ExprCXX.h revision 561f81243f665cf2001caadc45df505f826b72d6
1//===--- ExprCXX.h - Classes for representing expressions -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses for C++ expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPRCXX_H
15#define LLVM_CLANG_AST_EXPRCXX_H
16
17#include "clang/Basic/TypeTraits.h"
18#include "clang/Basic/ExpressionTraits.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/UnresolvedSet.h"
21#include "clang/AST/TemplateBase.h"
22
23namespace clang {
24
25class CXXConstructorDecl;
26class CXXDestructorDecl;
27class CXXMethodDecl;
28class CXXTemporary;
29class TemplateArgumentListInfo;
30
31//===--------------------------------------------------------------------===//
32// C++ Expressions.
33//===--------------------------------------------------------------------===//
34
35/// \brief A call to an overloaded operator written using operator
36/// syntax.
37///
38/// Represents a call to an overloaded operator written using operator
39/// syntax, e.g., "x + y" or "*p". While semantically equivalent to a
40/// normal call, this AST node provides better information about the
41/// syntactic representation of the call.
42///
43/// In a C++ template, this expression node kind will be used whenever
44/// any of the arguments are type-dependent. In this case, the
45/// function itself will be a (possibly empty) set of functions and
46/// function templates that were found by name lookup at template
47/// definition time.
48class CXXOperatorCallExpr : public CallExpr {
49  /// \brief The overloaded operator.
50  OverloadedOperatorKind Operator;
51
52public:
53  CXXOperatorCallExpr(ASTContext& C, OverloadedOperatorKind Op, Expr *fn,
54                      Expr **args, unsigned numargs, QualType t,
55                      ExprValueKind VK, SourceLocation operatorloc)
56    : CallExpr(C, CXXOperatorCallExprClass, fn, 0, args, numargs, t, VK,
57               operatorloc),
58      Operator(Op) {}
59  explicit CXXOperatorCallExpr(ASTContext& C, EmptyShell Empty) :
60    CallExpr(C, CXXOperatorCallExprClass, Empty) { }
61
62
63  /// getOperator - Returns the kind of overloaded operator that this
64  /// expression refers to.
65  OverloadedOperatorKind getOperator() const { return Operator; }
66  void setOperator(OverloadedOperatorKind Kind) { Operator = Kind; }
67
68  /// getOperatorLoc - Returns the location of the operator symbol in
69  /// the expression. When @c getOperator()==OO_Call, this is the
70  /// location of the right parentheses; when @c
71  /// getOperator()==OO_Subscript, this is the location of the right
72  /// bracket.
73  SourceLocation getOperatorLoc() const { return getRParenLoc(); }
74
75  SourceRange getSourceRange() const;
76
77  static bool classof(const Stmt *T) {
78    return T->getStmtClass() == CXXOperatorCallExprClass;
79  }
80  static bool classof(const CXXOperatorCallExpr *) { return true; }
81};
82
83/// CXXMemberCallExpr - Represents a call to a member function that
84/// may be written either with member call syntax (e.g., "obj.func()"
85/// or "objptr->func()") or with normal function-call syntax
86/// ("func()") within a member function that ends up calling a member
87/// function. The callee in either case is a MemberExpr that contains
88/// both the object argument and the member function, while the
89/// arguments are the arguments within the parentheses (not including
90/// the object argument).
91class CXXMemberCallExpr : public CallExpr {
92public:
93  CXXMemberCallExpr(ASTContext &C, Expr *fn, Expr **args, unsigned numargs,
94                    QualType t, ExprValueKind VK, SourceLocation RP)
95    : CallExpr(C, CXXMemberCallExprClass, fn, 0, args, numargs, t, VK, RP) {}
96
97  CXXMemberCallExpr(ASTContext &C, EmptyShell Empty)
98    : CallExpr(C, CXXMemberCallExprClass, Empty) { }
99
100  /// getImplicitObjectArgument - Retrieves the implicit object
101  /// argument for the member call. For example, in "x.f(5)", this
102  /// operation would return "x".
103  Expr *getImplicitObjectArgument() const;
104
105  /// Retrieves the declaration of the called method.
106  CXXMethodDecl *getMethodDecl() const;
107
108  /// getRecordDecl - Retrieves the CXXRecordDecl for the underlying type of
109  /// the implicit object argument. Note that this is may not be the same
110  /// declaration as that of the class context of the CXXMethodDecl which this
111  /// function is calling.
112  /// FIXME: Returns 0 for member pointer call exprs.
113  CXXRecordDecl *getRecordDecl();
114
115  static bool classof(const Stmt *T) {
116    return T->getStmtClass() == CXXMemberCallExprClass;
117  }
118  static bool classof(const CXXMemberCallExpr *) { return true; }
119};
120
121/// CUDAKernelCallExpr - Represents a call to a CUDA kernel function.
122class CUDAKernelCallExpr : public CallExpr {
123private:
124  enum { CONFIG, END_PREARG };
125
126public:
127  CUDAKernelCallExpr(ASTContext &C, Expr *fn, CallExpr *Config,
128                     Expr **args, unsigned numargs, QualType t,
129                     ExprValueKind VK, SourceLocation RP)
130    : CallExpr(C, CUDAKernelCallExprClass, fn, END_PREARG, args, numargs, t, VK,
131               RP) {
132    setConfig(Config);
133  }
134
135  CUDAKernelCallExpr(ASTContext &C, EmptyShell Empty)
136    : CallExpr(C, CUDAKernelCallExprClass, END_PREARG, Empty) { }
137
138  const CallExpr *getConfig() const {
139    return cast_or_null<CallExpr>(getPreArg(CONFIG));
140  }
141  CallExpr *getConfig() { return cast_or_null<CallExpr>(getPreArg(CONFIG)); }
142  void setConfig(CallExpr *E) { setPreArg(CONFIG, E); }
143
144  static bool classof(const Stmt *T) {
145    return T->getStmtClass() == CUDAKernelCallExprClass;
146  }
147  static bool classof(const CUDAKernelCallExpr *) { return true; }
148};
149
150/// CXXNamedCastExpr - Abstract class common to all of the C++ "named"
151/// casts, @c static_cast, @c dynamic_cast, @c reinterpret_cast, or @c
152/// const_cast.
153///
154/// This abstract class is inherited by all of the classes
155/// representing "named" casts, e.g., CXXStaticCastExpr,
156/// CXXDynamicCastExpr, CXXReinterpretCastExpr, and CXXConstCastExpr.
157class CXXNamedCastExpr : public ExplicitCastExpr {
158private:
159  SourceLocation Loc; // the location of the casting op
160  SourceLocation RParenLoc; // the location of the right parenthesis
161
162protected:
163  CXXNamedCastExpr(StmtClass SC, QualType ty, ExprValueKind VK,
164                   CastKind kind, Expr *op, unsigned PathSize,
165                   TypeSourceInfo *writtenTy, SourceLocation l,
166                   SourceLocation RParenLoc)
167    : ExplicitCastExpr(SC, ty, VK, kind, op, PathSize, writtenTy), Loc(l),
168      RParenLoc(RParenLoc) {}
169
170  explicit CXXNamedCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
171    : ExplicitCastExpr(SC, Shell, PathSize) { }
172
173  friend class ASTStmtReader;
174
175public:
176  const char *getCastName() const;
177
178  /// \brief Retrieve the location of the cast operator keyword, e.g.,
179  /// "static_cast".
180  SourceLocation getOperatorLoc() const { return Loc; }
181
182  /// \brief Retrieve the location of the closing parenthesis.
183  SourceLocation getRParenLoc() const { return RParenLoc; }
184
185  SourceRange getSourceRange() const {
186    return SourceRange(Loc, RParenLoc);
187  }
188  static bool classof(const Stmt *T) {
189    switch (T->getStmtClass()) {
190    case CXXStaticCastExprClass:
191    case CXXDynamicCastExprClass:
192    case CXXReinterpretCastExprClass:
193    case CXXConstCastExprClass:
194      return true;
195    default:
196      return false;
197    }
198  }
199  static bool classof(const CXXNamedCastExpr *) { return true; }
200};
201
202/// CXXStaticCastExpr - A C++ @c static_cast expression (C++ [expr.static.cast]).
203///
204/// This expression node represents a C++ static cast, e.g.,
205/// @c static_cast<int>(1.0).
206class CXXStaticCastExpr : public CXXNamedCastExpr {
207  CXXStaticCastExpr(QualType ty, ExprValueKind vk, CastKind kind, Expr *op,
208                    unsigned pathSize, TypeSourceInfo *writtenTy,
209                    SourceLocation l, SourceLocation RParenLoc)
210    : CXXNamedCastExpr(CXXStaticCastExprClass, ty, vk, kind, op, pathSize,
211                       writtenTy, l, RParenLoc) {}
212
213  explicit CXXStaticCastExpr(EmptyShell Empty, unsigned PathSize)
214    : CXXNamedCastExpr(CXXStaticCastExprClass, Empty, PathSize) { }
215
216public:
217  static CXXStaticCastExpr *Create(ASTContext &Context, QualType T,
218                                   ExprValueKind VK, CastKind K, Expr *Op,
219                                   const CXXCastPath *Path,
220                                   TypeSourceInfo *Written, SourceLocation L,
221                                   SourceLocation RParenLoc);
222  static CXXStaticCastExpr *CreateEmpty(ASTContext &Context,
223                                        unsigned PathSize);
224
225  static bool classof(const Stmt *T) {
226    return T->getStmtClass() == CXXStaticCastExprClass;
227  }
228  static bool classof(const CXXStaticCastExpr *) { return true; }
229};
230
231/// CXXDynamicCastExpr - A C++ @c dynamic_cast expression
232/// (C++ [expr.dynamic.cast]), which may perform a run-time check to
233/// determine how to perform the type cast.
234///
235/// This expression node represents a dynamic cast, e.g.,
236/// @c dynamic_cast<Derived*>(BasePtr).
237class CXXDynamicCastExpr : public CXXNamedCastExpr {
238  CXXDynamicCastExpr(QualType ty, ExprValueKind VK, CastKind kind,
239                     Expr *op, unsigned pathSize, TypeSourceInfo *writtenTy,
240                     SourceLocation l, SourceLocation RParenLoc)
241    : CXXNamedCastExpr(CXXDynamicCastExprClass, ty, VK, kind, op, pathSize,
242                       writtenTy, l, RParenLoc) {}
243
244  explicit CXXDynamicCastExpr(EmptyShell Empty, unsigned pathSize)
245    : CXXNamedCastExpr(CXXDynamicCastExprClass, Empty, pathSize) { }
246
247public:
248  static CXXDynamicCastExpr *Create(ASTContext &Context, QualType T,
249                                    ExprValueKind VK, CastKind Kind, Expr *Op,
250                                    const CXXCastPath *Path,
251                                    TypeSourceInfo *Written, SourceLocation L,
252                                    SourceLocation RParenLoc);
253
254  static CXXDynamicCastExpr *CreateEmpty(ASTContext &Context,
255                                         unsigned pathSize);
256
257  bool isAlwaysNull() const;
258
259  static bool classof(const Stmt *T) {
260    return T->getStmtClass() == CXXDynamicCastExprClass;
261  }
262  static bool classof(const CXXDynamicCastExpr *) { return true; }
263};
264
265/// CXXReinterpretCastExpr - A C++ @c reinterpret_cast expression (C++
266/// [expr.reinterpret.cast]), which provides a differently-typed view
267/// of a value but performs no actual work at run time.
268///
269/// This expression node represents a reinterpret cast, e.g.,
270/// @c reinterpret_cast<int>(VoidPtr).
271class CXXReinterpretCastExpr : public CXXNamedCastExpr {
272  CXXReinterpretCastExpr(QualType ty, ExprValueKind vk, CastKind kind,
273                         Expr *op, unsigned pathSize,
274                         TypeSourceInfo *writtenTy, SourceLocation l,
275                         SourceLocation RParenLoc)
276    : CXXNamedCastExpr(CXXReinterpretCastExprClass, ty, vk, kind, op,
277                       pathSize, writtenTy, l, RParenLoc) {}
278
279  CXXReinterpretCastExpr(EmptyShell Empty, unsigned pathSize)
280    : CXXNamedCastExpr(CXXReinterpretCastExprClass, Empty, pathSize) { }
281
282public:
283  static CXXReinterpretCastExpr *Create(ASTContext &Context, QualType T,
284                                        ExprValueKind VK, CastKind Kind,
285                                        Expr *Op, const CXXCastPath *Path,
286                                 TypeSourceInfo *WrittenTy, SourceLocation L,
287                                        SourceLocation RParenLoc);
288  static CXXReinterpretCastExpr *CreateEmpty(ASTContext &Context,
289                                             unsigned pathSize);
290
291  static bool classof(const Stmt *T) {
292    return T->getStmtClass() == CXXReinterpretCastExprClass;
293  }
294  static bool classof(const CXXReinterpretCastExpr *) { return true; }
295};
296
297/// CXXConstCastExpr - A C++ @c const_cast expression (C++ [expr.const.cast]),
298/// which can remove type qualifiers but does not change the underlying value.
299///
300/// This expression node represents a const cast, e.g.,
301/// @c const_cast<char*>(PtrToConstChar).
302class CXXConstCastExpr : public CXXNamedCastExpr {
303  CXXConstCastExpr(QualType ty, ExprValueKind VK, Expr *op,
304                   TypeSourceInfo *writtenTy, SourceLocation l,
305                   SourceLocation RParenLoc)
306    : CXXNamedCastExpr(CXXConstCastExprClass, ty, VK, CK_NoOp, op,
307                       0, writtenTy, l, RParenLoc) {}
308
309  explicit CXXConstCastExpr(EmptyShell Empty)
310    : CXXNamedCastExpr(CXXConstCastExprClass, Empty, 0) { }
311
312public:
313  static CXXConstCastExpr *Create(ASTContext &Context, QualType T,
314                                  ExprValueKind VK, Expr *Op,
315                                  TypeSourceInfo *WrittenTy, SourceLocation L,
316                                  SourceLocation RParenLoc);
317  static CXXConstCastExpr *CreateEmpty(ASTContext &Context);
318
319  static bool classof(const Stmt *T) {
320    return T->getStmtClass() == CXXConstCastExprClass;
321  }
322  static bool classof(const CXXConstCastExpr *) { return true; }
323};
324
325/// CXXBoolLiteralExpr - [C++ 2.13.5] C++ Boolean Literal.
326///
327class CXXBoolLiteralExpr : public Expr {
328  bool Value;
329  SourceLocation Loc;
330public:
331  CXXBoolLiteralExpr(bool val, QualType Ty, SourceLocation l) :
332    Expr(CXXBoolLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
333         false, false),
334    Value(val), Loc(l) {}
335
336  explicit CXXBoolLiteralExpr(EmptyShell Empty)
337    : Expr(CXXBoolLiteralExprClass, Empty) { }
338
339  bool getValue() const { return Value; }
340  void setValue(bool V) { Value = V; }
341
342  SourceRange getSourceRange() const { return SourceRange(Loc); }
343
344  SourceLocation getLocation() const { return Loc; }
345  void setLocation(SourceLocation L) { Loc = L; }
346
347  static bool classof(const Stmt *T) {
348    return T->getStmtClass() == CXXBoolLiteralExprClass;
349  }
350  static bool classof(const CXXBoolLiteralExpr *) { return true; }
351
352  // Iterators
353  child_range children() { return child_range(); }
354};
355
356/// CXXNullPtrLiteralExpr - [C++0x 2.14.7] C++ Pointer Literal
357class CXXNullPtrLiteralExpr : public Expr {
358  SourceLocation Loc;
359public:
360  CXXNullPtrLiteralExpr(QualType Ty, SourceLocation l) :
361    Expr(CXXNullPtrLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
362         false, false),
363    Loc(l) {}
364
365  explicit CXXNullPtrLiteralExpr(EmptyShell Empty)
366    : Expr(CXXNullPtrLiteralExprClass, Empty) { }
367
368  SourceRange getSourceRange() const { return SourceRange(Loc); }
369
370  SourceLocation getLocation() const { return Loc; }
371  void setLocation(SourceLocation L) { Loc = L; }
372
373  static bool classof(const Stmt *T) {
374    return T->getStmtClass() == CXXNullPtrLiteralExprClass;
375  }
376  static bool classof(const CXXNullPtrLiteralExpr *) { return true; }
377
378  child_range children() { return child_range(); }
379};
380
381/// CXXTypeidExpr - A C++ @c typeid expression (C++ [expr.typeid]), which gets
382/// the type_info that corresponds to the supplied type, or the (possibly
383/// dynamic) type of the supplied expression.
