ExprCXX.h revision 552622067dc45013d240f73952fece703f5e63bd
1//===--- ExprCXX.h - Classes for representing expressions -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses for C++ expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPRCXX_H
15#define LLVM_CLANG_AST_EXPRCXX_H
16
17#include "clang/Basic/TypeTraits.h"
18#include "clang/Basic/ExpressionTraits.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/UnresolvedSet.h"
21#include "clang/AST/TemplateBase.h"
22
23namespace clang {
24
25class CXXConstructorDecl;
26class CXXDestructorDecl;
27class CXXMethodDecl;
28class CXXTemporary;
29class TemplateArgumentListInfo;
30
31//===--------------------------------------------------------------------===//
32// C++ Expressions.
33//===--------------------------------------------------------------------===//
34
35/// \brief A call to an overloaded operator written using operator
36/// syntax.
37///
38/// Represents a call to an overloaded operator written using operator
39/// syntax, e.g., "x + y" or "*p". While semantically equivalent to a
40/// normal call, this AST node provides better information about the
41/// syntactic representation of the call.
42///
43/// In a C++ template, this expression node kind will be used whenever
44/// any of the arguments are type-dependent. In this case, the
45/// function itself will be a (possibly empty) set of functions and
46/// function templates that were found by name lookup at template
47/// definition time.
48class CXXOperatorCallExpr : public CallExpr {
49  /// \brief The overloaded operator.
50  OverloadedOperatorKind Operator;
51
52public:
53  CXXOperatorCallExpr(ASTContext& C, OverloadedOperatorKind Op, Expr *fn,
54                      Expr **args, unsigned numargs, QualType t,
55                      ExprValueKind VK, SourceLocation operatorloc)
56    : CallExpr(C, CXXOperatorCallExprClass, fn, 0, args, numargs, t, VK,
57               operatorloc),
58      Operator(Op) {}
59  explicit CXXOperatorCallExpr(ASTContext& C, EmptyShell Empty) :
60    CallExpr(C, CXXOperatorCallExprClass, Empty) { }
61
62
63  /// getOperator - Returns the kind of overloaded operator that this
64  /// expression refers to.
65  OverloadedOperatorKind getOperator() const { return Operator; }
66  void setOperator(OverloadedOperatorKind Kind) { Operator = Kind; }
67
68  /// getOperatorLoc - Returns the location of the operator symbol in
69  /// the expression. When @c getOperator()==OO_Call, this is the
70  /// location of the right parentheses; when @c
71  /// getOperator()==OO_Subscript, this is the location of the right
72  /// bracket.
73  SourceLocation getOperatorLoc() const { return getRParenLoc(); }
74
75  SourceRange getSourceRange() const;
76
77  static bool classof(const Stmt *T) {
78    return T->getStmtClass() == CXXOperatorCallExprClass;
79  }
80  static bool classof(const CXXOperatorCallExpr *) { return true; }
81};
82
83/// CXXMemberCallExpr - Represents a call to a member function that
84/// may be written either with member call syntax (e.g., "obj.func()"
85/// or "objptr->func()") or with normal function-call syntax
86/// ("func()") within a member function that ends up calling a member
87/// function. The callee in either case is a MemberExpr that contains
88/// both the object argument and the member function, while the
89/// arguments are the arguments within the parentheses (not including
90/// the object argument).
91class CXXMemberCallExpr : public CallExpr {
92public:
93  CXXMemberCallExpr(ASTContext &C, Expr *fn, Expr **args, unsigned numargs,
94                    QualType t, ExprValueKind VK, SourceLocation RP)
95    : CallExpr(C, CXXMemberCallExprClass, fn, 0, args, numargs, t, VK, RP) {}
96
97  CXXMemberCallExpr(ASTContext &C, EmptyShell Empty)
98    : CallExpr(C, CXXMemberCallExprClass, Empty) { }
99
100  /// getImplicitObjectArgument - Retrieves the implicit object
101  /// argument for the member call. For example, in "x.f(5)", this
102  /// operation would return "x".
103  Expr *getImplicitObjectArgument() const;
104
105  /// Retrieves the declaration of the called method.
106  CXXMethodDecl *getMethodDecl() const;
107
108  /// getRecordDecl - Retrieves the CXXRecordDecl for the underlying type of
109  /// the implicit object argument. Note that this is may not be the same
110  /// declaration as that of the class context of the CXXMethodDecl which this
111  /// function is calling.
112  /// FIXME: Returns 0 for member pointer call exprs.
113  CXXRecordDecl *getRecordDecl();
114
115  static bool classof(const Stmt *T) {
116    return T->getStmtClass() == CXXMemberCallExprClass;
117  }
118  static bool classof(const CXXMemberCallExpr *) { return true; }
119};
120
121/// CUDAKernelCallExpr - Represents a call to a CUDA kernel function.
122class CUDAKernelCallExpr : public CallExpr {
123private:
124  enum { CONFIG, END_PREARG };
125
126public:
127  CUDAKernelCallExpr(ASTContext &C, Expr *fn, CallExpr *Config,
128                     Expr **args, unsigned numargs, QualType t,
129                     ExprValueKind VK, SourceLocation RP)
130    : CallExpr(C, CUDAKernelCallExprClass, fn, END_PREARG, args, numargs, t, VK,
131               RP) {
132    setConfig(Config);
133  }
134
135  CUDAKernelCallExpr(ASTContext &C, EmptyShell Empty)
136    : CallExpr(C, CUDAKernelCallExprClass, END_PREARG, Empty) { }
137
138  const CallExpr *getConfig() const {
139    return cast_or_null<CallExpr>(getPreArg(CONFIG));
140  }
141  CallExpr *getConfig() { return cast_or_null<CallExpr>(getPreArg(CONFIG)); }
142  void setConfig(CallExpr *E) { setPreArg(CONFIG, E); }
143
144  static bool classof(const Stmt *T) {
145    return T->getStmtClass() == CUDAKernelCallExprClass;
146  }
147  static bool classof(const CUDAKernelCallExpr *) { return true; }
148};
149
150/// CXXNamedCastExpr - Abstract class common to all of the C++ "named"
151/// casts, @c static_cast, @c dynamic_cast, @c reinterpret_cast, or @c
152/// const_cast.
153///
154/// This abstract class is inherited by all of the classes
155/// representing "named" casts, e.g., CXXStaticCastExpr,
156/// CXXDynamicCastExpr, CXXReinterpretCastExpr, and CXXConstCastExpr.
157class CXXNamedCastExpr : public ExplicitCastExpr {
158private:
159  SourceLocation Loc; // the location of the casting op
160  SourceLocation RParenLoc; // the location of the right parenthesis
161
162protected:
163  CXXNamedCastExpr(StmtClass SC, QualType ty, ExprValueKind VK,
164                   CastKind kind, Expr *op, unsigned PathSize,
165                   TypeSourceInfo *writtenTy, SourceLocation l,
166                   SourceLocation RParenLoc)
167    : ExplicitCastExpr(SC, ty, VK, kind, op, PathSize, writtenTy), Loc(l),
168      RParenLoc(RParenLoc) {}
169
170  explicit CXXNamedCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
171    : ExplicitCastExpr(SC, Shell, PathSize) { }
172
173  friend class ASTStmtReader;
174
175public:
176  const char *getCastName() const;
177
178  /// \brief Retrieve the location of the cast operator keyword, e.g.,
179  /// "static_cast".
180  SourceLocation getOperatorLoc() const { return Loc; }
181
182  /// \brief Retrieve the location of the closing parenthesis.
183  SourceLocation getRParenLoc() const { return RParenLoc; }
184
185  SourceRange getSourceRange() const {
186    return SourceRange(Loc, RParenLoc);
187  }
188  static bool classof(const Stmt *T) {
189    switch (T->getStmtClass()) {
190    case CXXStaticCastExprClass:
191    case CXXDynamicCastExprClass:
192    case CXXReinterpretCastExprClass:
193    case CXXConstCastExprClass:
194      return true;
195    default:
196      return false;
197    }
198  }
199  static bool classof(const CXXNamedCastExpr *) { return true; }
200};
201
202/// CXXStaticCastExpr - A C++ @c static_cast expression (C++ [expr.static.cast]).
203///
204/// This expression node represents a C++ static cast, e.g.,
205/// @c static_cast<int>(1.0).
206class CXXStaticCastExpr : public CXXNamedCastExpr {
207  CXXStaticCastExpr(QualType ty, ExprValueKind vk, CastKind kind, Expr *op,
208                    unsigned pathSize, TypeSourceInfo *writtenTy,
209                    SourceLocation l, SourceLocation RParenLoc)
210    : CXXNamedCastExpr(CXXStaticCastExprClass, ty, vk, kind, op, pathSize,
211                       writtenTy, l, RParenLoc) {}
212
213  explicit CXXStaticCastExpr(EmptyShell Empty, unsigned PathSize)
214    : CXXNamedCastExpr(CXXStaticCastExprClass, Empty, PathSize) { }
215
216public:
217  static CXXStaticCastExpr *Create(ASTContext &Context, QualType T,
218                                   ExprValueKind VK, CastKind K, Expr *Op,
219                                   const CXXCastPath *Path,
220                                   TypeSourceInfo *Written, SourceLocation L,
221                                   SourceLocation RParenLoc);
222  static CXXStaticCastExpr *CreateEmpty(ASTContext &Context,
223                                        unsigned PathSize);
224
225  static bool classof(const Stmt *T) {
226    return T->getStmtClass() == CXXStaticCastExprClass;
227  }
228  static bool classof(const CXXStaticCastExpr *) { return true; }
229};
230
231/// CXXDynamicCastExpr - A C++ @c dynamic_cast expression
232/// (C++ [expr.dynamic.cast]), which may perform a run-time check to
233/// determine how to perform the type cast.
234///
235/// This expression node represents a dynamic cast, e.g.,
236/// @c dynamic_cast<Derived*>(BasePtr).
237class CXXDynamicCastExpr : public CXXNamedCastExpr {
238  CXXDynamicCastExpr(QualType ty, ExprValueKind VK, CastKind kind,
239                     Expr *op, unsigned pathSize, TypeSourceInfo *writtenTy,
240                     SourceLocation l, SourceLocation RParenLoc)
241    : CXXNamedCastExpr(CXXDynamicCastExprClass, ty, VK, kind, op, pathSize,
242                       writtenTy, l, RParenLoc) {}
243
244  explicit CXXDynamicCastExpr(EmptyShell Empty, unsigned pathSize)
245    : CXXNamedCastExpr(CXXDynamicCastExprClass, Empty, pathSize) { }
246
247public:
248  static CXXDynamicCastExpr *Create(ASTContext &Context, QualType T,
249                                    ExprValueKind VK, CastKind Kind, Expr *Op,
250                                    const CXXCastPath *Path,
251                                    TypeSourceInfo *Written, SourceLocation L,
252                                    SourceLocation RParenLoc);
253
254  static CXXDynamicCastExpr *CreateEmpty(ASTContext &Context,
255                                         unsigned pathSize);
256
257  bool isAlwaysNull() const;
258
259  static bool classof(const Stmt *T) {
260    return T->getStmtClass() == CXXDynamicCastExprClass;
261  }
262  static bool classof(const CXXDynamicCastExpr *) { return true; }
263};
264
265/// CXXReinterpretCastExpr - A C++ @c reinterpret_cast expression (C++
266/// [expr.reinterpret.cast]), which provides a differently-typed view
267/// of a value but performs no actual work at run time.
268///
269/// This expression node represents a reinterpret cast, e.g.,
270/// @c reinterpret_cast<int>(VoidPtr).
271class CXXReinterpretCastExpr : public CXXNamedCastExpr {
272  CXXReinterpretCastExpr(QualType ty, ExprValueKind vk, CastKind kind,
273                         Expr *op, unsigned pathSize,
274                         TypeSourceInfo *writtenTy, SourceLocation l,
275                         SourceLocation RParenLoc)
276    : CXXNamedCastExpr(CXXReinterpretCastExprClass, ty, vk, kind, op,
277                       pathSize, writtenTy, l, RParenLoc) {}
278
279  CXXReinterpretCastExpr(EmptyShell Empty, unsigned pathSize)
280    : CXXNamedCastExpr(CXXReinterpretCastExprClass, Empty, pathSize) { }
281
282public:
283  static CXXReinterpretCastExpr *Create(ASTContext &Context, QualType T,
284                                        ExprValueKind VK, CastKind Kind,
285                                        Expr *Op, const CXXCastPath *Path,
286                                 TypeSourceInfo *WrittenTy, SourceLocation L,
287                                        SourceLocation RParenLoc);
288  static CXXReinterpretCastExpr *CreateEmpty(ASTContext &Context,
289                                             unsigned pathSize);
290
291  static bool classof(const Stmt *T) {
292    return T->getStmtClass() == CXXReinterpretCastExprClass;
293  }
294  static bool classof(const CXXReinterpretCastExpr *) { return true; }
295};
296
297/// CXXConstCastExpr - A C++ @c const_cast expression (C++ [expr.const.cast]),
298/// which can remove type qualifiers but does not change the underlying value.
299///
300/// This expression node represents a const cast, e.g.,
301/// @c const_cast<char*>(PtrToConstChar).
302class CXXConstCastExpr : public CXXNamedCastExpr {
303  CXXConstCastExpr(QualType ty, ExprValueKind VK, Expr *op,
304                   TypeSourceInfo *writtenTy, SourceLocation l,
305                   SourceLocation RParenLoc)
306    : CXXNamedCastExpr(CXXConstCastExprClass, ty, VK, CK_NoOp, op,
307                       0, writtenTy, l, RParenLoc) {}
308
309  explicit CXXConstCastExpr(EmptyShell Empty)
310    : CXXNamedCastExpr(CXXConstCastExprClass, Empty, 0) { }
311
312public:
313  static CXXConstCastExpr *Create(ASTContext &Context, QualType T,
314                                  ExprValueKind VK, Expr *Op,
315                                  TypeSourceInfo *WrittenTy, SourceLocation L,
316                                  SourceLocation RParenLoc);
317  static CXXConstCastExpr *CreateEmpty(ASTContext &Context);
318
319  static bool classof(const Stmt *T) {
320    return T->getStmtClass() == CXXConstCastExprClass;
321  }
322  static bool classof(const CXXConstCastExpr *) { return true; }
323};
324
325/// CXXBoolLiteralExpr - [C++ 2.13.5] C++ Boolean Literal.
