ExprCXX.h revision 63b6ebe4e732f20fa24ea0666ed438dd5004cc20
1//===--- ExprCXX.h - Classes for representing expressions -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses for C++ expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPRCXX_H
15#define LLVM_CLANG_AST_EXPRCXX_H
16
17#include "clang/AST/Decl.h"
18#include "clang/AST/Expr.h"
19#include "clang/AST/UnresolvedSet.h"
20#include "clang/AST/TemplateBase.h"
21#include "clang/Basic/ExpressionTraits.h"
22#include "clang/Basic/Lambda.h"
23#include "clang/Basic/TypeTraits.h"
24#include "llvm/Support/Compiler.h"
25
26namespace clang {
27
28class CXXConstructorDecl;
29class CXXDestructorDecl;
30class CXXMethodDecl;
31class CXXTemporary;
32class TemplateArgumentListInfo;
33
34//===--------------------------------------------------------------------===//
35// C++ Expressions.
36//===--------------------------------------------------------------------===//
37
38/// \brief A call to an overloaded operator written using operator
39/// syntax.
40///
41/// Represents a call to an overloaded operator written using operator
42/// syntax, e.g., "x + y" or "*p". While semantically equivalent to a
43/// normal call, this AST node provides better information about the
44/// syntactic representation of the call.
45///
46/// In a C++ template, this expression node kind will be used whenever
47/// any of the arguments are type-dependent. In this case, the
48/// function itself will be a (possibly empty) set of functions and
49/// function templates that were found by name lookup at template
50/// definition time.
51class CXXOperatorCallExpr : public CallExpr {
52  /// \brief The overloaded operator.
53  OverloadedOperatorKind Operator;
54  SourceRange Range;
55
56  // Record the FP_CONTRACT state that applies to this operator call. Only
57  // meaningful for floating point types. For other types this value can be
58  // set to false.
59  unsigned FPContractable : 1;
60
61  SourceRange getSourceRangeImpl() const LLVM_READONLY;
62public:
63  CXXOperatorCallExpr(ASTContext& C, OverloadedOperatorKind Op, Expr *fn,
64                      ArrayRef<Expr*> args, QualType t, ExprValueKind VK,
65                      SourceLocation operatorloc, bool fpContractable)
66    : CallExpr(C, CXXOperatorCallExprClass, fn, 0, args, t, VK,
67               operatorloc),
68      Operator(Op), FPContractable(fpContractable) {
69    Range = getSourceRangeImpl();
70  }
71  explicit CXXOperatorCallExpr(ASTContext& C, EmptyShell Empty) :
72    CallExpr(C, CXXOperatorCallExprClass, Empty) { }
73
74
75  /// getOperator - Returns the kind of overloaded operator that this
76  /// expression refers to.
77  OverloadedOperatorKind getOperator() const { return Operator; }
78
79  /// getOperatorLoc - Returns the location of the operator symbol in
80  /// the expression. When @c getOperator()==OO_Call, this is the
81  /// location of the right parentheses; when @c
82  /// getOperator()==OO_Subscript, this is the location of the right
83  /// bracket.
84  SourceLocation getOperatorLoc() const { return getRParenLoc(); }
85
86  SourceRange getSourceRange() const { return Range; }
87
88  static bool classof(const Stmt *T) {
89    return T->getStmtClass() == CXXOperatorCallExprClass;
90  }
91
92  // Set the FP contractability status of this operator. Only meaningful for
93  // operations on floating point types.
94  void setFPContractable(bool FPC) { FPContractable = FPC; }
95
96  // Get the FP contractability status of this operator. Only meaningful for
97  // operations on floating point types.
98  bool isFPContractable() const { return FPContractable; }
99
100  friend class ASTStmtReader;
101  friend class ASTStmtWriter;
102};
103
104/// CXXMemberCallExpr - Represents a call to a member function that
105/// may be written either with member call syntax (e.g., "obj.func()"
106/// or "objptr->func()") or with normal function-call syntax
107/// ("func()") within a member function that ends up calling a member
108/// function. The callee in either case is a MemberExpr that contains
109/// both the object argument and the member function, while the
110/// arguments are the arguments within the parentheses (not including
111/// the object argument).
