ExprCXX.h revision 4ca8ac2e61c37ddadf37024af86f3e1019af8532
1//===--- ExprCXX.h - Classes for representing expressions -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses for C++ expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPRCXX_H
15#define LLVM_CLANG_AST_EXPRCXX_H
16
17#include "clang/AST/Expr.h"
18#include "clang/AST/UnresolvedSet.h"
19#include "clang/AST/TemplateBase.h"
20#include "clang/Basic/ExpressionTraits.h"
21#include "clang/Basic/Lambda.h"
22#include "clang/Basic/TypeTraits.h"
23
24namespace clang {
25
26class CXXConstructorDecl;
27class CXXDestructorDecl;
28class CXXMethodDecl;
29class CXXTemporary;
30class TemplateArgumentListInfo;
31
32//===--------------------------------------------------------------------===//
33// C++ Expressions.
34//===--------------------------------------------------------------------===//
35
36/// \brief A call to an overloaded operator written using operator
37/// syntax.
38///
39/// Represents a call to an overloaded operator written using operator
40/// syntax, e.g., "x + y" or "*p". While semantically equivalent to a
41/// normal call, this AST node provides better information about the
42/// syntactic representation of the call.
43///
44/// In a C++ template, this expression node kind will be used whenever
45/// any of the arguments are type-dependent. In this case, the
46/// function itself will be a (possibly empty) set of functions and
47/// function templates that were found by name lookup at template
48/// definition time.
49class CXXOperatorCallExpr : public CallExpr {
50  /// \brief The overloaded operator.
51  OverloadedOperatorKind Operator;
52
53public:
54  CXXOperatorCallExpr(ASTContext& C, OverloadedOperatorKind Op, Expr *fn,
55                      Expr **args, unsigned numargs, QualType t,
56                      ExprValueKind VK, SourceLocation operatorloc)
57    : CallExpr(C, CXXOperatorCallExprClass, fn, 0, args, numargs, t, VK,
58               operatorloc),
59      Operator(Op) {}
60  explicit CXXOperatorCallExpr(ASTContext& C, EmptyShell Empty) :
61    CallExpr(C, CXXOperatorCallExprClass, Empty) { }
62
63
64  /// getOperator - Returns the kind of overloaded operator that this
65  /// expression refers to.
66  OverloadedOperatorKind getOperator() const { return Operator; }
67  void setOperator(OverloadedOperatorKind Kind) { Operator = Kind; }
68
69  /// getOperatorLoc - Returns the location of the operator symbol in
70  /// the expression. When @c getOperator()==OO_Call, this is the
71  /// location of the right parentheses; when @c
72  /// getOperator()==OO_Subscript, this is the location of the right
73  /// bracket.
74  SourceLocation getOperatorLoc() const { return getRParenLoc(); }
75
76  SourceRange getSourceRange() const;
77
78  static bool classof(const Stmt *T) {
79    return T->getStmtClass() == CXXOperatorCallExprClass;
80  }
81  static bool classof(const CXXOperatorCallExpr *) { return true; }
82};
83
84/// CXXMemberCallExpr - Represents a call to a member function that
85/// may be written either with member call syntax (e.g., "obj.func()"
86/// or "objptr->func()") or with normal function-call syntax
87/// ("func()") within a member function that ends up calling a member
88/// function. The callee in either case is a MemberExpr that contains
89/// both the object argument and the member function, while the
90/// arguments are the arguments within the parentheses (not including
91/// the object argument).
92class CXXMemberCallExpr : public CallExpr {
93public:
94  CXXMemberCallExpr(ASTContext &C, Expr *fn, Expr **args, unsigned numargs,
95                    QualType t, ExprValueKind VK, SourceLocation RP)
96    : CallExpr(C, CXXMemberCallExprClass, fn, 0, args, numargs, t, VK, RP) {}
97
98  CXXMemberCallExpr(ASTContext &C, EmptyShell Empty)
99    : CallExpr(C, CXXMemberCallExprClass, Empty) { }
100
101  /// getImplicitObjectArgument - Retrieves the implicit object
102  /// argument for the member call. For example, in "x.f(5)", this
103  /// operation would return "x".
104  Expr *getImplicitObjectArgument() const;
105
106  /// Retrieves the declaration of the called method.
107  CXXMethodDecl *getMethodDecl() const;
108
109  /// getRecordDecl - Retrieves the CXXRecordDecl for the underlying type of
110  /// the implicit object argument. Note that this is may not be the same
111  /// declaration as that of the class context of the CXXMethodDecl which this
112  /// function is calling.
113  /// FIXME: Returns 0 for member pointer call exprs.
114  CXXRecordDecl *getRecordDecl();
115
116  static bool classof(const Stmt *T) {
117    return T->getStmtClass() == CXXMemberCallExprClass;
118  }
119  static bool classof(const CXXMemberCallExpr *) { return true; }
120};
121
122/// CUDAKernelCallExpr - Represents a call to a CUDA kernel function.
123class CUDAKernelCallExpr : public CallExpr {
124private:
125  enum { CONFIG, END_PREARG };
126
127public:
128  CUDAKernelCallExpr(ASTContext &C, Expr *fn, CallExpr *Config,
129                     Expr **args, unsigned numargs, QualType t,
130                     ExprValueKind VK, SourceLocation RP)
131    : CallExpr(C, CUDAKernelCallExprClass, fn, END_PREARG, args, numargs, t, VK,
132               RP) {
133    setConfig(Config);
134  }
135
136  CUDAKernelCallExpr(ASTContext &C, EmptyShell Empty)
137    : CallExpr(C, CUDAKernelCallExprClass, END_PREARG, Empty) { }
138
139  const CallExpr *getConfig() const {
140    return cast_or_null<CallExpr>(getPreArg(CONFIG));
141  }
142  CallExpr *getConfig() { return cast_or_null<CallExpr>(getPreArg(CONFIG)); }
143  void setConfig(CallExpr *E) { setPreArg(CONFIG, E); }
144
145  static bool classof(const Stmt *T) {
146    return T->getStmtClass() == CUDAKernelCallExprClass;
147  }
148  static bool classof(const CUDAKernelCallExpr *) { return true; }
149};
150
151/// CXXNamedCastExpr - Abstract class common to all of the C++ "named"
152/// casts, @c static_cast, @c dynamic_cast, @c reinterpret_cast, or @c
153/// const_cast.
154///
155/// This abstract class is inherited by all of the classes
156/// representing "named" casts, e.g., CXXStaticCastExpr,
157/// CXXDynamicCastExpr, CXXReinterpretCastExpr, and CXXConstCastExpr.
158class CXXNamedCastExpr : public ExplicitCastExpr {
159private:
160  SourceLocation Loc; // the location of the casting op
161  SourceLocation RParenLoc; // the location of the right parenthesis
162
163protected:
164  CXXNamedCastExpr(StmtClass SC, QualType ty, ExprValueKind VK,
165                   CastKind kind, Expr *op, unsigned PathSize,
166                   TypeSourceInfo *writtenTy, SourceLocation l,
167                   SourceLocation RParenLoc)
168    : ExplicitCastExpr(SC, ty, VK, kind, op, PathSize, writtenTy), Loc(l),
169      RParenLoc(RParenLoc) {}
170
171  explicit CXXNamedCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
172    : ExplicitCastExpr(SC, Shell, PathSize) { }
173
174  friend class ASTStmtReader;
175
176public:
177  const char *getCastName() const;
178
179  /// \brief Retrieve the location of the cast operator keyword, e.g.,
180  /// "static_cast".
181  SourceLocation getOperatorLoc() const { return Loc; }
182
183  /// \brief Retrieve the location of the closing parenthesis.
184  SourceLocation getRParenLoc() const { return RParenLoc; }
185
186  SourceRange getSourceRange() const {
187    return SourceRange(Loc, RParenLoc);
188  }
189  static bool classof(const Stmt *T) {
190    switch (T->getStmtClass()) {
191    case CXXStaticCastExprClass:
192    case CXXDynamicCastExprClass:
193    case CXXReinterpretCastExprClass:
194    case CXXConstCastExprClass:
195      return true;
196    default:
197      return false;
198    }
199  }
200  static bool classof(const CXXNamedCastExpr *) { return true; }
201};
202
203/// CXXStaticCastExpr - A C++ @c static_cast expression
204/// (C++ [expr.static.cast]).
205///
206/// This expression node represents a C++ static cast, e.g.,
207/// @c static_cast<int>(1.0).
208class CXXStaticCastExpr : public CXXNamedCastExpr {
209  CXXStaticCastExpr(QualType ty, ExprValueKind vk, CastKind kind, Expr *op,
210                    unsigned pathSize, TypeSourceInfo *writtenTy,
211                    SourceLocation l, SourceLocation RParenLoc)
212    : CXXNamedCastExpr(CXXStaticCastExprClass, ty, vk, kind, op, pathSize,
213                       writtenTy, l, RParenLoc) {}
214
215  explicit CXXStaticCastExpr(EmptyShell Empty, unsigned PathSize)
216    : CXXNamedCastExpr(CXXStaticCastExprClass, Empty, PathSize) { }
217
218public:
219  static CXXStaticCastExpr *Create(ASTContext &Context, QualType T,
220                                   ExprValueKind VK, CastKind K, Expr *Op,
221                                   const CXXCastPath *Path,
222                                   TypeSourceInfo *Written, SourceLocation L,
223                                   SourceLocation RParenLoc);
224  static CXXStaticCastExpr *CreateEmpty(ASTContext &Context,
225                                        unsigned PathSize);
226
227  static bool classof(const Stmt *T) {
228    return T->getStmtClass() == CXXStaticCastExprClass;
229  }
230  static bool classof(const CXXStaticCastExpr *) { return true; }
231};
232
233/// CXXDynamicCastExpr - A C++ @c dynamic_cast expression
234/// (C++ [expr.dynamic.cast]), which may perform a run-time check to
235/// determine how to perform the type cast.
236///
237/// This expression node represents a dynamic cast, e.g.,
238/// @c dynamic_cast<Derived*>(BasePtr).
239class CXXDynamicCastExpr : public CXXNamedCastExpr {
240  CXXDynamicCastExpr(QualType ty, ExprValueKind VK, CastKind kind,
241                     Expr *op, unsigned pathSize, TypeSourceInfo *writtenTy,
242                     SourceLocation l, SourceLocation RParenLoc)
243    : CXXNamedCastExpr(CXXDynamicCastExprClass, ty, VK, kind, op, pathSize,
244                       writtenTy, l, RParenLoc) {}
245
246  explicit CXXDynamicCastExpr(EmptyShell Empty, unsigned pathSize)
247    : CXXNamedCastExpr(CXXDynamicCastExprClass, Empty, pathSize) { }
248
249public:
250  static CXXDynamicCastExpr *Create(ASTContext &Context, QualType T,
251                                    ExprValueKind VK, CastKind Kind, Expr *Op,
252                                    const CXXCastPath *Path,
253                                    TypeSourceInfo *Written, SourceLocation L,
254                                    SourceLocation RParenLoc);
255
256  static CXXDynamicCastExpr *CreateEmpty(ASTContext &Context,
257                                         unsigned pathSize);
258
259  bool isAlwaysNull() const;
260
261  static bool classof(const Stmt *T) {
262    return T->getStmtClass() == CXXDynamicCastExprClass;
263  }
264  static bool classof(const CXXDynamicCastExpr *) { return true; }
265};
266
267/// CXXReinterpretCastExpr - A C++ @c reinterpret_cast expression (C++
268/// [expr.reinterpret.cast]), which provides a differently-typed view
269/// of a value but performs no actual work at run time.
270///
271/// This expression node represents a reinterpret cast, e.g.,
272/// @c reinterpret_cast<int>(VoidPtr).
273class CXXReinterpretCastExpr : public CXXNamedCastExpr {
274  CXXReinterpretCastExpr(QualType ty, ExprValueKind vk, CastKind kind,
275                         Expr *op, unsigned pathSize,
276                         TypeSourceInfo *writtenTy, SourceLocation l,
277                         SourceLocation RParenLoc)
278    : CXXNamedCastExpr(CXXReinterpretCastExprClass, ty, vk, kind, op,
279                       pathSize, writtenTy, l, RParenLoc) {}
280
281  CXXReinterpretCastExpr(EmptyShell Empty, unsigned pathSize)
282    : CXXNamedCastExpr(CXXReinterpretCastExprClass, Empty, pathSize) { }
283
284public:
285  static CXXReinterpretCastExpr *Create(ASTContext &Context, QualType T,
286                                        ExprValueKind VK, CastKind Kind,
287                                        Expr *Op, const CXXCastPath *Path,
288                                 TypeSourceInfo *WrittenTy, SourceLocation L,
289                                        SourceLocation RParenLoc);
290  static CXXReinterpretCastExpr *CreateEmpty(ASTContext &Context,
291                                             unsigned pathSize);
292
293  static bool classof(const Stmt *T) {
294    return T->getStmtClass() == CXXReinterpretCastExprClass;
295  }
296  static bool classof(const CXXReinterpretCastExpr *) { return true; }
297};
298
299/// CXXConstCastExpr - A C++ @c const_cast expression (C++ [expr.const.cast]),
300/// which can remove type qualifiers but does not change the underlying value.
301///
302/// This expression node represents a const cast, e.g.,
303/// @c const_cast<char*>(PtrToConstChar).
304class CXXConstCastExpr : public CXXNamedCastExpr {
305  CXXConstCastExpr(QualType ty, ExprValueKind VK, Expr *op,
306                   TypeSourceInfo *writtenTy, SourceLocation l,
307                   SourceLocation RParenLoc)
308    : CXXNamedCastExpr(CXXConstCastExprClass, ty, VK, CK_NoOp, op,
309                       0, writtenTy, l, RParenLoc) {}
310
311  explicit CXXConstCastExpr(EmptyShell Empty)
312    : CXXNamedCastExpr(CXXConstCastExprClass, Empty, 0) { }
313
314public:
315  static CXXConstCastExpr *Create(ASTContext &Context, QualType T,
316                                  ExprValueKind VK, Expr *Op,
317                                  TypeSourceInfo *WrittenTy, SourceLocation L,
318                                  SourceLocation RParenLoc);
319  static CXXConstCastExpr *CreateEmpty(ASTContext &Context);
320
321  static bool classof(const Stmt *T) {
322    return T->getStmtClass() == CXXConstCastExprClass;
323  }
324  static bool classof(const CXXConstCastExpr *) { return true; }
325};
326
327/// CXXBoolLiteralExpr - [C++ 2.13.5] C++ Boolean Literal.
328///
329class CXXBoolLiteralExpr : public Expr {
330  bool Value;
331  SourceLocation Loc;
332public:
333  CXXBoolLiteralExpr(bool val, QualType Ty, SourceLocation l) :
334    Expr(CXXBoolLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
335         false, false),
336    Value(val), Loc(l) {}
337
338  explicit CXXBoolLiteralExpr(EmptyShell Empty)
339    : Expr(CXXBoolLiteralExprClass, Empty) { }
340
341  bool getValue() const { return Value; }
342  void setValue(bool V) { Value = V; }
343
344  SourceRange getSourceRange() const { return SourceRange(Loc); }
345
346  SourceLocation getLocation() const { return Loc; }
347  void setLocation(SourceLocation L) { Loc = L; }
348
349  static bool classof(const Stmt *T) {
350    return T->getStmtClass() == CXXBoolLiteralExprClass;
351  }
352  static bool classof(const CXXBoolLiteralExpr *) { return true; }
353
354  // Iterators
355  child_range children() { return child_range(); }
356};
357
358/// CXXNullPtrLiteralExpr - [C++0x 2.14.7] C++ Pointer Literal
359class CXXNullPtrLiteralExpr : public Expr {
360  SourceLocation Loc;
361public:
362  CXXNullPtrLiteralExpr(QualType Ty, SourceLocation l) :
363    Expr(CXXNullPtrLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
364         false, false),
365    Loc(l) {}
366
367  explicit CXXNullPtrLiteralExpr(EmptyShell Empty)
368    : Expr(CXXNullPtrLiteralExprClass, Empty) { }
369
370  SourceRange getSourceRange() const { return SourceRange(Loc); }
371
372  SourceLocation getLocation() const { return Loc; }
373  void setLocation(SourceLocation L) { Loc = L; }
374
375  static bool classof(const Stmt *T) {
376    return T->getStmtClass() == CXXNullPtrLiteralExprClass;
377  }
378  static bool classof(const CXXNullPtrLiteralExpr *) { return true; }
379
380  child_range children() { return child_range(); }
381};
382
383/// CXXTypeidExpr - A C++ @c typeid expression (C++ [expr.typeid]), which gets
384/// the type_info that corresponds to the supplied type, or the (possibly
385/// dynamic) type of the supplied expression.
386///
387/// This represents code like @c typeid(int) or @c typeid(*objPtr)
388class CXXTypeidExpr : public Expr {
389private:
390  llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
391  SourceRange Range;
392
393public:
394  CXXTypeidExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
395    : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
396           // typeid is never type-dependent (C++ [temp.dep.expr]p4)
397           false,
398           // typeid is value-dependent if the type or expression are dependent
399           Operand->getType()->isDependentType(),
400           Operand->getType()->isInstantiationDependentType(),
401           Operand->getType()->containsUnexpandedParameterPack()),
402      Operand(Operand), Range(R) { }
403
404  CXXTypeidExpr(QualType Ty, Expr *Operand, SourceRange R)
405    : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
406        // typeid is never type-dependent (C++ [temp.dep.expr]p4)
407           false,
408        // typeid is value-dependent if the type or expression are dependent
409           Operand->isTypeDependent() || Operand->isValueDependent(),
410           Operand->isInstantiationDependent(),
411           Operand->containsUnexpandedParameterPack()),
412      Operand(Operand), Range(R) { }
413
414  CXXTypeidExpr(EmptyShell Empty, bool isExpr)
415    : Expr(CXXTypeidExprClass, Empty) {
416    if (isExpr)
417      Operand = (Expr*)0;
418    else
419      Operand = (TypeSourceInfo*)0;
420  }
421
422  bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
423
424  /// \brief Retrieves the type operand of this typeid() expression after
425  /// various required adjustments (removing reference types, cv-qualifiers).
426  QualType getTypeOperand() const;
427
428  /// \brief Retrieve source information for the type operand.