384///
385/// This represents code like @c typeid(int) or @c typeid(*objPtr)
386class CXXTypeidExpr : public Expr {
387private:
388  llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
389  SourceRange Range;
390
391public:
392  CXXTypeidExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
393    : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
394           // typeid is never type-dependent (C++ [temp.dep.expr]p4)
395           false,
396           // typeid is value-dependent if the type or expression are dependent
397           Operand->getType()->isDependentType(),
398           Operand->getType()->isInstantiationDependentType(),
399           Operand->getType()->containsUnexpandedParameterPack()),
400      Operand(Operand), Range(R) { }
401
402  CXXTypeidExpr(QualType Ty, Expr *Operand, SourceRange R)
403    : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
404        // typeid is never type-dependent (C++ [temp.dep.expr]p4)
405           false,
406        // typeid is value-dependent if the type or expression are dependent
407           Operand->isTypeDependent() || Operand->isValueDependent(),
408           Operand->isInstantiationDependent(),
409           Operand->containsUnexpandedParameterPack()),
410      Operand(Operand), Range(R) { }
411
412  CXXTypeidExpr(EmptyShell Empty, bool isExpr)
413    : Expr(CXXTypeidExprClass, Empty) {
414    if (isExpr)
415      Operand = (Expr*)0;
416    else
417      Operand = (TypeSourceInfo*)0;
418  }
419
420  bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
421
422  /// \brief Retrieves the type operand of this typeid() expression after
423  /// various required adjustments (removing reference types, cv-qualifiers).
424  QualType getTypeOperand() const;
425
426  /// \brief Retrieve source information for the type operand.
427  TypeSourceInfo *getTypeOperandSourceInfo() const {
428    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
429    return Operand.get<TypeSourceInfo *>();
430  }
431
432  void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
433    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
434    Operand = TSI;
435  }
436
437  Expr *getExprOperand() const {
438    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
439    return static_cast<Expr*>(Operand.get<Stmt *>());
440  }
441
442  void setExprOperand(Expr *E) {
443    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
444    Operand = E;
445  }
446
447  SourceRange getSourceRange() const { return Range; }
448  void setSourceRange(SourceRange R) { Range = R; }
449
450  static bool classof(const Stmt *T) {
451    return T->getStmtClass() == CXXTypeidExprClass;
452  }
453  static bool classof(const CXXTypeidExpr *) { return true; }
454
455  // Iterators
456  child_range children() {
457    if (isTypeOperand()) return child_range();
458    Stmt **begin = reinterpret_cast<Stmt**>(&Operand);
459    return child_range(begin, begin + 1);
460  }
461};
462
463/// CXXUuidofExpr - A microsoft C++ @c __uuidof expression, which gets
464/// the _GUID that corresponds to the supplied type or expression.
465///
466/// This represents code like @c __uuidof(COMTYPE) or @c __uuidof(*comPtr)
467class CXXUuidofExpr : public Expr {
468private:
469  llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
470  SourceRange Range;
471
472public:
473  CXXUuidofExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
474    : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary,
475           false, Operand->getType()->isDependentType(),
476           Operand->getType()->isInstantiationDependentType(),
477           Operand->getType()->containsUnexpandedParameterPack()),
478      Operand(Operand), Range(R) { }
479
480  CXXUuidofExpr(QualType Ty, Expr *Operand, SourceRange R)
481    : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary,
482           false, Operand->isTypeDependent(),
483           Operand->isInstantiationDependent(),
484           Operand->containsUnexpandedParameterPack()),
485      Operand(Operand), Range(R) { }
486
487  CXXUuidofExpr(EmptyShell Empty, bool isExpr)
488    : Expr(CXXUuidofExprClass, Empty) {
489    if (isExpr)
490      Operand = (Expr*)0;
491    else
492      Operand = (TypeSourceInfo*)0;
493  }
494
495  bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
496
497  /// \brief Retrieves the type operand of this __uuidof() expression after
498  /// various required adjustments (removing reference types, cv-qualifiers).
499  QualType getTypeOperand() const;
500
501  /// \brief Retrieve source information for the type operand.
502  TypeSourceInfo *getTypeOperandSourceInfo() const {
503    assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
504    return Operand.get<TypeSourceInfo *>();
505  }
506
507  void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
508    assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
509    Operand = TSI;
510  }
511
512  Expr *getExprOperand() const {
513    assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
514    return static_cast<Expr*>(Operand.get<Stmt *>());
515  }
516
517  void setExprOperand(Expr *E) {
518    assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
519    Operand = E;
520  }
521
522  SourceRange getSourceRange() const { return Range; }
523  void setSourceRange(SourceRange R) { Range = R; }
524
525  static bool classof(const Stmt *T) {
526    return T->getStmtClass() == CXXUuidofExprClass;
527  }
528  static bool classof(const CXXUuidofExpr *) { return true; }
529
530  // Iterators
531  child_range children() {
532    if (isTypeOperand()) return child_range();
533    Stmt **begin = reinterpret_cast<Stmt**>(&Operand);
534    return child_range(begin, begin + 1);
535  }
536};
537
538/// CXXThisExpr - Represents the "this" expression in C++, which is a
539/// pointer to the object on which the current member function is
540/// executing (C++ [expr.prim]p3). Example:
541///
542/// @code
543/// class Foo {
544/// public:
545///   void bar();
546///   void test() { this->bar(); }
547/// };
548/// @endcode
549class CXXThisExpr : public Expr {
550  SourceLocation Loc;
551  bool Implicit : 1;
552
553public:
554  CXXThisExpr(SourceLocation L, QualType Type, bool isImplicit)
555    : Expr(CXXThisExprClass, Type, VK_RValue, OK_Ordinary,
556           // 'this' is type-dependent if the class type of the enclosing
557           // member function is dependent (C++ [temp.dep.expr]p2)
558           Type->isDependentType(), Type->isDependentType(),
559           Type->isInstantiationDependentType(),
560           /*ContainsUnexpandedParameterPack=*/false),
561      Loc(L), Implicit(isImplicit) { }
562
563  CXXThisExpr(EmptyShell Empty) : Expr(CXXThisExprClass, Empty) {}
564
565  SourceLocation getLocation() const { return Loc; }
566  void setLocation(SourceLocation L) { Loc = L; }
567
568  SourceRange getSourceRange() const { return SourceRange(Loc); }
569
570  bool isImplicit() const { return Implicit; }
571  void setImplicit(bool I) { Implicit = I; }
572
573  static bool classof(const Stmt *T) {
574    return T->getStmtClass() == CXXThisExprClass;
575  }
576  static bool classof(const CXXThisExpr *) { return true; }
577
578  // Iterators
579  child_range children() { return child_range(); }
580};
581
582///  CXXThrowExpr - [C++ 15] C++ Throw Expression.  This handles
583///  'throw' and 'throw' assignment-expression.  When
584///  assignment-expression isn't present, Op will be null.
585///
586class CXXThrowExpr : public Expr {
587  Stmt *Op;
588  SourceLocation ThrowLoc;
589public:
590  // Ty is the void type which is used as the result type of the
591  // exepression.  The l is the location of the throw keyword.  expr
592  // can by null, if the optional expression to throw isn't present.
593  CXXThrowExpr(Expr *expr, QualType Ty, SourceLocation l) :
594    Expr(CXXThrowExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
595         expr && expr->isInstantiationDependent(),
596         expr && expr->containsUnexpandedParameterPack()),
597    Op(expr), ThrowLoc(l) {}
598  CXXThrowExpr(EmptyShell Empty) : Expr(CXXThrowExprClass, Empty) {}
599
600  const Expr *getSubExpr() const { return cast_or_null<Expr>(Op); }
601  Expr *getSubExpr() { return cast_or_null<Expr>(Op); }
602  void setSubExpr(Expr *E) { Op = E; }
603
604  SourceLocation getThrowLoc() const { return ThrowLoc; }
605  void setThrowLoc(SourceLocation L) { ThrowLoc = L; }
606
607  SourceRange getSourceRange() const {
608    if (getSubExpr() == 0)
609      return SourceRange(ThrowLoc, ThrowLoc);
610    return SourceRange(ThrowLoc, getSubExpr()->getSourceRange().getEnd());
611  }
612
613  static bool classof(const Stmt *T) {
614    return T->getStmtClass() == CXXThrowExprClass;
615  }
616  static bool classof(const CXXThrowExpr *) { return true; }
617
618  // Iterators
619  child_range children() {
620    return child_range(&Op, Op ? &Op+1 : &Op);
621  }
622};
623
624/// CXXDefaultArgExpr - C++ [dcl.fct.default]. This wraps up a
625/// function call argument that was created from the corresponding
626/// parameter's default argument, when the call did not explicitly
627/// supply arguments for all of the parameters.
628class CXXDefaultArgExpr : public Expr {
629  /// \brief The parameter whose default is being used.
630  ///
631  /// When the bit is set, the subexpression is stored after the
632  /// CXXDefaultArgExpr itself. When the bit is clear, the parameter's
633  /// actual default expression is the subexpression.
634  llvm::PointerIntPair<ParmVarDecl *, 1, bool> Param;
635
636  /// \brief The location where the default argument expression was used.
637  SourceLocation Loc;
638
639  CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param)
640    : Expr(SC,
641           param->hasUnparsedDefaultArg()
642             ? param->getType().getNonReferenceType()
643             : param->getDefaultArg()->getType(),
644           param->getDefaultArg()->getValueKind(),
645           param->getDefaultArg()->getObjectKind(), false, false, false, false),
646      Param(param, false), Loc(Loc) { }
647
648  CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param,
649                    Expr *SubExpr)
650    : Expr(SC, SubExpr->getType(),
651           SubExpr->getValueKind(), SubExpr->getObjectKind(),
652           false, false, false, false),
653      Param(param, true), Loc(Loc) {
654    *reinterpret_cast<Expr **>(this + 1) = SubExpr;
655  }
656
657public:
658  CXXDefaultArgExpr(EmptyShell Empty) : Expr(CXXDefaultArgExprClass, Empty) {}
659
660
661  // Param is the parameter whose default argument is used by this
662  // expression.
663  static CXXDefaultArgExpr *Create(ASTContext &C, SourceLocation Loc,
664                                   ParmVarDecl *Param) {
665    return new (C) CXXDefaultArgExpr(CXXDefaultArgExprClass, Loc, Param);
666  }
667
668  // Param is the parameter whose default argument is used by this
669  // expression, and SubExpr is the expression that will actually be used.
670  static CXXDefaultArgExpr *Create(ASTContext &C,
671                                   SourceLocation Loc,
672                                   ParmVarDecl *Param,
673                                   Expr *SubExpr);
674
675  // Retrieve the parameter that the argument was created from.
676  const ParmVarDecl *getParam() const { return Param.getPointer(); }
677  ParmVarDecl *getParam() { return Param.getPointer(); }
678
679  // Retrieve the actual argument to the function call.
680  const Expr *getExpr() const {
681    if (Param.getInt())
682      return *reinterpret_cast<Expr const * const*> (this + 1);
683    return getParam()->getDefaultArg();
684  }
685  Expr *getExpr() {
686    if (Param.getInt())
687      return *reinterpret_cast<Expr **> (this + 1);
688    return getParam()->getDefaultArg();
689  }
690
691  /// \brief Retrieve the location where this default argument was actually
692  /// used.
693  SourceLocation getUsedLocation() const { return Loc; }
694
695  SourceRange getSourceRange() const {
696    // Default argument expressions have no representation in the
697    // source, so they have an empty source range.
698    return SourceRange();
699  }
700
701  static bool classof(const Stmt *T) {
702    return T->getStmtClass() == CXXDefaultArgExprClass;
703  }
704  static bool classof(const CXXDefaultArgExpr *) { return true; }
705
706  // Iterators
707  child_range children() { return child_range(); }
708
709  friend class ASTStmtReader;
710  friend class ASTStmtWriter;
711};
712
713/// CXXTemporary - Represents a C++ temporary.
714class CXXTemporary {
715  /// Destructor - The destructor that needs to be called.
716  const CXXDestructorDecl *Destructor;
717
718  CXXTemporary(const CXXDestructorDecl *destructor)
719    : Destructor(destructor) { }
720
721public:
722  static CXXTemporary *Create(ASTContext &C,
723                              const CXXDestructorDecl *Destructor);
724
725  const CXXDestructorDecl *getDestructor() const { return Destructor; }
726};
727
728/// \brief Represents binding an expression to a temporary.
729///
730/// This ensures the destructor is called for the temporary. It should only be
731/// needed for non-POD, non-trivially destructable class types. For example:
732///
733/// \code
734///   struct S {
735///     S() { }  // User defined constructor makes S non-POD.
736///     ~S() { } // User defined destructor makes it non-trivial.
737///   };
738///   void test() {
739///     const S &s_ref = S(); // Requires a CXXBindTemporaryExpr.
740///   }
741/// \endcode
742class CXXBindTemporaryExpr : public Expr {
743  CXXTemporary *Temp;
744
745  Stmt *SubExpr;
746
747  CXXBindTemporaryExpr(CXXTemporary *temp, Expr* SubExpr)
748   : Expr(CXXBindTemporaryExprClass, SubExpr->getType(),
749          VK_RValue, OK_Ordinary, SubExpr->isTypeDependent(),
750          SubExpr->isValueDependent(),
751          SubExpr->isInstantiationDependent(),
752          SubExpr->containsUnexpandedParameterPack()),
753     Temp(temp), SubExpr(SubExpr) { }
754
755public:
756  CXXBindTemporaryExpr(EmptyShell Empty)
757    : Expr(CXXBindTemporaryExprClass, Empty), Temp(0), SubExpr(0) {}
758
759  static CXXBindTemporaryExpr *Create(ASTContext &C, CXXTemporary *Temp,
760                                      Expr* SubExpr);
761
762  CXXTemporary *getTemporary() { return Temp; }
763  const CXXTemporary *getTemporary() const { return Temp; }
764  void setTemporary(CXXTemporary *T) { Temp = T; }
765
766  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
767  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
768  void setSubExpr(Expr *E) { SubExpr = E; }
769
770  SourceRange getSourceRange() const {
771    return SubExpr->getSourceRange();
772  }
773
774  // Implement isa/cast/dyncast/etc.
775  static bool classof(const Stmt *T) {
776    return T->getStmtClass() == CXXBindTemporaryExprClass;
777  }
778  static bool classof(const CXXBindTemporaryExpr *) { return true; }
779
780  // Iterators
781  child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
782};
783
784/// CXXConstructExpr - Represents a call to a C++ constructor.