112class CXXMemberCallExpr : public CallExpr {
113public:
114  CXXMemberCallExpr(ASTContext &C, Expr *fn, ArrayRef<Expr*> args,
115                    QualType t, ExprValueKind VK, SourceLocation RP)
116    : CallExpr(C, CXXMemberCallExprClass, fn, 0, args, t, VK, RP) {}
117
118  CXXMemberCallExpr(ASTContext &C, EmptyShell Empty)
119    : CallExpr(C, CXXMemberCallExprClass, Empty) { }
120
121  /// getImplicitObjectArgument - Retrieves the implicit object
122  /// argument for the member call. For example, in "x.f(5)", this
123  /// operation would return "x".
124  Expr *getImplicitObjectArgument() const;
125
126  /// Retrieves the declaration of the called method.
127  CXXMethodDecl *getMethodDecl() const;
128
129  /// getRecordDecl - Retrieves the CXXRecordDecl for the underlying type of
130  /// the implicit object argument. Note that this is may not be the same
131  /// declaration as that of the class context of the CXXMethodDecl which this
132  /// function is calling.
133  /// FIXME: Returns 0 for member pointer call exprs.
134  CXXRecordDecl *getRecordDecl() const;
135
136  static bool classof(const Stmt *T) {
137    return T->getStmtClass() == CXXMemberCallExprClass;
138  }
139};
140
141/// CUDAKernelCallExpr - Represents a call to a CUDA kernel function.
142class CUDAKernelCallExpr : public CallExpr {
143private:
144  enum { CONFIG, END_PREARG };
145
146public:
147  CUDAKernelCallExpr(ASTContext &C, Expr *fn, CallExpr *Config,
148                     ArrayRef<Expr*> args, QualType t, ExprValueKind VK,
149                     SourceLocation RP)
150    : CallExpr(C, CUDAKernelCallExprClass, fn, END_PREARG, args, t, VK, RP) {
151    setConfig(Config);
152  }
153
154  CUDAKernelCallExpr(ASTContext &C, EmptyShell Empty)
155    : CallExpr(C, CUDAKernelCallExprClass, END_PREARG, Empty) { }
156
157  const CallExpr *getConfig() const {
158    return cast_or_null<CallExpr>(getPreArg(CONFIG));
159  }
160  CallExpr *getConfig() { return cast_or_null<CallExpr>(getPreArg(CONFIG)); }
161  void setConfig(CallExpr *E) { setPreArg(CONFIG, E); }
162
163  static bool classof(const Stmt *T) {
164    return T->getStmtClass() == CUDAKernelCallExprClass;
165  }
166};
167
168/// CXXNamedCastExpr - Abstract class common to all of the C++ "named"
169/// casts, @c static_cast, @c dynamic_cast, @c reinterpret_cast, or @c
170/// const_cast.
171///
172/// This abstract class is inherited by all of the classes
173/// representing "named" casts, e.g., CXXStaticCastExpr,
174/// CXXDynamicCastExpr, CXXReinterpretCastExpr, and CXXConstCastExpr.
175class CXXNamedCastExpr : public ExplicitCastExpr {
176private:
177  SourceLocation Loc; // the location of the casting op
178  SourceLocation RParenLoc; // the location of the right parenthesis
179
180protected:
181  CXXNamedCastExpr(StmtClass SC, QualType ty, ExprValueKind VK,
182                   CastKind kind, Expr *op, unsigned PathSize,
183                   TypeSourceInfo *writtenTy, SourceLocation l,
184                   SourceLocation RParenLoc)
185    : ExplicitCastExpr(SC, ty, VK, kind, op, PathSize, writtenTy), Loc(l),
186      RParenLoc(RParenLoc) {}
187
188  explicit CXXNamedCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
189    : ExplicitCastExpr(SC, Shell, PathSize) { }
190
191  friend class ASTStmtReader;
192
193public:
194  const char *getCastName() const;
195
196  /// \brief Retrieve the location of the cast operator keyword, e.g.,
197  /// "static_cast".
198  SourceLocation getOperatorLoc() const { return Loc; }
199
200  /// \brief Retrieve the location of the closing parenthesis.
201  SourceLocation getRParenLoc() const { return RParenLoc; }
202
203  SourceRange getSourceRange() const LLVM_READONLY {
204    return SourceRange(Loc, RParenLoc);
205  }
206  static bool classof(const Stmt *T) {
207    switch (T->getStmtClass()) {
208    case CXXStaticCastExprClass:
209    case CXXDynamicCastExprClass:
210    case CXXReinterpretCastExprClass:
211    case CXXConstCastExprClass:
212      return true;
213    default:
214      return false;
215    }
216  }
217};
218
219/// CXXStaticCastExpr - A C++ @c static_cast expression
220/// (C++ [expr.static.cast]).
