ExprCXX.h revision 56f5d36fd13c5e271ebd05192c25c88d28e77f8d
1//===--- ExprCXX.h - Classes for representing expressions -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses for C++ expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPRCXX_H
15#define LLVM_CLANG_AST_EXPRCXX_H
16
17#include "clang/Basic/TypeTraits.h"
18#include "clang/Basic/ExpressionTraits.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/UnresolvedSet.h"
21#include "clang/AST/TemplateBase.h"
22
23namespace clang {
24
25class CXXConstructorDecl;
26class CXXDestructorDecl;
27class CXXMethodDecl;
28class CXXTemporary;
29class TemplateArgumentListInfo;
30
31//===--------------------------------------------------------------------===//
32// C++ Expressions.
33//===--------------------------------------------------------------------===//
34
35/// \brief A call to an overloaded operator written using operator
36/// syntax.
37///
38/// Represents a call to an overloaded operator written using operator
39/// syntax, e.g., "x + y" or "*p". While semantically equivalent to a
40/// normal call, this AST node provides better information about the
41/// syntactic representation of the call.
42///
43/// In a C++ template, this expression node kind will be used whenever
44/// any of the arguments are type-dependent. In this case, the
45/// function itself will be a (possibly empty) set of functions and
46/// function templates that were found by name lookup at template
47/// definition time.
48class CXXOperatorCallExpr : public CallExpr {
49  /// \brief The overloaded operator.
50  OverloadedOperatorKind Operator;
51
52public:
53  CXXOperatorCallExpr(ASTContext& C, OverloadedOperatorKind Op, Expr *fn,
54                      Expr **args, unsigned numargs, QualType t,
55                      ExprValueKind VK, SourceLocation operatorloc)
56    : CallExpr(C, CXXOperatorCallExprClass, fn, 0, args, numargs, t, VK,
57               operatorloc),
58      Operator(Op) {}
59  explicit CXXOperatorCallExpr(ASTContext& C, EmptyShell Empty) :
60    CallExpr(C, CXXOperatorCallExprClass, Empty) { }
61
62
63  /// getOperator - Returns the kind of overloaded operator that this
64  /// expression refers to.
65  OverloadedOperatorKind getOperator() const { return Operator; }
66  void setOperator(OverloadedOperatorKind Kind) { Operator = Kind; }
67
68  /// getOperatorLoc - Returns the location of the operator symbol in
69  /// the expression. When @c getOperator()==OO_Call, this is the
70  /// location of the right parentheses; when @c
71  /// getOperator()==OO_Subscript, this is the location of the right
72  /// bracket.
73  SourceLocation getOperatorLoc() const { return getRParenLoc(); }
74
75  SourceRange getSourceRange() const;
76
77  static bool classof(const Stmt *T) {
78    return T->getStmtClass() == CXXOperatorCallExprClass;
79  }
80  static bool classof(const CXXOperatorCallExpr *) { return true; }
81};
82
83/// CXXMemberCallExpr - Represents a call to a member function that
84/// may be written either with member call syntax (e.g., "obj.func()"
85/// or "objptr->func()") or with normal function-call syntax
86/// ("func()") within a member function that ends up calling a member
87/// function. The callee in either case is a MemberExpr that contains
88/// both the object argument and the member function, while the
89/// arguments are the arguments within the parentheses (not including
90/// the object argument).
91class CXXMemberCallExpr : public CallExpr {
92public:
93  CXXMemberCallExpr(ASTContext &C, Expr *fn, Expr **args, unsigned numargs,
94                    QualType t, ExprValueKind VK, SourceLocation RP)
95    : CallExpr(C, CXXMemberCallExprClass, fn, 0, args, numargs, t, VK, RP) {}
96
97  CXXMemberCallExpr(ASTContext &C, EmptyShell Empty)
98    : CallExpr(C, CXXMemberCallExprClass, Empty) { }
99
100  /// getImplicitObjectArgument - Retrieves the implicit object
101  /// argument for the member call. For example, in "x.f(5)", this
102  /// operation would return "x".
103  Expr *getImplicitObjectArgument() const;
104
105  /// Retrieves the declaration of the called method.
106  CXXMethodDecl *getMethodDecl() const;
107
108  /// getRecordDecl - Retrieves the CXXRecordDecl for the underlying type of
109  /// the implicit object argument. Note that this is may not be the same
110  /// declaration as that of the class context of the CXXMethodDecl which this
111  /// function is calling.
112  /// FIXME: Returns 0 for member pointer call exprs.
113  CXXRecordDecl *getRecordDecl();
114
115  static bool classof(const Stmt *T) {
116    return T->getStmtClass() == CXXMemberCallExprClass;
117  }
118  static bool classof(const CXXMemberCallExpr *) { return true; }
119};
120
121/// CUDAKernelCallExpr - Represents a call to a CUDA kernel function.
122class CUDAKernelCallExpr : public CallExpr {
123private:
124  enum { CONFIG, END_PREARG };
125
126public:
127  CUDAKernelCallExpr(ASTContext &C, Expr *fn, CallExpr *Config,
128                     Expr **args, unsigned numargs, QualType t,
129                     ExprValueKind VK, SourceLocation RP)
130    : CallExpr(C, CUDAKernelCallExprClass, fn, END_PREARG, args, numargs, t, VK,
131               RP) {
132    setConfig(Config);
133  }
134
135  CUDAKernelCallExpr(ASTContext &C, EmptyShell Empty)
136    : CallExpr(C, CUDAKernelCallExprClass, END_PREARG, Empty) { }
137
138  const CallExpr *getConfig() const {
139    return cast_or_null<CallExpr>(getPreArg(CONFIG));
140  }
141  CallExpr *getConfig() { return cast_or_null<CallExpr>(getPreArg(CONFIG)); }
142  void setConfig(CallExpr *E) { setPreArg(CONFIG, E); }
143
144  static bool classof(const Stmt *T) {
145    return T->getStmtClass() == CUDAKernelCallExprClass;
146  }
147  static bool classof(const CUDAKernelCallExpr *) { return true; }
148};
149
150/// CXXNamedCastExpr - Abstract class common to all of the C++ "named"
151/// casts, @c static_cast, @c dynamic_cast, @c reinterpret_cast, or @c
152/// const_cast.
153///
154/// This abstract class is inherited by all of the classes
155/// representing "named" casts, e.g., CXXStaticCastExpr,
156/// CXXDynamicCastExpr, CXXReinterpretCastExpr, and CXXConstCastExpr.
157class CXXNamedCastExpr : public ExplicitCastExpr {
158private:
159  SourceLocation Loc; // the location of the casting op
160  SourceLocation RParenLoc; // the location of the right parenthesis
161
162protected:
163  CXXNamedCastExpr(StmtClass SC, QualType ty, ExprValueKind VK,
164                   CastKind kind, Expr *op, unsigned PathSize,
165                   TypeSourceInfo *writtenTy, SourceLocation l,
166                   SourceLocation RParenLoc)
167    : ExplicitCastExpr(SC, ty, VK, kind, op, PathSize, writtenTy), Loc(l),
168      RParenLoc(RParenLoc) {}
169
170  explicit CXXNamedCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
171    : ExplicitCastExpr(SC, Shell, PathSize) { }
172
173  friend class ASTStmtReader;
174
175public:
176  const char *getCastName() const;
177
178  /// \brief Retrieve the location of the cast operator keyword, e.g.,
179  /// "static_cast".
180  SourceLocation getOperatorLoc() const { return Loc; }
181  void setOperatorLoc(SourceLocation const& OpLoc) { Loc = OpLoc; }
182
183  /// \brief Retrieve the location of the closing parenthesis.
184  SourceLocation getRParenLoc() const { return RParenLoc; }
185  void setRParenLoc(SourceLocation const& Loc) { RParenLoc = Loc; }
186
187  SourceRange getSourceRange() const {
188    return SourceRange(Loc, RParenLoc);
189  }
190  static bool classof(const Stmt *T) {
191    switch (T->getStmtClass()) {
192    case CXXStaticCastExprClass:
193    case CXXDynamicCastExprClass:
194    case CXXReinterpretCastExprClass:
195    case CXXConstCastExprClass:
196      return true;
197    default:
198      return false;
199    }
200  }
201  static bool classof(const CXXNamedCastExpr *) { return true; }
202};
203
204/// CXXStaticCastExpr - A C++ @c static_cast expression
205/// (C++ [expr.static.cast]).
206///
207/// This expression node represents a C++ static cast, e.g.,
208/// @c static_cast<int>(1.0).
209class CXXStaticCastExpr : public CXXNamedCastExpr {
210  CXXStaticCastExpr(QualType ty, ExprValueKind vk, CastKind kind, Expr *op,
211                    unsigned pathSize, TypeSourceInfo *writtenTy,
212                    SourceLocation l, SourceLocation RParenLoc)
213    : CXXNamedCastExpr(CXXStaticCastExprClass, ty, vk, kind, op, pathSize,
214                       writtenTy, l, RParenLoc) {}
215
216  explicit CXXStaticCastExpr(EmptyShell Empty, unsigned PathSize)
217    : CXXNamedCastExpr(CXXStaticCastExprClass, Empty, PathSize) { }
218
219public:
220  static CXXStaticCastExpr *Create(ASTContext &Context, QualType T,
221                                   ExprValueKind VK, CastKind K, Expr *Op,
222                                   const CXXCastPath *Path,
223                                   TypeSourceInfo *Written, SourceLocation L,
224                                   SourceLocation RParenLoc);
225  static CXXStaticCastExpr *CreateEmpty(ASTContext &Context,
226                                        unsigned PathSize);
227
228  static bool classof(const Stmt *T) {
229    return T->getStmtClass() == CXXStaticCastExprClass;
230  }
231  static bool classof(const CXXStaticCastExpr *) { return true; }
232};
233
234/// CXXDynamicCastExpr - A C++ @c dynamic_cast expression
235/// (C++ [expr.dynamic.cast]), which may perform a run-time check to
236/// determine how to perform the type cast.
237///
238/// This expression node represents a dynamic cast, e.g.,
239/// @c dynamic_cast<Derived*>(BasePtr).
240class CXXDynamicCastExpr : public CXXNamedCastExpr {
241  CXXDynamicCastExpr(QualType ty, ExprValueKind VK, CastKind kind,
242                     Expr *op, unsigned pathSize, TypeSourceInfo *writtenTy,
243                     SourceLocation l, SourceLocation RParenLoc)
244    : CXXNamedCastExpr(CXXDynamicCastExprClass, ty, VK, kind, op, pathSize,
245                       writtenTy, l, RParenLoc) {}
246
247  explicit CXXDynamicCastExpr(EmptyShell Empty, unsigned pathSize)
248    : CXXNamedCastExpr(CXXDynamicCastExprClass, Empty, pathSize) { }
249
250public:
251  static CXXDynamicCastExpr *Create(ASTContext &Context, QualType T,
252                                    ExprValueKind VK, CastKind Kind, Expr *Op,
253                                    const CXXCastPath *Path,
254                                    TypeSourceInfo *Written, SourceLocation L,
255                                    SourceLocation RParenLoc);
256
257  static CXXDynamicCastExpr *CreateEmpty(ASTContext &Context,
258                                         unsigned pathSize);
259
260  bool isAlwaysNull() const;
261
262  static bool classof(const Stmt *T) {
263    return T->getStmtClass() == CXXDynamicCastExprClass;
264  }
265  static bool classof(const CXXDynamicCastExpr *) { return true; }
266};
267
268/// CXXReinterpretCastExpr - A C++ @c reinterpret_cast expression (C++
269/// [expr.reinterpret.cast]), which provides a differently-typed view
270/// of a value but performs no actual work at run time.
271///
272/// This expression node represents a reinterpret cast, e.g.,
273/// @c reinterpret_cast<int>(VoidPtr).
274class CXXReinterpretCastExpr : public CXXNamedCastExpr {
275  CXXReinterpretCastExpr(QualType ty, ExprValueKind vk, CastKind kind,
276                         Expr *op, unsigned pathSize,
277                         TypeSourceInfo *writtenTy, SourceLocation l,
278                         SourceLocation RParenLoc)
279    : CXXNamedCastExpr(CXXReinterpretCastExprClass, ty, vk, kind, op,
280                       pathSize, writtenTy, l, RParenLoc) {}
281
282  CXXReinterpretCastExpr(EmptyShell Empty, unsigned pathSize)
283    : CXXNamedCastExpr(CXXReinterpretCastExprClass, Empty, pathSize) { }
284
285public:
286  static CXXReinterpretCastExpr *Create(ASTContext &Context, QualType T,
287                                        ExprValueKind VK, CastKind Kind,
288                                        Expr *Op, const CXXCastPath *Path,
289                                 TypeSourceInfo *WrittenTy, SourceLocation L,
290                                        SourceLocation RParenLoc);
291  static CXXReinterpretCastExpr *CreateEmpty(ASTContext &Context,
292                                             unsigned pathSize);
293
294  static bool classof(const Stmt *T) {
295    return T->getStmtClass() == CXXReinterpretCastExprClass;
296  }
297  static bool classof(const CXXReinterpretCastExpr *) { return true; }
298};
299
300/// CXXConstCastExpr - A C++ @c const_cast expression (C++ [expr.const.cast]),
301/// which can remove type qualifiers but does not change the underlying value.
302///
303/// This expression node represents a const cast, e.g.,
304/// @c const_cast<char*>(PtrToConstChar).
305class CXXConstCastExpr : public CXXNamedCastExpr {
306  CXXConstCastExpr(QualType ty, ExprValueKind VK, Expr *op,
307                   TypeSourceInfo *writtenTy, SourceLocation l,
308                   SourceLocation RParenLoc)
309    : CXXNamedCastExpr(CXXConstCastExprClass, ty, VK, CK_NoOp, op,
310                       0, writtenTy, l, RParenLoc) {}
311
312  explicit CXXConstCastExpr(EmptyShell Empty)
313    : CXXNamedCastExpr(CXXConstCastExprClass, Empty, 0) { }
314
315public:
316  static CXXConstCastExpr *Create(ASTContext &Context, QualType T,
317                                  ExprValueKind VK, Expr *Op,
318                                  TypeSourceInfo *WrittenTy, SourceLocation L,
319                                  SourceLocation RParenLoc);
320  static CXXConstCastExpr *CreateEmpty(ASTContext &Context);
321
322  static bool classof(const Stmt *T) {
323    return T->getStmtClass() == CXXConstCastExprClass;
324  }
325  static bool classof(const CXXConstCastExpr *) { return true; }
326};
327
328/// CXXBoolLiteralExpr - [C++ 2.13.5] C++ Boolean Literal.
329///
330class CXXBoolLiteralExpr : public Expr {
331  bool Value;
332  SourceLocation Loc;
333public:
334  CXXBoolLiteralExpr(bool val, QualType Ty, SourceLocation l) :
335    Expr(CXXBoolLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
336         false, false),
337    Value(val), Loc(l) {}
338
339  explicit CXXBoolLiteralExpr(EmptyShell Empty)
340    : Expr(CXXBoolLiteralExprClass, Empty) { }
341
342  bool getValue() const { return Value; }
343  void setValue(bool V) { Value = V; }
344
345  SourceRange getSourceRange() const { return SourceRange(Loc); }
346
347  SourceLocation getLocation() const { return Loc; }
348  void setLocation(SourceLocation L) { Loc = L; }
349
350  static bool classof(const Stmt *T) {
351    return T->getStmtClass() == CXXBoolLiteralExprClass;
352  }
353  static bool classof(const CXXBoolLiteralExpr *) { return true; }
354
355  // Iterators
356  child_range children() { return child_range(); }
357};
358
359/// CXXNullPtrLiteralExpr - [C++0x 2.14.7] C++ Pointer Literal
360class CXXNullPtrLiteralExpr : public Expr {
361  SourceLocation Loc;
362public:
363  CXXNullPtrLiteralExpr(QualType Ty, SourceLocation l) :
364    Expr(CXXNullPtrLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
365         false, false),
366    Loc(l) {}
367
368  explicit CXXNullPtrLiteralExpr(EmptyShell Empty)
369    : Expr(CXXNullPtrLiteralExprClass, Empty) { }
370
371  SourceRange getSourceRange() const { return SourceRange(Loc); }
372
373  SourceLocation getLocation() const { return Loc; }
374  void setLocation(SourceLocation L) { Loc = L; }
375
376  static bool classof(const Stmt *T) {
377    return T->getStmtClass() == CXXNullPtrLiteralExprClass;
378  }
379  static bool classof(const CXXNullPtrLiteralExpr *) { return true; }
380
381  child_range children() { return child_range(); }
382};
383
384/// CXXTypeidExpr - A C++ @c typeid expression (C++ [expr.typeid]), which gets
385/// the type_info that corresponds to the supplied type, or the (possibly
386/// dynamic) type of the supplied expression.