785class CXXConstructExpr : public Expr {
786public:
787  enum ConstructionKind {
788    CK_Complete,
789    CK_NonVirtualBase,
790    CK_VirtualBase,
791    CK_Delegating
792  };
793
794private:
795  CXXConstructorDecl *Constructor;
796
797  SourceLocation Loc;
798  SourceRange ParenRange;
799  bool Elidable : 1;
800  bool ZeroInitialization : 1;
801  unsigned ConstructKind : 2;
802  Stmt **Args;
803  unsigned NumArgs;
804
805protected:
806  CXXConstructExpr(ASTContext &C, StmtClass SC, QualType T,
807                   SourceLocation Loc,
808                   CXXConstructorDecl *d, bool elidable,
809                   Expr **args, unsigned numargs,
810                   bool ZeroInitialization = false,
811                   ConstructionKind ConstructKind = CK_Complete,
812                   SourceRange ParenRange = SourceRange());
813
814  /// \brief Construct an empty C++ construction expression.
815  CXXConstructExpr(StmtClass SC, EmptyShell Empty)
816    : Expr(SC, Empty), Constructor(0), Elidable(0), ZeroInitialization(0),
817      ConstructKind(0), Args(0), NumArgs(0) { }
818
819public:
820  /// \brief Construct an empty C++ construction expression.
821  explicit CXXConstructExpr(EmptyShell Empty)
822    : Expr(CXXConstructExprClass, Empty), Constructor(0),
823      Elidable(0), ZeroInitialization(0),
824      ConstructKind(0), Args(0), NumArgs(0) { }
825
826  static CXXConstructExpr *Create(ASTContext &C, QualType T,
827                                  SourceLocation Loc,
828                                  CXXConstructorDecl *D, bool Elidable,
829                                  Expr **Args, unsigned NumArgs,
830                                  bool ZeroInitialization = false,
831                                  ConstructionKind ConstructKind = CK_Complete,
832                                  SourceRange ParenRange = SourceRange());
833
834
835  CXXConstructorDecl* getConstructor() const { return Constructor; }
836  void setConstructor(CXXConstructorDecl *C) { Constructor = C; }
837
838  SourceLocation getLocation() const { return Loc; }
839  void setLocation(SourceLocation Loc) { this->Loc = Loc; }
840
841  /// \brief Whether this construction is elidable.
842  bool isElidable() const { return Elidable; }
843  void setElidable(bool E) { Elidable = E; }
844
845  /// \brief Whether this construction first requires
846  /// zero-initialization before the initializer is called.
847  bool requiresZeroInitialization() const { return ZeroInitialization; }
848  void setRequiresZeroInitialization(bool ZeroInit) {
849    ZeroInitialization = ZeroInit;
850  }
851
852  /// \brief Determines whether this constructor is actually constructing
853  /// a base class (rather than a complete object).
854  ConstructionKind getConstructionKind() const {
855    return (ConstructionKind)ConstructKind;
856  }
857  void setConstructionKind(ConstructionKind CK) {
858    ConstructKind = CK;
859  }
860
861  typedef ExprIterator arg_iterator;
862  typedef ConstExprIterator const_arg_iterator;
863
864  arg_iterator arg_begin() { return Args; }
865  arg_iterator arg_end() { return Args + NumArgs; }
866  const_arg_iterator arg_begin() const { return Args; }
867  const_arg_iterator arg_end() const { return Args + NumArgs; }
868
869  Expr **getArgs() const { return reinterpret_cast<Expr **>(Args); }
870  unsigned getNumArgs() const { return NumArgs; }
871
872  /// getArg - Return the specified argument.
873  Expr *getArg(unsigned Arg) {
874    assert(Arg < NumArgs && "Arg access out of range!");
875    return cast<Expr>(Args[Arg]);
876  }
877  const Expr *getArg(unsigned Arg) const {
878    assert(Arg < NumArgs && "Arg access out of range!");
879    return cast<Expr>(Args[Arg]);
880  }
881
882  /// setArg - Set the specified argument.
883  void setArg(unsigned Arg, Expr *ArgExpr) {
884    assert(Arg < NumArgs && "Arg access out of range!");
885    Args[Arg] = ArgExpr;
886  }
887
888  SourceRange getSourceRange() const;
889  SourceRange getParenRange() const { return ParenRange; }
890
891  static bool classof(const Stmt *T) {
892    return T->getStmtClass() == CXXConstructExprClass ||
893      T->getStmtClass() == CXXTemporaryObjectExprClass;
894  }
895  static bool classof(const CXXConstructExpr *) { return true; }
896
897  // Iterators
898  child_range children() {
899    return child_range(&Args[0], &Args[0]+NumArgs);
900  }
901
902  friend class ASTStmtReader;
903};
904
905/// CXXFunctionalCastExpr - Represents an explicit C++ type conversion
906/// that uses "functional" notion (C++ [expr.type.conv]). Example: @c
907/// x = int(0.5);
908class CXXFunctionalCastExpr : public ExplicitCastExpr {
909  SourceLocation TyBeginLoc;
910  SourceLocation RParenLoc;
911
912  CXXFunctionalCastExpr(QualType ty, ExprValueKind VK,
913                        TypeSourceInfo *writtenTy,
914                        SourceLocation tyBeginLoc, CastKind kind,
915                        Expr *castExpr, unsigned pathSize,
916                        SourceLocation rParenLoc)
917    : ExplicitCastExpr(CXXFunctionalCastExprClass, ty, VK, kind,
918                       castExpr, pathSize, writtenTy),
919      TyBeginLoc(tyBeginLoc), RParenLoc(rParenLoc) {}
920
921  explicit CXXFunctionalCastExpr(EmptyShell Shell, unsigned PathSize)
922    : ExplicitCastExpr(CXXFunctionalCastExprClass, Shell, PathSize) { }
923
924public:
925  static CXXFunctionalCastExpr *Create(ASTContext &Context, QualType T,
926                                       ExprValueKind VK,
927                                       TypeSourceInfo *Written,
928                                       SourceLocation TyBeginLoc,
929                                       CastKind Kind, Expr *Op,
930                                       const CXXCastPath *Path,
931                                       SourceLocation RPLoc);
932  static CXXFunctionalCastExpr *CreateEmpty(ASTContext &Context,
933                                            unsigned PathSize);
934
935  SourceLocation getTypeBeginLoc() const { return TyBeginLoc; }
936  void setTypeBeginLoc(SourceLocation L) { TyBeginLoc = L; }
937  SourceLocation getRParenLoc() const { return RParenLoc; }
938  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
939
940  SourceRange getSourceRange() const {
941    return SourceRange(TyBeginLoc, RParenLoc);
942  }
943  static bool classof(const Stmt *T) {
944    return T->getStmtClass() == CXXFunctionalCastExprClass;
945  }
946  static bool classof(const CXXFunctionalCastExpr *) { return true; }
947};
948
949/// @brief Represents a C++ functional cast expression that builds a
950/// temporary object.
951///
952/// This expression type represents a C++ "functional" cast
953/// (C++[expr.type.conv]) with N != 1 arguments that invokes a
954/// constructor to build a temporary object. With N == 1 arguments the
955/// functional cast expression will be represented by CXXFunctionalCastExpr.
956/// Example:
957/// @code
958/// struct X { X(int, float); }
959///
960/// X create_X() {
961///   return X(1, 3.14f); // creates a CXXTemporaryObjectExpr
962/// };
963/// @endcode
964class CXXTemporaryObjectExpr : public CXXConstructExpr {
965  TypeSourceInfo *Type;
966
967public:
968  CXXTemporaryObjectExpr(ASTContext &C, CXXConstructorDecl *Cons,
969                         TypeSourceInfo *Type,
970                         Expr **Args,unsigned NumArgs,
971                         SourceRange parenRange,
972                         bool ZeroInitialization = false);
973  explicit CXXTemporaryObjectExpr(EmptyShell Empty)
974    : CXXConstructExpr(CXXTemporaryObjectExprClass, Empty), Type() { }
975
976  TypeSourceInfo *getTypeSourceInfo() const { return Type; }
977
978  SourceRange getSourceRange() const;
979
980  static bool classof(const Stmt *T) {
981    return T->getStmtClass() == CXXTemporaryObjectExprClass;
982  }
983  static bool classof(const CXXTemporaryObjectExpr *) { return true; }
984
985  friend class ASTStmtReader;
986};
987
988/// CXXScalarValueInitExpr - [C++ 5.2.3p2]
989/// Expression "T()" which creates a value-initialized rvalue of type
990/// T, which is a non-class type.
991///
992class CXXScalarValueInitExpr : public Expr {
993  SourceLocation RParenLoc;
994  TypeSourceInfo *TypeInfo;
995
996  friend class ASTStmtReader;
997
998public:
999  /// \brief Create an explicitly-written scalar-value initialization
1000  /// expression.
1001  CXXScalarValueInitExpr(QualType Type,
1002                         TypeSourceInfo *TypeInfo,
1003                         SourceLocation rParenLoc ) :
1004    Expr(CXXScalarValueInitExprClass, Type, VK_RValue, OK_Ordinary,
1005         false, false, Type->isInstantiationDependentType(), false),
1006    RParenLoc(rParenLoc), TypeInfo(TypeInfo) {}
1007
1008  explicit CXXScalarValueInitExpr(EmptyShell Shell)
1009    : Expr(CXXScalarValueInitExprClass, Shell) { }
1010
1011  TypeSourceInfo *getTypeSourceInfo() const {
1012    return TypeInfo;
1013  }
1014
1015  SourceLocation getRParenLoc() const { return RParenLoc; }
1016
1017  SourceRange getSourceRange() const;
1018
1019  static bool classof(const Stmt *T) {
1020    return T->getStmtClass() == CXXScalarValueInitExprClass;
1021  }
1022  static bool classof(const CXXScalarValueInitExpr *) { return true; }
1023
1024  // Iterators
1025  child_range children() { return child_range(); }
1026};
1027
1028/// CXXNewExpr - A new expression for memory allocation and constructor calls,
1029/// e.g: "new CXXNewExpr(foo)".
1030class CXXNewExpr : public Expr {
1031  // Was the usage ::new, i.e. is the global new to be used?
1032  bool GlobalNew : 1;
1033  // Is there an initializer? If not, built-ins are uninitialized, else they're
1034  // value-initialized.
1035  bool Initializer : 1;
1036  // Do we allocate an array? If so, the first SubExpr is the size expression.
1037  bool Array : 1;
1038  // If this is an array allocation, does the usual deallocation
1039  // function for the allocated type want to know the allocated size?
1040  bool UsualArrayDeleteWantsSize : 1;
1041  // The number of placement new arguments.
1042  unsigned NumPlacementArgs : 14;
1043  // The number of constructor arguments. This may be 1 even for non-class
1044  // types; use the pseudo copy constructor.
1045  unsigned NumConstructorArgs : 14;
1046  // Contains an optional array size expression, any number of optional
1047  // placement arguments, and any number of optional constructor arguments,
1048  // in that order.
1049  Stmt **SubExprs;
1050  // Points to the allocation function used.
1051  FunctionDecl *OperatorNew;
1052  // Points to the deallocation function used in case of error. May be null.
1053  FunctionDecl *OperatorDelete;
1054  // Points to the constructor used. Cannot be null if AllocType is a record;
1055  // it would still point at the default constructor (even an implicit one).
1056  // Must be null for all other types.
1057  CXXConstructorDecl *Constructor;
1058
1059  /// \brief The allocated type-source information, as written in the source.
1060  TypeSourceInfo *AllocatedTypeInfo;
1061
1062  /// \brief If the allocated type was expressed as a parenthesized type-id,
1063  /// the source range covering the parenthesized type-id.
1064  SourceRange TypeIdParens;
1065
1066  SourceLocation StartLoc;
1067  SourceLocation EndLoc;
1068  SourceLocation ConstructorLParen;
1069  SourceLocation ConstructorRParen;
1070
1071  friend class ASTStmtReader;
1072public:
1073  CXXNewExpr(ASTContext &C, bool globalNew, FunctionDecl *operatorNew,
1074             Expr **placementArgs, unsigned numPlaceArgs,
1075             SourceRange TypeIdParens,
1076             Expr *arraySize, CXXConstructorDecl *constructor, bool initializer,
1077             Expr **constructorArgs, unsigned numConsArgs,
1078             FunctionDecl *operatorDelete, bool usualArrayDeleteWantsSize,
1079             QualType ty, TypeSourceInfo *AllocatedTypeInfo,
1080             SourceLocation startLoc, SourceLocation endLoc,
1081             SourceLocation constructorLParen,
1082             SourceLocation constructorRParen);
1083  explicit CXXNewExpr(EmptyShell Shell)
1084    : Expr(CXXNewExprClass, Shell), SubExprs(0) { }
1085
1086  void AllocateArgsArray(ASTContext &C, bool isArray, unsigned numPlaceArgs,
1087                         unsigned numConsArgs);
1088
1089  QualType getAllocatedType() const {
1090    assert(getType()->isPointerType());
1091    return getType()->getAs<PointerType>()->getPointeeType();
1092  }
1093
1094  TypeSourceInfo *getAllocatedTypeSourceInfo() const {
1095    return AllocatedTypeInfo;
1096  }
1097
1098  /// \brief True if the allocation result needs to be null-checked.
1099  /// C++0x [expr.new]p13:
1100  ///   If the allocation function returns null, initialization shall
1101  ///   not be done, the deallocation function shall not be called,
1102  ///   and the value of the new-expression shall be null.
1103  /// An allocation function is not allowed to return null unless it
1104  /// has a non-throwing exception-specification.  The '03 rule is
1105  /// identical except that the definition of a non-throwing
1106  /// exception specification is just "is it throw()?".
1107  bool shouldNullCheckAllocation(ASTContext &Ctx) const;
1108
1109  FunctionDecl *getOperatorNew() const { return OperatorNew; }
1110  void setOperatorNew(FunctionDecl *D) { OperatorNew = D; }
1111  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
1112  void setOperatorDelete(FunctionDecl *D) { OperatorDelete = D; }
1113  CXXConstructorDecl *getConstructor() const { return Constructor; }
1114  void setConstructor(CXXConstructorDecl *D) { Constructor = D; }
1115
1116  bool isArray() const { return Array; }
1117  Expr *getArraySize() {
1118    return Array ? cast<Expr>(SubExprs[0]) : 0;
1119  }
1120  const Expr *getArraySize() const {
1121    return Array ? cast<Expr>(SubExprs[0]) : 0;
1122  }
1123
1124  unsigned getNumPlacementArgs() const { return NumPlacementArgs; }
1125  Expr **getPlacementArgs() {
1126    return reinterpret_cast<Expr **>(SubExprs + Array);
1127  }
1128
1129  Expr *getPlacementArg(unsigned i) {
1130    assert(i < NumPlacementArgs && "Index out of range");
1131    return cast<Expr>(SubExprs[Array + i]);
1132  }
1133  const Expr *getPlacementArg(unsigned i) const {
1134    assert(i < NumPlacementArgs && "Index out of range");
1135    return cast<Expr>(SubExprs[Array + i]);
1136  }
1137
1138  bool isParenTypeId() const { return TypeIdParens.isValid(); }
1139  SourceRange getTypeIdParens() const { return TypeIdParens; }
1140
1141  bool isGlobalNew() const { return GlobalNew; }
1142  bool hasInitializer() const { return Initializer; }
1143
1144  /// Answers whether the usual array deallocation function for the
1145  /// allocated type expects the size of the allocation as a
1146  /// parameter.
