ExprCXX.h revision 4bd40318cbea15310a37343db46de96c4fcc15e6
1//===--- ExprCXX.h - Classes for representing expressions -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses for C++ expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPRCXX_H
15#define LLVM_CLANG_AST_EXPRCXX_H
16
17#include "clang/Basic/TypeTraits.h"
18#include "clang/AST/Expr.h"
19#include "clang/AST/UnresolvedSet.h"
20#include "clang/AST/TemplateBase.h"
21
22namespace clang {
23
24  class CXXConstructorDecl;
25  class CXXDestructorDecl;
26  class CXXMethodDecl;
27  class CXXTemporary;
28  class TemplateArgumentListInfo;
29
30//===--------------------------------------------------------------------===//
31// C++ Expressions.
32//===--------------------------------------------------------------------===//
33
34/// \brief A call to an overloaded operator written using operator
35/// syntax.
36///
37/// Represents a call to an overloaded operator written using operator
38/// syntax, e.g., "x + y" or "*p". While semantically equivalent to a
39/// normal call, this AST node provides better information about the
40/// syntactic representation of the call.
41///
42/// In a C++ template, this expression node kind will be used whenever
43/// any of the arguments are type-dependent. In this case, the
44/// function itself will be a (possibly empty) set of functions and
45/// function templates that were found by name lookup at template
46/// definition time.
47class CXXOperatorCallExpr : public CallExpr {
48  /// \brief The overloaded operator.
49  OverloadedOperatorKind Operator;
50
51public:
52  CXXOperatorCallExpr(ASTContext& C, OverloadedOperatorKind Op, Expr *fn,
53                      Expr **args, unsigned numargs, QualType t,
54                      SourceLocation operatorloc)
55    : CallExpr(C, CXXOperatorCallExprClass, fn, args, numargs, t, operatorloc),
56      Operator(Op) {}
57  explicit CXXOperatorCallExpr(ASTContext& C, EmptyShell Empty) :
58    CallExpr(C, CXXOperatorCallExprClass, Empty) { }
59
60
61  /// getOperator - Returns the kind of overloaded operator that this
62  /// expression refers to.
63  OverloadedOperatorKind getOperator() const { return Operator; }
64  void setOperator(OverloadedOperatorKind Kind) { Operator = Kind; }
65
66  /// getOperatorLoc - Returns the location of the operator symbol in
67  /// the expression. When @c getOperator()==OO_Call, this is the
68  /// location of the right parentheses; when @c
69  /// getOperator()==OO_Subscript, this is the location of the right
70  /// bracket.
71  SourceLocation getOperatorLoc() const { return getRParenLoc(); }
72
73  virtual SourceRange getSourceRange() const;
74
75  static bool classof(const Stmt *T) {
76    return T->getStmtClass() == CXXOperatorCallExprClass;
77  }
78  static bool classof(const CXXOperatorCallExpr *) { return true; }
79};
80
81/// CXXMemberCallExpr - Represents a call to a member function that
82/// may be written either with member call syntax (e.g., "obj.func()"
83/// or "objptr->func()") or with normal function-call syntax
84/// ("func()") within a member function that ends up calling a member
85/// function. The callee in either case is a MemberExpr that contains
86/// both the object argument and the member function, while the
87/// arguments are the arguments within the parentheses (not including
88/// the object argument).
89class CXXMemberCallExpr : public CallExpr {
90public:
91  CXXMemberCallExpr(ASTContext &C, Expr *fn, Expr **args, unsigned numargs,
92                    QualType t, SourceLocation rparenloc)
93    : CallExpr(C, CXXMemberCallExprClass, fn, args, numargs, t, rparenloc) {}
94
95  CXXMemberCallExpr(ASTContext &C, EmptyShell Empty)
96    : CallExpr(C, CXXMemberCallExprClass, Empty) { }
97
98  /// getImplicitObjectArgument - Retrieves the implicit object
99  /// argument for the member call. For example, in "x.f(5)", this
100  /// operation would return "x".
101  Expr *getImplicitObjectArgument();
102
103  virtual SourceRange getSourceRange() const;
104
105  static bool classof(const Stmt *T) {
106    return T->getStmtClass() == CXXMemberCallExprClass;
107  }
108  static bool classof(const CXXMemberCallExpr *) { return true; }
109};
110
111/// CXXNamedCastExpr - Abstract class common to all of the C++ "named"
112/// casts, @c static_cast, @c dynamic_cast, @c reinterpret_cast, or @c
113/// const_cast.
114///
115/// This abstract class is inherited by all of the classes
116/// representing "named" casts, e.g., CXXStaticCastExpr,
117/// CXXDynamicCastExpr, CXXReinterpretCastExpr, and CXXConstCastExpr.
118class CXXNamedCastExpr : public ExplicitCastExpr {
119private:
120  SourceLocation Loc; // the location of the casting op
121
122protected:
123  CXXNamedCastExpr(StmtClass SC, QualType ty, CastKind kind, Expr *op,
124                   CXXBaseSpecifierArray BasePath, TypeSourceInfo *writtenTy,
125                   SourceLocation l)
126    : ExplicitCastExpr(SC, ty, kind, op, BasePath, writtenTy), Loc(l) {}
127
128  explicit CXXNamedCastExpr(StmtClass SC, EmptyShell Shell)
129    : ExplicitCastExpr(SC, Shell) { }
130
131public:
132  const char *getCastName() const;
133
134  /// \brief Retrieve the location of the cast operator keyword, e.g.,
135  /// "static_cast".
136  SourceLocation getOperatorLoc() const { return Loc; }
137  void setOperatorLoc(SourceLocation L) { Loc = L; }
138
139  virtual SourceRange getSourceRange() const {
140    return SourceRange(Loc, getSubExpr()->getSourceRange().getEnd());
141  }
142  static bool classof(const Stmt *T) {
143    switch (T->getStmtClass()) {
144    case CXXStaticCastExprClass:
145    case CXXDynamicCastExprClass:
146    case CXXReinterpretCastExprClass:
147    case CXXConstCastExprClass:
148      return true;
149    default:
150      return false;
151    }
152  }
153  static bool classof(const CXXNamedCastExpr *) { return true; }
154};
155
156/// CXXStaticCastExpr - A C++ @c static_cast expression (C++ [expr.static.cast]).
157///
158/// This expression node represents a C++ static cast, e.g.,
159/// @c static_cast<int>(1.0).
160class CXXStaticCastExpr : public CXXNamedCastExpr {
161public:
162  CXXStaticCastExpr(QualType ty, CastKind kind, Expr *op,
163                    CXXBaseSpecifierArray BasePath, TypeSourceInfo *writtenTy,
164                    SourceLocation l)
165    : CXXNamedCastExpr(CXXStaticCastExprClass, ty, kind, op, BasePath, writtenTy, l) {}
166
167  explicit CXXStaticCastExpr(EmptyShell Empty)
168    : CXXNamedCastExpr(CXXStaticCastExprClass, Empty) { }
169
170  static bool classof(const Stmt *T) {
171    return T->getStmtClass() == CXXStaticCastExprClass;
172  }
173  static bool classof(const CXXStaticCastExpr *) { return true; }
174};
175
176/// CXXDynamicCastExpr - A C++ @c dynamic_cast expression
177/// (C++ [expr.dynamic.cast]), which may perform a run-time check to
178/// determine how to perform the type cast.
179///
180/// This expression node represents a dynamic cast, e.g.,
181/// @c dynamic_cast<Derived*>(BasePtr).
182class CXXDynamicCastExpr : public CXXNamedCastExpr {
183public:
184  CXXDynamicCastExpr(QualType ty, CastKind kind, Expr *op,
185                     CXXBaseSpecifierArray BasePath, TypeSourceInfo *writtenTy,
186                     SourceLocation l)
187    : CXXNamedCastExpr(CXXDynamicCastExprClass, ty, kind, op, BasePath,
188                       writtenTy, l) {}
189
190  explicit CXXDynamicCastExpr(EmptyShell Empty)
191    : CXXNamedCastExpr(CXXDynamicCastExprClass, Empty) { }
192
193  static bool classof(const Stmt *T) {
194    return T->getStmtClass() == CXXDynamicCastExprClass;
195  }
196  static bool classof(const CXXDynamicCastExpr *) { return true; }
197};
198
199/// CXXReinterpretCastExpr - A C++ @c reinterpret_cast expression (C++
200/// [expr.reinterpret.cast]), which provides a differently-typed view
201/// of a value but performs no actual work at run time.
202///
203/// This expression node represents a reinterpret cast, e.g.,
204/// @c reinterpret_cast<int>(VoidPtr).
205class CXXReinterpretCastExpr : public CXXNamedCastExpr {
206public:
207  CXXReinterpretCastExpr(QualType ty, CastKind kind, Expr *op,
208                         CXXBaseSpecifierArray BasePath,
209                         TypeSourceInfo *writtenTy, SourceLocation l)
210    : CXXNamedCastExpr(CXXReinterpretCastExprClass, ty, kind, op, BasePath,
211                       writtenTy, l) {}
212
213  explicit CXXReinterpretCastExpr(EmptyShell Empty)
214    : CXXNamedCastExpr(CXXReinterpretCastExprClass, Empty) { }
215
216  static bool classof(const Stmt *T) {
217    return T->getStmtClass() == CXXReinterpretCastExprClass;
218  }
219  static bool classof(const CXXReinterpretCastExpr *) { return true; }
220};
221
222/// CXXConstCastExpr - A C++ @c const_cast expression (C++ [expr.const.cast]),
223/// which can remove type qualifiers but does not change the underlying value.
224///
225/// This expression node represents a const cast, e.g.,
226/// @c const_cast<char*>(PtrToConstChar).
227class CXXConstCastExpr : public CXXNamedCastExpr {
228public:
229  CXXConstCastExpr(QualType ty, Expr *op, TypeSourceInfo *writtenTy,
230                   SourceLocation l)
231    : CXXNamedCastExpr(CXXConstCastExprClass, ty, CK_NoOp, op,
232                       CXXBaseSpecifierArray(), writtenTy, l) {}
233
234  explicit CXXConstCastExpr(EmptyShell Empty)
235    : CXXNamedCastExpr(CXXConstCastExprClass, Empty) { }
236
237  static bool classof(const Stmt *T) {
238    return T->getStmtClass() == CXXConstCastExprClass;
239  }
240  static bool classof(const CXXConstCastExpr *) { return true; }
241};
242
243/// CXXBoolLiteralExpr - [C++ 2.13.5] C++ Boolean Literal.
244///
245class CXXBoolLiteralExpr : public Expr {
246  bool Value;
247  SourceLocation Loc;
248public:
249  CXXBoolLiteralExpr(bool val, QualType Ty, SourceLocation l) :
250    Expr(CXXBoolLiteralExprClass, Ty, false, false), Value(val), Loc(l) {}
251
252  explicit CXXBoolLiteralExpr(EmptyShell Empty)
253    : Expr(CXXBoolLiteralExprClass, Empty) { }
254
255  bool getValue() const { return Value; }
256  void setValue(bool V) { Value = V; }
257
258  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
259
260  SourceLocation getLocation() const { return Loc; }
261  void setLocation(SourceLocation L) { Loc = L; }
262
263  static bool classof(const Stmt *T) {
264    return T->getStmtClass() == CXXBoolLiteralExprClass;
265  }
266  static bool classof(const CXXBoolLiteralExpr *) { return true; }
267
268  // Iterators
269  virtual child_iterator child_begin();
270  virtual child_iterator child_end();
271};
272
273/// CXXNullPtrLiteralExpr - [C++0x 2.14.7] C++ Pointer Literal
274class CXXNullPtrLiteralExpr : public Expr {
275  SourceLocation Loc;
276public:
277  CXXNullPtrLiteralExpr(QualType Ty, SourceLocation l) :
278    Expr(CXXNullPtrLiteralExprClass, Ty, false, false), Loc(l) {}
279
280  explicit CXXNullPtrLiteralExpr(EmptyShell Empty)
281    : Expr(CXXNullPtrLiteralExprClass, Empty) { }
282
283  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
284
285  SourceLocation getLocation() const { return Loc; }
286  void setLocation(SourceLocation L) { Loc = L; }
287
288  static bool classof(const Stmt *T) {
289    return T->getStmtClass() == CXXNullPtrLiteralExprClass;
290  }
291  static bool classof(const CXXNullPtrLiteralExpr *) { return true; }
292
293  virtual child_iterator child_begin();
294  virtual child_iterator child_end();
295};
296
297/// CXXTypeidExpr - A C++ @c typeid expression (C++ [expr.typeid]), which gets
298/// the type_info that corresponds to the supplied type, or the (possibly
299/// dynamic) type of the supplied expression.