326///
327class CXXBoolLiteralExpr : public Expr {
328  bool Value;
329  SourceLocation Loc;
330public:
331  CXXBoolLiteralExpr(bool val, QualType Ty, SourceLocation l) :
332    Expr(CXXBoolLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
333         false),
334    Value(val), Loc(l) {}
335
336  explicit CXXBoolLiteralExpr(EmptyShell Empty)
337    : Expr(CXXBoolLiteralExprClass, Empty) { }
338
339  bool getValue() const { return Value; }
340  void setValue(bool V) { Value = V; }
341
342  SourceRange getSourceRange() const { return SourceRange(Loc); }
343
344  SourceLocation getLocation() const { return Loc; }
345  void setLocation(SourceLocation L) { Loc = L; }
346
347  static bool classof(const Stmt *T) {
348    return T->getStmtClass() == CXXBoolLiteralExprClass;
349  }
350  static bool classof(const CXXBoolLiteralExpr *) { return true; }
351
352  // Iterators
353  child_range children() { return child_range(); }
354};
355
356/// CXXNullPtrLiteralExpr - [C++0x 2.14.7] C++ Pointer Literal
357class CXXNullPtrLiteralExpr : public Expr {
358  SourceLocation Loc;
359public:
360  CXXNullPtrLiteralExpr(QualType Ty, SourceLocation l) :
361    Expr(CXXNullPtrLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
362         false),
363    Loc(l) {}
364
365  explicit CXXNullPtrLiteralExpr(EmptyShell Empty)
366    : Expr(CXXNullPtrLiteralExprClass, Empty) { }
367
368  SourceRange getSourceRange() const { return SourceRange(Loc); }
369
370  SourceLocation getLocation() const { return Loc; }
371  void setLocation(SourceLocation L) { Loc = L; }
372
373  static bool classof(const Stmt *T) {
374    return T->getStmtClass() == CXXNullPtrLiteralExprClass;
375  }
376  static bool classof(const CXXNullPtrLiteralExpr *) { return true; }
377
378  child_range children() { return child_range(); }
379};
380
381/// CXXTypeidExpr - A C++ @c typeid expression (C++ [expr.typeid]), which gets
382/// the type_info that corresponds to the supplied type, or the (possibly
383/// dynamic) type of the supplied expression.
384///
385/// This represents code like @c typeid(int) or @c typeid(*objPtr)
386class CXXTypeidExpr : public Expr {
387private:
388  llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
389  SourceRange Range;
390
391public:
392  CXXTypeidExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
393    : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
394           // typeid is never type-dependent (C++ [temp.dep.expr]p4)
395           false,
396           // typeid is value-dependent if the type or expression are dependent
397           Operand->getType()->isDependentType(),
398           Operand->getType()->containsUnexpandedParameterPack()),
399      Operand(Operand), Range(R) { }
400
401  CXXTypeidExpr(QualType Ty, Expr *Operand, SourceRange R)
402    : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
403        // typeid is never type-dependent (C++ [temp.dep.expr]p4)
404           false,
405        // typeid is value-dependent if the type or expression are dependent
406           Operand->isTypeDependent() || Operand->isValueDependent(),
407           Operand->containsUnexpandedParameterPack()),
408      Operand(Operand), Range(R) { }
409
410  CXXTypeidExpr(EmptyShell Empty, bool isExpr)
411    : Expr(CXXTypeidExprClass, Empty) {
412    if (isExpr)
413      Operand = (Expr*)0;
414    else
415      Operand = (TypeSourceInfo*)0;
416  }
417
418  bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
419
420  /// \brief Retrieves the type operand of this typeid() expression after
421  /// various required adjustments (removing reference types, cv-qualifiers).
422  QualType getTypeOperand() const;
423
424  /// \brief Retrieve source information for the type operand.
425  TypeSourceInfo *getTypeOperandSourceInfo() const {
426    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
427    return Operand.get<TypeSourceInfo *>();
428  }
429
430  void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
431    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
432    Operand = TSI;
433  }
434
435  Expr *getExprOperand() const {
436    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
437    return static_cast<Expr*>(Operand.get<Stmt *>());
438  }
439
440  void setExprOperand(Expr *E) {
441    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
442    Operand = E;
443  }
444
445  SourceRange getSourceRange() const { return Range; }
446  void setSourceRange(SourceRange R) { Range = R; }
447
448  static bool classof(const Stmt *T) {
449    return T->getStmtClass() == CXXTypeidExprClass;
450  }
451  static bool classof(const CXXTypeidExpr *) { return true; }
452
453  // Iterators
454  child_range children() {
455    if (isTypeOperand()) return child_range();
456    Stmt **begin = reinterpret_cast<Stmt**>(&Operand);
457    return child_range(begin, begin + 1);
458  }
459};
460
461/// CXXUuidofExpr - A microsoft C++ @c __uuidof expression, which gets
462/// the _GUID that corresponds to the supplied type or expression.
463///
464/// This represents code like @c __uuidof(COMTYPE) or @c __uuidof(*comPtr)
465class CXXUuidofExpr : public Expr {
466private:
467  llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
468  SourceRange Range;
469
470public:
471  CXXUuidofExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
472    : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary,
473           false, Operand->getType()->isDependentType(),
474           Operand->getType()->containsUnexpandedParameterPack()),
475      Operand(Operand), Range(R) { }
476
477  CXXUuidofExpr(QualType Ty, Expr *Operand, SourceRange R)
478    : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary,
479           false, Operand->isTypeDependent(),
480           Operand->containsUnexpandedParameterPack()),
481      Operand(Operand), Range(R) { }
482
483  CXXUuidofExpr(EmptyShell Empty, bool isExpr)
484    : Expr(CXXUuidofExprClass, Empty) {
485    if (isExpr)
486      Operand = (Expr*)0;
487    else
488      Operand = (TypeSourceInfo*)0;
489  }
490
491  bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
492
493  /// \brief Retrieves the type operand of this __uuidof() expression after
494  /// various required adjustments (removing reference types, cv-qualifiers).
495  QualType getTypeOperand() const;
496
497  /// \brief Retrieve source information for the type operand.
498  TypeSourceInfo *getTypeOperandSourceInfo() const {
499    assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
500    return Operand.get<TypeSourceInfo *>();
501  }
502
503  void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
504    assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
505    Operand = TSI;
506  }
507
508  Expr *getExprOperand() const {
509    assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
510    return static_cast<Expr*>(Operand.get<Stmt *>());
511  }
512
513  void setExprOperand(Expr *E) {
514    assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
515    Operand = E;
516  }
517
518  SourceRange getSourceRange() const { return Range; }
519  void setSourceRange(SourceRange R) { Range = R; }
520
521  static bool classof(const Stmt *T) {
522    return T->getStmtClass() == CXXUuidofExprClass;
523  }
524  static bool classof(const CXXUuidofExpr *) { return true; }
525
526  // Iterators
527  child_range children() {
528    if (isTypeOperand()) return child_range();
529    Stmt **begin = reinterpret_cast<Stmt**>(&Operand);
530    return child_range(begin, begin + 1);
531  }
532};
533
534/// CXXThisExpr - Represents the "this" expression in C++, which is a
535/// pointer to the object on which the current member function is
536/// executing (C++ [expr.prim]p3). Example:
537///
538/// @code
539/// class Foo {
540/// public:
541///   void bar();
542///   void test() { this->bar(); }
543/// };
544/// @endcode
545class CXXThisExpr : public Expr {
546  SourceLocation Loc;
547  bool Implicit : 1;
548
549public:
550  CXXThisExpr(SourceLocation L, QualType Type, bool isImplicit)
551    : Expr(CXXThisExprClass, Type, VK_RValue, OK_Ordinary,
552           // 'this' is type-dependent if the class type of the enclosing
553           // member function is dependent (C++ [temp.dep.expr]p2)
554           Type->isDependentType(), Type->isDependentType(),
555           /*ContainsUnexpandedParameterPack=*/false),
556      Loc(L), Implicit(isImplicit) { }
557
558  CXXThisExpr(EmptyShell Empty) : Expr(CXXThisExprClass, Empty) {}
559
560  SourceLocation getLocation() const { return Loc; }
561  void setLocation(SourceLocation L) { Loc = L; }
562
563  SourceRange getSourceRange() const { return SourceRange(Loc); }
564
565  bool isImplicit() const { return Implicit; }
566  void setImplicit(bool I) { Implicit = I; }
567
568  static bool classof(const Stmt *T) {
569    return T->getStmtClass() == CXXThisExprClass;
570  }
571  static bool classof(const CXXThisExpr *) { return true; }
572
573  // Iterators
574  child_range children() { return child_range(); }
575};
576
577///  CXXThrowExpr - [C++ 15] C++ Throw Expression.  This handles
578///  'throw' and 'throw' assignment-expression.  When
579///  assignment-expression isn't present, Op will be null.
580///
581class CXXThrowExpr : public Expr {
582  Stmt *Op;
583  SourceLocation ThrowLoc;
584public:
585  // Ty is the void type which is used as the result type of the
586  // exepression.  The l is the location of the throw keyword.  expr
587  // can by null, if the optional expression to throw isn't present.
588  CXXThrowExpr(Expr *expr, QualType Ty, SourceLocation l) :
589    Expr(CXXThrowExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
590         expr && expr->containsUnexpandedParameterPack()),
591    Op(expr), ThrowLoc(l) {}
592  CXXThrowExpr(EmptyShell Empty) : Expr(CXXThrowExprClass, Empty) {}
593
594  const Expr *getSubExpr() const { return cast_or_null<Expr>(Op); }
595  Expr *getSubExpr() { return cast_or_null<Expr>(Op); }
596  void setSubExpr(Expr *E) { Op = E; }
597
598  SourceLocation getThrowLoc() const { return ThrowLoc; }
599  void setThrowLoc(SourceLocation L) { ThrowLoc = L; }
600
601  SourceRange getSourceRange() const {
602    if (getSubExpr() == 0)
603      return SourceRange(ThrowLoc, ThrowLoc);
604    return SourceRange(ThrowLoc, getSubExpr()->getSourceRange().getEnd());
605  }
606
607  static bool classof(const Stmt *T) {
608    return T->getStmtClass() == CXXThrowExprClass;
609  }
610  static bool classof(const CXXThrowExpr *) { return true; }
611
612  // Iterators
613  child_range children() {
614    return child_range(&Op, Op ? &Op+1 : &Op);
615  }
616};
617
618/// CXXDefaultArgExpr - C++ [dcl.fct.default]. This wraps up a
619/// function call argument that was created from the corresponding
620/// parameter's default argument, when the call did not explicitly
621/// supply arguments for all of the parameters.
622class CXXDefaultArgExpr : public Expr {
623  /// \brief The parameter whose default is being used.
624  ///
625  /// When the bit is set, the subexpression is stored after the
626  /// CXXDefaultArgExpr itself. When the bit is clear, the parameter's
627  /// actual default expression is the subexpression.
628  llvm::PointerIntPair<ParmVarDecl *, 1, bool> Param;
629
630  /// \brief The location where the default argument expression was used.
631  SourceLocation Loc;
632
633  CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param)
634    : Expr(SC,
635           param->hasUnparsedDefaultArg()
636             ? param->getType().getNonReferenceType()
637             : param->getDefaultArg()->getType(),
638           param->getDefaultArg()->getValueKind(),
639           param->getDefaultArg()->getObjectKind(), false, false, false),
640      Param(param, false), Loc(Loc) { }
641
642  CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param,
643                    Expr *SubExpr)
644    : Expr(SC, SubExpr->getType(),
645           SubExpr->getValueKind(), SubExpr->getObjectKind(),
646           false, false, false),
647      Param(param, true), Loc(Loc) {
648    *reinterpret_cast<Expr **>(this + 1) = SubExpr;
649  }
650
651public:
652  CXXDefaultArgExpr(EmptyShell Empty) : Expr(CXXDefaultArgExprClass, Empty) {}
653
654
655  // Param is the parameter whose default argument is used by this
656  // expression.
657  static CXXDefaultArgExpr *Create(ASTContext &C, SourceLocation Loc,
658                                   ParmVarDecl *Param) {
659    return new (C) CXXDefaultArgExpr(CXXDefaultArgExprClass, Loc, Param);
660  }
661
662  // Param is the parameter whose default argument is used by this
663  // expression, and SubExpr is the expression that will actually be used.
664  static CXXDefaultArgExpr *Create(ASTContext &C,
665                                   SourceLocation Loc,
666                                   ParmVarDecl *Param,
667                                   Expr *SubExpr);
668
669  // Retrieve the parameter that the argument was created from.
670  const ParmVarDecl *getParam() const { return Param.getPointer(); }
671  ParmVarDecl *getParam() { return Param.getPointer(); }
672
673  // Retrieve the actual argument to the function call.
674  const Expr *getExpr() const {
675    if (Param.getInt())
676      return *reinterpret_cast<Expr const * const*> (this + 1);
677    return getParam()->getDefaultArg();
678  }
679  Expr *getExpr() {
680    if (Param.getInt())
681      return *reinterpret_cast<Expr **> (this + 1);
682    return getParam()->getDefaultArg();
683  }
684
685  /// \brief Retrieve the location where this default argument was actually
686  /// used.
687  SourceLocation getUsedLocation() const { return Loc; }
688
689  SourceRange getSourceRange() const {
690    // Default argument expressions have no representation in the
691    // source, so they have an empty source range.
692    return SourceRange();
693  }
694
695  static bool classof(const Stmt *T) {
696    return T->getStmtClass() == CXXDefaultArgExprClass;
697  }
698  static bool classof(const CXXDefaultArgExpr *) { return true; }
699
700  // Iterators
701  child_range children() { return child_range(); }
702
703  friend class ASTStmtReader;
704  friend class ASTStmtWriter;
705};
706
707/// CXXTemporary - Represents a C++ temporary.
708class CXXTemporary {
709  /// Destructor - The destructor that needs to be called.
710  const CXXDestructorDecl *Destructor;
711
712  CXXTemporary(const CXXDestructorDecl *destructor)
713    : Destructor(destructor) { }
714
715public:
716  static CXXTemporary *Create(ASTContext &C,
717                              const CXXDestructorDecl *Destructor);
718
719  const CXXDestructorDecl *getDestructor() const { return Destructor; }
720};
721
722/// \brief Represents binding an expression to a temporary.
723///
724/// This ensures the destructor is called for the temporary. It should only be
725/// needed for non-POD, non-trivially destructable class types. For example:
726///
727/// \code
728///   struct S {
729///     S() { }  // User defined constructor makes S non-POD.
730///     ~S() { } // User defined destructor makes it non-trivial.
731///   };
732///   void test() {
733///     const S &s_ref = S(); // Requires a CXXBindTemporaryExpr.
734///   }
735/// \endcode
736class CXXBindTemporaryExpr : public Expr {
737  CXXTemporary *Temp;
738
739  Stmt *SubExpr;
740
741  CXXBindTemporaryExpr(CXXTemporary *temp, Expr* SubExpr)
742   : Expr(CXXBindTemporaryExprClass, SubExpr->getType(),
743          VK_RValue, OK_Ordinary, SubExpr->isTypeDependent(),
744          SubExpr->isValueDependent(),
745          SubExpr->containsUnexpandedParameterPack()),
746     Temp(temp), SubExpr(SubExpr) { }
747
748public:
749  CXXBindTemporaryExpr(EmptyShell Empty)
750    : Expr(CXXBindTemporaryExprClass, Empty), Temp(0), SubExpr(0) {}
751
752  static CXXBindTemporaryExpr *Create(ASTContext &C, CXXTemporary *Temp,
753                                      Expr* SubExpr);
754
755  CXXTemporary *getTemporary() { return Temp; }
756  const CXXTemporary *getTemporary() const { return Temp; }
757  void setTemporary(CXXTemporary *T) { Temp = T; }
758
759  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
760  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
761  void setSubExpr(Expr *E) { SubExpr = E; }
762
763  SourceRange getSourceRange() const {
764    return SubExpr->getSourceRange();
765  }
766
767  // Implement isa/cast/dyncast/etc.