429  TypeSourceInfo *getTypeOperandSourceInfo() const {
430    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
431    return Operand.get<TypeSourceInfo *>();
432  }
433
434  void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
435    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
436    Operand = TSI;
437  }
438
439  Expr *getExprOperand() const {
440    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
441    return static_cast<Expr*>(Operand.get<Stmt *>());
442  }
443
444  void setExprOperand(Expr *E) {
445    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
446    Operand = E;
447  }
448
449  SourceRange getSourceRange() const { return Range; }
450  void setSourceRange(SourceRange R) { Range = R; }
451
452  static bool classof(const Stmt *T) {
453    return T->getStmtClass() == CXXTypeidExprClass;
454  }
455  static bool classof(const CXXTypeidExpr *) { return true; }
456
457  // Iterators
458  child_range children() {
459    if (isTypeOperand()) return child_range();
460    Stmt **begin = reinterpret_cast<Stmt**>(&Operand);
461    return child_range(begin, begin + 1);
462  }
463};
464
465/// CXXUuidofExpr - A microsoft C++ @c __uuidof expression, which gets
466/// the _GUID that corresponds to the supplied type or expression.
467///
468/// This represents code like @c __uuidof(COMTYPE) or @c __uuidof(*comPtr)
469class CXXUuidofExpr : public Expr {
470private:
471  llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
472  SourceRange Range;
473
474public:
475  CXXUuidofExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
476    : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary,
477           false, Operand->getType()->isDependentType(),
478           Operand->getType()->isInstantiationDependentType(),
479           Operand->getType()->containsUnexpandedParameterPack()),
480      Operand(Operand), Range(R) { }
481
482  CXXUuidofExpr(QualType Ty, Expr *Operand, SourceRange R)
483    : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary,
484           false, Operand->isTypeDependent(),
485           Operand->isInstantiationDependent(),
486           Operand->containsUnexpandedParameterPack()),
487      Operand(Operand), Range(R) { }
488
489  CXXUuidofExpr(EmptyShell Empty, bool isExpr)
490    : Expr(CXXUuidofExprClass, Empty) {
491    if (isExpr)
492      Operand = (Expr*)0;
493    else
494      Operand = (TypeSourceInfo*)0;
495  }
496
497  bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
498
499  /// \brief Retrieves the type operand of this __uuidof() expression after
500  /// various required adjustments (removing reference types, cv-qualifiers).
501  QualType getTypeOperand() const;
502
503  /// \brief Retrieve source information for the type operand.
504  TypeSourceInfo *getTypeOperandSourceInfo() const {
505    assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
506    return Operand.get<TypeSourceInfo *>();
507  }
508
509  void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
510    assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
511    Operand = TSI;
512  }
513
514  Expr *getExprOperand() const {
515    assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
516    return static_cast<Expr*>(Operand.get<Stmt *>());
517  }
518
519  void setExprOperand(Expr *E) {
520    assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
521    Operand = E;
522  }
523
524  SourceRange getSourceRange() const { return Range; }
525  void setSourceRange(SourceRange R) { Range = R; }
526
527  static bool classof(const Stmt *T) {
528    return T->getStmtClass() == CXXUuidofExprClass;
529  }
530  static bool classof(const CXXUuidofExpr *) { return true; }
531
532  // Iterators
533  child_range children() {
534    if (isTypeOperand()) return child_range();
535    Stmt **begin = reinterpret_cast<Stmt**>(&Operand);
536    return child_range(begin, begin + 1);
537  }
538};
539
540/// CXXThisExpr - Represents the "this" expression in C++, which is a
541/// pointer to the object on which the current member function is
542/// executing (C++ [expr.prim]p3). Example:
543///
544/// @code
545/// class Foo {
546/// public:
547///   void bar();
548///   void test() { this->bar(); }
549/// };
550/// @endcode
551class CXXThisExpr : public Expr {
552  SourceLocation Loc;
553  bool Implicit : 1;
554
555public:
556  CXXThisExpr(SourceLocation L, QualType Type, bool isImplicit)
557    : Expr(CXXThisExprClass, Type, VK_RValue, OK_Ordinary,
558           // 'this' is type-dependent if the class type of the enclosing
559           // member function is dependent (C++ [temp.dep.expr]p2)
560           Type->isDependentType(), Type->isDependentType(),
561           Type->isInstantiationDependentType(),
562           /*ContainsUnexpandedParameterPack=*/false),
563      Loc(L), Implicit(isImplicit) { }
564
565  CXXThisExpr(EmptyShell Empty) : Expr(CXXThisExprClass, Empty) {}
566
567  SourceLocation getLocation() const { return Loc; }
568  void setLocation(SourceLocation L) { Loc = L; }
569
570  SourceRange getSourceRange() const { return SourceRange(Loc); }
571
572  bool isImplicit() const { return Implicit; }
573  void setImplicit(bool I) { Implicit = I; }
574
575  static bool classof(const Stmt *T) {
576    return T->getStmtClass() == CXXThisExprClass;
577  }
578  static bool classof(const CXXThisExpr *) { return true; }
579
580  // Iterators
581  child_range children() { return child_range(); }
582};
583
584///  CXXThrowExpr - [C++ 15] C++ Throw Expression.  This handles
585///  'throw' and 'throw' assignment-expression.  When
586///  assignment-expression isn't present, Op will be null.
587///
588class CXXThrowExpr : public Expr {
589  Stmt *Op;
590  SourceLocation ThrowLoc;
591  /// \brief Whether the thrown variable (if any) is in scope.
592  unsigned IsThrownVariableInScope : 1;
593
594  friend class ASTStmtReader;
595
596public:
597  // Ty is the void type which is used as the result type of the
598  // exepression.  The l is the location of the throw keyword.  expr
599  // can by null, if the optional expression to throw isn't present.
600  CXXThrowExpr(Expr *expr, QualType Ty, SourceLocation l,
601               bool IsThrownVariableInScope) :
602    Expr(CXXThrowExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
603         expr && expr->isInstantiationDependent(),
604         expr && expr->containsUnexpandedParameterPack()),
605    Op(expr), ThrowLoc(l), IsThrownVariableInScope(IsThrownVariableInScope) {}
606  CXXThrowExpr(EmptyShell Empty) : Expr(CXXThrowExprClass, Empty) {}
607
608  const Expr *getSubExpr() const { return cast_or_null<Expr>(Op); }
609  Expr *getSubExpr() { return cast_or_null<Expr>(Op); }
610
611  SourceLocation getThrowLoc() const { return ThrowLoc; }
612
613  /// \brief Determines whether the variable thrown by this expression (if any!)
614  /// is within the innermost try block.
615  ///
616  /// This information is required to determine whether the NRVO can apply to
617  /// this variable.
618  bool isThrownVariableInScope() const { return IsThrownVariableInScope; }
619
620  SourceRange getSourceRange() const {
621    if (getSubExpr() == 0)
622      return SourceRange(ThrowLoc, ThrowLoc);
623    return SourceRange(ThrowLoc, getSubExpr()->getSourceRange().getEnd());
624  }
625
626  static bool classof(const Stmt *T) {
627    return T->getStmtClass() == CXXThrowExprClass;
628  }
629  static bool classof(const CXXThrowExpr *) { return true; }
630
631  // Iterators
632  child_range children() {
633    return child_range(&Op, Op ? &Op+1 : &Op);
634  }
635};
636
637/// CXXDefaultArgExpr - C++ [dcl.fct.default]. This wraps up a
638/// function call argument that was created from the corresponding
639/// parameter's default argument, when the call did not explicitly
640/// supply arguments for all of the parameters.
641class CXXDefaultArgExpr : public Expr {
642  /// \brief The parameter whose default is being used.
643  ///
644  /// When the bit is set, the subexpression is stored after the
645  /// CXXDefaultArgExpr itself. When the bit is clear, the parameter's
646  /// actual default expression is the subexpression.
647  llvm::PointerIntPair<ParmVarDecl *, 1, bool> Param;
648
649  /// \brief The location where the default argument expression was used.
650  SourceLocation Loc;
651
652  CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param)
653    : Expr(SC,
654           param->hasUnparsedDefaultArg()
655             ? param->getType().getNonReferenceType()
656             : param->getDefaultArg()->getType(),
657           param->getDefaultArg()->getValueKind(),
658           param->getDefaultArg()->getObjectKind(), false, false, false, false),
659      Param(param, false), Loc(Loc) { }
660
661  CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param,
662                    Expr *SubExpr)
663    : Expr(SC, SubExpr->getType(),
664           SubExpr->getValueKind(), SubExpr->getObjectKind(),
665           false, false, false, false),
666      Param(param, true), Loc(Loc) {
667    *reinterpret_cast<Expr **>(this + 1) = SubExpr;
668  }
669
670public:
671  CXXDefaultArgExpr(EmptyShell Empty) : Expr(CXXDefaultArgExprClass, Empty) {}
672
673
674  // Param is the parameter whose default argument is used by this
675  // expression.
676  static CXXDefaultArgExpr *Create(ASTContext &C, SourceLocation Loc,
677                                   ParmVarDecl *Param) {
678    return new (C) CXXDefaultArgExpr(CXXDefaultArgExprClass, Loc, Param);
679  }
680
681  // Param is the parameter whose default argument is used by this
682  // expression, and SubExpr is the expression that will actually be used.
683  static CXXDefaultArgExpr *Create(ASTContext &C,
684                                   SourceLocation Loc,
685                                   ParmVarDecl *Param,
686                                   Expr *SubExpr);
687
688  // Retrieve the parameter that the argument was created from.
689  const ParmVarDecl *getParam() const { return Param.getPointer(); }
690  ParmVarDecl *getParam() { return Param.getPointer(); }
691
692  // Retrieve the actual argument to the function call.
693  const Expr *getExpr() const {
694    if (Param.getInt())
695      return *reinterpret_cast<Expr const * const*> (this + 1);
696    return getParam()->getDefaultArg();
697  }
698  Expr *getExpr() {
699    if (Param.getInt())
700      return *reinterpret_cast<Expr **> (this + 1);
701    return getParam()->getDefaultArg();
702  }
703
704  /// \brief Retrieve the location where this default argument was actually
705  /// used.
706  SourceLocation getUsedLocation() const { return Loc; }
707
708  SourceRange getSourceRange() const {
709    // Default argument expressions have no representation in the
710    // source, so they have an empty source range.
711    return SourceRange();
712  }
713
714  static bool classof(const Stmt *T) {
715    return T->getStmtClass() == CXXDefaultArgExprClass;
716  }
717  static bool classof(const CXXDefaultArgExpr *) { return true; }
718
719  // Iterators
720  child_range children() { return child_range(); }
721
722  friend class ASTStmtReader;
723  friend class ASTStmtWriter;
724};
725
726/// CXXTemporary - Represents a C++ temporary.
727class CXXTemporary {
728  /// Destructor - The destructor that needs to be called.
729  const CXXDestructorDecl *Destructor;
730
731  CXXTemporary(const CXXDestructorDecl *destructor)
732    : Destructor(destructor) { }
733
734public:
735  static CXXTemporary *Create(ASTContext &C,
736                              const CXXDestructorDecl *Destructor);
737
738  const CXXDestructorDecl *getDestructor() const { return Destructor; }
739  void setDestructor(const CXXDestructorDecl *Dtor) {
740    Destructor = Dtor;
741  }
742};
743
744/// \brief Represents binding an expression to a temporary.
745///
746/// This ensures the destructor is called for the temporary. It should only be
747/// needed for non-POD, non-trivially destructable class types. For example:
748///
749/// \code
750///   struct S {
751///     S() { }  // User defined constructor makes S non-POD.
752///     ~S() { } // User defined destructor makes it non-trivial.
753///   };
754///   void test() {
755///     const S &s_ref = S(); // Requires a CXXBindTemporaryExpr.
756///   }
757/// \endcode
758class CXXBindTemporaryExpr : public Expr {
759  CXXTemporary *Temp;
760
761  Stmt *SubExpr;
762
763  CXXBindTemporaryExpr(CXXTemporary *temp, Expr* SubExpr)
764   : Expr(CXXBindTemporaryExprClass, SubExpr->getType(),
765          VK_RValue, OK_Ordinary, SubExpr->isTypeDependent(),
766          SubExpr->isValueDependent(),
767          SubExpr->isInstantiationDependent(),
768          SubExpr->containsUnexpandedParameterPack()),
769     Temp(temp), SubExpr(SubExpr) { }
770
771public:
772  CXXBindTemporaryExpr(EmptyShell Empty)
773    : Expr(CXXBindTemporaryExprClass, Empty), Temp(0), SubExpr(0) {}
774
775  static CXXBindTemporaryExpr *Create(ASTContext &C, CXXTemporary *Temp,
776                                      Expr* SubExpr);
777
778  CXXTemporary *getTemporary() { return Temp; }
779  const CXXTemporary *getTemporary() const { return Temp; }
780  void setTemporary(CXXTemporary *T) { Temp = T; }
781
782  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
783  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
784  void setSubExpr(Expr *E) { SubExpr = E; }
785
786  SourceRange getSourceRange() const {
787    return SubExpr->getSourceRange();
788  }
789
790  // Implement isa/cast/dyncast/etc.
791  static bool classof(const Stmt *T) {
792    return T->getStmtClass() == CXXBindTemporaryExprClass;
793  }
794  static bool classof(const CXXBindTemporaryExpr *) { return true; }
795
796  // Iterators
797  child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
798};
799
800/// CXXConstructExpr - Represents a call to a C++ constructor.
801class CXXConstructExpr : public Expr {
802public:
803  enum ConstructionKind {
804    CK_Complete,
805    CK_NonVirtualBase,
806    CK_VirtualBase,
807    CK_Delegating
808  };
809
810private:
811  CXXConstructorDecl *Constructor;
812
813  SourceLocation Loc;
814  SourceRange ParenRange;
815  unsigned NumArgs : 16;
816  bool Elidable : 1;
817  bool HadMultipleCandidates : 1;
818  bool ListInitialization : 1;
819  bool ZeroInitialization : 1;
820  unsigned ConstructKind : 2;
821  Stmt **Args;
822
823protected:
824  CXXConstructExpr(ASTContext &C, StmtClass SC, QualType T,
825                   SourceLocation Loc,
826                   CXXConstructorDecl *d, bool elidable,
827                   Expr **args, unsigned numargs,
828                   bool HadMultipleCandidates,
829                   bool ListInitialization,
830                   bool ZeroInitialization,
831                   ConstructionKind ConstructKind,
832                   SourceRange ParenRange);
833
834  /// \brief Construct an empty C++ construction expression.
835  CXXConstructExpr(StmtClass SC, EmptyShell Empty)
836    : Expr(SC, Empty), Constructor(0), NumArgs(0), Elidable(false),
837      HadMultipleCandidates(false), ListInitialization(false),
838      ZeroInitialization(false), ConstructKind(0), Args(0)
839  { }
840
841public:
842  /// \brief Construct an empty C++ construction expression.
843  explicit CXXConstructExpr(EmptyShell Empty)
844    : Expr(CXXConstructExprClass, Empty), Constructor(0),
845      NumArgs(0), Elidable(false), HadMultipleCandidates(false),
846      ListInitialization(false), ZeroInitialization(false),
847      ConstructKind(0), Args(0)
848  { }
849
850  static CXXConstructExpr *Create(ASTContext &C, QualType T,
851                                  SourceLocation Loc,
852                                  CXXConstructorDecl *D, bool Elidable,
853                                  Expr **Args, unsigned NumArgs,
854                                  bool HadMultipleCandidates,
855                                  bool ListInitialization,
856                                  bool ZeroInitialization,
857                                  ConstructionKind ConstructKind,
858                                  SourceRange ParenRange);
859
860  CXXConstructorDecl* getConstructor() const { return Constructor; }
861  void setConstructor(CXXConstructorDecl *C) { Constructor = C; }
862
863  SourceLocation getLocation() const { return Loc; }
864  void setLocation(SourceLocation Loc) { this->Loc = Loc; }
865
866  /// \brief Whether this construction is elidable.
867  bool isElidable() const { return Elidable; }
868  void setElidable(bool E) { Elidable = E; }
869
870  /// \brief Whether the referred constructor was resolved from
871  /// an overloaded set having size greater than 1.
872  bool hadMultipleCandidates() const { return HadMultipleCandidates; }
873  void setHadMultipleCandidates(bool V) { HadMultipleCandidates = V; }
874
875  /// \brief Whether this constructor call was written as list-initialization.
876  bool isListInitialization() const { return ListInitialization; }
877  void setListInitialization(bool V) { ListInitialization = V; }
878
879  /// \brief Whether this construction first requires
880  /// zero-initialization before the initializer is called.
881  bool requiresZeroInitialization() const { return ZeroInitialization; }
882  void setRequiresZeroInitialization(bool ZeroInit) {
883    ZeroInitialization = ZeroInit;
884  }
885
886  /// \brief Determines whether this constructor is actually constructing
887  /// a base class (rather than a complete object).
888  ConstructionKind getConstructionKind() const {
889    return (ConstructionKind)ConstructKind;
890  }
891  void setConstructionKind(ConstructionKind CK) {
892    ConstructKind = CK;
893  }
894
895  typedef ExprIterator arg_iterator;
896  typedef ConstExprIterator const_arg_iterator;
897
898  arg_iterator arg_begin() { return Args; }
899  arg_iterator arg_end() { return Args + NumArgs; }
900  const_arg_iterator arg_begin() const { return Args; }
901  const_arg_iterator arg_end() const { return Args + NumArgs; }
902
903  Expr **getArgs() const { return reinterpret_cast<Expr **>(Args); }
904  unsigned getNumArgs() const { return NumArgs; }
905
906  /// getArg - Return the specified argument.
907  Expr *getArg(unsigned Arg) {
908    assert(Arg < NumArgs && "Arg access out of range!");
909    return cast<Expr>(Args[Arg]);
910  }
911  const Expr *getArg(unsigned Arg) const {
912    assert(Arg < NumArgs && "Arg access out of range!");
913    return cast<Expr>(Args[Arg]);
914  }
915
916  /// setArg - Set the specified argument.