1147  bool doesUsualArrayDeleteWantSize() const {
1148    return UsualArrayDeleteWantsSize;
1149  }
1150
1151  unsigned getNumConstructorArgs() const { return NumConstructorArgs; }
1152
1153  Expr **getConstructorArgs() {
1154    return reinterpret_cast<Expr **>(SubExprs + Array + NumPlacementArgs);
1155  }
1156
1157  Expr *getConstructorArg(unsigned i) {
1158    assert(i < NumConstructorArgs && "Index out of range");
1159    return cast<Expr>(SubExprs[Array + NumPlacementArgs + i]);
1160  }
1161  const Expr *getConstructorArg(unsigned i) const {
1162    assert(i < NumConstructorArgs && "Index out of range");
1163    return cast<Expr>(SubExprs[Array + NumPlacementArgs + i]);
1164  }
1165
1166  typedef ExprIterator arg_iterator;
1167  typedef ConstExprIterator const_arg_iterator;
1168
1169  arg_iterator placement_arg_begin() {
1170    return SubExprs + Array;
1171  }
1172  arg_iterator placement_arg_end() {
1173    return SubExprs + Array + getNumPlacementArgs();
1174  }
1175  const_arg_iterator placement_arg_begin() const {
1176    return SubExprs + Array;
1177  }
1178  const_arg_iterator placement_arg_end() const {
1179    return SubExprs + Array + getNumPlacementArgs();
1180  }
1181
1182  arg_iterator constructor_arg_begin() {
1183    return SubExprs + Array + getNumPlacementArgs();
1184  }
1185  arg_iterator constructor_arg_end() {
1186    return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
1187  }
1188  const_arg_iterator constructor_arg_begin() const {
1189    return SubExprs + Array + getNumPlacementArgs();
1190  }
1191  const_arg_iterator constructor_arg_end() const {
1192    return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
1193  }
1194
1195  typedef Stmt **raw_arg_iterator;
1196  raw_arg_iterator raw_arg_begin() { return SubExprs; }
1197  raw_arg_iterator raw_arg_end() {
1198    return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
1199  }
1200  const_arg_iterator raw_arg_begin() const { return SubExprs; }
1201  const_arg_iterator raw_arg_end() const { return constructor_arg_end(); }
1202
1203  SourceLocation getStartLoc() const { return StartLoc; }
1204  SourceLocation getEndLoc() const { return EndLoc; }
1205
1206  SourceLocation getConstructorLParen() const { return ConstructorLParen; }
1207  SourceLocation getConstructorRParen() const { return ConstructorRParen; }
1208
1209  SourceRange getSourceRange() const {
1210    return SourceRange(StartLoc, EndLoc);
1211  }
1212
1213  static bool classof(const Stmt *T) {
1214    return T->getStmtClass() == CXXNewExprClass;
1215  }
1216  static bool classof(const CXXNewExpr *) { return true; }
1217
1218  // Iterators
1219  child_range children() {
1220    return child_range(&SubExprs[0],
1221                       &SubExprs[0] + Array + getNumPlacementArgs()
1222                         + getNumConstructorArgs());
1223  }
1224};
1225
1226/// CXXDeleteExpr - A delete expression for memory deallocation and destructor
1227/// calls, e.g. "delete[] pArray".
1228class CXXDeleteExpr : public Expr {
1229  // Is this a forced global delete, i.e. "::delete"?
1230  bool GlobalDelete : 1;
1231  // Is this the array form of delete, i.e. "delete[]"?
1232  bool ArrayForm : 1;
1233  // ArrayFormAsWritten can be different from ArrayForm if 'delete' is applied
1234  // to pointer-to-array type (ArrayFormAsWritten will be false while ArrayForm
1235  // will be true).
1236  bool ArrayFormAsWritten : 1;
1237  // Does the usual deallocation function for the element type require
1238  // a size_t argument?
1239  bool UsualArrayDeleteWantsSize : 1;
1240  // Points to the operator delete overload that is used. Could be a member.
1241  FunctionDecl *OperatorDelete;
1242  // The pointer expression to be deleted.
1243  Stmt *Argument;
1244  // Location of the expression.
1245  SourceLocation Loc;
1246public:
1247  CXXDeleteExpr(QualType ty, bool globalDelete, bool arrayForm,
1248                bool arrayFormAsWritten, bool usualArrayDeleteWantsSize,
1249                FunctionDecl *operatorDelete, Expr *arg, SourceLocation loc)
1250    : Expr(CXXDeleteExprClass, ty, VK_RValue, OK_Ordinary, false, false,
1251           arg->isInstantiationDependent(),
1252           arg->containsUnexpandedParameterPack()),
1253      GlobalDelete(globalDelete),
1254      ArrayForm(arrayForm), ArrayFormAsWritten(arrayFormAsWritten),
1255      UsualArrayDeleteWantsSize(usualArrayDeleteWantsSize),
1256      OperatorDelete(operatorDelete), Argument(arg), Loc(loc) { }
1257  explicit CXXDeleteExpr(EmptyShell Shell)
1258    : Expr(CXXDeleteExprClass, Shell), OperatorDelete(0), Argument(0) { }
1259
1260  bool isGlobalDelete() const { return GlobalDelete; }
1261  bool isArrayForm() const { return ArrayForm; }
1262  bool isArrayFormAsWritten() const { return ArrayFormAsWritten; }
1263
1264  /// Answers whether the usual array deallocation function for the
1265  /// allocated type expects the size of the allocation as a
1266  /// parameter.  This can be true even if the actual deallocation
1267  /// function that we're using doesn't want a size.
1268  bool doesUsualArrayDeleteWantSize() const {
1269    return UsualArrayDeleteWantsSize;
1270  }
1271
1272  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
1273
1274  Expr *getArgument() { return cast<Expr>(Argument); }
1275  const Expr *getArgument() const { return cast<Expr>(Argument); }
1276
1277  /// \brief Retrieve the type being destroyed.  If the type being
1278  /// destroyed is a dependent type which may or may not be a pointer,
1279  /// return an invalid type.
1280  QualType getDestroyedType() const;
1281
1282  SourceRange getSourceRange() const {
1283    return SourceRange(Loc, Argument->getLocEnd());
1284  }
1285
1286  static bool classof(const Stmt *T) {
1287    return T->getStmtClass() == CXXDeleteExprClass;
1288  }
1289  static bool classof(const CXXDeleteExpr *) { return true; }
1290
1291  // Iterators
1292  child_range children() { return child_range(&Argument, &Argument+1); }
1293
1294  friend class ASTStmtReader;
1295};
1296
1297/// \brief Structure used to store the type being destroyed by a
1298/// pseudo-destructor expression.
1299class PseudoDestructorTypeStorage {
1300  /// \brief Either the type source information or the name of the type, if
1301  /// it couldn't be resolved due to type-dependence.
1302  llvm::PointerUnion<TypeSourceInfo *, IdentifierInfo *> Type;
1303
1304  /// \brief The starting source location of the pseudo-destructor type.
1305  SourceLocation Location;
1306
1307public:
1308  PseudoDestructorTypeStorage() { }
1309
1310  PseudoDestructorTypeStorage(IdentifierInfo *II, SourceLocation Loc)
1311    : Type(II), Location(Loc) { }
1312
1313  PseudoDestructorTypeStorage(TypeSourceInfo *Info);
1314
1315  TypeSourceInfo *getTypeSourceInfo() const {
1316    return Type.dyn_cast<TypeSourceInfo *>();
1317  }
1318
1319  IdentifierInfo *getIdentifier() const {
1320    return Type.dyn_cast<IdentifierInfo *>();
1321  }
1322
1323  SourceLocation getLocation() const { return Location; }
1324};
1325
1326/// \brief Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
1327///
1328/// A pseudo-destructor is an expression that looks like a member access to a
1329/// destructor of a scalar type, except that scalar types don't have
1330/// destructors. For example:
1331///
1332/// \code
1333/// typedef int T;
1334/// void f(int *p) {
1335///   p->T::~T();
1336/// }
1337/// \endcode
1338///
1339/// Pseudo-destructors typically occur when instantiating templates such as:
1340///
1341/// \code
1342/// template<typename T>
1343/// void destroy(T* ptr) {
1344///   ptr->T::~T();
1345/// }
1346/// \endcode
1347///
1348/// for scalar types. A pseudo-destructor expression has no run-time semantics
1349/// beyond evaluating the base expression.
1350class CXXPseudoDestructorExpr : public Expr {
1351  /// \brief The base expression (that is being destroyed).
1352  Stmt *Base;
1353
1354  /// \brief Whether the operator was an arrow ('->'); otherwise, it was a
1355  /// period ('.').
1356  bool IsArrow : 1;
1357
1358  /// \brief The location of the '.' or '->' operator.
1359  SourceLocation OperatorLoc;
1360
1361  /// \brief The nested-name-specifier that follows the operator, if present.
1362  NestedNameSpecifierLoc QualifierLoc;
1363
1364  /// \brief The type that precedes the '::' in a qualified pseudo-destructor
1365  /// expression.
1366  TypeSourceInfo *ScopeType;
1367
1368  /// \brief The location of the '::' in a qualified pseudo-destructor
1369  /// expression.
1370  SourceLocation ColonColonLoc;
1371
1372  /// \brief The location of the '~'.
1373  SourceLocation TildeLoc;
1374
1375  /// \brief The type being destroyed, or its name if we were unable to
1376  /// resolve the name.
1377  PseudoDestructorTypeStorage DestroyedType;
1378
1379  friend class ASTStmtReader;
1380
1381public:
1382  CXXPseudoDestructorExpr(ASTContext &Context,
1383                          Expr *Base, bool isArrow, SourceLocation OperatorLoc,
1384                          NestedNameSpecifierLoc QualifierLoc,
1385                          TypeSourceInfo *ScopeType,
1386                          SourceLocation ColonColonLoc,
1387                          SourceLocation TildeLoc,
1388                          PseudoDestructorTypeStorage DestroyedType);
1389
1390  explicit CXXPseudoDestructorExpr(EmptyShell Shell)
1391    : Expr(CXXPseudoDestructorExprClass, Shell),
1392      Base(0), IsArrow(false), QualifierLoc(), ScopeType(0) { }
1393
1394  Expr *getBase() const { return cast<Expr>(Base); }
1395
1396  /// \brief Determines whether this member expression actually had
1397  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
1398  /// x->Base::foo.
1399  bool hasQualifier() const { return QualifierLoc; }
1400
1401  /// \brief Retrieves the nested-name-specifier that qualifies the type name,
1402  /// with source-location information.
1403  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
1404
1405  /// \brief If the member name was qualified, retrieves the
1406  /// nested-name-specifier that precedes the member name. Otherwise, returns
1407  /// NULL.
1408  NestedNameSpecifier *getQualifier() const {
1409    return QualifierLoc.getNestedNameSpecifier();
1410  }
1411
1412  /// \brief Determine whether this pseudo-destructor expression was written
1413  /// using an '->' (otherwise, it used a '.').
1414  bool isArrow() const { return IsArrow; }
1415
1416  /// \brief Retrieve the location of the '.' or '->' operator.
1417  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1418
1419  /// \brief Retrieve the scope type in a qualified pseudo-destructor
1420  /// expression.
1421  ///
1422  /// Pseudo-destructor expressions can have extra qualification within them
1423  /// that is not part of the nested-name-specifier, e.g., \c p->T::~T().
1424  /// Here, if the object type of the expression is (or may be) a scalar type,
1425  /// \p T may also be a scalar type and, therefore, cannot be part of a
1426  /// nested-name-specifier. It is stored as the "scope type" of the pseudo-
1427  /// destructor expression.
1428  TypeSourceInfo *getScopeTypeInfo() const { return ScopeType; }
1429
1430  /// \brief Retrieve the location of the '::' in a qualified pseudo-destructor
1431  /// expression.
1432  SourceLocation getColonColonLoc() const { return ColonColonLoc; }
1433
1434  /// \brief Retrieve the location of the '~'.
1435  SourceLocation getTildeLoc() const { return TildeLoc; }
1436
1437  /// \brief Retrieve the source location information for the type
1438  /// being destroyed.
1439  ///
1440  /// This type-source information is available for non-dependent
1441  /// pseudo-destructor expressions and some dependent pseudo-destructor
1442  /// expressions. Returns NULL if we only have the identifier for a
1443  /// dependent pseudo-destructor expression.
1444  TypeSourceInfo *getDestroyedTypeInfo() const {
1445    return DestroyedType.getTypeSourceInfo();
1446  }
1447
1448  /// \brief In a dependent pseudo-destructor expression for which we do not
1449  /// have full type information on the destroyed type, provides the name
1450  /// of the destroyed type.
1451  IdentifierInfo *getDestroyedTypeIdentifier() const {
1452    return DestroyedType.getIdentifier();
1453  }
1454
1455  /// \brief Retrieve the type being destroyed.
1456  QualType getDestroyedType() const;
1457
1458  /// \brief Retrieve the starting location of the type being destroyed.
1459  SourceLocation getDestroyedTypeLoc() const {
1460    return DestroyedType.getLocation();
1461  }
1462
1463  /// \brief Set the name of destroyed type for a dependent pseudo-destructor
1464  /// expression.
1465  void setDestroyedType(IdentifierInfo *II, SourceLocation Loc) {
1466    DestroyedType = PseudoDestructorTypeStorage(II, Loc);
1467  }
1468
1469  /// \brief Set the destroyed type.
1470  void setDestroyedType(TypeSourceInfo *Info) {
1471    DestroyedType = PseudoDestructorTypeStorage(Info);
1472  }
1473
1474  SourceRange getSourceRange() const;
1475
1476  static bool classof(const Stmt *T) {
1477    return T->getStmtClass() == CXXPseudoDestructorExprClass;
1478  }
1479  static bool classof(const CXXPseudoDestructorExpr *) { return true; }
1480
1481  // Iterators
1482  child_range children() { return child_range(&Base, &Base + 1); }
1483};
1484
1485/// UnaryTypeTraitExpr - A GCC or MS unary type trait, as used in the
1486/// implementation of TR1/C++0x type trait templates.
1487/// Example:
1488/// __is_pod(int) == true
1489/// __is_enum(std::string) == false
1490class UnaryTypeTraitExpr : public Expr {
1491  /// UTT - The trait. A UnaryTypeTrait enum in MSVC compat unsigned.
1492  unsigned UTT : 31;
1493  /// The value of the type trait. Unspecified if dependent.
1494  bool Value : 1;
1495
1496  /// Loc - The location of the type trait keyword.
1497  SourceLocation Loc;
1498
1499  /// RParen - The location of the closing paren.
1500  SourceLocation RParen;
1501
1502  /// The type being queried.
1503  TypeSourceInfo *QueriedType;
1504
1505public:
1506  UnaryTypeTraitExpr(SourceLocation loc, UnaryTypeTrait utt,
1507                     TypeSourceInfo *queried, bool value,
1508                     SourceLocation rparen, QualType ty)
1509    : Expr(UnaryTypeTraitExprClass, ty, VK_RValue, OK_Ordinary,
1510           false,  queried->getType()->isDependentType(),
1511           queried->getType()->isInstantiationDependentType(),
1512           queried->getType()->containsUnexpandedParameterPack()),
1513      UTT(utt), Value(value), Loc(loc), RParen(rparen), QueriedType(queried) { }
1514
1515  explicit UnaryTypeTraitExpr(EmptyShell Empty)
1516    : Expr(UnaryTypeTraitExprClass, Empty), UTT(0), Value(false),
1517      QueriedType() { }
1518
1519  SourceRange getSourceRange() const { return SourceRange(Loc, RParen);}
1520
1521  UnaryTypeTrait getTrait() const { return static_cast<UnaryTypeTrait>(UTT); }
1522
1523  QualType getQueriedType() const { return QueriedType->getType(); }
1524
1525  TypeSourceInfo *getQueriedTypeSourceInfo() const { return QueriedType; }
1526
1527  bool getValue() const { return Value; }
1528
1529  static bool classof(const Stmt *T) {
1530    return T->getStmtClass() == UnaryTypeTraitExprClass;
1531  }
1532  static bool classof(const UnaryTypeTraitExpr *) { return true; }
1533
1534  // Iterators
1535  child_range children() { return child_range(); }
1536
1537  friend class ASTStmtReader;
1538};
1539
1540/// BinaryTypeTraitExpr - A GCC or MS binary type trait, as used in the
1541/// implementation of TR1/C++0x type trait templates.