768  static bool classof(const Stmt *T) {
769    return T->getStmtClass() == CXXBindTemporaryExprClass;
770  }
771  static bool classof(const CXXBindTemporaryExpr *) { return true; }
772
773  // Iterators
774  child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
775};
776
777/// CXXConstructExpr - Represents a call to a C++ constructor.
778class CXXConstructExpr : public Expr {
779public:
780  enum ConstructionKind {
781    CK_Complete,
782    CK_NonVirtualBase,
783    CK_VirtualBase
784  };
785
786private:
787  CXXConstructorDecl *Constructor;
788
789  SourceLocation Loc;
790  SourceRange ParenRange;
791  bool Elidable : 1;
792  bool ZeroInitialization : 1;
793  unsigned ConstructKind : 2;
794  Stmt **Args;
795  unsigned NumArgs;
796
797protected:
798  CXXConstructExpr(ASTContext &C, StmtClass SC, QualType T,
799                   SourceLocation Loc,
800                   CXXConstructorDecl *d, bool elidable,
801                   Expr **args, unsigned numargs,
802                   bool ZeroInitialization = false,
803                   ConstructionKind ConstructKind = CK_Complete,
804                   SourceRange ParenRange = SourceRange());
805
806  /// \brief Construct an empty C++ construction expression.
807  CXXConstructExpr(StmtClass SC, EmptyShell Empty)
808    : Expr(SC, Empty), Constructor(0), Elidable(0), ZeroInitialization(0),
809      ConstructKind(0), Args(0), NumArgs(0) { }
810
811public:
812  /// \brief Construct an empty C++ construction expression.
813  explicit CXXConstructExpr(EmptyShell Empty)
814    : Expr(CXXConstructExprClass, Empty), Constructor(0),
815      Elidable(0), ZeroInitialization(0),
816      ConstructKind(0), Args(0), NumArgs(0) { }
817
818  static CXXConstructExpr *Create(ASTContext &C, QualType T,
819                                  SourceLocation Loc,
820                                  CXXConstructorDecl *D, bool Elidable,
821                                  Expr **Args, unsigned NumArgs,
822                                  bool ZeroInitialization = false,
823                                  ConstructionKind ConstructKind = CK_Complete,
824                                  SourceRange ParenRange = SourceRange());
825
826
827  CXXConstructorDecl* getConstructor() const { return Constructor; }
828  void setConstructor(CXXConstructorDecl *C) { Constructor = C; }
829
830  SourceLocation getLocation() const { return Loc; }
831  void setLocation(SourceLocation Loc) { this->Loc = Loc; }
832
833  /// \brief Whether this construction is elidable.
834  bool isElidable() const { return Elidable; }
835  void setElidable(bool E) { Elidable = E; }
836
837  /// \brief Whether this construction first requires
838  /// zero-initialization before the initializer is called.
839  bool requiresZeroInitialization() const { return ZeroInitialization; }
840  void setRequiresZeroInitialization(bool ZeroInit) {
841    ZeroInitialization = ZeroInit;
842  }
843
844  /// \brief Determines whether this constructor is actually constructing
845  /// a base class (rather than a complete object).
846  ConstructionKind getConstructionKind() const {
847    return (ConstructionKind)ConstructKind;
848  }
849  void setConstructionKind(ConstructionKind CK) {
850    ConstructKind = CK;
851  }
852
853  typedef ExprIterator arg_iterator;
854  typedef ConstExprIterator const_arg_iterator;
855
856  arg_iterator arg_begin() { return Args; }
857  arg_iterator arg_end() { return Args + NumArgs; }
858  const_arg_iterator arg_begin() const { return Args; }
859  const_arg_iterator arg_end() const { return Args + NumArgs; }
860
861  Expr **getArgs() const { return reinterpret_cast<Expr **>(Args); }
862  unsigned getNumArgs() const { return NumArgs; }
863
864  /// getArg - Return the specified argument.
865  Expr *getArg(unsigned Arg) {
866    assert(Arg < NumArgs && "Arg access out of range!");
867    return cast<Expr>(Args[Arg]);
868  }
869  const Expr *getArg(unsigned Arg) const {
870    assert(Arg < NumArgs && "Arg access out of range!");
871    return cast<Expr>(Args[Arg]);
872  }
873
874  /// setArg - Set the specified argument.
875  void setArg(unsigned Arg, Expr *ArgExpr) {
876    assert(Arg < NumArgs && "Arg access out of range!");
877    Args[Arg] = ArgExpr;
878  }
879
880  SourceRange getSourceRange() const;
881  SourceRange getParenRange() const { return ParenRange; }
882
883  static bool classof(const Stmt *T) {
884    return T->getStmtClass() == CXXConstructExprClass ||
885      T->getStmtClass() == CXXTemporaryObjectExprClass;
886  }
887  static bool classof(const CXXConstructExpr *) { return true; }
888
889  // Iterators
890  child_range children() {
891    return child_range(&Args[0], &Args[0]+NumArgs);
892  }
893
894  friend class ASTStmtReader;
895};
896
897/// CXXFunctionalCastExpr - Represents an explicit C++ type conversion
898/// that uses "functional" notion (C++ [expr.type.conv]). Example: @c
899/// x = int(0.5);
900class CXXFunctionalCastExpr : public ExplicitCastExpr {
901  SourceLocation TyBeginLoc;
902  SourceLocation RParenLoc;
903
904  CXXFunctionalCastExpr(QualType ty, ExprValueKind VK,
905                        TypeSourceInfo *writtenTy,
906                        SourceLocation tyBeginLoc, CastKind kind,
907                        Expr *castExpr, unsigned pathSize,
908                        SourceLocation rParenLoc)
909    : ExplicitCastExpr(CXXFunctionalCastExprClass, ty, VK, kind,
910                       castExpr, pathSize, writtenTy),
911      TyBeginLoc(tyBeginLoc), RParenLoc(rParenLoc) {}
912
913  explicit CXXFunctionalCastExpr(EmptyShell Shell, unsigned PathSize)
914    : ExplicitCastExpr(CXXFunctionalCastExprClass, Shell, PathSize) { }
915
916public:
917  static CXXFunctionalCastExpr *Create(ASTContext &Context, QualType T,
918                                       ExprValueKind VK,
919                                       TypeSourceInfo *Written,
920                                       SourceLocation TyBeginLoc,
921                                       CastKind Kind, Expr *Op,
922                                       const CXXCastPath *Path,
923                                       SourceLocation RPLoc);
924  static CXXFunctionalCastExpr *CreateEmpty(ASTContext &Context,
925                                            unsigned PathSize);
926
927  SourceLocation getTypeBeginLoc() const { return TyBeginLoc; }
928  void setTypeBeginLoc(SourceLocation L) { TyBeginLoc = L; }
929  SourceLocation getRParenLoc() const { return RParenLoc; }
930  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
931
932  SourceRange getSourceRange() const {
933    return SourceRange(TyBeginLoc, RParenLoc);
934  }
935  static bool classof(const Stmt *T) {
936    return T->getStmtClass() == CXXFunctionalCastExprClass;
937  }
938  static bool classof(const CXXFunctionalCastExpr *) { return true; }
939};
940
941/// @brief Represents a C++ functional cast expression that builds a
942/// temporary object.
943///
944/// This expression type represents a C++ "functional" cast
945/// (C++[expr.type.conv]) with N != 1 arguments that invokes a
946/// constructor to build a temporary object. With N == 1 arguments the
947/// functional cast expression will be represented by CXXFunctionalCastExpr.
948/// Example:
949/// @code
950/// struct X { X(int, float); }
951///
952/// X create_X() {
953///   return X(1, 3.14f); // creates a CXXTemporaryObjectExpr
954/// };
955/// @endcode
956class CXXTemporaryObjectExpr : public CXXConstructExpr {
957  TypeSourceInfo *Type;
958
959public:
960  CXXTemporaryObjectExpr(ASTContext &C, CXXConstructorDecl *Cons,
961                         TypeSourceInfo *Type,
962                         Expr **Args,unsigned NumArgs,
963                         SourceRange parenRange,
964                         bool ZeroInitialization = false);
965  explicit CXXTemporaryObjectExpr(EmptyShell Empty)
966    : CXXConstructExpr(CXXTemporaryObjectExprClass, Empty), Type() { }
967
968  TypeSourceInfo *getTypeSourceInfo() const { return Type; }
969
970  SourceRange getSourceRange() const;
971
972  static bool classof(const Stmt *T) {
973    return T->getStmtClass() == CXXTemporaryObjectExprClass;
974  }
975  static bool classof(const CXXTemporaryObjectExpr *) { return true; }
976
977  friend class ASTStmtReader;
978};
979
980/// CXXScalarValueInitExpr - [C++ 5.2.3p2]
981/// Expression "T()" which creates a value-initialized rvalue of type
982/// T, which is a non-class type.
983///
984class CXXScalarValueInitExpr : public Expr {
985  SourceLocation RParenLoc;
986  TypeSourceInfo *TypeInfo;
987
988  friend class ASTStmtReader;
989
990public:
991  /// \brief Create an explicitly-written scalar-value initialization
992  /// expression.
993  CXXScalarValueInitExpr(QualType Type,
994                         TypeSourceInfo *TypeInfo,
995                         SourceLocation rParenLoc ) :
996    Expr(CXXScalarValueInitExprClass, Type, VK_RValue, OK_Ordinary,
997         false, false, false),
998    RParenLoc(rParenLoc), TypeInfo(TypeInfo) {}
999
1000  explicit CXXScalarValueInitExpr(EmptyShell Shell)
1001    : Expr(CXXScalarValueInitExprClass, Shell) { }
1002
1003  TypeSourceInfo *getTypeSourceInfo() const {
1004    return TypeInfo;
1005  }
1006
1007  SourceLocation getRParenLoc() const { return RParenLoc; }
1008
1009  SourceRange getSourceRange() const;
1010
1011  static bool classof(const Stmt *T) {
1012    return T->getStmtClass() == CXXScalarValueInitExprClass;
1013  }
1014  static bool classof(const CXXScalarValueInitExpr *) { return true; }
1015
1016  // Iterators
1017  child_range children() { return child_range(); }
1018};
1019
1020/// CXXNewExpr - A new expression for memory allocation and constructor calls,
1021/// e.g: "new CXXNewExpr(foo)".
1022class CXXNewExpr : public Expr {
1023  // Was the usage ::new, i.e. is the global new to be used?
1024  bool GlobalNew : 1;
1025  // Is there an initializer? If not, built-ins are uninitialized, else they're
1026  // value-initialized.
1027  bool Initializer : 1;
1028  // Do we allocate an array? If so, the first SubExpr is the size expression.
1029  bool Array : 1;
1030  // If this is an array allocation, does the usual deallocation
1031  // function for the allocated type want to know the allocated size?
1032  bool UsualArrayDeleteWantsSize : 1;
1033  // The number of placement new arguments.
1034  unsigned NumPlacementArgs : 14;
1035  // The number of constructor arguments. This may be 1 even for non-class
1036  // types; use the pseudo copy constructor.
1037  unsigned NumConstructorArgs : 14;
1038  // Contains an optional array size expression, any number of optional
1039  // placement arguments, and any number of optional constructor arguments,
1040  // in that order.
1041  Stmt **SubExprs;
1042  // Points to the allocation function used.
1043  FunctionDecl *OperatorNew;
1044  // Points to the deallocation function used in case of error. May be null.
1045  FunctionDecl *OperatorDelete;
1046  // Points to the constructor used. Cannot be null if AllocType is a record;
1047  // it would still point at the default constructor (even an implicit one).
1048  // Must be null for all other types.
1049  CXXConstructorDecl *Constructor;
1050
1051  /// \brief The allocated type-source information, as written in the source.
1052  TypeSourceInfo *AllocatedTypeInfo;
1053
1054  /// \brief If the allocated type was expressed as a parenthesized type-id,
1055  /// the source range covering the parenthesized type-id.
1056  SourceRange TypeIdParens;
1057
1058  SourceLocation StartLoc;
1059  SourceLocation EndLoc;
1060  SourceLocation ConstructorLParen;
1061  SourceLocation ConstructorRParen;
1062
1063  friend class ASTStmtReader;
1064public:
1065  CXXNewExpr(ASTContext &C, bool globalNew, FunctionDecl *operatorNew,
1066             Expr **placementArgs, unsigned numPlaceArgs,
1067             SourceRange TypeIdParens,
1068             Expr *arraySize, CXXConstructorDecl *constructor, bool initializer,
1069             Expr **constructorArgs, unsigned numConsArgs,
1070             FunctionDecl *operatorDelete, bool usualArrayDeleteWantsSize,
1071             QualType ty, TypeSourceInfo *AllocatedTypeInfo,
1072             SourceLocation startLoc, SourceLocation endLoc,
1073             SourceLocation constructorLParen,
1074             SourceLocation constructorRParen);
1075  explicit CXXNewExpr(EmptyShell Shell)
1076    : Expr(CXXNewExprClass, Shell), SubExprs(0) { }
1077
1078  void AllocateArgsArray(ASTContext &C, bool isArray, unsigned numPlaceArgs,
1079                         unsigned numConsArgs);
1080
1081  QualType getAllocatedType() const {
1082    assert(getType()->isPointerType());
1083    return getType()->getAs<PointerType>()->getPointeeType();
1084  }
1085
1086  TypeSourceInfo *getAllocatedTypeSourceInfo() const {
1087    return AllocatedTypeInfo;
1088  }
1089
1090  /// \brief True if the allocation result needs to be null-checked.
1091  /// C++0x [expr.new]p13:
1092  ///   If the allocation function returns null, initialization shall
1093  ///   not be done, the deallocation function shall not be called,
1094  ///   and the value of the new-expression shall be null.
1095  /// An allocation function is not allowed to return null unless it
1096  /// has a non-throwing exception-specification.  The '03 rule is
1097  /// identical except that the definition of a non-throwing
1098  /// exception specification is just "is it throw()?".