300///
301/// This represents code like @c typeid(int) or @c typeid(*objPtr)
302class CXXTypeidExpr : public Expr {
303private:
304  llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
305  SourceRange Range;
306
307public:
308  CXXTypeidExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
309    : Expr(CXXTypeidExprClass, Ty,
310           // typeid is never type-dependent (C++ [temp.dep.expr]p4)
311           false,
312           // typeid is value-dependent if the type or expression are dependent
313           Operand->getType()->isDependentType()),
314      Operand(Operand), Range(R) { }
315
316  CXXTypeidExpr(QualType Ty, Expr *Operand, SourceRange R)
317    : Expr(CXXTypeidExprClass, Ty,
318        // typeid is never type-dependent (C++ [temp.dep.expr]p4)
319        false,
320        // typeid is value-dependent if the type or expression are dependent
321        Operand->isTypeDependent() || Operand->isValueDependent()),
322      Operand(Operand), Range(R) { }
323
324  CXXTypeidExpr(EmptyShell Empty, bool isExpr)
325    : Expr(CXXTypeidExprClass, Empty) {
326    if (isExpr)
327      Operand = (Expr*)0;
328    else
329      Operand = (TypeSourceInfo*)0;
330  }
331
332  bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
333
334  /// \brief Retrieves the type operand of this typeid() expression after
335  /// various required adjustments (removing reference types, cv-qualifiers).
336  QualType getTypeOperand() const;
337
338  /// \brief Retrieve source information for the type operand.
339  TypeSourceInfo *getTypeOperandSourceInfo() const {
340    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
341    return Operand.get<TypeSourceInfo *>();
342  }
343
344  void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
345    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
346    Operand = TSI;
347  }
348
349  Expr *getExprOperand() const {
350    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
351    return static_cast<Expr*>(Operand.get<Stmt *>());
352  }
353
354  void setExprOperand(Expr *E) {
355    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
356    Operand = E;
357  }
358
359  virtual SourceRange getSourceRange() const { return Range; }
360  void setSourceRange(SourceRange R) { Range = R; }
361
362  static bool classof(const Stmt *T) {
363    return T->getStmtClass() == CXXTypeidExprClass;
364  }
365  static bool classof(const CXXTypeidExpr *) { return true; }
366
367  // Iterators
368  virtual child_iterator child_begin();
369  virtual child_iterator child_end();
370};
371
372/// CXXThisExpr - Represents the "this" expression in C++, which is a
373/// pointer to the object on which the current member function is
374/// executing (C++ [expr.prim]p3). Example:
375///
376/// @code
377/// class Foo {
378/// public:
379///   void bar();
380///   void test() { this->bar(); }
381/// };
382/// @endcode
383class CXXThisExpr : public Expr {
384  SourceLocation Loc;
385  bool Implicit : 1;
386
387public:
388  CXXThisExpr(SourceLocation L, QualType Type, bool isImplicit)
389    : Expr(CXXThisExprClass, Type,
390           // 'this' is type-dependent if the class type of the enclosing
391           // member function is dependent (C++ [temp.dep.expr]p2)
392           Type->isDependentType(), Type->isDependentType()),
393      Loc(L), Implicit(isImplicit) { }
394
395  CXXThisExpr(EmptyShell Empty) : Expr(CXXThisExprClass, Empty) {}
396
397  SourceLocation getLocation() const { return Loc; }
398  void setLocation(SourceLocation L) { Loc = L; }
399
400  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
401
402  bool isImplicit() const { return Implicit; }
403  void setImplicit(bool I) { Implicit = I; }
404
405  static bool classof(const Stmt *T) {
406    return T->getStmtClass() == CXXThisExprClass;
407  }
408  static bool classof(const CXXThisExpr *) { return true; }
409
410  // Iterators
411  virtual child_iterator child_begin();
412  virtual child_iterator child_end();
413};
414
415///  CXXThrowExpr - [C++ 15] C++ Throw Expression.  This handles
416///  'throw' and 'throw' assignment-expression.  When
417///  assignment-expression isn't present, Op will be null.
418///
419class CXXThrowExpr : public Expr {
420  Stmt *Op;
421  SourceLocation ThrowLoc;
422public:
423  // Ty is the void type which is used as the result type of the
424  // exepression.  The l is the location of the throw keyword.  expr
425  // can by null, if the optional expression to throw isn't present.
426  CXXThrowExpr(Expr *expr, QualType Ty, SourceLocation l) :
427    Expr(CXXThrowExprClass, Ty, false, false), Op(expr), ThrowLoc(l) {}
428  CXXThrowExpr(EmptyShell Empty) : Expr(CXXThrowExprClass, Empty) {}
429
430  const Expr *getSubExpr() const { return cast_or_null<Expr>(Op); }
431  Expr *getSubExpr() { return cast_or_null<Expr>(Op); }
432  void setSubExpr(Expr *E) { Op = E; }
433
434  SourceLocation getThrowLoc() const { return ThrowLoc; }
435  void setThrowLoc(SourceLocation L) { ThrowLoc = L; }
436
437  virtual SourceRange getSourceRange() const {
438    if (getSubExpr() == 0)
439      return SourceRange(ThrowLoc, ThrowLoc);
440    return SourceRange(ThrowLoc, getSubExpr()->getSourceRange().getEnd());
441  }
442
443  static bool classof(const Stmt *T) {
444    return T->getStmtClass() == CXXThrowExprClass;
445  }
446  static bool classof(const CXXThrowExpr *) { return true; }
447
448  // Iterators
449  virtual child_iterator child_begin();
450  virtual child_iterator child_end();
451};
452
453/// CXXDefaultArgExpr - C++ [dcl.fct.default]. This wraps up a
454/// function call argument that was created from the corresponding
455/// parameter's default argument, when the call did not explicitly
456/// supply arguments for all of the parameters.
457class CXXDefaultArgExpr : public Expr {
458  /// \brief The parameter whose default is being used.
459  ///
460  /// When the bit is set, the subexpression is stored after the
461  /// CXXDefaultArgExpr itself. When the bit is clear, the parameter's
462  /// actual default expression is the subexpression.
463  llvm::PointerIntPair<ParmVarDecl *, 1, bool> Param;
464
465  /// \brief The location where the default argument expression was used.
466  SourceLocation Loc;
467
468  CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param)
469    : Expr(SC,
470           param->hasUnparsedDefaultArg()
471             ? param->getType().getNonReferenceType()
472             : param->getDefaultArg()->getType(),
473           false, false),
474      Param(param, false), Loc(Loc) { }
475
476  CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param,
477                    Expr *SubExpr)
478    : Expr(SC, SubExpr->getType(), false, false), Param(param, true), Loc(Loc) {
479    *reinterpret_cast<Expr **>(this + 1) = SubExpr;
480  }
481
482protected:
483  virtual void DoDestroy(ASTContext &C);
484
485public:
486  CXXDefaultArgExpr(EmptyShell Empty) : Expr(CXXDefaultArgExprClass, Empty) {}
487
488
489  // Param is the parameter whose default argument is used by this
490  // expression.
491  static CXXDefaultArgExpr *Create(ASTContext &C, SourceLocation Loc,
492                                   ParmVarDecl *Param) {
493    return new (C) CXXDefaultArgExpr(CXXDefaultArgExprClass, Loc, Param);
494  }
495
496  // Param is the parameter whose default argument is used by this
497  // expression, and SubExpr is the expression that will actually be used.
498  static CXXDefaultArgExpr *Create(ASTContext &C,
499                                   SourceLocation Loc,
500                                   ParmVarDecl *Param,
501                                   Expr *SubExpr);
502
503  // Retrieve the parameter that the argument was created from.
504  const ParmVarDecl *getParam() const { return Param.getPointer(); }
505  ParmVarDecl *getParam() { return Param.getPointer(); }
506
507  // Retrieve the actual argument to the function call.
508  const Expr *getExpr() const {
509    if (Param.getInt())
510      return *reinterpret_cast<Expr const * const*> (this + 1);
511    return getParam()->getDefaultArg();
512  }
513  Expr *getExpr() {
514    if (Param.getInt())
515      return *reinterpret_cast<Expr **> (this + 1);
516    return getParam()->getDefaultArg();
517  }
518
519  /// \brief Retrieve the location where this default argument was actually
520  /// used.
521  SourceLocation getUsedLocation() const { return Loc; }
522
523  virtual SourceRange getSourceRange() const {
524    // Default argument expressions have no representation in the
525    // source, so they have an empty source range.
526    return SourceRange();
527  }
528
529  static bool classof(const Stmt *T) {
530    return T->getStmtClass() == CXXDefaultArgExprClass;
531  }
532  static bool classof(const CXXDefaultArgExpr *) { return true; }
533
534  // Iterators
535  virtual child_iterator child_begin();
536  virtual child_iterator child_end();
537
538  friend class PCHStmtReader;
539  friend class PCHStmtWriter;
540};
541
542/// CXXTemporary - Represents a C++ temporary.
543class CXXTemporary {
544  /// Destructor - The destructor that needs to be called.
545  const CXXDestructorDecl *Destructor;
546
547  CXXTemporary(const CXXDestructorDecl *destructor)
548    : Destructor(destructor) { }
549  ~CXXTemporary() { }
550
551public:
552  static CXXTemporary *Create(ASTContext &C,
553                              const CXXDestructorDecl *Destructor);
554
555  void Destroy(ASTContext &Ctx);
556
557  const CXXDestructorDecl *getDestructor() const { return Destructor; }
558};
559
560/// \brief Represents binding an expression to a temporary.
561///
562/// This ensures the destructor is called for the temporary. It should only be
563/// needed for non-POD, non-trivially destructable class types. For example:
564///
565/// \code
566///   struct S {
567///     S() { }  // User defined constructor makes S non-POD.
568///     ~S() { } // User defined destructor makes it non-trivial.
569///   };
570///   void test() {
571///     const S &s_ref = S(); // Requires a CXXBindTemporaryExpr.
572///   }
573/// \endcode
574class CXXBindTemporaryExpr : public Expr {
575  CXXTemporary *Temp;
576
577  Stmt *SubExpr;
578
579  CXXBindTemporaryExpr(CXXTemporary *temp, Expr* subexpr)
580   : Expr(CXXBindTemporaryExprClass, subexpr->getType(), false, false),
581     Temp(temp), SubExpr(subexpr) { }
582  ~CXXBindTemporaryExpr() { }
583
584protected:
585  virtual void DoDestroy(ASTContext &C);
586
587public:
588  CXXBindTemporaryExpr(EmptyShell Empty)
589    : Expr(CXXBindTemporaryExprClass, Empty), Temp(0), SubExpr(0) {}
590
591  static CXXBindTemporaryExpr *Create(ASTContext &C, CXXTemporary *Temp,
592                                      Expr* SubExpr);
593
594  CXXTemporary *getTemporary() { return Temp; }
595  const CXXTemporary *getTemporary() const { return Temp; }
596  void setTemporary(CXXTemporary *T) { Temp = T; }
597
598  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
599  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
600  void setSubExpr(Expr *E) { SubExpr = E; }
601
602  virtual SourceRange getSourceRange() const {
603    return SubExpr->getSourceRange();
604  }
605
606  // Implement isa/cast/dyncast/etc.
607  static bool classof(const Stmt *T) {
608    return T->getStmtClass() == CXXBindTemporaryExprClass;
609  }
610  static bool classof(const CXXBindTemporaryExpr *) { return true; }
611
612  // Iterators
613  virtual child_iterator child_begin();
614  virtual child_iterator child_end();
615};
616
617/// CXXBindReferenceExpr - Represents binding an expression to a reference.
618/// In the example:
619///
620/// const int &i = 10;
621///
622/// a bind reference expression is inserted to indicate that 10 is bound to
623/// a reference, and that a temporary needs to be created to hold the
624/// value.
