }
2618
2619  TemplateArgumentLoc const *getTemplateArgs() const {
2620    return getExplicitTemplateArgs().getTemplateArgs();
2621  }
2622
2623  unsigned getNumTemplateArgs() const {
2624    return getExplicitTemplateArgs().NumTemplateArgs;
2625  }
2626
2627  /// \brief Copies the template arguments into the given structure.
2628  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2629    getExplicitTemplateArgs().copyInto(List);
2630  }
2631
2632  /// \brief Retrieves the optional explicit template arguments.
2633  ///
2634  /// This points to the same data as getExplicitTemplateArgs(), but
2635  /// returns null if there are no explicit template arguments.
2636  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() const {
2637    if (!hasExplicitTemplateArgs()) return 0;
2638    return &getExplicitTemplateArgs();
2639  }
2640
2641  static bool classof(const Stmt *T) {
2642    return T->getStmtClass() == UnresolvedLookupExprClass ||
2643           T->getStmtClass() == UnresolvedMemberExprClass;
2644  }
2645
2646  friend class ASTStmtReader;
2647  friend class ASTStmtWriter;
2648};
2649
2650/// \brief A reference to a name which we were able to look up during
2651/// parsing but could not resolve to a specific declaration.
2652///
2653/// This arises in several ways:
2654///   * we might be waiting for argument-dependent lookup;
2655///   * the name might resolve to an overloaded function;
2656/// and eventually:
2657///   * the lookup might have included a function template.
2658///
2659/// These never include UnresolvedUsingValueDecls, which are always class
2660/// members and therefore appear only in UnresolvedMemberLookupExprs.
2661class UnresolvedLookupExpr : public OverloadExpr {
2662  /// True if these lookup results should be extended by
2663  /// argument-dependent lookup if this is the operand of a function
2664  /// call.
2665  bool RequiresADL;
2666
2667  /// True if these lookup results are overloaded.  This is pretty
2668  /// trivially rederivable if we urgently need to kill this field.
2669  bool Overloaded;
2670
2671  /// The naming class (C++ [class.access.base]p5) of the lookup, if
2672  /// any.  This can generally be recalculated from the context chain,
2673  /// but that can be fairly expensive for unqualified lookups.  If we
2674  /// want to improve memory use here, this could go in a union
2675  /// against the qualified-lookup bits.
2676  CXXRecordDecl *NamingClass;
2677
2678  UnresolvedLookupExpr(const ASTContext &C,
2679                       CXXRecordDecl *NamingClass,
2680                       NestedNameSpecifierLoc QualifierLoc,
2681                       SourceLocation TemplateKWLoc,
2682                       const DeclarationNameInfo &NameInfo,
2683                       bool RequiresADL, bool Overloaded,
2684                       const TemplateArgumentListInfo *TemplateArgs,
2685                       UnresolvedSetIterator Begin, UnresolvedSetIterator End)
2686    : OverloadExpr(UnresolvedLookupExprClass, C, QualifierLoc, TemplateKWLoc,
2687                   NameInfo, TemplateArgs, Begin, End, false, false, false),
2688      RequiresADL(RequiresADL),
2689      Overloaded(Overloaded), NamingClass(NamingClass)
2690  {}
2691
2692  UnresolvedLookupExpr(EmptyShell Empty)
2693    : OverloadExpr(UnresolvedLookupExprClass, Empty),
2694      RequiresADL(false), Overloaded(false), NamingClass(0)
2695  {}
2696
2697  friend class ASTStmtReader;
2698
2699public:
2700  static UnresolvedLookupExpr *Create(const ASTContext &C,
2701                                      CXXRecordDecl *NamingClass,
2702                                      NestedNameSpecifierLoc QualifierLoc,
2703                                      const DeclarationNameInfo &NameInfo,
2704                                      bool ADL, bool Overloaded,
2705                                      UnresolvedSetIterator Begin,
2706                                      UnresolvedSetIterator End) {
2707    return new(C) UnresolvedLookupExpr(C, NamingClass, QualifierLoc,
2708                                       SourceLocation(), NameInfo,
2709                                       ADL, Overloaded, 0, Begin, End);
2710  }
2711
2712  static UnresolvedLookupExpr *Create(const ASTContext &C,
2713                                      CXXRecordDecl *NamingClass,
2714                                      NestedNameSpecifierLoc QualifierLoc,
2715                                      SourceLocation TemplateKWLoc,
2716                                      const DeclarationNameInfo &NameInfo,
2717                                      bool ADL,
2718                                      const TemplateArgumentListInfo *Args,
2719                                      UnresolvedSetIterator Begin,
2720                                      UnresolvedSetIterator End);
2721
2722  static UnresolvedLookupExpr *CreateEmpty(const ASTContext &C,
2723                                           bool HasTemplateKWAndArgsInfo,
2724                                           unsigned NumTemplateArgs);
2725
2726  /// True if this declaration should be extended by
2727  /// argument-dependent lookup.
2728  bool requiresADL() const { return RequiresADL; }
2729
2730  /// True if this lookup is overloaded.
2731  bool isOverloaded() const { return Overloaded; }
2732
2733  /// Gets the 'naming class' (in the sense of C++0x
2734  /// [class.access.base]p5) of the lookup.  This is the scope
2735  /// that was looked in to find these results.
2736  CXXRecordDecl *getNamingClass() const { return NamingClass; }
2737
2738  SourceLocation getLocStart() const LLVM_READONLY {
2739    if (NestedNameSpecifierLoc l = getQualifierLoc())
2740      return l.getBeginLoc();
2741    return getNameInfo().getLocStart();
2742  }
2743  SourceLocation getLocEnd() const LLVM_READONLY {
2744    if (hasExplicitTemplateArgs())
2745      return getRAngleLoc();
2746    return getNameInfo().getLocEnd();
2747  }
2748
2749  child_range children() { return child_range(); }
2750
2751  static bool classof(const Stmt *T) {
2752    return T->getStmtClass() == UnresolvedLookupExprClass;
2753  }
2754};
2755
2756/// \brief A qualified reference to a name whose declaration cannot
2757/// yet be resolved.
2758///
2759/// DependentScopeDeclRefExpr is similar to DeclRefExpr in that
2760/// it expresses a reference to a declaration such as
2761/// X<T>::value. The difference, however, is that an
2762/// DependentScopeDeclRefExpr node is used only within C++ templates when
2763/// the qualification (e.g., X<T>::) refers to a dependent type. In
2764/// this case, X<T>::value cannot resolve to a declaration because the
2765/// declaration will differ from one instantiation of X<T> to the
2766/// next. Therefore, DependentScopeDeclRefExpr keeps track of the
2767/// qualifier (X<T>::) and the name of the entity being referenced
2768/// ("value"). Such expressions will instantiate to a DeclRefExpr once the
2769/// declaration can be found.
2770class DependentScopeDeclRefExpr : public Expr {
2771  /// \brief The nested-name-specifier that qualifies this unresolved
2772  /// declaration name.
2773  NestedNameSpecifierLoc QualifierLoc;
2774
2775  /// \brief The name of the entity we will be referencing.
2776  DeclarationNameInfo NameInfo;
2777
2778  /// \brief Whether the name includes info for explicit template
2779  /// keyword and arguments.