1542/// Example:
1543/// __is_base_of(Base, Derived) == true
1544class BinaryTypeTraitExpr : public Expr {
1545  /// BTT - The trait. A BinaryTypeTrait enum in MSVC compat unsigned.
1546  unsigned BTT : 8;
1547
1548  /// The value of the type trait. Unspecified if dependent.
1549  bool Value : 1;
1550
1551  /// Loc - The location of the type trait keyword.
1552  SourceLocation Loc;
1553
1554  /// RParen - The location of the closing paren.
1555  SourceLocation RParen;
1556
1557  /// The lhs type being queried.
1558  TypeSourceInfo *LhsType;
1559
1560  /// The rhs type being queried.
1561  TypeSourceInfo *RhsType;
1562
1563public:
1564  BinaryTypeTraitExpr(SourceLocation loc, BinaryTypeTrait btt,
1565                     TypeSourceInfo *lhsType, TypeSourceInfo *rhsType,
1566                     bool value, SourceLocation rparen, QualType ty)
1567    : Expr(BinaryTypeTraitExprClass, ty, VK_RValue, OK_Ordinary, false,
1568           lhsType->getType()->isDependentType() ||
1569           rhsType->getType()->isDependentType(),
1570           (lhsType->getType()->isInstantiationDependentType() ||
1571            rhsType->getType()->isInstantiationDependentType()),
1572           (lhsType->getType()->containsUnexpandedParameterPack() ||
1573            rhsType->getType()->containsUnexpandedParameterPack())),
1574      BTT(btt), Value(value), Loc(loc), RParen(rparen),
1575      LhsType(lhsType), RhsType(rhsType) { }
1576
1577
1578  explicit BinaryTypeTraitExpr(EmptyShell Empty)
1579    : Expr(BinaryTypeTraitExprClass, Empty), BTT(0), Value(false),
1580      LhsType(), RhsType() { }
1581
1582  SourceRange getSourceRange() const {
1583    return SourceRange(Loc, RParen);
1584  }
1585
1586  BinaryTypeTrait getTrait() const {
1587    return static_cast<BinaryTypeTrait>(BTT);
1588  }
1589
1590  QualType getLhsType() const { return LhsType->getType(); }
1591  QualType getRhsType() const { return RhsType->getType(); }
1592
1593  TypeSourceInfo *getLhsTypeSourceInfo() const { return LhsType; }
1594  TypeSourceInfo *getRhsTypeSourceInfo() const { return RhsType; }
1595
1596  bool getValue() const { assert(!isTypeDependent()); return Value; }
1597
1598  static bool classof(const Stmt *T) {
1599    return T->getStmtClass() == BinaryTypeTraitExprClass;
1600  }
1601  static bool classof(const BinaryTypeTraitExpr *) { return true; }
1602
1603  // Iterators
1604  child_range children() { return child_range(); }
1605
1606  friend class ASTStmtReader;
1607};
1608
1609/// ArrayTypeTraitExpr - An Embarcadero array type trait, as used in the
1610/// implementation of __array_rank and __array_extent.
1611/// Example:
1612/// __array_rank(int[10][20]) == 2
1613/// __array_extent(int, 1)    == 20
1614class ArrayTypeTraitExpr : public Expr {
1615  /// ATT - The trait. An ArrayTypeTrait enum in MSVC compat unsigned.
1616  unsigned ATT : 2;
1617
1618  /// The value of the type trait. Unspecified if dependent.
1619  uint64_t Value;
1620
1621  /// The array dimension being queried, or -1 if not used
1622  Expr *Dimension;
1623
1624  /// Loc - The location of the type trait keyword.
1625  SourceLocation Loc;
1626
1627  /// RParen - The location of the closing paren.
1628  SourceLocation RParen;
1629
1630  /// The type being queried.
1631  TypeSourceInfo *QueriedType;
1632
1633public:
1634  ArrayTypeTraitExpr(SourceLocation loc, ArrayTypeTrait att,
1635                     TypeSourceInfo *queried, uint64_t value,
1636                     Expr *dimension, SourceLocation rparen, QualType ty)
1637    : Expr(ArrayTypeTraitExprClass, ty, VK_RValue, OK_Ordinary,
1638           false, queried->getType()->isDependentType(),
1639           (queried->getType()->isInstantiationDependentType() ||
1640            (dimension && dimension->isInstantiationDependent())),
1641           queried->getType()->containsUnexpandedParameterPack()),
1642      ATT(att), Value(value), Dimension(dimension),
1643      Loc(loc), RParen(rparen), QueriedType(queried) { }
1644
1645
1646  explicit ArrayTypeTraitExpr(EmptyShell Empty)
1647    : Expr(ArrayTypeTraitExprClass, Empty), ATT(0), Value(false),
1648      QueriedType() { }
1649
1650  virtual ~ArrayTypeTraitExpr() { }
1651
1652  virtual SourceRange getSourceRange() const { return SourceRange(Loc, RParen); }
1653
1654  ArrayTypeTrait getTrait() const { return static_cast<ArrayTypeTrait>(ATT); }
1655
1656  QualType getQueriedType() const { return QueriedType->getType(); }
1657
1658  TypeSourceInfo *getQueriedTypeSourceInfo() const { return QueriedType; }
1659
1660  uint64_t getValue() const { assert(!isTypeDependent()); return Value; }
1661
1662  Expr *getDimensionExpression() const { return Dimension; }
1663
1664  static bool classof(const Stmt *T) {
1665    return T->getStmtClass() == ArrayTypeTraitExprClass;
1666  }
1667  static bool classof(const ArrayTypeTraitExpr *) { return true; }
1668
1669  // Iterators
1670  child_range children() { return child_range(); }
1671
1672  friend class ASTStmtReader;
1673};
1674
1675/// ExpressionTraitExpr - An expression trait intrinsic
1676/// Example:
1677/// __is_lvalue_expr(std::cout) == true
1678/// __is_lvalue_expr(1) == false
1679class ExpressionTraitExpr : public Expr {
1680  /// ET - The trait. A ExpressionTrait enum in MSVC compat unsigned.
1681  unsigned ET : 31;
1682  /// The value of the type trait. Unspecified if dependent.
1683  bool Value : 1;
1684
1685  /// Loc - The location of the type trait keyword.
1686  SourceLocation Loc;
1687
1688  /// RParen - The location of the closing paren.
1689  SourceLocation RParen;
1690
1691  Expr* QueriedExpression;
1692public:
1693  ExpressionTraitExpr(SourceLocation loc, ExpressionTrait et,
1694                     Expr *queried, bool value,
1695                     SourceLocation rparen, QualType resultType)
1696    : Expr(ExpressionTraitExprClass, resultType, VK_RValue, OK_Ordinary,
1697           false, // Not type-dependent
1698           // Value-dependent if the argument is type-dependent.
1699           queried->isTypeDependent(),
1700           queried->isInstantiationDependent(),
1701           queried->containsUnexpandedParameterPack()),
1702      ET(et), Value(value), Loc(loc), RParen(rparen), QueriedExpression(queried) { }
1703
1704  explicit ExpressionTraitExpr(EmptyShell Empty)
1705    : Expr(ExpressionTraitExprClass, Empty), ET(0), Value(false),
1706      QueriedExpression() { }
1707
1708  SourceRange getSourceRange() const { return SourceRange(Loc, RParen);}
1709
1710  ExpressionTrait getTrait() const { return static_cast<ExpressionTrait>(ET); }
1711
1712  Expr *getQueriedExpression() const { return QueriedExpression; }
1713
1714  bool getValue() const { return Value; }
1715
1716  static bool classof(const Stmt *T) {
1717    return T->getStmtClass() == ExpressionTraitExprClass;
1718  }
1719  static bool classof(const ExpressionTraitExpr *) { return true; }
1720
1721  // Iterators
1722  child_range children() { return child_range(); }
1723
1724  friend class ASTStmtReader;
1725};
1726
1727
1728/// \brief A reference to an overloaded function set, either an
1729/// \t UnresolvedLookupExpr or an \t UnresolvedMemberExpr.
1730class OverloadExpr : public Expr {
1731  /// The results.  These are undesugared, which is to say, they may
1732  /// include UsingShadowDecls.  Access is relative to the naming
1733  /// class.
1734  // FIXME: Allocate this data after the OverloadExpr subclass.
1735  DeclAccessPair *Results;
1736  unsigned NumResults;
1737
1738  /// The common name of these declarations.
1739  DeclarationNameInfo NameInfo;
1740
1741  /// \brief The nested-name-specifier that qualifies the name, if any.
1742  NestedNameSpecifierLoc QualifierLoc;
1743
1744protected:
1745  /// True if the name was a template-id.
1746  bool HasExplicitTemplateArgs;
1747
1748  OverloadExpr(StmtClass K, ASTContext &C,
1749               NestedNameSpecifierLoc QualifierLoc,
1750               const DeclarationNameInfo &NameInfo,
1751               const TemplateArgumentListInfo *TemplateArgs,
1752               UnresolvedSetIterator Begin, UnresolvedSetIterator End,
1753               bool KnownDependent,
1754               bool KnownInstantiationDependent,
1755               bool KnownContainsUnexpandedParameterPack);
1756
1757  OverloadExpr(StmtClass K, EmptyShell Empty)
1758    : Expr(K, Empty), Results(0), NumResults(0),
1759      QualifierLoc(), HasExplicitTemplateArgs(false) { }
1760
1761  void initializeResults(ASTContext &C,
1762                         UnresolvedSetIterator Begin,
1763                         UnresolvedSetIterator End);
1764
1765public:
1766  struct FindResult {
1767    OverloadExpr *Expression;
1768    bool IsAddressOfOperand;
1769    bool HasFormOfMemberPointer;
1770  };
1771
1772  /// Finds the overloaded expression in the given expression of
1773  /// OverloadTy.
1774  ///
1775  /// \return the expression (which must be there) and true if it has
1776  /// the particular form of a member pointer expression
1777  static FindResult find(Expr *E) {
1778    assert(E->getType()->isSpecificBuiltinType(BuiltinType::Overload));
1779
1780    FindResult Result;
1781
1782    E = E->IgnoreParens();
1783    if (isa<UnaryOperator>(E)) {
1784      assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
1785      E = cast<UnaryOperator>(E)->getSubExpr();
1786      OverloadExpr *Ovl = cast<OverloadExpr>(E->IgnoreParens());
1787
1788      Result.HasFormOfMemberPointer = (E == Ovl && Ovl->getQualifier());
1789      Result.IsAddressOfOperand = true;
1790      Result.Expression = Ovl;
1791    } else {
1792      Result.HasFormOfMemberPointer = false;
1793      Result.IsAddressOfOperand = false;
1794      Result.Expression = cast<OverloadExpr>(E);
1795    }
1796
1797    return Result;
1798  }
1799
1800  /// Gets the naming class of this lookup, if any.
1801  CXXRecordDecl *getNamingClass() const;
1802
1803  typedef UnresolvedSetImpl::iterator decls_iterator;
1804  decls_iterator decls_begin() const { return UnresolvedSetIterator(Results); }
1805  decls_iterator decls_end() const {
1806    return UnresolvedSetIterator(Results + NumResults);
1807  }
1808
1809  /// Gets the number of declarations in the unresolved set.
1810  unsigned getNumDecls() const { return NumResults; }
1811
1812  /// Gets the full name info.
1813  const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
1814
1815  /// Gets the name looked up.
1816  DeclarationName getName() const { return NameInfo.getName(); }
1817
1818  /// Gets the location of the name.
1819  SourceLocation getNameLoc() const { return NameInfo.getLoc(); }
1820
1821  /// Fetches the nested-name qualifier, if one was given.
1822  NestedNameSpecifier *getQualifier() const {
1823    return QualifierLoc.getNestedNameSpecifier();
1824  }
1825
1826  /// Fetches the nested-name qualifier with source-location information, if
1827  /// one was given.
1828  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
1829
1830  /// \brief Determines whether this expression had an explicit
1831  /// template argument list, e.g. f<int>.
1832  bool hasExplicitTemplateArgs() const { return HasExplicitTemplateArgs; }
1833
1834  ExplicitTemplateArgumentList &getExplicitTemplateArgs(); // defined far below
1835
1836  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
1837    return const_cast<OverloadExpr*>(this)->getExplicitTemplateArgs();
1838  }
1839
1840  /// \brief Retrieves the optional explicit template arguments.
1841  /// This points to the same data as getExplicitTemplateArgs(), but
1842  /// returns null if there are no explicit template arguments.
1843  const ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() {
1844    if (!hasExplicitTemplateArgs()) return 0;
1845    return &getExplicitTemplateArgs();
1846  }
1847
1848  static bool classof(const Stmt *T) {
1849    return T->getStmtClass() == UnresolvedLookupExprClass ||
1850           T->getStmtClass() == UnresolvedMemberExprClass;
1851  }
1852  static bool classof(const OverloadExpr *) { return true; }
1853
1854  friend class ASTStmtReader;
1855  friend class ASTStmtWriter;
1856};
1857
1858/// \brief A reference to a name which we were able to look up during
1859/// parsing but could not resolve to a specific declaration.  This
1860/// arises in several ways:
1861///   * we might be waiting for argument-dependent lookup
1862///   * the name might resolve to an overloaded function
1863/// and eventually:
1864///   * the lookup might have included a function template
1865/// These never include UnresolvedUsingValueDecls, which are always
1866/// class members and therefore appear only in
1867/// UnresolvedMemberLookupExprs.
1868class UnresolvedLookupExpr : public OverloadExpr {
1869  /// True if these lookup results should be extended by
1870  /// argument-dependent lookup if this is the operand of a function
1871  /// call.
1872  bool RequiresADL;
1873
1874  /// True if namespace ::std should be considered an associated namespace
1875  /// for the purposes of argument-dependent lookup. See C++0x [stmt.ranged]p1.
1876  bool StdIsAssociatedNamespace;
1877
1878  /// True if these lookup results are overloaded.  This is pretty
1879  /// trivially rederivable if we urgently need to kill this field.
1880  bool Overloaded;
1881
1882  /// The naming class (C++ [class.access.base]p5) of the lookup, if
1883  /// any.  This can generally be recalculated from the context chain,
1884  /// but that can be fairly expensive for unqualified lookups.  If we
1885  /// want to improve memory use here, this could go in a union
1886  /// against the qualified-lookup bits.