625class CXXBindReferenceExpr : public Expr {
626  // SubExpr - The expression being bound.
627  Stmt *SubExpr;
628
629  // ExtendsLifetime - Whether binding this reference extends the lifetime of
630  // the expression being bound. FIXME: Add C++ reference.
631  bool ExtendsLifetime;
632
633  /// RequiresTemporaryCopy - Whether binding the subexpression requires a
634  /// temporary copy.
635  bool RequiresTemporaryCopy;
636
637  CXXBindReferenceExpr(Expr *subexpr, bool ExtendsLifetime,
638                       bool RequiresTemporaryCopy)
639  : Expr(CXXBindReferenceExprClass, subexpr->getType(), false, false),
640    SubExpr(subexpr), ExtendsLifetime(ExtendsLifetime),
641    RequiresTemporaryCopy(RequiresTemporaryCopy) { }
642  ~CXXBindReferenceExpr() { }
643
644protected:
645  virtual void DoDestroy(ASTContext &C);
646
647public:
648  static CXXBindReferenceExpr *Create(ASTContext &C, Expr *SubExpr,
649                                      bool ExtendsLifetime,
650                                      bool RequiresTemporaryCopy);
651
652  explicit CXXBindReferenceExpr(EmptyShell Empty)
653    : Expr(CXXBindReferenceExprClass, Empty) { }
654
655  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
656  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
657  void setSubExpr(Expr *E) { SubExpr = E; }
658
659  virtual SourceRange getSourceRange() const {
660    return SubExpr->getSourceRange();
661  }
662
663  /// requiresTemporaryCopy - Whether binding the subexpression requires a
664  /// temporary copy.
665  bool requiresTemporaryCopy() const { return RequiresTemporaryCopy; }
666
667  // extendsLifetime - Whether binding this reference extends the lifetime of
668  // the expression being bound. FIXME: Add C++ reference.
669  bool extendsLifetime() const { return ExtendsLifetime; }
670
671  // Implement isa/cast/dyncast/etc.
672  static bool classof(const Stmt *T) {
673    return T->getStmtClass() == CXXBindReferenceExprClass;
674  }
675  static bool classof(const CXXBindReferenceExpr *) { return true; }
676
677  // Iterators
678  virtual child_iterator child_begin();
679  virtual child_iterator child_end();
680
681  friend class PCHStmtReader;
682};
683
684/// CXXConstructExpr - Represents a call to a C++ constructor.
685class CXXConstructExpr : public Expr {
686public:
687  enum ConstructionKind {
688    CK_Complete,
689    CK_NonVirtualBase,
690    CK_VirtualBase
691  };
692
693private:
694  CXXConstructorDecl *Constructor;
695
696  SourceLocation Loc;
697  bool Elidable : 1;
698  bool ZeroInitialization : 1;
699  unsigned ConstructKind : 2;
700  Stmt **Args;
701  unsigned NumArgs;
702
703protected:
704  CXXConstructExpr(ASTContext &C, StmtClass SC, QualType T,
705                   SourceLocation Loc,
706                   CXXConstructorDecl *d, bool elidable,
707                   Expr **args, unsigned numargs,
708                   bool ZeroInitialization = false,
709                   ConstructionKind ConstructKind = CK_Complete);
710  ~CXXConstructExpr() { }
711
712  /// \brief Construct an empty C++ construction expression.
713  CXXConstructExpr(StmtClass SC, EmptyShell Empty)
714    : Expr(SC, Empty), Constructor(0), Elidable(0), ZeroInitialization(0),
715      ConstructKind(0), Args(0), NumArgs(0) { }
716
717  virtual void DoDestroy(ASTContext &C);
718
719public:
720  /// \brief Construct an empty C++ construction expression.
721  explicit CXXConstructExpr(EmptyShell Empty)
722    : Expr(CXXConstructExprClass, Empty), Constructor(0),
723      Elidable(0), ZeroInitialization(0),
724      ConstructKind(0), Args(0), NumArgs(0) { }
725
726  static CXXConstructExpr *Create(ASTContext &C, QualType T,
727                                  SourceLocation Loc,
728                                  CXXConstructorDecl *D, bool Elidable,
729                                  Expr **Args, unsigned NumArgs,
730                                  bool ZeroInitialization = false,
731                                  ConstructionKind ConstructKind = CK_Complete);
732
733
734  CXXConstructorDecl* getConstructor() const { return Constructor; }
735  void setConstructor(CXXConstructorDecl *C) { Constructor = C; }
736
737  SourceLocation getLocation() const { return Loc; }
738  void setLocation(SourceLocation Loc) { this->Loc = Loc; }
739
740  /// \brief Whether this construction is elidable.
741  bool isElidable() const { return Elidable; }
742  void setElidable(bool E) { Elidable = E; }
743
744  /// \brief Whether this construction first requires
745  /// zero-initialization before the initializer is called.
746  bool requiresZeroInitialization() const { return ZeroInitialization; }
747  void setRequiresZeroInitialization(bool ZeroInit) {
748    ZeroInitialization = ZeroInit;
749  }
750
751  /// \brief Determines whether this constructor is actually constructing
752  /// a base class (rather than a complete object).
753  ConstructionKind getConstructionKind() const {
754    return (ConstructionKind)ConstructKind;
755  }
756  void setConstructionKind(ConstructionKind CK) {
757    ConstructKind = CK;
758  }
759
760  typedef ExprIterator arg_iterator;
761  typedef ConstExprIterator const_arg_iterator;
762
763  arg_iterator arg_begin() { return Args; }
764  arg_iterator arg_end() { return Args + NumArgs; }
765  const_arg_iterator arg_begin() const { return Args; }
766  const_arg_iterator arg_end() const { return Args + NumArgs; }
767
768  Expr **getArgs() const { return reinterpret_cast<Expr **>(Args); }
769  unsigned getNumArgs() const { return NumArgs; }
770
771  /// getArg - Return the specified argument.
772  Expr *getArg(unsigned Arg) {
773    assert(Arg < NumArgs && "Arg access out of range!");
774    return cast<Expr>(Args[Arg]);
775  }
776  const Expr *getArg(unsigned Arg) const {
777    assert(Arg < NumArgs && "Arg access out of range!");
778    return cast<Expr>(Args[Arg]);
779  }
780
781  /// setArg - Set the specified argument.
782  void setArg(unsigned Arg, Expr *ArgExpr) {
783    assert(Arg < NumArgs && "Arg access out of range!");
784    Args[Arg] = ArgExpr;
785  }
786
787  virtual SourceRange getSourceRange() const;
788
789  static bool classof(const Stmt *T) {
790    return T->getStmtClass() == CXXConstructExprClass ||
791      T->getStmtClass() == CXXTemporaryObjectExprClass;
792  }
793  static bool classof(const CXXConstructExpr *) { return true; }
794
795  // Iterators
796  virtual child_iterator child_begin();
797  virtual child_iterator child_end();
798
799  friend class PCHStmtReader;
800};
801
802/// CXXFunctionalCastExpr - Represents an explicit C++ type conversion
803/// that uses "functional" notion (C++ [expr.type.conv]). Example: @c
804/// x = int(0.5);
805class CXXFunctionalCastExpr : public ExplicitCastExpr {
806  SourceLocation TyBeginLoc;
807  SourceLocation RParenLoc;
808public:
809  CXXFunctionalCastExpr(QualType ty, TypeSourceInfo *writtenTy,
810                        SourceLocation tyBeginLoc, CastKind kind,
811                        Expr *castExpr, CXXBaseSpecifierArray BasePath,
812                        SourceLocation rParenLoc)
813    : ExplicitCastExpr(CXXFunctionalCastExprClass, ty, kind, castExpr,
814                       BasePath, writtenTy),
815      TyBeginLoc(tyBeginLoc), RParenLoc(rParenLoc) {}
816
817  explicit CXXFunctionalCastExpr(EmptyShell Shell)
818    : ExplicitCastExpr(CXXFunctionalCastExprClass, Shell) { }
819
820  SourceLocation getTypeBeginLoc() const { return TyBeginLoc; }
821  void setTypeBeginLoc(SourceLocation L) { TyBeginLoc = L; }
822  SourceLocation getRParenLoc() const { return RParenLoc; }
823  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
824
825  virtual SourceRange getSourceRange() const {
826    return SourceRange(TyBeginLoc, RParenLoc);
827  }
828  static bool classof(const Stmt *T) {
829    return T->getStmtClass() == CXXFunctionalCastExprClass;
830  }
831  static bool classof(const CXXFunctionalCastExpr *) { return true; }
832};
833
834/// @brief Represents a C++ functional cast expression that builds a
835/// temporary object.
836///
837/// This expression type represents a C++ "functional" cast
838/// (C++[expr.type.conv]) with N != 1 arguments that invokes a
839/// constructor to build a temporary object. With N == 1 arguments the
840/// functional cast expression will be represented by CXXFunctionalCastExpr.
841/// Example:
842/// @code
843/// struct X { X(int, float); }
844///
845/// X create_X() {
846///   return X(1, 3.14f); // creates a CXXTemporaryObjectExpr
847/// };
848/// @endcode
849class CXXTemporaryObjectExpr : public CXXConstructExpr {
850  SourceLocation TyBeginLoc;
851  SourceLocation RParenLoc;
852
853public:
854  CXXTemporaryObjectExpr(ASTContext &C, CXXConstructorDecl *Cons,
855                         QualType writtenTy, SourceLocation tyBeginLoc,
856                         Expr **Args,unsigned NumArgs,
857                         SourceLocation rParenLoc,
858                         bool ZeroInitialization = false);
859  explicit CXXTemporaryObjectExpr(EmptyShell Empty)
860    : CXXConstructExpr(CXXTemporaryObjectExprClass, Empty) { }
861
862  ~CXXTemporaryObjectExpr() { }
863
864  SourceLocation getTypeBeginLoc() const { return TyBeginLoc; }
865  SourceLocation getRParenLoc() const { return RParenLoc; }
866
867  virtual SourceRange getSourceRange() const {
868    return SourceRange(TyBeginLoc, RParenLoc);
869  }
870  static bool classof(const Stmt *T) {
871    return T->getStmtClass() == CXXTemporaryObjectExprClass;
872  }
873  static bool classof(const CXXTemporaryObjectExpr *) { return true; }
874
875  friend class PCHStmtReader;
876};
877
878/// CXXScalarValueInitExpr - [C++ 5.2.3p2]
879/// Expression "T()" which creates a value-initialized rvalue of type
880/// T, which is a non-class type.
881///
882class CXXScalarValueInitExpr : public Expr {
883  SourceLocation TyBeginLoc;
884  SourceLocation RParenLoc;
885
886public:
887  CXXScalarValueInitExpr(QualType ty, SourceLocation tyBeginLoc,
888                       SourceLocation rParenLoc ) :
889    Expr(CXXScalarValueInitExprClass, ty, false, false),
890    TyBeginLoc(tyBeginLoc), RParenLoc(rParenLoc) {}
891  explicit CXXScalarValueInitExpr(EmptyShell Shell)
892    : Expr(CXXScalarValueInitExprClass, Shell) { }
893
894  SourceLocation getTypeBeginLoc() const { return TyBeginLoc; }
895  SourceLocation getRParenLoc() const { return RParenLoc; }
896
897  void setTypeBeginLoc(SourceLocation L) { TyBeginLoc = L; }
898  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
899
900  /// @brief Whether this initialization expression was
901  /// implicitly-generated.
902  bool isImplicit() const {
903    return TyBeginLoc.isInvalid() && RParenLoc.isInvalid();
904  }
905
906  virtual SourceRange getSourceRange() const {
907    return SourceRange(TyBeginLoc, RParenLoc);
908  }
909
910  static bool classof(const Stmt *T) {
911    return T->getStmtClass() == CXXScalarValueInitExprClass;
912  }
913  static bool classof(const CXXScalarValueInitExpr *) { return true; }
914
915  // Iterators
916  virtual child_iterator child_begin();
917  virtual child_iterator child_end();
918};
919
920/// CXXNewExpr - A new expression for memory allocation and constructor calls,
921/// e.g: "new CXXNewExpr(foo)".
922class CXXNewExpr : public Expr {
923  // Was the usage ::new, i.e. is the global new to be used?
924  bool GlobalNew : 1;
925  // Is there an initializer? If not, built-ins are uninitialized, else they're
926  // value-initialized.