221///
222/// This expression node represents a C++ static cast, e.g.,
223/// @c static_cast<int>(1.0).
224class CXXStaticCastExpr : public CXXNamedCastExpr {
225  CXXStaticCastExpr(QualType ty, ExprValueKind vk, CastKind kind, Expr *op,
226                    unsigned pathSize, TypeSourceInfo *writtenTy,
227                    SourceLocation l, SourceLocation RParenLoc)
228    : CXXNamedCastExpr(CXXStaticCastExprClass, ty, vk, kind, op, pathSize,
229                       writtenTy, l, RParenLoc) {}
230
231  explicit CXXStaticCastExpr(EmptyShell Empty, unsigned PathSize)
232    : CXXNamedCastExpr(CXXStaticCastExprClass, Empty, PathSize) { }
233
234public:
235  static CXXStaticCastExpr *Create(ASTContext &Context, QualType T,
236                                   ExprValueKind VK, CastKind K, Expr *Op,
237                                   const CXXCastPath *Path,
238                                   TypeSourceInfo *Written, SourceLocation L,
239                                   SourceLocation RParenLoc);
240  static CXXStaticCastExpr *CreateEmpty(ASTContext &Context,
241                                        unsigned PathSize);
242
243  static bool classof(const Stmt *T) {
244    return T->getStmtClass() == CXXStaticCastExprClass;
245  }
246};
247
248/// CXXDynamicCastExpr - A C++ @c dynamic_cast expression
249/// (C++ [expr.dynamic.cast]), which may perform a run-time check to
250/// determine how to perform the type cast.
251///
252/// This expression node represents a dynamic cast, e.g.,
253/// @c dynamic_cast<Derived*>(BasePtr).
254class CXXDynamicCastExpr : public CXXNamedCastExpr {
255  CXXDynamicCastExpr(QualType ty, ExprValueKind VK, CastKind kind,
256                     Expr *op, unsigned pathSize, TypeSourceInfo *writtenTy,
257                     SourceLocation l, SourceLocation RParenLoc)
258    : CXXNamedCastExpr(CXXDynamicCastExprClass, ty, VK, kind, op, pathSize,
259                       writtenTy, l, RParenLoc) {}
260
261  explicit CXXDynamicCastExpr(EmptyShell Empty, unsigned pathSize)
262    : CXXNamedCastExpr(CXXDynamicCastExprClass, Empty, pathSize) { }
263
264public:
265  static CXXDynamicCastExpr *Create(ASTContext &Context, QualType T,
266                                    ExprValueKind VK, CastKind Kind, Expr *Op,
267                                    const CXXCastPath *Path,
268                                    TypeSourceInfo *Written, SourceLocation L,
269                                    SourceLocation RParenLoc);
270
271  static CXXDynamicCastExpr *CreateEmpty(ASTContext &Context,
272                                         unsigned pathSize);
273
274  bool isAlwaysNull() const;
275
276  static bool classof(const Stmt *T) {
277    return T->getStmtClass() == CXXDynamicCastExprClass;
278  }
279};
280
281/// CXXReinterpretCastExpr - A C++ @c reinterpret_cast expression (C++
282/// [expr.reinterpret.cast]), which provides a differently-typed view
283/// of a value but performs no actual work at run time.
284///
285/// This expression node represents a reinterpret cast, e.g.,
286/// @c reinterpret_cast<int>(VoidPtr).