387///
388/// This represents code like @c typeid(int) or @c typeid(*objPtr)
389class CXXTypeidExpr : public Expr {
390private:
391  llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
392  SourceRange Range;
393
394public:
395  CXXTypeidExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
396    : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
397           // typeid is never type-dependent (C++ [temp.dep.expr]p4)
398           false,
399           // typeid is value-dependent if the type or expression are dependent
400           Operand->getType()->isDependentType(),
401           Operand->getType()->isInstantiationDependentType(),
402           Operand->getType()->containsUnexpandedParameterPack()),
403      Operand(Operand), Range(R) { }
404
405  CXXTypeidExpr(QualType Ty, Expr *Operand, SourceRange R)
406    : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
407        // typeid is never type-dependent (C++ [temp.dep.expr]p4)
408           false,
409        // typeid is value-dependent if the type or expression are dependent
410           Operand->isTypeDependent() || Operand->isValueDependent(),
411           Operand->isInstantiationDependent(),
412           Operand->containsUnexpandedParameterPack()),
413      Operand(Operand), Range(R) { }
414
415  CXXTypeidExpr(EmptyShell Empty, bool isExpr)
416    : Expr(CXXTypeidExprClass, Empty) {
417    if (isExpr)
418      Operand = (Expr*)0;
419    else
420      Operand = (TypeSourceInfo*)0;
421  }
422
423  bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
424
425  /// \brief Retrieves the type operand of this typeid() expression after
426  /// various required adjustments (removing reference types, cv-qualifiers).
427  QualType getTypeOperand() const;
428
429  /// \brief Retrieve source information for the type operand.
430  TypeSourceInfo *getTypeOperandSourceInfo() const {
431    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
432    return Operand.get<TypeSourceInfo *>();
433  }
434
435  void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
436    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
437    Operand = TSI;
438  }
439
440  Expr *getExprOperand() const {
441    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
442    return static_cast<Expr*>(Operand.get<Stmt *>());
443  }
444
445  void setExprOperand(Expr *E) {
446    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
447    Operand = E;
448  }
449
450  SourceRange getSourceRange() const { return Range; }
451  void setSourceRange(SourceRange R) { Range = R; }
452
453  static bool classof(const Stmt *T) {
454    return T->getStmtClass() == CXXTypeidExprClass;
455  }
456  static bool classof(const CXXTypeidExpr *) { return true; }
457
458  // Iterators
459  child_range children() {
460    if (isTypeOperand()) return child_range();
461    Stmt **begin = reinterpret_cast<Stmt**>(&Operand);
462    return child_range(begin, begin + 1);
463  }
464};
465
466/// CXXUuidofExpr - A microsoft C++ @c __uuidof expression, which gets
467/// the _GUID that corresponds to the supplied type or expression.
468///
469/// This represents code like @c __uuidof(COMTYPE) or @c __uuidof(*comPtr)
470class CXXUuidofExpr : public Expr {
471private:
472  llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
473  SourceRange Range;
474
475public:
476  CXXUuidofExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
477    : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary,
478           false, Operand->getType()->isDependentType(),
479           Operand->getType()->isInstantiationDependentType(),
480           Operand->getType()->containsUnexpandedParameterPack()),
481      Operand(Operand), Range(R) { }
482
483  CXXUuidofExpr(QualType Ty, Expr *Operand, SourceRange R)
484    : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary,
485           false, Operand->isTypeDependent(),
486           Operand->isInstantiationDependent(),
487           Operand->containsUnexpandedParameterPack()),
488      Operand(Operand), Range(R) { }
489
490  CXXUuidofExpr(EmptyShell Empty, bool isExpr)
491    : Expr(CXXUuidofExprClass, Empty) {
492    if (isExpr)
493      Operand = (Expr*)0;
494    else
495      Operand = (TypeSourceInfo*)0;
496  }
497
498  bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
499
500  /// \brief Retrieves the type operand of this __uuidof() expression after
501  /// various required adjustments (removing reference types, cv-qualifiers).
502  QualType getTypeOperand() const;
503
504  /// \brief Retrieve source information for the type operand.
505  TypeSourceInfo *getTypeOperandSourceInfo() const {
506    assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
507    return Operand.get<TypeSourceInfo *>();
508  }
509
510  void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
511    assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
512    Operand = TSI;
513  }
514
515  Expr *getExprOperand() const {
516    assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
517    return static_cast<Expr*>(Operand.get<Stmt *>());
518  }
519
520  void setExprOperand(Expr *E) {
521    assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
522    Operand = E;
523  }
524
525  SourceRange getSourceRange() const { return Range; }
526  void setSourceRange(SourceRange R) { Range = R; }
527
528  static bool classof(const Stmt *T) {
529    return T->getStmtClass() == CXXUuidofExprClass;
530  }
531  static bool classof(const CXXUuidofExpr *) { return true; }
532
533  // Iterators
534  child_range children() {
535    if (isTypeOperand()) return child_range();
536    Stmt **begin = reinterpret_cast<Stmt**>(&Operand);
537    return child_range(begin, begin + 1);
538  }
539};
540
541/// CXXThisExpr - Represents the "this" expression in C++, which is a
542/// pointer to the object on which the current member function is
543/// executing (C++ [expr.prim]p3). Example:
544///
545/// @code
546/// class Foo {
547/// public:
548///   void bar();
549///   void test() { this->bar(); }
550/// };
551/// @endcode
552class CXXThisExpr : public Expr {
553  SourceLocation Loc;
554  bool Implicit : 1;
555
556public:
557  CXXThisExpr(SourceLocation L, QualType Type, bool isImplicit)
558    : Expr(CXXThisExprClass, Type, VK_RValue, OK_Ordinary,
559           // 'this' is type-dependent if the class type of the enclosing
560           // member function is dependent (C++ [temp.dep.expr]p2)
561           Type->isDependentType(), Type->isDependentType(),
562           Type->isInstantiationDependentType(),
563           /*ContainsUnexpandedParameterPack=*/false),
564      Loc(L), Implicit(isImplicit) { }
565
566  CXXThisExpr(EmptyShell Empty) : Expr(CXXThisExprClass, Empty) {}
567
568  SourceLocation getLocation() const { return Loc; }
569  void setLocation(SourceLocation L) { Loc = L; }
570
571  SourceRange getSourceRange() const { return SourceRange(Loc); }
572
573  bool isImplicit() const { return Implicit; }
574  void setImplicit(bool I) { Implicit = I; }
575
576  static bool classof(const Stmt *T) {
577    return T->getStmtClass() == CXXThisExprClass;
578  }
579  static bool classof(const CXXThisExpr *) { return true; }
580
581  // Iterators
582  child_range children() { return child_range(); }
583};
584
585///  CXXThrowExpr - [C++ 15] C++ Throw Expression.  This handles
586///  'throw' and 'throw' assignment-expression.  When
587///  assignment-expression isn't present, Op will be null.
588///
589class CXXThrowExpr : public Expr {
590  Stmt *Op;
591  SourceLocation ThrowLoc;
592  /// \brief Whether the thrown variable (if any) is in scope.
593  unsigned IsThrownVariableInScope : 1;
594
595  friend class ASTStmtReader;
596
597public:
598  // Ty is the void type which is used as the result type of the
599  // exepression.  The l is the location of the throw keyword.  expr
600  // can by null, if the optional expression to throw isn't present.
601  CXXThrowExpr(Expr *expr, QualType Ty, SourceLocation l,
602               bool IsThrownVariableInScope) :
603    Expr(CXXThrowExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
604         expr && expr->isInstantiationDependent(),
605         expr && expr->containsUnexpandedParameterPack()),
606    Op(expr), ThrowLoc(l), IsThrownVariableInScope(IsThrownVariableInScope) {}
607  CXXThrowExpr(EmptyShell Empty) : Expr(CXXThrowExprClass, Empty) {}
608
609  const Expr *getSubExpr() const { return cast_or_null<Expr>(Op); }
610  Expr *getSubExpr() { return cast_or_null<Expr>(Op); }
611
612  SourceLocation getThrowLoc() const { return ThrowLoc; }
613
614  /// \brief Determines whether the variable thrown by this expression (if any!)
615  /// is within the innermost try block.
616  ///
617  /// This information is required to determine whether the NRVO can apply to
618  /// this variable.
619  bool isThrownVariableInScope() const { return IsThrownVariableInScope; }
620
621  SourceRange getSourceRange() const {
622    if (getSubExpr() == 0)
623      return SourceRange(ThrowLoc, ThrowLoc);
624    return SourceRange(ThrowLoc, getSubExpr()->getSourceRange().getEnd());
625  }
626
627  static bool classof(const Stmt *T) {
628    return T->getStmtClass() == CXXThrowExprClass;
629  }
630  static bool classof(const CXXThrowExpr *) { return true; }
631
632  // Iterators
633  child_range children() {
634    return child_range(&Op, Op ? &Op+1 : &Op);
635  }
636};
637
638/// CXXDefaultArgExpr - C++ [dcl.fct.default]. This wraps up a
639/// function call argument that was created from the corresponding
640/// parameter's default argument, when the call did not explicitly
641/// supply arguments for all of the parameters.
642class CXXDefaultArgExpr : public Expr {
643  /// \brief The parameter whose default is being used.
644  ///
645  /// When the bit is set, the subexpression is stored after the
646  /// CXXDefaultArgExpr itself. When the bit is clear, the parameter's
647  /// actual default expression is the subexpression.
648  llvm::PointerIntPair<ParmVarDecl *, 1, bool> Param;
649
650  /// \brief The location where the default argument expression was used.
651  SourceLocation Loc;
652
653  CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param)
654    : Expr(SC,
655           param->hasUnparsedDefaultArg()
656             ? param->getType().getNonReferenceType()
657             : param->getDefaultArg()->getType(),
658           param->getDefaultArg()->getValueKind(),
659           param->getDefaultArg()->getObjectKind(), false, false, false, false),
660      Param(param, false), Loc(Loc) { }
661
662  CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param,
663                    Expr *SubExpr)
664    : Expr(SC, SubExpr->getType(),
665           SubExpr->getValueKind(), SubExpr->getObjectKind(),
666           false, false, false, false),
667      Param(param, true), Loc(Loc) {
668    *reinterpret_cast<Expr **>(this + 1) = SubExpr;
669  }
670
671public:
672  CXXDefaultArgExpr(EmptyShell Empty) : Expr(CXXDefaultArgExprClass, Empty) {}
673
674
675  // Param is the parameter whose default argument is used by this
676  // expression.
677  static CXXDefaultArgExpr *Create(ASTContext &C, SourceLocation Loc,
678                                   ParmVarDecl *Param) {
679    return new (C) CXXDefaultArgExpr(CXXDefaultArgExprClass, Loc, Param);
680  }
681
682  // Param is the parameter whose default argument is used by this
683  // expression, and SubExpr is the expression that will actually be used.
684  static CXXDefaultArgExpr *Create(ASTContext &C,
685                                   SourceLocation Loc,
686                                   ParmVarDecl *Param,
687                                   Expr *SubExpr);
688
689  // Retrieve the parameter that the argument was created from.
690  const ParmVarDecl *getParam() const { return Param.getPointer(); }
691  ParmVarDecl *getParam() { return Param.getPointer(); }
692
693  // Retrieve the actual argument to the function call.
694  const Expr *getExpr() const {
695    if (Param.getInt())
696      return *reinterpret_cast<Expr const * const*> (this + 1);
697    return getParam()->getDefaultArg();
698  }
699  Expr *getExpr() {
700    if (Param.getInt())
701      return *reinterpret_cast<Expr **> (this + 1);
702    return getParam()->getDefaultArg();
703  }
704
705  /// \brief Retrieve the location where this default argument was actually
706  /// used.
707  SourceLocation getUsedLocation() const { return Loc; }
708
709  SourceRange getSourceRange() const {
710    // Default argument expressions have no representation in the
711    // source, so they have an empty source range.
712    return SourceRange();
713  }
714
715  static bool classof(const Stmt *T) {
716    return T->getStmtClass() == CXXDefaultArgExprClass;
717  }
718  static bool classof(const CXXDefaultArgExpr *) { return true; }
719
720  // Iterators
721  child_range children() { return child_range(); }
722
723  friend class ASTStmtReader;
724  friend class ASTStmtWriter;
725};
726
727/// CXXTemporary - Represents a C++ temporary.
728class CXXTemporary {
729  /// Destructor - The destructor that needs to be called.
730  const CXXDestructorDecl *Destructor;
731
732  CXXTemporary(const CXXDestructorDecl *destructor)
733    : Destructor(destructor) { }
734
735public:
736  static CXXTemporary *Create(ASTContext &C,
737                              const CXXDestructorDecl *Destructor);
738
739  const CXXDestructorDecl *getDestructor() const { return Destructor; }
740};
741
742/// \brief Represents binding an expression to a temporary.
743///
744/// This ensures the destructor is called for the temporary. It should only be
745/// needed for non-POD, non-trivially destructable class types. For example:
746///
747/// \code
748///   struct S {
749///     S() { }  // User defined constructor makes S non-POD.
750///     ~S() { } // User defined destructor makes it non-trivial.
751///   };
752///   void test() {
753///     const S &s_ref = S(); // Requires a CXXBindTemporaryExpr.
754///   }
755/// \endcode
756class CXXBindTemporaryExpr : public Expr {
757  CXXTemporary *Temp;
758
759  Stmt *SubExpr;
760
761  CXXBindTemporaryExpr(CXXTemporary *temp, Expr* SubExpr)
762   : Expr(CXXBindTemporaryExprClass, SubExpr->getType(),
763          VK_RValue, OK_Ordinary, SubExpr->isTypeDependent(),
764          SubExpr->isValueDependent(),
765          SubExpr->isInstantiationDependent(),
766          SubExpr->containsUnexpandedParameterPack()),
767     Temp(temp), SubExpr(SubExpr) { }
768
769public:
770  CXXBindTemporaryExpr(EmptyShell Empty)
771    : Expr(CXXBindTemporaryExprClass, Empty), Temp(0), SubExpr(0) {}
772
773  static CXXBindTemporaryExpr *Create(ASTContext &C, CXXTemporary *Temp,
774                                      Expr* SubExpr);
775
776  CXXTemporary *getTemporary() { return Temp; }
777  const CXXTemporary *getTemporary() const { return Temp; }
778  void setTemporary(CXXTemporary *T) { Temp = T; }
779
780  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
781  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
782  void setSubExpr(Expr *E) { SubExpr = E; }
783
784  SourceRange getSourceRange() const {
785    return SubExpr->getSourceRange();
786  }
787
788  // Implement isa/cast/dyncast/etc.
789  static bool classof(const Stmt *T) {
790    return T->getStmtClass() == CXXBindTemporaryExprClass;
791  }
792  static bool classof(const CXXBindTemporaryExpr *) { return true; }
793
794  // Iterators
795  child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
796};
797
798/// CXXConstructExpr - Represents a call to a C++ constructor.
799class CXXConstructExpr : public Expr {
800public:
801  enum ConstructionKind {
802    CK_Complete,
803    CK_NonVirtualBase,
804    CK_VirtualBase,
805    CK_Delegating
806  };
807
808private:
809  CXXConstructorDecl *Constructor;
810
811  SourceLocation Loc;
812  SourceRange ParenRange;
813  unsigned NumArgs : 16;
814  bool Elidable : 1;
815  bool HadMultipleCandidates : 1;
816  bool ZeroInitialization : 1;
817  unsigned ConstructKind : 2;
818  Stmt **Args;
819
820protected:
821  CXXConstructExpr(ASTContext &C, StmtClass SC, QualType T,
822                   SourceLocation Loc,
823                   CXXConstructorDecl *d, bool elidable,
824                   Expr **args, unsigned numargs,
825                   bool HadMultipleCandidates,
826                   bool ZeroInitialization = false,
827                   ConstructionKind ConstructKind = CK_Complete,
828                   SourceRange ParenRange = SourceRange());
829
830  /// \brief Construct an empty C++ construction expression.