1099  bool shouldNullCheckAllocation(ASTContext &Ctx) const;
1100
1101  FunctionDecl *getOperatorNew() const { return OperatorNew; }
1102  void setOperatorNew(FunctionDecl *D) { OperatorNew = D; }
1103  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
1104  void setOperatorDelete(FunctionDecl *D) { OperatorDelete = D; }
1105  CXXConstructorDecl *getConstructor() const { return Constructor; }
1106  void setConstructor(CXXConstructorDecl *D) { Constructor = D; }
1107
1108  bool isArray() const { return Array; }
1109  Expr *getArraySize() {
1110    return Array ? cast<Expr>(SubExprs[0]) : 0;
1111  }
1112  const Expr *getArraySize() const {
1113    return Array ? cast<Expr>(SubExprs[0]) : 0;
1114  }
1115
1116  unsigned getNumPlacementArgs() const { return NumPlacementArgs; }
1117  Expr **getPlacementArgs() {
1118    return reinterpret_cast<Expr **>(SubExprs + Array);
1119  }
1120
1121  Expr *getPlacementArg(unsigned i) {
1122    assert(i < NumPlacementArgs && "Index out of range");
1123    return cast<Expr>(SubExprs[Array + i]);
1124  }
1125  const Expr *getPlacementArg(unsigned i) const {
1126    assert(i < NumPlacementArgs && "Index out of range");
1127    return cast<Expr>(SubExprs[Array + i]);
1128  }
1129
1130  bool isParenTypeId() const { return TypeIdParens.isValid(); }
1131  SourceRange getTypeIdParens() const { return TypeIdParens; }
1132
1133  bool isGlobalNew() const { return GlobalNew; }
1134  bool hasInitializer() const { return Initializer; }
1135
1136  /// Answers whether the usual array deallocation function for the
1137  /// allocated type expects the size of the allocation as a
1138  /// parameter.
1139  bool doesUsualArrayDeleteWantSize() const {
1140    return UsualArrayDeleteWantsSize;
1141  }
1142
1143  unsigned getNumConstructorArgs() const { return NumConstructorArgs; }
1144
1145  Expr **getConstructorArgs() {
1146    return reinterpret_cast<Expr **>(SubExprs + Array + NumPlacementArgs);
1147  }
1148
1149  Expr *getConstructorArg(unsigned i) {
1150    assert(i < NumConstructorArgs && "Index out of range");
1151    return cast<Expr>(SubExprs[Array + NumPlacementArgs + i]);
1152  }
1153  const Expr *getConstructorArg(unsigned i) const {
1154    assert(i < NumConstructorArgs && "Index out of range");
1155    return cast<Expr>(SubExprs[Array + NumPlacementArgs + i]);
1156  }
1157
1158  typedef ExprIterator arg_iterator;
1159  typedef ConstExprIterator const_arg_iterator;
1160
1161  arg_iterator placement_arg_begin() {
1162    return SubExprs + Array;
1163  }
1164  arg_iterator placement_arg_end() {
1165    return SubExprs + Array + getNumPlacementArgs();
1166  }
1167  const_arg_iterator placement_arg_begin() const {
1168    return SubExprs + Array;
1169  }
1170  const_arg_iterator placement_arg_end() const {
1171    return SubExprs + Array + getNumPlacementArgs();
1172  }
1173
1174  arg_iterator constructor_arg_begin() {
1175    return SubExprs + Array + getNumPlacementArgs();
1176  }
1177  arg_iterator constructor_arg_end() {
1178    return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
1179  }
1180  const_arg_iterator constructor_arg_begin() const {
1181    return SubExprs + Array + getNumPlacementArgs();
1182  }
1183  const_arg_iterator constructor_arg_end() const {
1184    return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
1185  }
1186
1187  typedef Stmt **raw_arg_iterator;
1188  raw_arg_iterator raw_arg_begin() { return SubExprs; }
1189  raw_arg_iterator raw_arg_end() {
1190    return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
1191  }
1192  const_arg_iterator raw_arg_begin() const { return SubExprs; }
1193  const_arg_iterator raw_arg_end() const { return constructor_arg_end(); }
1194
1195  SourceLocation getStartLoc() const { return StartLoc; }
1196  SourceLocation getEndLoc() const { return EndLoc; }
1197
1198  SourceLocation getConstructorLParen() const { return ConstructorLParen; }
1199  SourceLocation getConstructorRParen() const { return ConstructorRParen; }
1200
1201  SourceRange getSourceRange() const {
1202    return SourceRange(StartLoc, EndLoc);
1203  }
1204
1205  static bool classof(const Stmt *T) {
1206    return T->getStmtClass() == CXXNewExprClass;
1207  }
1208  static bool classof(const CXXNewExpr *) { return true; }
1209
1210  // Iterators
1211  child_range children() {
1212    return child_range(&SubExprs[0],
1213                       &SubExprs[0] + Array + getNumPlacementArgs()
1214                         + getNumConstructorArgs());
1215  }
1216};
1217
1218/// CXXDeleteExpr - A delete expression for memory deallocation and destructor
1219/// calls, e.g. "delete[] pArray".
1220class CXXDeleteExpr : public Expr {
1221  // Is this a forced global delete, i.e. "::delete"?
1222  bool GlobalDelete : 1;
1223  // Is this the array form of delete, i.e. "delete[]"?
1224  bool ArrayForm : 1;
1225  // ArrayFormAsWritten can be different from ArrayForm if 'delete' is applied
1226  // to pointer-to-array type (ArrayFormAsWritten will be false while ArrayForm
1227  // will be true).
1228  bool ArrayFormAsWritten : 1;
1229  // Does the usual deallocation function for the element type require
1230  // a size_t argument?
1231  bool UsualArrayDeleteWantsSize : 1;
1232  // Points to the operator delete overload that is used. Could be a member.
1233  FunctionDecl *OperatorDelete;
1234  // The pointer expression to be deleted.
1235  Stmt *Argument;
1236  // Location of the expression.
1237  SourceLocation Loc;
1238public:
1239  CXXDeleteExpr(QualType ty, bool globalDelete, bool arrayForm,
1240                bool arrayFormAsWritten, bool usualArrayDeleteWantsSize,
1241                FunctionDecl *operatorDelete, Expr *arg, SourceLocation loc)
1242    : Expr(CXXDeleteExprClass, ty, VK_RValue, OK_Ordinary, false, false,
1243           arg->containsUnexpandedParameterPack()),
1244      GlobalDelete(globalDelete),
1245      ArrayForm(arrayForm), ArrayFormAsWritten(arrayFormAsWritten),
1246      UsualArrayDeleteWantsSize(usualArrayDeleteWantsSize),
1247      OperatorDelete(operatorDelete), Argument(arg), Loc(loc) { }
1248  explicit CXXDeleteExpr(EmptyShell Shell)
1249    : Expr(CXXDeleteExprClass, Shell), OperatorDelete(0), Argument(0) { }
1250
1251  bool isGlobalDelete() const { return GlobalDelete; }
1252  bool isArrayForm() const { return ArrayForm; }
1253  bool isArrayFormAsWritten() const { return ArrayFormAsWritten; }
1254
1255  /// Answers whether the usual array deallocation function for the
1256  /// allocated type expects the size of the allocation as a
1257  /// parameter.  This can be true even if the actual deallocation
1258  /// function that we're using doesn't want a size.
1259  bool doesUsualArrayDeleteWantSize() const {
1260    return UsualArrayDeleteWantsSize;
1261  }
1262
1263  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
1264
1265  Expr *getArgument() { return cast<Expr>(Argument); }
1266  const Expr *getArgument() const { return cast<Expr>(Argument); }
1267
1268  /// \brief Retrieve the type being destroyed.  If the type being
1269  /// destroyed is a dependent type which may or may not be a pointer,
1270  /// return an invalid type.
1271  QualType getDestroyedType() const;
1272
1273  SourceRange getSourceRange() const {
1274    return SourceRange(Loc, Argument->getLocEnd());
1275  }
1276
1277  static bool classof(const Stmt *T) {
1278    return T->getStmtClass() == CXXDeleteExprClass;
1279  }
1280  static bool classof(const CXXDeleteExpr *) { return true; }
1281
1282  // Iterators
1283  child_range children() { return child_range(&Argument, &Argument+1); }
1284
1285  friend class ASTStmtReader;
1286};
1287
1288/// \brief Structure used to store the type being destroyed by a
1289/// pseudo-destructor expression.
1290class PseudoDestructorTypeStorage {
1291  /// \brief Either the type source information or the name of the type, if
1292  /// it couldn't be resolved due to type-dependence.
1293  llvm::PointerUnion<TypeSourceInfo *, IdentifierInfo *> Type;
1294
1295  /// \brief The starting source location of the pseudo-destructor type.
1296  SourceLocation Location;
1297
1298public:
1299  PseudoDestructorTypeStorage() { }
1300
1301  PseudoDestructorTypeStorage(IdentifierInfo *II, SourceLocation Loc)
1302    : Type(II), Location(Loc) { }
1303
1304  PseudoDestructorTypeStorage(TypeSourceInfo *Info);
1305
1306  TypeSourceInfo *getTypeSourceInfo() const {
1307    return Type.dyn_cast<TypeSourceInfo *>();
1308  }
1309
1310  IdentifierInfo *getIdentifier() const {
1311    return Type.dyn_cast<IdentifierInfo *>();
1312  }
1313
1314  SourceLocation getLocation() const { return Location; }
1315};
1316
1317/// \brief Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
1318///
1319/// A pseudo-destructor is an expression that looks like a member access to a
1320/// destructor of a scalar type, except that scalar types don't have
1321/// destructors. For example:
1322///
1323/// \code
1324/// typedef int T;
1325/// void f(int *p) {
1326///   p->T::~T();
1327/// }
1328/// \endcode
1329///
1330/// Pseudo-destructors typically occur when instantiating templates such as:
1331///
1332/// \code
1333/// template<typename T>
1334/// void destroy(T* ptr) {
1335///   ptr->T::~T();
1336/// }
1337/// \endcode
1338///
1339/// for scalar types. A pseudo-destructor expression has no run-time semantics
1340/// beyond evaluating the base expression.
1341class CXXPseudoDestructorExpr : public Expr {
1342  /// \brief The base expression (that is being destroyed).
1343  Stmt *Base;
1344
1345  /// \brief Whether the operator was an arrow ('->'); otherwise, it was a
1346  /// period ('.').
1347  bool IsArrow : 1;
1348
1349  /// \brief The location of the '.' or '->' operator.
1350  SourceLocation OperatorLoc;
1351
1352  /// \brief The nested-name-specifier that follows the operator, if present.
1353  NestedNameSpecifierLoc QualifierLoc;
1354
1355  /// \brief The type that precedes the '::' in a qualified pseudo-destructor
1356  /// expression.
1357  TypeSourceInfo *ScopeType;
1358
1359  /// \brief The location of the '::' in a qualified pseudo-destructor
1360  /// expression.
1361  SourceLocation ColonColonLoc;
1362
1363  /// \brief The location of the '~'.
1364  SourceLocation TildeLoc;
1365
1366  /// \brief The type being destroyed, or its name if we were unable to
1367  /// resolve the name.
1368  PseudoDestructorTypeStorage DestroyedType;
1369
1370  friend class ASTStmtReader;
1371
1372public:
1373  CXXPseudoDestructorExpr(ASTContext &Context,
1374                          Expr *Base, bool isArrow, SourceLocation OperatorLoc,
1375                          NestedNameSpecifierLoc QualifierLoc,
1376                          TypeSourceInfo *ScopeType,
1377                          SourceLocation ColonColonLoc,
1378                          SourceLocation TildeLoc,
1379                          PseudoDestructorTypeStorage DestroyedType);
1380
1381  explicit CXXPseudoDestructorExpr(EmptyShell Shell)
1382    : Expr(CXXPseudoDestructorExprClass, Shell),
1383      Base(0), IsArrow(false), QualifierLoc(), ScopeType(0) { }
1384
1385  Expr *getBase() const { return cast<Expr>(Base); }
1386
1387  /// \brief Determines whether this member expression actually had
1388  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
1389  /// x->Base::foo.
1390  bool hasQualifier() const { return QualifierLoc; }
1391
1392  /// \brief Retrieves the nested-name-specifier that qualifies the type name,
1393  /// with source-location information.
1394  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
1395
1396  /// \brief If the member name was qualified, retrieves the
1397  /// nested-name-specifier that precedes the member name. Otherwise, returns
1398  /// NULL.
1399  NestedNameSpecifier *getQualifier() const {
1400    return QualifierLoc.getNestedNameSpecifier();
1401  }
1402
1403  /// \brief Determine whether this pseudo-destructor expression was written
1404  /// using an '->' (otherwise, it used a '.').
1405  bool isArrow() const { return IsArrow; }
1406
1407  /// \brief Retrieve the location of the '.' or '->' operator.
1408  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1409
1410  /// \brief Retrieve the scope type in a qualified pseudo-destructor
1411  /// expression.
1412  ///
1413  /// Pseudo-destructor expressions can have extra qualification within them
1414  /// that is not part of the nested-name-specifier, e.g., \c p->T::~T().
1415  /// Here, if the object type of the expression is (or may be) a scalar type,
1416  /// \p T may also be a scalar type and, therefore, cannot be part of a
1417  /// nested-name-specifier. It is stored as the "scope type" of the pseudo-
1418  /// destructor expression.
1419  TypeSourceInfo *getScopeTypeInfo() const { return ScopeType; }
1420
1421  /// \brief Retrieve the location of the '::' in a qualified pseudo-destructor
1422  /// expression.
1423  SourceLocation getColonColonLoc() const { return ColonColonLoc; }
1424
1425  /// \brief Retrieve the location of the '~'.
1426  SourceLocation getTildeLoc() const { return TildeLoc; }
1427
1428  /// \brief Retrieve the source location information for the type
1429  /// being destroyed.
1430  ///
1431  /// This type-source information is available for non-dependent
1432  /// pseudo-destructor expressions and some dependent pseudo-destructor
1433  /// expressions. Returns NULL if we only have the identifier for a
1434  /// dependent pseudo-destructor expression.
1435  TypeSourceInfo *getDestroyedTypeInfo() const {
1436    return DestroyedType.getTypeSourceInfo();
1437  }
1438
1439  /// \brief In a dependent pseudo-destructor expression for which we do not
1440  /// have full type information on the destroyed type, provides the name
1441  /// of the destroyed type.
1442  IdentifierInfo *getDestroyedTypeIdentifier() const {
1443    return DestroyedType.getIdentifier();
1444  }
1445
1446  /// \brief Retrieve the type being destroyed.
1447  QualType getDestroyedType() const;
1448
1449  /// \brief Retrieve the starting location of the type being destroyed.
1450  SourceLocation getDestroyedTypeLoc() const {
1451    return DestroyedType.getLocation();
1452  }
1453
1454  /// \brief Set the name of destroyed type for a dependent pseudo-destructor
1455  /// expression.
1456  void setDestroyedType(IdentifierInfo *II, SourceLocation Loc) {
1457    DestroyedType = PseudoDestructorTypeStorage(II, Loc);
1458  }
1459
1460  /// \brief Set the destroyed type.