287class CXXReinterpretCastExpr : public CXXNamedCastExpr {
288  CXXReinterpretCastExpr(QualType ty, ExprValueKind vk, CastKind kind,
289                         Expr *op, unsigned pathSize,
290                         TypeSourceInfo *writtenTy, SourceLocation l,
291                         SourceLocation RParenLoc)
292    : CXXNamedCastExpr(CXXReinterpretCastExprClass, ty, vk, kind, op,
293                       pathSize, writtenTy, l, RParenLoc) {}
294
295  CXXReinterpretCastExpr(EmptyShell Empty, unsigned pathSize)
296    : CXXNamedCastExpr(CXXReinterpretCastExprClass, Empty, pathSize) { }
297
298public:
299  static CXXReinterpretCastExpr *Create(ASTContext &Context, QualType T,
300                                        ExprValueKind VK, CastKind Kind,
301                                        Expr *Op, const CXXCastPath *Path,
302                                 TypeSourceInfo *WrittenTy, SourceLocation L,
303                                        SourceLocation RParenLoc);
304  static CXXReinterpretCastExpr *CreateEmpty(ASTContext &Context,
305                                             unsigned pathSize);
306
307  static bool classof(const Stmt *T) {
308    return T->getStmtClass() == CXXReinterpretCastExprClass;
309  }
310};
311
312/// CXXConstCastExpr - A C++ @c const_cast expression (C++ [expr.const.cast]),
313/// which can remove type qualifiers but does not change the underlying value.
314///
315/// This expression node represents a const cast, e.g.,
316/// @c const_cast<char*>(PtrToConstChar).
317class CXXConstCastExpr : public CXXNamedCastExpr {
318  CXXConstCastExpr(QualType ty, ExprValueKind VK, Expr *op,
319                   TypeSourceInfo *writtenTy, SourceLocation l,
320                   SourceLocation RParenLoc)
321    : CXXNamedCastExpr(CXXConstCastExprClass, ty, VK, CK_NoOp, op,
322                       0, writtenTy, l, RParenLoc) {}
323
324  explicit CXXConstCastExpr(EmptyShell Empty)
325    : CXXNamedCastExpr(CXXConstCastExprClass, Empty, 0) { }
326
327public:
328  static CXXConstCastExpr *Create(ASTContext &Context, QualType T,
329                                  ExprValueKind VK, Expr *Op,
330                                  TypeSourceInfo *WrittenTy, SourceLocation L,
331                                  SourceLocation RParenLoc);
332  static CXXConstCastExpr *CreateEmpty(ASTContext &Context);
333
334  static bool classof(const Stmt *T) {
335    return T->getStmtClass() == CXXConstCastExprClass;
336  }
337};
338
339/// UserDefinedLiteral - A call to a literal operator (C++11 [over.literal])
340/// written as a user-defined literal (C++11 [lit.ext]).
341///
342/// Represents a user-defined literal, e.g. "foo"_bar or 1.23_xyz. While this
343/// is semantically equivalent to a normal call, this AST node provides better
344/// information about the syntactic representation of the literal.
345///
346/// Since literal operators are never found by ADL and can only be declared at
347/// namespace scope, a user-defined literal is never dependent.
348class UserDefinedLiteral : public CallExpr {
349  /// \brief The location of a ud-suffix within the literal.
350  SourceLocation UDSuffixLoc;
351
352public:
353  UserDefinedLiteral(ASTContext &C, Expr *Fn, ArrayRef<Expr*> Args,
354                     QualType T, ExprValueKind VK, SourceLocation LitEndLoc,
355                     SourceLocation SuffixLoc)
356    : CallExpr(C, UserDefinedLiteralClass, Fn, 0, Args, T, VK, LitEndLoc),
357      UDSuffixLoc(SuffixLoc) {}
358  explicit UserDefinedLiteral(ASTContext &C, EmptyShell Empty)
359    : CallExpr(C, UserDefinedLiteralClass, Empty) {}
360
361  /// The kind of literal operator which is invoked.
362  enum LiteralOperatorKind {
363    LOK_Raw,      ///< Raw form: operator "" X (const char *)
364    LOK_Template, ///< Raw form: operator "" X<cs...> ()
365    LOK_Integer,  ///< operator "" X (unsigned long long)
366    LOK_Floating, ///< operator "" X (long double)
367    LOK_String,   ///< operator "" X (const CharT *, size_t)
368    LOK_Character ///< operator "" X (CharT)
369  };
370
371  /// getLiteralOperatorKind - Returns the kind of literal operator invocation
372  /// which this expression represents.
373  LiteralOperatorKind getLiteralOperatorKind() const;
374
375  /// getCookedLiteral - If this is not a raw user-defined literal, get the
376  /// underlying cooked literal (representing the literal with the suffix
377  /// removed).