2780  bool HasTemplateKWAndArgsInfo;
2781
2782  /// \brief Return the optional template keyword and arguments info.
2783  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
2784    if (!HasTemplateKWAndArgsInfo) return 0;
2785    return reinterpret_cast<ASTTemplateKWAndArgsInfo*>(this + 1);
2786  }
2787  /// \brief Return the optional template keyword and arguments info.
2788  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
2789    return const_cast<DependentScopeDeclRefExpr*>(this)
2790      ->getTemplateKWAndArgsInfo();
2791  }
2792
2793  DependentScopeDeclRefExpr(QualType T,
2794                            NestedNameSpecifierLoc QualifierLoc,
2795                            SourceLocation TemplateKWLoc,
2796                            const DeclarationNameInfo &NameInfo,
2797                            const TemplateArgumentListInfo *Args);
2798
2799public:
2800  static DependentScopeDeclRefExpr *Create(const ASTContext &C,
2801                                           NestedNameSpecifierLoc QualifierLoc,
2802                                           SourceLocation TemplateKWLoc,
2803                                           const DeclarationNameInfo &NameInfo,
2804                              const TemplateArgumentListInfo *TemplateArgs);
2805
2806  static DependentScopeDeclRefExpr *CreateEmpty(const ASTContext &C,
2807                                                bool HasTemplateKWAndArgsInfo,
2808                                                unsigned NumTemplateArgs);
2809
2810  /// \brief Retrieve the name that this expression refers to.
2811  const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
2812
2813  /// \brief Retrieve the name that this expression refers to.
2814  DeclarationName getDeclName() const { return NameInfo.getName(); }
2815
2816  /// \brief Retrieve the location of the name within the expression.
2817  ///
2818  /// For example, in "X<T>::value" this is the location of "value".
2819  SourceLocation getLocation() const { return NameInfo.getLoc(); }
2820
2821  /// \brief Retrieve the nested-name-specifier that qualifies the
2822  /// name, with source location information.
2823  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2824
2825  /// \brief Retrieve the nested-name-specifier that qualifies this
2826  /// declaration.
2827  NestedNameSpecifier *getQualifier() const {
2828    return QualifierLoc.getNestedNameSpecifier();
2829  }
2830
2831  /// \brief Retrieve the location of the template keyword preceding
2832  /// this name, if any.
2833  SourceLocation getTemplateKeywordLoc() const {
2834    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2835    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
2836  }
2837
2838  /// \brief Retrieve the location of the left angle bracket starting the
2839  /// explicit template argument list following the name, if any.
2840  SourceLocation getLAngleLoc() const {
2841    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2842    return getTemplateKWAndArgsInfo()->LAngleLoc;
2843  }
2844
2845  /// \brief Retrieve the location of the right angle bracket ending the
2846  /// explicit template argument list following the name, if any.
2847  SourceLocation getRAngleLoc() const {
2848    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2849    return getTemplateKWAndArgsInfo()->RAngleLoc;
2850  }
2851
2852  /// Determines whether the name was preceded by the template keyword.
2853  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
2854
2855  /// Determines whether this lookup had explicit template arguments.
2856  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
2857
2858  // Note that, inconsistently with the explicit-template-argument AST
2859  // nodes, users are *forbidden* from calling these methods on objects
2860  // without explicit template arguments.
2861
2862  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
2863    assert(hasExplicitTemplateArgs());
2864    return *reinterpret_cast<ASTTemplateArgumentListInfo*>(this + 1);
2865  }
2866
2867  /// Gets a reference to the explicit template argument list.
2868  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2869    assert(hasExplicitTemplateArgs());
2870    return *reinterpret_cast<const ASTTemplateArgumentListInfo*>(this + 1);
2871  }
2872
2873  /// \brief Retrieves the optional explicit template arguments.
2874  ///
2875  /// This points to the same data as getExplicitTemplateArgs(), but
2876  /// returns null if there are no explicit template arguments.
2877  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() const {
2878    if (!hasExplicitTemplateArgs()) return 0;
2879    return &getExplicitTemplateArgs();
2880  }
2881
2882  /// \brief Copies the template arguments (if present) into the given
2883  /// structure.
2884  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2885    getExplicitTemplateArgs().copyInto(List);
2886  }
2887
2888  TemplateArgumentLoc const *getTemplateArgs() const {
2889    return getExplicitTemplateArgs().getTemplateArgs();
2890  }
2891
2892  unsigned getNumTemplateArgs() const {
2893    return getExplicitTemplateArgs().NumTemplateArgs;
2894  }
2895
2896  /// Note: getLocStart() is the start of the whole DependentScopeDeclRefExpr,
2897  /// and differs from getLocation().getStart().
2898  SourceLocation getLocStart() const LLVM_READONLY {
2899    return QualifierLoc.getBeginLoc();
2900  }
2901  SourceLocation getLocEnd() const LLVM_READONLY {
2902    if (hasExplicitTemplateArgs())
2903      return getRAngleLoc();
2904    return getLocation();
2905  }
2906
2907  static bool classof(const Stmt *T) {
2908    return T->getStmtClass() == DependentScopeDeclRefExprClass;
2909  }
2910
2911  child_range children() { return child_range(); }
2912
2913  friend class ASTStmtReader;
2914  friend class ASTStmtWriter;
2915};
2916
2917/// Represents an expression -- generally a full-expression -- that
2918/// introduces cleanups to be run at the end of the sub-expression's
2919/// evaluation.  The most common source of expression-introduced
2920/// cleanups is temporary objects in C++, but several other kinds of
2921/// expressions can create cleanups, including basically every
2922/// call in ARC that returns an Objective-C pointer.
2923///
2924/// This expression also tracks whether the sub-expression contains a
2925/// potentially-evaluated block literal.  The lifetime of a block
2926/// literal is the extent of the enclosing scope.
2927class ExprWithCleanups : public Expr {
2928public:
2929  /// The type of objects that are kept in the cleanup.
2930  /// It's useful to remember the set of blocks;  we could also
2931  /// remember the set of temporaries, but there's currently
2932  /// no need.
2933  typedef BlockDecl *CleanupObject;
2934
2935private:
2936  Stmt *SubExpr;
2937
2938  ExprWithCleanups(EmptyShell, unsigned NumObjects);
2939  ExprWithCleanups(Expr *SubExpr, ArrayRef<CleanupObject> Objects);
2940
2941  CleanupObject *getObjectsBuffer() {
2942    return reinterpret_cast<CleanupObject*>(this + 1);
2943  }
2944  const CleanupObject *getObjectsBuffer() const {
2945    return reinterpret_cast<const CleanupObject*>(this + 1);
2946  }
2947  friend class ASTStmtReader;
2948
2949public:
2950  static ExprWithCleanups *Create(const ASTContext &C, EmptyShell empty,
2951                                  unsigned numObjects);
2952
2953  static ExprWithCleanups *Create(const ASTContext &C, Expr *subexpr,
2954                                  ArrayRef<CleanupObject> objects);
2955
2956  ArrayRef<CleanupObject> getObjects() const {
2957    return ArrayRef<CleanupObject>(getObjectsBuffer(), getNumObjects());
2958  }
2959
2960  unsigned getNumObjects() const { return ExprWithCleanupsBits.NumObjects; }
2961
2962  CleanupObject getObject(unsigned i) const {
2963    assert(i < getNumObjects() && "Index out of range");
2964    return getObjects()[i];
2965  }
2966
2967  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
2968  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
2969
2970  /// As with any mutator of the AST, be very careful
2971  /// when modifying an existing AST to preserve its invariants.