831  CXXConstructExpr(StmtClass SC, EmptyShell Empty)
832    : Expr(SC, Empty), Constructor(0), NumArgs(0), Elidable(0),
833      HadMultipleCandidates(false), ZeroInitialization(0),
834      ConstructKind(0), Args(0) { }
835
836public:
837  /// \brief Construct an empty C++ construction expression.
838  explicit CXXConstructExpr(EmptyShell Empty)
839    : Expr(CXXConstructExprClass, Empty), Constructor(0),
840      NumArgs(0), Elidable(0), HadMultipleCandidates(false),
841      ZeroInitialization(0), ConstructKind(0), Args(0) { }
842
843  static CXXConstructExpr *Create(ASTContext &C, QualType T,
844                                  SourceLocation Loc,
845                                  CXXConstructorDecl *D, bool Elidable,
846                                  Expr **Args, unsigned NumArgs,
847                                  bool HadMultipleCandidates,
848                                  bool ZeroInitialization = false,
849                                  ConstructionKind ConstructKind = CK_Complete,
850                                  SourceRange ParenRange = SourceRange());
851
852
853  CXXConstructorDecl* getConstructor() const { return Constructor; }
854  void setConstructor(CXXConstructorDecl *C) { Constructor = C; }
855
856  SourceLocation getLocation() const { return Loc; }
857  void setLocation(SourceLocation Loc) { this->Loc = Loc; }
858
859  /// \brief Whether this construction is elidable.
860  bool isElidable() const { return Elidable; }
861  void setElidable(bool E) { Elidable = E; }
862
863  /// \brief Whether the referred constructor was resolved from
864  /// an overloaded set having size greater than 1.
865  bool hadMultipleCandidates() const { return HadMultipleCandidates; }
866  void setHadMultipleCandidates(bool V) { HadMultipleCandidates = V; }
867
868  /// \brief Whether this construction first requires
869  /// zero-initialization before the initializer is called.
870  bool requiresZeroInitialization() const { return ZeroInitialization; }
871  void setRequiresZeroInitialization(bool ZeroInit) {
872    ZeroInitialization = ZeroInit;
873  }
874
875  /// \brief Determines whether this constructor is actually constructing
876  /// a base class (rather than a complete object).
877  ConstructionKind getConstructionKind() const {
878    return (ConstructionKind)ConstructKind;
879  }
880  void setConstructionKind(ConstructionKind CK) {
881    ConstructKind = CK;
882  }
883
884  typedef ExprIterator arg_iterator;
885  typedef ConstExprIterator const_arg_iterator;
886
887  arg_iterator arg_begin() { return Args; }
888  arg_iterator arg_end() { return Args + NumArgs; }
889  const_arg_iterator arg_begin() const { return Args; }
890  const_arg_iterator arg_end() const { return Args + NumArgs; }
891
892  Expr **getArgs() const { return reinterpret_cast<Expr **>(Args); }
893  unsigned getNumArgs() const { return NumArgs; }
894
895  /// getArg - Return the specified argument.
896  Expr *getArg(unsigned Arg) {
897    assert(Arg < NumArgs && "Arg access out of range!");
898    return cast<Expr>(Args[Arg]);
899  }
900  const Expr *getArg(unsigned Arg) const {
901    assert(Arg < NumArgs && "Arg access out of range!");
902    return cast<Expr>(Args[Arg]);
903  }
904
905  /// setArg - Set the specified argument.
906  void setArg(unsigned Arg, Expr *ArgExpr) {
907    assert(Arg < NumArgs && "Arg access out of range!");
908    Args[Arg] = ArgExpr;
909  }
910
911  SourceRange getSourceRange() const;
912  SourceRange getParenRange() const { return ParenRange; }
913
914  static bool classof(const Stmt *T) {
915    return T->getStmtClass() == CXXConstructExprClass ||
916      T->getStmtClass() == CXXTemporaryObjectExprClass;
917  }
918  static bool classof(const CXXConstructExpr *) { return true; }
919
920  // Iterators
921  child_range children() {
922    return child_range(&Args[0], &Args[0]+NumArgs);
923  }
924
925  friend class ASTStmtReader;
926};
927
928/// CXXFunctionalCastExpr - Represents an explicit C++ type conversion
929/// that uses "functional" notion (C++ [expr.type.conv]). Example: @c
930/// x = int(0.5);
931class CXXFunctionalCastExpr : public ExplicitCastExpr {
932  SourceLocation TyBeginLoc;
933  SourceLocation RParenLoc;
934
935  CXXFunctionalCastExpr(QualType ty, ExprValueKind VK,
936                        TypeSourceInfo *writtenTy,
937                        SourceLocation tyBeginLoc, CastKind kind,
938                        Expr *castExpr, unsigned pathSize,
939                        SourceLocation rParenLoc)
940    : ExplicitCastExpr(CXXFunctionalCastExprClass, ty, VK, kind,
941                       castExpr, pathSize, writtenTy),
942      TyBeginLoc(tyBeginLoc), RParenLoc(rParenLoc) {}
943
944  explicit CXXFunctionalCastExpr(EmptyShell Shell, unsigned PathSize)
945    : ExplicitCastExpr(CXXFunctionalCastExprClass, Shell, PathSize) { }
946
947public:
948  static CXXFunctionalCastExpr *Create(ASTContext &Context, QualType T,
949                                       ExprValueKind VK,
950                                       TypeSourceInfo *Written,
951                                       SourceLocation TyBeginLoc,
952                                       CastKind Kind, Expr *Op,
953                                       const CXXCastPath *Path,
954                                       SourceLocation RPLoc);
955  static CXXFunctionalCastExpr *CreateEmpty(ASTContext &Context,
956                                            unsigned PathSize);
957
958  SourceLocation getTypeBeginLoc() const { return TyBeginLoc; }
959  void setTypeBeginLoc(SourceLocation L) { TyBeginLoc = L; }
960  SourceLocation getRParenLoc() const { return RParenLoc; }
961  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
962
963  SourceRange getSourceRange() const {
964    return SourceRange(TyBeginLoc, RParenLoc);
965  }
966  static bool classof(const Stmt *T) {
967    return T->getStmtClass() == CXXFunctionalCastExprClass;
968  }
969  static bool classof(const CXXFunctionalCastExpr *) { return true; }
970};
971
972/// @brief Represents a C++ functional cast expression that builds a
973/// temporary object.
974///
975/// This expression type represents a C++ "functional" cast
976/// (C++[expr.type.conv]) with N != 1 arguments that invokes a
977/// constructor to build a temporary object. With N == 1 arguments the
978/// functional cast expression will be represented by CXXFunctionalCastExpr.
979/// Example:
980/// @code
981/// struct X { X(int, float); }
982///
983/// X create_X() {
984///   return X(1, 3.14f); // creates a CXXTemporaryObjectExpr
985/// };
986/// @endcode
987class CXXTemporaryObjectExpr : public CXXConstructExpr {
988  TypeSourceInfo *Type;
989
990public:
991  CXXTemporaryObjectExpr(ASTContext &C, CXXConstructorDecl *Cons,
992                         TypeSourceInfo *Type,
993                         Expr **Args,unsigned NumArgs,
994                         SourceRange parenRange,
995                         bool HadMultipleCandidates,
996                         bool ZeroInitialization = false);
997  explicit CXXTemporaryObjectExpr(EmptyShell Empty)
998    : CXXConstructExpr(CXXTemporaryObjectExprClass, Empty), Type() { }
999
1000  TypeSourceInfo *getTypeSourceInfo() const { return Type; }
1001
1002  SourceRange getSourceRange() const;
1003
1004  static bool classof(const Stmt *T) {
1005    return T->getStmtClass() == CXXTemporaryObjectExprClass;
1006  }
1007  static bool classof(const CXXTemporaryObjectExpr *) { return true; }
1008
1009  friend class ASTStmtReader;
1010};
1011
1012/// CXXScalarValueInitExpr - [C++ 5.2.3p2]
1013/// Expression "T()" which creates a value-initialized rvalue of type
1014/// T, which is a non-class type.
1015///
1016class CXXScalarValueInitExpr : public Expr {
1017  SourceLocation RParenLoc;
1018  TypeSourceInfo *TypeInfo;
1019
1020  friend class ASTStmtReader;
1021
1022public:
1023  /// \brief Create an explicitly-written scalar-value initialization
1024  /// expression.
1025  CXXScalarValueInitExpr(QualType Type,
1026                         TypeSourceInfo *TypeInfo,
1027                         SourceLocation rParenLoc ) :
1028    Expr(CXXScalarValueInitExprClass, Type, VK_RValue, OK_Ordinary,
1029         false, false, Type->isInstantiationDependentType(), false),
1030    RParenLoc(rParenLoc), TypeInfo(TypeInfo) {}
1031
1032  explicit CXXScalarValueInitExpr(EmptyShell Shell)
1033    : Expr(CXXScalarValueInitExprClass, Shell) { }
1034
1035  TypeSourceInfo *getTypeSourceInfo() const {
1036    return TypeInfo;
1037  }
1038
1039  SourceLocation getRParenLoc() const { return RParenLoc; }
1040
1041  SourceRange getSourceRange() const;
1042
1043  static bool classof(const Stmt *T) {
1044    return T->getStmtClass() == CXXScalarValueInitExprClass;
1045  }
1046  static bool classof(const CXXScalarValueInitExpr *) { return true; }
1047
1048  // Iterators
1049  child_range children() { return child_range(); }
1050};
1051
1052/// CXXNewExpr - A new expression for memory allocation and constructor calls,
1053/// e.g: "new CXXNewExpr(foo)".
1054class CXXNewExpr : public Expr {
1055  // Was the usage ::new, i.e. is the global new to be used?
1056  bool GlobalNew : 1;
1057  // Is there an initializer? If not, built-ins are uninitialized, else they're
1058  // value-initialized.
1059  bool Initializer : 1;
1060  // Do we allocate an array? If so, the first SubExpr is the size expression.
1061  bool Array : 1;
1062  // If this is an array allocation, does the usual deallocation
1063  // function for the allocated type want to know the allocated size?
1064  bool UsualArrayDeleteWantsSize : 1;
1065  // Whether the referred constructor (if any) was resolved from an
1066  // overload set having size greater than 1.
1067  bool HadMultipleCandidates : 1;
1068  // The number of placement new arguments.
1069  unsigned NumPlacementArgs : 13;
1070  // The number of constructor arguments. This may be 1 even for non-class
1071  // types; use the pseudo copy constructor.
1072  unsigned NumConstructorArgs : 14;
1073  // Contains an optional array size expression, any number of optional
1074  // placement arguments, and any number of optional constructor arguments,
1075  // in that order.
1076  Stmt **SubExprs;
1077  // Points to the allocation function used.
1078  FunctionDecl *OperatorNew;
1079  // Points to the deallocation function used in case of error. May be null.
1080  FunctionDecl *OperatorDelete;
1081  // Points to the constructor used. Cannot be null if AllocType is a record;
1082  // it would still point at the default constructor (even an implicit one).
1083  // Must be null for all other types.
1084  CXXConstructorDecl *Constructor;
1085
1086  /// \brief The allocated type-source information, as written in the source.
1087  TypeSourceInfo *AllocatedTypeInfo;
1088
1089  /// \brief If the allocated type was expressed as a parenthesized type-id,
1090  /// the source range covering the parenthesized type-id.
1091  SourceRange TypeIdParens;
1092
1093  SourceLocation StartLoc;
1094  SourceLocation EndLoc;
1095  SourceLocation ConstructorLParen;
1096  SourceLocation ConstructorRParen;
1097
1098  friend class ASTStmtReader;
1099public:
1100  CXXNewExpr(ASTContext &C, bool globalNew, FunctionDecl *operatorNew,
1101             Expr **placementArgs, unsigned numPlaceArgs,
1102             SourceRange TypeIdParens,
1103             Expr *arraySize, CXXConstructorDecl *constructor, bool initializer,
1104             Expr **constructorArgs, unsigned numConsArgs,
1105             bool HadMultipleCandidates,
1106             FunctionDecl *operatorDelete, bool usualArrayDeleteWantsSize,
1107             QualType ty, TypeSourceInfo *AllocatedTypeInfo,
1108             SourceLocation startLoc, SourceLocation endLoc,
1109             SourceLocation constructorLParen,
1110             SourceLocation constructorRParen);
1111  explicit CXXNewExpr(EmptyShell Shell)
1112    : Expr(CXXNewExprClass, Shell), SubExprs(0) { }
1113
1114  void AllocateArgsArray(ASTContext &C, bool isArray, unsigned numPlaceArgs,
1115                         unsigned numConsArgs);
1116
1117  QualType getAllocatedType() const {
1118    assert(getType()->isPointerType());
1119    return getType()->getAs<PointerType>()->getPointeeType();
1120  }
1121
1122  TypeSourceInfo *getAllocatedTypeSourceInfo() const {
1123    return AllocatedTypeInfo;
1124  }
1125
1126  /// \brief True if the allocation result needs to be null-checked.
1127  /// C++0x [expr.new]p13:
1128  ///   If the allocation function returns null, initialization shall
1129  ///   not be done, the deallocation function shall not be called,
1130  ///   and the value of the new-expression shall be null.
1131  /// An allocation function is not allowed to return null unless it
1132  /// has a non-throwing exception-specification.  The '03 rule is
1133  /// identical except that the definition of a non-throwing
1134  /// exception specification is just "is it throw()?".
1135  bool shouldNullCheckAllocation(ASTContext &Ctx) const;
1136
1137  FunctionDecl *getOperatorNew() const { return OperatorNew; }
1138  void setOperatorNew(FunctionDecl *D) { OperatorNew = D; }
1139  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
1140  void setOperatorDelete(FunctionDecl *D) { OperatorDelete = D; }
1141  CXXConstructorDecl *getConstructor() const { return Constructor; }
1142  void setConstructor(CXXConstructorDecl *D) { Constructor = D; }
1143
1144  bool isArray() const { return Array; }
1145  Expr *getArraySize() {
1146    return Array ? cast<Expr>(SubExprs[0]) : 0;
1147  }
1148  const Expr *getArraySize() const {
1149    return Array ? cast<Expr>(SubExprs[0]) : 0;
1150  }
1151
1152  unsigned getNumPlacementArgs() const { return NumPlacementArgs; }
1153  Expr **getPlacementArgs() {
1154    return reinterpret_cast<Expr **>(SubExprs + Array);
1155  }
1156
1157  Expr *getPlacementArg(unsigned i) {
1158    assert(i < NumPlacementArgs && "Index out of range");
1159    return cast<Expr>(SubExprs[Array + i]);
1160  }
1161  const Expr *getPlacementArg(unsigned i) const {
1162    assert(i < NumPlacementArgs && "Index out of range");
1163    return cast<Expr>(SubExprs[Array + i]);
1164  }
1165
1166  bool isParenTypeId() const { return TypeIdParens.isValid(); }
1167  SourceRange getTypeIdParens() const { return TypeIdParens; }
1168
1169  bool isGlobalNew() const { return GlobalNew; }
1170  bool hasInitializer() const { return Initializer; }
1171
1172  /// Answers whether the usual array deallocation function for the
1173  /// allocated type expects the size of the allocation as a
1174  /// parameter.
1175  bool doesUsualArrayDeleteWantSize() const {
1176    return UsualArrayDeleteWantsSize;
1177  }
1178
1179  unsigned getNumConstructorArgs() const { return NumConstructorArgs; }
1180
1181  Expr **getConstructorArgs() {
1182    return reinterpret_cast<Expr **>(SubExprs + Array + NumPlacementArgs);
1183  }
1184
1185  Expr *getConstructorArg(unsigned i) {
1186    assert(i < NumConstructorArgs && "Index out of range");
1187    return cast<Expr>(SubExprs[Array + NumPlacementArgs + i]);
1188  }
1189  const Expr *getConstructorArg(unsigned i) const {
1190    assert(i < NumConstructorArgs && "Index out of range");
1191    return cast<Expr>(SubExprs[Array + NumPlacementArgs + i]);
1192  }
1193
1194  /// \brief Whether the new expression refers a constructor that was
1195  /// resolved from an overloaded set having size greater than 1.