927  bool Initializer : 1;
928  // Do we allocate an array? If so, the first SubExpr is the size expression.
929  bool Array : 1;
930  // The number of placement new arguments.
931  unsigned NumPlacementArgs : 14;
932  // The number of constructor arguments. This may be 1 even for non-class
933  // types; use the pseudo copy constructor.
934  unsigned NumConstructorArgs : 14;
935  // Contains an optional array size expression, any number of optional
936  // placement arguments, and any number of optional constructor arguments,
937  // in that order.
938  Stmt **SubExprs;
939  // Points to the allocation function used.
940  FunctionDecl *OperatorNew;
941  // Points to the deallocation function used in case of error. May be null.
942  FunctionDecl *OperatorDelete;
943  // Points to the constructor used. Cannot be null if AllocType is a record;
944  // it would still point at the default constructor (even an implicit one).
945  // Must be null for all other types.
946  CXXConstructorDecl *Constructor;
947
948  /// \brief If the allocated type was expressed as a parenthesized type-id,
949  /// the source range covering the parenthesized type-id.
950  SourceRange TypeIdParens;
951
952  SourceLocation StartLoc;
953  SourceLocation EndLoc;
954
955  friend class PCHStmtReader;
956public:
957  CXXNewExpr(ASTContext &C, bool globalNew, FunctionDecl *operatorNew,
958             Expr **placementArgs, unsigned numPlaceArgs,
959             SourceRange TypeIdParens,
960             Expr *arraySize, CXXConstructorDecl *constructor, bool initializer,
961             Expr **constructorArgs, unsigned numConsArgs,
962             FunctionDecl *operatorDelete, QualType ty,
963             SourceLocation startLoc, SourceLocation endLoc);
964  explicit CXXNewExpr(EmptyShell Shell)
965    : Expr(CXXNewExprClass, Shell), SubExprs(0) { }
966
967  void AllocateArgsArray(ASTContext &C, bool isArray, unsigned numPlaceArgs,
968                         unsigned numConsArgs);
969
970  virtual void DoDestroy(ASTContext &C);
971
972  QualType getAllocatedType() const {
973    assert(getType()->isPointerType());
974    return getType()->getAs<PointerType>()->getPointeeType();
975  }
976
977  FunctionDecl *getOperatorNew() const { return OperatorNew; }
978  void setOperatorNew(FunctionDecl *D) { OperatorNew = D; }
979  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
980  void setOperatorDelete(FunctionDecl *D) { OperatorDelete = D; }
981  CXXConstructorDecl *getConstructor() const { return Constructor; }
982  void setConstructor(CXXConstructorDecl *D) { Constructor = D; }
983
984  bool isArray() const { return Array; }
985  Expr *getArraySize() {
986    return Array ? cast<Expr>(SubExprs[0]) : 0;
987  }
988  const Expr *getArraySize() const {
989    return Array ? cast<Expr>(SubExprs[0]) : 0;
990  }
991
992  unsigned getNumPlacementArgs() const { return NumPlacementArgs; }
993  Expr *getPlacementArg(unsigned i) {
994    assert(i < NumPlacementArgs && "Index out of range");
995    return cast<Expr>(SubExprs[Array + i]);
996  }
997  const Expr *getPlacementArg(unsigned i) const {
998    assert(i < NumPlacementArgs && "Index out of range");
999    return cast<Expr>(SubExprs[Array + i]);
1000  }
1001
1002  bool isParenTypeId() const { return TypeIdParens.isValid(); }
1003  SourceRange getTypeIdParens() const { return TypeIdParens; }
1004
1005  bool isGlobalNew() const { return GlobalNew; }
1006  void setGlobalNew(bool V) { GlobalNew = V; }
1007  bool hasInitializer() const { return Initializer; }
1008  void setHasInitializer(bool V) { Initializer = V; }
1009
1010  unsigned getNumConstructorArgs() const { return NumConstructorArgs; }
1011  Expr *getConstructorArg(unsigned i) {
1012    assert(i < NumConstructorArgs && "Index out of range");
1013    return cast<Expr>(SubExprs[Array + NumPlacementArgs + i]);
1014  }
1015  const Expr *getConstructorArg(unsigned i) const {
1016    assert(i < NumConstructorArgs && "Index out of range");
1017    return cast<Expr>(SubExprs[Array + NumPlacementArgs + i]);
1018  }
1019
1020  typedef ExprIterator arg_iterator;
1021  typedef ConstExprIterator const_arg_iterator;
1022
1023  arg_iterator placement_arg_begin() {
1024    return SubExprs + Array;
1025  }
1026  arg_iterator placement_arg_end() {
1027    return SubExprs + Array + getNumPlacementArgs();
1028  }
1029  const_arg_iterator placement_arg_begin() const {
1030    return SubExprs + Array;
1031  }
1032  const_arg_iterator placement_arg_end() const {
1033    return SubExprs + Array + getNumPlacementArgs();
1034  }
1035
1036  arg_iterator constructor_arg_begin() {
1037    return SubExprs + Array + getNumPlacementArgs();
1038  }
1039  arg_iterator constructor_arg_end() {
1040    return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
1041  }
1042  const_arg_iterator constructor_arg_begin() const {
1043    return SubExprs + Array + getNumPlacementArgs();
1044  }
1045  const_arg_iterator constructor_arg_end() const {
1046    return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
1047  }
1048
1049  typedef Stmt **raw_arg_iterator;
1050  raw_arg_iterator raw_arg_begin() { return SubExprs; }
1051  raw_arg_iterator raw_arg_end() {
1052    return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
1053  }
1054  const_arg_iterator raw_arg_begin() const { return SubExprs; }
1055  const_arg_iterator raw_arg_end() const { return constructor_arg_end(); }
1056
1057
1058  SourceLocation getStartLoc() const { return StartLoc; }
1059  void setStartLoc(SourceLocation L) { StartLoc = L; }
1060  SourceLocation getEndLoc() const { return EndLoc; }
1061  void setEndLoc(SourceLocation L) { EndLoc = L; }
1062
1063  virtual SourceRange getSourceRange() const {
1064    return SourceRange(StartLoc, EndLoc);
1065  }
1066
1067  static bool classof(const Stmt *T) {
1068    return T->getStmtClass() == CXXNewExprClass;
1069  }
1070  static bool classof(const CXXNewExpr *) { return true; }
1071
1072  // Iterators
1073  virtual child_iterator child_begin();
1074  virtual child_iterator child_end();
1075};
1076
1077/// CXXDeleteExpr - A delete expression for memory deallocation and destructor
1078/// calls, e.g. "delete[] pArray".
1079class CXXDeleteExpr : public Expr {
1080  // Is this a forced global delete, i.e. "::delete"?
1081  bool GlobalDelete : 1;
1082  // Is this the array form of delete, i.e. "delete[]"?
1083  bool ArrayForm : 1;
1084  // Points to the operator delete overload that is used. Could be a member.
1085  FunctionDecl *OperatorDelete;
1086  // The pointer expression to be deleted.
1087  Stmt *Argument;
1088  // Location of the expression.
1089  SourceLocation Loc;
1090public:
1091  CXXDeleteExpr(QualType ty, bool globalDelete, bool arrayForm,
1092                FunctionDecl *operatorDelete, Expr *arg, SourceLocation loc)
1093    : Expr(CXXDeleteExprClass, ty, false, false), GlobalDelete(globalDelete),
1094      ArrayForm(arrayForm), OperatorDelete(operatorDelete), Argument(arg),
1095      Loc(loc) { }
1096  explicit CXXDeleteExpr(EmptyShell Shell)
1097    : Expr(CXXDeleteExprClass, Shell), OperatorDelete(0), Argument(0) { }
1098
1099  bool isGlobalDelete() const { return GlobalDelete; }
1100  bool isArrayForm() const { return ArrayForm; }
1101
1102  void setGlobalDelete(bool V) { GlobalDelete = V; }
1103  void setArrayForm(bool V) { ArrayForm = V; }
1104
1105  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
1106  void setOperatorDelete(FunctionDecl *D) { OperatorDelete = D; }
1107
1108  Expr *getArgument() { return cast<Expr>(Argument); }
1109  const Expr *getArgument() const { return cast<Expr>(Argument); }
1110  void setArgument(Expr *E) { Argument = E; }
1111
1112  virtual SourceRange getSourceRange() const {
1113    return SourceRange(Loc, Argument->getLocEnd());
1114  }
1115  void setStartLoc(SourceLocation L) { Loc = L; }
1116
1117  static bool classof(const Stmt *T) {
1118    return T->getStmtClass() == CXXDeleteExprClass;
1119  }
1120  static bool classof(const CXXDeleteExpr *) { return true; }
1121
1122  // Iterators
1123  virtual child_iterator child_begin();
1124  virtual child_iterator child_end();
1125};
1126
1127/// \brief Structure used to store the type being destroyed by a
1128/// pseudo-destructor expression.
1129class PseudoDestructorTypeStorage {
1130  /// \brief Either the type source information or the name of the type, if
1131  /// it couldn't be resolved due to type-dependence.
1132  llvm::PointerUnion<TypeSourceInfo *, IdentifierInfo *> Type;
1133
1134  /// \brief The starting source location of the pseudo-destructor type.
1135  SourceLocation Location;
1136
1137public:
1138  PseudoDestructorTypeStorage() { }
1139
1140  PseudoDestructorTypeStorage(IdentifierInfo *II, SourceLocation Loc)
1141    : Type(II), Location(Loc) { }
1142
1143  PseudoDestructorTypeStorage(TypeSourceInfo *Info);
1144
1145  TypeSourceInfo *getTypeSourceInfo() const {
1146    return Type.dyn_cast<TypeSourceInfo *>();
1147  }
1148
1149  IdentifierInfo *getIdentifier() const {
1150    return Type.dyn_cast<IdentifierInfo *>();
1151  }
1152
1153  SourceLocation getLocation() const { return Location; }
1154};
1155
1156/// \brief Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
1157///
1158/// A pseudo-destructor is an expression that looks like a member access to a
1159/// destructor of a scalar type, except that scalar types don't have
1160/// destructors. For example:
1161///
1162/// \code
1163/// typedef int T;
1164/// void f(int *p) {
1165///   p->T::~T();
1166/// }
1167/// \endcode
1168///
1169/// Pseudo-destructors typically occur when instantiating templates such as:
1170///
1171/// \code
1172/// template<typename T>
1173/// void destroy(T* ptr) {
1174///   ptr->T::~T();
1175/// }
1176/// \endcode
1177///
1178/// for scalar types. A pseudo-destructor expression has no run-time semantics
1179/// beyond evaluating the base expression.
1180class CXXPseudoDestructorExpr : public Expr {
1181  /// \brief The base expression (that is being destroyed).
1182  Stmt *Base;
1183
1184  /// \brief Whether the operator was an arrow ('->'); otherwise, it was a
1185  /// period ('.').
1186  bool IsArrow : 1;
1187
1188  /// \brief The location of the '.' or '->' operator.
1189  SourceLocation OperatorLoc;
1190
1191  /// \brief The nested-name-specifier that follows the operator, if present.
1192  NestedNameSpecifier *Qualifier;
1193
1194  /// \brief The source range that covers the nested-name-specifier, if
1195  /// present.
1196  SourceRange QualifierRange;
1197
1198  /// \brief The type that precedes the '::' in a qualified pseudo-destructor
1199  /// expression.
1200  TypeSourceInfo *ScopeType;
1201
1202  /// \brief The location of the '::' in a qualified pseudo-destructor
1203  /// expression.
1204  SourceLocation ColonColonLoc;
1205
1206  /// \brief The location of the '~'.
1207  SourceLocation TildeLoc;
1208
1209  /// \brief The type being destroyed, or its name if we were unable to
1210  /// resolve the name.