2972  void setSubExpr(Expr *E) { SubExpr = E; }
2973
2974  SourceLocation getLocStart() const LLVM_READONLY {
2975    return SubExpr->getLocStart();
2976  }
2977  SourceLocation getLocEnd() const LLVM_READONLY { return SubExpr->getLocEnd();}
2978
2979  // Implement isa/cast/dyncast/etc.
2980  static bool classof(const Stmt *T) {
2981    return T->getStmtClass() == ExprWithCleanupsClass;
2982  }
2983
2984  // Iterators
2985  child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
2986};
2987
2988/// \brief Describes an explicit type conversion that uses functional
2989/// notion but could not be resolved because one or more arguments are
2990/// type-dependent.
2991///
2992/// The explicit type conversions expressed by
2993/// CXXUnresolvedConstructExpr have the form <tt>T(a1, a2, ..., aN)</tt>,
2994/// where \c T is some type and \c a1, \c a2, ..., \c aN are values, and
2995/// either \c T is a dependent type or one or more of the <tt>a</tt>'s is
2996/// type-dependent. For example, this would occur in a template such
2997/// as:
2998///
2999/// \code
3000///   template<typename T, typename A1>
3001///   inline T make_a(const A1& a1) {
3002///     return T(a1);
3003///   }
3004/// \endcode
3005///
3006/// When the returned expression is instantiated, it may resolve to a
3007/// constructor call, conversion function call, or some kind of type
3008/// conversion.
3009class CXXUnresolvedConstructExpr : public Expr {
3010  /// \brief The type being constructed.
3011  TypeSourceInfo *Type;
3012
3013  /// \brief The location of the left parentheses ('(').
3014  SourceLocation LParenLoc;
3015
3016  /// \brief The location of the right parentheses (')').
3017  SourceLocation RParenLoc;
3018
3019  /// \brief The number of arguments used to construct the type.
3020  unsigned NumArgs;
3021
3022  CXXUnresolvedConstructExpr(TypeSourceInfo *Type,
3023                             SourceLocation LParenLoc,
3024                             ArrayRef<Expr*> Args,
3025                             SourceLocation RParenLoc);
3026
3027  CXXUnresolvedConstructExpr(EmptyShell Empty, unsigned NumArgs)
3028    : Expr(CXXUnresolvedConstructExprClass, Empty), Type(), NumArgs(NumArgs) { }
3029
3030  friend class ASTStmtReader;
3031
3032public:
3033  static CXXUnresolvedConstructExpr *Create(const ASTContext &C,
3034                                            TypeSourceInfo *Type,
3035                                            SourceLocation LParenLoc,
3036                                            ArrayRef<Expr*> Args,
3037                                            SourceLocation RParenLoc);
3038
3039  static CXXUnresolvedConstructExpr *CreateEmpty(const ASTContext &C,
3040                                                 unsigned NumArgs);
3041
3042  /// \brief Retrieve the type that is being constructed, as specified
3043  /// in the source code.
3044  QualType getTypeAsWritten() const { return Type->getType(); }
3045
3046  /// \brief Retrieve the type source information for the type being
3047  /// constructed.
3048  TypeSourceInfo *getTypeSourceInfo() const { return Type; }
3049
3050  /// \brief Retrieve the location of the left parentheses ('(') that
3051  /// precedes the argument list.
3052  SourceLocation getLParenLoc() const { return LParenLoc; }
3053  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
3054
3055  /// \brief Retrieve the location of the right parentheses (')') that
3056  /// follows the argument list.
3057  SourceLocation getRParenLoc() const { return RParenLoc; }
3058  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3059
3060  /// \brief Retrieve the number of arguments.
3061  unsigned arg_size() const { return NumArgs; }
3062
3063  typedef Expr** arg_iterator;
3064  arg_iterator arg_begin() { return reinterpret_cast<Expr**>(this + 1); }
3065  arg_iterator arg_end() { return arg_begin() + NumArgs; }
3066
3067  typedef const Expr* const * const_arg_iterator;
3068  const_arg_iterator arg_begin() const {
3069    return reinterpret_cast<const Expr* const *>(this + 1);
3070  }
3071  const_arg_iterator arg_end() const {
3072    return arg_begin() + NumArgs;
3073  }
3074
3075  Expr *getArg(unsigned I) {
3076    assert(I < NumArgs && "Argument index out-of-range");
3077    return *(arg_begin() + I);
3078  }
3079
3080  const Expr *getArg(unsigned I) const {
3081    assert(I < NumArgs && "Argument index out-of-range");
3082    return *(arg_begin() + I);
3083  }
3084
3085  void setArg(unsigned I, Expr *E) {
3086    assert(I < NumArgs && "Argument index out-of-range");
3087    *(arg_begin() + I) = E;
3088  }
3089
3090  SourceLocation getLocStart() const LLVM_READONLY;
3091  SourceLocation getLocEnd() const LLVM_READONLY {
3092    assert(RParenLoc.isValid() || NumArgs == 1);
3093    return RParenLoc.isValid() ? RParenLoc : getArg(0)->getLocEnd();
3094  }
3095
3096  static bool classof(const Stmt *T) {
3097    return T->getStmtClass() == CXXUnresolvedConstructExprClass;
3098  }
3099
3100  // Iterators
3101  child_range children() {
3102    Stmt **begin = reinterpret_cast<Stmt**>(this+1);
3103    return child_range(begin, begin + NumArgs);
3104  }
3105};
3106
3107/// \brief Represents a C++ member access expression where the actual
3108/// member referenced could not be resolved because the base
3109/// expression or the member name was dependent.
3110///
3111/// Like UnresolvedMemberExprs, these can be either implicit or
3112/// explicit accesses.  It is only possible to get one of these with
3113/// an implicit access if a qualifier is provided.
3114class CXXDependentScopeMemberExpr : public Expr {
3115  /// \brief The expression for the base pointer or class reference,
3116  /// e.g., the \c x in x.f.  Can be null in implicit accesses.
3117  Stmt *Base;
3118
3119  /// \brief The type of the base expression.  Never null, even for
3120  /// implicit accesses.
3121  QualType BaseType;
3122
3123  /// \brief Whether this member expression used the '->' operator or
3124  /// the '.' operator.
3125  bool IsArrow : 1;
3126
3127  /// \brief Whether this member expression has info for explicit template
3128  /// keyword and arguments.
3129  bool HasTemplateKWAndArgsInfo : 1;
3130
3131  /// \brief The location of the '->' or '.' operator.
3132  SourceLocation OperatorLoc;
3133
3134  /// \brief The nested-name-specifier that precedes the member name, if any.
3135  NestedNameSpecifierLoc QualifierLoc;
3136
3137  /// \brief In a qualified member access expression such as t->Base::f, this
3138  /// member stores the resolves of name lookup in the context of the member
3139  /// access expression, to be used at instantiation time.