917  void setArg(unsigned Arg, Expr *ArgExpr) {
918    assert(Arg < NumArgs && "Arg access out of range!");
919    Args[Arg] = ArgExpr;
920  }
921
922  SourceRange getSourceRange() const;
923  SourceRange getParenRange() const { return ParenRange; }
924
925  static bool classof(const Stmt *T) {
926    return T->getStmtClass() == CXXConstructExprClass ||
927      T->getStmtClass() == CXXTemporaryObjectExprClass;
928  }
929  static bool classof(const CXXConstructExpr *) { return true; }
930
931  // Iterators
932  child_range children() {
933    return child_range(&Args[0], &Args[0]+NumArgs);
934  }
935
936  friend class ASTStmtReader;
937};
938
939/// CXXFunctionalCastExpr - Represents an explicit C++ type conversion
940/// that uses "functional" notion (C++ [expr.type.conv]). Example: @c
941/// x = int(0.5);
942class CXXFunctionalCastExpr : public ExplicitCastExpr {
943  SourceLocation TyBeginLoc;
944  SourceLocation RParenLoc;
945
946  CXXFunctionalCastExpr(QualType ty, ExprValueKind VK,
947                        TypeSourceInfo *writtenTy,
948                        SourceLocation tyBeginLoc, CastKind kind,
949                        Expr *castExpr, unsigned pathSize,
950                        SourceLocation rParenLoc)
951    : ExplicitCastExpr(CXXFunctionalCastExprClass, ty, VK, kind,
952                       castExpr, pathSize, writtenTy),
953      TyBeginLoc(tyBeginLoc), RParenLoc(rParenLoc) {}
954
955  explicit CXXFunctionalCastExpr(EmptyShell Shell, unsigned PathSize)
956    : ExplicitCastExpr(CXXFunctionalCastExprClass, Shell, PathSize) { }
957
958public:
959  static CXXFunctionalCastExpr *Create(ASTContext &Context, QualType T,
960                                       ExprValueKind VK,
961                                       TypeSourceInfo *Written,
962                                       SourceLocation TyBeginLoc,
963                                       CastKind Kind, Expr *Op,
964                                       const CXXCastPath *Path,
965                                       SourceLocation RPLoc);
966  static CXXFunctionalCastExpr *CreateEmpty(ASTContext &Context,
967                                            unsigned PathSize);
968
969  SourceLocation getTypeBeginLoc() const { return TyBeginLoc; }
970  void setTypeBeginLoc(SourceLocation L) { TyBeginLoc = L; }
971  SourceLocation getRParenLoc() const { return RParenLoc; }
972  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
973
974  SourceRange getSourceRange() const {
975    return SourceRange(TyBeginLoc, RParenLoc);
976  }
977  static bool classof(const Stmt *T) {
978    return T->getStmtClass() == CXXFunctionalCastExprClass;
979  }
980  static bool classof(const CXXFunctionalCastExpr *) { return true; }
981};
982
983/// @brief Represents a C++ functional cast expression that builds a
984/// temporary object.
985///
986/// This expression type represents a C++ "functional" cast
987/// (C++[expr.type.conv]) with N != 1 arguments that invokes a
988/// constructor to build a temporary object. With N == 1 arguments the
989/// functional cast expression will be represented by CXXFunctionalCastExpr.
990/// Example:
991/// @code
992/// struct X { X(int, float); }
993///
994/// X create_X() {
995///   return X(1, 3.14f); // creates a CXXTemporaryObjectExpr
996/// };
997/// @endcode
998class CXXTemporaryObjectExpr : public CXXConstructExpr {
999  TypeSourceInfo *Type;
1000
1001public:
1002  CXXTemporaryObjectExpr(ASTContext &C, CXXConstructorDecl *Cons,
1003                         TypeSourceInfo *Type,
1004                         Expr **Args,unsigned NumArgs,
1005                         SourceRange parenRange,
1006                         bool HadMultipleCandidates,
1007                         bool ZeroInitialization = false);
1008  explicit CXXTemporaryObjectExpr(EmptyShell Empty)
1009    : CXXConstructExpr(CXXTemporaryObjectExprClass, Empty), Type() { }
1010
1011  TypeSourceInfo *getTypeSourceInfo() const { return Type; }
1012
1013  SourceRange getSourceRange() const;
1014
1015  static bool classof(const Stmt *T) {
1016    return T->getStmtClass() == CXXTemporaryObjectExprClass;
1017  }
1018  static bool classof(const CXXTemporaryObjectExpr *) { return true; }
1019
1020  friend class ASTStmtReader;
1021};
1022
1023/// \brief A C++ lambda expression, which produces a function object
1024/// (of unspecified type) that can be invoked later.
1025///
1026/// Example:
1027/// \code
1028/// void low_pass_filter(std::vector<double> &values, double cutoff) {
1029///   values.erase(std::remove_if(values.begin(), values.end(),
1030//                                [=](double value) { return value > cutoff; });
1031/// }
1032/// \endcode
1033///
1034/// Lambda expressions can capture local variables, either by copying
1035/// the values of those local variables at the time the function
1036/// object is constructed (not when it is called!) or by holding a
1037/// reference to the local variable. These captures can occur either
1038/// implicitly or can be written explicitly between the square
1039/// brackets ([...]) that start the lambda expression.
1040class LambdaExpr : public Expr {
1041  enum {
1042    /// \brief Flag used by the Capture class to indicate that the given
1043    /// capture was implicit.
1044    Capture_Implicit = 0x01,
1045
1046    /// \brief Flag used by the Capture class to indciate that the
1047    /// given capture was by-copy.
1048    Capture_ByCopy = 0x02
1049  };
1050
1051  /// \brief The source range that covers the lambda introducer ([...]).
1052  SourceRange IntroducerRange;
1053
1054  /// \brief The number of captures.
1055  unsigned NumCaptures : 16;
1056
1057  /// \brief The default capture kind, which is a value of type
1058  /// LambdaCaptureDefault.
1059  unsigned CaptureDefault : 2;
1060
1061  /// \brief Whether this lambda had an explicit parameter list vs. an
1062  /// implicit (and empty) parameter list.
1063  unsigned ExplicitParams : 1;
1064
1065  /// \brief Whether this lambda had the result type explicitly specified.
1066  unsigned ExplicitResultType : 1;
1067
1068  /// \brief Whether there are any array index variables stored at the end of
1069  /// this lambda expression.
1070  unsigned HasArrayIndexVars : 1;
1071
1072  /// \brief The location of the closing brace ('}') that completes
1073  /// the lambda.
1074  ///
1075  /// The location of the brace is also available by looking up the
1076  /// function call operator in the lambda class. However, it is
1077  /// stored here to improve the performance of getSourceRange(), and
1078  /// to avoid having to deserialize the function call operator from a
1079  /// module file just to determine the source range.
1080  SourceLocation ClosingBrace;
1081
1082  // Note: The capture initializers are stored directly after the lambda
1083  // expression, along with the index variables used to initialize by-copy
1084  // array captures.
1085
1086public:
1087  /// \brief Describes the capture of either a variable or 'this'.
1088  class Capture {
1089    llvm::PointerIntPair<VarDecl *, 2> VarAndBits;
1090    SourceLocation Loc;
1091    SourceLocation EllipsisLoc;
1092
1093    friend class ASTStmtReader;
1094    friend class ASTStmtWriter;
1095
1096  public:
1097    /// \brief Create a new capture.
1098    ///
1099    /// \param Loc The source location associated with this capture.
1100    ///
1101    /// \param Kind The kind of capture (this, byref, bycopy).
1102    ///
1103    /// \param Implicit Whether the capture was implicit or explicit.
1104    ///
1105    /// \param Var The local variable being captured, or null if capturing this.
1106    ///
1107    /// \param EllipsisLoc The location of the ellipsis (...) for a
1108    /// capture that is a pack expansion, or an invalid source
1109    /// location to indicate that this is not a pack expansion.
1110    Capture(SourceLocation Loc, bool Implicit,
1111            LambdaCaptureKind Kind, VarDecl *Var = 0,
1112            SourceLocation EllipsisLoc = SourceLocation());
1113
1114    /// \brief Determine the kind of capture.
1115    LambdaCaptureKind getCaptureKind() const;
1116
1117    /// \brief Determine whether this capture handles the C++ 'this'
1118    /// pointer.
1119    bool capturesThis() const { return VarAndBits.getPointer() == 0; }
1120
1121    /// \brief Determine whether this capture handles a variable.
1122    bool capturesVariable() const { return VarAndBits.getPointer() != 0; }
1123
1124    /// \brief Retrieve the declaration of the local variable being
1125    /// captured.
1126    ///
1127    /// This operation is only valid if this capture does not capture
1128    /// 'this'.
1129    VarDecl *getCapturedVar() const {
1130      assert(!capturesThis() && "No variable available for 'this' capture");
1131      return VarAndBits.getPointer();
1132    }
1133
1134    /// \brief Determine whether this was an implicit capture (not
1135    /// written between the square brackets introducing the lambda).
1136    bool isImplicit() const { return VarAndBits.getInt() & Capture_Implicit; }
1137
1138    /// \brief Determine whether this was an explicit capture, written
1139    /// between the square brackets introducing the lambda.
1140    bool isExplicit() const { return !isImplicit(); }
1141
1142    /// \brief Retrieve the source location of the capture.
1143    ///
1144    /// For an explicit capture, this returns the location of the
1145    /// explicit capture in the source. For an implicit capture, this
1146    /// returns the location at which the variable or 'this' was first
1147    /// used.
1148    SourceLocation getLocation() const { return Loc; }
1149
1150    /// \brief Determine whether this capture is a pack expansion,
1151    /// which captures a function parameter pack.
1152    bool isPackExpansion() const { return EllipsisLoc.isValid(); }
1153
1154    /// \brief Retrieve the location of the ellipsis for a capture
1155    /// that is a pack expansion.
1156    SourceLocation getEllipsisLoc() const {
1157      assert(isPackExpansion() && "No ellipsis location for a non-expansion");
1158      return EllipsisLoc;
1159    }
1160  };
1161
1162private:
1163  /// \brief Construct a lambda expression.
1164  LambdaExpr(QualType T, SourceRange IntroducerRange,
1165             LambdaCaptureDefault CaptureDefault,
1166             ArrayRef<Capture> Captures,
1167             bool ExplicitParams,
1168             bool ExplicitResultType,
1169             ArrayRef<Expr *> CaptureInits,
1170             ArrayRef<VarDecl *> ArrayIndexVars,
1171             ArrayRef<unsigned> ArrayIndexStarts,
1172             SourceLocation ClosingBrace,
1173             unsigned ManglingNumber,
1174             Decl *ContextDecl);
1175
1176  /// \brief Construct an empty lambda expression.
1177  LambdaExpr(EmptyShell Empty, unsigned NumCaptures, bool HasArrayIndexVars)
1178    : Expr(LambdaExprClass, Empty),
1179      NumCaptures(NumCaptures), CaptureDefault(LCD_None), ExplicitParams(false),
1180      ExplicitResultType(false), HasArrayIndexVars(true) {
1181    getStoredStmts()[NumCaptures] = 0;
1182  }
1183
1184  Stmt **getStoredStmts() const {
1185    return reinterpret_cast<Stmt **>(const_cast<LambdaExpr *>(this) + 1);
1186  }
1187
1188  /// \brief Retrieve the mapping from captures to the first array index
1189  /// variable.
1190  unsigned *getArrayIndexStarts() const {
1191    return reinterpret_cast<unsigned *>(getStoredStmts() + NumCaptures + 1);
1192  }
1193
1194  /// \brief Retrieve the complete set of array-index variables.
1195  VarDecl **getArrayIndexVars() const {
1196    return reinterpret_cast<VarDecl **>(
1197             getArrayIndexStarts() + NumCaptures + 1);
1198  }
1199
1200public:
1201  /// \brief Construct a new lambda expression.
1202  static LambdaExpr *Create(ASTContext &C,
1203                            CXXRecordDecl *Class,
1204                            SourceRange IntroducerRange,
1205                            LambdaCaptureDefault CaptureDefault,
1206                            ArrayRef<Capture> Captures,
1207                            bool ExplicitParams,
1208                            bool ExplicitResultType,
1209                            ArrayRef<Expr *> CaptureInits,
1210                            ArrayRef<VarDecl *> ArrayIndexVars,
1211                            ArrayRef<unsigned> ArrayIndexStarts,
1212                            SourceLocation ClosingBrace,
1213                            unsigned ManglingNumber,
1214                            Decl *ContextDecl);
1215
1216  /// \brief Construct a new lambda expression that will be deserialized from
1217  /// an external source.
1218  static LambdaExpr *CreateDeserialized(ASTContext &C, unsigned NumCaptures,
1219                                        unsigned NumArrayIndexVars);
1220
1221  /// \brief Determine the default capture kind for this lambda.
1222  LambdaCaptureDefault getCaptureDefault() const {
1223    return static_cast<LambdaCaptureDefault>(CaptureDefault);
1224  }
1225
1226  /// \brief An iterator that walks over the captures of the lambda,
1227  /// both implicit and explicit.
1228  typedef const Capture *capture_iterator;
1229
1230  /// \brief Retrieve an iterator pointing to the first lambda capture.
1231  capture_iterator capture_begin() const;
1232
1233  /// \brief Retrieve an iterator pointing past the end of the
1234  /// sequence of lambda captures.
1235  capture_iterator capture_end() const;
1236
1237  /// \brief Determine the number of captures in this lambda.
1238  unsigned capture_size() const { return NumCaptures; }
1239
1240  /// \brief Retrieve an iterator pointing to the first explicit
1241  /// lambda capture.
1242  capture_iterator explicit_capture_begin() const;
1243
1244  /// \brief Retrieve an iterator pointing past the end of the sequence of
1245  /// explicit lambda captures.
1246  capture_iterator explicit_capture_end() const;
1247
1248  /// \brief Retrieve an iterator pointing to the first implicit
1249  /// lambda capture.
1250  capture_iterator implicit_capture_begin() const;
1251
1252  /// \brief Retrieve an iterator pointing past the end of the sequence of
1253  /// implicit lambda captures.
1254  capture_iterator implicit_capture_end() const;
1255
1256  /// \brief Iterator that walks over the capture initialization
1257  /// arguments.
1258  typedef Expr **capture_init_iterator;
1259
1260  /// \brief Retrieve the first initialization argument for this
1261  /// lambda expression (which initializes the first capture field).
1262  capture_init_iterator capture_init_begin() const {
1263    return reinterpret_cast<Expr **>(getStoredStmts());
1264  }
1265
1266  /// \brief Retrieve the iterator pointing one past the last
1267  /// initialization argument for this lambda expression.
1268  capture_init_iterator capture_init_end() const {
1269    return capture_init_begin() + NumCaptures;
1270  }
1271
1272  /// \brief Retrieve the set of index variables used in the capture
1273  /// initializer of an array captured by copy.
1274  ///
1275  /// \param Iter The iterator that points at the capture initializer for
1276  /// which we are extracting the corresponding index variables.
1277  ArrayRef<VarDecl *> getCaptureInitIndexVars(capture_init_iterator Iter) const;
1278
1279  /// \brief Retrieve the source range covering the lambda introducer,
1280  /// which contains the explicit capture list surrounded by square
1281  /// brackets ([...]).
1282  SourceRange getIntroducerRange() const { return IntroducerRange; }
1283
1284  /// \brief Retrieve the class that corresponds to the lambda, which
1285  /// stores the captures in its fields and provides the various
1286  /// operations permitted on a lambda (copying, calling).
1287  CXXRecordDecl *getLambdaClass() const;
1288
1289  /// \brief Retrieve the function call operator associated with this
1290  /// lambda expression.
1291  CXXMethodDecl *getCallOperator() const;
1292
1293  /// \brief Retrieve the body of the lambda.
1294  CompoundStmt *getBody() const;
1295
1296  /// \brief Determine whether the lambda is mutable, meaning that any
1297  /// captures values can be modified.
1298  bool isMutable() const;
1299
1300  /// \brief Determine whether this lambda has an explicit parameter
1301  /// list vs. an implicit (empty) parameter list.
1302  bool hasExplicitParameters() const { return ExplicitParams; }
1303
1304  /// \brief Whether this lambda had its result type explicitly specified.
1305  bool hasExplicitResultType() const { return ExplicitResultType; }
1306
1307  static bool classof(const Stmt *T) {
1308    return T->getStmtClass() == LambdaExprClass;
1309  }
1310  static bool classof(const LambdaExpr *) { return true; }
1311
1312  SourceRange getSourceRange() const {
1313    return SourceRange(IntroducerRange.getBegin(), ClosingBrace);
1314  }
1315
1316  child_range children() {
1317    return child_range(getStoredStmts(), getStoredStmts() + NumCaptures + 1);
1318  }
1319
1320  friend class ASTStmtReader;
1321  friend class ASTStmtWriter;
1322};
1323
1324/// CXXScalarValueInitExpr - [C++ 5.2.3p2]
1325/// Expression "T()" which creates a value-initialized rvalue of type
1326/// T, which is a non-class type.
1327///
1328class CXXScalarValueInitExpr : public Expr {
1329  SourceLocation RParenLoc;
1330  TypeSourceInfo *TypeInfo;
1331
1332  friend class ASTStmtReader;
1333
1334public:
1335  /// \brief Create an explicitly-written scalar-value initialization
1336  /// expression.
1337  CXXScalarValueInitExpr(QualType Type,
1338                         TypeSourceInfo *TypeInfo,
1339                         SourceLocation rParenLoc ) :
1340    Expr(CXXScalarValueInitExprClass, Type, VK_RValue, OK_Ordinary,
1341         false, false, Type->isInstantiationDependentType(), false),
1342    RParenLoc(rParenLoc), TypeInfo(TypeInfo) {}
1343
1344  explicit CXXScalarValueInitExpr(EmptyShell Shell)
1345    : Expr(CXXScalarValueInitExprClass, Shell) { }
1346
1347  TypeSourceInfo *getTypeSourceInfo() const {
1348    return TypeInfo;
1349  }
1350
1351  SourceLocation getRParenLoc() const { return RParenLoc; }
1352
1353  SourceRange getSourceRange() const;
1354
1355  static bool classof(const Stmt *T) {
1356    return T->getStmtClass() == CXXScalarValueInitExprClass;
1357  }
1358  static bool classof(const CXXScalarValueInitExpr *) { return true; }
1359
1360  // Iterators
1361  child_range children() { return child_range(); }
1362};
1363
1364/// CXXNewExpr - A new expression for memory allocation and constructor calls,
1365/// e.g: "new CXXNewExpr(foo)".