1211  PseudoDestructorTypeStorage DestroyedType;
1212
1213public:
1214  CXXPseudoDestructorExpr(ASTContext &Context,
1215                          Expr *Base, bool isArrow, SourceLocation OperatorLoc,
1216                          NestedNameSpecifier *Qualifier,
1217                          SourceRange QualifierRange,
1218                          TypeSourceInfo *ScopeType,
1219                          SourceLocation ColonColonLoc,
1220                          SourceLocation TildeLoc,
1221                          PseudoDestructorTypeStorage DestroyedType)
1222    : Expr(CXXPseudoDestructorExprClass,
1223           Context.getPointerType(Context.getFunctionType(Context.VoidTy, 0, 0,
1224                                                          false, 0, false,
1225                                                          false, 0, 0,
1226                                                      FunctionType::ExtInfo())),
1227           /*isTypeDependent=*/(Base->isTypeDependent() ||
1228            (DestroyedType.getTypeSourceInfo() &&
1229              DestroyedType.getTypeSourceInfo()->getType()->isDependentType())),
1230           /*isValueDependent=*/Base->isValueDependent()),
1231      Base(static_cast<Stmt *>(Base)), IsArrow(isArrow),
1232      OperatorLoc(OperatorLoc), Qualifier(Qualifier),
1233      QualifierRange(QualifierRange),
1234      ScopeType(ScopeType), ColonColonLoc(ColonColonLoc), TildeLoc(TildeLoc),
1235      DestroyedType(DestroyedType) { }
1236
1237  explicit CXXPseudoDestructorExpr(EmptyShell Shell)
1238    : Expr(CXXPseudoDestructorExprClass, Shell),
1239      Base(0), IsArrow(false), Qualifier(0), ScopeType(0) { }
1240
1241  void setBase(Expr *E) { Base = E; }
1242  Expr *getBase() const { return cast<Expr>(Base); }
1243
1244  /// \brief Determines whether this member expression actually had
1245  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
1246  /// x->Base::foo.
1247  bool hasQualifier() const { return Qualifier != 0; }
1248
1249  /// \brief If the member name was qualified, retrieves the source range of
1250  /// the nested-name-specifier that precedes the member name. Otherwise,
1251  /// returns an empty source range.
1252  SourceRange getQualifierRange() const { return QualifierRange; }
1253  void setQualifierRange(SourceRange R) { QualifierRange = R; }
1254
1255  /// \brief If the member name was qualified, retrieves the
1256  /// nested-name-specifier that precedes the member name. Otherwise, returns
1257  /// NULL.
1258  NestedNameSpecifier *getQualifier() const { return Qualifier; }
1259  void setQualifier(NestedNameSpecifier *NNS) { Qualifier = NNS; }
1260
1261  /// \brief Determine whether this pseudo-destructor expression was written
1262  /// using an '->' (otherwise, it used a '.').
1263  bool isArrow() const { return IsArrow; }
1264  void setArrow(bool A) { IsArrow = A; }
1265
1266  /// \brief Retrieve the location of the '.' or '->' operator.
1267  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1268  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
1269
1270  /// \brief Retrieve the scope type in a qualified pseudo-destructor
1271  /// expression.
1272  ///
1273  /// Pseudo-destructor expressions can have extra qualification within them
1274  /// that is not part of the nested-name-specifier, e.g., \c p->T::~T().
1275  /// Here, if the object type of the expression is (or may be) a scalar type,
1276  /// \p T may also be a scalar type and, therefore, cannot be part of a
1277  /// nested-name-specifier. It is stored as the "scope type" of the pseudo-
1278  /// destructor expression.
1279  TypeSourceInfo *getScopeTypeInfo() const { return ScopeType; }
1280  void setScopeTypeInfo(TypeSourceInfo *Info) { ScopeType = Info; }
1281
1282  /// \brief Retrieve the location of the '::' in a qualified pseudo-destructor
1283  /// expression.
1284  SourceLocation getColonColonLoc() const { return ColonColonLoc; }
1285  void setColonColonLoc(SourceLocation L) { ColonColonLoc = L; }
1286
1287  /// \brief Retrieve the location of the '~'.
1288  SourceLocation getTildeLoc() const { return TildeLoc; }
1289  void setTildeLoc(SourceLocation L) { TildeLoc = L; }
1290
1291  /// \brief Retrieve the source location information for the type
1292  /// being destroyed.
1293  ///
1294  /// This type-source information is available for non-dependent
1295  /// pseudo-destructor expressions and some dependent pseudo-destructor
1296  /// expressions. Returns NULL if we only have the identifier for a
1297  /// dependent pseudo-destructor expression.
1298  TypeSourceInfo *getDestroyedTypeInfo() const {
1299    return DestroyedType.getTypeSourceInfo();
1300  }
1301
1302  /// \brief In a dependent pseudo-destructor expression for which we do not
1303  /// have full type information on the destroyed type, provides the name
1304  /// of the destroyed type.
1305  IdentifierInfo *getDestroyedTypeIdentifier() const {
1306    return DestroyedType.getIdentifier();
1307  }
1308
1309  /// \brief Retrieve the type being destroyed.
1310  QualType getDestroyedType() const;
1311
1312  /// \brief Retrieve the starting location of the type being destroyed.
1313  SourceLocation getDestroyedTypeLoc() const {
1314    return DestroyedType.getLocation();
1315  }
1316
1317  /// \brief Set the name of destroyed type for a dependent pseudo-destructor
1318  /// expression.
1319  void setDestroyedType(IdentifierInfo *II, SourceLocation Loc) {
1320    DestroyedType = PseudoDestructorTypeStorage(II, Loc);
1321  }
1322
1323  /// \brief Set the destroyed type.
1324  void setDestroyedType(TypeSourceInfo *Info) {
1325    DestroyedType = PseudoDestructorTypeStorage(Info);
1326  }
1327
1328  virtual SourceRange getSourceRange() const;
1329
1330  static bool classof(const Stmt *T) {
1331    return T->getStmtClass() == CXXPseudoDestructorExprClass;
1332  }
1333  static bool classof(const CXXPseudoDestructorExpr *) { return true; }
1334
1335  // Iterators
1336  virtual child_iterator child_begin();
1337  virtual child_iterator child_end();
1338};
1339
1340/// UnaryTypeTraitExpr - A GCC or MS unary type trait, as used in the
1341/// implementation of TR1/C++0x type trait templates.
1342/// Example:
1343/// __is_pod(int) == true
1344/// __is_enum(std::string) == false
1345class UnaryTypeTraitExpr : public Expr {
1346  /// UTT - The trait.
1347  UnaryTypeTrait UTT;
1348
1349  /// Loc - The location of the type trait keyword.
1350  SourceLocation Loc;
1351
1352  /// RParen - The location of the closing paren.
1353  SourceLocation RParen;
1354
1355  /// QueriedType - The type we're testing.
1356  QualType QueriedType;
1357
1358public:
1359  UnaryTypeTraitExpr(SourceLocation loc, UnaryTypeTrait utt, QualType queried,
1360                     SourceLocation rparen, QualType ty)
1361    : Expr(UnaryTypeTraitExprClass, ty, false, queried->isDependentType()),
1362      UTT(utt), Loc(loc), RParen(rparen), QueriedType(queried) { }
1363
1364  explicit UnaryTypeTraitExpr(EmptyShell Empty)
1365    : Expr(UnaryTypeTraitExprClass, Empty), UTT((UnaryTypeTrait)0) { }
1366
1367  virtual SourceRange getSourceRange() const { return SourceRange(Loc, RParen);}
1368
1369  UnaryTypeTrait getTrait() const { return UTT; }
1370
1371  QualType getQueriedType() const { return QueriedType; }
1372
1373  bool EvaluateTrait(ASTContext&) const;
1374
1375  static bool classof(const Stmt *T) {
1376    return T->getStmtClass() == UnaryTypeTraitExprClass;
1377  }
1378  static bool classof(const UnaryTypeTraitExpr *) { return true; }
1379
1380  // Iterators
1381  virtual child_iterator child_begin();
1382  virtual child_iterator child_end();
1383
1384  friend class PCHStmtReader;
1385};
1386
1387/// \brief A reference to an overloaded function set, either an
1388/// \t UnresolvedLookupExpr or an \t UnresolvedMemberExpr.
1389class OverloadExpr : public Expr {
1390  /// The results.  These are undesugared, which is to say, they may
1391  /// include UsingShadowDecls.  Access is relative to the naming
1392  /// class.
1393  // FIXME: Allocate this data after the OverloadExpr subclass.
1394  DeclAccessPair *Results;
1395  unsigned NumResults;
1396
1397  /// The common name of these declarations.
1398  DeclarationName Name;
1399
1400  /// The scope specifier, if any.
1401  NestedNameSpecifier *Qualifier;
1402
1403  /// The source range of the scope specifier.
1404  SourceRange QualifierRange;
1405
1406  /// The location of the name.
1407  SourceLocation NameLoc;
1408
1409protected:
1410  /// True if the name was a template-id.
1411  bool HasExplicitTemplateArgs;
1412
1413  OverloadExpr(StmtClass K, ASTContext &C, QualType T, bool Dependent,
1414               NestedNameSpecifier *Qualifier, SourceRange QRange,
1415               DeclarationName Name, SourceLocation NameLoc,
1416               bool HasTemplateArgs,
1417               UnresolvedSetIterator Begin, UnresolvedSetIterator End);
1418
1419  OverloadExpr(StmtClass K, EmptyShell Empty)
1420    : Expr(K, Empty), Results(0), NumResults(0),
1421      Qualifier(0), HasExplicitTemplateArgs(false) { }
1422
1423public:
1424  /// Computes whether an unresolved lookup on the given declarations
1425  /// and optional template arguments is type- and value-dependent.
1426  static bool ComputeDependence(UnresolvedSetIterator Begin,
1427                                UnresolvedSetIterator End,
1428                                const TemplateArgumentListInfo *Args);
1429
1430  /// Finds the overloaded expression in the given expression of
1431  /// OverloadTy.
1432  ///
1433  /// \return the expression (which must be there) and true if it is
1434  /// within an address-of operator.
1435  static llvm::PointerIntPair<OverloadExpr*,1> find(Expr *E) {
1436    assert(E->getType()->isSpecificBuiltinType(BuiltinType::Overload));
1437
1438    bool op = false;
1439    E = E->IgnoreParens();
1440    if (isa<UnaryOperator>(E))
1441      op = true, E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
1442    return llvm::PointerIntPair<OverloadExpr*,1>(cast<OverloadExpr>(E), op);
1443  }
1444
1445  /// Gets the naming class of this lookup, if any.
1446  CXXRecordDecl *getNamingClass() const;
1447
1448  typedef UnresolvedSetImpl::iterator decls_iterator;
1449  decls_iterator decls_begin() const { return UnresolvedSetIterator(Results); }
1450  decls_iterator decls_end() const {
1451    return UnresolvedSetIterator(Results + NumResults);
1452  }
1453
1454  void initializeResults(ASTContext &C,
1455                         UnresolvedSetIterator Begin,UnresolvedSetIterator End);
1456
1457  /// Gets the number of declarations in the unresolved set.
1458  unsigned getNumDecls() const { return NumResults; }
1459
1460  /// Gets the name looked up.
1461  DeclarationName getName() const { return Name; }
1462  void setName(DeclarationName N) { Name = N; }
1463
1464  /// Gets the location of the name.
1465  SourceLocation getNameLoc() const { return NameLoc; }
1466  void setNameLoc(SourceLocation Loc) { NameLoc = Loc; }
1467
1468  /// Fetches the nested-name qualifier, if one was given.
1469  NestedNameSpecifier *getQualifier() const { return Qualifier; }
1470  void setQualifier(NestedNameSpecifier *NNS) { Qualifier = NNS; }
1471
1472  /// Fetches the range of the nested-name qualifier.
1473  SourceRange getQualifierRange() const { return QualifierRange; }
1474  void setQualifierRange(SourceRange R) { QualifierRange = R; }
1475
1476  /// \brief Determines whether this expression had an explicit
1477  /// template argument list, e.g. f<int>.
1478  bool hasExplicitTemplateArgs() const { return HasExplicitTemplateArgs; }
1479
1480  ExplicitTemplateArgumentList &getExplicitTemplateArgs(); // defined far below
1481
1482  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
1483    return const_cast<OverloadExpr*>(this)->getExplicitTemplateArgs();
1484  }
1485
1486  ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() {
1487    if (hasExplicitTemplateArgs())
1488      return &getExplicitTemplateArgs();
1489    return 0;
1490  }
1491
1492  static bool classof(const Stmt *T) {
1493    return T->getStmtClass() == UnresolvedLookupExprClass ||
1494           T->getStmtClass() == UnresolvedMemberExprClass;
1495  }
1496  static bool classof(const OverloadExpr *) { return true; }
1497};
1498
1499/// \brief A reference to a name which we were able to look up during
1500/// parsing but could not resolve to a specific declaration.  This
1501/// arises in several ways:
1502///   * we might be waiting for argument-dependent lookup
1503///   * the name might resolve to an overloaded function
1504/// and eventually:
1505///   * the lookup might have included a function template
1506/// These never include UnresolvedUsingValueDecls, which are always
1507/// class members and therefore appear only in
1508/// UnresolvedMemberLookupExprs.