3140  ///
3141  /// FIXME: This member, along with the QualifierLoc, could
3142  /// be stuck into a structure that is optionally allocated at the end of
3143  /// the CXXDependentScopeMemberExpr, to save space in the common case.
3144  NamedDecl *FirstQualifierFoundInScope;
3145
3146  /// \brief The member to which this member expression refers, which
3147  /// can be name, overloaded operator, or destructor.
3148  ///
3149  /// FIXME: could also be a template-id
3150  DeclarationNameInfo MemberNameInfo;
3151
3152  /// \brief Return the optional template keyword and arguments info.
3153  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
3154    if (!HasTemplateKWAndArgsInfo) return 0;
3155    return reinterpret_cast<ASTTemplateKWAndArgsInfo*>(this + 1);
3156  }
3157  /// \brief Return the optional template keyword and arguments info.
3158  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
3159    return const_cast<CXXDependentScopeMemberExpr*>(this)
3160      ->getTemplateKWAndArgsInfo();
3161  }
3162
3163  CXXDependentScopeMemberExpr(const ASTContext &C, Expr *Base,
3164                              QualType BaseType, bool IsArrow,
3165                              SourceLocation OperatorLoc,
3166                              NestedNameSpecifierLoc QualifierLoc,
3167                              SourceLocation TemplateKWLoc,
3168                              NamedDecl *FirstQualifierFoundInScope,
3169                              DeclarationNameInfo MemberNameInfo,
3170                              const TemplateArgumentListInfo *TemplateArgs);
3171
3172public:
3173  CXXDependentScopeMemberExpr(const ASTContext &C, Expr *Base,
3174                              QualType BaseType, bool IsArrow,
3175                              SourceLocation OperatorLoc,
3176                              NestedNameSpecifierLoc QualifierLoc,
3177                              NamedDecl *FirstQualifierFoundInScope,
3178                              DeclarationNameInfo MemberNameInfo);
3179
3180  static CXXDependentScopeMemberExpr *
3181  Create(const ASTContext &C, Expr *Base, QualType BaseType, bool IsArrow,
3182         SourceLocation OperatorLoc, NestedNameSpecifierLoc QualifierLoc,
3183         SourceLocation TemplateKWLoc, NamedDecl *FirstQualifierFoundInScope,
3184         DeclarationNameInfo MemberNameInfo,
3185         const TemplateArgumentListInfo *TemplateArgs);
3186
3187  static CXXDependentScopeMemberExpr *
3188  CreateEmpty(const ASTContext &C, bool HasTemplateKWAndArgsInfo,
3189              unsigned NumTemplateArgs);
3190
3191  /// \brief True if this is an implicit access, i.e. one in which the
3192  /// member being accessed was not written in the source.  The source
3193  /// location of the operator is invalid in this case.
3194  bool isImplicitAccess() const;
3195
3196  /// \brief Retrieve the base object of this member expressions,
3197  /// e.g., the \c x in \c x.m.
3198  Expr *getBase() const {
3199    assert(!isImplicitAccess());
3200    return cast<Expr>(Base);
3201  }
3202
3203  QualType getBaseType() const { return BaseType; }
3204
3205  /// \brief Determine whether this member expression used the '->'
3206  /// operator; otherwise, it used the '.' operator.
3207  bool isArrow() const { return IsArrow; }
3208
3209  /// \brief Retrieve the location of the '->' or '.' operator.
3210  SourceLocation getOperatorLoc() const { return OperatorLoc; }
3211
3212  /// \brief Retrieve the nested-name-specifier that qualifies the member
3213  /// name.
3214  NestedNameSpecifier *getQualifier() const {
3215    return QualifierLoc.getNestedNameSpecifier();
3216  }
3217
3218  /// \brief Retrieve the nested-name-specifier that qualifies the member
3219  /// name, with source location information.
3220  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
3221
3222
3223  /// \brief Retrieve the first part of the nested-name-specifier that was
3224  /// found in the scope of the member access expression when the member access
3225  /// was initially parsed.
3226  ///
3227  /// This function only returns a useful result when member access expression
3228  /// uses a qualified member name, e.g., "x.Base::f". Here, the declaration
3229  /// returned by this function describes what was found by unqualified name
3230  /// lookup for the identifier "Base" within the scope of the member access
3231  /// expression itself. At template instantiation time, this information is
3232  /// combined with the results of name lookup into the type of the object
3233  /// expression itself (the class type of x).
3234  NamedDecl *getFirstQualifierFoundInScope() const {
3235    return FirstQualifierFoundInScope;
3236  }
3237
3238  /// \brief Retrieve the name of the member that this expression
3239  /// refers to.
3240  const DeclarationNameInfo &getMemberNameInfo() const {
3241    return MemberNameInfo;
3242  }
3243
3244  /// \brief Retrieve the name of the member that this expression
3245  /// refers to.
3246  DeclarationName getMember() const { return MemberNameInfo.getName(); }
3247
3248  // \brief Retrieve the location of the name of the member that this
3249  // expression refers to.
3250  SourceLocation getMemberLoc() const { return MemberNameInfo.getLoc(); }
3251
3252  /// \brief Retrieve the location of the template keyword preceding the
3253  /// member name, if any.
3254  SourceLocation getTemplateKeywordLoc() const {
3255    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
3256    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
3257  }
3258
3259  /// \brief Retrieve the location of the left angle bracket starting the
3260  /// explicit template argument list following the member name, if any.
3261  SourceLocation getLAngleLoc() const {
3262    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
3263    return getTemplateKWAndArgsInfo()->LAngleLoc;
3264  }
3265
3266  /// \brief Retrieve the location of the right angle bracket ending the
3267  /// explicit template argument list following the member name, if any.
3268  SourceLocation getRAngleLoc() const {
3269    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
3270    return getTemplateKWAndArgsInfo()->RAngleLoc;
3271  }
3272
3273  /// Determines whether the member name was preceded by the template keyword.
3274  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
3275
3276  /// \brief Determines whether this member expression actually had a C++
3277  /// template argument list explicitly specified, e.g., x.f<int>.
3278  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
3279
3280  /// \brief Retrieve the explicit template argument list that followed the
3281  /// member template name, if any.
3282  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
3283    assert(hasExplicitTemplateArgs());
3284    return *reinterpret_cast<ASTTemplateArgumentListInfo *>(this + 1);
3285  }
3286
3287  /// \brief Retrieve the explicit template argument list that followed the
3288  /// member template name, if any.
3289  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
3290    return const_cast<CXXDependentScopeMemberExpr *>(this)
3291             ->getExplicitTemplateArgs();
3292  }
3293
3294  /// \brief Retrieves the optional explicit template arguments.
3295  ///
3296  /// This points to the same data as getExplicitTemplateArgs(), but
3297  /// returns null if there are no explicit template arguments.
3298  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() const {
3299    if (!hasExplicitTemplateArgs()) return 0;
3300    return &getExplicitTemplateArgs();
3301  }
3302
3303  /// \brief Copies the template arguments (if present) into the given
3304  /// structure.