1366class CXXNewExpr : public Expr {
1367  // Was the usage ::new, i.e. is the global new to be used?
1368  bool GlobalNew : 1;
1369  // Do we allocate an array? If so, the first SubExpr is the size expression.
1370  bool Array : 1;
1371  // If this is an array allocation, does the usual deallocation
1372  // function for the allocated type want to know the allocated size?
1373  bool UsualArrayDeleteWantsSize : 1;
1374  // The number of placement new arguments.
1375  unsigned NumPlacementArgs : 13;
1376  // What kind of initializer do we have? Could be none, parens, or braces.
1377  // In storage, we distinguish between "none, and no initializer expr", and
1378  // "none, but an implicit initializer expr".
1379  unsigned StoredInitializationStyle : 2;
1380  // Contains an optional array size expression, an optional initialization
1381  // expression, and any number of optional placement arguments, in that order.
1382  Stmt **SubExprs;
1383  // Points to the allocation function used.
1384  FunctionDecl *OperatorNew;
1385  // Points to the deallocation function used in case of error. May be null.
1386  FunctionDecl *OperatorDelete;
1387
1388  /// \brief The allocated type-source information, as written in the source.
1389  TypeSourceInfo *AllocatedTypeInfo;
1390
1391  /// \brief If the allocated type was expressed as a parenthesized type-id,
1392  /// the source range covering the parenthesized type-id.
1393  SourceRange TypeIdParens;
1394
1395  /// \brief Location of the first token.
1396  SourceLocation StartLoc;
1397
1398  /// \brief Source-range of a paren-delimited initializer.
1399  SourceRange DirectInitRange;
1400
1401  friend class ASTStmtReader;
1402  friend class ASTStmtWriter;
1403public:
1404  enum InitializationStyle {
1405    NoInit,   ///< New-expression has no initializer as written.
1406    CallInit, ///< New-expression has a C++98 paren-delimited initializer.
1407    ListInit  ///< New-expression has a C++11 list-initializer.
1408  };
1409
1410  CXXNewExpr(ASTContext &C, bool globalNew, FunctionDecl *operatorNew,
1411             FunctionDecl *operatorDelete, bool usualArrayDeleteWantsSize,
1412             Expr **placementArgs, unsigned numPlaceArgs,
1413             SourceRange typeIdParens, Expr *arraySize,
1414             InitializationStyle initializationStyle, Expr *initializer,
1415             QualType ty, TypeSourceInfo *AllocatedTypeInfo,
1416             SourceLocation startLoc, SourceRange directInitRange);
1417  explicit CXXNewExpr(EmptyShell Shell)
1418    : Expr(CXXNewExprClass, Shell), SubExprs(0) { }
1419
1420  void AllocateArgsArray(ASTContext &C, bool isArray, unsigned numPlaceArgs,
1421                         bool hasInitializer);
1422
1423  QualType getAllocatedType() const {
1424    assert(getType()->isPointerType());
1425    return getType()->getAs<PointerType>()->getPointeeType();
1426  }
1427
1428  TypeSourceInfo *getAllocatedTypeSourceInfo() const {
1429    return AllocatedTypeInfo;
1430  }
1431
1432  /// \brief True if the allocation result needs to be null-checked.
1433  /// C++0x [expr.new]p13:
1434  ///   If the allocation function returns null, initialization shall
1435  ///   not be done, the deallocation function shall not be called,
1436  ///   and the value of the new-expression shall be null.
1437  /// An allocation function is not allowed to return null unless it
1438  /// has a non-throwing exception-specification.  The '03 rule is
1439  /// identical except that the definition of a non-throwing
1440  /// exception specification is just "is it throw()?".
1441  bool shouldNullCheckAllocation(ASTContext &Ctx) const;
1442
1443  FunctionDecl *getOperatorNew() const { return OperatorNew; }
1444  void setOperatorNew(FunctionDecl *D) { OperatorNew = D; }
1445  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
1446  void setOperatorDelete(FunctionDecl *D) { OperatorDelete = D; }
1447
1448  bool isArray() const { return Array; }
1449  Expr *getArraySize() {
1450    return Array ? cast<Expr>(SubExprs[0]) : 0;
1451  }
1452  const Expr *getArraySize() const {
1453    return Array ? cast<Expr>(SubExprs[0]) : 0;
1454  }
1455
1456  unsigned getNumPlacementArgs() const { return NumPlacementArgs; }
1457  Expr **getPlacementArgs() {
1458    return reinterpret_cast<Expr **>(SubExprs + Array + hasInitializer());
1459  }
1460
1461  Expr *getPlacementArg(unsigned i) {
1462    assert(i < NumPlacementArgs && "Index out of range");
1463    return getPlacementArgs()[i];
1464  }
1465  const Expr *getPlacementArg(unsigned i) const {
1466    assert(i < NumPlacementArgs && "Index out of range");
1467    return const_cast<CXXNewExpr*>(this)->getPlacementArg(i);
1468  }
1469
1470  bool isParenTypeId() const { return TypeIdParens.isValid(); }
1471  SourceRange getTypeIdParens() const { return TypeIdParens; }
1472
1473  bool isGlobalNew() const { return GlobalNew; }
1474
1475  /// \brief Whether this new-expression has any initializer at all.
1476  bool hasInitializer() const { return StoredInitializationStyle > 0; }
1477
1478  /// \brief The kind of initializer this new-expression has.
1479  InitializationStyle getInitializationStyle() const {
1480    if (StoredInitializationStyle == 0)
1481      return NoInit;
1482    return static_cast<InitializationStyle>(StoredInitializationStyle-1);
1483  }
1484
1485  /// \brief The initializer of this new-expression.
1486  Expr *getInitializer() {
1487    return hasInitializer() ? cast<Expr>(SubExprs[Array]) : 0;
1488  }
1489  const Expr *getInitializer() const {
1490    return hasInitializer() ? cast<Expr>(SubExprs[Array]) : 0;
1491  }
1492
1493  /// Answers whether the usual array deallocation function for the
1494  /// allocated type expects the size of the allocation as a
1495  /// parameter.
1496  bool doesUsualArrayDeleteWantSize() const {
1497    return UsualArrayDeleteWantsSize;
1498  }
1499
1500  typedef ExprIterator arg_iterator;
1501  typedef ConstExprIterator const_arg_iterator;
1502
1503  arg_iterator placement_arg_begin() {
1504    return SubExprs + Array + hasInitializer();
1505  }
1506  arg_iterator placement_arg_end() {
1507    return SubExprs + Array + hasInitializer() + getNumPlacementArgs();
1508  }
1509  const_arg_iterator placement_arg_begin() const {
1510    return SubExprs + Array + hasInitializer();
1511  }
1512  const_arg_iterator placement_arg_end() const {
1513    return SubExprs + Array + hasInitializer() + getNumPlacementArgs();
1514  }
1515
1516  typedef Stmt **raw_arg_iterator;
1517  raw_arg_iterator raw_arg_begin() { return SubExprs; }
1518  raw_arg_iterator raw_arg_end() {
1519    return SubExprs + Array + hasInitializer() + getNumPlacementArgs();
1520  }
1521  const_arg_iterator raw_arg_begin() const { return SubExprs; }
1522  const_arg_iterator raw_arg_end() const {
1523    return SubExprs + Array + hasInitializer() + getNumPlacementArgs();
1524  }
1525
1526  SourceLocation getStartLoc() const { return StartLoc; }
1527  SourceLocation getEndLoc() const;
1528
1529  SourceRange getDirectInitRange() const { return DirectInitRange; }
1530
1531  SourceRange getSourceRange() const {
1532    return SourceRange(getStartLoc(), getEndLoc());
1533  }
1534
1535  static bool classof(const Stmt *T) {
1536    return T->getStmtClass() == CXXNewExprClass;
1537  }
1538  static bool classof(const CXXNewExpr *) { return true; }
1539
1540  // Iterators
1541  child_range children() {
1542    return child_range(raw_arg_begin(), raw_arg_end());
1543  }
1544};
1545
1546/// CXXDeleteExpr - A delete expression for memory deallocation and destructor
1547/// calls, e.g. "delete[] pArray".
1548class CXXDeleteExpr : public Expr {
1549  // Is this a forced global delete, i.e. "::delete"?
1550  bool GlobalDelete : 1;
1551  // Is this the array form of delete, i.e. "delete[]"?
1552  bool ArrayForm : 1;
1553  // ArrayFormAsWritten can be different from ArrayForm if 'delete' is applied
1554  // to pointer-to-array type (ArrayFormAsWritten will be false while ArrayForm
1555  // will be true).
1556  bool ArrayFormAsWritten : 1;
1557  // Does the usual deallocation function for the element type require
1558  // a size_t argument?
1559  bool UsualArrayDeleteWantsSize : 1;
1560  // Points to the operator delete overload that is used. Could be a member.
1561  FunctionDecl *OperatorDelete;
1562  // The pointer expression to be deleted.
1563  Stmt *Argument;
1564  // Location of the expression.
1565  SourceLocation Loc;
1566public:
1567  CXXDeleteExpr(QualType ty, bool globalDelete, bool arrayForm,
1568                bool arrayFormAsWritten, bool usualArrayDeleteWantsSize,
1569                FunctionDecl *operatorDelete, Expr *arg, SourceLocation loc)
1570    : Expr(CXXDeleteExprClass, ty, VK_RValue, OK_Ordinary, false, false,
1571           arg->isInstantiationDependent(),
1572           arg->containsUnexpandedParameterPack()),
1573      GlobalDelete(globalDelete),
1574      ArrayForm(arrayForm), ArrayFormAsWritten(arrayFormAsWritten),
1575      UsualArrayDeleteWantsSize(usualArrayDeleteWantsSize),
1576      OperatorDelete(operatorDelete), Argument(arg), Loc(loc) { }
1577  explicit CXXDeleteExpr(EmptyShell Shell)
1578    : Expr(CXXDeleteExprClass, Shell), OperatorDelete(0), Argument(0) { }
1579
1580  bool isGlobalDelete() const { return GlobalDelete; }
1581  bool isArrayForm() const { return ArrayForm; }
1582  bool isArrayFormAsWritten() const { return ArrayFormAsWritten; }
1583
1584  /// Answers whether the usual array deallocation function for the
1585  /// allocated type expects the size of the allocation as a
1586  /// parameter.  This can be true even if the actual deallocation
1587  /// function that we're using doesn't want a size.
1588  bool doesUsualArrayDeleteWantSize() const {
1589    return UsualArrayDeleteWantsSize;
1590  }
1591
1592  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
1593
1594  Expr *getArgument() { return cast<Expr>(Argument); }
1595  const Expr *getArgument() const { return cast<Expr>(Argument); }
1596
1597  /// \brief Retrieve the type being destroyed.  If the type being
1598  /// destroyed is a dependent type which may or may not be a pointer,
1599  /// return an invalid type.
1600  QualType getDestroyedType() const;
1601
1602  SourceRange getSourceRange() const {
1603    return SourceRange(Loc, Argument->getLocEnd());
1604  }
1605
1606  static bool classof(const Stmt *T) {
1607    return T->getStmtClass() == CXXDeleteExprClass;
1608  }
1609  static bool classof(const CXXDeleteExpr *) { return true; }
1610
1611  // Iterators
1612  child_range children() { return child_range(&Argument, &Argument+1); }
1613
1614  friend class ASTStmtReader;
1615};
1616
1617/// \brief Structure used to store the type being destroyed by a
1618/// pseudo-destructor expression.
1619class PseudoDestructorTypeStorage {
1620  /// \brief Either the type source information or the name of the type, if
1621  /// it couldn't be resolved due to type-dependence.
1622  llvm::PointerUnion<TypeSourceInfo *, IdentifierInfo *> Type;
1623
1624  /// \brief The starting source location of the pseudo-destructor type.
1625  SourceLocation Location;
1626
1627public:
1628  PseudoDestructorTypeStorage() { }
1629
1630  PseudoDestructorTypeStorage(IdentifierInfo *II, SourceLocation Loc)
1631    : Type(II), Location(Loc) { }
1632
1633  PseudoDestructorTypeStorage(TypeSourceInfo *Info);
1634
1635  TypeSourceInfo *getTypeSourceInfo() const {
1636    return Type.dyn_cast<TypeSourceInfo *>();
1637  }
1638
1639  IdentifierInfo *getIdentifier() const {
1640    return Type.dyn_cast<IdentifierInfo *>();
1641  }
1642
1643  SourceLocation getLocation() const { return Location; }
1644};
1645
1646/// \brief Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
1647///
1648/// A pseudo-destructor is an expression that looks like a member access to a
1649/// destructor of a scalar type, except that scalar types don't have
1650/// destructors. For example:
1651///
1652/// \code
1653/// typedef int T;
1654/// void f(int *p) {
1655///   p->T::~T();
1656/// }
1657/// \endcode
1658///
1659/// Pseudo-destructors typically occur when instantiating templates such as:
1660///
1661/// \code
1662/// template<typename T>
1663/// void destroy(T* ptr) {
1664///   ptr->T::~T();
1665/// }
1666/// \endcode
1667///
1668/// for scalar types. A pseudo-destructor expression has no run-time semantics
1669/// beyond evaluating the base expression.
1670class CXXPseudoDestructorExpr : public Expr {
1671  /// \brief The base expression (that is being destroyed).
1672  Stmt *Base;
1673
1674  /// \brief Whether the operator was an arrow ('->'); otherwise, it was a
1675  /// period ('.').
1676  bool IsArrow : 1;
1677
1678  /// \brief The location of the '.' or '->' operator.
1679  SourceLocation OperatorLoc;
1680
1681  /// \brief The nested-name-specifier that follows the operator, if present.
1682  NestedNameSpecifierLoc QualifierLoc;
1683
1684  /// \brief The type that precedes the '::' in a qualified pseudo-destructor
1685  /// expression.
1686  TypeSourceInfo *ScopeType;
1687
1688  /// \brief The location of the '::' in a qualified pseudo-destructor
1689  /// expression.
1690  SourceLocation ColonColonLoc;
1691
1692  /// \brief The location of the '~'.
1693  SourceLocation TildeLoc;
1694
1695  /// \brief The type being destroyed, or its name if we were unable to
1696  /// resolve the name.
1697  PseudoDestructorTypeStorage DestroyedType;
1698
1699  friend class ASTStmtReader;
1700
1701public:
1702  CXXPseudoDestructorExpr(ASTContext &Context,
1703                          Expr *Base, bool isArrow, SourceLocation OperatorLoc,
1704                          NestedNameSpecifierLoc QualifierLoc,
1705                          TypeSourceInfo *ScopeType,
1706                          SourceLocation ColonColonLoc,
1707                          SourceLocation TildeLoc,
1708                          PseudoDestructorTypeStorage DestroyedType);
1709
1710  explicit CXXPseudoDestructorExpr(EmptyShell Shell)
1711    : Expr(CXXPseudoDestructorExprClass, Shell),
1712      Base(0), IsArrow(false), QualifierLoc(), ScopeType(0) { }
1713
1714  Expr *getBase() const { return cast<Expr>(Base); }
1715
1716  /// \brief Determines whether this member expression actually had
1717  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
1718  /// x->Base::foo.
1719  bool hasQualifier() const { return QualifierLoc; }
1720
1721  /// \brief Retrieves the nested-name-specifier that qualifies the type name,
1722  /// with source-location information.
1723  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
1724
1725  /// \brief If the member name was qualified, retrieves the
1726  /// nested-name-specifier that precedes the member name. Otherwise, returns
1727  /// NULL.
1728  NestedNameSpecifier *getQualifier() const {
1729    return QualifierLoc.getNestedNameSpecifier();
1730  }
1731
1732  /// \brief Determine whether this pseudo-destructor expression was written
1733  /// using an '->' (otherwise, it used a '.').
1734  bool isArrow() const { return IsArrow; }
1735
1736  /// \brief Retrieve the location of the '.' or '->' operator.
1737  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1738
1739  /// \brief Retrieve the scope type in a qualified pseudo-destructor
1740  /// expression.
1741  ///
1742  /// Pseudo-destructor expressions can have extra qualification within them
1743  /// that is not part of the nested-name-specifier, e.g., \c p->T::~T().
1744  /// Here, if the object type of the expression is (or may be) a scalar type,
1745  /// \p T may also be a scalar type and, therefore, cannot be part of a
1746  /// nested-name-specifier. It is stored as the "scope type" of the pseudo-
1747  /// destructor expression.
1748  TypeSourceInfo *getScopeTypeInfo() const { return ScopeType; }
1749
1750  /// \brief Retrieve the location of the '::' in a qualified pseudo-destructor
1751  /// expression.
1752  SourceLocation getColonColonLoc() const { return ColonColonLoc; }
1753
1754  /// \brief Retrieve the location of the '~'.
1755  SourceLocation getTildeLoc() const { return TildeLoc; }
1756
1757  /// \brief Retrieve the source location information for the type
1758  /// being destroyed.
1759  ///
1760  /// This type-source information is available for non-dependent
1761  /// pseudo-destructor expressions and some dependent pseudo-destructor
1762  /// expressions. Returns NULL if we only have the identifier for a
1763  /// dependent pseudo-destructor expression.
1764  TypeSourceInfo *getDestroyedTypeInfo() const {
1765    return DestroyedType.getTypeSourceInfo();
1766  }
1767
1768  /// \brief In a dependent pseudo-destructor expression for which we do not
1769  /// have full type information on the destroyed type, provides the name
1770  /// of the destroyed type.
1771  IdentifierInfo *getDestroyedTypeIdentifier() const {
1772    return DestroyedType.getIdentifier();
1773  }
1774
1775  /// \brief Retrieve the type being destroyed.
1776  QualType getDestroyedType() const;
1777
1778  /// \brief Retrieve the starting location of the type being destroyed.
1779  SourceLocation getDestroyedTypeLoc() const {
1780    return DestroyedType.getLocation();
1781  }
1782
1783  /// \brief Set the name of destroyed type for a dependent pseudo-destructor
1784  /// expression.