1887  CXXRecordDecl *NamingClass;
1888
1889  UnresolvedLookupExpr(ASTContext &C,
1890                       CXXRecordDecl *NamingClass,
1891                       NestedNameSpecifierLoc QualifierLoc,
1892                       const DeclarationNameInfo &NameInfo,
1893                       bool RequiresADL, bool Overloaded,
1894                       const TemplateArgumentListInfo *TemplateArgs,
1895                       UnresolvedSetIterator Begin, UnresolvedSetIterator End,
1896                       bool StdIsAssociatedNamespace)
1897    : OverloadExpr(UnresolvedLookupExprClass, C, QualifierLoc, NameInfo,
1898                   TemplateArgs, Begin, End, false, false, false),
1899      RequiresADL(RequiresADL),
1900      StdIsAssociatedNamespace(StdIsAssociatedNamespace),
1901      Overloaded(Overloaded), NamingClass(NamingClass)
1902  {}
1903
1904  UnresolvedLookupExpr(EmptyShell Empty)
1905    : OverloadExpr(UnresolvedLookupExprClass, Empty),
1906      RequiresADL(false), StdIsAssociatedNamespace(false), Overloaded(false),
1907      NamingClass(0)
1908  {}
1909
1910  friend class ASTStmtReader;
1911
1912public:
1913  static UnresolvedLookupExpr *Create(ASTContext &C,
1914                                      CXXRecordDecl *NamingClass,
1915                                      NestedNameSpecifierLoc QualifierLoc,
1916                                      const DeclarationNameInfo &NameInfo,
1917                                      bool ADL, bool Overloaded,
1918                                      UnresolvedSetIterator Begin,
1919                                      UnresolvedSetIterator End,
1920                                      bool StdIsAssociatedNamespace = false) {
1921    assert((ADL || !StdIsAssociatedNamespace) &&
1922           "std considered associated namespace when not performing ADL");
1923    return new(C) UnresolvedLookupExpr(C, NamingClass, QualifierLoc, NameInfo,
1924                                       ADL, Overloaded, 0, Begin, End,
1925                                       StdIsAssociatedNamespace);
1926  }
1927
1928  static UnresolvedLookupExpr *Create(ASTContext &C,
1929                                      CXXRecordDecl *NamingClass,
1930                                      NestedNameSpecifierLoc QualifierLoc,
1931                                      const DeclarationNameInfo &NameInfo,
1932                                      bool ADL,
1933                                      const TemplateArgumentListInfo &Args,
1934                                      UnresolvedSetIterator Begin,
1935                                      UnresolvedSetIterator End);
1936
1937  static UnresolvedLookupExpr *CreateEmpty(ASTContext &C,
1938                                           bool HasExplicitTemplateArgs,
1939                                           unsigned NumTemplateArgs);
1940
1941  /// True if this declaration should be extended by
1942  /// argument-dependent lookup.
1943  bool requiresADL() const { return RequiresADL; }
1944
1945  /// True if namespace ::std should be artificially added to the set of
1946  /// associated namespaecs for argument-dependent lookup purposes.
1947  bool isStdAssociatedNamespace() const { return StdIsAssociatedNamespace; }
1948
1949  /// True if this lookup is overloaded.
1950  bool isOverloaded() const { return Overloaded; }
1951
1952  /// Gets the 'naming class' (in the sense of C++0x
1953  /// [class.access.base]p5) of the lookup.  This is the scope
1954  /// that was looked in to find these results.
1955  CXXRecordDecl *getNamingClass() const { return NamingClass; }
1956
1957  // Note that, inconsistently with the explicit-template-argument AST
1958  // nodes, users are *forbidden* from calling these methods on objects
1959  // without explicit template arguments.
1960
1961  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
1962    assert(hasExplicitTemplateArgs());
1963    return *reinterpret_cast<ExplicitTemplateArgumentList*>(this + 1);
1964  }
1965
1966  /// Gets a reference to the explicit template argument list.
1967  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
1968    assert(hasExplicitTemplateArgs());
1969    return *reinterpret_cast<const ExplicitTemplateArgumentList*>(this + 1);
1970  }
1971
1972  /// \brief Retrieves the optional explicit template arguments.
1973  /// This points to the same data as getExplicitTemplateArgs(), but
1974  /// returns null if there are no explicit template arguments.
1975  const ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() {
1976    if (!hasExplicitTemplateArgs()) return 0;
1977    return &getExplicitTemplateArgs();
1978  }
1979
1980  /// \brief Copies the template arguments (if present) into the given
1981  /// structure.
1982  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1983    getExplicitTemplateArgs().copyInto(List);
1984  }
1985
1986  SourceLocation getLAngleLoc() const {
1987    return getExplicitTemplateArgs().LAngleLoc;
1988  }
1989
1990  SourceLocation getRAngleLoc() const {
1991    return getExplicitTemplateArgs().RAngleLoc;
1992  }
1993
1994  TemplateArgumentLoc const *getTemplateArgs() const {
1995    return getExplicitTemplateArgs().getTemplateArgs();
1996  }
1997
1998  unsigned getNumTemplateArgs() const {
1999    return getExplicitTemplateArgs().NumTemplateArgs;
2000  }
2001
2002  SourceRange getSourceRange() const {
2003    SourceRange Range(getNameInfo().getSourceRange());
2004    if (getQualifierLoc())
2005      Range.setBegin(getQualifierLoc().getBeginLoc());
2006    if (hasExplicitTemplateArgs())
2007      Range.setEnd(getRAngleLoc());
2008    return Range;
2009  }
2010
2011  child_range children() { return child_range(); }
2012
2013  static bool classof(const Stmt *T) {
2014    return T->getStmtClass() == UnresolvedLookupExprClass;
2015  }
2016  static bool classof(const UnresolvedLookupExpr *) { return true; }
2017};
2018
2019/// \brief A qualified reference to a name whose declaration cannot
2020/// yet be resolved.
2021///
2022/// DependentScopeDeclRefExpr is similar to DeclRefExpr in that
2023/// it expresses a reference to a declaration such as
2024/// X<T>::value. The difference, however, is that an
2025/// DependentScopeDeclRefExpr node is used only within C++ templates when
2026/// the qualification (e.g., X<T>::) refers to a dependent type. In
2027/// this case, X<T>::value cannot resolve to a declaration because the
2028/// declaration will differ from on instantiation of X<T> to the
2029/// next. Therefore, DependentScopeDeclRefExpr keeps track of the
2030/// qualifier (X<T>::) and the name of the entity being referenced
2031/// ("value"). Such expressions will instantiate to a DeclRefExpr once the
2032/// declaration can be found.
2033class DependentScopeDeclRefExpr : public Expr {
2034  /// \brief The nested-name-specifier that qualifies this unresolved
2035  /// declaration name.
2036  NestedNameSpecifierLoc QualifierLoc;
2037
2038  /// The name of the entity we will be referencing.
2039  DeclarationNameInfo NameInfo;
2040
2041  /// \brief Whether the name includes explicit template arguments.
2042  bool HasExplicitTemplateArgs;
2043
2044  DependentScopeDeclRefExpr(QualType T,
2045                            NestedNameSpecifierLoc QualifierLoc,
2046                            const DeclarationNameInfo &NameInfo,
2047                            const TemplateArgumentListInfo *Args);
2048
2049public:
2050  static DependentScopeDeclRefExpr *Create(ASTContext &C,
2051                                           NestedNameSpecifierLoc QualifierLoc,
2052                                           const DeclarationNameInfo &NameInfo,
2053                              const TemplateArgumentListInfo *TemplateArgs = 0);
2054
2055  static DependentScopeDeclRefExpr *CreateEmpty(ASTContext &C,
2056                                                bool HasExplicitTemplateArgs,
2057                                                unsigned NumTemplateArgs);
2058
2059  /// \brief Retrieve the name that this expression refers to.
2060  const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
2061
2062  /// \brief Retrieve the name that this expression refers to.
2063  DeclarationName getDeclName() const { return NameInfo.getName(); }
2064
2065  /// \brief Retrieve the location of the name within the expression.
2066  SourceLocation getLocation() const { return NameInfo.getLoc(); }
2067
2068  /// \brief Retrieve the nested-name-specifier that qualifies the
2069  /// name, with source location information.
2070  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2071
2072
2073  /// \brief Retrieve the nested-name-specifier that qualifies this
2074  /// declaration.
2075  NestedNameSpecifier *getQualifier() const {
2076    return QualifierLoc.getNestedNameSpecifier();
2077  }
2078
2079  /// Determines whether this lookup had explicit template arguments.
2080  bool hasExplicitTemplateArgs() const { return HasExplicitTemplateArgs; }
2081
2082  // Note that, inconsistently with the explicit-template-argument AST
2083  // nodes, users are *forbidden* from calling these methods on objects
2084  // without explicit template arguments.
2085
2086  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
2087    assert(hasExplicitTemplateArgs());
2088    return *reinterpret_cast<ExplicitTemplateArgumentList*>(this + 1);
2089  }
2090
2091  /// Gets a reference to the explicit template argument list.
2092  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
2093    assert(hasExplicitTemplateArgs());
2094    return *reinterpret_cast<const ExplicitTemplateArgumentList*>(this + 1);
2095  }
2096
2097  /// \brief Retrieves the optional explicit template arguments.
2098  /// This points to the same data as getExplicitTemplateArgs(), but
2099  /// returns null if there are no explicit template arguments.
2100  const ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() {
2101    if (!hasExplicitTemplateArgs()) return 0;
2102    return &getExplicitTemplateArgs();
2103  }
2104
2105  /// \brief Copies the template arguments (if present) into the given
2106  /// structure.
2107  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2108    getExplicitTemplateArgs().copyInto(List);
2109  }
2110
2111  SourceLocation getLAngleLoc() const {
2112    return getExplicitTemplateArgs().LAngleLoc;
2113  }
2114
2115  SourceLocation getRAngleLoc() const {
2116    return getExplicitTemplateArgs().RAngleLoc;
2117  }
2118
2119  TemplateArgumentLoc const *getTemplateArgs() const {
2120    return getExplicitTemplateArgs().getTemplateArgs();
2121  }
2122
2123  unsigned getNumTemplateArgs() const {
2124    return getExplicitTemplateArgs().NumTemplateArgs;
2125  }
2126
2127  SourceRange getSourceRange() const {
2128    SourceRange Range(QualifierLoc.getBeginLoc(), getLocation());
2129    if (hasExplicitTemplateArgs())
2130      Range.setEnd(getRAngleLoc());
2131    return Range;
2132  }
2133
2134  static bool classof(const Stmt *T) {
2135    return T->getStmtClass() == DependentScopeDeclRefExprClass;
2136  }
2137  static bool classof(const DependentScopeDeclRefExpr *) { return true; }
2138
2139  child_range children() { return child_range(); }
2140
2141  friend class ASTStmtReader;
2142  friend class ASTStmtWriter;
2143};
2144
2145/// Represents an expression --- generally a full-expression --- which
2146/// introduces cleanups to be run at the end of the sub-expression's
2147/// evaluation.  The most common source of expression-introduced
2148/// cleanups is temporary objects in C++, but several other C++
2149/// expressions can create cleanups.
2150class ExprWithCleanups : public Expr {
2151  Stmt *SubExpr;
2152
2153  CXXTemporary **Temps;
2154  unsigned NumTemps;
2155
2156  ExprWithCleanups(ASTContext &C, Expr *SubExpr,
2157                   CXXTemporary **Temps, unsigned NumTemps);
2158
2159public:
2160  ExprWithCleanups(EmptyShell Empty)
2161    : Expr(ExprWithCleanupsClass, Empty),
2162      SubExpr(0), Temps(0), NumTemps(0) {}
2163
2164  static ExprWithCleanups *Create(ASTContext &C, Expr *SubExpr,
2165                                        CXXTemporary **Temps,
2166                                        unsigned NumTemps);
2167
2168  unsigned getNumTemporaries() const { return NumTemps; }
2169  void setNumTemporaries(ASTContext &C, unsigned N);
2170
2171  CXXTemporary *getTemporary(unsigned i) {
2172    assert(i < NumTemps && "Index out of range");
2173    return Temps[i];
2174  }
2175  const CXXTemporary *getTemporary(unsigned i) const {
2176    return const_cast<ExprWithCleanups*>(this)->getTemporary(i);
2177  }
2178  void setTemporary(unsigned i, CXXTemporary *T) {
2179    assert(i < NumTemps && "Index out of range");
2180    Temps[i] = T;
2181  }
2182
2183  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
2184  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
2185  void setSubExpr(Expr *E) { SubExpr = E; }
2186
2187  SourceRange getSourceRange() const {
2188    return SubExpr->getSourceRange();
2189  }
2190
2191  // Implement isa/cast/dyncast/etc.
2192  static bool classof(const Stmt *T) {
2193    return T->getStmtClass() == ExprWithCleanupsClass;
2194  }
2195  static bool classof(const ExprWithCleanups *) { return true; }
2196
2197  // Iterators
2198  child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
2199};
2200
2201/// \brief Describes an explicit type conversion that uses functional
2202/// notion but could not be resolved because one or more arguments are
2203/// type-dependent.
2204///
2205/// The explicit type conversions expressed by
2206/// CXXUnresolvedConstructExpr have the form \c T(a1, a2, ..., aN),
2207/// where \c T is some type and \c a1, a2, ..., aN are values, and
2208/// either \C T is a dependent type or one or more of the \c a's is
2209/// type-dependent. For example, this would occur in a template such
2210/// as:
2211///
2212/// \code
2213///   template<typename T, typename A1>
2214///   inline T make_a(const A1& a1) {
2215///     return T(a1);
2216///   }
2217/// \endcode
2218///
2219/// When the returned expression is instantiated, it may resolve to a
2220/// constructor call, conversion function call, or some kind of type
2221/// conversion.
2222class CXXUnresolvedConstructExpr : public Expr {
2223  /// \brief The type being constructed.
2224  TypeSourceInfo *Type;
2225
2226  /// \brief The location of the left parentheses ('(').
2227  SourceLocation LParenLoc;
2228
2229  /// \brief The location of the right parentheses (')').
2230  SourceLocation RParenLoc;
2231
2232  /// \brief The number of arguments used to construct the type.
2233  unsigned NumArgs;
2234
2235  CXXUnresolvedConstructExpr(TypeSourceInfo *Type,
2236                             SourceLocation LParenLoc,
2237                             Expr **Args,
2238                             unsigned NumArgs,
2239                             SourceLocation RParenLoc);
2240
2241  CXXUnresolvedConstructExpr(EmptyShell Empty, unsigned NumArgs)
2242    : Expr(CXXUnresolvedConstructExprClass, Empty), Type(), NumArgs(NumArgs) { }
2243
2244  friend class ASTStmtReader;
2245
2246public:
2247  static CXXUnresolvedConstructExpr *Create(ASTContext &C,
2248                                            TypeSourceInfo *Type,
2249                                            SourceLocation LParenLoc,
2250                                            Expr **Args,
2251                                            unsigned NumArgs,
2252                                            SourceLocation RParenLoc);
2253
2254  static CXXUnresolvedConstructExpr *CreateEmpty(ASTContext &C,
2255                                                 unsigned NumArgs);
2256
2257  /// \brief Retrieve the type that is being constructed, as specified
2258  /// in the source code.
2259  QualType getTypeAsWritten() const { return Type->getType(); }
2260
2261  /// \brief Retrieve the type source information for the type being
2262  /// constructed.
2263  TypeSourceInfo *getTypeSourceInfo() const { return Type; }
2264
2265  /// \brief Retrieve the location of the left parentheses ('(') that
2266  /// precedes the argument list.
2267  SourceLocation getLParenLoc() const { return LParenLoc; }
2268  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2269
2270  /// \brief Retrieve the location of the right parentheses (')') that
2271  /// follows the argument list.
2272  SourceLocation getRParenLoc() const { return RParenLoc; }
2273  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2274
2275  /// \brief Retrieve the number of arguments.
2276  unsigned arg_size() const { return NumArgs; }
2277
2278  typedef Expr** arg_iterator;
2279  arg_iterator arg_begin() { return reinterpret_cast<Expr**>(this + 1); }
2280  arg_iterator arg_end() { return arg_begin() + NumArgs; }
2281
2282  typedef const Expr* const * const_arg_iterator;
2283  const_arg_iterator arg_begin() const {
2284    return reinterpret_cast<const Expr* const *>(this + 1);
2285  }
2286  const_arg_iterator arg_end() const {
2287    return arg_begin() + NumArgs;
2288  }
2289
2290  Expr *getArg(unsigned I) {
2291    assert(I < NumArgs && "Argument index out-of-range");
2292    return *(arg_begin() + I);
2293  }
2294
2295  const Expr *getArg(unsigned I) const {
2296    assert(I < NumArgs && "Argument index out-of-range");
2297    return *(arg_begin() + I);
2298  }
2299
2300  void setArg(unsigned I, Expr *E) {
2301    assert(I < NumArgs && "Argument index out-of-range");
2302    *(arg_begin() + I) = E;
2303  }
2304
2305  SourceRange getSourceRange() const;
2306
2307  static bool classof(const Stmt *T) {
2308    return T->getStmtClass() == CXXUnresolvedConstructExprClass;
2309  }
2310  static bool classof(const CXXUnresolvedConstructExpr *) { return true; }
2311
2312  // Iterators
2313  child_range children() {
2314    Stmt **begin = reinterpret_cast<Stmt**>(this+1);
2315    return child_range(begin, begin + NumArgs);
2316  }
2317};
2318
2319/// \brief Represents a C++ member access expression where the actual
2320/// member referenced could not be resolved because the base
2321/// expression or the member name was dependent.