378  Expr *getCookedLiteral();
379  const Expr *getCookedLiteral() const {
380    return const_cast<UserDefinedLiteral*>(this)->getCookedLiteral();
381  }
382
383  SourceLocation getLocStart() const {
384    if (getLiteralOperatorKind() == LOK_Template)
385      return getRParenLoc();
386    return getArg(0)->getLocStart();
387  }
388  SourceLocation getLocEnd() const { return getRParenLoc(); }
389  SourceRange getSourceRange() const {
390    return SourceRange(getLocStart(), getLocEnd());
391  }
392
393
394  /// getUDSuffixLoc - Returns the location of a ud-suffix in the expression.
395  /// For a string literal, there may be multiple identical suffixes. This
396  /// returns the first.
397  SourceLocation getUDSuffixLoc() const { return UDSuffixLoc; }
398
399  /// getUDSuffix - Returns the ud-suffix specified for this literal.
400  const IdentifierInfo *getUDSuffix() const;
401
402  static bool classof(const Stmt *S) {
403    return S->getStmtClass() == UserDefinedLiteralClass;
404  }
405
406  friend class ASTStmtReader;
407  friend class ASTStmtWriter;
408};
409
410/// CXXBoolLiteralExpr - [C++ 2.13.5] C++ Boolean Literal.
411///
412class CXXBoolLiteralExpr : public Expr {
413  bool Value;
414  SourceLocation Loc;
415public:
416  CXXBoolLiteralExpr(bool val, QualType Ty, SourceLocation l) :
417    Expr(CXXBoolLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
418         false, false),
419    Value(val), Loc(l) {}
420
421  explicit CXXBoolLiteralExpr(EmptyShell Empty)
422    : Expr(CXXBoolLiteralExprClass, Empty) { }
423
424  bool getValue() const { return Value; }
425  void setValue(bool V) { Value = V; }
426
427  SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(Loc); }
428
429  SourceLocation getLocation() const { return Loc; }
430  void setLocation(SourceLocation L) { Loc = L; }
431
432  static bool classof(const Stmt *T) {
433    return T->getStmtClass() == CXXBoolLiteralExprClass;
434  }
435
436  // Iterators
437  child_range children() { return child_range(); }
438};
439
440/// CXXNullPtrLiteralExpr - [C++0x 2.14.7] C++ Pointer Literal
441class CXXNullPtrLiteralExpr : public Expr {
442  SourceLocation Loc;
443public:
444  CXXNullPtrLiteralExpr(QualType Ty, SourceLocation l) :
445    Expr(CXXNullPtrLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
446         false, false),
447    Loc(l) {}
448
449  explicit CXXNullPtrLiteralExpr(EmptyShell Empty)
450    : Expr(CXXNullPtrLiteralExprClass, Empty) { }
451
452  SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(Loc); }
453
454  SourceLocation getLocation() const { return Loc; }
455  void setLocation(SourceLocation L) { Loc = L; }
456
457  static bool classof(const Stmt *T) {
458    return T->getStmtClass() == CXXNullPtrLiteralExprClass;
459  }
460
461  child_range children() { return child_range(); }
462};
463
464/// CXXTypeidExpr - A C++ @c typeid expression (C++ [expr.typeid]), which gets
465/// the type_info that corresponds to the supplied type, or the (possibly
466/// dynamic) type of the supplied expression.
467///
468/// This represents code like @c typeid(int) or @c typeid(*objPtr)
469class CXXTypeidExpr : public Expr {
470private:
471  llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
472  SourceRange Range;
473
474public:
475  CXXTypeidExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
476    : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
477           // typeid is never type-dependent (C++ [temp.dep.expr]p4)
478           false,
479           // typeid is value-dependent if the type or expression are dependent
480           Operand->getType()->isDependentType(),
481           Operand->getType()->isInstantiationDependentType(),
482           Operand->getType()->containsUnexpandedParameterPack()),
483      Operand(Operand), Range(R) { }
484
485  CXXTypeidExpr(QualType Ty, Expr *Operand, SourceRange R)
486    : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
487        // typeid is never type-dependent (C++ [temp.dep.expr]p4)
488           false,
489        // typeid is value-dependent if the type or expression are dependent
490           Operand->isTypeDependent() || Operand->isValueDependent(),
491           Operand->isInstantiationDependent(),
492           Operand->containsUnexpandedParameterPack()),
493      Operand(Operand), Range(R) { }
494
495  CXXTypeidExpr(EmptyShell Empty, bool isExpr)
496    : Expr(CXXTypeidExprClass, Empty) {
497    if (isExpr)
498      Operand = (Expr*)0;
499    else
500      Operand = (TypeSourceInfo*)0;
501  }
502
503  /// Determine whether this typeid has a type operand which is potentially
504  /// evaluated, per C++11 [expr.typeid]p3.