1509class UnresolvedLookupExpr : public OverloadExpr {
1510  /// True if these lookup results should be extended by
1511  /// argument-dependent lookup if this is the operand of a function
1512  /// call.
1513  bool RequiresADL;
1514
1515  /// True if these lookup results are overloaded.  This is pretty
1516  /// trivially rederivable if we urgently need to kill this field.
1517  bool Overloaded;
1518
1519  /// The naming class (C++ [class.access.base]p5) of the lookup, if
1520  /// any.  This can generally be recalculated from the context chain,
1521  /// but that can be fairly expensive for unqualified lookups.  If we
1522  /// want to improve memory use here, this could go in a union
1523  /// against the qualified-lookup bits.
1524  CXXRecordDecl *NamingClass;
1525
1526  UnresolvedLookupExpr(ASTContext &C, QualType T, bool Dependent,
1527                       CXXRecordDecl *NamingClass,
1528                       NestedNameSpecifier *Qualifier, SourceRange QRange,
1529                       DeclarationName Name, SourceLocation NameLoc,
1530                       bool RequiresADL, bool Overloaded, bool HasTemplateArgs,
1531                       UnresolvedSetIterator Begin, UnresolvedSetIterator End)
1532    : OverloadExpr(UnresolvedLookupExprClass, C, T, Dependent, Qualifier,
1533                   QRange, Name, NameLoc, HasTemplateArgs, Begin, End),
1534      RequiresADL(RequiresADL), Overloaded(Overloaded), NamingClass(NamingClass)
1535  {}
1536
1537  UnresolvedLookupExpr(EmptyShell Empty)
1538    : OverloadExpr(UnresolvedLookupExprClass, Empty),
1539      RequiresADL(false), Overloaded(false), NamingClass(0)
1540  {}
1541
1542public:
1543  static UnresolvedLookupExpr *Create(ASTContext &C,
1544                                      bool Dependent,
1545                                      CXXRecordDecl *NamingClass,
1546                                      NestedNameSpecifier *Qualifier,
1547                                      SourceRange QualifierRange,
1548                                      DeclarationName Name,
1549                                      SourceLocation NameLoc,
1550                                      bool ADL, bool Overloaded,
1551                                      UnresolvedSetIterator Begin,
1552                                      UnresolvedSetIterator End) {
1553    return new(C) UnresolvedLookupExpr(C,
1554                                       Dependent ? C.DependentTy : C.OverloadTy,
1555                                       Dependent, NamingClass,
1556                                       Qualifier, QualifierRange,
1557                                       Name, NameLoc, ADL, Overloaded, false,
1558                                       Begin, End);
1559  }
1560
1561  static UnresolvedLookupExpr *Create(ASTContext &C,
1562                                      bool Dependent,
1563                                      CXXRecordDecl *NamingClass,
1564                                      NestedNameSpecifier *Qualifier,
1565                                      SourceRange QualifierRange,
1566                                      DeclarationName Name,
1567                                      SourceLocation NameLoc,
1568                                      bool ADL,
1569                                      const TemplateArgumentListInfo &Args,
1570                                      UnresolvedSetIterator Begin,
1571                                      UnresolvedSetIterator End);
1572
1573  static UnresolvedLookupExpr *CreateEmpty(ASTContext &C,
1574                                           unsigned NumTemplateArgs);
1575
1576  /// True if this declaration should be extended by
1577  /// argument-dependent lookup.
1578  bool requiresADL() const { return RequiresADL; }
1579  void setRequiresADL(bool V) { RequiresADL = V; }
1580
1581  /// True if this lookup is overloaded.
1582  bool isOverloaded() const { return Overloaded; }
1583  void setOverloaded(bool V) { Overloaded = V; }
1584
1585  /// Gets the 'naming class' (in the sense of C++0x
1586  /// [class.access.base]p5) of the lookup.  This is the scope
1587  /// that was looked in to find these results.
1588  CXXRecordDecl *getNamingClass() const { return NamingClass; }
1589  void setNamingClass(CXXRecordDecl *D) { NamingClass = D; }
1590
1591  // Note that, inconsistently with the explicit-template-argument AST
1592  // nodes, users are *forbidden* from calling these methods on objects
1593  // without explicit template arguments.
1594
1595  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
1596    assert(hasExplicitTemplateArgs());
1597    return *reinterpret_cast<ExplicitTemplateArgumentList*>(this + 1);
1598  }
1599
1600  /// Gets a reference to the explicit template argument list.
1601  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
1602    assert(hasExplicitTemplateArgs());
1603    return *reinterpret_cast<const ExplicitTemplateArgumentList*>(this + 1);
1604  }
1605
1606  /// \brief Copies the template arguments (if present) into the given
1607  /// structure.
1608  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1609    getExplicitTemplateArgs().copyInto(List);
1610  }
1611
1612  SourceLocation getLAngleLoc() const {
1613    return getExplicitTemplateArgs().LAngleLoc;
1614  }
1615
1616  SourceLocation getRAngleLoc() const {
1617    return getExplicitTemplateArgs().RAngleLoc;
1618  }
1619
1620  TemplateArgumentLoc const *getTemplateArgs() const {
1621    return getExplicitTemplateArgs().getTemplateArgs();
1622  }
1623
1624  unsigned getNumTemplateArgs() const {
1625    return getExplicitTemplateArgs().NumTemplateArgs;
1626  }
1627
1628  virtual SourceRange getSourceRange() const {
1629    SourceRange Range(getNameLoc());
1630    if (getQualifier()) Range.setBegin(getQualifierRange().getBegin());
1631    if (hasExplicitTemplateArgs()) Range.setEnd(getRAngleLoc());
1632    return Range;
1633  }
1634
1635  virtual StmtIterator child_begin();
1636  virtual StmtIterator child_end();
1637
1638  static bool classof(const Stmt *T) {
1639    return T->getStmtClass() == UnresolvedLookupExprClass;
1640  }
1641  static bool classof(const UnresolvedLookupExpr *) { return true; }
1642};
1643
1644/// \brief A qualified reference to a name whose declaration cannot
1645/// yet be resolved.
1646///
1647/// DependentScopeDeclRefExpr is similar to DeclRefExpr in that
1648/// it expresses a reference to a declaration such as
1649/// X<T>::value. The difference, however, is that an
1650/// DependentScopeDeclRefExpr node is used only within C++ templates when
1651/// the qualification (e.g., X<T>::) refers to a dependent type. In
1652/// this case, X<T>::value cannot resolve to a declaration because the
1653/// declaration will differ from on instantiation of X<T> to the
1654/// next. Therefore, DependentScopeDeclRefExpr keeps track of the
1655/// qualifier (X<T>::) and the name of the entity being referenced
1656/// ("value"). Such expressions will instantiate to a DeclRefExpr once the
1657/// declaration can be found.
1658class DependentScopeDeclRefExpr : public Expr {
1659  /// The name of the entity we will be referencing.
1660  DeclarationName Name;
1661
1662  /// Location of the name of the declaration we're referencing.
1663  SourceLocation Loc;
1664
1665  /// QualifierRange - The source range that covers the
1666  /// nested-name-specifier.
1667  SourceRange QualifierRange;
1668
1669  /// \brief The nested-name-specifier that qualifies this unresolved
1670  /// declaration name.
1671  NestedNameSpecifier *Qualifier;
1672
1673  /// \brief Whether the name includes explicit template arguments.
1674  bool HasExplicitTemplateArgs;
1675
1676  DependentScopeDeclRefExpr(QualType T,
1677                            NestedNameSpecifier *Qualifier,
1678                            SourceRange QualifierRange,
1679                            DeclarationName Name,
1680                            SourceLocation NameLoc,
1681                            bool HasExplicitTemplateArgs)
1682    : Expr(DependentScopeDeclRefExprClass, T, true, true),
1683      Name(Name), Loc(NameLoc),
1684      QualifierRange(QualifierRange), Qualifier(Qualifier),
1685      HasExplicitTemplateArgs(HasExplicitTemplateArgs)
1686  {}
1687
1688public:
1689  static DependentScopeDeclRefExpr *Create(ASTContext &C,
1690                                           NestedNameSpecifier *Qualifier,
1691                                           SourceRange QualifierRange,
1692                                           DeclarationName Name,
1693                                           SourceLocation NameLoc,
1694                              const TemplateArgumentListInfo *TemplateArgs = 0);
1695
1696  static DependentScopeDeclRefExpr *CreateEmpty(ASTContext &C,
1697                                                unsigned NumTemplateArgs);
1698
1699  /// \brief Retrieve the name that this expression refers to.
1700  DeclarationName getDeclName() const { return Name; }
1701  void setDeclName(DeclarationName N) { Name =  N; }
1702
1703  /// \brief Retrieve the location of the name within the expression.
1704  SourceLocation getLocation() const { return Loc; }
1705  void setLocation(SourceLocation L) { Loc = L; }
1706
1707  /// \brief Retrieve the source range of the nested-name-specifier.
1708  SourceRange getQualifierRange() const { return QualifierRange; }
1709  void setQualifierRange(SourceRange R) { QualifierRange = R; }
1710
1711  /// \brief Retrieve the nested-name-specifier that qualifies this
1712  /// declaration.
1713  NestedNameSpecifier *getQualifier() const { return Qualifier; }
1714  void setQualifier(NestedNameSpecifier *NNS) { Qualifier = NNS; }
1715
1716  /// Determines whether this lookup had explicit template arguments.
1717  bool hasExplicitTemplateArgs() const { return HasExplicitTemplateArgs; }
1718
1719  // Note that, inconsistently with the explicit-template-argument AST
1720  // nodes, users are *forbidden* from calling these methods on objects
1721  // without explicit template arguments.
1722
1723  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
1724    assert(hasExplicitTemplateArgs());
1725    return *reinterpret_cast<ExplicitTemplateArgumentList*>(this + 1);
1726  }
1727
1728  /// Gets a reference to the explicit template argument list.
1729  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
1730    assert(hasExplicitTemplateArgs());
1731    return *reinterpret_cast<const ExplicitTemplateArgumentList*>(this + 1);
1732  }
1733
1734  /// \brief Copies the template arguments (if present) into the given
1735  /// structure.
1736  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1737    getExplicitTemplateArgs().copyInto(List);
1738  }
1739
1740  SourceLocation getLAngleLoc() const {
1741    return getExplicitTemplateArgs().LAngleLoc;
1742  }
1743
1744  SourceLocation getRAngleLoc() const {
1745    return getExplicitTemplateArgs().RAngleLoc;
1746  }
1747
1748  TemplateArgumentLoc const *getTemplateArgs() const {
1749    return getExplicitTemplateArgs().getTemplateArgs();
1750  }
1751
1752  unsigned getNumTemplateArgs() const {
1753    return getExplicitTemplateArgs().NumTemplateArgs;
1754  }
1755
1756  virtual SourceRange getSourceRange() const {
1757    SourceRange Range(QualifierRange.getBegin(), getLocation());
1758    if (hasExplicitTemplateArgs())
1759      Range.setEnd(getRAngleLoc());
1760    return Range;
1761  }
1762
1763  static bool classof(const Stmt *T) {
1764    return T->getStmtClass() == DependentScopeDeclRefExprClass;
1765  }
1766  static bool classof(const DependentScopeDeclRefExpr *) { return true; }
1767
1768  virtual StmtIterator child_begin();
1769  virtual StmtIterator child_end();
1770};
1771
1772class CXXExprWithTemporaries : public Expr {
1773  Stmt *SubExpr;
1774
1775  CXXTemporary **Temps;
1776  unsigned NumTemps;
1777
1778  CXXExprWithTemporaries(ASTContext &C, Expr *SubExpr, CXXTemporary **Temps,
1779                         unsigned NumTemps);
1780  ~CXXExprWithTemporaries();
1781
1782protected:
1783  virtual void DoDestroy(ASTContext &C);
1784
1785public:
1786  CXXExprWithTemporaries(EmptyShell Empty)
1787    : Expr(CXXExprWithTemporariesClass, Empty),
1788      SubExpr(0), Temps(0), NumTemps(0) {}
1789
1790  static CXXExprWithTemporaries *Create(ASTContext &C, Expr *SubExpr,
1791                                        CXXTemporary **Temps,
1792                                        unsigned NumTemps);
1793
1794  unsigned getNumTemporaries() const { return NumTemps; }
1795  void setNumTemporaries(ASTContext &C, unsigned N);
1796
1797  CXXTemporary *getTemporary(unsigned i) {
1798    assert(i < NumTemps && "Index out of range");
1799    return Temps[i];
1800  }
1801  const CXXTemporary *getTemporary(unsigned i) const {
1802    return const_cast<CXXExprWithTemporaries*>(this)->getTemporary(i);
1803  }
1804  void setTemporary(unsigned i, CXXTemporary *T) {
1805    assert(i < NumTemps && "Index out of range");
1806    Temps[i] = T;
1807  }
1808
1809  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
1810  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
1811  void setSubExpr(Expr *E) { SubExpr = E; }
1812
1813  virtual SourceRange getSourceRange() const {
1814    return SubExpr->getSourceRange();
1815  }
1816
1817  // Implement isa/cast/dyncast/etc.