1461  void setDestroyedType(TypeSourceInfo *Info) {
1462    DestroyedType = PseudoDestructorTypeStorage(Info);
1463  }
1464
1465  SourceRange getSourceRange() const;
1466
1467  static bool classof(const Stmt *T) {
1468    return T->getStmtClass() == CXXPseudoDestructorExprClass;
1469  }
1470  static bool classof(const CXXPseudoDestructorExpr *) { return true; }
1471
1472  // Iterators
1473  child_range children() { return child_range(&Base, &Base + 1); }
1474};
1475
1476/// UnaryTypeTraitExpr - A GCC or MS unary type trait, as used in the
1477/// implementation of TR1/C++0x type trait templates.
1478/// Example:
1479/// __is_pod(int) == true
1480/// __is_enum(std::string) == false
1481class UnaryTypeTraitExpr : public Expr {
1482  /// UTT - The trait. A UnaryTypeTrait enum in MSVC compat unsigned.
1483  unsigned UTT : 31;
1484  /// The value of the type trait. Unspecified if dependent.
1485  bool Value : 1;
1486
1487  /// Loc - The location of the type trait keyword.
1488  SourceLocation Loc;
1489
1490  /// RParen - The location of the closing paren.
1491  SourceLocation RParen;
1492
1493  /// The type being queried.
1494  TypeSourceInfo *QueriedType;
1495
1496public:
1497  UnaryTypeTraitExpr(SourceLocation loc, UnaryTypeTrait utt,
1498                     TypeSourceInfo *queried, bool value,
1499                     SourceLocation rparen, QualType ty)
1500    : Expr(UnaryTypeTraitExprClass, ty, VK_RValue, OK_Ordinary,
1501           false,  queried->getType()->isDependentType(),
1502           queried->getType()->containsUnexpandedParameterPack()),
1503      UTT(utt), Value(value), Loc(loc), RParen(rparen), QueriedType(queried) { }
1504
1505  explicit UnaryTypeTraitExpr(EmptyShell Empty)
1506    : Expr(UnaryTypeTraitExprClass, Empty), UTT(0), Value(false),
1507      QueriedType() { }
1508
1509  SourceRange getSourceRange() const { return SourceRange(Loc, RParen);}
1510
1511  UnaryTypeTrait getTrait() const { return static_cast<UnaryTypeTrait>(UTT); }
1512
1513  QualType getQueriedType() const { return QueriedType->getType(); }
1514
1515  TypeSourceInfo *getQueriedTypeSourceInfo() const { return QueriedType; }
1516
1517  bool getValue() const { return Value; }
1518
1519  static bool classof(const Stmt *T) {
1520    return T->getStmtClass() == UnaryTypeTraitExprClass;
1521  }
1522  static bool classof(const UnaryTypeTraitExpr *) { return true; }
1523
1524  // Iterators
1525  child_range children() { return child_range(); }
1526
1527  friend class ASTStmtReader;
1528};
1529
1530/// BinaryTypeTraitExpr - A GCC or MS binary type trait, as used in the
1531/// implementation of TR1/C++0x type trait templates.
1532/// Example:
1533/// __is_base_of(Base, Derived) == true
1534class BinaryTypeTraitExpr : public Expr {
1535  /// BTT - The trait. A BinaryTypeTrait enum in MSVC compat unsigned.
1536  unsigned BTT : 8;
1537
1538  /// The value of the type trait. Unspecified if dependent.
1539  bool Value : 1;
1540
1541  /// Loc - The location of the type trait keyword.
1542  SourceLocation Loc;
1543
1544  /// RParen - The location of the closing paren.
1545  SourceLocation RParen;
1546
1547  /// The lhs type being queried.
1548  TypeSourceInfo *LhsType;
1549
1550  /// The rhs type being queried.
1551  TypeSourceInfo *RhsType;
1552
1553public:
1554  BinaryTypeTraitExpr(SourceLocation loc, BinaryTypeTrait btt,
1555                     TypeSourceInfo *lhsType, TypeSourceInfo *rhsType,
1556                     bool value, SourceLocation rparen, QualType ty)
1557    : Expr(BinaryTypeTraitExprClass, ty, VK_RValue, OK_Ordinary, false,
1558           lhsType->getType()->isDependentType() ||
1559           rhsType->getType()->isDependentType(),
1560           (lhsType->getType()->containsUnexpandedParameterPack() ||
1561            rhsType->getType()->containsUnexpandedParameterPack())),
1562      BTT(btt), Value(value), Loc(loc), RParen(rparen),
1563      LhsType(lhsType), RhsType(rhsType) { }
1564
1565
1566  explicit BinaryTypeTraitExpr(EmptyShell Empty)
1567    : Expr(BinaryTypeTraitExprClass, Empty), BTT(0), Value(false),
1568      LhsType(), RhsType() { }
1569
1570  SourceRange getSourceRange() const {
1571    return SourceRange(Loc, RParen);
1572  }
1573
1574  BinaryTypeTrait getTrait() const {
1575    return static_cast<BinaryTypeTrait>(BTT);
1576  }
1577
1578  QualType getLhsType() const { return LhsType->getType(); }
1579  QualType getRhsType() const { return RhsType->getType(); }
1580
1581  TypeSourceInfo *getLhsTypeSourceInfo() const { return LhsType; }
1582  TypeSourceInfo *getRhsTypeSourceInfo() const { return RhsType; }
1583
1584  bool getValue() const { assert(!isTypeDependent()); return Value; }
1585
1586  static bool classof(const Stmt *T) {
1587    return T->getStmtClass() == BinaryTypeTraitExprClass;
1588  }
1589  static bool classof(const BinaryTypeTraitExpr *) { return true; }
1590
1591  // Iterators
1592  child_range children() { return child_range(); }
1593
1594  friend class ASTStmtReader;
1595};
1596
1597/// ExpressionTraitExpr - An expression trait intrinsic
1598/// Example:
1599/// __is_lvalue_expr(std::cout) == true
1600/// __is_lvalue_expr(1) == false
1601class ExpressionTraitExpr : public Expr {
1602  /// ET - The trait. A ExpressionTrait enum in MSVC compat unsigned.
1603  unsigned ET : 31;
1604  /// The value of the type trait. Unspecified if dependent.
1605  bool Value : 1;
1606
1607  /// Loc - The location of the type trait keyword.
1608  SourceLocation Loc;
1609
1610  /// RParen - The location of the closing paren.
1611  SourceLocation RParen;
1612
1613  Expr* QueriedExpression;
1614public:
1615  ExpressionTraitExpr(SourceLocation loc, ExpressionTrait et,
1616                     Expr *queried, bool value,
1617                     SourceLocation rparen, QualType resultType)
1618    : Expr(ExpressionTraitExprClass, resultType, VK_RValue, OK_Ordinary,
1619           false, // Not type-dependent
1620           // Value-dependent if the argument is type-dependent.
1621           queried->isTypeDependent(),
1622           queried->containsUnexpandedParameterPack()),
1623      ET(et), Value(value), Loc(loc), RParen(rparen), QueriedExpression(queried) { }
1624
1625  explicit ExpressionTraitExpr(EmptyShell Empty)
1626    : Expr(ExpressionTraitExprClass, Empty), ET(0), Value(false),
1627      QueriedExpression() { }
1628
1629  SourceRange getSourceRange() const { return SourceRange(Loc, RParen);}
1630
1631  ExpressionTrait getTrait() const { return static_cast<ExpressionTrait>(ET); }
1632
1633  Expr *getQueriedExpression() const { return QueriedExpression; }
1634
1635  bool getValue() const { return Value; }
1636
1637  static bool classof(const Stmt *T) {
1638    return T->getStmtClass() == ExpressionTraitExprClass;
1639  }
1640  static bool classof(const ExpressionTraitExpr *) { return true; }
1641
1642  // Iterators
1643  child_range children() { return child_range(); }
1644
1645  friend class ASTStmtReader;
1646};
1647
1648
1649/// \brief A reference to an overloaded function set, either an
1650/// \t UnresolvedLookupExpr or an \t UnresolvedMemberExpr.
1651class OverloadExpr : public Expr {
1652  /// The results.  These are undesugared, which is to say, they may
1653  /// include UsingShadowDecls.  Access is relative to the naming
1654  /// class.
1655  // FIXME: Allocate this data after the OverloadExpr subclass.
1656  DeclAccessPair *Results;
1657  unsigned NumResults;
1658
1659  /// The common name of these declarations.
1660  DeclarationNameInfo NameInfo;
1661
1662  /// \brief The nested-name-specifier that qualifies the name, if any.
1663  NestedNameSpecifierLoc QualifierLoc;
1664
1665protected:
1666  /// True if the name was a template-id.
1667  bool HasExplicitTemplateArgs;
1668
1669  OverloadExpr(StmtClass K, ASTContext &C,
1670               NestedNameSpecifierLoc QualifierLoc,
1671               const DeclarationNameInfo &NameInfo,
1672               const TemplateArgumentListInfo *TemplateArgs,
1673               UnresolvedSetIterator Begin, UnresolvedSetIterator End,
1674               bool KnownDependent = false,
1675               bool KnownContainsUnexpandedParameterPack = false);
1676
1677  OverloadExpr(StmtClass K, EmptyShell Empty)
1678    : Expr(K, Empty), Results(0), NumResults(0),
1679      QualifierLoc(), HasExplicitTemplateArgs(false) { }
1680
1681  void initializeResults(ASTContext &C,
1682                         UnresolvedSetIterator Begin,
1683                         UnresolvedSetIterator End);
1684
1685public:
1686  struct FindResult {
1687    OverloadExpr *Expression;
1688    bool IsAddressOfOperand;
1689    bool HasFormOfMemberPointer;
1690  };
1691
1692  /// Finds the overloaded expression in the given expression of
1693  /// OverloadTy.
1694  ///
1695  /// \return the expression (which must be there) and true if it has
1696  /// the particular form of a member pointer expression
1697  static FindResult find(Expr *E) {
1698    assert(E->getType()->isSpecificBuiltinType(BuiltinType::Overload));
1699
1700    FindResult Result;
1701
1702    E = E->IgnoreParens();
1703    if (isa<UnaryOperator>(E)) {
1704      assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
1705      E = cast<UnaryOperator>(E)->getSubExpr();
1706      OverloadExpr *Ovl = cast<OverloadExpr>(E->IgnoreParens());
1707
1708      Result.HasFormOfMemberPointer = (E == Ovl && Ovl->getQualifier());
1709      Result.IsAddressOfOperand = true;
1710      Result.Expression = Ovl;
1711    } else {
1712      Result.HasFormOfMemberPointer = false;
1713      Result.IsAddressOfOperand = false;
1714      Result.Expression = cast<OverloadExpr>(E);
1715    }
1716
1717    return Result;
1718  }
1719
1720  /// Gets the naming class of this lookup, if any.
1721  CXXRecordDecl *getNamingClass() const;
1722
1723  typedef UnresolvedSetImpl::iterator decls_iterator;
1724  decls_iterator decls_begin() const { return UnresolvedSetIterator(Results); }
1725  decls_iterator decls_end() const {
1726    return UnresolvedSetIterator(Results + NumResults);
1727  }
1728
1729  /// Gets the number of declarations in the unresolved set.
1730  unsigned getNumDecls() const { return NumResults; }
1731
1732  /// Gets the full name info.
1733  const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
1734
1735  /// Gets the name looked up.
1736  DeclarationName getName() const { return NameInfo.getName(); }
1737
1738  /// Gets the location of the name.
1739  SourceLocation getNameLoc() const { return NameInfo.getLoc(); }
1740
1741  /// Fetches the nested-name qualifier, if one was given.
1742  NestedNameSpecifier *getQualifier() const {
1743    return QualifierLoc.getNestedNameSpecifier();
1744  }
1745
1746  /// Fetches the nested-name qualifier with source-location information, if
1747  /// one was given.
1748  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
1749
1750  /// \brief Determines whether this expression had an explicit
1751  /// template argument list, e.g. f<int>.
1752  bool hasExplicitTemplateArgs() const { return HasExplicitTemplateArgs; }
1753
1754  ExplicitTemplateArgumentList &getExplicitTemplateArgs(); // defined far below
1755
1756  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
1757    return const_cast<OverloadExpr*>(this)->getExplicitTemplateArgs();
1758  }
1759
1760  /// \brief Retrieves the optional explicit template arguments.
1761  /// This points to the same data as getExplicitTemplateArgs(), but
1762  /// returns null if there are no explicit template arguments.
1763  const ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() {
1764    if (!hasExplicitTemplateArgs()) return 0;
1765    return &getExplicitTemplateArgs();
1766  }
1767
1768  static bool classof(const Stmt *T) {
1769    return T->getStmtClass() == UnresolvedLookupExprClass ||
1770           T->getStmtClass() == UnresolvedMemberExprClass;
1771  }
1772  static bool classof(const OverloadExpr *) { return true; }
1773
1774  friend class ASTStmtReader;
1775  friend class ASTStmtWriter;
1776};
1777
1778/// \brief A reference to a name which we were able to look up during
1779/// parsing but could not resolve to a specific declaration.  This
1780/// arises in several ways:
1781///   * we might be waiting for argument-dependent lookup
1782///   * the name might resolve to an overloaded function
1783/// and eventually:
1784///   * the lookup might have included a function template
1785/// These never include UnresolvedUsingValueDecls, which are always
1786/// class members and therefore appear only in
1787/// UnresolvedMemberLookupExprs.
1788class UnresolvedLookupExpr : public OverloadExpr {
1789  /// True if these lookup results should be extended by
1790  /// argument-dependent lookup if this is the operand of a function
1791  /// call.
1792  bool RequiresADL;
1793
1794  /// True if namespace ::std should be considered an associated namespace
1795  /// for the purposes of argument-dependent lookup. See C++0x [stmt.ranged]p1.
1796  bool StdIsAssociatedNamespace;
1797
1798  /// True if these lookup results are overloaded.  This is pretty
1799  /// trivially rederivable if we urgently need to kill this field.
1800  bool Overloaded;
1801
1802  /// The naming class (C++ [class.access.base]p5) of the lookup, if
1803  /// any.  This can generally be recalculated from the context chain,
1804  /// but that can be fairly expensive for unqualified lookups.  If we
1805  /// want to improve memory use here, this could go in a union
1806  /// against the qualified-lookup bits.