505  bool isPotentiallyEvaluated() const;
506
507  bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
508
509  /// \brief Retrieves the type operand of this typeid() expression after
510  /// various required adjustments (removing reference types, cv-qualifiers).
511  QualType getTypeOperand() const;
512
513  /// \brief Retrieve source information for the type operand.
514  TypeSourceInfo *getTypeOperandSourceInfo() const {
515    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
516    return Operand.get<TypeSourceInfo *>();
517  }
518
519  void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
520    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
521    Operand = TSI;
522  }
523
524  Expr *getExprOperand() const {
525    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
526    return static_cast<Expr*>(Operand.get<Stmt *>());
527  }
528
529  void setExprOperand(Expr *E) {
530    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
531    Operand = E;
532  }
533
534  SourceRange getSourceRange() const LLVM_READONLY { return Range; }
535  void setSourceRange(SourceRange R) { Range = R; }
536
537  static bool classof(const Stmt *T) {
538    return T->getStmtClass() == CXXTypeidExprClass;
539  }
540
541  // Iterators
542  child_range children() {
543    if (isTypeOperand()) return child_range();
544    Stmt **begin = reinterpret_cast<Stmt**>(&Operand);
545    return child_range(begin, begin + 1);
546  }
547};
548
549/// CXXUuidofExpr - A microsoft C++ @c __uuidof expression, which gets
550/// the _GUID that corresponds to the supplied type or expression.
551///
552/// This represents code like @c __uuidof(COMTYPE) or @c __uuidof(*comPtr)
553class CXXUuidofExpr : public Expr {
554private:
555  llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
556  SourceRange Range;
557
558public:
559  CXXUuidofExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
560    : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary,
561           false, Operand->getType()->isDependentType(),
562           Operand->getType()->isInstantiationDependentType(),
563           Operand->getType()->containsUnexpandedParameterPack()),
564      Operand(Operand), Range(R) { }
565
566  CXXUuidofExpr(QualType Ty, Expr *Operand, SourceRange R)
567    : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary,
568           false, Operand->isTypeDependent(),
569           Operand->isInstantiationDependent(),
570           Operand->containsUnexpandedParameterPack()),
571      Operand(Operand), Range(R) { }
572
573  CXXUuidofExpr(EmptyShell Empty, bool isExpr)
574    : Expr(CXXUuidofExprClass, Empty) {
575    if (isExpr)
576      Operand = (Expr*)0;
577    else
578      Operand = (TypeSourceInfo*)0;
579  }
580
581  bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
582
583  /// \brief Retrieves the type operand of this __uuidof() expression after
584  /// various required adjustments (removing reference types, cv-qualifiers).
585  QualType getTypeOperand() const;
586
587  /// \brief Retrieve source information for the type operand.
588  TypeSourceInfo *getTypeOperandSourceInfo() const {
589    assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
590    return Operand.get<TypeSourceInfo *>();
591  }
592
593  void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
594    assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
595    Operand = TSI;
596  }
597
598  Expr *getExprOperand() const {
599    assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
600    return static_cast<Expr*>(Operand.get<Stmt *>());
601  }
602
603  void setExprOperand(Expr *E) {
604    assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
605    Operand = E;
606  }
607
608  SourceRange getSourceRange() const LLVM_READONLY { return Range; }
609  void setSourceRange(SourceRange R) { Range = R; }
610
611  static bool classof(const Stmt *T) {
612    return T->getStmtClass() == CXXUuidofExprClass;
613  }
614
615  /// Grabs __declspec(uuid()) off a type, or returns 0 if there is none.