2322///
2323/// Like UnresolvedMemberExprs, these can be either implicit or
2324/// explicit accesses.  It is only possible to get one of these with
2325/// an implicit access if a qualifier is provided.
2326class CXXDependentScopeMemberExpr : public Expr {
2327  /// \brief The expression for the base pointer or class reference,
2328  /// e.g., the \c x in x.f.  Can be null in implicit accesses.
2329  Stmt *Base;
2330
2331  /// \brief The type of the base expression.  Never null, even for
2332  /// implicit accesses.
2333  QualType BaseType;
2334
2335  /// \brief Whether this member expression used the '->' operator or
2336  /// the '.' operator.
2337  bool IsArrow : 1;
2338
2339  /// \brief Whether this member expression has explicitly-specified template
2340  /// arguments.
2341  bool HasExplicitTemplateArgs : 1;
2342
2343  /// \brief The location of the '->' or '.' operator.
2344  SourceLocation OperatorLoc;
2345
2346  /// \brief The nested-name-specifier that precedes the member name, if any.
2347  NestedNameSpecifierLoc QualifierLoc;
2348
2349  /// \brief In a qualified member access expression such as t->Base::f, this
2350  /// member stores the resolves of name lookup in the context of the member
2351  /// access expression, to be used at instantiation time.
2352  ///
2353  /// FIXME: This member, along with the QualifierLoc, could
2354  /// be stuck into a structure that is optionally allocated at the end of
2355  /// the CXXDependentScopeMemberExpr, to save space in the common case.
2356  NamedDecl *FirstQualifierFoundInScope;
2357
2358  /// \brief The member to which this member expression refers, which
2359  /// can be name, overloaded operator, or destructor.
2360  /// FIXME: could also be a template-id
2361  DeclarationNameInfo MemberNameInfo;
2362
2363  CXXDependentScopeMemberExpr(ASTContext &C,
2364                          Expr *Base, QualType BaseType, bool IsArrow,
2365                          SourceLocation OperatorLoc,
2366                          NestedNameSpecifierLoc QualifierLoc,
2367                          NamedDecl *FirstQualifierFoundInScope,
2368                          DeclarationNameInfo MemberNameInfo,
2369                          const TemplateArgumentListInfo *TemplateArgs);
2370
2371public:
2372  CXXDependentScopeMemberExpr(ASTContext &C,
2373                              Expr *Base, QualType BaseType,
2374                              bool IsArrow,
2375                              SourceLocation OperatorLoc,
2376                              NestedNameSpecifierLoc QualifierLoc,
2377                              NamedDecl *FirstQualifierFoundInScope,
2378                              DeclarationNameInfo MemberNameInfo);
2379
2380  static CXXDependentScopeMemberExpr *
2381  Create(ASTContext &C,
2382         Expr *Base, QualType BaseType, bool IsArrow,
2383         SourceLocation OperatorLoc,
2384         NestedNameSpecifierLoc QualifierLoc,
2385         NamedDecl *FirstQualifierFoundInScope,
2386         DeclarationNameInfo MemberNameInfo,
2387         const TemplateArgumentListInfo *TemplateArgs);
2388
2389  static CXXDependentScopeMemberExpr *
2390  CreateEmpty(ASTContext &C, bool HasExplicitTemplateArgs,
2391              unsigned NumTemplateArgs);
2392
2393  /// \brief True if this is an implicit access, i.e. one in which the
2394  /// member being accessed was not written in the source.  The source
2395  /// location of the operator is invalid in this case.
2396  bool isImplicitAccess() const;
2397
2398  /// \brief Retrieve the base object of this member expressions,
2399  /// e.g., the \c x in \c x.m.
2400  Expr *getBase() const {
2401    assert(!isImplicitAccess());
2402    return cast<Expr>(Base);
2403  }
2404
2405  QualType getBaseType() const { return BaseType; }
2406
2407  /// \brief Determine whether this member expression used the '->'
2408  /// operator; otherwise, it used the '.' operator.
2409  bool isArrow() const { return IsArrow; }
2410
2411  /// \brief Retrieve the location of the '->' or '.' operator.
2412  SourceLocation getOperatorLoc() const { return OperatorLoc; }
2413
2414  /// \brief Retrieve the nested-name-specifier that qualifies the member
2415  /// name.
2416  NestedNameSpecifier *getQualifier() const {
2417    return QualifierLoc.getNestedNameSpecifier();
2418  }
2419
2420  /// \brief Retrieve the nested-name-specifier that qualifies the member
2421  /// name, with source location information.
2422  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2423
2424
2425  /// \brief Retrieve the first part of the nested-name-specifier that was
2426  /// found in the scope of the member access expression when the member access
2427  /// was initially parsed.
2428  ///
2429  /// This function only returns a useful result when member access expression
2430  /// uses a qualified member name, e.g., "x.Base::f". Here, the declaration
2431  /// returned by this function describes what was found by unqualified name
2432  /// lookup for the identifier "Base" within the scope of the member access
2433  /// expression itself. At template instantiation time, this information is
2434  /// combined with the results of name lookup into the type of the object
2435  /// expression itself (the class type of x).
2436  NamedDecl *getFirstQualifierFoundInScope() const {
2437    return FirstQualifierFoundInScope;
2438  }
2439
2440  /// \brief Retrieve the name of the member that this expression
2441  /// refers to.
2442  const DeclarationNameInfo &getMemberNameInfo() const {
2443    return MemberNameInfo;
2444  }
2445
2446  /// \brief Retrieve the name of the member that this expression
2447  /// refers to.
2448  DeclarationName getMember() const { return MemberNameInfo.getName(); }
2449
2450  // \brief Retrieve the location of the name of the member that this
2451  // expression refers to.
2452  SourceLocation getMemberLoc() const { return MemberNameInfo.getLoc(); }
2453
2454  /// \brief Determines whether this member expression actually had a C++
2455  /// template argument list explicitly specified, e.g., x.f<int>.
2456  bool hasExplicitTemplateArgs() const {
2457    return HasExplicitTemplateArgs;
2458  }
2459
2460  /// \brief Retrieve the explicit template argument list that followed the
2461  /// member template name, if any.
2462  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
2463    assert(HasExplicitTemplateArgs);
2464    return *reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
2465  }
2466
2467  /// \brief Retrieve the explicit template argument list that followed the
2468  /// member template name, if any.
2469  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
2470    return const_cast<CXXDependentScopeMemberExpr *>(this)
2471             ->getExplicitTemplateArgs();
2472  }
2473
2474  /// \brief Retrieves the optional explicit template arguments.
2475  /// This points to the same data as getExplicitTemplateArgs(), but
2476  /// returns null if there are no explicit template arguments.
2477  const ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() {
2478    if (!hasExplicitTemplateArgs()) return 0;
2479    return &getExplicitTemplateArgs();
2480  }
2481
2482  /// \brief Copies the template arguments (if present) into the given
2483  /// structure.
2484  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2485    getExplicitTemplateArgs().copyInto(List);
2486  }
2487
2488  /// \brief Initializes the template arguments using the given structure.
2489  void initializeTemplateArgumentsFrom(const TemplateArgumentListInfo &List) {
2490    getExplicitTemplateArgs().initializeFrom(List);
2491  }
2492
2493  /// \brief Retrieve the location of the left angle bracket following the
2494  /// member name ('<'), if any.
2495  SourceLocation getLAngleLoc() const {
2496    return getExplicitTemplateArgs().LAngleLoc;
2497  }
2498
2499  /// \brief Retrieve the template arguments provided as part of this
2500  /// template-id.
2501  const TemplateArgumentLoc *getTemplateArgs() const {
2502    return getExplicitTemplateArgs().getTemplateArgs();
2503  }
2504
2505  /// \brief Retrieve the number of template arguments provided as part of this
2506  /// template-id.
2507  unsigned getNumTemplateArgs() const {
2508    return getExplicitTemplateArgs().NumTemplateArgs;
2509  }
2510
2511  /// \brief Retrieve the location of the right angle bracket following the
2512  /// template arguments ('>').
2513  SourceLocation getRAngleLoc() const {
2514    return getExplicitTemplateArgs().RAngleLoc;
2515  }
2516
2517  SourceRange getSourceRange() const {
2518    SourceRange Range;
2519    if (!isImplicitAccess())
2520      Range.setBegin(Base->getSourceRange().getBegin());
2521    else if (getQualifier())
2522      Range.setBegin(getQualifierLoc().getBeginLoc());
2523    else
2524      Range.setBegin(MemberNameInfo.getBeginLoc());
2525
2526    if (hasExplicitTemplateArgs())
2527      Range.setEnd(getRAngleLoc());
2528    else
2529      Range.setEnd(MemberNameInfo.getEndLoc());
2530    return Range;
2531  }
2532
2533  static bool classof(const Stmt *T) {
2534    return T->getStmtClass() == CXXDependentScopeMemberExprClass;
2535  }
2536  static bool classof(const CXXDependentScopeMemberExpr *) { return true; }
2537
2538  // Iterators
2539  child_range children() {
2540    if (isImplicitAccess()) return child_range();
2541    return child_range(&Base, &Base + 1);
2542  }
2543
2544  friend class ASTStmtReader;
2545  friend class ASTStmtWriter;
2546};
2547
2548/// \brief Represents a C++ member access expression for which lookup
2549/// produced a set of overloaded functions.
2550///
2551/// The member access may be explicit or implicit:
2552///    struct A {
2553///      int a, b;
2554///      int explicitAccess() { return this->a + this->A::b; }
2555///      int implicitAccess() { return a + A::b; }
2556///    };
2557///
2558/// In the final AST, an explicit access always becomes a MemberExpr.
2559/// An implicit access may become either a MemberExpr or a
2560/// DeclRefExpr, depending on whether the member is static.
2561class UnresolvedMemberExpr : public OverloadExpr {
2562  /// \brief Whether this member expression used the '->' operator or
2563  /// the '.' operator.
2564  bool IsArrow : 1;
2565
2566  /// \brief Whether the lookup results contain an unresolved using
2567  /// declaration.
2568  bool HasUnresolvedUsing : 1;
2569
2570  /// \brief The expression for the base pointer or class reference,
2571  /// e.g., the \c x in x.f.  This can be null if this is an 'unbased'
2572  /// member expression
2573  Stmt *Base;
2574
2575  /// \brief The type of the base expression;  never null.
2576  QualType BaseType;
2577
2578  /// \brief The location of the '->' or '.' operator.
2579  SourceLocation OperatorLoc;
2580
2581  UnresolvedMemberExpr(ASTContext &C, bool HasUnresolvedUsing,
2582                       Expr *Base, QualType BaseType, bool IsArrow,
2583                       SourceLocation OperatorLoc,
2584                       NestedNameSpecifierLoc QualifierLoc,
2585                       const DeclarationNameInfo &MemberNameInfo,
2586                       const TemplateArgumentListInfo *TemplateArgs,
2587                       UnresolvedSetIterator Begin, UnresolvedSetIterator End);
2588
2589  UnresolvedMemberExpr(EmptyShell Empty)
2590    : OverloadExpr(UnresolvedMemberExprClass, Empty), IsArrow(false),
2591      HasUnresolvedUsing(false), Base(0) { }
2592
2593  friend class ASTStmtReader;
2594
2595public:
2596  static UnresolvedMemberExpr *
2597  Create(ASTContext &C, bool HasUnresolvedUsing,
2598         Expr *Base, QualType BaseType, bool IsArrow,
2599         SourceLocation OperatorLoc,
2600         NestedNameSpecifierLoc QualifierLoc,
2601         const DeclarationNameInfo &MemberNameInfo,
2602         const TemplateArgumentListInfo *TemplateArgs,
2603         UnresolvedSetIterator Begin, UnresolvedSetIterator End);
2604
2605  static UnresolvedMemberExpr *
2606  CreateEmpty(ASTContext &C, bool HasExplicitTemplateArgs,
2607              unsigned NumTemplateArgs);
2608
2609  /// \brief True if this is an implicit access, i.e. one in which the
2610  /// member being accessed was not written in the source.  The source
2611  /// location of the operator is invalid in this case.
2612  bool isImplicitAccess() const;
2613
2614  /// \brief Retrieve the base object of this member expressions,
2615  /// e.g., the \c x in \c x.m.
2616  Expr *getBase() {
2617    assert(!isImplicitAccess());
2618    return cast<Expr>(Base);
2619  }
2620  const Expr *getBase() const {
2621    assert(!isImplicitAccess());
2622    return cast<Expr>(Base);
2623  }
2624
2625  QualType getBaseType() const { return BaseType; }
2626
2627  /// \brief Determine whether the lookup results contain an unresolved using
2628  /// declaration.
2629  bool hasUnresolvedUsing() const { return HasUnresolvedUsing; }
2630
2631  /// \brief Determine whether this member expression used the '->'
2632  /// operator; otherwise, it used the '.' operator.
2633  bool isArrow() const { return IsArrow; }
2634
2635  /// \brief Retrieve the location of the '->' or '.' operator.
2636  SourceLocation getOperatorLoc() const { return OperatorLoc; }
2637
2638  /// \brief Retrieves the naming class of this lookup.
2639  CXXRecordDecl *getNamingClass() const;
2640
2641  /// \brief Retrieve the full name info for the member that this expression
2642  /// refers to.
2643  const DeclarationNameInfo &getMemberNameInfo() const { return getNameInfo(); }
2644
2645  /// \brief Retrieve the name of the member that this expression
2646  /// refers to.
2647  DeclarationName getMemberName() const { return getName(); }
2648
2649  // \brief Retrieve the location of the name of the member that this
2650  // expression refers to.
2651  SourceLocation getMemberLoc() const { return getNameLoc(); }
2652
2653  /// \brief Retrieve the explicit template argument list that followed the
2654  /// member template name.
2655  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
2656    assert(hasExplicitTemplateArgs());
2657    return *reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
2658  }
2659
2660  /// \brief Retrieve the explicit template argument list that followed the
2661  /// member template name, if any.
2662  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
2663    assert(hasExplicitTemplateArgs());
2664    return *reinterpret_cast<const ExplicitTemplateArgumentList *>(this + 1);
2665  }
2666
2667  /// \brief Retrieves the optional explicit template arguments.
2668  /// This points to the same data as getExplicitTemplateArgs(), but
2669  /// returns null if there are no explicit template arguments.
2670  const ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() {
2671    if (!hasExplicitTemplateArgs()) return 0;
2672    return &getExplicitTemplateArgs();
2673  }
2674
2675  /// \brief Copies the template arguments into the given structure.
2676  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2677    getExplicitTemplateArgs().copyInto(List);
2678  }
2679
2680  /// \brief Retrieve the location of the left angle bracket following
2681  /// the member name ('<').
2682  SourceLocation getLAngleLoc() const {
2683    return getExplicitTemplateArgs().LAngleLoc;
2684  }
2685
2686  /// \brief Retrieve the template arguments provided as part of this
2687  /// template-id.
2688  const TemplateArgumentLoc *getTemplateArgs() const {
2689    return getExplicitTemplateArgs().getTemplateArgs();
2690  }
2691
2692  /// \brief Retrieve the number of template arguments provided as
2693  /// part of this template-id.