1807  CXXRecordDecl *NamingClass;
1808
1809  UnresolvedLookupExpr(ASTContext &C,
1810                       CXXRecordDecl *NamingClass,
1811                       NestedNameSpecifierLoc QualifierLoc,
1812                       const DeclarationNameInfo &NameInfo,
1813                       bool RequiresADL, bool Overloaded,
1814                       const TemplateArgumentListInfo *TemplateArgs,
1815                       UnresolvedSetIterator Begin, UnresolvedSetIterator End,
1816                       bool StdIsAssociatedNamespace)
1817    : OverloadExpr(UnresolvedLookupExprClass, C, QualifierLoc, NameInfo,
1818                   TemplateArgs, Begin, End),
1819      RequiresADL(RequiresADL),
1820      StdIsAssociatedNamespace(StdIsAssociatedNamespace),
1821      Overloaded(Overloaded), NamingClass(NamingClass)
1822  {}
1823
1824  UnresolvedLookupExpr(EmptyShell Empty)
1825    : OverloadExpr(UnresolvedLookupExprClass, Empty),
1826      RequiresADL(false), StdIsAssociatedNamespace(false), Overloaded(false),
1827      NamingClass(0)
1828  {}
1829
1830  friend class ASTStmtReader;
1831
1832public:
1833  static UnresolvedLookupExpr *Create(ASTContext &C,
1834                                      CXXRecordDecl *NamingClass,
1835                                      NestedNameSpecifierLoc QualifierLoc,
1836                                      const DeclarationNameInfo &NameInfo,
1837                                      bool ADL, bool Overloaded,
1838                                      UnresolvedSetIterator Begin,
1839                                      UnresolvedSetIterator End,
1840                                      bool StdIsAssociatedNamespace = false) {
1841    assert((ADL || !StdIsAssociatedNamespace) &&
1842           "std considered associated namespace when not performing ADL");
1843    return new(C) UnresolvedLookupExpr(C, NamingClass, QualifierLoc, NameInfo,
1844                                       ADL, Overloaded, 0, Begin, End,
1845                                       StdIsAssociatedNamespace);
1846  }
1847
1848  static UnresolvedLookupExpr *Create(ASTContext &C,
1849                                      CXXRecordDecl *NamingClass,
1850                                      NestedNameSpecifierLoc QualifierLoc,
1851                                      const DeclarationNameInfo &NameInfo,
1852                                      bool ADL,
1853                                      const TemplateArgumentListInfo &Args,
1854                                      UnresolvedSetIterator Begin,
1855                                      UnresolvedSetIterator End);
1856
1857  static UnresolvedLookupExpr *CreateEmpty(ASTContext &C,
1858                                           bool HasExplicitTemplateArgs,
1859                                           unsigned NumTemplateArgs);
1860
1861  /// True if this declaration should be extended by
1862  /// argument-dependent lookup.
1863  bool requiresADL() const { return RequiresADL; }
1864
1865  /// True if namespace ::std should be artificially added to the set of
1866  /// associated namespaecs for argument-dependent lookup purposes.
1867  bool isStdAssociatedNamespace() const { return StdIsAssociatedNamespace; }
1868
1869  /// True if this lookup is overloaded.
1870  bool isOverloaded() const { return Overloaded; }
1871
1872  /// Gets the 'naming class' (in the sense of C++0x
1873  /// [class.access.base]p5) of the lookup.  This is the scope
1874  /// that was looked in to find these results.
1875  CXXRecordDecl *getNamingClass() const { return NamingClass; }
1876
1877  // Note that, inconsistently with the explicit-template-argument AST
1878  // nodes, users are *forbidden* from calling these methods on objects
1879  // without explicit template arguments.
1880
1881  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
1882    assert(hasExplicitTemplateArgs());
1883    return *reinterpret_cast<ExplicitTemplateArgumentList*>(this + 1);
1884  }
1885
1886  /// Gets a reference to the explicit template argument list.
1887  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
1888    assert(hasExplicitTemplateArgs());
1889    return *reinterpret_cast<const ExplicitTemplateArgumentList*>(this + 1);
1890  }
1891
1892  /// \brief Retrieves the optional explicit template arguments.
1893  /// This points to the same data as getExplicitTemplateArgs(), but
1894  /// returns null if there are no explicit template arguments.
1895  const ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() {
1896    if (!hasExplicitTemplateArgs()) return 0;
1897    return &getExplicitTemplateArgs();
1898  }
1899
1900  /// \brief Copies the template arguments (if present) into the given
1901  /// structure.
1902  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1903    getExplicitTemplateArgs().copyInto(List);
1904  }
1905
1906  SourceLocation getLAngleLoc() const {
1907    return getExplicitTemplateArgs().LAngleLoc;
1908  }
1909
1910  SourceLocation getRAngleLoc() const {
1911    return getExplicitTemplateArgs().RAngleLoc;
1912  }
1913
1914  TemplateArgumentLoc const *getTemplateArgs() const {
1915    return getExplicitTemplateArgs().getTemplateArgs();
1916  }
1917
1918  unsigned getNumTemplateArgs() const {
1919    return getExplicitTemplateArgs().NumTemplateArgs;
1920  }
1921
1922  SourceRange getSourceRange() const {
1923    SourceRange Range(getNameInfo().getSourceRange());
1924    if (getQualifierLoc())
1925      Range.setBegin(getQualifierLoc().getBeginLoc());
1926    if (hasExplicitTemplateArgs())
1927      Range.setEnd(getRAngleLoc());
1928    return Range;
1929  }
1930
1931  child_range children() { return child_range(); }
1932
1933  static bool classof(const Stmt *T) {
1934    return T->getStmtClass() == UnresolvedLookupExprClass;
1935  }
1936  static bool classof(const UnresolvedLookupExpr *) { return true; }
1937};
1938
1939/// \brief A qualified reference to a name whose declaration cannot
1940/// yet be resolved.
1941///
1942/// DependentScopeDeclRefExpr is similar to DeclRefExpr in that
1943/// it expresses a reference to a declaration such as
1944/// X<T>::value. The difference, however, is that an
1945/// DependentScopeDeclRefExpr node is used only within C++ templates when
1946/// the qualification (e.g., X<T>::) refers to a dependent type. In
1947/// this case, X<T>::value cannot resolve to a declaration because the
1948/// declaration will differ from on instantiation of X<T> to the
1949/// next. Therefore, DependentScopeDeclRefExpr keeps track of the
1950/// qualifier (X<T>::) and the name of the entity being referenced
1951/// ("value"). Such expressions will instantiate to a DeclRefExpr once the
1952/// declaration can be found.
1953class DependentScopeDeclRefExpr : public Expr {
1954  /// \brief The nested-name-specifier that qualifies this unresolved
1955  /// declaration name.
1956  NestedNameSpecifierLoc QualifierLoc;
1957
1958  /// The name of the entity we will be referencing.
1959  DeclarationNameInfo NameInfo;
1960
1961  /// \brief Whether the name includes explicit template arguments.
1962  bool HasExplicitTemplateArgs;
1963
1964  DependentScopeDeclRefExpr(QualType T,
1965                            NestedNameSpecifierLoc QualifierLoc,
1966                            const DeclarationNameInfo &NameInfo,
1967                            const TemplateArgumentListInfo *Args);
1968
1969public:
1970  static DependentScopeDeclRefExpr *Create(ASTContext &C,
1971                                           NestedNameSpecifierLoc QualifierLoc,
1972                                           const DeclarationNameInfo &NameInfo,
1973                              const TemplateArgumentListInfo *TemplateArgs = 0);
1974
1975  static DependentScopeDeclRefExpr *CreateEmpty(ASTContext &C,
1976                                                bool HasExplicitTemplateArgs,
1977                                                unsigned NumTemplateArgs);
1978
1979  /// \brief Retrieve the name that this expression refers to.
1980  const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
1981
1982  /// \brief Retrieve the name that this expression refers to.
1983  DeclarationName getDeclName() const { return NameInfo.getName(); }
1984
1985  /// \brief Retrieve the location of the name within the expression.
1986  SourceLocation getLocation() const { return NameInfo.getLoc(); }
1987
1988  /// \brief Retrieve the nested-name-specifier that qualifies the
1989  /// name, with source location information.
1990  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
1991
1992
1993  /// \brief Retrieve the nested-name-specifier that qualifies this
1994  /// declaration.
1995  NestedNameSpecifier *getQualifier() const {
1996    return QualifierLoc.getNestedNameSpecifier();
1997  }
1998
1999  /// Determines whether this lookup had explicit template arguments.
2000  bool hasExplicitTemplateArgs() const { return HasExplicitTemplateArgs; }
2001
2002  // Note that, inconsistently with the explicit-template-argument AST
2003  // nodes, users are *forbidden* from calling these methods on objects
2004  // without explicit template arguments.
2005
2006  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
2007    assert(hasExplicitTemplateArgs());
2008    return *reinterpret_cast<ExplicitTemplateArgumentList*>(this + 1);
2009  }
2010
2011  /// Gets a reference to the explicit template argument list.
2012  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
2013    assert(hasExplicitTemplateArgs());
2014    return *reinterpret_cast<const ExplicitTemplateArgumentList*>(this + 1);
2015  }
2016
2017  /// \brief Retrieves the optional explicit template arguments.
2018  /// This points to the same data as getExplicitTemplateArgs(), but
2019  /// returns null if there are no explicit template arguments.
2020  const ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() {
2021    if (!hasExplicitTemplateArgs()) return 0;
2022    return &getExplicitTemplateArgs();
2023  }
2024
2025  /// \brief Copies the template arguments (if present) into the given
2026  /// structure.
2027  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2028    getExplicitTemplateArgs().copyInto(List);
2029  }
2030
2031  SourceLocation getLAngleLoc() const {
2032    return getExplicitTemplateArgs().LAngleLoc;
2033  }
2034
2035  SourceLocation getRAngleLoc() const {
2036    return getExplicitTemplateArgs().RAngleLoc;
2037  }
2038
2039  TemplateArgumentLoc const *getTemplateArgs() const {
2040    return getExplicitTemplateArgs().getTemplateArgs();
2041  }
2042
2043  unsigned getNumTemplateArgs() const {
2044    return getExplicitTemplateArgs().NumTemplateArgs;
2045  }
2046
2047  SourceRange getSourceRange() const {
2048    SourceRange Range(QualifierLoc.getBeginLoc(), getLocation());
2049    if (hasExplicitTemplateArgs())
2050      Range.setEnd(getRAngleLoc());
2051    return Range;
2052  }
2053
2054  static bool classof(const Stmt *T) {
2055    return T->getStmtClass() == DependentScopeDeclRefExprClass;
2056  }
2057  static bool classof(const DependentScopeDeclRefExpr *) { return true; }
2058
2059  child_range children() { return child_range(); }
2060
2061  friend class ASTStmtReader;
2062  friend class ASTStmtWriter;
2063};
2064
2065/// Represents an expression --- generally a full-expression --- which
2066/// introduces cleanups to be run at the end of the sub-expression's
2067/// evaluation.  The most common source of expression-introduced
2068/// cleanups is temporary objects in C++, but several other C++
2069/// expressions can create cleanups.
2070class ExprWithCleanups : public Expr {
2071  Stmt *SubExpr;
2072
2073  CXXTemporary **Temps;
2074  unsigned NumTemps;
2075
2076  ExprWithCleanups(ASTContext &C, Expr *SubExpr,
2077                   CXXTemporary **Temps, unsigned NumTemps);
2078
2079public:
2080  ExprWithCleanups(EmptyShell Empty)
2081    : Expr(ExprWithCleanupsClass, Empty),
2082      SubExpr(0), Temps(0), NumTemps(0) {}
2083
2084  static ExprWithCleanups *Create(ASTContext &C, Expr *SubExpr,
2085                                        CXXTemporary **Temps,
2086                                        unsigned NumTemps);
2087
2088  unsigned getNumTemporaries() const { return NumTemps; }
2089  void setNumTemporaries(ASTContext &C, unsigned N);
2090
2091  CXXTemporary *getTemporary(unsigned i) {
2092    assert(i < NumTemps && "Index out of range");
2093    return Temps[i];
2094  }
2095  const CXXTemporary *getTemporary(unsigned i) const {
2096    return const_cast<ExprWithCleanups*>(this)->getTemporary(i);
2097  }
2098  void setTemporary(unsigned i, CXXTemporary *T) {
2099    assert(i < NumTemps && "Index out of range");
2100    Temps[i] = T;
2101  }
2102
2103  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
2104  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
2105  void setSubExpr(Expr *E) { SubExpr = E; }
2106
2107  SourceRange getSourceRange() const {
2108    return SubExpr->getSourceRange();
2109  }
2110
2111  // Implement isa/cast/dyncast/etc.
2112  static bool classof(const Stmt *T) {
2113    return T->getStmtClass() == ExprWithCleanupsClass;
2114  }
2115  static bool classof(const ExprWithCleanups *) { return true; }
2116
2117  // Iterators
2118  child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
2119};
2120
2121/// \brief Describes an explicit type conversion that uses functional
2122/// notion but could not be resolved because one or more arguments are
2123/// type-dependent.
2124///
2125/// The explicit type conversions expressed by
2126/// CXXUnresolvedConstructExpr have the form \c T(a1, a2, ..., aN),
2127/// where \c T is some type and \c a1, a2, ..., aN are values, and
2128/// either \C T is a dependent type or one or more of the \c a's is
2129/// type-dependent. For example, this would occur in a template such
2130/// as:
2131///
2132/// \code
2133///   template<typename T, typename A1>
2134///   inline T make_a(const A1& a1) {
2135///     return T(a1);
2136///   }
2137/// \endcode
2138///
2139/// When the returned expression is instantiated, it may resolve to a
2140/// constructor call, conversion function call, or some kind of type
2141/// conversion.
2142class CXXUnresolvedConstructExpr : public Expr {
2143  /// \brief The type being constructed.
2144  TypeSourceInfo *Type;
2145
2146  /// \brief The location of the left parentheses ('(').
2147  SourceLocation LParenLoc;
2148
2149  /// \brief The location of the right parentheses (')').
2150  SourceLocation RParenLoc;
2151
2152  /// \brief The number of arguments used to construct the type.
2153  unsigned NumArgs;
2154
2155  CXXUnresolvedConstructExpr(TypeSourceInfo *Type,
2156                             SourceLocation LParenLoc,
2157                             Expr **Args,
2158                             unsigned NumArgs,
2159                             SourceLocation RParenLoc);
2160
2161  CXXUnresolvedConstructExpr(EmptyShell Empty, unsigned NumArgs)
2162    : Expr(CXXUnresolvedConstructExprClass, Empty), Type(), NumArgs(NumArgs) { }
2163
2164  friend class ASTStmtReader;
2165
2166public:
2167  static CXXUnresolvedConstructExpr *Create(ASTContext &C,
2168                                            TypeSourceInfo *Type,
2169                                            SourceLocation LParenLoc,
2170                                            Expr **Args,
2171                                            unsigned NumArgs,
2172                                            SourceLocation RParenLoc);
2173
2174  static CXXUnresolvedConstructExpr *CreateEmpty(ASTContext &C,
2175                                                 unsigned NumArgs);
2176
2177  /// \brief Retrieve the type that is being constructed, as specified
2178  /// in the source code.
2179  QualType getTypeAsWritten() const { return Type->getType(); }
2180
2181  /// \brief Retrieve the type source information for the type being
2182  /// constructed.
2183  TypeSourceInfo *getTypeSourceInfo() const { return Type; }
2184
2185  /// \brief Retrieve the location of the left parentheses ('(') that
2186  /// precedes the argument list.
2187  SourceLocation getLParenLoc() const { return LParenLoc; }
2188  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2189
2190  /// \brief Retrieve the location of the right parentheses (')') that
2191  /// follows the argument list.