1785  void setDestroyedType(IdentifierInfo *II, SourceLocation Loc) {
1786    DestroyedType = PseudoDestructorTypeStorage(II, Loc);
1787  }
1788
1789  /// \brief Set the destroyed type.
1790  void setDestroyedType(TypeSourceInfo *Info) {
1791    DestroyedType = PseudoDestructorTypeStorage(Info);
1792  }
1793
1794  SourceRange getSourceRange() const;
1795
1796  static bool classof(const Stmt *T) {
1797    return T->getStmtClass() == CXXPseudoDestructorExprClass;
1798  }
1799  static bool classof(const CXXPseudoDestructorExpr *) { return true; }
1800
1801  // Iterators
1802  child_range children() { return child_range(&Base, &Base + 1); }
1803};
1804
1805/// UnaryTypeTraitExpr - A GCC or MS unary type trait, as used in the
1806/// implementation of TR1/C++0x type trait templates.
1807/// Example:
1808/// __is_pod(int) == true
1809/// __is_enum(std::string) == false
1810class UnaryTypeTraitExpr : public Expr {
1811  /// UTT - The trait. A UnaryTypeTrait enum in MSVC compat unsigned.
1812  unsigned UTT : 31;
1813  /// The value of the type trait. Unspecified if dependent.
1814  bool Value : 1;
1815
1816  /// Loc - The location of the type trait keyword.
1817  SourceLocation Loc;
1818
1819  /// RParen - The location of the closing paren.
1820  SourceLocation RParen;
1821
1822  /// The type being queried.
1823  TypeSourceInfo *QueriedType;
1824
1825public:
1826  UnaryTypeTraitExpr(SourceLocation loc, UnaryTypeTrait utt,
1827                     TypeSourceInfo *queried, bool value,
1828                     SourceLocation rparen, QualType ty)
1829    : Expr(UnaryTypeTraitExprClass, ty, VK_RValue, OK_Ordinary,
1830           false,  queried->getType()->isDependentType(),
1831           queried->getType()->isInstantiationDependentType(),
1832           queried->getType()->containsUnexpandedParameterPack()),
1833      UTT(utt), Value(value), Loc(loc), RParen(rparen), QueriedType(queried) { }
1834
1835  explicit UnaryTypeTraitExpr(EmptyShell Empty)
1836    : Expr(UnaryTypeTraitExprClass, Empty), UTT(0), Value(false),
1837      QueriedType() { }
1838
1839  SourceRange getSourceRange() const { return SourceRange(Loc, RParen);}
1840
1841  UnaryTypeTrait getTrait() const { return static_cast<UnaryTypeTrait>(UTT); }
1842
1843  QualType getQueriedType() const { return QueriedType->getType(); }
1844
1845  TypeSourceInfo *getQueriedTypeSourceInfo() const { return QueriedType; }
1846
1847  bool getValue() const { return Value; }
1848
1849  static bool classof(const Stmt *T) {
1850    return T->getStmtClass() == UnaryTypeTraitExprClass;
1851  }
1852  static bool classof(const UnaryTypeTraitExpr *) { return true; }
1853
1854  // Iterators
1855  child_range children() { return child_range(); }
1856
1857  friend class ASTStmtReader;
1858};
1859
1860/// BinaryTypeTraitExpr - A GCC or MS binary type trait, as used in the
1861/// implementation of TR1/C++0x type trait templates.
1862/// Example:
1863/// __is_base_of(Base, Derived) == true
1864class BinaryTypeTraitExpr : public Expr {
1865  /// BTT - The trait. A BinaryTypeTrait enum in MSVC compat unsigned.
1866  unsigned BTT : 8;
1867
1868  /// The value of the type trait. Unspecified if dependent.
1869  bool Value : 1;
1870
1871  /// Loc - The location of the type trait keyword.
1872  SourceLocation Loc;
1873
1874  /// RParen - The location of the closing paren.
1875  SourceLocation RParen;
1876
1877  /// The lhs type being queried.
1878  TypeSourceInfo *LhsType;
1879
1880  /// The rhs type being queried.
1881  TypeSourceInfo *RhsType;
1882
1883public:
1884  BinaryTypeTraitExpr(SourceLocation loc, BinaryTypeTrait btt,
1885                     TypeSourceInfo *lhsType, TypeSourceInfo *rhsType,
1886                     bool value, SourceLocation rparen, QualType ty)
1887    : Expr(BinaryTypeTraitExprClass, ty, VK_RValue, OK_Ordinary, false,
1888           lhsType->getType()->isDependentType() ||
1889           rhsType->getType()->isDependentType(),
1890           (lhsType->getType()->isInstantiationDependentType() ||
1891            rhsType->getType()->isInstantiationDependentType()),
1892           (lhsType->getType()->containsUnexpandedParameterPack() ||
1893            rhsType->getType()->containsUnexpandedParameterPack())),
1894      BTT(btt), Value(value), Loc(loc), RParen(rparen),
1895      LhsType(lhsType), RhsType(rhsType) { }
1896
1897
1898  explicit BinaryTypeTraitExpr(EmptyShell Empty)
1899    : Expr(BinaryTypeTraitExprClass, Empty), BTT(0), Value(false),
1900      LhsType(), RhsType() { }
1901
1902  SourceRange getSourceRange() const {
1903    return SourceRange(Loc, RParen);
1904  }
1905
1906  BinaryTypeTrait getTrait() const {
1907    return static_cast<BinaryTypeTrait>(BTT);
1908  }
1909
1910  QualType getLhsType() const { return LhsType->getType(); }
1911  QualType getRhsType() const { return RhsType->getType(); }
1912
1913  TypeSourceInfo *getLhsTypeSourceInfo() const { return LhsType; }
1914  TypeSourceInfo *getRhsTypeSourceInfo() const { return RhsType; }
1915
1916  bool getValue() const { assert(!isTypeDependent()); return Value; }
1917
1918  static bool classof(const Stmt *T) {
1919    return T->getStmtClass() == BinaryTypeTraitExprClass;
1920  }
1921  static bool classof(const BinaryTypeTraitExpr *) { return true; }
1922
1923  // Iterators
1924  child_range children() { return child_range(); }
1925
1926  friend class ASTStmtReader;
1927};
1928
1929/// \brief A type trait used in the implementation of various C++11 and
1930/// Library TR1 trait templates.
1931///
1932/// \code
1933///   __is_trivially_constructible(vector<int>, int*, int*)
1934/// \endcode
1935class TypeTraitExpr : public Expr {
1936  /// \brief The location of the type trait keyword.
1937  SourceLocation Loc;
1938
1939  /// \brief  The location of the closing parenthesis.
1940  SourceLocation RParenLoc;
1941
1942  // Note: The TypeSourceInfos for the arguments are allocated after the
1943  // TypeTraitExpr.
1944
1945  TypeTraitExpr(QualType T, SourceLocation Loc, TypeTrait Kind,
1946                ArrayRef<TypeSourceInfo *> Args,
1947                SourceLocation RParenLoc,
1948                bool Value);
1949
1950  TypeTraitExpr(EmptyShell Empty) : Expr(TypeTraitExprClass, Empty) { }
1951
1952  /// \brief Retrieve the argument types.
1953  TypeSourceInfo **getTypeSourceInfos() {
1954    return reinterpret_cast<TypeSourceInfo **>(this+1);
1955  }
1956
1957  /// \brief Retrieve the argument types.
1958  TypeSourceInfo * const *getTypeSourceInfos() const {
1959    return reinterpret_cast<TypeSourceInfo * const*>(this+1);
1960  }
1961
1962public:
1963  /// \brief Create a new type trait expression.
1964  static TypeTraitExpr *Create(ASTContext &C, QualType T, SourceLocation Loc,
1965                               TypeTrait Kind,
1966                               ArrayRef<TypeSourceInfo *> Args,
1967                               SourceLocation RParenLoc,
1968                               bool Value);
1969
1970  static TypeTraitExpr *CreateDeserialized(ASTContext &C, unsigned NumArgs);
1971
1972  /// \brief Determine which type trait this expression uses.
1973  TypeTrait getTrait() const {
1974    return static_cast<TypeTrait>(TypeTraitExprBits.Kind);
1975  }
1976
1977  bool getValue() const {
1978    assert(!isValueDependent());
1979    return TypeTraitExprBits.Value;
1980  }
1981
1982  /// \brief Determine the number of arguments to this type trait.
1983  unsigned getNumArgs() const { return TypeTraitExprBits.NumArgs; }
1984
1985  /// \brief Retrieve the Ith argument.
1986  TypeSourceInfo *getArg(unsigned I) const {
1987    assert(I < getNumArgs() && "Argument out-of-range");
1988    return getArgs()[I];
1989  }
1990
1991  /// \brief Retrieve the argument types.
1992  ArrayRef<TypeSourceInfo *> getArgs() const {
1993    return ArrayRef<TypeSourceInfo *>(getTypeSourceInfos(), getNumArgs());
1994  }
1995
1996  typedef TypeSourceInfo **arg_iterator;
1997  arg_iterator arg_begin() {
1998    return getTypeSourceInfos();
1999  }
2000  arg_iterator arg_end() {
2001    return getTypeSourceInfos() + getNumArgs();
2002  }
2003
2004  typedef TypeSourceInfo const * const *arg_const_iterator;
2005  arg_const_iterator arg_begin() const { return getTypeSourceInfos(); }
2006  arg_const_iterator arg_end() const {
2007    return getTypeSourceInfos() + getNumArgs();
2008  }
2009
2010  SourceRange getSourceRange() const { return SourceRange(Loc, RParenLoc); }
2011
2012  static bool classof(const Stmt *T) {
2013    return T->getStmtClass() == TypeTraitExprClass;
2014  }
2015  static bool classof(const TypeTraitExpr *) { return true; }
2016
2017  // Iterators
2018  child_range children() { return child_range(); }
2019
2020  friend class ASTStmtReader;
2021  friend class ASTStmtWriter;
2022
2023};
2024
2025/// ArrayTypeTraitExpr - An Embarcadero array type trait, as used in the
2026/// implementation of __array_rank and __array_extent.
2027/// Example:
2028/// __array_rank(int[10][20]) == 2
2029/// __array_extent(int, 1)    == 20
2030class ArrayTypeTraitExpr : public Expr {
2031  virtual void anchor();
2032
2033  /// ATT - The trait. An ArrayTypeTrait enum in MSVC compat unsigned.
2034  unsigned ATT : 2;
2035
2036  /// The value of the type trait. Unspecified if dependent.
2037  uint64_t Value;
2038
2039  /// The array dimension being queried, or -1 if not used
2040  Expr *Dimension;
2041
2042  /// Loc - The location of the type trait keyword.
2043  SourceLocation Loc;
2044
2045  /// RParen - The location of the closing paren.
2046  SourceLocation RParen;
2047
2048  /// The type being queried.
2049  TypeSourceInfo *QueriedType;
2050
2051public:
2052  ArrayTypeTraitExpr(SourceLocation loc, ArrayTypeTrait att,
2053                     TypeSourceInfo *queried, uint64_t value,
2054                     Expr *dimension, SourceLocation rparen, QualType ty)
2055    : Expr(ArrayTypeTraitExprClass, ty, VK_RValue, OK_Ordinary,
2056           false, queried->getType()->isDependentType(),
2057           (queried->getType()->isInstantiationDependentType() ||
2058            (dimension && dimension->isInstantiationDependent())),
2059           queried->getType()->containsUnexpandedParameterPack()),
2060      ATT(att), Value(value), Dimension(dimension),
2061      Loc(loc), RParen(rparen), QueriedType(queried) { }
2062
2063
2064  explicit ArrayTypeTraitExpr(EmptyShell Empty)
2065    : Expr(ArrayTypeTraitExprClass, Empty), ATT(0), Value(false),
2066      QueriedType() { }
2067
2068  virtual ~ArrayTypeTraitExpr() { }
2069
2070  virtual SourceRange getSourceRange() const {
2071    return SourceRange(Loc, RParen);
2072  }
2073
2074  ArrayTypeTrait getTrait() const { return static_cast<ArrayTypeTrait>(ATT); }
2075
2076  QualType getQueriedType() const { return QueriedType->getType(); }
2077
2078  TypeSourceInfo *getQueriedTypeSourceInfo() const { return QueriedType; }
2079
2080  uint64_t getValue() const { assert(!isTypeDependent()); return Value; }
2081
2082  Expr *getDimensionExpression() const { return Dimension; }
2083
2084  static bool classof(const Stmt *T) {
2085    return T->getStmtClass() == ArrayTypeTraitExprClass;
2086  }
2087  static bool classof(const ArrayTypeTraitExpr *) { return true; }
2088
2089  // Iterators
2090  child_range children() { return child_range(); }
2091
2092  friend class ASTStmtReader;
2093};
2094
2095/// ExpressionTraitExpr - An expression trait intrinsic
2096/// Example:
2097/// __is_lvalue_expr(std::cout) == true
2098/// __is_lvalue_expr(1) == false
2099class ExpressionTraitExpr : public Expr {
2100  /// ET - The trait. A ExpressionTrait enum in MSVC compat unsigned.
2101  unsigned ET : 31;
2102  /// The value of the type trait. Unspecified if dependent.
2103  bool Value : 1;
2104
2105  /// Loc - The location of the type trait keyword.
2106  SourceLocation Loc;
2107
2108  /// RParen - The location of the closing paren.
2109  SourceLocation RParen;
2110
2111  Expr* QueriedExpression;
2112public:
2113  ExpressionTraitExpr(SourceLocation loc, ExpressionTrait et,
2114                     Expr *queried, bool value,
2115                     SourceLocation rparen, QualType resultType)
2116    : Expr(ExpressionTraitExprClass, resultType, VK_RValue, OK_Ordinary,
2117           false, // Not type-dependent
2118           // Value-dependent if the argument is type-dependent.
2119           queried->isTypeDependent(),
2120           queried->isInstantiationDependent(),
2121           queried->containsUnexpandedParameterPack()),
2122      ET(et), Value(value), Loc(loc), RParen(rparen),
2123      QueriedExpression(queried) { }
2124
2125  explicit ExpressionTraitExpr(EmptyShell Empty)
2126    : Expr(ExpressionTraitExprClass, Empty), ET(0), Value(false),
2127      QueriedExpression() { }
2128
2129  SourceRange getSourceRange() const { return SourceRange(Loc, RParen);}
2130
2131  ExpressionTrait getTrait() const { return static_cast<ExpressionTrait>(ET); }
2132
2133  Expr *getQueriedExpression() const { return QueriedExpression; }
2134
2135  bool getValue() const { return Value; }
2136
2137  static bool classof(const Stmt *T) {
2138    return T->getStmtClass() == ExpressionTraitExprClass;
2139  }
2140  static bool classof(const ExpressionTraitExpr *) { return true; }
2141
2142  // Iterators
2143  child_range children() { return child_range(); }
2144
2145  friend class ASTStmtReader;
2146};
2147
2148
2149/// \brief A reference to an overloaded function set, either an
2150/// \t UnresolvedLookupExpr or an \t UnresolvedMemberExpr.
2151class OverloadExpr : public Expr {
2152  /// The results.  These are undesugared, which is to say, they may
2153  /// include UsingShadowDecls.  Access is relative to the naming
2154  /// class.
2155  // FIXME: Allocate this data after the OverloadExpr subclass.
2156  DeclAccessPair *Results;
2157  unsigned NumResults;
2158
2159  /// The common name of these declarations.
2160  DeclarationNameInfo NameInfo;
2161
2162  /// \brief The nested-name-specifier that qualifies the name, if any.
2163  NestedNameSpecifierLoc QualifierLoc;
2164
2165protected:
2166  /// \brief Whether the name includes info for explicit template
2167  /// keyword and arguments.
2168  bool HasTemplateKWAndArgsInfo;
2169
2170  /// \brief Return the optional template keyword and arguments info.
2171  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo(); // defined far below.
2172
2173  /// \brief Return the optional template keyword and arguments info.
2174  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
2175    return const_cast<OverloadExpr*>(this)->getTemplateKWAndArgsInfo();
2176  }
2177
2178  OverloadExpr(StmtClass K, ASTContext &C,
2179               NestedNameSpecifierLoc QualifierLoc,
2180               SourceLocation TemplateKWLoc,
2181               const DeclarationNameInfo &NameInfo,
2182               const TemplateArgumentListInfo *TemplateArgs,
2183               UnresolvedSetIterator Begin, UnresolvedSetIterator End,
2184               bool KnownDependent,
2185               bool KnownInstantiationDependent,
2186               bool KnownContainsUnexpandedParameterPack);
2187
2188  OverloadExpr(StmtClass K, EmptyShell Empty)
2189    : Expr(K, Empty), Results(0), NumResults(0),
2190      QualifierLoc(), HasTemplateKWAndArgsInfo(false) { }
2191
2192  void initializeResults(ASTContext &C,
2193                         UnresolvedSetIterator Begin,
2194                         UnresolvedSetIterator End);
2195
2196public:
2197  struct FindResult {
2198    OverloadExpr *Expression;
2199    bool IsAddressOfOperand;
2200    bool HasFormOfMemberPointer;
2201  };
2202
2203  /// Finds the overloaded expression in the given expression of
2204  /// OverloadTy.
2205  ///
2206  /// \return the expression (which must be there) and true if it has
2207  /// the particular form of a member pointer expression
2208  static FindResult find(Expr *E) {
2209    assert(E->getType()->isSpecificBuiltinType(BuiltinType::Overload));
2210
2211    FindResult Result;
2212
2213    E = E->IgnoreParens();
2214    if (isa<UnaryOperator>(E)) {
2215      assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
2216      E = cast<UnaryOperator>(E)->getSubExpr();
2217      OverloadExpr *Ovl = cast<OverloadExpr>(E->IgnoreParens());
2218
2219      Result.HasFormOfMemberPointer = (E == Ovl && Ovl->getQualifier());
2220      Result.IsAddressOfOperand = true;
2221      Result.Expression = Ovl;
2222    } else {
2223      Result.HasFormOfMemberPointer = false;
2224      Result.IsAddressOfOperand = false;
2225      Result.Expression = cast<OverloadExpr>(E);
2226    }
2227
2228    return Result;
2229  }
2230
2231  /// Gets the naming class of this lookup, if any.