3305  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
3306    getExplicitTemplateArgs().copyInto(List);
3307  }
3308
3309  /// \brief Initializes the template arguments using the given structure.
3310  void initializeTemplateArgumentsFrom(const TemplateArgumentListInfo &List) {
3311    getExplicitTemplateArgs().initializeFrom(List);
3312  }
3313
3314  /// \brief Retrieve the template arguments provided as part of this
3315  /// template-id.
3316  const TemplateArgumentLoc *getTemplateArgs() const {
3317    return getExplicitTemplateArgs().getTemplateArgs();
3318  }
3319
3320  /// \brief Retrieve the number of template arguments provided as part of this
3321  /// template-id.
3322  unsigned getNumTemplateArgs() const {
3323    return getExplicitTemplateArgs().NumTemplateArgs;
3324  }
3325
3326  SourceLocation getLocStart() const LLVM_READONLY {
3327    if (!isImplicitAccess())
3328      return Base->getLocStart();
3329    if (getQualifier())
3330      return getQualifierLoc().getBeginLoc();
3331    return MemberNameInfo.getBeginLoc();
3332
3333  }
3334  SourceLocation getLocEnd() const LLVM_READONLY {
3335    if (hasExplicitTemplateArgs())
3336      return getRAngleLoc();
3337    return MemberNameInfo.getEndLoc();
3338  }
3339
3340  static bool classof(const Stmt *T) {
3341    return T->getStmtClass() == CXXDependentScopeMemberExprClass;
3342  }
3343
3344  // Iterators
3345  child_range children() {
3346    if (isImplicitAccess()) return child_range();
3347    return child_range(&Base, &Base + 1);
3348  }
3349
3350  friend class ASTStmtReader;
3351  friend class ASTStmtWriter;
3352};
3353
3354/// \brief Represents a C++ member access expression for which lookup
3355/// produced a set of overloaded functions.
3356///
3357/// The member access may be explicit or implicit:
3358/// \code
3359///    struct A {
3360///      int a, b;
3361///      int explicitAccess() { return this->a + this->A::b; }
3362///      int implicitAccess() { return a + A::b; }
3363///    };
3364/// \endcode
3365///
3366/// In the final AST, an explicit access always becomes a MemberExpr.
3367/// An implicit access may become either a MemberExpr or a
3368/// DeclRefExpr, depending on whether the member is static.
3369class UnresolvedMemberExpr : public OverloadExpr {
3370  /// \brief Whether this member expression used the '->' operator or
3371  /// the '.' operator.
3372  bool IsArrow : 1;
3373
3374  /// \brief Whether the lookup results contain an unresolved using
3375  /// declaration.
3376  bool HasUnresolvedUsing : 1;
3377
3378  /// \brief The expression for the base pointer or class reference,
3379  /// e.g., the \c x in x.f.
3380  ///
3381  /// This can be null if this is an 'unbased' member expression.
3382  Stmt *Base;
3383
3384  /// \brief The type of the base expression; never null.
3385  QualType BaseType;
3386
3387  /// \brief The location of the '->' or '.' operator.
3388  SourceLocation OperatorLoc;
3389
3390  UnresolvedMemberExpr(const ASTContext &C, bool HasUnresolvedUsing,
3391                       Expr *Base, QualType BaseType, bool IsArrow,
3392                       SourceLocation OperatorLoc,
3393                       NestedNameSpecifierLoc QualifierLoc,
3394                       SourceLocation TemplateKWLoc,
3395                       const DeclarationNameInfo &MemberNameInfo,
3396                       const TemplateArgumentListInfo *TemplateArgs,
3397                       UnresolvedSetIterator Begin, UnresolvedSetIterator End);
3398
3399  UnresolvedMemberExpr(EmptyShell Empty)
3400    : OverloadExpr(UnresolvedMemberExprClass, Empty), IsArrow(false),
3401      HasUnresolvedUsing(false), Base(0) { }
3402
3403  friend class ASTStmtReader;
3404
3405public:
3406  static UnresolvedMemberExpr *
3407  Create(const ASTContext &C, bool HasUnresolvedUsing,
3408         Expr *Base, QualType BaseType, bool IsArrow,
3409         SourceLocation OperatorLoc,
3410         NestedNameSpecifierLoc QualifierLoc,
3411         SourceLocation TemplateKWLoc,
3412         const DeclarationNameInfo &MemberNameInfo,
3413         const TemplateArgumentListInfo *TemplateArgs,
3414         UnresolvedSetIterator Begin, UnresolvedSetIterator End);
3415
3416  static UnresolvedMemberExpr *
3417  CreateEmpty(const ASTContext &C, bool HasTemplateKWAndArgsInfo,
3418              unsigned NumTemplateArgs);
3419
3420  /// \brief True if this is an implicit access, i.e., one in which the
3421  /// member being accessed was not written in the source.
3422  ///
3423  /// The source location of the operator is invalid in this case.
3424  bool isImplicitAccess() const;
3425
3426  /// \brief Retrieve the base object of this member expressions,
3427  /// e.g., the \c x in \c x.m.
3428  Expr *getBase() {
3429    assert(!isImplicitAccess());
3430    return cast<Expr>(Base);
3431  }
3432  const Expr *getBase() const {
3433    assert(!isImplicitAccess());
3434    return cast<Expr>(Base);
3435  }
3436
3437  QualType getBaseType() const { return BaseType; }
3438
3439  /// \brief Determine whether the lookup results contain an unresolved using
3440  /// declaration.
3441  bool hasUnresolvedUsing() const { return HasUnresolvedUsing; }
3442
3443  /// \brief Determine whether this member expression used the '->'
3444  /// operator; otherwise, it used the '.' operator.
3445  bool isArrow() const { return IsArrow; }
3446
3447  /// \brief Retrieve the location of the '->' or '.' operator.
3448  SourceLocation getOperatorLoc() const { return OperatorLoc; }
3449
3450  /// \brief Retrieve the naming class of this lookup.
3451  CXXRecordDecl *getNamingClass() const;
3452
3453  /// \brief Retrieve the full name info for the member that this expression
3454  /// refers to.
3455  const DeclarationNameInfo &getMemberNameInfo() const { return getNameInfo(); }
3456
3457  /// \brief Retrieve the name of the member that this expression
3458  /// refers to.
3459  DeclarationName getMemberName() const { return getName(); }
3460
3461  // \brief Retrieve the location of the name of the member that this
3462  // expression refers to.
3463  SourceLocation getMemberLoc() const { return getNameLoc(); }
3464
3465  // \brief Return the preferred location (the member name) for the arrow when
3466  // diagnosing a problem with this expression.
3467  SourceLocation getExprLoc() const LLVM_READONLY { return getMemberLoc(); }
3468
3469  SourceLocation getLocStart() const LLVM_READONLY {
3470    if (!isImplicitAccess())
3471      return Base->getLocStart();
3472    if (NestedNameSpecifierLoc l = getQualifierLoc())
3473      return l.getBeginLoc();
3474    return getMemberNameInfo().getLocStart();
3475  }
3476  SourceLocation getLocEnd() const LLVM_READONLY {
3477    if (hasExplicitTemplateArgs())
3478      return getRAngleLoc();
3479    return getMemberNameInfo().getLocEnd();
3480  }
3481
3482  static bool classof(const Stmt *T) {
3483    return T->getStmtClass() == UnresolvedMemberExprClass;
3484  }
3485
3486  // Iterators
3487  child_range children() {
3488    if (isImplicitAccess()) return child_range();
3489    return child_range(&Base, &Base + 1);
3490  }
3491};
3492
3493/// \brief Represents a C++11 noexcept expression (C++ [expr.unary.noexcept]).