2192  SourceLocation getRParenLoc() const { return RParenLoc; }
2193  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2194
2195  /// \brief Retrieve the number of arguments.
2196  unsigned arg_size() const { return NumArgs; }
2197
2198  typedef Expr** arg_iterator;
2199  arg_iterator arg_begin() { return reinterpret_cast<Expr**>(this + 1); }
2200  arg_iterator arg_end() { return arg_begin() + NumArgs; }
2201
2202  typedef const Expr* const * const_arg_iterator;
2203  const_arg_iterator arg_begin() const {
2204    return reinterpret_cast<const Expr* const *>(this + 1);
2205  }
2206  const_arg_iterator arg_end() const {
2207    return arg_begin() + NumArgs;
2208  }
2209
2210  Expr *getArg(unsigned I) {
2211    assert(I < NumArgs && "Argument index out-of-range");
2212    return *(arg_begin() + I);
2213  }
2214
2215  const Expr *getArg(unsigned I) const {
2216    assert(I < NumArgs && "Argument index out-of-range");
2217    return *(arg_begin() + I);
2218  }
2219
2220  void setArg(unsigned I, Expr *E) {
2221    assert(I < NumArgs && "Argument index out-of-range");
2222    *(arg_begin() + I) = E;
2223  }
2224
2225  SourceRange getSourceRange() const;
2226
2227  static bool classof(const Stmt *T) {
2228    return T->getStmtClass() == CXXUnresolvedConstructExprClass;
2229  }
2230  static bool classof(const CXXUnresolvedConstructExpr *) { return true; }
2231
2232  // Iterators
2233  child_range children() {
2234    Stmt **begin = reinterpret_cast<Stmt**>(this+1);
2235    return child_range(begin, begin + NumArgs);
2236  }
2237};
2238
2239/// \brief Represents a C++ member access expression where the actual
2240/// member referenced could not be resolved because the base
2241/// expression or the member name was dependent.
2242///
2243/// Like UnresolvedMemberExprs, these can be either implicit or
2244/// explicit accesses.  It is only possible to get one of these with
2245/// an implicit access if a qualifier is provided.
2246class CXXDependentScopeMemberExpr : public Expr {
2247  /// \brief The expression for the base pointer or class reference,
2248  /// e.g., the \c x in x.f.  Can be null in implicit accesses.
2249  Stmt *Base;
2250
2251  /// \brief The type of the base expression.  Never null, even for
2252  /// implicit accesses.
2253  QualType BaseType;
2254
2255  /// \brief Whether this member expression used the '->' operator or
2256  /// the '.' operator.
2257  bool IsArrow : 1;
2258
2259  /// \brief Whether this member expression has explicitly-specified template
2260  /// arguments.
2261  bool HasExplicitTemplateArgs : 1;
2262
2263  /// \brief The location of the '->' or '.' operator.
2264  SourceLocation OperatorLoc;
2265
2266  /// \brief The nested-name-specifier that precedes the member name, if any.
2267  NestedNameSpecifierLoc QualifierLoc;
2268
2269  /// \brief In a qualified member access expression such as t->Base::f, this
2270  /// member stores the resolves of name lookup in the context of the member
2271  /// access expression, to be used at instantiation time.
2272  ///
2273  /// FIXME: This member, along with the QualifierLoc, could
2274  /// be stuck into a structure that is optionally allocated at the end of
2275  /// the CXXDependentScopeMemberExpr, to save space in the common case.
2276  NamedDecl *FirstQualifierFoundInScope;
2277
2278  /// \brief The member to which this member expression refers, which
2279  /// can be name, overloaded operator, or destructor.
2280  /// FIXME: could also be a template-id
2281  DeclarationNameInfo MemberNameInfo;
2282
2283  CXXDependentScopeMemberExpr(ASTContext &C,
2284                          Expr *Base, QualType BaseType, bool IsArrow,
2285                          SourceLocation OperatorLoc,
2286                          NestedNameSpecifierLoc QualifierLoc,
2287                          NamedDecl *FirstQualifierFoundInScope,
2288                          DeclarationNameInfo MemberNameInfo,
2289                          const TemplateArgumentListInfo *TemplateArgs);
2290
2291public:
2292  CXXDependentScopeMemberExpr(ASTContext &C,
2293                              Expr *Base, QualType BaseType,
2294                              bool IsArrow,
2295                              SourceLocation OperatorLoc,
2296                              NestedNameSpecifierLoc QualifierLoc,
2297                              NamedDecl *FirstQualifierFoundInScope,
2298                              DeclarationNameInfo MemberNameInfo);
2299
2300  static CXXDependentScopeMemberExpr *
2301  Create(ASTContext &C,
2302         Expr *Base, QualType BaseType, bool IsArrow,
2303         SourceLocation OperatorLoc,
2304         NestedNameSpecifierLoc QualifierLoc,
2305         NamedDecl *FirstQualifierFoundInScope,
2306         DeclarationNameInfo MemberNameInfo,
2307         const TemplateArgumentListInfo *TemplateArgs);
2308
2309  static CXXDependentScopeMemberExpr *
2310  CreateEmpty(ASTContext &C, bool HasExplicitTemplateArgs,
2311              unsigned NumTemplateArgs);
2312
2313  /// \brief True if this is an implicit access, i.e. one in which the
2314  /// member being accessed was not written in the source.  The source
2315  /// location of the operator is invalid in this case.
2316  bool isImplicitAccess() const;
2317
2318  /// \brief Retrieve the base object of this member expressions,
2319  /// e.g., the \c x in \c x.m.
2320  Expr *getBase() const {
2321    assert(!isImplicitAccess());
2322    return cast<Expr>(Base);
2323  }
2324
2325  QualType getBaseType() const { return BaseType; }
2326
2327  /// \brief Determine whether this member expression used the '->'
2328  /// operator; otherwise, it used the '.' operator.
2329  bool isArrow() const { return IsArrow; }
2330
2331  /// \brief Retrieve the location of the '->' or '.' operator.
2332  SourceLocation getOperatorLoc() const { return OperatorLoc; }
2333
2334  /// \brief Retrieve the nested-name-specifier that qualifies the member
2335  /// name.
2336  NestedNameSpecifier *getQualifier() const {
2337    return QualifierLoc.getNestedNameSpecifier();
2338  }
2339
2340  /// \brief Retrieve the nested-name-specifier that qualifies the member
2341  /// name, with source location information.
2342  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2343
2344
2345  /// \brief Retrieve the first part of the nested-name-specifier that was
2346  /// found in the scope of the member access expression when the member access
2347  /// was initially parsed.
2348  ///
2349  /// This function only returns a useful result when member access expression
2350  /// uses a qualified member name, e.g., "x.Base::f". Here, the declaration
2351  /// returned by this function describes what was found by unqualified name
2352  /// lookup for the identifier "Base" within the scope of the member access
2353  /// expression itself. At template instantiation time, this information is
2354  /// combined with the results of name lookup into the type of the object
2355  /// expression itself (the class type of x).
2356  NamedDecl *getFirstQualifierFoundInScope() const {
2357    return FirstQualifierFoundInScope;
2358  }
2359
2360  /// \brief Retrieve the name of the member that this expression
2361  /// refers to.
2362  const DeclarationNameInfo &getMemberNameInfo() const {
2363    return MemberNameInfo;
2364  }
2365
2366  /// \brief Retrieve the name of the member that this expression
2367  /// refers to.
2368  DeclarationName getMember() const { return MemberNameInfo.getName(); }
2369
2370  // \brief Retrieve the location of the name of the member that this
2371  // expression refers to.
2372  SourceLocation getMemberLoc() const { return MemberNameInfo.getLoc(); }
2373
2374  /// \brief Determines whether this member expression actually had a C++
2375  /// template argument list explicitly specified, e.g., x.f<int>.
2376  bool hasExplicitTemplateArgs() const {
2377    return HasExplicitTemplateArgs;
2378  }
2379
2380  /// \brief Retrieve the explicit template argument list that followed the
2381  /// member template name, if any.
2382  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
2383    assert(HasExplicitTemplateArgs);
2384    return *reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
2385  }
2386
2387  /// \brief Retrieve the explicit template argument list that followed the
2388  /// member template name, if any.
2389  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
2390    return const_cast<CXXDependentScopeMemberExpr *>(this)
2391             ->getExplicitTemplateArgs();
2392  }
2393
2394  /// \brief Retrieves the optional explicit template arguments.
2395  /// This points to the same data as getExplicitTemplateArgs(), but
2396  /// returns null if there are no explicit template arguments.
2397  const ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() {
2398    if (!hasExplicitTemplateArgs()) return 0;
2399    return &getExplicitTemplateArgs();
2400  }
2401
2402  /// \brief Copies the template arguments (if present) into the given
2403  /// structure.
2404  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2405    getExplicitTemplateArgs().copyInto(List);
2406  }
2407
2408  /// \brief Initializes the template arguments using the given structure.
2409  void initializeTemplateArgumentsFrom(const TemplateArgumentListInfo &List) {
2410    getExplicitTemplateArgs().initializeFrom(List);
2411  }
2412
2413  /// \brief Retrieve the location of the left angle bracket following the
2414  /// member name ('<'), if any.
2415  SourceLocation getLAngleLoc() const {
2416    return getExplicitTemplateArgs().LAngleLoc;
2417  }
2418
2419  /// \brief Retrieve the template arguments provided as part of this
2420  /// template-id.
2421  const TemplateArgumentLoc *getTemplateArgs() const {
2422    return getExplicitTemplateArgs().getTemplateArgs();
2423  }
2424
2425  /// \brief Retrieve the number of template arguments provided as part of this
2426  /// template-id.
2427  unsigned getNumTemplateArgs() const {
2428    return getExplicitTemplateArgs().NumTemplateArgs;
2429  }
2430
2431  /// \brief Retrieve the location of the right angle bracket following the
2432  /// template arguments ('>').
2433  SourceLocation getRAngleLoc() const {
2434    return getExplicitTemplateArgs().RAngleLoc;
2435  }
2436
2437  SourceRange getSourceRange() const {
2438    SourceRange Range;
2439    if (!isImplicitAccess())
2440      Range.setBegin(Base->getSourceRange().getBegin());
2441    else if (getQualifier())
2442      Range.setBegin(getQualifierLoc().getBeginLoc());
2443    else
2444      Range.setBegin(MemberNameInfo.getBeginLoc());
2445
2446    if (hasExplicitTemplateArgs())
2447      Range.setEnd(getRAngleLoc());
2448    else
2449      Range.setEnd(MemberNameInfo.getEndLoc());
2450    return Range;
2451  }
2452
2453  static bool classof(const Stmt *T) {
2454    return T->getStmtClass() == CXXDependentScopeMemberExprClass;
2455  }
2456  static bool classof(const CXXDependentScopeMemberExpr *) { return true; }
2457
2458  // Iterators
2459  child_range children() {
2460    if (isImplicitAccess()) return child_range();
2461    return child_range(&Base, &Base + 1);
2462  }
2463
2464  friend class ASTStmtReader;
2465  friend class ASTStmtWriter;
2466};
2467
2468/// \brief Represents a C++ member access expression for which lookup
2469/// produced a set of overloaded functions.
2470///
2471/// The member access may be explicit or implicit:
2472///    struct A {
2473///      int a, b;
2474///      int explicitAccess() { return this->a + this->A::b; }
2475///      int implicitAccess() { return a + A::b; }
2476///    };
2477///
2478/// In the final AST, an explicit access always becomes a MemberExpr.
2479/// An implicit access may become either a MemberExpr or a
2480/// DeclRefExpr, depending on whether the member is static.
2481class UnresolvedMemberExpr : public OverloadExpr {
2482  /// \brief Whether this member expression used the '->' operator or
2483  /// the '.' operator.
2484  bool IsArrow : 1;
2485
2486  /// \brief Whether the lookup results contain an unresolved using
2487  /// declaration.
2488  bool HasUnresolvedUsing : 1;
2489
2490  /// \brief The expression for the base pointer or class reference,
2491  /// e.g., the \c x in x.f.  This can be null if this is an 'unbased'
2492  /// member expression
2493  Stmt *Base;
2494
2495  /// \brief The type of the base expression;  never null.
2496  QualType BaseType;
2497
2498  /// \brief The location of the '->' or '.' operator.
2499  SourceLocation OperatorLoc;
2500
2501  UnresolvedMemberExpr(ASTContext &C, bool HasUnresolvedUsing,
2502                       Expr *Base, QualType BaseType, bool IsArrow,
2503                       SourceLocation OperatorLoc,
2504                       NestedNameSpecifierLoc QualifierLoc,
2505                       const DeclarationNameInfo &MemberNameInfo,
2506                       const TemplateArgumentListInfo *TemplateArgs,
2507                       UnresolvedSetIterator Begin, UnresolvedSetIterator End);
2508
2509  UnresolvedMemberExpr(EmptyShell Empty)
2510    : OverloadExpr(UnresolvedMemberExprClass, Empty), IsArrow(false),
2511      HasUnresolvedUsing(false), Base(0) { }
2512
2513  friend class ASTStmtReader;
2514
2515public:
2516  static UnresolvedMemberExpr *
2517  Create(ASTContext &C, bool HasUnresolvedUsing,
2518         Expr *Base, QualType BaseType, bool IsArrow,
2519         SourceLocation OperatorLoc,
2520         NestedNameSpecifierLoc QualifierLoc,
2521         const DeclarationNameInfo &MemberNameInfo,
2522         const TemplateArgumentListInfo *TemplateArgs,
2523         UnresolvedSetIterator Begin, UnresolvedSetIterator End);
2524
2525  static UnresolvedMemberExpr *
2526  CreateEmpty(ASTContext &C, bool HasExplicitTemplateArgs,
2527              unsigned NumTemplateArgs);
2528
2529  /// \brief True if this is an implicit access, i.e. one in which the
2530  /// member being accessed was not written in the source.  The source
2531  /// location of the operator is invalid in this case.
2532  bool isImplicitAccess() const;
2533
2534  /// \brief Retrieve the base object of this member expressions,
2535  /// e.g., the \c x in \c x.m.
2536  Expr *getBase() {
2537    assert(!isImplicitAccess());
2538    return cast<Expr>(Base);
2539  }
2540  const Expr *getBase() const {
2541    assert(!isImplicitAccess());
2542    return cast<Expr>(Base);
2543  }
2544
2545  QualType getBaseType() const { return BaseType; }
2546
2547  /// \brief Determine whether the lookup results contain an unresolved using
2548  /// declaration.
2549  bool hasUnresolvedUsing() const { return HasUnresolvedUsing; }
2550
2551  /// \brief Determine whether this member expression used the '->'
2552  /// operator; otherwise, it used the '.' operator.
2553  bool isArrow() const { return IsArrow; }
2554
2555  /// \brief Retrieve the location of the '->' or '.' operator.
2556  SourceLocation getOperatorLoc() const { return OperatorLoc; }
2557
2558  /// \brief Retrieves the naming class of this lookup.