2232  CXXRecordDecl *getNamingClass() const;
2233
2234  typedef UnresolvedSetImpl::iterator decls_iterator;
2235  decls_iterator decls_begin() const { return UnresolvedSetIterator(Results); }
2236  decls_iterator decls_end() const {
2237    return UnresolvedSetIterator(Results + NumResults);
2238  }
2239
2240  /// Gets the number of declarations in the unresolved set.
2241  unsigned getNumDecls() const { return NumResults; }
2242
2243  /// Gets the full name info.
2244  const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
2245
2246  /// Gets the name looked up.
2247  DeclarationName getName() const { return NameInfo.getName(); }
2248
2249  /// Gets the location of the name.
2250  SourceLocation getNameLoc() const { return NameInfo.getLoc(); }
2251
2252  /// Fetches the nested-name qualifier, if one was given.
2253  NestedNameSpecifier *getQualifier() const {
2254    return QualifierLoc.getNestedNameSpecifier();
2255  }
2256
2257  /// Fetches the nested-name qualifier with source-location information, if
2258  /// one was given.
2259  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2260
2261  /// \brief Retrieve the location of the template keyword preceding
2262  /// this name, if any.
2263  SourceLocation getTemplateKeywordLoc() const {
2264    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2265    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
2266  }
2267
2268  /// \brief Retrieve the location of the left angle bracket starting the
2269  /// explicit template argument list following the name, if any.
2270  SourceLocation getLAngleLoc() const {
2271    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2272    return getTemplateKWAndArgsInfo()->LAngleLoc;
2273  }
2274
2275  /// \brief Retrieve the location of the right angle bracket ending the
2276  /// explicit template argument list following the name, if any.
2277  SourceLocation getRAngleLoc() const {
2278    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2279    return getTemplateKWAndArgsInfo()->RAngleLoc;
2280  }
2281
2282  /// Determines whether the name was preceded by the template keyword.
2283  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
2284
2285  /// Determines whether this expression had explicit template arguments.
2286  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
2287
2288  // Note that, inconsistently with the explicit-template-argument AST
2289  // nodes, users are *forbidden* from calling these methods on objects
2290  // without explicit template arguments.
2291
2292  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
2293    assert(hasExplicitTemplateArgs());
2294    return *getTemplateKWAndArgsInfo();
2295  }
2296
2297  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2298    return const_cast<OverloadExpr*>(this)->getExplicitTemplateArgs();
2299  }
2300
2301  TemplateArgumentLoc const *getTemplateArgs() const {
2302    return getExplicitTemplateArgs().getTemplateArgs();
2303  }
2304
2305  unsigned getNumTemplateArgs() const {
2306    return getExplicitTemplateArgs().NumTemplateArgs;
2307  }
2308
2309  /// Copies the template arguments into the given structure.
2310  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2311    getExplicitTemplateArgs().copyInto(List);
2312  }
2313
2314  /// \brief Retrieves the optional explicit template arguments.
2315  /// This points to the same data as getExplicitTemplateArgs(), but
2316  /// returns null if there are no explicit template arguments.
2317  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() {
2318    if (!hasExplicitTemplateArgs()) return 0;
2319    return &getExplicitTemplateArgs();
2320  }
2321
2322  static bool classof(const Stmt *T) {
2323    return T->getStmtClass() == UnresolvedLookupExprClass ||
2324           T->getStmtClass() == UnresolvedMemberExprClass;
2325  }
2326  static bool classof(const OverloadExpr *) { return true; }
2327
2328  friend class ASTStmtReader;
2329  friend class ASTStmtWriter;
2330};
2331
2332/// \brief A reference to a name which we were able to look up during
2333/// parsing but could not resolve to a specific declaration.  This
2334/// arises in several ways:
2335///   * we might be waiting for argument-dependent lookup
2336///   * the name might resolve to an overloaded function
2337/// and eventually:
2338///   * the lookup might have included a function template
2339/// These never include UnresolvedUsingValueDecls, which are always
2340/// class members and therefore appear only in
2341/// UnresolvedMemberLookupExprs.
2342class UnresolvedLookupExpr : public OverloadExpr {
2343  /// True if these lookup results should be extended by
2344  /// argument-dependent lookup if this is the operand of a function
2345  /// call.
2346  bool RequiresADL;
2347
2348  /// True if namespace ::std should be considered an associated namespace
2349  /// for the purposes of argument-dependent lookup. See C++0x [stmt.ranged]p1.
2350  bool StdIsAssociatedNamespace;
2351
2352  /// True if these lookup results are overloaded.  This is pretty
2353  /// trivially rederivable if we urgently need to kill this field.
2354  bool Overloaded;
2355
2356  /// The naming class (C++ [class.access.base]p5) of the lookup, if
2357  /// any.  This can generally be recalculated from the context chain,
2358  /// but that can be fairly expensive for unqualified lookups.  If we
2359  /// want to improve memory use here, this could go in a union
2360  /// against the qualified-lookup bits.
2361  CXXRecordDecl *NamingClass;
2362
2363  UnresolvedLookupExpr(ASTContext &C,
2364                       CXXRecordDecl *NamingClass,
2365                       NestedNameSpecifierLoc QualifierLoc,
2366                       SourceLocation TemplateKWLoc,
2367                       const DeclarationNameInfo &NameInfo,
2368                       bool RequiresADL, bool Overloaded,
2369                       const TemplateArgumentListInfo *TemplateArgs,
2370                       UnresolvedSetIterator Begin, UnresolvedSetIterator End,
2371                       bool StdIsAssociatedNamespace)
2372    : OverloadExpr(UnresolvedLookupExprClass, C, QualifierLoc, TemplateKWLoc,
2373                   NameInfo, TemplateArgs, Begin, End, false, false, false),
2374      RequiresADL(RequiresADL),
2375      StdIsAssociatedNamespace(StdIsAssociatedNamespace),
2376      Overloaded(Overloaded), NamingClass(NamingClass)
2377  {}
2378
2379  UnresolvedLookupExpr(EmptyShell Empty)
2380    : OverloadExpr(UnresolvedLookupExprClass, Empty),
2381      RequiresADL(false), StdIsAssociatedNamespace(false), Overloaded(false),
2382      NamingClass(0)
2383  {}
2384
2385  friend class ASTStmtReader;
2386
2387public:
2388  static UnresolvedLookupExpr *Create(ASTContext &C,
2389                                      CXXRecordDecl *NamingClass,
2390                                      NestedNameSpecifierLoc QualifierLoc,
2391                                      const DeclarationNameInfo &NameInfo,
2392                                      bool ADL, bool Overloaded,
2393                                      UnresolvedSetIterator Begin,
2394                                      UnresolvedSetIterator End,
2395                                      bool StdIsAssociatedNamespace = false) {
2396    assert((ADL || !StdIsAssociatedNamespace) &&
2397           "std considered associated namespace when not performing ADL");
2398    return new(C) UnresolvedLookupExpr(C, NamingClass, QualifierLoc,
2399                                       SourceLocation(), NameInfo,
2400                                       ADL, Overloaded, 0, Begin, End,
2401                                       StdIsAssociatedNamespace);
2402  }
2403
2404  static UnresolvedLookupExpr *Create(ASTContext &C,
2405                                      CXXRecordDecl *NamingClass,
2406                                      NestedNameSpecifierLoc QualifierLoc,
2407                                      SourceLocation TemplateKWLoc,
2408                                      const DeclarationNameInfo &NameInfo,
2409                                      bool ADL,
2410                                      const TemplateArgumentListInfo *Args,
2411                                      UnresolvedSetIterator Begin,
2412                                      UnresolvedSetIterator End);
2413
2414  static UnresolvedLookupExpr *CreateEmpty(ASTContext &C,
2415                                           bool HasTemplateKWAndArgsInfo,
2416                                           unsigned NumTemplateArgs);
2417
2418  /// True if this declaration should be extended by
2419  /// argument-dependent lookup.
2420  bool requiresADL() const { return RequiresADL; }
2421
2422  /// True if namespace ::std should be artificially added to the set of
2423  /// associated namespaecs for argument-dependent lookup purposes.
2424  bool isStdAssociatedNamespace() const { return StdIsAssociatedNamespace; }
2425
2426  /// True if this lookup is overloaded.
2427  bool isOverloaded() const { return Overloaded; }
2428
2429  /// Gets the 'naming class' (in the sense of C++0x
2430  /// [class.access.base]p5) of the lookup.  This is the scope
2431  /// that was looked in to find these results.
2432  CXXRecordDecl *getNamingClass() const { return NamingClass; }
2433
2434  SourceRange getSourceRange() const {
2435    SourceRange Range(getNameInfo().getSourceRange());
2436    if (getQualifierLoc())
2437      Range.setBegin(getQualifierLoc().getBeginLoc());
2438    if (hasExplicitTemplateArgs())
2439      Range.setEnd(getRAngleLoc());
2440    return Range;
2441  }
2442
2443  child_range children() { return child_range(); }
2444
2445  static bool classof(const Stmt *T) {
2446    return T->getStmtClass() == UnresolvedLookupExprClass;
2447  }
2448  static bool classof(const UnresolvedLookupExpr *) { return true; }
2449};
2450
2451/// \brief A qualified reference to a name whose declaration cannot
2452/// yet be resolved.
2453///
2454/// DependentScopeDeclRefExpr is similar to DeclRefExpr in that
2455/// it expresses a reference to a declaration such as
2456/// X<T>::value. The difference, however, is that an
2457/// DependentScopeDeclRefExpr node is used only within C++ templates when
2458/// the qualification (e.g., X<T>::) refers to a dependent type. In
2459/// this case, X<T>::value cannot resolve to a declaration because the
2460/// declaration will differ from on instantiation of X<T> to the
2461/// next. Therefore, DependentScopeDeclRefExpr keeps track of the
2462/// qualifier (X<T>::) and the name of the entity being referenced
2463/// ("value"). Such expressions will instantiate to a DeclRefExpr once the
2464/// declaration can be found.
2465class DependentScopeDeclRefExpr : public Expr {
2466  /// \brief The nested-name-specifier that qualifies this unresolved
2467  /// declaration name.
2468  NestedNameSpecifierLoc QualifierLoc;
2469
2470  /// The name of the entity we will be referencing.
2471  DeclarationNameInfo NameInfo;
2472
2473  /// \brief Whether the name includes info for explicit template
2474  /// keyword and arguments.
2475  bool HasTemplateKWAndArgsInfo;
2476
2477  /// \brief Return the optional template keyword and arguments info.
2478  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
2479    if (!HasTemplateKWAndArgsInfo) return 0;
2480    return reinterpret_cast<ASTTemplateKWAndArgsInfo*>(this + 1);
2481  }
2482  /// \brief Return the optional template keyword and arguments info.
2483  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
2484    return const_cast<DependentScopeDeclRefExpr*>(this)
2485      ->getTemplateKWAndArgsInfo();
2486  }
2487
2488  DependentScopeDeclRefExpr(QualType T,
2489                            NestedNameSpecifierLoc QualifierLoc,
2490                            SourceLocation TemplateKWLoc,
2491                            const DeclarationNameInfo &NameInfo,
2492                            const TemplateArgumentListInfo *Args);
2493
2494public:
2495  static DependentScopeDeclRefExpr *Create(ASTContext &C,
2496                                           NestedNameSpecifierLoc QualifierLoc,
2497                                           SourceLocation TemplateKWLoc,
2498                                           const DeclarationNameInfo &NameInfo,
2499                              const TemplateArgumentListInfo *TemplateArgs);
2500
2501  static DependentScopeDeclRefExpr *CreateEmpty(ASTContext &C,
2502                                                bool HasTemplateKWAndArgsInfo,
2503                                                unsigned NumTemplateArgs);
2504
2505  /// \brief Retrieve the name that this expression refers to.
2506  const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
2507
2508  /// \brief Retrieve the name that this expression refers to.
2509  DeclarationName getDeclName() const { return NameInfo.getName(); }
2510
2511  /// \brief Retrieve the location of the name within the expression.
2512  SourceLocation getLocation() const { return NameInfo.getLoc(); }
2513
2514  /// \brief Retrieve the nested-name-specifier that qualifies the
2515  /// name, with source location information.
2516  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2517
2518
2519  /// \brief Retrieve the nested-name-specifier that qualifies this
2520  /// declaration.
2521  NestedNameSpecifier *getQualifier() const {
2522    return QualifierLoc.getNestedNameSpecifier();
2523  }
2524
2525  /// \brief Retrieve the location of the template keyword preceding
2526  /// this name, if any.
2527  SourceLocation getTemplateKeywordLoc() const {
2528    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2529    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
2530  }
2531
2532  /// \brief Retrieve the location of the left angle bracket starting the
2533  /// explicit template argument list following the name, if any.
2534  SourceLocation getLAngleLoc() const {
2535    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2536    return getTemplateKWAndArgsInfo()->LAngleLoc;
2537  }
2538
2539  /// \brief Retrieve the location of the right angle bracket ending the
2540  /// explicit template argument list following the name, if any.
2541  SourceLocation getRAngleLoc() const {
2542    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2543    return getTemplateKWAndArgsInfo()->RAngleLoc;
2544  }
2545
2546  /// Determines whether the name was preceded by the template keyword.
2547  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
2548
2549  /// Determines whether this lookup had explicit template arguments.
2550  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
2551
2552  // Note that, inconsistently with the explicit-template-argument AST
2553  // nodes, users are *forbidden* from calling these methods on objects
2554  // without explicit template arguments.
2555
2556  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
2557    assert(hasExplicitTemplateArgs());
2558    return *reinterpret_cast<ASTTemplateArgumentListInfo*>(this + 1);
2559  }
2560
2561  /// Gets a reference to the explicit template argument list.
2562  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2563    assert(hasExplicitTemplateArgs());
2564    return *reinterpret_cast<const ASTTemplateArgumentListInfo*>(this + 1);
2565  }
2566
2567  /// \brief Retrieves the optional explicit template arguments.
2568  /// This points to the same data as getExplicitTemplateArgs(), but
2569  /// returns null if there are no explicit template arguments.
2570  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() {
2571    if (!hasExplicitTemplateArgs()) return 0;
2572    return &getExplicitTemplateArgs();
2573  }
2574
2575  /// \brief Copies the template arguments (if present) into the given
2576  /// structure.
2577  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2578    getExplicitTemplateArgs().copyInto(List);
2579  }
2580
2581  TemplateArgumentLoc const *getTemplateArgs() const {
2582    return getExplicitTemplateArgs().getTemplateArgs();
2583  }
2584
2585  unsigned getNumTemplateArgs() const {
2586    return getExplicitTemplateArgs().NumTemplateArgs;
2587  }
2588
2589  SourceRange getSourceRange() const {
2590    SourceRange Range(QualifierLoc.getBeginLoc(), getLocation());
2591    if (hasExplicitTemplateArgs())
2592      Range.setEnd(getRAngleLoc());
2593    return Range;
2594  }
2595
2596  static bool classof(const Stmt *T) {
2597    return T->getStmtClass() == DependentScopeDeclRefExprClass;
2598  }
2599  static bool classof(const DependentScopeDeclRefExpr *) { return true; }
2600
2601  child_range children() { return child_range(); }
2602
2603  friend class ASTStmtReader;
2604  friend class ASTStmtWriter;
2605};
2606
2607/// Represents an expression --- generally a full-expression --- which
2608/// introduces cleanups to be run at the end of the sub-expression's
2609/// evaluation.  The most common source of expression-introduced
2610/// cleanups is temporary objects in C++, but several other kinds of
2611/// expressions can create cleanups, including basically every
2612/// call in ARC that returns an Objective-C pointer.
2613///
2614/// This expression also tracks whether the sub-expression contains a
2615/// potentially-evaluated block literal.  The lifetime of a block
2616/// literal is the extent of the enclosing scope.
2617class ExprWithCleanups : public Expr {
2618public:
2619  /// The type of objects that are kept in the cleanup.
2620  /// It's useful to remember the set of blocks;  we could also
2621  /// remember the set of temporaries, but there's currently
2622  /// no need.
2623  typedef BlockDecl *CleanupObject;
2624
2625private:
2626  Stmt *SubExpr;
2627
2628  ExprWithCleanups(EmptyShell, unsigned NumObjects);
2629  ExprWithCleanups(Expr *SubExpr, ArrayRef<CleanupObject> Objects);
2630
2631  CleanupObject *getObjectsBuffer() {
2632    return reinterpret_cast<CleanupObject*>(this + 1);
2633  }
2634  const CleanupObject *getObjectsBuffer() const {
2635    return reinterpret_cast<const CleanupObject*>(this + 1);
2636  }
2637  friend class ASTStmtReader;
2638
2639public:
2640  static ExprWithCleanups *Create(ASTContext &C, EmptyShell empty,
2641                                  unsigned numObjects);
2642
2643  static ExprWithCleanups *Create(ASTContext &C, Expr *subexpr,
2644                                  ArrayRef<CleanupObject> objects);
2645
2646  ArrayRef<CleanupObject> getObjects() const {
2647    return ArrayRef<CleanupObject>(getObjectsBuffer(), getNumObjects());
2648  }
2649
2650  unsigned getNumObjects() const { return ExprWithCleanupsBits.NumObjects; }
2651
2652  CleanupObject getObject(unsigned i) const {
2653    assert(i < getNumObjects() && "Index out of range");
2654    return getObjects()[i];
2655  }
2656
2657  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
2658  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
2659
2660  /// setSubExpr - As with any mutator of the AST, be very careful
2661  /// when modifying an existing AST to preserve its invariants.
2662  void setSubExpr(Expr *E) { SubExpr = E; }
2663
2664  SourceRange getSourceRange() const {
2665    return SubExpr->getSourceRange();
2666  }
2667
2668  // Implement isa/cast/dyncast/etc.
2669  static bool classof(const Stmt *T) {
2670    return T->getStmtClass() == ExprWithCleanupsClass;
2671  }
2672  static bool classof(const ExprWithCleanups *) { return true; }
2673
2674  // Iterators
2675  child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
2676};
2677
2678/// \brief Describes an explicit type conversion that uses functional
2679/// notion but could not be resolved because one or more arguments are
2680/// type-dependent.