1196  bool hadMultipleCandidates() const { return HadMultipleCandidates; }
1197  void setHadMultipleCandidates(bool V) { HadMultipleCandidates = V; }
1198
1199  typedef ExprIterator arg_iterator;
1200  typedef ConstExprIterator const_arg_iterator;
1201
1202  arg_iterator placement_arg_begin() {
1203    return SubExprs + Array;
1204  }
1205  arg_iterator placement_arg_end() {
1206    return SubExprs + Array + getNumPlacementArgs();
1207  }
1208  const_arg_iterator placement_arg_begin() const {
1209    return SubExprs + Array;
1210  }
1211  const_arg_iterator placement_arg_end() const {
1212    return SubExprs + Array + getNumPlacementArgs();
1213  }
1214
1215  arg_iterator constructor_arg_begin() {
1216    return SubExprs + Array + getNumPlacementArgs();
1217  }
1218  arg_iterator constructor_arg_end() {
1219    return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
1220  }
1221  const_arg_iterator constructor_arg_begin() const {
1222    return SubExprs + Array + getNumPlacementArgs();
1223  }
1224  const_arg_iterator constructor_arg_end() const {
1225    return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
1226  }
1227
1228  typedef Stmt **raw_arg_iterator;
1229  raw_arg_iterator raw_arg_begin() { return SubExprs; }
1230  raw_arg_iterator raw_arg_end() {
1231    return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
1232  }
1233  const_arg_iterator raw_arg_begin() const { return SubExprs; }
1234  const_arg_iterator raw_arg_end() const { return constructor_arg_end(); }
1235
1236  SourceLocation getStartLoc() const { return StartLoc; }
1237  SourceLocation getEndLoc() const { return EndLoc; }
1238
1239  SourceLocation getConstructorLParen() const { return ConstructorLParen; }
1240  SourceLocation getConstructorRParen() const { return ConstructorRParen; }
1241
1242  SourceRange getSourceRange() const {
1243    return SourceRange(StartLoc, EndLoc);
1244  }
1245
1246  static bool classof(const Stmt *T) {
1247    return T->getStmtClass() == CXXNewExprClass;
1248  }
1249  static bool classof(const CXXNewExpr *) { return true; }
1250
1251  // Iterators
1252  child_range children() {
1253    return child_range(&SubExprs[0],
1254                       &SubExprs[0] + Array + getNumPlacementArgs()
1255                         + getNumConstructorArgs());
1256  }
1257};
1258
1259/// CXXDeleteExpr - A delete expression for memory deallocation and destructor
1260/// calls, e.g. "delete[] pArray".
1261class CXXDeleteExpr : public Expr {
1262  // Is this a forced global delete, i.e. "::delete"?
1263  bool GlobalDelete : 1;
1264  // Is this the array form of delete, i.e. "delete[]"?
1265  bool ArrayForm : 1;
1266  // ArrayFormAsWritten can be different from ArrayForm if 'delete' is applied
1267  // to pointer-to-array type (ArrayFormAsWritten will be false while ArrayForm
1268  // will be true).
1269  bool ArrayFormAsWritten : 1;
1270  // Does the usual deallocation function for the element type require
1271  // a size_t argument?
1272  bool UsualArrayDeleteWantsSize : 1;
1273  // Points to the operator delete overload that is used. Could be a member.
1274  FunctionDecl *OperatorDelete;
1275  // The pointer expression to be deleted.
1276  Stmt *Argument;
1277  // Location of the expression.
1278  SourceLocation Loc;
1279public:
1280  CXXDeleteExpr(QualType ty, bool globalDelete, bool arrayForm,
1281                bool arrayFormAsWritten, bool usualArrayDeleteWantsSize,
1282                FunctionDecl *operatorDelete, Expr *arg, SourceLocation loc)
1283    : Expr(CXXDeleteExprClass, ty, VK_RValue, OK_Ordinary, false, false,
1284           arg->isInstantiationDependent(),
1285           arg->containsUnexpandedParameterPack()),
1286      GlobalDelete(globalDelete),
1287      ArrayForm(arrayForm), ArrayFormAsWritten(arrayFormAsWritten),
1288      UsualArrayDeleteWantsSize(usualArrayDeleteWantsSize),
1289      OperatorDelete(operatorDelete), Argument(arg), Loc(loc) { }
1290  explicit CXXDeleteExpr(EmptyShell Shell)
1291    : Expr(CXXDeleteExprClass, Shell), OperatorDelete(0), Argument(0) { }
1292
1293  bool isGlobalDelete() const { return GlobalDelete; }
1294  bool isArrayForm() const { return ArrayForm; }
1295  bool isArrayFormAsWritten() const { return ArrayFormAsWritten; }
1296
1297  /// Answers whether the usual array deallocation function for the
1298  /// allocated type expects the size of the allocation as a
1299  /// parameter.  This can be true even if the actual deallocation
1300  /// function that we're using doesn't want a size.
1301  bool doesUsualArrayDeleteWantSize() const {
1302    return UsualArrayDeleteWantsSize;
1303  }
1304
1305  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
1306
1307  Expr *getArgument() { return cast<Expr>(Argument); }
1308  const Expr *getArgument() const { return cast<Expr>(Argument); }
1309
1310  /// \brief Retrieve the type being destroyed.  If the type being
1311  /// destroyed is a dependent type which may or may not be a pointer,
1312  /// return an invalid type.
1313  QualType getDestroyedType() const;
1314
1315  SourceRange getSourceRange() const {
1316    return SourceRange(Loc, Argument->getLocEnd());
1317  }
1318
1319  static bool classof(const Stmt *T) {
1320    return T->getStmtClass() == CXXDeleteExprClass;
1321  }
1322  static bool classof(const CXXDeleteExpr *) { return true; }
1323
1324  // Iterators
1325  child_range children() { return child_range(&Argument, &Argument+1); }
1326
1327  friend class ASTStmtReader;
1328};
1329
1330/// \brief Structure used to store the type being destroyed by a
1331/// pseudo-destructor expression.
1332class PseudoDestructorTypeStorage {
1333  /// \brief Either the type source information or the name of the type, if
1334  /// it couldn't be resolved due to type-dependence.
1335  llvm::PointerUnion<TypeSourceInfo *, IdentifierInfo *> Type;
1336
1337  /// \brief The starting source location of the pseudo-destructor type.
1338  SourceLocation Location;
1339
1340public:
1341  PseudoDestructorTypeStorage() { }
1342
1343  PseudoDestructorTypeStorage(IdentifierInfo *II, SourceLocation Loc)
1344    : Type(II), Location(Loc) { }
1345
1346  PseudoDestructorTypeStorage(TypeSourceInfo *Info);
1347
1348  TypeSourceInfo *getTypeSourceInfo() const {
1349    return Type.dyn_cast<TypeSourceInfo *>();
1350  }
1351
1352  IdentifierInfo *getIdentifier() const {
1353    return Type.dyn_cast<IdentifierInfo *>();
1354  }
1355
1356  SourceLocation getLocation() const { return Location; }
1357};
1358
1359/// \brief Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
1360///
1361/// A pseudo-destructor is an expression that looks like a member access to a
1362/// destructor of a scalar type, except that scalar types don't have
1363/// destructors. For example:
1364///
1365/// \code
1366/// typedef int T;
1367/// void f(int *p) {
1368///   p->T::~T();
1369/// }
1370/// \endcode
1371///
1372/// Pseudo-destructors typically occur when instantiating templates such as:
1373///
1374/// \code
1375/// template<typename T>
1376/// void destroy(T* ptr) {
1377///   ptr->T::~T();
1378/// }
1379/// \endcode
1380///
1381/// for scalar types. A pseudo-destructor expression has no run-time semantics
1382/// beyond evaluating the base expression.
1383class CXXPseudoDestructorExpr : public Expr {
1384  /// \brief The base expression (that is being destroyed).
1385  Stmt *Base;
1386
1387  /// \brief Whether the operator was an arrow ('->'); otherwise, it was a
1388  /// period ('.').
1389  bool IsArrow : 1;
1390
1391  /// \brief The location of the '.' or '->' operator.
1392  SourceLocation OperatorLoc;
1393
1394  /// \brief The nested-name-specifier that follows the operator, if present.
1395  NestedNameSpecifierLoc QualifierLoc;
1396
1397  /// \brief The type that precedes the '::' in a qualified pseudo-destructor
1398  /// expression.
1399  TypeSourceInfo *ScopeType;
1400
1401  /// \brief The location of the '::' in a qualified pseudo-destructor
1402  /// expression.
1403  SourceLocation ColonColonLoc;
1404
1405  /// \brief The location of the '~'.
1406  SourceLocation TildeLoc;
1407
1408  /// \brief The type being destroyed, or its name if we were unable to
1409  /// resolve the name.
1410  PseudoDestructorTypeStorage DestroyedType;
1411
1412  friend class ASTStmtReader;
1413
1414public:
1415  CXXPseudoDestructorExpr(ASTContext &Context,
1416                          Expr *Base, bool isArrow, SourceLocation OperatorLoc,
1417                          NestedNameSpecifierLoc QualifierLoc,
1418                          TypeSourceInfo *ScopeType,
1419                          SourceLocation ColonColonLoc,
1420                          SourceLocation TildeLoc,
1421                          PseudoDestructorTypeStorage DestroyedType);
1422
1423  explicit CXXPseudoDestructorExpr(EmptyShell Shell)
1424    : Expr(CXXPseudoDestructorExprClass, Shell),
1425      Base(0), IsArrow(false), QualifierLoc(), ScopeType(0) { }
1426
1427  Expr *getBase() const { return cast<Expr>(Base); }
1428
1429  /// \brief Determines whether this member expression actually had
1430  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
1431  /// x->Base::foo.
1432  bool hasQualifier() const { return QualifierLoc; }
1433
1434  /// \brief Retrieves the nested-name-specifier that qualifies the type name,
1435  /// with source-location information.
1436  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
1437
1438  /// \brief If the member name was qualified, retrieves the
1439  /// nested-name-specifier that precedes the member name. Otherwise, returns
1440  /// NULL.
1441  NestedNameSpecifier *getQualifier() const {
1442    return QualifierLoc.getNestedNameSpecifier();
1443  }
1444
1445  /// \brief Determine whether this pseudo-destructor expression was written
1446  /// using an '->' (otherwise, it used a '.').
1447  bool isArrow() const { return IsArrow; }
1448
1449  /// \brief Retrieve the location of the '.' or '->' operator.
1450  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1451
1452  /// \brief Retrieve the scope type in a qualified pseudo-destructor
1453  /// expression.
1454  ///
1455  /// Pseudo-destructor expressions can have extra qualification within them
1456  /// that is not part of the nested-name-specifier, e.g., \c p->T::~T().
1457  /// Here, if the object type of the expression is (or may be) a scalar type,
1458  /// \p T may also be a scalar type and, therefore, cannot be part of a
1459  /// nested-name-specifier. It is stored as the "scope type" of the pseudo-
1460  /// destructor expression.
1461  TypeSourceInfo *getScopeTypeInfo() const { return ScopeType; }
1462
1463  /// \brief Retrieve the location of the '::' in a qualified pseudo-destructor
1464  /// expression.
1465  SourceLocation getColonColonLoc() const { return ColonColonLoc; }
1466
1467  /// \brief Retrieve the location of the '~'.
1468  SourceLocation getTildeLoc() const { return TildeLoc; }
1469
1470  /// \brief Retrieve the source location information for the type
1471  /// being destroyed.
1472  ///
1473  /// This type-source information is available for non-dependent
1474  /// pseudo-destructor expressions and some dependent pseudo-destructor
1475  /// expressions. Returns NULL if we only have the identifier for a
1476  /// dependent pseudo-destructor expression.
1477  TypeSourceInfo *getDestroyedTypeInfo() const {
1478    return DestroyedType.getTypeSourceInfo();
1479  }
1480
1481  /// \brief In a dependent pseudo-destructor expression for which we do not
1482  /// have full type information on the destroyed type, provides the name
1483  /// of the destroyed type.
1484  IdentifierInfo *getDestroyedTypeIdentifier() const {
1485    return DestroyedType.getIdentifier();
1486  }
1487
1488  /// \brief Retrieve the type being destroyed.
1489  QualType getDestroyedType() const;
1490
1491  /// \brief Retrieve the starting location of the type being destroyed.
1492  SourceLocation getDestroyedTypeLoc() const {
1493    return DestroyedType.getLocation();
1494  }
1495
1496  /// \brief Set the name of destroyed type for a dependent pseudo-destructor
1497  /// expression.
1498  void setDestroyedType(IdentifierInfo *II, SourceLocation Loc) {
1499    DestroyedType = PseudoDestructorTypeStorage(II, Loc);
1500  }
1501
1502  /// \brief Set the destroyed type.
1503  void setDestroyedType(TypeSourceInfo *Info) {
1504    DestroyedType = PseudoDestructorTypeStorage(Info);
1505  }
1506
1507  SourceRange getSourceRange() const;
1508
1509  static bool classof(const Stmt *T) {
1510    return T->getStmtClass() == CXXPseudoDestructorExprClass;
1511  }
1512  static bool classof(const CXXPseudoDestructorExpr *) { return true; }
1513
1514  // Iterators
1515  child_range children() { return child_range(&Base, &Base + 1); }
1516};
1517
1518/// UnaryTypeTraitExpr - A GCC or MS unary type trait, as used in the
1519/// implementation of TR1/C++0x type trait templates.
1520/// Example:
1521/// __is_pod(int) == true
1522/// __is_enum(std::string) == false
1523class UnaryTypeTraitExpr : public Expr {
1524  /// UTT - The trait. A UnaryTypeTrait enum in MSVC compat unsigned.
1525  unsigned UTT : 31;
1526  /// The value of the type trait. Unspecified if dependent.
1527  bool Value : 1;
1528
1529  /// Loc - The location of the type trait keyword.
1530  SourceLocation Loc;
1531
1532  /// RParen - The location of the closing paren.
1533  SourceLocation RParen;
1534
1535  /// The type being queried.
1536  TypeSourceInfo *QueriedType;
1537
1538public:
1539  UnaryTypeTraitExpr(SourceLocation loc, UnaryTypeTrait utt,
1540                     TypeSourceInfo *queried, bool value,
1541                     SourceLocation rparen, QualType ty)
1542    : Expr(UnaryTypeTraitExprClass, ty, VK_RValue, OK_Ordinary,
1543           false,  queried->getType()->isDependentType(),
1544           queried->getType()->isInstantiationDependentType(),
1545           queried->getType()->containsUnexpandedParameterPack()),
1546      UTT(utt), Value(value), Loc(loc), RParen(rparen), QueriedType(queried) { }
1547
1548  explicit UnaryTypeTraitExpr(EmptyShell Empty)
1549    : Expr(UnaryTypeTraitExprClass, Empty), UTT(0), Value(false),
1550      QueriedType() { }
1551
1552  SourceRange getSourceRange() const { return SourceRange(Loc, RParen);}
1553
1554  UnaryTypeTrait getTrait() const { return static_cast<UnaryTypeTrait>(UTT); }
1555
1556  QualType getQueriedType() const { return QueriedType->getType(); }
1557
1558  TypeSourceInfo *getQueriedTypeSourceInfo() const { return QueriedType; }
1559
1560  bool getValue() const { return Value; }
1561
1562  static bool classof(const Stmt *T) {
1563    return T->getStmtClass() == UnaryTypeTraitExprClass;
1564  }
1565  static bool classof(const UnaryTypeTraitExpr *) { return true; }
1566
1567  // Iterators
1568  child_range children() { return child_range(); }
1569
1570  friend class ASTStmtReader;
1571};
1572
1573/// BinaryTypeTraitExpr - A GCC or MS binary type trait, as used in the
1574/// implementation of TR1/C++0x type trait templates.
1575/// Example:
1576/// __is_base_of(Base, Derived) == true
1577class BinaryTypeTraitExpr : public Expr {
1578  /// BTT - The trait. A BinaryTypeTrait enum in MSVC compat unsigned.
1579  unsigned BTT : 8;
1580
1581  /// The value of the type trait. Unspecified if dependent.
1582  bool Value : 1;
1583
1584  /// Loc - The location of the type trait keyword.