2559  CXXRecordDecl *getNamingClass() const;
2560
2561  /// \brief Retrieve the full name info for the member that this expression
2562  /// refers to.
2563  const DeclarationNameInfo &getMemberNameInfo() const { return getNameInfo(); }
2564
2565  /// \brief Retrieve the name of the member that this expression
2566  /// refers to.
2567  DeclarationName getMemberName() const { return getName(); }
2568
2569  // \brief Retrieve the location of the name of the member that this
2570  // expression refers to.
2571  SourceLocation getMemberLoc() const { return getNameLoc(); }
2572
2573  /// \brief Retrieve the explicit template argument list that followed the
2574  /// member template name.
2575  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
2576    assert(hasExplicitTemplateArgs());
2577    return *reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
2578  }
2579
2580  /// \brief Retrieve the explicit template argument list that followed the
2581  /// member template name, if any.
2582  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
2583    assert(hasExplicitTemplateArgs());
2584    return *reinterpret_cast<const ExplicitTemplateArgumentList *>(this + 1);
2585  }
2586
2587  /// \brief Retrieves the optional explicit template arguments.
2588  /// This points to the same data as getExplicitTemplateArgs(), but
2589  /// returns null if there are no explicit template arguments.
2590  const ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() {
2591    if (!hasExplicitTemplateArgs()) return 0;
2592    return &getExplicitTemplateArgs();
2593  }
2594
2595  /// \brief Copies the template arguments into the given structure.
2596  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2597    getExplicitTemplateArgs().copyInto(List);
2598  }
2599
2600  /// \brief Retrieve the location of the left angle bracket following
2601  /// the member name ('<').
2602  SourceLocation getLAngleLoc() const {
2603    return getExplicitTemplateArgs().LAngleLoc;
2604  }
2605
2606  /// \brief Retrieve the template arguments provided as part of this
2607  /// template-id.
2608  const TemplateArgumentLoc *getTemplateArgs() const {
2609    return getExplicitTemplateArgs().getTemplateArgs();
2610  }
2611
2612  /// \brief Retrieve the number of template arguments provided as
2613  /// part of this template-id.
2614  unsigned getNumTemplateArgs() const {
2615    return getExplicitTemplateArgs().NumTemplateArgs;
2616  }
2617
2618  /// \brief Retrieve the location of the right angle bracket
2619  /// following the template arguments ('>').
2620  SourceLocation getRAngleLoc() const {
2621    return getExplicitTemplateArgs().RAngleLoc;
2622  }
2623
2624  SourceRange getSourceRange() const {
2625    SourceRange Range = getMemberNameInfo().getSourceRange();
2626    if (!isImplicitAccess())
2627      Range.setBegin(Base->getSourceRange().getBegin());
2628    else if (getQualifierLoc())
2629      Range.setBegin(getQualifierLoc().getBeginLoc());
2630
2631    if (hasExplicitTemplateArgs())
2632      Range.setEnd(getRAngleLoc());
2633    return Range;
2634  }
2635
2636  static bool classof(const Stmt *T) {
2637    return T->getStmtClass() == UnresolvedMemberExprClass;
2638  }
2639  static bool classof(const UnresolvedMemberExpr *) { return true; }
2640
2641  // Iterators
2642  child_range children() {
2643    if (isImplicitAccess()) return child_range();
2644    return child_range(&Base, &Base + 1);
2645  }
2646};
2647
2648/// \brief Represents a C++0x noexcept expression (C++ [expr.unary.noexcept]).
2649///
2650/// The noexcept expression tests whether a given expression might throw. Its
2651/// result is a boolean constant.
2652class CXXNoexceptExpr : public Expr {
2653  bool Value : 1;
2654  Stmt *Operand;
2655  SourceRange Range;
2656
2657  friend class ASTStmtReader;
2658
2659public:
2660  CXXNoexceptExpr(QualType Ty, Expr *Operand, CanThrowResult Val,
2661                  SourceLocation Keyword, SourceLocation RParen)
2662    : Expr(CXXNoexceptExprClass, Ty, VK_RValue, OK_Ordinary,
2663           /*TypeDependent*/false,
2664           /*ValueDependent*/Val == CT_Dependent,
2665           Operand->containsUnexpandedParameterPack()),
2666      Value(Val == CT_Cannot), Operand(Operand), Range(Keyword, RParen)
2667  { }
2668
2669  CXXNoexceptExpr(EmptyShell Empty)
2670    : Expr(CXXNoexceptExprClass, Empty)
2671  { }
2672
2673  Expr *getOperand() const { return static_cast<Expr*>(Operand); }
2674
2675  SourceRange getSourceRange() const { return Range; }
2676
2677  bool getValue() const { return Value; }
2678
2679  static bool classof(const Stmt *T) {
2680    return T->getStmtClass() == CXXNoexceptExprClass;
2681  }
2682  static bool classof(const CXXNoexceptExpr *) { return true; }
2683
2684  // Iterators
2685  child_range children() { return child_range(&Operand, &Operand + 1); }
2686};
2687
2688/// \brief Represents a C++0x pack expansion that produces a sequence of
2689/// expressions.
2690///
2691/// A pack expansion expression contains a pattern (which itself is an
2692/// expression) followed by an ellipsis. For example:
2693///
2694/// \code
2695/// template<typename F, typename ...Types>
2696/// void forward(F f, Types &&...args) {
2697///   f(static_cast<Types&&>(args)...);
2698/// }
2699/// \endcode
2700///
2701/// Here, the argument to the function object \c f is a pack expansion whose
2702/// pattern is \c static_cast<Types&&>(args). When the \c forward function
2703/// template is instantiated, the pack expansion will instantiate to zero or
2704/// or more function arguments to the function object \c f.
2705class PackExpansionExpr : public Expr {
2706  SourceLocation EllipsisLoc;
2707
2708  /// \brief The number of expansions that will be produced by this pack
2709  /// expansion expression, if known.
2710  ///
2711  /// When zero, the number of expansions is not known. Otherwise, this value
2712  /// is the number of expansions + 1.
2713  unsigned NumExpansions;
2714
2715  Stmt *Pattern;
2716
2717  friend class ASTStmtReader;
2718  friend class ASTStmtWriter;
2719
2720public:
2721  PackExpansionExpr(QualType T, Expr *Pattern, SourceLocation EllipsisLoc,
2722                    llvm::Optional<unsigned> NumExpansions)
2723    : Expr(PackExpansionExprClass, T, Pattern->getValueKind(),
2724           Pattern->getObjectKind(), /*TypeDependent=*/true,
2725           /*ValueDependent=*/true, /*ContainsUnexpandedParameterPack=*/false),
2726      EllipsisLoc(EllipsisLoc),
2727      NumExpansions(NumExpansions? *NumExpansions + 1 : 0),
2728      Pattern(Pattern) { }
2729
2730  PackExpansionExpr(EmptyShell Empty) : Expr(PackExpansionExprClass, Empty) { }
2731
2732  /// \brief Retrieve the pattern of the pack expansion.
2733  Expr *getPattern() { return reinterpret_cast<Expr *>(Pattern); }
2734
2735  /// \brief Retrieve the pattern of the pack expansion.
2736  const Expr *getPattern() const { return reinterpret_cast<Expr *>(Pattern); }
2737
2738  /// \brief Retrieve the location of the ellipsis that describes this pack
2739  /// expansion.
2740  SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
2741
2742  /// \brief Determine the number of expansions that will be produced when
2743  /// this pack expansion is instantiated, if already known.
2744  llvm::Optional<unsigned> getNumExpansions() const {
2745    if (NumExpansions)
2746      return NumExpansions - 1;
2747
2748    return llvm::Optional<unsigned>();
2749  }
2750
2751  SourceRange getSourceRange() const {
2752    return SourceRange(Pattern->getLocStart(), EllipsisLoc);
2753  }
2754
2755  static bool classof(const Stmt *T) {
2756    return T->getStmtClass() == PackExpansionExprClass;
2757  }
2758  static bool classof(const PackExpansionExpr *) { return true; }
2759
2760  // Iterators
2761  child_range children() {
2762    return child_range(&Pattern, &Pattern + 1);
2763  }
2764};
2765
2766inline ExplicitTemplateArgumentList &OverloadExpr::getExplicitTemplateArgs() {
2767  if (isa<UnresolvedLookupExpr>(this))
2768    return cast<UnresolvedLookupExpr>(this)->getExplicitTemplateArgs();
2769  else
2770    return cast<UnresolvedMemberExpr>(this)->getExplicitTemplateArgs();
2771}
2772
2773/// \brief Represents an expression that computes the length of a parameter
2774/// pack.
2775///
2776/// \code
2777/// template<typename ...Types>
2778/// struct count {
2779///   static const unsigned value = sizeof...(Types);
2780/// };
2781/// \endcode
2782class SizeOfPackExpr : public Expr {
2783  /// \brief The location of the 'sizeof' keyword.
2784  SourceLocation OperatorLoc;
2785
2786  /// \brief The location of the name of the parameter pack.
2787  SourceLocation PackLoc;
2788
2789  /// \brief The location of the closing parenthesis.
2790  SourceLocation RParenLoc;
2791
2792  /// \brief The length of the parameter pack, if known.
2793  ///
2794  /// When this expression is value-dependent, the length of the parameter pack
2795  /// is unknown. When this expression is not value-dependent, the length is
2796  /// known.
2797  unsigned Length;
2798
2799  /// \brief The parameter pack itself.
2800  NamedDecl *Pack;
2801
2802  friend class ASTStmtReader;
2803  friend class ASTStmtWriter;
2804
2805public:
2806  /// \brief Creates a value-dependent expression that computes the length of
2807  /// the given parameter pack.
2808  SizeOfPackExpr(QualType SizeType, SourceLocation OperatorLoc, NamedDecl *Pack,
2809                 SourceLocation PackLoc, SourceLocation RParenLoc)
2810    : Expr(SizeOfPackExprClass, SizeType, VK_RValue, OK_Ordinary,
2811           /*TypeDependent=*/false, /*ValueDependent=*/true,
2812           /*ContainsUnexpandedParameterPack=*/false),
2813      OperatorLoc(OperatorLoc), PackLoc(PackLoc), RParenLoc(RParenLoc),
2814      Length(0), Pack(Pack) { }
2815
2816  /// \brief Creates an expression that computes the length of
2817  /// the given parameter pack, which is already known.
2818  SizeOfPackExpr(QualType SizeType, SourceLocation OperatorLoc, NamedDecl *Pack,
2819                 SourceLocation PackLoc, SourceLocation RParenLoc,
2820                 unsigned Length)
2821  : Expr(SizeOfPackExprClass, SizeType, VK_RValue, OK_Ordinary,
2822         /*TypeDependent=*/false, /*ValueDependent=*/false,
2823         /*ContainsUnexpandedParameterPack=*/false),
2824    OperatorLoc(OperatorLoc), PackLoc(PackLoc), RParenLoc(RParenLoc),
2825    Length(Length), Pack(Pack) { }
2826
2827  /// \brief Create an empty expression.
2828  SizeOfPackExpr(EmptyShell Empty) : Expr(SizeOfPackExprClass, Empty) { }
2829
2830  /// \brief Determine the location of the 'sizeof' keyword.
2831  SourceLocation getOperatorLoc() const { return OperatorLoc; }
2832
2833  /// \brief Determine the location of the parameter pack.
2834  SourceLocation getPackLoc() const { return PackLoc; }
2835
2836  /// \brief Determine the location of the right parenthesis.
2837  SourceLocation getRParenLoc() const { return RParenLoc; }
2838
2839  /// \brief Retrieve the parameter pack.
2840  NamedDecl *getPack() const { return Pack; }
2841
2842  /// \brief Retrieve the length of the parameter pack.
2843  ///
2844  /// This routine may only be invoked when the expression is not
2845  /// value-dependent.
2846  unsigned getPackLength() const {
2847    assert(!isValueDependent() &&
2848           "Cannot get the length of a value-dependent pack size expression");
2849    return Length;
2850  }
2851
2852  SourceRange getSourceRange() const {
2853    return SourceRange(OperatorLoc, RParenLoc);
2854  }
2855
2856  static bool classof(const Stmt *T) {
2857    return T->getStmtClass() == SizeOfPackExprClass;
2858  }
2859  static bool classof(const SizeOfPackExpr *) { return true; }
2860
2861  // Iterators
2862  child_range children() { return child_range(); }
2863};
2864
2865/// \brief Represents a reference to a non-type template parameter pack that
2866/// has been substituted with a non-template argument pack.
2867///
2868/// When a pack expansion in the source code contains multiple parameter packs
2869/// and those parameter packs correspond to different levels of template
2870/// parameter lists, this node node is used to represent a non-type template
2871/// parameter pack from an outer level, which has already had its argument pack
2872/// substituted but that still lives within a pack expansion that itself
2873/// could not be instantiated. When actually performing a substitution into
2874/// that pack expansion (e.g., when all template parameters have corresponding
2875/// arguments), this type will be replaced with the appropriate underlying
2876/// expression at the current pack substitution index.
2877class SubstNonTypeTemplateParmPackExpr : public Expr {
2878  /// \brief The non-type template parameter pack itself.
2879  NonTypeTemplateParmDecl *Param;
2880
2881  /// \brief A pointer to the set of template arguments that this
2882  /// parameter pack is instantiated with.
2883  const TemplateArgument *Arguments;
2884
2885  /// \brief The number of template arguments in \c Arguments.
2886  unsigned NumArguments;
2887
2888  /// \brief The location of the non-type template parameter pack reference.
2889  SourceLocation NameLoc;
2890
2891  friend class ASTStmtReader;
2892  friend class ASTStmtWriter;
2893
2894public:
2895  SubstNonTypeTemplateParmPackExpr(QualType T,
2896                                   NonTypeTemplateParmDecl *Param,
2897                                   SourceLocation NameLoc,
2898                                   const TemplateArgument &ArgPack);
2899
2900  SubstNonTypeTemplateParmPackExpr(EmptyShell Empty)
2901    : Expr(SubstNonTypeTemplateParmPackExprClass, Empty) { }
2902
2903  /// \brief Retrieve the non-type template parameter pack being substituted.
2904  NonTypeTemplateParmDecl *getParameterPack() const { return Param; }
2905
2906  /// \brief Retrieve the location of the parameter pack name.
2907  SourceLocation getParameterPackLocation() const { return NameLoc; }
2908
2909  /// \brief Retrieve the template argument pack containing the substituted
2910  /// template arguments.
2911  TemplateArgument getArgumentPack() const;
2912
2913  SourceRange getSourceRange() const { return NameLoc; }
2914
2915  static bool classof(const Stmt *T) {
2916    return T->getStmtClass() == SubstNonTypeTemplateParmPackExprClass;
2917  }
2918  static bool classof(const SubstNonTypeTemplateParmPackExpr *) {
2919    return true;
2920  }
2921
2922  // Iterators
2923  child_range children() { return child_range(); }
2924};
2925
2926}  // end namespace clang
2927
2928#endif
2929