3494///
3495/// The noexcept expression tests whether a given expression might throw. Its
3496/// result is a boolean constant.
3497class CXXNoexceptExpr : public Expr {
3498  bool Value : 1;
3499  Stmt *Operand;
3500  SourceRange Range;
3501
3502  friend class ASTStmtReader;
3503
3504public:
3505  CXXNoexceptExpr(QualType Ty, Expr *Operand, CanThrowResult Val,
3506                  SourceLocation Keyword, SourceLocation RParen)
3507    : Expr(CXXNoexceptExprClass, Ty, VK_RValue, OK_Ordinary,
3508           /*TypeDependent*/false,
3509           /*ValueDependent*/Val == CT_Dependent,
3510           Val == CT_Dependent || Operand->isInstantiationDependent(),
3511           Operand->containsUnexpandedParameterPack()),
3512      Value(Val == CT_Cannot), Operand(Operand), Range(Keyword, RParen)
3513  { }
3514
3515  CXXNoexceptExpr(EmptyShell Empty)
3516    : Expr(CXXNoexceptExprClass, Empty)
3517  { }
3518
3519  Expr *getOperand() const { return static_cast<Expr*>(Operand); }
3520
3521  SourceLocation getLocStart() const LLVM_READONLY { return Range.getBegin(); }
3522  SourceLocation getLocEnd() const LLVM_READONLY { return Range.getEnd(); }
3523  SourceRange getSourceRange() const LLVM_READONLY { return Range; }
3524
3525  bool getValue() const { return Value; }
3526
3527  static bool classof(const Stmt *T) {
3528    return T->getStmtClass() == CXXNoexceptExprClass;
3529  }
3530
3531  // Iterators
3532  child_range children() { return child_range(&Operand, &Operand + 1); }
3533};
3534
3535/// \brief Represents a C++11 pack expansion that produces a sequence of
3536/// expressions.
3537///
3538/// A pack expansion expression contains a pattern (which itself is an
3539/// expression) followed by an ellipsis. For example:
3540///
3541/// \code
3542/// template<typename F, typename ...Types>
3543/// void forward(F f, Types &&...args) {
3544///   f(static_cast<Types&&>(args)...);
3545/// }
3546/// \endcode
3547///
3548/// Here, the argument to the function object \c f is a pack expansion whose
3549/// pattern is \c static_cast<Types&&>(args). When the \c forward function
3550/// template is instantiated, the pack expansion will instantiate to zero or
3551/// or more function arguments to the function object \c f.
3552class PackExpansionExpr : public Expr {
3553  SourceLocation EllipsisLoc;
3554
3555  /// \brief The number of expansions that will be produced by this pack
3556  /// expansion expression, if known.
3557  ///
3558  /// When zero, the number of expansions is not known. Otherwise, this value
3559  /// is the number of expansions + 1.
3560  unsigned NumExpansions;
3561
3562  Stmt *Pattern;
3563
3564  friend class ASTStmtReader;
3565  friend class ASTStmtWriter;
3566
3567public:
3568  PackExpansionExpr(QualType T, Expr *Pattern, SourceLocation EllipsisLoc,
3569                    Optional<unsigned> NumExpansions)
3570    : Expr(PackExpansionExprClass, T, Pattern->getValueKind(),
3571           Pattern->getObjectKind(), /*TypeDependent=*/true,
3572           /*ValueDependent=*/true, /*InstantiationDependent=*/true,
3573           /*ContainsUnexpandedParameterPack=*/false),
3574      EllipsisLoc(EllipsisLoc),
3575      NumExpansions(NumExpansions? *NumExpansions + 1 : 0),
3576      Pattern(Pattern) { }
3577
3578  PackExpansionExpr(EmptyShell Empty) : Expr(PackExpansionExprClass, Empty) { }
3579
3580  /// \brief Retrieve the pattern of the pack expansion.
3581  Expr *getPattern() { return reinterpret_cast<Expr *>(Pattern); }
3582
3583  /// \brief Retrieve the pattern of the pack expansion.
3584  const Expr *getPattern() const { return reinterpret_cast<Expr *>(Pattern); }
3585
3586  /// \brief Retrieve the location of the ellipsis that describes this pack
3587  /// expansion.
3588  SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
3589
3590  /// \brief Determine the number of expansions that will be produced when
3591  /// this pack expansion is instantiated, if already known.
3592  Optional<unsigned> getNumExpansions() const {
3593    if (NumExpansions)
3594      return NumExpansions - 1;
3595
3596    return None;
3597  }
3598
3599  SourceLocation getLocStart() const LLVM_READONLY {
3600    return Pattern->getLocStart();
3601  }
3602  SourceLocation getLocEnd() const LLVM_READONLY { return EllipsisLoc; }
3603
3604  static bool classof(const Stmt *T) {
3605    return T->getStmtClass() == PackExpansionExprClass;
3606  }
3607
3608  // Iterators
3609  child_range children() {
3610    return child_range(&Pattern, &Pattern + 1);
3611  }
3612};
3613
3614inline ASTTemplateKWAndArgsInfo *OverloadExpr::getTemplateKWAndArgsInfo() {
3615  if (!HasTemplateKWAndArgsInfo) return 0;
3616  if (isa<UnresolvedLookupExpr>(this))
3617    return reinterpret_cast<ASTTemplateKWAndArgsInfo*>
3618      (cast<UnresolvedLookupExpr>(this) + 1);
3619  else
3620    return reinterpret_cast<ASTTemplateKWAndArgsInfo*>
3621      (cast<UnresolvedMemberExpr>(this) + 1);
3622}
3623
3624/// \brief Represents an expression that computes the length of a parameter
3625/// pack.
3626///
3627/// \code
3628/// template<typename ...Types>
3629/// struct count {
3630///   static const unsigned value = sizeof...(Types);
3631/// };
3632/// \endcode
3633class SizeOfPackExpr : public Expr {
3634  /// \brief The location of the \c sizeof keyword.
3635  SourceLocation OperatorLoc;
3636
3637  /// \brief The location of the name of the parameter pack.
3638  SourceLocation PackLoc;
3639
3640  /// \brief The location of the closing parenthesis.
3641  SourceLocation RParenLoc;
3642
3643  /// \brief The length of the parameter pack, if known.
3644  ///
3645  /// When this expression is value-dependent, the length of the parameter pack
3646  /// is unknown. When this expression is not value-dependent, the length is
3647  /// known.
3648  unsigned Length;
3649
3650  /// \brief The parameter pack itself.
3651  NamedDecl *Pack;
3652
3653  friend class ASTStmtReader;
3654  friend class ASTStmtWriter;
3655
3656public:
3657  /// \brief Create a value-dependent expression that computes the length of
3658  /// the given parameter pack.