1585  SourceLocation Loc;
1586
1587  /// RParen - The location of the closing paren.
1588  SourceLocation RParen;
1589
1590  /// The lhs type being queried.
1591  TypeSourceInfo *LhsType;
1592
1593  /// The rhs type being queried.
1594  TypeSourceInfo *RhsType;
1595
1596public:
1597  BinaryTypeTraitExpr(SourceLocation loc, BinaryTypeTrait btt,
1598                     TypeSourceInfo *lhsType, TypeSourceInfo *rhsType,
1599                     bool value, SourceLocation rparen, QualType ty)
1600    : Expr(BinaryTypeTraitExprClass, ty, VK_RValue, OK_Ordinary, false,
1601           lhsType->getType()->isDependentType() ||
1602           rhsType->getType()->isDependentType(),
1603           (lhsType->getType()->isInstantiationDependentType() ||
1604            rhsType->getType()->isInstantiationDependentType()),
1605           (lhsType->getType()->containsUnexpandedParameterPack() ||
1606            rhsType->getType()->containsUnexpandedParameterPack())),
1607      BTT(btt), Value(value), Loc(loc), RParen(rparen),
1608      LhsType(lhsType), RhsType(rhsType) { }
1609
1610
1611  explicit BinaryTypeTraitExpr(EmptyShell Empty)
1612    : Expr(BinaryTypeTraitExprClass, Empty), BTT(0), Value(false),
1613      LhsType(), RhsType() { }
1614
1615  SourceRange getSourceRange() const {
1616    return SourceRange(Loc, RParen);
1617  }
1618
1619  BinaryTypeTrait getTrait() const {
1620    return static_cast<BinaryTypeTrait>(BTT);
1621  }
1622
1623  QualType getLhsType() const { return LhsType->getType(); }
1624  QualType getRhsType() const { return RhsType->getType(); }
1625
1626  TypeSourceInfo *getLhsTypeSourceInfo() const { return LhsType; }
1627  TypeSourceInfo *getRhsTypeSourceInfo() const { return RhsType; }
1628
1629  bool getValue() const { assert(!isTypeDependent()); return Value; }
1630
1631  static bool classof(const Stmt *T) {
1632    return T->getStmtClass() == BinaryTypeTraitExprClass;
1633  }
1634  static bool classof(const BinaryTypeTraitExpr *) { return true; }
1635
1636  // Iterators
1637  child_range children() { return child_range(); }
1638
1639  friend class ASTStmtReader;
1640};
1641
1642/// ArrayTypeTraitExpr - An Embarcadero array type trait, as used in the
1643/// implementation of __array_rank and __array_extent.
1644/// Example:
1645/// __array_rank(int[10][20]) == 2
1646/// __array_extent(int, 1)    == 20
1647class ArrayTypeTraitExpr : public Expr {
1648  /// ATT - The trait. An ArrayTypeTrait enum in MSVC compat unsigned.
1649  unsigned ATT : 2;
1650
1651  /// The value of the type trait. Unspecified if dependent.
1652  uint64_t Value;
1653
1654  /// The array dimension being queried, or -1 if not used
1655  Expr *Dimension;
1656
1657  /// Loc - The location of the type trait keyword.
1658  SourceLocation Loc;
1659
1660  /// RParen - The location of the closing paren.
1661  SourceLocation RParen;
1662
1663  /// The type being queried.
1664  TypeSourceInfo *QueriedType;
1665
1666public:
1667  ArrayTypeTraitExpr(SourceLocation loc, ArrayTypeTrait att,
1668                     TypeSourceInfo *queried, uint64_t value,
1669                     Expr *dimension, SourceLocation rparen, QualType ty)
1670    : Expr(ArrayTypeTraitExprClass, ty, VK_RValue, OK_Ordinary,
1671           false, queried->getType()->isDependentType(),
1672           (queried->getType()->isInstantiationDependentType() ||
1673            (dimension && dimension->isInstantiationDependent())),
1674           queried->getType()->containsUnexpandedParameterPack()),
1675      ATT(att), Value(value), Dimension(dimension),
1676      Loc(loc), RParen(rparen), QueriedType(queried) { }
1677
1678
1679  explicit ArrayTypeTraitExpr(EmptyShell Empty)
1680    : Expr(ArrayTypeTraitExprClass, Empty), ATT(0), Value(false),
1681      QueriedType() { }
1682
1683  virtual ~ArrayTypeTraitExpr() { }
1684
1685  virtual SourceRange getSourceRange() const {
1686    return SourceRange(Loc, RParen);
1687  }
1688
1689  ArrayTypeTrait getTrait() const { return static_cast<ArrayTypeTrait>(ATT); }
1690
1691  QualType getQueriedType() const { return QueriedType->getType(); }
1692
1693  TypeSourceInfo *getQueriedTypeSourceInfo() const { return QueriedType; }
1694
1695  uint64_t getValue() const { assert(!isTypeDependent()); return Value; }
1696
1697  Expr *getDimensionExpression() const { return Dimension; }
1698
1699  static bool classof(const Stmt *T) {
1700    return T->getStmtClass() == ArrayTypeTraitExprClass;
1701  }
1702  static bool classof(const ArrayTypeTraitExpr *) { return true; }
1703
1704  // Iterators
1705  child_range children() { return child_range(); }
1706
1707  friend class ASTStmtReader;
1708};
1709
1710/// ExpressionTraitExpr - An expression trait intrinsic
1711/// Example:
1712/// __is_lvalue_expr(std::cout) == true
1713/// __is_lvalue_expr(1) == false
1714class ExpressionTraitExpr : public Expr {
1715  /// ET - The trait. A ExpressionTrait enum in MSVC compat unsigned.
1716  unsigned ET : 31;
1717  /// The value of the type trait. Unspecified if dependent.
1718  bool Value : 1;
1719
1720  /// Loc - The location of the type trait keyword.
1721  SourceLocation Loc;
1722
1723  /// RParen - The location of the closing paren.
1724  SourceLocation RParen;
1725
1726  Expr* QueriedExpression;
1727public:
1728  ExpressionTraitExpr(SourceLocation loc, ExpressionTrait et,
1729                     Expr *queried, bool value,
1730                     SourceLocation rparen, QualType resultType)
1731    : Expr(ExpressionTraitExprClass, resultType, VK_RValue, OK_Ordinary,
1732           false, // Not type-dependent
1733           // Value-dependent if the argument is type-dependent.
1734           queried->isTypeDependent(),
1735           queried->isInstantiationDependent(),
1736           queried->containsUnexpandedParameterPack()),
1737      ET(et), Value(value), Loc(loc), RParen(rparen),
1738      QueriedExpression(queried) { }
1739
1740  explicit ExpressionTraitExpr(EmptyShell Empty)
1741    : Expr(ExpressionTraitExprClass, Empty), ET(0), Value(false),
1742      QueriedExpression() { }
1743
1744  SourceRange getSourceRange() const { return SourceRange(Loc, RParen);}
1745
1746  ExpressionTrait getTrait() const { return static_cast<ExpressionTrait>(ET); }
1747
1748  Expr *getQueriedExpression() const { return QueriedExpression; }
1749
1750  bool getValue() const { return Value; }
1751
1752  static bool classof(const Stmt *T) {
1753    return T->getStmtClass() == ExpressionTraitExprClass;
1754  }
1755  static bool classof(const ExpressionTraitExpr *) { return true; }
1756
1757  // Iterators
1758  child_range children() { return child_range(); }
1759
1760  friend class ASTStmtReader;
1761};
1762
1763
1764/// \brief A reference to an overloaded function set, either an
1765/// \t UnresolvedLookupExpr or an \t UnresolvedMemberExpr.
1766class OverloadExpr : public Expr {
1767  /// The results.  These are undesugared, which is to say, they may
1768  /// include UsingShadowDecls.  Access is relative to the naming
1769  /// class.
1770  // FIXME: Allocate this data after the OverloadExpr subclass.
1771  DeclAccessPair *Results;
1772  unsigned NumResults;
1773
1774  /// The common name of these declarations.
1775  DeclarationNameInfo NameInfo;
1776
1777  /// \brief The nested-name-specifier that qualifies the name, if any.
1778  NestedNameSpecifierLoc QualifierLoc;
1779
1780protected:
1781  /// True if the name was a template-id.
1782  bool HasExplicitTemplateArgs;
1783
1784  OverloadExpr(StmtClass K, ASTContext &C,
1785               NestedNameSpecifierLoc QualifierLoc,
1786               const DeclarationNameInfo &NameInfo,
1787               const TemplateArgumentListInfo *TemplateArgs,
1788               UnresolvedSetIterator Begin, UnresolvedSetIterator End,
1789               bool KnownDependent,
1790               bool KnownInstantiationDependent,
1791               bool KnownContainsUnexpandedParameterPack);
1792
1793  OverloadExpr(StmtClass K, EmptyShell Empty)
1794    : Expr(K, Empty), Results(0), NumResults(0),
1795      QualifierLoc(), HasExplicitTemplateArgs(false) { }
1796
1797  void initializeResults(ASTContext &C,
1798                         UnresolvedSetIterator Begin,
1799                         UnresolvedSetIterator End);
1800
1801public:
1802  struct FindResult {
1803    OverloadExpr *Expression;
1804    bool IsAddressOfOperand;
1805    bool HasFormOfMemberPointer;
1806  };
1807
1808  /// Finds the overloaded expression in the given expression of
1809  /// OverloadTy.
1810  ///
1811  /// \return the expression (which must be there) and true if it has
1812  /// the particular form of a member pointer expression
1813  static FindResult find(Expr *E) {
1814    assert(E->getType()->isSpecificBuiltinType(BuiltinType::Overload));
1815
1816    FindResult Result;
1817
1818    E = E->IgnoreParens();
1819    if (isa<UnaryOperator>(E)) {
1820      assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
1821      E = cast<UnaryOperator>(E)->getSubExpr();
1822      OverloadExpr *Ovl = cast<OverloadExpr>(E->IgnoreParens());
1823
1824      Result.HasFormOfMemberPointer = (E == Ovl && Ovl->getQualifier());
1825      Result.IsAddressOfOperand = true;
1826      Result.Expression = Ovl;
1827    } else {
1828      Result.HasFormOfMemberPointer = false;
1829      Result.IsAddressOfOperand = false;
1830      Result.Expression = cast<OverloadExpr>(E);
1831    }
1832
1833    return Result;
1834  }
1835
1836  /// Gets the naming class of this lookup, if any.
1837  CXXRecordDecl *getNamingClass() const;
1838
1839  typedef UnresolvedSetImpl::iterator decls_iterator;
1840  decls_iterator decls_begin() const { return UnresolvedSetIterator(Results); }
1841  decls_iterator decls_end() const {
1842    return UnresolvedSetIterator(Results + NumResults);
1843  }
1844
1845  /// Gets the number of declarations in the unresolved set.
1846  unsigned getNumDecls() const { return NumResults; }
1847
1848  /// Gets the full name info.
1849  const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
1850
1851  /// Gets the name looked up.
1852  DeclarationName getName() const { return NameInfo.getName(); }
1853
1854  /// Gets the location of the name.
1855  SourceLocation getNameLoc() const { return NameInfo.getLoc(); }
1856
1857  /// Fetches the nested-name qualifier, if one was given.
1858  NestedNameSpecifier *getQualifier() const {
1859    return QualifierLoc.getNestedNameSpecifier();
1860  }
1861
1862  /// Fetches the nested-name qualifier with source-location information, if
1863  /// one was given.
1864  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
1865
1866  /// \brief Determines whether this expression had an explicit
1867  /// template argument list, e.g. f<int>.
1868  bool hasExplicitTemplateArgs() const { return HasExplicitTemplateArgs; }
1869
1870  ASTTemplateArgumentListInfo &getExplicitTemplateArgs(); // defined far below
1871
1872  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
1873    return const_cast<OverloadExpr*>(this)->getExplicitTemplateArgs();
1874  }
1875
1876  /// \brief Retrieves the optional explicit template arguments.
1877  /// This points to the same data as getExplicitTemplateArgs(), but
1878  /// returns null if there are no explicit template arguments.
1879  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() {
1880    if (!hasExplicitTemplateArgs()) return 0;
1881    return &getExplicitTemplateArgs();
1882  }
1883
1884  static bool classof(const Stmt *T) {
1885    return T->getStmtClass() == UnresolvedLookupExprClass ||
1886           T->getStmtClass() == UnresolvedMemberExprClass;
1887  }
1888  static bool classof(const OverloadExpr *) { return true; }
1889
1890  friend class ASTStmtReader;
1891  friend class ASTStmtWriter;
1892};
1893
1894/// \brief A reference to a name which we were able to look up during
1895/// parsing but could not resolve to a specific declaration.  This
1896/// arises in several ways:
1897///   * we might be waiting for argument-dependent lookup
1898///   * the name might resolve to an overloaded function
1899/// and eventually:
1900///   * the lookup might have included a function template
1901/// These never include UnresolvedUsingValueDecls, which are always
1902/// class members and therefore appear only in
1903/// UnresolvedMemberLookupExprs.
1904class UnresolvedLookupExpr : public OverloadExpr {
1905  /// True if these lookup results should be extended by
1906  /// argument-dependent lookup if this is the operand of a function
1907  /// call.
1908  bool RequiresADL;
1909
1910  /// True if namespace ::std should be considered an associated namespace
1911  /// for the purposes of argument-dependent lookup. See C++0x [stmt.ranged]p1.
1912  bool StdIsAssociatedNamespace;
1913
1914  /// True if these lookup results are overloaded.  This is pretty
1915  /// trivially rederivable if we urgently need to kill this field.
1916  bool Overloaded;
1917
1918  /// The naming class (C++ [class.access.base]p5) of the lookup, if
1919  /// any.  This can generally be recalculated from the context chain,
1920  /// but that can be fairly expensive for unqualified lookups.  If we
1921  /// want to improve memory use here, this could go in a union
1922  /// against the qualified-lookup bits.
1923  CXXRecordDecl *NamingClass;
1924
1925  UnresolvedLookupExpr(ASTContext &C,
1926                       CXXRecordDecl *NamingClass,
1927                       NestedNameSpecifierLoc QualifierLoc,
1928                       const DeclarationNameInfo &NameInfo,
1929                       bool RequiresADL, bool Overloaded,
1930                       const TemplateArgumentListInfo *TemplateArgs,
1931                       UnresolvedSetIterator Begin, UnresolvedSetIterator End,
1932                       bool StdIsAssociatedNamespace)
1933    : OverloadExpr(UnresolvedLookupExprClass, C, QualifierLoc, NameInfo,
1934                   TemplateArgs, Begin, End, false, false, false),
1935      RequiresADL(RequiresADL),
1936      StdIsAssociatedNamespace(StdIsAssociatedNamespace),
1937      Overloaded(Overloaded), NamingClass(NamingClass)
1938  {}
1939
1940  UnresolvedLookupExpr(EmptyShell Empty)
1941    : OverloadExpr(UnresolvedLookupExprClass, Empty),
1942      RequiresADL(false), StdIsAssociatedNamespace(false), Overloaded(false),
1943      NamingClass(0)
1944  {}
1945
1946  friend class ASTStmtReader;
1947
1948public:
1949  static UnresolvedLookupExpr *Create(ASTContext &C,
1950                                      CXXRecordDecl *NamingClass,
1951                                      NestedNameSpecifierLoc QualifierLoc,
1952                                      const DeclarationNameInfo &NameInfo,
1953                                      bool ADL, bool Overloaded,
1954                                      UnresolvedSetIterator Begin,
1955                                      UnresolvedSetIterator End,
1956                                      bool StdIsAssociatedNamespace = false) {
1957    assert((ADL || !StdIsAssociatedNamespace) &&
1958           "std considered associated namespace when not performing ADL");
1959    return new(C) UnresolvedLookupExpr(C, NamingClass, QualifierLoc, NameInfo,
1960                                       ADL, Overloaded, 0, Begin, End,
1961                                       StdIsAssociatedNamespace);
1962  }
1963
1964  static UnresolvedLookupExpr *Create(ASTContext &C,
1965                                      CXXRecordDecl *NamingClass,
1966                                      NestedNameSpecifierLoc QualifierLoc,
1967                                      const DeclarationNameInfo &NameInfo,
1968                                      bool ADL,
1969                                      const TemplateArgumentListInfo &Args,
1970                                      UnresolvedSetIterator Begin,
1971                                      UnresolvedSetIterator End);
1972
1973  static UnresolvedLookupExpr *CreateEmpty(ASTContext &C,
1974                                           bool HasExplicitTemplateArgs,
1975                                           unsigned NumTemplateArgs);
1976
1977  /// True if this declaration should be extended by
1978  /// argument-dependent lookup.