1818  static bool classof(const Stmt *T) {
1819    return T->getStmtClass() == CXXExprWithTemporariesClass;
1820  }
1821  static bool classof(const CXXExprWithTemporaries *) { return true; }
1822
1823  // Iterators
1824  virtual child_iterator child_begin();
1825  virtual child_iterator child_end();
1826};
1827
1828/// \brief Describes an explicit type conversion that uses functional
1829/// notion but could not be resolved because one or more arguments are
1830/// type-dependent.
1831///
1832/// The explicit type conversions expressed by
1833/// CXXUnresolvedConstructExpr have the form \c T(a1, a2, ..., aN),
1834/// where \c T is some type and \c a1, a2, ..., aN are values, and
1835/// either \C T is a dependent type or one or more of the \c a's is
1836/// type-dependent. For example, this would occur in a template such
1837/// as:
1838///
1839/// \code
1840///   template<typename T, typename A1>
1841///   inline T make_a(const A1& a1) {
1842///     return T(a1);
1843///   }
1844/// \endcode
1845///
1846/// When the returned expression is instantiated, it may resolve to a
1847/// constructor call, conversion function call, or some kind of type
1848/// conversion.
1849class CXXUnresolvedConstructExpr : public Expr {
1850  /// \brief The starting location of the type
1851  SourceLocation TyBeginLoc;
1852
1853  /// \brief The type being constructed.
1854  QualType Type;
1855
1856  /// \brief The location of the left parentheses ('(').
1857  SourceLocation LParenLoc;
1858
1859  /// \brief The location of the right parentheses (')').
1860  SourceLocation RParenLoc;
1861
1862  /// \brief The number of arguments used to construct the type.
1863  unsigned NumArgs;
1864
1865  CXXUnresolvedConstructExpr(SourceLocation TyBegin,
1866                             QualType T,
1867                             SourceLocation LParenLoc,
1868                             Expr **Args,
1869                             unsigned NumArgs,
1870                             SourceLocation RParenLoc);
1871
1872  CXXUnresolvedConstructExpr(EmptyShell Empty, unsigned NumArgs)
1873    : Expr(CXXUnresolvedConstructExprClass, Empty), NumArgs(NumArgs) { }
1874
1875public:
1876  static CXXUnresolvedConstructExpr *Create(ASTContext &C,
1877                                            SourceLocation TyBegin,
1878                                            QualType T,
1879                                            SourceLocation LParenLoc,
1880                                            Expr **Args,
1881                                            unsigned NumArgs,
1882                                            SourceLocation RParenLoc);
1883
1884  static CXXUnresolvedConstructExpr *CreateEmpty(ASTContext &C,
1885                                                 unsigned NumArgs);
1886
1887  /// \brief Retrieve the source location where the type begins.
1888  SourceLocation getTypeBeginLoc() const { return TyBeginLoc; }
1889  void setTypeBeginLoc(SourceLocation L) { TyBeginLoc = L; }
1890
1891  /// \brief Retrieve the type that is being constructed, as specified
1892  /// in the source code.
1893  QualType getTypeAsWritten() const { return Type; }
1894  void setTypeAsWritten(QualType T) { Type = T; }
1895
1896  /// \brief Retrieve the location of the left parentheses ('(') that
1897  /// precedes the argument list.
1898  SourceLocation getLParenLoc() const { return LParenLoc; }
1899  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
1900
1901  /// \brief Retrieve the location of the right parentheses (')') that
1902  /// follows the argument list.
1903  SourceLocation getRParenLoc() const { return RParenLoc; }
1904  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1905
1906  /// \brief Retrieve the number of arguments.
1907  unsigned arg_size() const { return NumArgs; }
1908
1909  typedef Expr** arg_iterator;
1910  arg_iterator arg_begin() { return reinterpret_cast<Expr**>(this + 1); }
1911  arg_iterator arg_end() { return arg_begin() + NumArgs; }
1912
1913  typedef const Expr* const * const_arg_iterator;
1914  const_arg_iterator arg_begin() const {
1915    return reinterpret_cast<const Expr* const *>(this + 1);
1916  }
1917  const_arg_iterator arg_end() const {
1918    return arg_begin() + NumArgs;
1919  }
1920
1921  Expr *getArg(unsigned I) {
1922    assert(I < NumArgs && "Argument index out-of-range");
1923    return *(arg_begin() + I);
1924  }
1925
1926  const Expr *getArg(unsigned I) const {
1927    assert(I < NumArgs && "Argument index out-of-range");
1928    return *(arg_begin() + I);
1929  }
1930
1931  void setArg(unsigned I, Expr *E) {
1932    assert(I < NumArgs && "Argument index out-of-range");
1933    *(arg_begin() + I) = E;
1934  }
1935
1936  virtual SourceRange getSourceRange() const {
1937    return SourceRange(TyBeginLoc, RParenLoc);
1938  }
1939  static bool classof(const Stmt *T) {
1940    return T->getStmtClass() == CXXUnresolvedConstructExprClass;
1941  }
1942  static bool classof(const CXXUnresolvedConstructExpr *) { return true; }
1943
1944  // Iterators
1945  virtual child_iterator child_begin();
1946  virtual child_iterator child_end();
1947};
1948
1949/// \brief Represents a C++ member access expression where the actual
1950/// member referenced could not be resolved because the base
1951/// expression or the member name was dependent.
1952///
1953/// Like UnresolvedMemberExprs, these can be either implicit or
1954/// explicit accesses.  It is only possible to get one of these with
1955/// an implicit access if a qualifier is provided.
1956class CXXDependentScopeMemberExpr : public Expr {
1957  /// \brief The expression for the base pointer or class reference,
1958  /// e.g., the \c x in x.f.  Can be null in implicit accesses.
1959  Stmt *Base;
1960
1961  /// \brief The type of the base expression.  Never null, even for
1962  /// implicit accesses.
1963  QualType BaseType;
1964
1965  /// \brief Whether this member expression used the '->' operator or
1966  /// the '.' operator.
1967  bool IsArrow : 1;
1968
1969  /// \brief Whether this member expression has explicitly-specified template
1970  /// arguments.
1971  bool HasExplicitTemplateArgs : 1;
1972
1973  /// \brief The location of the '->' or '.' operator.
1974  SourceLocation OperatorLoc;
1975
1976  /// \brief The nested-name-specifier that precedes the member name, if any.
1977  NestedNameSpecifier *Qualifier;
1978
1979  /// \brief The source range covering the nested name specifier.
1980  SourceRange QualifierRange;
1981
1982  /// \brief In a qualified member access expression such as t->Base::f, this
1983  /// member stores the resolves of name lookup in the context of the member
1984  /// access expression, to be used at instantiation time.
1985  ///
1986  /// FIXME: This member, along with the Qualifier and QualifierRange, could
1987  /// be stuck into a structure that is optionally allocated at the end of
1988  /// the CXXDependentScopeMemberExpr, to save space in the common case.
1989  NamedDecl *FirstQualifierFoundInScope;
1990
1991  /// \brief The member to which this member expression refers, which
1992  /// can be name, overloaded operator, or destructor.
1993  /// FIXME: could also be a template-id
1994  DeclarationName Member;
1995
1996  /// \brief The location of the member name.
1997  SourceLocation MemberLoc;
1998
1999  CXXDependentScopeMemberExpr(ASTContext &C,
2000                          Expr *Base, QualType BaseType, bool IsArrow,
2001                          SourceLocation OperatorLoc,
2002                          NestedNameSpecifier *Qualifier,
2003                          SourceRange QualifierRange,
2004                          NamedDecl *FirstQualifierFoundInScope,
2005                          DeclarationName Member,
2006                          SourceLocation MemberLoc,
2007                          const TemplateArgumentListInfo *TemplateArgs);
2008
2009public:
2010  CXXDependentScopeMemberExpr(ASTContext &C,
2011                          Expr *Base, QualType BaseType,
2012                          bool IsArrow,
2013                          SourceLocation OperatorLoc,
2014                          NestedNameSpecifier *Qualifier,
2015                          SourceRange QualifierRange,
2016                          NamedDecl *FirstQualifierFoundInScope,
2017                          DeclarationName Member,
2018                          SourceLocation MemberLoc)
2019  : Expr(CXXDependentScopeMemberExprClass, C.DependentTy, true, true),
2020    Base(Base), BaseType(BaseType), IsArrow(IsArrow),
2021    HasExplicitTemplateArgs(false), OperatorLoc(OperatorLoc),
2022    Qualifier(Qualifier), QualifierRange(QualifierRange),
2023    FirstQualifierFoundInScope(FirstQualifierFoundInScope),
2024    Member(Member), MemberLoc(MemberLoc) { }
2025
2026  static CXXDependentScopeMemberExpr *
2027  Create(ASTContext &C,
2028         Expr *Base, QualType BaseType, bool IsArrow,
2029         SourceLocation OperatorLoc,
2030         NestedNameSpecifier *Qualifier,
2031         SourceRange QualifierRange,
2032         NamedDecl *FirstQualifierFoundInScope,
2033         DeclarationName Member,
2034         SourceLocation MemberLoc,
2035         const TemplateArgumentListInfo *TemplateArgs);
2036
2037  static CXXDependentScopeMemberExpr *
2038  CreateEmpty(ASTContext &C, unsigned NumTemplateArgs);
2039
2040  /// \brief True if this is an implicit access, i.e. one in which the
2041  /// member being accessed was not written in the source.  The source
2042  /// location of the operator is invalid in this case.
2043  bool isImplicitAccess() const { return Base == 0; }
2044
2045  /// \brief Retrieve the base object of this member expressions,
2046  /// e.g., the \c x in \c x.m.
2047  Expr *getBase() const {
2048    assert(!isImplicitAccess());
2049    return cast<Expr>(Base);
2050  }
2051  void setBase(Expr *E) { Base = E; }
2052
2053  QualType getBaseType() const { return BaseType; }
2054  void setBaseType(QualType T) { BaseType = T; }
2055
2056  /// \brief Determine whether this member expression used the '->'
2057  /// operator; otherwise, it used the '.' operator.
2058  bool isArrow() const { return IsArrow; }
2059  void setArrow(bool A) { IsArrow = A; }
2060
2061  /// \brief Retrieve the location of the '->' or '.' operator.
2062  SourceLocation getOperatorLoc() const { return OperatorLoc; }
2063  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
2064
2065  /// \brief Retrieve the nested-name-specifier that qualifies the member
2066  /// name.
2067  NestedNameSpecifier *getQualifier() const { return Qualifier; }
2068  void setQualifier(NestedNameSpecifier *NNS) { Qualifier = NNS; }
2069
2070  /// \brief Retrieve the source range covering the nested-name-specifier
2071  /// that qualifies the member name.