3659  SizeOfPackExpr(QualType SizeType, SourceLocation OperatorLoc, NamedDecl *Pack,
3660                 SourceLocation PackLoc, SourceLocation RParenLoc)
3661    : Expr(SizeOfPackExprClass, SizeType, VK_RValue, OK_Ordinary,
3662           /*TypeDependent=*/false, /*ValueDependent=*/true,
3663           /*InstantiationDependent=*/true,
3664           /*ContainsUnexpandedParameterPack=*/false),
3665      OperatorLoc(OperatorLoc), PackLoc(PackLoc), RParenLoc(RParenLoc),
3666      Length(0), Pack(Pack) { }
3667
3668  /// \brief Create an expression that computes the length of
3669  /// the given parameter pack, which is already known.
3670  SizeOfPackExpr(QualType SizeType, SourceLocation OperatorLoc, NamedDecl *Pack,
3671                 SourceLocation PackLoc, SourceLocation RParenLoc,
3672                 unsigned Length)
3673  : Expr(SizeOfPackExprClass, SizeType, VK_RValue, OK_Ordinary,
3674         /*TypeDependent=*/false, /*ValueDependent=*/false,
3675         /*InstantiationDependent=*/false,
3676         /*ContainsUnexpandedParameterPack=*/false),
3677    OperatorLoc(OperatorLoc), PackLoc(PackLoc), RParenLoc(RParenLoc),
3678    Length(Length), Pack(Pack) { }
3679
3680  /// \brief Create an empty expression.
3681  SizeOfPackExpr(EmptyShell Empty) : Expr(SizeOfPackExprClass, Empty) { }
3682
3683  /// \brief Determine the location of the 'sizeof' keyword.
3684  SourceLocation getOperatorLoc() const { return OperatorLoc; }
3685
3686  /// \brief Determine the location of the parameter pack.
3687  SourceLocation getPackLoc() const { return PackLoc; }
3688
3689  /// \brief Determine the location of the right parenthesis.
3690  SourceLocation getRParenLoc() const { return RParenLoc; }
3691
3692  /// \brief Retrieve the parameter pack.
3693  NamedDecl *getPack() const { return Pack; }
3694
3695  /// \brief Retrieve the length of the parameter pack.
3696  ///
3697  /// This routine may only be invoked when the expression is not
3698  /// value-dependent.
3699  unsigned getPackLength() const {
3700    assert(!isValueDependent() &&
3701           "Cannot get the length of a value-dependent pack size expression");
3702    return Length;
3703  }
3704
3705  SourceLocation getLocStart() const LLVM_READONLY { return OperatorLoc; }
3706  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
3707
3708  static bool classof(const Stmt *T) {
3709    return T->getStmtClass() == SizeOfPackExprClass;
3710  }
3711
3712  // Iterators
3713  child_range children() { return child_range(); }
3714};
3715
3716/// \brief Represents a reference to a non-type template parameter
3717/// that has been substituted with a template argument.
3718class SubstNonTypeTemplateParmExpr : public Expr {
3719  /// \brief The replaced parameter.
3720  NonTypeTemplateParmDecl *Param;
3721
3722  /// \brief The replacement expression.
3723  Stmt *Replacement;
3724
3725  /// \brief The location of the non-type template parameter reference.
3726  SourceLocation NameLoc;
3727
3728  friend class ASTReader;
3729  friend class ASTStmtReader;
3730  explicit SubstNonTypeTemplateParmExpr(EmptyShell Empty)
3731    : Expr(SubstNonTypeTemplateParmExprClass, Empty) { }
3732
3733public:
3734  SubstNonTypeTemplateParmExpr(QualType type,
3735                               ExprValueKind valueKind,
3736                               SourceLocation loc,
3737                               NonTypeTemplateParmDecl *param,
3738                               Expr *replacement)
3739    : Expr(SubstNonTypeTemplateParmExprClass, type, valueKind, OK_Ordinary,
3740           replacement->isTypeDependent(), replacement->isValueDependent(),
3741           replacement->isInstantiationDependent(),
3742           replacement->containsUnexpandedParameterPack()),
3743      Param(param), Replacement(replacement), NameLoc(loc) {}
3744
3745  SourceLocation getNameLoc() const { return NameLoc; }
3746  SourceLocation getLocStart() const LLVM_READONLY { return NameLoc; }
3747  SourceLocation getLocEnd() const LLVM_READONLY { return NameLoc; }
3748
3749  Expr *getReplacement() const { return cast<Expr>(Replacement); }
3750
3751  NonTypeTemplateParmDecl *getParameter() const { return Param; }
3752
3753  static bool classof(const Stmt *s) {
3754    return s->getStmtClass() == SubstNonTypeTemplateParmExprClass;
3755  }
3756
3757  // Iterators
3758  child_range children() { return child_range(&Replacement, &Replacement+1); }
3759};
3760
3761/// \brief Represents a reference to a non-type template parameter pack that
3762/// has been substituted with a non-template argument pack.
3763///
3764/// When a pack expansion in the source code contains multiple parameter packs
3765/// and those parameter packs correspond to different levels of template
3766/// parameter lists, this node is used to represent a non-type template
3767/// parameter pack from an outer level, which has already had its argument pack
3768/// substituted but that still lives within a pack expansion that itself
3769/// could not be instantiated. When actually performing a substitution into
3770/// that pack expansion (e.g., when all template parameters have corresponding
3771/// arguments), this type will be replaced with the appropriate underlying
3772/// expression at the current pack substitution index.
3773class SubstNonTypeTemplateParmPackExpr : public Expr {
3774  /// \brief The non-type template parameter pack itself.
3775  NonTypeTemplateParmDecl *Param;
3776
3777  /// \brief A pointer to the set of template arguments that this
3778  /// parameter pack is instantiated with.
3779  const TemplateArgument *Arguments;
3780
3781  /// \brief The number of template arguments in \c Arguments.
3782  unsigned NumArguments;
3783
3784  /// \brief The location of the non-type template parameter pack reference.
3785  SourceLocation NameLoc;
3786
3787  friend class ASTReader;
3788  friend class ASTStmtReader;
3789  explicit SubstNonTypeTemplateParmPackExpr(EmptyShell Empty)
3790    : Expr(SubstNonTypeTemplateParmPackExprClass, Empty) { }
3791
3792public:
3793  SubstNonTypeTemplateParmPackExpr(QualType T,
3794                                   NonTypeTemplateParmDecl *Param,
3795                                   SourceLocation NameLoc,
3796                                   const TemplateArgument &ArgPack);
3797
3798  /// \brief Retrieve the non-type template parameter pack being substituted.
3799  NonTypeTemplateParmDecl *getParameterPack() const { return Param; }
3800
3801  /// \brief Retrieve the location of the parameter pack name.
3802  SourceLocation getParameterPackLocation() const { return NameLoc; }
3803
3804  /// \brief Retrieve the template argument pack containing the substituted
3805  /// template arguments.