1979  bool requiresADL() const { return RequiresADL; }
1980
1981  /// True if namespace ::std should be artificially added to the set of
1982  /// associated namespaecs for argument-dependent lookup purposes.
1983  bool isStdAssociatedNamespace() const { return StdIsAssociatedNamespace; }
1984
1985  /// True if this lookup is overloaded.
1986  bool isOverloaded() const { return Overloaded; }
1987
1988  /// Gets the 'naming class' (in the sense of C++0x
1989  /// [class.access.base]p5) of the lookup.  This is the scope
1990  /// that was looked in to find these results.
1991  CXXRecordDecl *getNamingClass() const { return NamingClass; }
1992
1993  // Note that, inconsistently with the explicit-template-argument AST
1994  // nodes, users are *forbidden* from calling these methods on objects
1995  // without explicit template arguments.
1996
1997  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
1998    assert(hasExplicitTemplateArgs());
1999    return *reinterpret_cast<ASTTemplateArgumentListInfo*>(this + 1);
2000  }
2001
2002  /// Gets a reference to the explicit template argument list.
2003  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2004    assert(hasExplicitTemplateArgs());
2005    return *reinterpret_cast<const ASTTemplateArgumentListInfo*>(this + 1);
2006  }
2007
2008  /// \brief Retrieves the optional explicit template arguments.
2009  /// This points to the same data as getExplicitTemplateArgs(), but
2010  /// returns null if there are no explicit template arguments.
2011  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() {
2012    if (!hasExplicitTemplateArgs()) return 0;
2013    return &getExplicitTemplateArgs();
2014  }
2015
2016  /// \brief Copies the template arguments (if present) into the given
2017  /// structure.
2018  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2019    getExplicitTemplateArgs().copyInto(List);
2020  }
2021
2022  SourceLocation getLAngleLoc() const {
2023    return getExplicitTemplateArgs().LAngleLoc;
2024  }
2025
2026  SourceLocation getRAngleLoc() const {
2027    return getExplicitTemplateArgs().RAngleLoc;
2028  }
2029
2030  TemplateArgumentLoc const *getTemplateArgs() const {
2031    return getExplicitTemplateArgs().getTemplateArgs();
2032  }
2033
2034  unsigned getNumTemplateArgs() const {
2035    return getExplicitTemplateArgs().NumTemplateArgs;
2036  }
2037
2038  SourceRange getSourceRange() const {
2039    SourceRange Range(getNameInfo().getSourceRange());
2040    if (getQualifierLoc())
2041      Range.setBegin(getQualifierLoc().getBeginLoc());
2042    if (hasExplicitTemplateArgs())
2043      Range.setEnd(getRAngleLoc());
2044    return Range;
2045  }
2046
2047  child_range children() { return child_range(); }
2048
2049  static bool classof(const Stmt *T) {
2050    return T->getStmtClass() == UnresolvedLookupExprClass;
2051  }
2052  static bool classof(const UnresolvedLookupExpr *) { return true; }
2053};
2054
2055/// \brief A qualified reference to a name whose declaration cannot
2056/// yet be resolved.
2057///
2058/// DependentScopeDeclRefExpr is similar to DeclRefExpr in that
2059/// it expresses a reference to a declaration such as
2060/// X<T>::value. The difference, however, is that an
2061/// DependentScopeDeclRefExpr node is used only within C++ templates when
2062/// the qualification (e.g., X<T>::) refers to a dependent type. In
2063/// this case, X<T>::value cannot resolve to a declaration because the
2064/// declaration will differ from on instantiation of X<T> to the
2065/// next. Therefore, DependentScopeDeclRefExpr keeps track of the
2066/// qualifier (X<T>::) and the name of the entity being referenced
2067/// ("value"). Such expressions will instantiate to a DeclRefExpr once the
2068/// declaration can be found.
2069class DependentScopeDeclRefExpr : public Expr {
2070  /// \brief The nested-name-specifier that qualifies this unresolved
2071  /// declaration name.
2072  NestedNameSpecifierLoc QualifierLoc;
2073
2074  /// The name of the entity we will be referencing.
2075  DeclarationNameInfo NameInfo;
2076
2077  /// \brief Whether the name includes explicit template arguments.
2078  bool HasExplicitTemplateArgs;
2079
2080  DependentScopeDeclRefExpr(QualType T,
2081                            NestedNameSpecifierLoc QualifierLoc,
2082                            const DeclarationNameInfo &NameInfo,
2083                            const TemplateArgumentListInfo *Args);
2084
2085public:
2086  static DependentScopeDeclRefExpr *Create(ASTContext &C,
2087                                           NestedNameSpecifierLoc QualifierLoc,
2088                                           const DeclarationNameInfo &NameInfo,
2089                              const TemplateArgumentListInfo *TemplateArgs = 0);
2090
2091  static DependentScopeDeclRefExpr *CreateEmpty(ASTContext &C,
2092                                                bool HasExplicitTemplateArgs,
2093                                                unsigned NumTemplateArgs);
2094
2095  /// \brief Retrieve the name that this expression refers to.
2096  const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
2097
2098  /// \brief Retrieve the name that this expression refers to.
2099  DeclarationName getDeclName() const { return NameInfo.getName(); }
2100
2101  /// \brief Retrieve the location of the name within the expression.
2102  SourceLocation getLocation() const { return NameInfo.getLoc(); }
2103
2104  /// \brief Retrieve the nested-name-specifier that qualifies the
2105  /// name, with source location information.
2106  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2107
2108
2109  /// \brief Retrieve the nested-name-specifier that qualifies this
2110  /// declaration.
2111  NestedNameSpecifier *getQualifier() const {
2112    return QualifierLoc.getNestedNameSpecifier();
2113  }
2114
2115  /// Determines whether this lookup had explicit template arguments.
2116  bool hasExplicitTemplateArgs() const { return HasExplicitTemplateArgs; }
2117
2118  // Note that, inconsistently with the explicit-template-argument AST
2119  // nodes, users are *forbidden* from calling these methods on objects
2120  // without explicit template arguments.
2121
2122  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
2123    assert(hasExplicitTemplateArgs());
2124    return *reinterpret_cast<ASTTemplateArgumentListInfo*>(this + 1);
2125  }
2126
2127  /// Gets a reference to the explicit template argument list.
2128  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2129    assert(hasExplicitTemplateArgs());
2130    return *reinterpret_cast<const ASTTemplateArgumentListInfo*>(this + 1);
2131  }
2132
2133  /// \brief Retrieves the optional explicit template arguments.
2134  /// This points to the same data as getExplicitTemplateArgs(), but
2135  /// returns null if there are no explicit template arguments.
2136  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() {
2137    if (!hasExplicitTemplateArgs()) return 0;
2138    return &getExplicitTemplateArgs();
2139  }
2140
2141  /// \brief Copies the template arguments (if present) into the given
2142  /// structure.
2143  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2144    getExplicitTemplateArgs().copyInto(List);
2145  }
2146
2147  SourceLocation getLAngleLoc() const {
2148    return getExplicitTemplateArgs().LAngleLoc;
2149  }
2150
2151  SourceLocation getRAngleLoc() const {
2152    return getExplicitTemplateArgs().RAngleLoc;
2153  }
2154
2155  TemplateArgumentLoc const *getTemplateArgs() const {
2156    return getExplicitTemplateArgs().getTemplateArgs();
2157  }
2158
2159  unsigned getNumTemplateArgs() const {
2160    return getExplicitTemplateArgs().NumTemplateArgs;
2161  }
2162
2163  SourceRange getSourceRange() const {
2164    SourceRange Range(QualifierLoc.getBeginLoc(), getLocation());
2165    if (hasExplicitTemplateArgs())
2166      Range.setEnd(getRAngleLoc());
2167    return Range;
2168  }
2169
2170  static bool classof(const Stmt *T) {
2171    return T->getStmtClass() == DependentScopeDeclRefExprClass;
2172  }
2173  static bool classof(const DependentScopeDeclRefExpr *) { return true; }
2174
2175  child_range children() { return child_range(); }
2176
2177  friend class ASTStmtReader;
2178  friend class ASTStmtWriter;
2179};
2180
2181/// Represents an expression --- generally a full-expression --- which
2182/// introduces cleanups to be run at the end of the sub-expression's
2183/// evaluation.  The most common source of expression-introduced
2184/// cleanups is temporary objects in C++, but several other kinds of
2185/// expressions can create cleanups, including basically every
2186/// call in ARC that returns an Objective-C pointer.
2187///
2188/// This expression also tracks whether the sub-expression contains a
2189/// potentially-evaluated block literal.  The lifetime of a block
2190/// literal is the extent of the enclosing scope.
2191class ExprWithCleanups : public Expr {
2192public:
2193  /// The type of objects that are kept in the cleanup.
2194  /// It's useful to remember the set of blocks;  we could also
2195  /// remember the set of temporaries, but there's currently
2196  /// no need.
2197  typedef BlockDecl *CleanupObject;
2198
2199private:
2200  Stmt *SubExpr;
2201
2202  ExprWithCleanups(EmptyShell, unsigned NumObjects);
2203  ExprWithCleanups(Expr *SubExpr, ArrayRef<CleanupObject> Objects);
2204
2205  CleanupObject *getObjectsBuffer() {
2206    return reinterpret_cast<CleanupObject*>(this + 1);
2207  }
2208  const CleanupObject *getObjectsBuffer() const {
2209    return reinterpret_cast<const CleanupObject*>(this + 1);
2210  }
2211  friend class ASTStmtReader;
2212
2213public:
2214  static ExprWithCleanups *Create(ASTContext &C, EmptyShell empty,
2215                                  unsigned numObjects);
2216
2217  static ExprWithCleanups *Create(ASTContext &C, Expr *subexpr,
2218                                  ArrayRef<CleanupObject> objects);
2219
2220  ArrayRef<CleanupObject> getObjects() const {
2221    return ArrayRef<CleanupObject>(getObjectsBuffer(), getNumObjects());
2222  }
2223
2224  unsigned getNumObjects() const { return ExprWithCleanupsBits.NumObjects; }
2225
2226  CleanupObject getObject(unsigned i) const {
2227    assert(i < getNumObjects() && "Index out of range");
2228    return getObjects()[i];
2229  }
2230
2231  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
2232  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
2233
2234  /// setSubExpr - As with any mutator of the AST, be very careful
2235  /// when modifying an existing AST to preserve its invariants.
2236  void setSubExpr(Expr *E) { SubExpr = E; }
2237
2238  SourceRange getSourceRange() const {
2239    return SubExpr->getSourceRange();
2240  }
2241
2242  // Implement isa/cast/dyncast/etc.
2243  static bool classof(const Stmt *T) {
2244    return T->getStmtClass() == ExprWithCleanupsClass;
2245  }
2246  static bool classof(const ExprWithCleanups *) { return true; }
2247
2248  // Iterators
2249  child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
2250};
2251
2252/// \brief Describes an explicit type conversion that uses functional
2253/// notion but could not be resolved because one or more arguments are
2254/// type-dependent.
2255///
2256/// The explicit type conversions expressed by
2257/// CXXUnresolvedConstructExpr have the form \c T(a1, a2, ..., aN),
2258/// where \c T is some type and \c a1, a2, ..., aN are values, and
2259/// either \C T is a dependent type or one or more of the \c a's is
2260/// type-dependent. For example, this would occur in a template such
2261/// as:
2262///
2263/// \code
2264///   template<typename T, typename A1>
2265///   inline T make_a(const A1& a1) {
2266///     return T(a1);
2267///   }
2268/// \endcode
2269///
2270/// When the returned expression is instantiated, it may resolve to a
2271/// constructor call, conversion function call, or some kind of type
2272/// conversion.
2273class CXXUnresolvedConstructExpr : public Expr {
2274  /// \brief The type being constructed.
2275  TypeSourceInfo *Type;
2276
2277  /// \brief The location of the left parentheses ('(').
2278  SourceLocation LParenLoc;
2279
2280  /// \brief The location of the right parentheses (')').
2281  SourceLocation RParenLoc;
2282
2283  /// \brief The number of arguments used to construct the type.
2284  unsigned NumArgs;
2285
2286  CXXUnresolvedConstructExpr(TypeSourceInfo *Type,
2287                             SourceLocation LParenLoc,
2288                             Expr **Args,
2289                             unsigned NumArgs,
2290                             SourceLocation RParenLoc);
2291
2292  CXXUnresolvedConstructExpr(EmptyShell Empty, unsigned NumArgs)
2293    : Expr(CXXUnresolvedConstructExprClass, Empty), Type(), NumArgs(NumArgs) { }
2294
2295  friend class ASTStmtReader;
2296
2297public:
2298  static CXXUnresolvedConstructExpr *Create(ASTContext &C,
2299                                            TypeSourceInfo *Type,
2300                                            SourceLocation LParenLoc,
2301                                            Expr **Args,
2302                                            unsigned NumArgs,
2303                                            SourceLocation RParenLoc);
2304
2305  static CXXUnresolvedConstructExpr *CreateEmpty(ASTContext &C,
2306                                                 unsigned NumArgs);
2307
2308  /// \brief Retrieve the type that is being constructed, as specified
2309  /// in the source code.
2310  QualType getTypeAsWritten() const { return Type->getType(); }
2311
2312  /// \brief Retrieve the type source information for the type being
2313  /// constructed.
2314  TypeSourceInfo *getTypeSourceInfo() const { return Type; }
2315
2316  /// \brief Retrieve the location of the left parentheses ('(') that
2317  /// precedes the argument list.
2318  SourceLocation getLParenLoc() const { return LParenLoc; }
2319  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2320
2321  /// \brief Retrieve the location of the right parentheses (')') that
2322  /// follows the argument list.
2323  SourceLocation getRParenLoc() const { return RParenLoc; }
2324  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2325
2326  /// \brief Retrieve the number of arguments.
2327  unsigned arg_size() const { return NumArgs; }
2328
2329  typedef Expr** arg_iterator;
2330  arg_iterator arg_begin() { return reinterpret_cast<Expr**>(this + 1); }
2331  arg_iterator arg_end() { return arg_begin() + NumArgs; }
2332
2333  typedef const Expr* const * const_arg_iterator;
2334  const_arg_iterator arg_begin() const {
2335    return reinterpret_cast<const Expr* const *>(this + 1);
2336  }
2337  const_arg_iterator arg_end() const {
2338    return arg_begin() + NumArgs;
2339  }
2340
2341  Expr *getArg(unsigned I) {
2342    assert(I < NumArgs && "Argument index out-of-range");
2343    return *(arg_begin() + I);
2344  }
2345
2346  const Expr *getArg(unsigned I) const {
2347    assert(I < NumArgs && "Argument index out-of-range");
2348    return *(arg_begin() + I);
2349  }
2350
2351  void setArg(unsigned I, Expr *E) {
2352    assert(I < NumArgs && "Argument index out-of-range");
2353    *(arg_begin() + I) = E;
2354  }
2355
2356  SourceRange getSourceRange() const;
2357
2358  static bool classof(const Stmt *T) {
2359    return T->getStmtClass() == CXXUnresolvedConstructExprClass;
2360  }
2361  static bool classof(const CXXUnresolvedConstructExpr *) { return true; }
2362
2363  // Iterators
2364  child_range children() {
2365    Stmt **begin = reinterpret_cast<Stmt**>(this+1);
2366    return child_range(begin, begin + NumArgs);
2367  }
2368};
2369
2370/// \brief Represents a C++ member access expression where the actual
2371/// member referenced could not be resolved because the base
2372/// expression or the member name was dependent.
2373///
2374/// Like UnresolvedMemberExprs, these can be either implicit or
2375/// explicit accesses.  It is only possible to get one of these with
2376/// an implicit access if a qualifier is provided.
2377class CXXDependentScopeMemberExpr : public Expr {
2378  /// \brief The expression for the base pointer or class reference,
2379  /// e.g., the \c x in x.f.  Can be null in implicit accesses.