2072  SourceRange getQualifierRange() const { return QualifierRange; }
2073  void setQualifierRange(SourceRange R) { QualifierRange = R; }
2074
2075  /// \brief Retrieve the first part of the nested-name-specifier that was
2076  /// found in the scope of the member access expression when the member access
2077  /// was initially parsed.
2078  ///
2079  /// This function only returns a useful result when member access expression
2080  /// uses a qualified member name, e.g., "x.Base::f". Here, the declaration
2081  /// returned by this function describes what was found by unqualified name
2082  /// lookup for the identifier "Base" within the scope of the member access
2083  /// expression itself. At template instantiation time, this information is
2084  /// combined with the results of name lookup into the type of the object
2085  /// expression itself (the class type of x).
2086  NamedDecl *getFirstQualifierFoundInScope() const {
2087    return FirstQualifierFoundInScope;
2088  }
2089  void setFirstQualifierFoundInScope(NamedDecl *D) {
2090    FirstQualifierFoundInScope = D;
2091  }
2092
2093  /// \brief Retrieve the name of the member that this expression
2094  /// refers to.
2095  DeclarationName getMember() const { return Member; }
2096  void setMember(DeclarationName N) { Member = N; }
2097
2098  // \brief Retrieve the location of the name of the member that this
2099  // expression refers to.
2100  SourceLocation getMemberLoc() const { return MemberLoc; }
2101  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
2102
2103  /// \brief Determines whether this member expression actually had a C++
2104  /// template argument list explicitly specified, e.g., x.f<int>.
2105  bool hasExplicitTemplateArgs() const {
2106    return HasExplicitTemplateArgs;
2107  }
2108
2109  /// \brief Retrieve the explicit template argument list that followed the
2110  /// member template name, if any.
2111  ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() {
2112    assert(HasExplicitTemplateArgs);
2113    return reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
2114  }
2115
2116  /// \brief Retrieve the explicit template argument list that followed the
2117  /// member template name, if any.
2118  const ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() const {
2119    return const_cast<CXXDependentScopeMemberExpr *>(this)
2120             ->getExplicitTemplateArgumentList();
2121  }
2122
2123  /// \brief Copies the template arguments (if present) into the given
2124  /// structure.
2125  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2126    assert(HasExplicitTemplateArgs);
2127    getExplicitTemplateArgumentList()->copyInto(List);
2128  }
2129
2130  /// \brief Initializes the template arguments using the given structure.
2131  void initializeTemplateArgumentsFrom(const TemplateArgumentListInfo &List) {
2132    assert(HasExplicitTemplateArgs);
2133    getExplicitTemplateArgumentList()->initializeFrom(List);
2134  }
2135
2136  /// \brief Retrieve the location of the left angle bracket following the
2137  /// member name ('<'), if any.
2138  SourceLocation getLAngleLoc() const {
2139    assert(HasExplicitTemplateArgs);
2140    return getExplicitTemplateArgumentList()->LAngleLoc;
2141  }
2142
2143  /// \brief Retrieve the template arguments provided as part of this
2144  /// template-id.
2145  const TemplateArgumentLoc *getTemplateArgs() const {
2146    assert(HasExplicitTemplateArgs);
2147    return getExplicitTemplateArgumentList()->getTemplateArgs();
2148  }
2149
2150  /// \brief Retrieve the number of template arguments provided as part of this
2151  /// template-id.
2152  unsigned getNumTemplateArgs() const {
2153    assert(HasExplicitTemplateArgs);
2154    return getExplicitTemplateArgumentList()->NumTemplateArgs;
2155  }
2156
2157  /// \brief Retrieve the location of the right angle bracket following the
2158  /// template arguments ('>').
2159  SourceLocation getRAngleLoc() const {
2160    assert(HasExplicitTemplateArgs);
2161    return getExplicitTemplateArgumentList()->RAngleLoc;
2162  }
2163
2164  virtual SourceRange getSourceRange() const {
2165    SourceRange Range;
2166    if (!isImplicitAccess())
2167      Range.setBegin(Base->getSourceRange().getBegin());
2168    else if (getQualifier())
2169      Range.setBegin(getQualifierRange().getBegin());
2170    else
2171      Range.setBegin(MemberLoc);
2172
2173    if (hasExplicitTemplateArgs())
2174      Range.setEnd(getRAngleLoc());
2175    else
2176      Range.setEnd(MemberLoc);
2177    return Range;
2178  }
2179
2180  static bool classof(const Stmt *T) {
2181    return T->getStmtClass() == CXXDependentScopeMemberExprClass;
2182  }
2183  static bool classof(const CXXDependentScopeMemberExpr *) { return true; }
2184
2185  // Iterators
2186  virtual child_iterator child_begin();
2187  virtual child_iterator child_end();
2188};
2189
2190/// \brief Represents a C++ member access expression for which lookup
2191/// produced a set of overloaded functions.
2192///
2193/// The member access may be explicit or implicit:
2194///    struct A {
2195///      int a, b;
2196///      int explicitAccess() { return this->a + this->A::b; }
2197///      int implicitAccess() { return a + A::b; }
2198///    };
2199///
2200/// In the final AST, an explicit access always becomes a MemberExpr.
2201/// An implicit access may become either a MemberExpr or a
2202/// DeclRefExpr, depending on whether the member is static.
2203class UnresolvedMemberExpr : public OverloadExpr {
2204  /// \brief Whether this member expression used the '->' operator or
2205  /// the '.' operator.
2206  bool IsArrow : 1;
2207
2208  /// \brief Whether the lookup results contain an unresolved using
2209  /// declaration.
2210  bool HasUnresolvedUsing : 1;
2211
2212  /// \brief The expression for the base pointer or class reference,
2213  /// e.g., the \c x in x.f.  This can be null if this is an 'unbased'
2214  /// member expression
2215  Stmt *Base;
2216
2217  /// \brief The type of the base expression;  never null.
2218  QualType BaseType;
2219
2220  /// \brief The location of the '->' or '.' operator.
2221  SourceLocation OperatorLoc;
2222
2223  UnresolvedMemberExpr(ASTContext &C, QualType T, bool Dependent,
2224                       bool HasUnresolvedUsing,
2225                       Expr *Base, QualType BaseType, bool IsArrow,
2226                       SourceLocation OperatorLoc,
2227                       NestedNameSpecifier *Qualifier,
2228                       SourceRange QualifierRange,
2229                       DeclarationName Member,
2230                       SourceLocation MemberLoc,
2231                       const TemplateArgumentListInfo *TemplateArgs,
2232                       UnresolvedSetIterator Begin, UnresolvedSetIterator End);
2233
2234  UnresolvedMemberExpr(EmptyShell Empty)
2235    : OverloadExpr(UnresolvedMemberExprClass, Empty), IsArrow(false),
2236      HasUnresolvedUsing(false), Base(0) { }
2237
2238public:
2239  static UnresolvedMemberExpr *
2240  Create(ASTContext &C, bool Dependent, bool HasUnresolvedUsing,
2241         Expr *Base, QualType BaseType, bool IsArrow,
2242         SourceLocation OperatorLoc,
2243         NestedNameSpecifier *Qualifier,
2244         SourceRange QualifierRange,
2245         DeclarationName Member,
2246         SourceLocation MemberLoc,
2247         const TemplateArgumentListInfo *TemplateArgs,
2248         UnresolvedSetIterator Begin, UnresolvedSetIterator End);
2249
2250  static UnresolvedMemberExpr *
2251  CreateEmpty(ASTContext &C, unsigned NumTemplateArgs);
2252
2253  /// \brief True if this is an implicit access, i.e. one in which the
2254  /// member being accessed was not written in the source.  The source
2255  /// location of the operator is invalid in this case.
2256  bool isImplicitAccess() const { return Base == 0; }
2257
2258  /// \brief Retrieve the base object of this member expressions,
2259  /// e.g., the \c x in \c x.m.
2260  Expr *getBase() {
2261    assert(!isImplicitAccess());
2262    return cast<Expr>(Base);
2263  }
2264  const Expr *getBase() const {
2265    assert(!isImplicitAccess());
2266    return cast<Expr>(Base);
2267  }
2268  void setBase(Expr *E) { Base = E; }
2269
2270  QualType getBaseType() const { return BaseType; }
2271  void setBaseType(QualType T) { BaseType = T; }
2272
2273  /// \brief Determine whether the lookup results contain an unresolved using
2274  /// declaration.
2275  bool hasUnresolvedUsing() const { return HasUnresolvedUsing; }
2276  void setHasUnresolvedUsing(bool V) { HasUnresolvedUsing = V; }
2277
2278  /// \brief Determine whether this member expression used the '->'
2279  /// operator; otherwise, it used the '.' operator.
2280  bool isArrow() const { return IsArrow; }
2281  void setArrow(bool A) { IsArrow = A; }
2282
2283  /// \brief Retrieve the location of the '->' or '.' operator.
2284  SourceLocation getOperatorLoc() const { return OperatorLoc; }
2285  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
2286
2287  /// \brief Retrieves the naming class of this lookup.
2288  CXXRecordDecl *getNamingClass() const;
2289
2290  /// \brief Retrieve the name of the member that this expression
2291  /// refers to.
2292  DeclarationName getMemberName() const { return getName(); }
2293  void setMemberName(DeclarationName N) { setName(N); }
2294
2295  // \brief Retrieve the location of the name of the member that this
2296  // expression refers to.
2297  SourceLocation getMemberLoc() const { return getNameLoc(); }
2298  void setMemberLoc(SourceLocation L) { setNameLoc(L); }
2299
2300  /// \brief Retrieve the explicit template argument list that followed the
2301  /// member template name.
2302  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
2303    assert(hasExplicitTemplateArgs());
2304    return *reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
2305  }
2306
2307  /// \brief Retrieve the explicit template argument list that followed the
2308  /// member template name, if any.
2309  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
2310    assert(hasExplicitTemplateArgs());
2311    return *reinterpret_cast<const ExplicitTemplateArgumentList *>(this + 1);
2312  }
2313
2314  /// \brief Copies the template arguments into the given structure.
2315  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2316    getExplicitTemplateArgs().copyInto(List);
2317  }
2318
2319  /// \brief Retrieve the location of the left angle bracket following
2320  /// the member name ('<').
2321  SourceLocation getLAngleLoc() const {
2322    return getExplicitTemplateArgs().LAngleLoc;
2323  }
2324
2325  /// \brief Retrieve the template arguments provided as part of this
2326  /// template-id.
2327  const TemplateArgumentLoc *getTemplateArgs() const {
2328    return getExplicitTemplateArgs().getTemplateArgs();
2329  }
2330
2331  /// \brief Retrieve the number of template arguments provided as
2332  /// part of this template-id.
2333  unsigned getNumTemplateArgs() const {
2334    return getExplicitTemplateArgs().NumTemplateArgs;
2335  }
2336
2337  /// \brief Retrieve the location of the right angle bracket
2338  /// following the template arguments ('>').
2339  SourceLocation getRAngleLoc() const {
2340    return getExplicitTemplateArgs().RAngleLoc;
2341  }
2342
2343  virtual SourceRange getSourceRange() const {
2344    SourceRange Range;
2345    if (!isImplicitAccess())
2346      Range.setBegin(Base->getSourceRange().getBegin());
2347    else if (getQualifier())
2348      Range.setBegin(getQualifierRange().getBegin());
2349    else
2350      Range.setBegin(getMemberLoc());
2351
2352    if (hasExplicitTemplateArgs())
2353      Range.setEnd(getRAngleLoc());
2354    else
2355      Range.setEnd(getMemberLoc());
2356    return Range;
2357  }
2358
2359  static bool classof(const Stmt *T) {
2360    return T->getStmtClass() == UnresolvedMemberExprClass;
2361  }
2362  static bool classof(const UnresolvedMemberExpr *) { return true; }
2363
2364  // Iterators
2365  virtual child_iterator child_begin();
2366  virtual child_iterator child_end();
2367};
2368
2369inline ExplicitTemplateArgumentList &OverloadExpr::getExplicitTemplateArgs() {
2370  if (isa<UnresolvedLookupExpr>(this))
2371    return cast<UnresolvedLookupExpr>(this)->getExplicitTemplateArgs();
2372  else
2373    return cast<UnresolvedMemberExpr>(this)->getExplicitTemplateArgs();
2374}
2375
2376}  // end namespace clang
2377
2378#endif
2379