2681///
2682/// The explicit type conversions expressed by
2683/// CXXUnresolvedConstructExpr have the form \c T(a1, a2, ..., aN),
2684/// where \c T is some type and \c a1, a2, ..., aN are values, and
2685/// either \C T is a dependent type or one or more of the \c a's is
2686/// type-dependent. For example, this would occur in a template such
2687/// as:
2688///
2689/// \code
2690///   template<typename T, typename A1>
2691///   inline T make_a(const A1& a1) {
2692///     return T(a1);
2693///   }
2694/// \endcode
2695///
2696/// When the returned expression is instantiated, it may resolve to a
2697/// constructor call, conversion function call, or some kind of type
2698/// conversion.
2699class CXXUnresolvedConstructExpr : public Expr {
2700  /// \brief The type being constructed.
2701  TypeSourceInfo *Type;
2702
2703  /// \brief The location of the left parentheses ('(').
2704  SourceLocation LParenLoc;
2705
2706  /// \brief The location of the right parentheses (')').
2707  SourceLocation RParenLoc;
2708
2709  /// \brief The number of arguments used to construct the type.
2710  unsigned NumArgs;
2711
2712  CXXUnresolvedConstructExpr(TypeSourceInfo *Type,
2713                             SourceLocation LParenLoc,
2714                             Expr **Args,
2715                             unsigned NumArgs,
2716                             SourceLocation RParenLoc);
2717
2718  CXXUnresolvedConstructExpr(EmptyShell Empty, unsigned NumArgs)
2719    : Expr(CXXUnresolvedConstructExprClass, Empty), Type(), NumArgs(NumArgs) { }
2720
2721  friend class ASTStmtReader;
2722
2723public:
2724  static CXXUnresolvedConstructExpr *Create(ASTContext &C,
2725                                            TypeSourceInfo *Type,
2726                                            SourceLocation LParenLoc,
2727                                            Expr **Args,
2728                                            unsigned NumArgs,
2729                                            SourceLocation RParenLoc);
2730
2731  static CXXUnresolvedConstructExpr *CreateEmpty(ASTContext &C,
2732                                                 unsigned NumArgs);
2733
2734  /// \brief Retrieve the type that is being constructed, as specified
2735  /// in the source code.
2736  QualType getTypeAsWritten() const { return Type->getType(); }
2737
2738  /// \brief Retrieve the type source information for the type being
2739  /// constructed.
2740  TypeSourceInfo *getTypeSourceInfo() const { return Type; }
2741
2742  /// \brief Retrieve the location of the left parentheses ('(') that
2743  /// precedes the argument list.
2744  SourceLocation getLParenLoc() const { return LParenLoc; }
2745  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2746
2747  /// \brief Retrieve the location of the right parentheses (')') that
2748  /// follows the argument list.
2749  SourceLocation getRParenLoc() const { return RParenLoc; }
2750  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2751
2752  /// \brief Retrieve the number of arguments.
2753  unsigned arg_size() const { return NumArgs; }
2754
2755  typedef Expr** arg_iterator;
2756  arg_iterator arg_begin() { return reinterpret_cast<Expr**>(this + 1); }
2757  arg_iterator arg_end() { return arg_begin() + NumArgs; }
2758
2759  typedef const Expr* const * const_arg_iterator;
2760  const_arg_iterator arg_begin() const {
2761    return reinterpret_cast<const Expr* const *>(this + 1);
2762  }
2763  const_arg_iterator arg_end() const {
2764    return arg_begin() + NumArgs;
2765  }
2766
2767  Expr *getArg(unsigned I) {
2768    assert(I < NumArgs && "Argument index out-of-range");
2769    return *(arg_begin() + I);
2770  }
2771
2772  const Expr *getArg(unsigned I) const {
2773    assert(I < NumArgs && "Argument index out-of-range");
2774    return *(arg_begin() + I);
2775  }
2776
2777  void setArg(unsigned I, Expr *E) {
2778    assert(I < NumArgs && "Argument index out-of-range");
2779    *(arg_begin() + I) = E;
2780  }
2781
2782  SourceRange getSourceRange() const;
2783
2784  static bool classof(const Stmt *T) {
2785    return T->getStmtClass() == CXXUnresolvedConstructExprClass;
2786  }
2787  static bool classof(const CXXUnresolvedConstructExpr *) { return true; }
2788
2789  // Iterators
2790  child_range children() {
2791    Stmt **begin = reinterpret_cast<Stmt**>(this+1);
2792    return child_range(begin, begin + NumArgs);
2793  }
2794};
2795
2796/// \brief Represents a C++ member access expression where the actual
2797/// member referenced could not be resolved because the base
2798/// expression or the member name was dependent.
2799///
2800/// Like UnresolvedMemberExprs, these can be either implicit or
2801/// explicit accesses.  It is only possible to get one of these with
2802/// an implicit access if a qualifier is provided.
2803class CXXDependentScopeMemberExpr : public Expr {
2804  /// \brief The expression for the base pointer or class reference,
2805  /// e.g., the \c x in x.f.  Can be null in implicit accesses.
2806  Stmt *Base;
2807
2808  /// \brief The type of the base expression.  Never null, even for
2809  /// implicit accesses.
2810  QualType BaseType;
2811
2812  /// \brief Whether this member expression used the '->' operator or
2813  /// the '.' operator.
2814  bool IsArrow : 1;
2815
2816  /// \brief Whether this member expression has info for explicit template
2817  /// keyword and arguments.
2818  bool HasTemplateKWAndArgsInfo : 1;
2819
2820  /// \brief The location of the '->' or '.' operator.
2821  SourceLocation OperatorLoc;
2822
2823  /// \brief The nested-name-specifier that precedes the member name, if any.
2824  NestedNameSpecifierLoc QualifierLoc;
2825
2826  /// \brief In a qualified member access expression such as t->Base::f, this
2827  /// member stores the resolves of name lookup in the context of the member
2828  /// access expression, to be used at instantiation time.
2829  ///
2830  /// FIXME: This member, along with the QualifierLoc, could
2831  /// be stuck into a structure that is optionally allocated at the end of
2832  /// the CXXDependentScopeMemberExpr, to save space in the common case.
2833  NamedDecl *FirstQualifierFoundInScope;
2834
2835  /// \brief The member to which this member expression refers, which
2836  /// can be name, overloaded operator, or destructor.
2837  /// FIXME: could also be a template-id
2838  DeclarationNameInfo MemberNameInfo;
2839
2840  /// \brief Return the optional template keyword and arguments info.
2841  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
2842    if (!HasTemplateKWAndArgsInfo) return 0;
2843    return reinterpret_cast<ASTTemplateKWAndArgsInfo*>(this + 1);
2844  }
2845  /// \brief Return the optional template keyword and arguments info.
2846  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
2847    return const_cast<CXXDependentScopeMemberExpr*>(this)
2848      ->getTemplateKWAndArgsInfo();
2849  }
2850
2851  CXXDependentScopeMemberExpr(ASTContext &C,
2852                          Expr *Base, QualType BaseType, bool IsArrow,
2853                          SourceLocation OperatorLoc,
2854                          NestedNameSpecifierLoc QualifierLoc,
2855                          SourceLocation TemplateKWLoc,
2856                          NamedDecl *FirstQualifierFoundInScope,
2857                          DeclarationNameInfo MemberNameInfo,
2858                          const TemplateArgumentListInfo *TemplateArgs);
2859
2860public:
2861  CXXDependentScopeMemberExpr(ASTContext &C,
2862                              Expr *Base, QualType BaseType,
2863                              bool IsArrow,
2864                              SourceLocation OperatorLoc,
2865                              NestedNameSpecifierLoc QualifierLoc,
2866                              NamedDecl *FirstQualifierFoundInScope,
2867                              DeclarationNameInfo MemberNameInfo);
2868
2869  static CXXDependentScopeMemberExpr *
2870  Create(ASTContext &C,
2871         Expr *Base, QualType BaseType, bool IsArrow,
2872         SourceLocation OperatorLoc,
2873         NestedNameSpecifierLoc QualifierLoc,
2874         SourceLocation TemplateKWLoc,
2875         NamedDecl *FirstQualifierFoundInScope,
2876         DeclarationNameInfo MemberNameInfo,
2877         const TemplateArgumentListInfo *TemplateArgs);
2878
2879  static CXXDependentScopeMemberExpr *
2880  CreateEmpty(ASTContext &C, bool HasTemplateKWAndArgsInfo,
2881              unsigned NumTemplateArgs);
2882
2883  /// \brief True if this is an implicit access, i.e. one in which the
2884  /// member being accessed was not written in the source.  The source
2885  /// location of the operator is invalid in this case.
2886  bool isImplicitAccess() const;
2887
2888  /// \brief Retrieve the base object of this member expressions,
2889  /// e.g., the \c x in \c x.m.
2890  Expr *getBase() const {
2891    assert(!isImplicitAccess());
2892    return cast<Expr>(Base);
2893  }
2894
2895  QualType getBaseType() const { return BaseType; }
2896
2897  /// \brief Determine whether this member expression used the '->'
2898  /// operator; otherwise, it used the '.' operator.
2899  bool isArrow() const { return IsArrow; }
2900
2901  /// \brief Retrieve the location of the '->' or '.' operator.
2902  SourceLocation getOperatorLoc() const { return OperatorLoc; }
2903
2904  /// \brief Retrieve the nested-name-specifier that qualifies the member
2905  /// name.
2906  NestedNameSpecifier *getQualifier() const {
2907    return QualifierLoc.getNestedNameSpecifier();
2908  }
2909
2910  /// \brief Retrieve the nested-name-specifier that qualifies the member
2911  /// name, with source location information.
2912  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2913
2914
2915  /// \brief Retrieve the first part of the nested-name-specifier that was
2916  /// found in the scope of the member access expression when the member access
2917  /// was initially parsed.
2918  ///
2919  /// This function only returns a useful result when member access expression
2920  /// uses a qualified member name, e.g., "x.Base::f". Here, the declaration
2921  /// returned by this function describes what was found by unqualified name
2922  /// lookup for the identifier "Base" within the scope of the member access
2923  /// expression itself. At template instantiation time, this information is
2924  /// combined with the results of name lookup into the type of the object
2925  /// expression itself (the class type of x).
2926  NamedDecl *getFirstQualifierFoundInScope() const {
2927    return FirstQualifierFoundInScope;
2928  }
2929
2930  /// \brief Retrieve the name of the member that this expression
2931  /// refers to.
2932  const DeclarationNameInfo &getMemberNameInfo() const {
2933    return MemberNameInfo;
2934  }
2935
2936  /// \brief Retrieve the name of the member that this expression
2937  /// refers to.
2938  DeclarationName getMember() const { return MemberNameInfo.getName(); }
2939
2940  // \brief Retrieve the location of the name of the member that this
2941  // expression refers to.
2942  SourceLocation getMemberLoc() const { return MemberNameInfo.getLoc(); }
2943
2944  /// \brief Retrieve the location of the template keyword preceding the
2945  /// member name, if any.
2946  SourceLocation getTemplateKeywordLoc() const {
2947    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2948    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
2949  }
2950
2951  /// \brief Retrieve the location of the left angle bracket starting the
2952  /// explicit template argument list following the member name, if any.
2953  SourceLocation getLAngleLoc() const {
2954    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2955    return getTemplateKWAndArgsInfo()->LAngleLoc;
2956  }
2957
2958  /// \brief Retrieve the location of the right angle bracket ending the
2959  /// explicit template argument list following the member name, if any.
2960  SourceLocation getRAngleLoc() const {
2961    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2962    return getTemplateKWAndArgsInfo()->RAngleLoc;
2963  }
2964
2965  /// Determines whether the member name was preceded by the template keyword.
2966  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
2967
2968  /// \brief Determines whether this member expression actually had a C++
2969  /// template argument list explicitly specified, e.g., x.f<int>.
2970  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
2971
2972  /// \brief Retrieve the explicit template argument list that followed the
2973  /// member template name, if any.
2974  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
2975    assert(hasExplicitTemplateArgs());
2976    return *reinterpret_cast<ASTTemplateArgumentListInfo *>(this + 1);
2977  }
2978
2979  /// \brief Retrieve the explicit template argument list that followed the
2980  /// member template name, if any.
2981  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2982    return const_cast<CXXDependentScopeMemberExpr *>(this)
2983             ->getExplicitTemplateArgs();
2984  }
2985
2986  /// \brief Retrieves the optional explicit template arguments.
2987  /// This points to the same data as getExplicitTemplateArgs(), but
2988  /// returns null if there are no explicit template arguments.
2989  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() {
2990    if (!hasExplicitTemplateArgs()) return 0;
2991    return &getExplicitTemplateArgs();
2992  }
2993
2994  /// \brief Copies the template arguments (if present) into the given
2995  /// structure.
2996  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2997    getExplicitTemplateArgs().copyInto(List);
2998  }
2999
3000  /// \brief Initializes the template arguments using the given structure.
3001  void initializeTemplateArgumentsFrom(const TemplateArgumentListInfo &List) {
3002    getExplicitTemplateArgs().initializeFrom(List);
3003  }
3004
3005  /// \brief Retrieve the template arguments provided as part of this
3006  /// template-id.
3007  const TemplateArgumentLoc *getTemplateArgs() const {
3008    return getExplicitTemplateArgs().getTemplateArgs();
3009  }
3010
3011  /// \brief Retrieve the number of template arguments provided as part of this
3012  /// template-id.
3013  unsigned getNumTemplateArgs() const {
3014    return getExplicitTemplateArgs().NumTemplateArgs;
3015  }
3016
3017  SourceRange getSourceRange() const {
3018    SourceRange Range;
3019    if (!isImplicitAccess())
3020      Range.setBegin(Base->getSourceRange().getBegin());
3021    else if (getQualifier())
3022      Range.setBegin(getQualifierLoc().getBeginLoc());
3023    else
3024      Range.setBegin(MemberNameInfo.getBeginLoc());
3025
3026    if (hasExplicitTemplateArgs())
3027      Range.setEnd(getRAngleLoc());
3028    else
3029      Range.setEnd(MemberNameInfo.getEndLoc());
3030    return Range;
3031  }
3032
3033  static bool classof(const Stmt *T) {
3034    return T->getStmtClass() == CXXDependentScopeMemberExprClass;
3035  }
3036  static bool classof(const CXXDependentScopeMemberExpr *) { return true; }
3037
3038  // Iterators
3039  child_range children() {
3040    if (isImplicitAccess()) return child_range();
3041    return child_range(&Base, &Base + 1);
3042  }
3043
3044  friend class ASTStmtReader;
3045  friend class ASTStmtWriter;
3046};
3047
3048/// \brief Represents a C++ member access expression for which lookup
3049/// produced a set of overloaded functions.
3050///
3051/// The member access may be explicit or implicit:
3052///    struct A {
3053///      int a, b;
3054///      int explicitAccess() { return this->a + this->A::b; }
3055///      int implicitAccess() { return a + A::b; }
3056///    };
3057///
3058/// In the final AST, an explicit access always becomes a MemberExpr.
3059/// An implicit access may become either a MemberExpr or a
3060/// DeclRefExpr, depending on whether the member is static.
3061class UnresolvedMemberExpr : public OverloadExpr {
3062  /// \brief Whether this member expression used the '->' operator or
3063  /// the '.' operator.
3064  bool IsArrow : 1;
3065
3066  /// \brief Whether the lookup results contain an unresolved using
3067  /// declaration.
3068  bool HasUnresolvedUsing : 1;
3069
3070  /// \brief The expression for the base pointer or class reference,
3071  /// e.g., the \c x in x.f.  This can be null if this is an 'unbased'
3072  /// member expression
3073  Stmt *Base;
3074
3075  /// \brief The type of the base expression;  never null.
3076  QualType BaseType;
3077
3078  /// \brief The location of the '->' or '.' operator.
3079  SourceLocation OperatorLoc;
3080
3081  UnresolvedMemberExpr(ASTContext &C, bool HasUnresolvedUsing,
3082                       Expr *Base, QualType BaseType, bool IsArrow,
3083                       SourceLocation OperatorLoc,
3084                       NestedNameSpecifierLoc QualifierLoc,
3085                       SourceLocation TemplateKWLoc,
3086                       const DeclarationNameInfo &MemberNameInfo,
3087                       const TemplateArgumentListInfo *TemplateArgs,
3088                       UnresolvedSetIterator Begin, UnresolvedSetIterator End);
3089
3090  UnresolvedMemberExpr(EmptyShell Empty)
3091    : OverloadExpr(UnresolvedMemberExprClass, Empty), IsArrow(false),
3092      HasUnresolvedUsing(false), Base(0) { }
3093
3094  friend class ASTStmtReader;
3095
3096public:
3097  static UnresolvedMemberExpr *
3098  Create(ASTContext &C, bool HasUnresolvedUsing,
3099         Expr *Base, QualType BaseType, bool IsArrow,
3100         SourceLocation OperatorLoc,
3101         NestedNameSpecifierLoc QualifierLoc,
3102         SourceLocation TemplateKWLoc,
3103         const DeclarationNameInfo &MemberNameInfo,
3104         const TemplateArgumentListInfo *TemplateArgs,
3105         UnresolvedSetIterator Begin, UnresolvedSetIterator End);
3106
3107  static UnresolvedMemberExpr *
3108  CreateEmpty(ASTContext &C, bool HasTemplateKWAndArgsInfo,
3109              unsigned NumTemplateArgs);
3110
3111  /// \brief True if this is an implicit access, i.e. one in which the
3112  /// member being accessed was not written in the source.  The source
3113  /// location of the operator is invalid in this case.
3114  bool isImplicitAccess() const;
3115
3116  /// \brief Retrieve the base object of this member expressions,
3117  /// e.g., the \c x in \c x.m.
3118  Expr *getBase() {
3119    assert(!isImplicitAccess());
3120    return cast<Expr>(Base);
3121  }
3122  const Expr *getBase() const {
3123    assert(!isImplicitAccess());
3124    return cast<Expr>(Base);
3125  }
3126
3127  QualType getBaseType() const { return BaseType; }
3128
3129  /// \brief Determine whether the lookup results contain an unresolved using
3130  /// declaration.
3131  bool hasUnresolvedUsing() const { return HasUnresolvedUsing; }
3132
3133  /// \brief Determine whether this member expression used the '->'
3134  /// operator; otherwise, it used the '.' operator.