2380  Stmt *Base;
2381
2382  /// \brief The type of the base expression.  Never null, even for
2383  /// implicit accesses.
2384  QualType BaseType;
2385
2386  /// \brief Whether this member expression used the '->' operator or
2387  /// the '.' operator.
2388  bool IsArrow : 1;
2389
2390  /// \brief Whether this member expression has explicitly-specified template
2391  /// arguments.
2392  bool HasExplicitTemplateArgs : 1;
2393
2394  /// \brief The location of the '->' or '.' operator.
2395  SourceLocation OperatorLoc;
2396
2397  /// \brief The nested-name-specifier that precedes the member name, if any.
2398  NestedNameSpecifierLoc QualifierLoc;
2399
2400  /// \brief In a qualified member access expression such as t->Base::f, this
2401  /// member stores the resolves of name lookup in the context of the member
2402  /// access expression, to be used at instantiation time.
2403  ///
2404  /// FIXME: This member, along with the QualifierLoc, could
2405  /// be stuck into a structure that is optionally allocated at the end of
2406  /// the CXXDependentScopeMemberExpr, to save space in the common case.
2407  NamedDecl *FirstQualifierFoundInScope;
2408
2409  /// \brief The member to which this member expression refers, which
2410  /// can be name, overloaded operator, or destructor.
2411  /// FIXME: could also be a template-id
2412  DeclarationNameInfo MemberNameInfo;
2413
2414  CXXDependentScopeMemberExpr(ASTContext &C,
2415                          Expr *Base, QualType BaseType, bool IsArrow,
2416                          SourceLocation OperatorLoc,
2417                          NestedNameSpecifierLoc QualifierLoc,
2418                          NamedDecl *FirstQualifierFoundInScope,
2419                          DeclarationNameInfo MemberNameInfo,
2420                          const TemplateArgumentListInfo *TemplateArgs);
2421
2422public:
2423  CXXDependentScopeMemberExpr(ASTContext &C,
2424                              Expr *Base, QualType BaseType,
2425                              bool IsArrow,
2426                              SourceLocation OperatorLoc,
2427                              NestedNameSpecifierLoc QualifierLoc,
2428                              NamedDecl *FirstQualifierFoundInScope,
2429                              DeclarationNameInfo MemberNameInfo);
2430
2431  static CXXDependentScopeMemberExpr *
2432  Create(ASTContext &C,
2433         Expr *Base, QualType BaseType, bool IsArrow,
2434         SourceLocation OperatorLoc,
2435         NestedNameSpecifierLoc QualifierLoc,
2436         NamedDecl *FirstQualifierFoundInScope,
2437         DeclarationNameInfo MemberNameInfo,
2438         const TemplateArgumentListInfo *TemplateArgs);
2439
2440  static CXXDependentScopeMemberExpr *
2441  CreateEmpty(ASTContext &C, bool HasExplicitTemplateArgs,
2442              unsigned NumTemplateArgs);
2443
2444  /// \brief True if this is an implicit access, i.e. one in which the
2445  /// member being accessed was not written in the source.  The source
2446  /// location of the operator is invalid in this case.
2447  bool isImplicitAccess() const;
2448
2449  /// \brief Retrieve the base object of this member expressions,
2450  /// e.g., the \c x in \c x.m.
2451  Expr *getBase() const {
2452    assert(!isImplicitAccess());
2453    return cast<Expr>(Base);
2454  }
2455
2456  QualType getBaseType() const { return BaseType; }
2457
2458  /// \brief Determine whether this member expression used the '->'
2459  /// operator; otherwise, it used the '.' operator.
2460  bool isArrow() const { return IsArrow; }
2461
2462  /// \brief Retrieve the location of the '->' or '.' operator.
2463  SourceLocation getOperatorLoc() const { return OperatorLoc; }
2464
2465  /// \brief Retrieve the nested-name-specifier that qualifies the member
2466  /// name.
2467  NestedNameSpecifier *getQualifier() const {
2468    return QualifierLoc.getNestedNameSpecifier();
2469  }
2470
2471  /// \brief Retrieve the nested-name-specifier that qualifies the member
2472  /// name, with source location information.
2473  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2474
2475
2476  /// \brief Retrieve the first part of the nested-name-specifier that was
2477  /// found in the scope of the member access expression when the member access
2478  /// was initially parsed.
2479  ///
2480  /// This function only returns a useful result when member access expression
2481  /// uses a qualified member name, e.g., "x.Base::f". Here, the declaration
2482  /// returned by this function describes what was found by unqualified name
2483  /// lookup for the identifier "Base" within the scope of the member access
2484  /// expression itself. At template instantiation time, this information is
2485  /// combined with the results of name lookup into the type of the object
2486  /// expression itself (the class type of x).
2487  NamedDecl *getFirstQualifierFoundInScope() const {
2488    return FirstQualifierFoundInScope;
2489  }
2490
2491  /// \brief Retrieve the name of the member that this expression
2492  /// refers to.
2493  const DeclarationNameInfo &getMemberNameInfo() const {
2494    return MemberNameInfo;
2495  }
2496
2497  /// \brief Retrieve the name of the member that this expression
2498  /// refers to.
2499  DeclarationName getMember() const { return MemberNameInfo.getName(); }
2500
2501  // \brief Retrieve the location of the name of the member that this
2502  // expression refers to.
2503  SourceLocation getMemberLoc() const { return MemberNameInfo.getLoc(); }
2504
2505  /// \brief Determines whether this member expression actually had a C++
2506  /// template argument list explicitly specified, e.g., x.f<int>.
2507  bool hasExplicitTemplateArgs() const {
2508    return HasExplicitTemplateArgs;
2509  }
2510
2511  /// \brief Retrieve the explicit template argument list that followed the
2512  /// member template name, if any.
2513  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
2514    assert(HasExplicitTemplateArgs);
2515    return *reinterpret_cast<ASTTemplateArgumentListInfo *>(this + 1);
2516  }
2517
2518  /// \brief Retrieve the explicit template argument list that followed the
2519  /// member template name, if any.
2520  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2521    return const_cast<CXXDependentScopeMemberExpr *>(this)
2522             ->getExplicitTemplateArgs();
2523  }
2524
2525  /// \brief Retrieves the optional explicit template arguments.
2526  /// This points to the same data as getExplicitTemplateArgs(), but
2527  /// returns null if there are no explicit template arguments.
2528  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() {
2529    if (!hasExplicitTemplateArgs()) return 0;
2530    return &getExplicitTemplateArgs();
2531  }
2532
2533  /// \brief Copies the template arguments (if present) into the given
2534  /// structure.
2535  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2536    getExplicitTemplateArgs().copyInto(List);
2537  }
2538
2539  /// \brief Initializes the template arguments using the given structure.
2540  void initializeTemplateArgumentsFrom(const TemplateArgumentListInfo &List) {
2541    getExplicitTemplateArgs().initializeFrom(List);
2542  }
2543
2544  /// \brief Retrieve the location of the left angle bracket following the
2545  /// member name ('<'), if any.
2546  SourceLocation getLAngleLoc() const {
2547    return getExplicitTemplateArgs().LAngleLoc;
2548  }
2549
2550  /// \brief Retrieve the template arguments provided as part of this
2551  /// template-id.
2552  const TemplateArgumentLoc *getTemplateArgs() const {
2553    return getExplicitTemplateArgs().getTemplateArgs();
2554  }
2555
2556  /// \brief Retrieve the number of template arguments provided as part of this
2557  /// template-id.
2558  unsigned getNumTemplateArgs() const {
2559    return getExplicitTemplateArgs().NumTemplateArgs;
2560  }
2561
2562  /// \brief Retrieve the location of the right angle bracket following the
2563  /// template arguments ('>').
2564  SourceLocation getRAngleLoc() const {
2565    return getExplicitTemplateArgs().RAngleLoc;
2566  }
2567
2568  SourceRange getSourceRange() const {
2569    SourceRange Range;
2570    if (!isImplicitAccess())
2571      Range.setBegin(Base->getSourceRange().getBegin());
2572    else if (getQualifier())
2573      Range.setBegin(getQualifierLoc().getBeginLoc());
2574    else
2575      Range.setBegin(MemberNameInfo.getBeginLoc());
2576
2577    if (hasExplicitTemplateArgs())
2578      Range.setEnd(getRAngleLoc());
2579    else
2580      Range.setEnd(MemberNameInfo.getEndLoc());
2581    return Range;
2582  }
2583
2584  static bool classof(const Stmt *T) {
2585    return T->getStmtClass() == CXXDependentScopeMemberExprClass;
2586  }
2587  static bool classof(const CXXDependentScopeMemberExpr *) { return true; }
2588
2589  // Iterators
2590  child_range children() {
2591    if (isImplicitAccess()) return child_range();
2592    return child_range(&Base, &Base + 1);
2593  }
2594
2595  friend class ASTStmtReader;
2596  friend class ASTStmtWriter;
2597};
2598
2599/// \brief Represents a C++ member access expression for which lookup
2600/// produced a set of overloaded functions.
2601///
2602/// The member access may be explicit or implicit:
2603///    struct A {
2604///      int a, b;
2605///      int explicitAccess() { return this->a + this->A::b; }
2606///      int implicitAccess() { return a + A::b; }
2607///    };
2608///
2609/// In the final AST, an explicit access always becomes a MemberExpr.
2610/// An implicit access may become either a MemberExpr or a
2611/// DeclRefExpr, depending on whether the member is static.
2612class UnresolvedMemberExpr : public OverloadExpr {
2613  /// \brief Whether this member expression used the '->' operator or
2614  /// the '.' operator.
2615  bool IsArrow : 1;
2616
2617  /// \brief Whether the lookup results contain an unresolved using
2618  /// declaration.
2619  bool HasUnresolvedUsing : 1;
2620
2621  /// \brief The expression for the base pointer or class reference,
2622  /// e.g., the \c x in x.f.  This can be null if this is an 'unbased'
2623  /// member expression
2624  Stmt *Base;
2625
2626  /// \brief The type of the base expression;  never null.
2627  QualType BaseType;
2628
2629  /// \brief The location of the '->' or '.' operator.
2630  SourceLocation OperatorLoc;
2631
2632  UnresolvedMemberExpr(ASTContext &C, bool HasUnresolvedUsing,
2633                       Expr *Base, QualType BaseType, bool IsArrow,
2634                       SourceLocation OperatorLoc,
2635                       NestedNameSpecifierLoc QualifierLoc,
2636                       const DeclarationNameInfo &MemberNameInfo,
2637                       const TemplateArgumentListInfo *TemplateArgs,
2638                       UnresolvedSetIterator Begin, UnresolvedSetIterator End);
2639
2640  UnresolvedMemberExpr(EmptyShell Empty)
2641    : OverloadExpr(UnresolvedMemberExprClass, Empty), IsArrow(false),
2642      HasUnresolvedUsing(false), Base(0) { }
2643
2644  friend class ASTStmtReader;
2645
2646public:
2647  static UnresolvedMemberExpr *
2648  Create(ASTContext &C, bool HasUnresolvedUsing,
2649         Expr *Base, QualType BaseType, bool IsArrow,
2650         SourceLocation OperatorLoc,
2651         NestedNameSpecifierLoc QualifierLoc,
2652         const DeclarationNameInfo &MemberNameInfo,
2653         const TemplateArgumentListInfo *TemplateArgs,
2654         UnresolvedSetIterator Begin, UnresolvedSetIterator End);
2655
2656  static UnresolvedMemberExpr *
2657  CreateEmpty(ASTContext &C, bool HasExplicitTemplateArgs,
2658              unsigned NumTemplateArgs);
2659
2660  /// \brief True if this is an implicit access, i.e. one in which the
2661  /// member being accessed was not written in the source.  The source
2662  /// location of the operator is invalid in this case.
2663  bool isImplicitAccess() const;
2664
2665  /// \brief Retrieve the base object of this member expressions,
2666  /// e.g., the \c x in \c x.m.
2667  Expr *getBase() {
2668    assert(!isImplicitAccess());
2669    return cast<Expr>(Base);
2670  }
2671  const Expr *getBase() const {
2672    assert(!isImplicitAccess());
2673    return cast<Expr>(Base);
2674  }
2675
2676  QualType getBaseType() const { return BaseType; }
2677
2678  /// \brief Determine whether the lookup results contain an unresolved using
2679  /// declaration.
2680  bool hasUnresolvedUsing() const { return HasUnresolvedUsing; }
2681
2682  /// \brief Determine whether this member expression used the '->'
2683  /// operator; otherwise, it used the '.' operator.
2684  bool isArrow() const { return IsArrow; }
2685
2686  /// \brief Retrieve the location of the '->' or '.' operator.
2687  SourceLocation getOperatorLoc() const { return OperatorLoc; }
2688
2689  /// \brief Retrieves the naming class of this lookup.
2690  CXXRecordDecl *getNamingClass() const;
2691
2692  /// \brief Retrieve the full name info for the member that this expression
2693  /// refers to.
2694  const DeclarationNameInfo &getMemberNameInfo() const { return getNameInfo(); }
2695
2696  /// \brief Retrieve the name of the member that this expression
2697  /// refers to.
2698  DeclarationName getMemberName() const { return getName(); }
2699
2700  // \brief Retrieve the location of the name of the member that this
2701  // expression refers to.
2702  SourceLocation getMemberLoc() const { return getNameLoc(); }
2703
2704  /// \brief Retrieve the explicit template argument list that followed the
2705  /// member template name.
2706  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
2707    assert(hasExplicitTemplateArgs());
2708    return *reinterpret_cast<ASTTemplateArgumentListInfo *>(this + 1);
2709  }
2710
2711  /// \brief Retrieve the explicit template argument list that followed the
2712  /// member template name, if any.
2713  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2714    assert(hasExplicitTemplateArgs());
2715    return *reinterpret_cast<const ASTTemplateArgumentListInfo *>(this + 1);
2716  }
2717
2718  /// \brief Retrieves the optional explicit template arguments.
2719  /// This points to the same data as getExplicitTemplateArgs(), but
2720  /// returns null if there are no explicit template arguments.
2721  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() {
2722    if (!hasExplicitTemplateArgs()) return 0;
2723    return &getExplicitTemplateArgs();
2724  }
2725
2726  /// \brief Copies the template arguments into the given structure.
2727  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2728    getExplicitTemplateArgs().copyInto(List);
2729  }
2730
2731  /// \brief Retrieve the location of the left angle bracket following
2732  /// the member name ('<').
2733  SourceLocation getLAngleLoc() const {
2734    return getExplicitTemplateArgs().LAngleLoc;
2735  }
2736
2737  /// \brief Retrieve the template arguments provided as part of this
2738  /// template-id.
2739  const TemplateArgumentLoc *getTemplateArgs() const {
2740    return getExplicitTemplateArgs().getTemplateArgs();
2741  }
2742
2743  /// \brief Retrieve the number of template arguments provided as
2744  /// part of this template-id.
2745  unsigned getNumTemplateArgs() const {
2746    return getExplicitTemplateArgs().NumTemplateArgs;
2747  }
2748
2749  /// \brief Retrieve the location of the right angle bracket
2750  /// following the template arguments ('>').
2751  SourceLocation getRAngleLoc() const {
2752    return getExplicitTemplateArgs().RAngleLoc;
2753  }
2754
2755  SourceRange getSourceRange() const {
2756    SourceRange Range = getMemberNameInfo().getSourceRange();
2757    if (!isImplicitAccess())
2758      Range.setBegin(Base->getSourceRange().getBegin());
2759    else if (getQualifierLoc())
2760      Range.setBegin(getQualifierLoc().getBeginLoc());
2761
2762    if (hasExplicitTemplateArgs())
2763      Range.setEnd(getRAngleLoc());
2764    return Range;
2765  }
2766
2767  static bool classof(const Stmt *T) {
2768    return T->getStmtClass() == UnresolvedMemberExprClass;
2769  }
2770  static bool classof(const UnresolvedMemberExpr *) { return true; }
2771
2772  // Iterators
2773  child_range children() {
2774    if (isImplicitAccess()) return child_range();
2775    return child_range(&Base, &Base + 1);
2776  }
2777};
2778
2779/// \brief Represents a C++0x noexcept expression (C++ [expr.unary.noexcept]).
2780///
2781/// The noexcept expression tests whether a given expression might throw. Its
2782/// result is a boolean constant.