3806  TemplateArgument getArgumentPack() const;
3807
3808  SourceLocation getLocStart() const LLVM_READONLY { return NameLoc; }
3809  SourceLocation getLocEnd() const LLVM_READONLY { return NameLoc; }
3810
3811  static bool classof(const Stmt *T) {
3812    return T->getStmtClass() == SubstNonTypeTemplateParmPackExprClass;
3813  }
3814
3815  // Iterators
3816  child_range children() { return child_range(); }
3817};
3818
3819/// \brief Represents a reference to a function parameter pack that has been
3820/// substituted but not yet expanded.
3821///
3822/// When a pack expansion contains multiple parameter packs at different levels,
3823/// this node is used to represent a function parameter pack at an outer level
3824/// which we have already substituted to refer to expanded parameters, but where
3825/// the containing pack expansion cannot yet be expanded.
3826///
3827/// \code
3828/// template<typename...Ts> struct S {
3829///   template<typename...Us> auto f(Ts ...ts) -> decltype(g(Us(ts)...));
3830/// };
3831/// template struct S<int, int>;
3832/// \endcode
3833class FunctionParmPackExpr : public Expr {
3834  /// \brief The function parameter pack which was referenced.
3835  ParmVarDecl *ParamPack;
3836
3837  /// \brief The location of the function parameter pack reference.
3838  SourceLocation NameLoc;
3839
3840  /// \brief The number of expansions of this pack.
3841  unsigned NumParameters;
3842
3843  FunctionParmPackExpr(QualType T, ParmVarDecl *ParamPack,
3844                       SourceLocation NameLoc, unsigned NumParams,
3845                       Decl * const *Params);
3846
3847  friend class ASTReader;
3848  friend class ASTStmtReader;
3849
3850public:
3851  static FunctionParmPackExpr *Create(const ASTContext &Context, QualType T,
3852                                      ParmVarDecl *ParamPack,
3853                                      SourceLocation NameLoc,
3854                                      ArrayRef<Decl *> Params);
3855  static FunctionParmPackExpr *CreateEmpty(const ASTContext &Context,
3856                                           unsigned NumParams);
3857
3858  /// \brief Get the parameter pack which this expression refers to.
3859  ParmVarDecl *getParameterPack() const { return ParamPack; }
3860
3861  /// \brief Get the location of the parameter pack.
3862  SourceLocation getParameterPackLocation() const { return NameLoc; }
3863
3864  /// \brief Iterators over the parameters which the parameter pack expanded
3865  /// into.
3866  typedef ParmVarDecl * const *iterator;
3867  iterator begin() const { return reinterpret_cast<iterator>(this+1); }
3868  iterator end() const { return begin() + NumParameters; }
3869
3870  /// \brief Get the number of parameters in this parameter pack.
3871  unsigned getNumExpansions() const { return NumParameters; }
3872
3873  /// \brief Get an expansion of the parameter pack by index.
3874  ParmVarDecl *getExpansion(unsigned I) const { return begin()[I]; }
3875
3876  SourceLocation getLocStart() const LLVM_READONLY { return NameLoc; }
3877  SourceLocation getLocEnd() const LLVM_READONLY { return NameLoc; }
3878
3879  static bool classof(const Stmt *T) {
3880    return T->getStmtClass() == FunctionParmPackExprClass;
3881  }
3882
3883  child_range children() { return child_range(); }
3884};
3885
3886/// \brief Represents a prvalue temporary that is written into memory so that
3887/// a reference can bind to it.
3888///
3889/// Prvalue expressions are materialized when they need to have an address
3890/// in memory for a reference to bind to. This happens when binding a
3891/// reference to the result of a conversion, e.g.,
3892///
3893/// \code
3894/// const int &r = 1.0;
3895/// \endcode
3896///
3897/// Here, 1.0 is implicitly converted to an \c int. That resulting \c int is
3898/// then materialized via a \c MaterializeTemporaryExpr, and the reference
3899/// binds to the temporary. \c MaterializeTemporaryExprs are always glvalues
3900/// (either an lvalue or an xvalue, depending on the kind of reference binding
3901/// to it), maintaining the invariant that references always bind to glvalues.
3902///
3903/// Reference binding and copy-elision can both extend the lifetime of a
3904/// temporary. When either happens, the expression will also track the
3905/// declaration which is responsible for the lifetime extension.
3906class MaterializeTemporaryExpr : public Expr {
3907public:
3908  /// \brief The temporary-generating expression whose value will be
3909  /// materialized.
3910  Stmt *Temporary;
3911
3912  /// \brief The declaration which lifetime-extended this reference, if any.
3913  /// Either a VarDecl, or (for a ctor-initializer) a FieldDecl.
3914  const ValueDecl *ExtendingDecl;
3915
3916  friend class ASTStmtReader;
3917  friend class ASTStmtWriter;
3918
3919public:
3920  MaterializeTemporaryExpr(QualType T, Expr *Temporary,
3921                           bool BoundToLvalueReference,
3922                           const ValueDecl *ExtendedBy)
3923    : Expr(MaterializeTemporaryExprClass, T,
3924           BoundToLvalueReference? VK_LValue : VK_XValue, OK_Ordinary,
3925           Temporary->isTypeDependent(), Temporary->isValueDependent(),
3926           Temporary->isInstantiationDependent(),
3927           Temporary->containsUnexpandedParameterPack()),
3928      Temporary(Temporary), ExtendingDecl(ExtendedBy) {
3929  }
3930
3931  MaterializeTemporaryExpr(EmptyShell Empty)
3932    : Expr(MaterializeTemporaryExprClass, Empty) { }
3933
3934  /// \brief Retrieve the temporary-generating subexpression whose value will
3935  /// be materialized into a glvalue.
3936  Expr *GetTemporaryExpr() const { return static_cast<Expr *>(Temporary); }
3937
3938  /// \brief Retrieve the storage duration for the materialized temporary.
3939  StorageDuration getStorageDuration() const {
3940    if (!ExtendingDecl)
3941      return SD_FullExpression;
3942    // FIXME: This is not necessarily correct for a temporary materialized
3943    // within a default initializer.
3944    if (isa<FieldDecl>(ExtendingDecl))
3945      return SD_Automatic;
3946    return cast<VarDecl>(ExtendingDecl)->getStorageDuration();
3947  }
3948
3949  /// \brief Get the declaration which triggered the lifetime-extension of this
3950  /// temporary, if any.
3951  const ValueDecl *getExtendingDecl() const { return ExtendingDecl; }
3952
3953  void setExtendingDecl(const ValueDecl *ExtendedBy) {
3954    ExtendingDecl = ExtendedBy;
3955  }
3956
3957  /// \brief Determine whether this materialized temporary is bound to an
3958  /// lvalue reference; otherwise, it's bound to an rvalue reference.
3959  bool isBoundToLvalueReference() const {
3960    return getValueKind() == VK_LValue;
3961  }
3962
3963  SourceLocation getLocStart() const LLVM_READONLY {
3964    return Temporary->getLocStart();
3965  }
3966  SourceLocation getLocEnd() const LLVM_READONLY {
3967    return Temporary->getLocEnd();
3968  }
3969
3970  static bool classof(const Stmt *T) {
3971    return T->getStmtClass() == MaterializeTemporaryExprClass;
3972  }
3973
3974  // Iterators
3975  child_range children() { return child_range(&Temporary, &Temporary + 1); }
3976};
3977
3978}  // end namespace clang
3979
3980#endif
3981