2694  unsigned getNumTemplateArgs() const {
2695    return getExplicitTemplateArgs().NumTemplateArgs;
2696  }
2697
2698  /// \brief Retrieve the location of the right angle bracket
2699  /// following the template arguments ('>').
2700  SourceLocation getRAngleLoc() const {
2701    return getExplicitTemplateArgs().RAngleLoc;
2702  }
2703
2704  SourceRange getSourceRange() const {
2705    SourceRange Range = getMemberNameInfo().getSourceRange();
2706    if (!isImplicitAccess())
2707      Range.setBegin(Base->getSourceRange().getBegin());
2708    else if (getQualifierLoc())
2709      Range.setBegin(getQualifierLoc().getBeginLoc());
2710
2711    if (hasExplicitTemplateArgs())
2712      Range.setEnd(getRAngleLoc());
2713    return Range;
2714  }
2715
2716  static bool classof(const Stmt *T) {
2717    return T->getStmtClass() == UnresolvedMemberExprClass;
2718  }
2719  static bool classof(const UnresolvedMemberExpr *) { return true; }
2720
2721  // Iterators
2722  child_range children() {
2723    if (isImplicitAccess()) return child_range();
2724    return child_range(&Base, &Base + 1);
2725  }
2726};
2727
2728/// \brief Represents a C++0x noexcept expression (C++ [expr.unary.noexcept]).
2729///
2730/// The noexcept expression tests whether a given expression might throw. Its
2731/// result is a boolean constant.
2732class CXXNoexceptExpr : public Expr {
2733  bool Value : 1;
2734  Stmt *Operand;
2735  SourceRange Range;
2736
2737  friend class ASTStmtReader;
2738
2739public:
2740  CXXNoexceptExpr(QualType Ty, Expr *Operand, CanThrowResult Val,
2741                  SourceLocation Keyword, SourceLocation RParen)
2742    : Expr(CXXNoexceptExprClass, Ty, VK_RValue, OK_Ordinary,
2743           /*TypeDependent*/false,
2744           /*ValueDependent*/Val == CT_Dependent,
2745           Val == CT_Dependent || Operand->isInstantiationDependent(),
2746           Operand->containsUnexpandedParameterPack()),
2747      Value(Val == CT_Cannot), Operand(Operand), Range(Keyword, RParen)
2748  { }
2749
2750  CXXNoexceptExpr(EmptyShell Empty)
2751    : Expr(CXXNoexceptExprClass, Empty)
2752  { }
2753
2754  Expr *getOperand() const { return static_cast<Expr*>(Operand); }
2755
2756  SourceRange getSourceRange() const { return Range; }
2757
2758  bool getValue() const { return Value; }
2759
2760  static bool classof(const Stmt *T) {
2761    return T->getStmtClass() == CXXNoexceptExprClass;
2762  }
2763  static bool classof(const CXXNoexceptExpr *) { return true; }
2764
2765  // Iterators
2766  child_range children() { return child_range(&Operand, &Operand + 1); }
2767};
2768
2769/// \brief Represents a C++0x pack expansion that produces a sequence of
2770/// expressions.
2771///
2772/// A pack expansion expression contains a pattern (which itself is an
2773/// expression) followed by an ellipsis. For example:
2774///
2775/// \code
2776/// template<typename F, typename ...Types>
2777/// void forward(F f, Types &&...args) {
2778///   f(static_cast<Types&&>(args)...);
2779/// }
2780/// \endcode
2781///
2782/// Here, the argument to the function object \c f is a pack expansion whose
2783/// pattern is \c static_cast<Types&&>(args). When the \c forward function
2784/// template is instantiated, the pack expansion will instantiate to zero or
2785/// or more function arguments to the function object \c f.
2786class PackExpansionExpr : public Expr {
2787  SourceLocation EllipsisLoc;
2788
2789  /// \brief The number of expansions that will be produced by this pack
2790  /// expansion expression, if known.
2791  ///
2792  /// When zero, the number of expansions is not known. Otherwise, this value
2793  /// is the number of expansions + 1.
2794  unsigned NumExpansions;
2795
2796  Stmt *Pattern;
2797
2798  friend class ASTStmtReader;
2799  friend class ASTStmtWriter;
2800
2801public:
2802  PackExpansionExpr(QualType T, Expr *Pattern, SourceLocation EllipsisLoc,
2803                    llvm::Optional<unsigned> NumExpansions)
2804    : Expr(PackExpansionExprClass, T, Pattern->getValueKind(),
2805           Pattern->getObjectKind(), /*TypeDependent=*/true,
2806           /*ValueDependent=*/true, /*InstantiationDependent=*/true,
2807           /*ContainsUnexpandedParameterPack=*/false),
2808      EllipsisLoc(EllipsisLoc),
2809      NumExpansions(NumExpansions? *NumExpansions + 1 : 0),
2810      Pattern(Pattern) { }
2811
2812  PackExpansionExpr(EmptyShell Empty) : Expr(PackExpansionExprClass, Empty) { }
2813
2814  /// \brief Retrieve the pattern of the pack expansion.
2815  Expr *getPattern() { return reinterpret_cast<Expr *>(Pattern); }
2816
2817  /// \brief Retrieve the pattern of the pack expansion.
2818  const Expr *getPattern() const { return reinterpret_cast<Expr *>(Pattern); }
2819
2820  /// \brief Retrieve the location of the ellipsis that describes this pack
2821  /// expansion.
2822  SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
2823
2824  /// \brief Determine the number of expansions that will be produced when
2825  /// this pack expansion is instantiated, if already known.
2826  llvm::Optional<unsigned> getNumExpansions() const {
2827    if (NumExpansions)
2828      return NumExpansions - 1;
2829
2830    return llvm::Optional<unsigned>();
2831  }
2832
2833  SourceRange getSourceRange() const {
2834    return SourceRange(Pattern->getLocStart(), EllipsisLoc);
2835  }
2836
2837  static bool classof(const Stmt *T) {
2838    return T->getStmtClass() == PackExpansionExprClass;
2839  }
2840  static bool classof(const PackExpansionExpr *) { return true; }
2841
2842  // Iterators
2843  child_range children() {
2844    return child_range(&Pattern, &Pattern + 1);
2845  }
2846};
2847
2848inline ExplicitTemplateArgumentList &OverloadExpr::getExplicitTemplateArgs() {
2849  if (isa<UnresolvedLookupExpr>(this))
2850    return cast<UnresolvedLookupExpr>(this)->getExplicitTemplateArgs();
2851  else
2852    return cast<UnresolvedMemberExpr>(this)->getExplicitTemplateArgs();
2853}
2854
2855/// \brief Represents an expression that computes the length of a parameter
2856/// pack.
2857///
2858/// \code
2859/// template<typename ...Types>
2860/// struct count {
2861///   static const unsigned value = sizeof...(Types);
2862/// };
2863/// \endcode
2864class SizeOfPackExpr : public Expr {
2865  /// \brief The location of the 'sizeof' keyword.
2866  SourceLocation OperatorLoc;
2867
2868  /// \brief The location of the name of the parameter pack.
2869  SourceLocation PackLoc;
2870
2871  /// \brief The location of the closing parenthesis.
2872  SourceLocation RParenLoc;
2873
2874  /// \brief The length of the parameter pack, if known.
2875  ///
2876  /// When this expression is value-dependent, the length of the parameter pack
2877  /// is unknown. When this expression is not value-dependent, the length is
2878  /// known.
2879  unsigned Length;
2880
2881  /// \brief The parameter pack itself.
2882  NamedDecl *Pack;
2883
2884  friend class ASTStmtReader;
2885  friend class ASTStmtWriter;
2886
2887public:
2888  /// \brief Creates a value-dependent expression that computes the length of
2889  /// the given parameter pack.
2890  SizeOfPackExpr(QualType SizeType, SourceLocation OperatorLoc, NamedDecl *Pack,
2891                 SourceLocation PackLoc, SourceLocation RParenLoc)
2892    : Expr(SizeOfPackExprClass, SizeType, VK_RValue, OK_Ordinary,
2893           /*TypeDependent=*/false, /*ValueDependent=*/true,
2894           /*InstantiationDependent=*/true,
2895           /*ContainsUnexpandedParameterPack=*/false),
2896      OperatorLoc(OperatorLoc), PackLoc(PackLoc), RParenLoc(RParenLoc),
2897      Length(0), Pack(Pack) { }
2898
2899  /// \brief Creates an expression that computes the length of
2900  /// the given parameter pack, which is already known.
2901  SizeOfPackExpr(QualType SizeType, SourceLocation OperatorLoc, NamedDecl *Pack,
2902                 SourceLocation PackLoc, SourceLocation RParenLoc,
2903                 unsigned Length)
2904  : Expr(SizeOfPackExprClass, SizeType, VK_RValue, OK_Ordinary,
2905         /*TypeDependent=*/false, /*ValueDependent=*/false,
2906         /*InstantiationDependent=*/false,
2907         /*ContainsUnexpandedParameterPack=*/false),
2908    OperatorLoc(OperatorLoc), PackLoc(PackLoc), RParenLoc(RParenLoc),
2909    Length(Length), Pack(Pack) { }
2910
2911  /// \brief Create an empty expression.
2912  SizeOfPackExpr(EmptyShell Empty) : Expr(SizeOfPackExprClass, Empty) { }
2913
2914  /// \brief Determine the location of the 'sizeof' keyword.
2915  SourceLocation getOperatorLoc() const { return OperatorLoc; }
2916
2917  /// \brief Determine the location of the parameter pack.
2918  SourceLocation getPackLoc() const { return PackLoc; }
2919
2920  /// \brief Determine the location of the right parenthesis.
2921  SourceLocation getRParenLoc() const { return RParenLoc; }
2922
2923  /// \brief Retrieve the parameter pack.
2924  NamedDecl *getPack() const { return Pack; }
2925
2926  /// \brief Retrieve the length of the parameter pack.
2927  ///
2928  /// This routine may only be invoked when the expression is not
2929  /// value-dependent.
2930  unsigned getPackLength() const {
2931    assert(!isValueDependent() &&
2932           "Cannot get the length of a value-dependent pack size expression");
2933    return Length;
2934  }
2935
2936  SourceRange getSourceRange() const {
2937    return SourceRange(OperatorLoc, RParenLoc);
2938  }
2939
2940  static bool classof(const Stmt *T) {
2941    return T->getStmtClass() == SizeOfPackExprClass;
2942  }
2943  static bool classof(const SizeOfPackExpr *) { return true; }
2944
2945  // Iterators
2946  child_range children() { return child_range(); }
2947};
2948
2949/// \brief Represents a reference to a non-type template parameter pack that
2950/// has been substituted with a non-template argument pack.
2951///
2952/// When a pack expansion in the source code contains multiple parameter packs
2953/// and those parameter packs correspond to different levels of template
2954/// parameter lists, this node node is used to represent a non-type template
2955/// parameter pack from an outer level, which has already had its argument pack
2956/// substituted but that still lives within a pack expansion that itself
2957/// could not be instantiated. When actually performing a substitution into
2958/// that pack expansion (e.g., when all template parameters have corresponding
2959/// arguments), this type will be replaced with the appropriate underlying
2960/// expression at the current pack substitution index.
2961class SubstNonTypeTemplateParmPackExpr : public Expr {
2962  /// \brief The non-type template parameter pack itself.
2963  NonTypeTemplateParmDecl *Param;
2964
2965  /// \brief A pointer to the set of template arguments that this
2966  /// parameter pack is instantiated with.
2967  const TemplateArgument *Arguments;
2968
2969  /// \brief The number of template arguments in \c Arguments.
2970  unsigned NumArguments;
2971
2972  /// \brief The location of the non-type template parameter pack reference.
2973  SourceLocation NameLoc;
2974
2975  friend class ASTStmtReader;
2976  friend class ASTStmtWriter;
2977
2978public:
2979  SubstNonTypeTemplateParmPackExpr(QualType T,
2980                                   NonTypeTemplateParmDecl *Param,
2981                                   SourceLocation NameLoc,
2982                                   const TemplateArgument &ArgPack);
2983
2984  SubstNonTypeTemplateParmPackExpr(EmptyShell Empty)
2985    : Expr(SubstNonTypeTemplateParmPackExprClass, Empty) { }
2986
2987  /// \brief Retrieve the non-type template parameter pack being substituted.
2988  NonTypeTemplateParmDecl *getParameterPack() const { return Param; }
2989
2990  /// \brief Retrieve the location of the parameter pack name.
2991  SourceLocation getParameterPackLocation() const { return NameLoc; }
2992
2993  /// \brief Retrieve the template argument pack containing the substituted
2994  /// template arguments.
2995  TemplateArgument getArgumentPack() const;
2996
2997  SourceRange getSourceRange() const { return NameLoc; }
2998
2999  static bool classof(const Stmt *T) {
3000    return T->getStmtClass() == SubstNonTypeTemplateParmPackExprClass;
3001  }
3002  static bool classof(const SubstNonTypeTemplateParmPackExpr *) {
3003    return true;
3004  }
3005
3006  // Iterators
3007  child_range children() { return child_range(); }
3008};
3009
3010/// \brief Represents a prvalue temporary that written into memory so that
3011/// a reference can bind to it.
3012///
3013/// Prvalue expressions are materialized when they need to have an address
3014/// in memory for a reference to bind to. This happens when binding a
3015/// reference to the result of a conversion, e.g.,
3016///
3017/// \code
3018/// const int &r = 1.0;
3019/// \endcode
3020///
3021/// Here, 1.0 is implicitly converted to an \c int. That resulting \c int is
3022/// then materialized via a \c MaterializeTemporaryExpr, and the reference
3023/// binds to the temporary. \c MaterializeTemporaryExprs are always glvalues
3024/// (either an lvalue or an xvalue, depending on the kind of reference binding
3025/// to it), maintaining the invariant that references always bind to glvalues.
3026class MaterializeTemporaryExpr : public Expr {
3027  /// \brief The temporary-generating expression whose value will be
3028  /// materialized.
3029 Stmt *Temporary;
3030
3031  friend class ASTStmtReader;
3032  friend class ASTStmtWriter;
3033
3034public:
3035  MaterializeTemporaryExpr(QualType T, Expr *Temporary,
3036                           bool BoundToLvalueReference)
3037    : Expr(MaterializeTemporaryExprClass, T,
3038           BoundToLvalueReference? VK_LValue : VK_XValue, OK_Ordinary,
3039           Temporary->isTypeDependent(), Temporary->isValueDependent(),
3040           Temporary->isInstantiationDependent(),
3041           Temporary->containsUnexpandedParameterPack()),
3042      Temporary(Temporary) { }
3043
3044  MaterializeTemporaryExpr(EmptyShell Empty)
3045    : Expr(MaterializeTemporaryExprClass, Empty) { }
3046
3047  /// \brief Retrieve the temporary-generating subexpression whose value will
3048  /// be materialized into a glvalue.
3049  Expr *GetTemporaryExpr() const { return reinterpret_cast<Expr *>(Temporary); }
3050
3051  /// \brief Determine whether this materialized temporary is bound to an
3052  /// lvalue reference; otherwise, it's bound to an rvalue reference.
3053  bool isBoundToLvalueReference() const {
3054    return getValueKind() == VK_LValue;
3055  }
3056
3057  SourceRange getSourceRange() const { return Temporary->getSourceRange(); }
3058
3059  static bool classof(const Stmt *T) {
3060    return T->getStmtClass() == MaterializeTemporaryExprClass;
3061  }
3062  static bool classof(const MaterializeTemporaryExpr *) {
3063    return true;
3064  }
3065
3066  // Iterators
3067  child_range children() { return child_range(&Temporary, &Temporary + 1); }
3068};
3069
3070}  // end namespace clang
3071
3072#endif
3073