2783class CXXNoexceptExpr : public Expr {
2784  bool Value : 1;
2785  Stmt *Operand;
2786  SourceRange Range;
2787
2788  friend class ASTStmtReader;
2789
2790public:
2791  CXXNoexceptExpr(QualType Ty, Expr *Operand, CanThrowResult Val,
2792                  SourceLocation Keyword, SourceLocation RParen)
2793    : Expr(CXXNoexceptExprClass, Ty, VK_RValue, OK_Ordinary,
2794           /*TypeDependent*/false,
2795           /*ValueDependent*/Val == CT_Dependent,
2796           Val == CT_Dependent || Operand->isInstantiationDependent(),
2797           Operand->containsUnexpandedParameterPack()),
2798      Value(Val == CT_Cannot), Operand(Operand), Range(Keyword, RParen)
2799  { }
2800
2801  CXXNoexceptExpr(EmptyShell Empty)
2802    : Expr(CXXNoexceptExprClass, Empty)
2803  { }
2804
2805  Expr *getOperand() const { return static_cast<Expr*>(Operand); }
2806
2807  SourceRange getSourceRange() const { return Range; }
2808
2809  bool getValue() const { return Value; }
2810
2811  static bool classof(const Stmt *T) {
2812    return T->getStmtClass() == CXXNoexceptExprClass;
2813  }
2814  static bool classof(const CXXNoexceptExpr *) { return true; }
2815
2816  // Iterators
2817  child_range children() { return child_range(&Operand, &Operand + 1); }
2818};
2819
2820/// \brief Represents a C++0x pack expansion that produces a sequence of
2821/// expressions.
2822///
2823/// A pack expansion expression contains a pattern (which itself is an
2824/// expression) followed by an ellipsis. For example:
2825///
2826/// \code
2827/// template<typename F, typename ...Types>
2828/// void forward(F f, Types &&...args) {
2829///   f(static_cast<Types&&>(args)...);
2830/// }
2831/// \endcode
2832///
2833/// Here, the argument to the function object \c f is a pack expansion whose
2834/// pattern is \c static_cast<Types&&>(args). When the \c forward function
2835/// template is instantiated, the pack expansion will instantiate to zero or
2836/// or more function arguments to the function object \c f.
2837class PackExpansionExpr : public Expr {
2838  SourceLocation EllipsisLoc;
2839
2840  /// \brief The number of expansions that will be produced by this pack
2841  /// expansion expression, if known.
2842  ///
2843  /// When zero, the number of expansions is not known. Otherwise, this value
2844  /// is the number of expansions + 1.
2845  unsigned NumExpansions;
2846
2847  Stmt *Pattern;
2848
2849  friend class ASTStmtReader;
2850  friend class ASTStmtWriter;
2851
2852public:
2853  PackExpansionExpr(QualType T, Expr *Pattern, SourceLocation EllipsisLoc,
2854                    llvm::Optional<unsigned> NumExpansions)
2855    : Expr(PackExpansionExprClass, T, Pattern->getValueKind(),
2856           Pattern->getObjectKind(), /*TypeDependent=*/true,
2857           /*ValueDependent=*/true, /*InstantiationDependent=*/true,
2858           /*ContainsUnexpandedParameterPack=*/false),
2859      EllipsisLoc(EllipsisLoc),
2860      NumExpansions(NumExpansions? *NumExpansions + 1 : 0),
2861      Pattern(Pattern) { }
2862
2863  PackExpansionExpr(EmptyShell Empty) : Expr(PackExpansionExprClass, Empty) { }
2864
2865  /// \brief Retrieve the pattern of the pack expansion.
2866  Expr *getPattern() { return reinterpret_cast<Expr *>(Pattern); }
2867
2868  /// \brief Retrieve the pattern of the pack expansion.
2869  const Expr *getPattern() const { return reinterpret_cast<Expr *>(Pattern); }
2870
2871  /// \brief Retrieve the location of the ellipsis that describes this pack
2872  /// expansion.
2873  SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
2874
2875  /// \brief Determine the number of expansions that will be produced when
2876  /// this pack expansion is instantiated, if already known.
2877  llvm::Optional<unsigned> getNumExpansions() const {
2878    if (NumExpansions)
2879      return NumExpansions - 1;
2880
2881    return llvm::Optional<unsigned>();
2882  }
2883
2884  SourceRange getSourceRange() const {
2885    return SourceRange(Pattern->getLocStart(), EllipsisLoc);
2886  }
2887
2888  static bool classof(const Stmt *T) {
2889    return T->getStmtClass() == PackExpansionExprClass;
2890  }
2891  static bool classof(const PackExpansionExpr *) { return true; }
2892
2893  // Iterators
2894  child_range children() {
2895    return child_range(&Pattern, &Pattern + 1);
2896  }
2897};
2898
2899inline ASTTemplateArgumentListInfo &OverloadExpr::getExplicitTemplateArgs() {
2900  if (isa<UnresolvedLookupExpr>(this))
2901    return cast<UnresolvedLookupExpr>(this)->getExplicitTemplateArgs();
2902  else
2903    return cast<UnresolvedMemberExpr>(this)->getExplicitTemplateArgs();
2904}
2905
2906/// \brief Represents an expression that computes the length of a parameter
2907/// pack.
2908///
2909/// \code
2910/// template<typename ...Types>
2911/// struct count {
2912///   static const unsigned value = sizeof...(Types);
2913/// };
2914/// \endcode
2915class SizeOfPackExpr : public Expr {
2916  /// \brief The location of the 'sizeof' keyword.
2917  SourceLocation OperatorLoc;
2918
2919  /// \brief The location of the name of the parameter pack.
2920  SourceLocation PackLoc;
2921
2922  /// \brief The location of the closing parenthesis.
2923  SourceLocation RParenLoc;
2924
2925  /// \brief The length of the parameter pack, if known.
2926  ///
2927  /// When this expression is value-dependent, the length of the parameter pack
2928  /// is unknown. When this expression is not value-dependent, the length is
2929  /// known.
2930  unsigned Length;
2931
2932  /// \brief The parameter pack itself.
2933  NamedDecl *Pack;
2934
2935  friend class ASTStmtReader;
2936  friend class ASTStmtWriter;
2937
2938public:
2939  /// \brief Creates a value-dependent expression that computes the length of
2940  /// the given parameter pack.
2941  SizeOfPackExpr(QualType SizeType, SourceLocation OperatorLoc, NamedDecl *Pack,
2942                 SourceLocation PackLoc, SourceLocation RParenLoc)
2943    : Expr(SizeOfPackExprClass, SizeType, VK_RValue, OK_Ordinary,
2944           /*TypeDependent=*/false, /*ValueDependent=*/true,
2945           /*InstantiationDependent=*/true,
2946           /*ContainsUnexpandedParameterPack=*/false),
2947      OperatorLoc(OperatorLoc), PackLoc(PackLoc), RParenLoc(RParenLoc),
2948      Length(0), Pack(Pack) { }
2949
2950  /// \brief Creates an expression that computes the length of
2951  /// the given parameter pack, which is already known.
2952  SizeOfPackExpr(QualType SizeType, SourceLocation OperatorLoc, NamedDecl *Pack,
2953                 SourceLocation PackLoc, SourceLocation RParenLoc,
2954                 unsigned Length)
2955  : Expr(SizeOfPackExprClass, SizeType, VK_RValue, OK_Ordinary,
2956         /*TypeDependent=*/false, /*ValueDependent=*/false,
2957         /*InstantiationDependent=*/false,
2958         /*ContainsUnexpandedParameterPack=*/false),
2959    OperatorLoc(OperatorLoc), PackLoc(PackLoc), RParenLoc(RParenLoc),
2960    Length(Length), Pack(Pack) { }
2961
2962  /// \brief Create an empty expression.
2963  SizeOfPackExpr(EmptyShell Empty) : Expr(SizeOfPackExprClass, Empty) { }
2964
2965  /// \brief Determine the location of the 'sizeof' keyword.
2966  SourceLocation getOperatorLoc() const { return OperatorLoc; }
2967
2968  /// \brief Determine the location of the parameter pack.
2969  SourceLocation getPackLoc() const { return PackLoc; }
2970
2971  /// \brief Determine the location of the right parenthesis.
2972  SourceLocation getRParenLoc() const { return RParenLoc; }
2973
2974  /// \brief Retrieve the parameter pack.
2975  NamedDecl *getPack() const { return Pack; }
2976
2977  /// \brief Retrieve the length of the parameter pack.
2978  ///
2979  /// This routine may only be invoked when the expression is not
2980  /// value-dependent.
2981  unsigned getPackLength() const {
2982    assert(!isValueDependent() &&
2983           "Cannot get the length of a value-dependent pack size expression");
2984    return Length;
2985  }
2986
2987  SourceRange getSourceRange() const {
2988    return SourceRange(OperatorLoc, RParenLoc);
2989  }
2990
2991  static bool classof(const Stmt *T) {
2992    return T->getStmtClass() == SizeOfPackExprClass;
2993  }
2994  static bool classof(const SizeOfPackExpr *) { return true; }
2995
2996  // Iterators
2997  child_range children() { return child_range(); }
2998};
2999
3000/// \brief Represents a reference to a non-type template parameter
3001/// that has been substituted with a template argument.
3002class SubstNonTypeTemplateParmExpr : public Expr {
3003  /// \brief The replaced parameter.
3004  NonTypeTemplateParmDecl *Param;
3005
3006  /// \brief The replacement expression.
3007  Stmt *Replacement;
3008
3009  /// \brief The location of the non-type template parameter reference.
3010  SourceLocation NameLoc;
3011
3012  friend class ASTReader;
3013  friend class ASTStmtReader;
3014  explicit SubstNonTypeTemplateParmExpr(EmptyShell Empty)
3015    : Expr(SubstNonTypeTemplateParmExprClass, Empty) { }
3016
3017public:
3018  SubstNonTypeTemplateParmExpr(QualType type,
3019                               ExprValueKind valueKind,
3020                               SourceLocation loc,
3021                               NonTypeTemplateParmDecl *param,
3022                               Expr *replacement)
3023    : Expr(SubstNonTypeTemplateParmExprClass, type, valueKind, OK_Ordinary,
3024           replacement->isTypeDependent(), replacement->isValueDependent(),
3025           replacement->isInstantiationDependent(),
3026           replacement->containsUnexpandedParameterPack()),
3027      Param(param), Replacement(replacement), NameLoc(loc) {}
3028
3029  SourceLocation getNameLoc() const { return NameLoc; }
3030  SourceRange getSourceRange() const { return NameLoc; }
3031
3032  Expr *getReplacement() const { return cast<Expr>(Replacement); }
3033
3034  NonTypeTemplateParmDecl *getParameter() const { return Param; }
3035
3036  static bool classof(const Stmt *s) {
3037    return s->getStmtClass() == SubstNonTypeTemplateParmExprClass;
3038  }
3039  static bool classof(const SubstNonTypeTemplateParmExpr *) {
3040    return true;
3041  }
3042
3043  // Iterators
3044  child_range children() { return child_range(&Replacement, &Replacement+1); }
3045};
3046
3047/// \brief Represents a reference to a non-type template parameter pack that
3048/// has been substituted with a non-template argument pack.
3049///
3050/// When a pack expansion in the source code contains multiple parameter packs
3051/// and those parameter packs correspond to different levels of template
3052/// parameter lists, this node node is used to represent a non-type template
3053/// parameter pack from an outer level, which has already had its argument pack
3054/// substituted but that still lives within a pack expansion that itself
3055/// could not be instantiated. When actually performing a substitution into
3056/// that pack expansion (e.g., when all template parameters have corresponding
3057/// arguments), this type will be replaced with the appropriate underlying
3058/// expression at the current pack substitution index.
3059class SubstNonTypeTemplateParmPackExpr : public Expr {
3060  /// \brief The non-type template parameter pack itself.
3061  NonTypeTemplateParmDecl *Param;
3062
3063  /// \brief A pointer to the set of template arguments that this
3064  /// parameter pack is instantiated with.
3065  const TemplateArgument *Arguments;
3066
3067  /// \brief The number of template arguments in \c Arguments.
3068  unsigned NumArguments;
3069
3070  /// \brief The location of the non-type template parameter pack reference.
3071  SourceLocation NameLoc;
3072
3073  friend class ASTReader;
3074  friend class ASTStmtReader;
3075  explicit SubstNonTypeTemplateParmPackExpr(EmptyShell Empty)
3076    : Expr(SubstNonTypeTemplateParmPackExprClass, Empty) { }
3077
3078public:
3079  SubstNonTypeTemplateParmPackExpr(QualType T,
3080                                   NonTypeTemplateParmDecl *Param,
3081                                   SourceLocation NameLoc,
3082                                   const TemplateArgument &ArgPack);
3083
3084  /// \brief Retrieve the non-type template parameter pack being substituted.
3085  NonTypeTemplateParmDecl *getParameterPack() const { return Param; }
3086
3087  /// \brief Retrieve the location of the parameter pack name.
3088  SourceLocation getParameterPackLocation() const { return NameLoc; }
3089
3090  /// \brief Retrieve the template argument pack containing the substituted
3091  /// template arguments.
3092  TemplateArgument getArgumentPack() const;
3093
3094  SourceRange getSourceRange() const { return NameLoc; }
3095
3096  static bool classof(const Stmt *T) {
3097    return T->getStmtClass() == SubstNonTypeTemplateParmPackExprClass;
3098  }
3099  static bool classof(const SubstNonTypeTemplateParmPackExpr *) {
3100    return true;
3101  }
3102
3103  // Iterators
3104  child_range children() { return child_range(); }
3105};
3106
3107/// \brief Represents a prvalue temporary that written into memory so that
3108/// a reference can bind to it.
3109///
3110/// Prvalue expressions are materialized when they need to have an address
3111/// in memory for a reference to bind to. This happens when binding a
3112/// reference to the result of a conversion, e.g.,
3113///
3114/// \code
3115/// const int &r = 1.0;
3116/// \endcode
3117///
3118/// Here, 1.0 is implicitly converted to an \c int. That resulting \c int is
3119/// then materialized via a \c MaterializeTemporaryExpr, and the reference
3120/// binds to the temporary. \c MaterializeTemporaryExprs are always glvalues
3121/// (either an lvalue or an xvalue, depending on the kind of reference binding
3122/// to it), maintaining the invariant that references always bind to glvalues.
3123class MaterializeTemporaryExpr : public Expr {
3124  /// \brief The temporary-generating expression whose value will be
3125  /// materialized.
3126 Stmt *Temporary;
3127
3128  friend class ASTStmtReader;
3129  friend class ASTStmtWriter;
3130
3131public:
3132  MaterializeTemporaryExpr(QualType T, Expr *Temporary,
3133                           bool BoundToLvalueReference)
3134    : Expr(MaterializeTemporaryExprClass, T,
3135           BoundToLvalueReference? VK_LValue : VK_XValue, OK_Ordinary,
3136           Temporary->isTypeDependent(), Temporary->isValueDependent(),
3137           Temporary->isInstantiationDependent(),
3138           Temporary->containsUnexpandedParameterPack()),
3139      Temporary(Temporary) { }
3140
3141  MaterializeTemporaryExpr(EmptyShell Empty)
3142    : Expr(MaterializeTemporaryExprClass, Empty) { }
3143
3144  /// \brief Retrieve the temporary-generating subexpression whose value will
3145  /// be materialized into a glvalue.
3146  Expr *GetTemporaryExpr() const { return reinterpret_cast<Expr *>(Temporary); }
3147
3148  /// \brief Determine whether this materialized temporary is bound to an
3149  /// lvalue reference; otherwise, it's bound to an rvalue reference.
3150  bool isBoundToLvalueReference() const {
3151    return getValueKind() == VK_LValue;
3152  }
3153
3154  SourceRange getSourceRange() const { return Temporary->getSourceRange(); }
3155
3156  static bool classof(const Stmt *T) {
3157    return T->getStmtClass() == MaterializeTemporaryExprClass;
3158  }
3159  static bool classof(const MaterializeTemporaryExpr *) {
3160    return true;
3161  }
3162
3163  // Iterators
3164  child_range children() { return child_range(&Temporary, &Temporary + 1); }
3165};
3166
3167}  // end namespace clang
3168
3169#endif
3170