3135  bool isArrow() const { return IsArrow; }
3136
3137  /// \brief Retrieve the location of the '->' or '.' operator.
3138  SourceLocation getOperatorLoc() const { return OperatorLoc; }
3139
3140  /// \brief Retrieves the naming class of this lookup.
3141  CXXRecordDecl *getNamingClass() const;
3142
3143  /// \brief Retrieve the full name info for the member that this expression
3144  /// refers to.
3145  const DeclarationNameInfo &getMemberNameInfo() const { return getNameInfo(); }
3146
3147  /// \brief Retrieve the name of the member that this expression
3148  /// refers to.
3149  DeclarationName getMemberName() const { return getName(); }
3150
3151  // \brief Retrieve the location of the name of the member that this
3152  // expression refers to.
3153  SourceLocation getMemberLoc() const { return getNameLoc(); }
3154
3155  SourceRange getSourceRange() const {
3156    SourceRange Range = getMemberNameInfo().getSourceRange();
3157    if (!isImplicitAccess())
3158      Range.setBegin(Base->getSourceRange().getBegin());
3159    else if (getQualifierLoc())
3160      Range.setBegin(getQualifierLoc().getBeginLoc());
3161
3162    if (hasExplicitTemplateArgs())
3163      Range.setEnd(getRAngleLoc());
3164    return Range;
3165  }
3166
3167  static bool classof(const Stmt *T) {
3168    return T->getStmtClass() == UnresolvedMemberExprClass;
3169  }
3170  static bool classof(const UnresolvedMemberExpr *) { return true; }
3171
3172  // Iterators
3173  child_range children() {
3174    if (isImplicitAccess()) return child_range();
3175    return child_range(&Base, &Base + 1);
3176  }
3177};
3178
3179/// \brief Represents a C++0x noexcept expression (C++ [expr.unary.noexcept]).
3180///
3181/// The noexcept expression tests whether a given expression might throw. Its
3182/// result is a boolean constant.
3183class CXXNoexceptExpr : public Expr {
3184  bool Value : 1;
3185  Stmt *Operand;
3186  SourceRange Range;
3187
3188  friend class ASTStmtReader;
3189
3190public:
3191  CXXNoexceptExpr(QualType Ty, Expr *Operand, CanThrowResult Val,
3192                  SourceLocation Keyword, SourceLocation RParen)
3193    : Expr(CXXNoexceptExprClass, Ty, VK_RValue, OK_Ordinary,
3194           /*TypeDependent*/false,
3195           /*ValueDependent*/Val == CT_Dependent,
3196           Val == CT_Dependent || Operand->isInstantiationDependent(),
3197           Operand->containsUnexpandedParameterPack()),
3198      Value(Val == CT_Cannot), Operand(Operand), Range(Keyword, RParen)
3199  { }
3200
3201  CXXNoexceptExpr(EmptyShell Empty)
3202    : Expr(CXXNoexceptExprClass, Empty)
3203  { }
3204
3205  Expr *getOperand() const { return static_cast<Expr*>(Operand); }
3206
3207  SourceRange getSourceRange() const { return Range; }
3208
3209  bool getValue() const { return Value; }
3210
3211  static bool classof(const Stmt *T) {
3212    return T->getStmtClass() == CXXNoexceptExprClass;
3213  }
3214  static bool classof(const CXXNoexceptExpr *) { return true; }
3215
3216  // Iterators
3217  child_range children() { return child_range(&Operand, &Operand + 1); }
3218};
3219
3220/// \brief Represents a C++0x pack expansion that produces a sequence of
3221/// expressions.
3222///
3223/// A pack expansion expression contains a pattern (which itself is an
3224/// expression) followed by an ellipsis. For example:
3225///
3226/// \code
3227/// template<typename F, typename ...Types>
3228/// void forward(F f, Types &&...args) {
3229///   f(static_cast<Types&&>(args)...);
3230/// }
3231/// \endcode
3232///
3233/// Here, the argument to the function object \c f is a pack expansion whose
3234/// pattern is \c static_cast<Types&&>(args). When the \c forward function
3235/// template is instantiated, the pack expansion will instantiate to zero or
3236/// or more function arguments to the function object \c f.
3237class PackExpansionExpr : public Expr {
3238  SourceLocation EllipsisLoc;
3239
3240  /// \brief The number of expansions that will be produced by this pack
3241  /// expansion expression, if known.
3242  ///
3243  /// When zero, the number of expansions is not known. Otherwise, this value
3244  /// is the number of expansions + 1.
3245  unsigned NumExpansions;
3246
3247  Stmt *Pattern;
3248
3249  friend class ASTStmtReader;
3250  friend class ASTStmtWriter;
3251
3252public:
3253  PackExpansionExpr(QualType T, Expr *Pattern, SourceLocation EllipsisLoc,
3254                    llvm::Optional<unsigned> NumExpansions)
3255    : Expr(PackExpansionExprClass, T, Pattern->getValueKind(),
3256           Pattern->getObjectKind(), /*TypeDependent=*/true,
3257           /*ValueDependent=*/true, /*InstantiationDependent=*/true,
3258           /*ContainsUnexpandedParameterPack=*/false),
3259      EllipsisLoc(EllipsisLoc),
3260      NumExpansions(NumExpansions? *NumExpansions + 1 : 0),
3261      Pattern(Pattern) { }
3262
3263  PackExpansionExpr(EmptyShell Empty) : Expr(PackExpansionExprClass, Empty) { }
3264
3265  /// \brief Retrieve the pattern of the pack expansion.
3266  Expr *getPattern() { return reinterpret_cast<Expr *>(Pattern); }
3267
3268  /// \brief Retrieve the pattern of the pack expansion.
3269  const Expr *getPattern() const { return reinterpret_cast<Expr *>(Pattern); }
3270
3271  /// \brief Retrieve the location of the ellipsis that describes this pack
3272  /// expansion.
3273  SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
3274
3275  /// \brief Determine the number of expansions that will be produced when
3276  /// this pack expansion is instantiated, if already known.
3277  llvm::Optional<unsigned> getNumExpansions() const {
3278    if (NumExpansions)
3279      return NumExpansions - 1;
3280
3281    return llvm::Optional<unsigned>();
3282  }
3283
3284  SourceRange getSourceRange() const {
3285    return SourceRange(Pattern->getLocStart(), EllipsisLoc);
3286  }
3287
3288  static bool classof(const Stmt *T) {
3289    return T->getStmtClass() == PackExpansionExprClass;
3290  }
3291  static bool classof(const PackExpansionExpr *) { return true; }
3292
3293  // Iterators
3294  child_range children() {
3295    return child_range(&Pattern, &Pattern + 1);
3296  }
3297};
3298
3299inline ASTTemplateKWAndArgsInfo *OverloadExpr::getTemplateKWAndArgsInfo() {
3300  if (!HasTemplateKWAndArgsInfo) return 0;
3301  if (isa<UnresolvedLookupExpr>(this))
3302    return reinterpret_cast<ASTTemplateKWAndArgsInfo*>
3303      (cast<UnresolvedLookupExpr>(this) + 1);
3304  else
3305    return reinterpret_cast<ASTTemplateKWAndArgsInfo*>
3306      (cast<UnresolvedMemberExpr>(this) + 1);
3307}
3308
3309/// \brief Represents an expression that computes the length of a parameter
3310/// pack.
3311///
3312/// \code
3313/// template<typename ...Types>
3314/// struct count {
3315///   static const unsigned value = sizeof...(Types);
3316/// };
3317/// \endcode
3318class SizeOfPackExpr : public Expr {
3319  /// \brief The location of the 'sizeof' keyword.
3320  SourceLocation OperatorLoc;
3321
3322  /// \brief The location of the name of the parameter pack.
3323  SourceLocation PackLoc;
3324
3325  /// \brief The location of the closing parenthesis.
3326  SourceLocation RParenLoc;
3327
3328  /// \brief The length of the parameter pack, if known.
3329  ///
3330  /// When this expression is value-dependent, the length of the parameter pack
3331  /// is unknown. When this expression is not value-dependent, the length is
3332  /// known.
3333  unsigned Length;
3334
3335  /// \brief The parameter pack itself.
3336  NamedDecl *Pack;
3337
3338  friend class ASTStmtReader;
3339  friend class ASTStmtWriter;
3340
3341public:
3342  /// \brief Creates a value-dependent expression that computes the length of
3343  /// the given parameter pack.
3344  SizeOfPackExpr(QualType SizeType, SourceLocation OperatorLoc, NamedDecl *Pack,
3345                 SourceLocation PackLoc, SourceLocation RParenLoc)
3346    : Expr(SizeOfPackExprClass, SizeType, VK_RValue, OK_Ordinary,
3347           /*TypeDependent=*/false, /*ValueDependent=*/true,
3348           /*InstantiationDependent=*/true,
3349           /*ContainsUnexpandedParameterPack=*/false),
3350      OperatorLoc(OperatorLoc), PackLoc(PackLoc), RParenLoc(RParenLoc),
3351      Length(0), Pack(Pack) { }
3352
3353  /// \brief Creates an expression that computes the length of
3354  /// the given parameter pack, which is already known.
3355  SizeOfPackExpr(QualType SizeType, SourceLocation OperatorLoc, NamedDecl *Pack,
3356                 SourceLocation PackLoc, SourceLocation RParenLoc,
3357                 unsigned Length)
3358  : Expr(SizeOfPackExprClass, SizeType, VK_RValue, OK_Ordinary,
3359         /*TypeDependent=*/false, /*ValueDependent=*/false,
3360         /*InstantiationDependent=*/false,
3361         /*ContainsUnexpandedParameterPack=*/false),
3362    OperatorLoc(OperatorLoc), PackLoc(PackLoc), RParenLoc(RParenLoc),
3363    Length(Length), Pack(Pack) { }
3364
3365  /// \brief Create an empty expression.
3366  SizeOfPackExpr(EmptyShell Empty) : Expr(SizeOfPackExprClass, Empty) { }
3367
3368  /// \brief Determine the location of the 'sizeof' keyword.
3369  SourceLocation getOperatorLoc() const { return OperatorLoc; }
3370
3371  /// \brief Determine the location of the parameter pack.
3372  SourceLocation getPackLoc() const { return PackLoc; }
3373
3374  /// \brief Determine the location of the right parenthesis.
3375  SourceLocation getRParenLoc() const { return RParenLoc; }
3376
3377  /// \brief Retrieve the parameter pack.
3378  NamedDecl *getPack() const { return Pack; }
3379
3380  /// \brief Retrieve the length of the parameter pack.
3381  ///
3382  /// This routine may only be invoked when the expression is not
3383  /// value-dependent.
3384  unsigned getPackLength() const {
3385    assert(!isValueDependent() &&
3386           "Cannot get the length of a value-dependent pack size expression");
3387    return Length;
3388  }
3389
3390  SourceRange getSourceRange() const {
3391    return SourceRange(OperatorLoc, RParenLoc);
3392  }
3393
3394  static bool classof(const Stmt *T) {
3395    return T->getStmtClass() == SizeOfPackExprClass;
3396  }
3397  static bool classof(const SizeOfPackExpr *) { return true; }
3398
3399  // Iterators
3400  child_range children() { return child_range(); }
3401};
3402
3403/// \brief Represents a reference to a non-type template parameter
3404/// that has been substituted with a template argument.
3405class SubstNonTypeTemplateParmExpr : public Expr {
3406  /// \brief The replaced parameter.
3407  NonTypeTemplateParmDecl *Param;
3408
3409  /// \brief The replacement expression.
3410  Stmt *Replacement;
3411
3412  /// \brief The location of the non-type template parameter reference.
3413  SourceLocation NameLoc;
3414
3415  friend class ASTReader;
3416  friend class ASTStmtReader;
3417  explicit SubstNonTypeTemplateParmExpr(EmptyShell Empty)
3418    : Expr(SubstNonTypeTemplateParmExprClass, Empty) { }
3419
3420public:
3421  SubstNonTypeTemplateParmExpr(QualType type,
3422                               ExprValueKind valueKind,
3423                               SourceLocation loc,
3424                               NonTypeTemplateParmDecl *param,
3425                               Expr *replacement)
3426    : Expr(SubstNonTypeTemplateParmExprClass, type, valueKind, OK_Ordinary,
3427           replacement->isTypeDependent(), replacement->isValueDependent(),
3428           replacement->isInstantiationDependent(),
3429           replacement->containsUnexpandedParameterPack()),
3430      Param(param), Replacement(replacement), NameLoc(loc) {}
3431
3432  SourceLocation getNameLoc() const { return NameLoc; }
3433  SourceRange getSourceRange() const { return NameLoc; }
3434
3435  Expr *getReplacement() const { return cast<Expr>(Replacement); }
3436
3437  NonTypeTemplateParmDecl *getParameter() const { return Param; }
3438
3439  static bool classof(const Stmt *s) {
3440    return s->getStmtClass() == SubstNonTypeTemplateParmExprClass;
3441  }
3442  static bool classof(const SubstNonTypeTemplateParmExpr *) {
3443    return true;
3444  }
3445
3446  // Iterators
3447  child_range children() { return child_range(&Replacement, &Replacement+1); }
3448};
3449
3450/// \brief Represents a reference to a non-type template parameter pack that
3451/// has been substituted with a non-template argument pack.
3452///
3453/// When a pack expansion in the source code contains multiple parameter packs
3454/// and those parameter packs correspond to different levels of template
3455/// parameter lists, this node node is used to represent a non-type template
3456/// parameter pack from an outer level, which has already had its argument pack
3457/// substituted but that still lives within a pack expansion that itself
3458/// could not be instantiated. When actually performing a substitution into
3459/// that pack expansion (e.g., when all template parameters have corresponding
3460/// arguments), this type will be replaced with the appropriate underlying
3461/// expression at the current pack substitution index.
3462class SubstNonTypeTemplateParmPackExpr : public Expr {
3463  /// \brief The non-type template parameter pack itself.
3464  NonTypeTemplateParmDecl *Param;
3465
3466  /// \brief A pointer to the set of template arguments that this
3467  /// parameter pack is instantiated with.
3468  const TemplateArgument *Arguments;
3469
3470  /// \brief The number of template arguments in \c Arguments.
3471  unsigned NumArguments;
3472
3473  /// \brief The location of the non-type template parameter pack reference.
3474  SourceLocation NameLoc;
3475
3476  friend class ASTReader;
3477  friend class ASTStmtReader;
3478  explicit SubstNonTypeTemplateParmPackExpr(EmptyShell Empty)
3479    : Expr(SubstNonTypeTemplateParmPackExprClass, Empty) { }
3480
3481public:
3482  SubstNonTypeTemplateParmPackExpr(QualType T,
3483                                   NonTypeTemplateParmDecl *Param,
3484                                   SourceLocation NameLoc,
3485                                   const TemplateArgument &ArgPack);
3486
3487  /// \brief Retrieve the non-type template parameter pack being substituted.
3488  NonTypeTemplateParmDecl *getParameterPack() const { return Param; }
3489
3490  /// \brief Retrieve the location of the parameter pack name.
3491  SourceLocation getParameterPackLocation() const { return NameLoc; }
3492
3493  /// \brief Retrieve the template argument pack containing the substituted
3494  /// template arguments.
3495  TemplateArgument getArgumentPack() const;
3496
3497  SourceRange getSourceRange() const { return NameLoc; }
3498
3499  static bool classof(const Stmt *T) {
3500    return T->getStmtClass() == SubstNonTypeTemplateParmPackExprClass;
3501  }
3502  static bool classof(const SubstNonTypeTemplateParmPackExpr *) {
3503    return true;
3504  }
3505
3506  // Iterators
3507  child_range children() { return child_range(); }
3508};
3509
3510/// \brief Represents a prvalue temporary that written into memory so that
3511/// a reference can bind to it.
3512///
3513/// Prvalue expressions are materialized when they need to have an address
3514/// in memory for a reference to bind to. This happens when binding a
3515/// reference to the result of a conversion, e.g.,
3516///
3517/// \code
3518/// const int &r = 1.0;
3519/// \endcode
3520///
3521/// Here, 1.0 is implicitly converted to an \c int. That resulting \c int is
3522/// then materialized via a \c MaterializeTemporaryExpr, and the reference
3523/// binds to the temporary. \c MaterializeTemporaryExprs are always glvalues
3524/// (either an lvalue or an xvalue, depending on the kind of reference binding
3525/// to it), maintaining the invariant that references always bind to glvalues.
3526class MaterializeTemporaryExpr : public Expr {
3527  /// \brief The temporary-generating expression whose value will be
3528  /// materialized.
3529 Stmt *Temporary;
3530
3531  friend class ASTStmtReader;
3532  friend class ASTStmtWriter;
3533
3534public:
3535  MaterializeTemporaryExpr(QualType T, Expr *Temporary,
3536                           bool BoundToLvalueReference)
3537    : Expr(MaterializeTemporaryExprClass, T,
3538           BoundToLvalueReference? VK_LValue : VK_XValue, OK_Ordinary,
3539           Temporary->isTypeDependent(), Temporary->isValueDependent(),
3540           Temporary->isInstantiationDependent(),
3541           Temporary->containsUnexpandedParameterPack()),
3542      Temporary(Temporary) { }
3543
3544  MaterializeTemporaryExpr(EmptyShell Empty)
3545    : Expr(MaterializeTemporaryExprClass, Empty) { }
3546
3547  /// \brief Retrieve the temporary-generating subexpression whose value will
3548  /// be materialized into a glvalue.
3549  Expr *GetTemporaryExpr() const { return reinterpret_cast<Expr *>(Temporary); }
3550
3551  /// \brief Determine whether this materialized temporary is bound to an
3552  /// lvalue reference; otherwise, it's bound to an rvalue reference.
3553  bool isBoundToLvalueReference() const {
3554    return getValueKind() == VK_LValue;
3555  }
3556
3557  SourceRange getSourceRange() const { return Temporary->getSourceRange(); }
3558
3559  static bool classof(const Stmt *T) {
3560    return T->getStmtClass() == MaterializeTemporaryExprClass;
3561  }
3562  static bool classof(const MaterializeTemporaryExpr *) {
3563    return true;
3564  }
3565
3566  // Iterators
3567  child_range children() { return child_range(&Temporary, &Temporary + 1); }
3568};
3569
3570}  // end namespace clang
3571
3572#endif
3573