616  static UuidAttr *GetUuidAttrOfType(QualType QT);
617
618  // Iterators
619  child_range children() {
620    if (isTypeOperand()) return child_range();
621    Stmt **begin = reinterpret_cast<Stmt**>(&Operand);
622    return child_range(begin, begin + 1);
623  }
624};
625
626/// CXXThisExpr - Represents the "this" expression in C++, which is a
627/// pointer to the object on which the current member function is
628/// executing (C++ [expr.prim]p3). Example:
629///
630/// @code
631/// class Foo {
632/// public:
633///   void bar();
634///   void test() { this->bar(); }
635/// };
636/// @endcode
637class CXXThisExpr : public Expr {
638  SourceLocation Loc;
639  bool Implicit : 1;
640
641public:
642  CXXThisExpr(SourceLocation L, QualType Type, bool isImplicit)
643    : Expr(CXXThisExprClass, Type, VK_RValue, OK_Ordinary,
644           // 'this' is type-dependent if the class type of the enclosing
645           // member function is dependent (C++ [temp.dep.expr]p2)
646           Type->isDependentType(), Type->isDependentType(),
647           Type->isInstantiationDependentType(),
648           /*ContainsUnexpandedParameterPack=*/false),
649      Loc(L), Implicit(isImplicit) { }
650
651  CXXThisExpr(EmptyShell Empty) : Expr(CXXThisExprClass, Empty) {}
652
653  SourceLocation getLocation() const { return Loc; }
654  void setLocation(SourceLocation L) { Loc = L; }
655
656  SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(Loc); }
657
658  bool isImplicit() const { return Implicit; }
659  void setImplicit(bool I) { Implicit = I; }
660
661  static bool classof(const Stmt *T) {
662    return T->getStmtClass() == CXXThisExprClass;
663  }
664
665  // Iterators
666  child_range children() { return child_range(); }
667};
668
669///  CXXThrowExpr - [C++ 15] C++ Throw Expression.  This handles
670///  'throw' and 'throw' assignment-expression.  When
671///  assignment-expression isn't present, Op will be null.
672///
673class CXXThrowExpr : public Expr {
674  Stmt *Op;
675  SourceLocation ThrowLoc;
676  /// \brief Whether the thrown variable (if any) is in scope.
677  unsigned IsThrownVariableInScope : 1;
678
679  friend class ASTStmtReader;
680
681public:
682  // Ty is the void type which is used as the result type of the
683  // exepression.  The l is the location of the throw keyword.  expr
684  // can by null, if the optional expression to throw isn't present.
685  CXXThrowExpr(Expr *expr, QualType Ty, SourceLocation l,
686               bool IsThrownVariableInScope) :
687    Expr(CXXThrowExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
688         expr && expr->isInstantiationDependent(),
689         expr && expr->containsUnexpandedParameterPack()),
690    Op(expr), ThrowLoc(l), IsThrownVariableInScope(IsThrownVariableInScope) {}
691  CXXThrowExpr(EmptyShell Empty) : Expr(CXXThrowExprClass, Empty) {}
692
693  const Expr *getSubExpr() const { return cast_or_null<Expr>(Op); }
694  Expr *getSubExpr() { return cast_or_null<Expr>(Op); }
695
696  SourceLocation getThrowLoc() const { return ThrowLoc; }
697
698  /// \brief Determines whether the variable thrown by this expression (if any!)
699  /// is within the innermost try block.
700  ///
701  /// This information is required to determine whether the NRVO can apply to
702  /// this variable.
703  bool isThrownVariableInScope() const { return IsThrownVariableInScope; }
704
705  SourceRange getSourceRange() const LLVM_READONLY {
706    if (getSubExpr() == 0)
707      return SourceRange(ThrowLoc, ThrowLoc);
708    return SourceRange(ThrowLoc, getSubExpr()->getSourceRange().getEnd());
709  }
710
711  static bool classof(const Stmt *T) {
712    return T->getStmtClass() == CXXThrowExprClass;
713  }
714
715  // Iterators
716  child_range children() {
717    return child_range(&Op, Op ? &Op+1 : &Op);
718  }
719};
720
721/// CXXDefaultArgExpr - C++ [dcl.fct.default]. This wraps up a
722/// function call argument that was created from the corresponding
723/// parameter's default argument, when the call did not explicitly
724/// supply arguments for all of the parameters.
725class CXXDefaultArgExpr : public Expr {
726  /// \brief The parameter whose default is being used.
727  ///
728  /// When the bit is set, the subexpression is stored after the
729  /// CXXDefaultArgExpr itself. When the bit is clear, the parameter's
730  /// actual default expression is the subexpression.
731  llvm::PointerIntPair<ParmVarDecl *, 1, bool> Param;
732
733  /// \brief The location where the default argument expression was used.
734  SourceLocation Loc;
735
736  CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param)
737    : Expr(SC,
738           param->hasUnparsedDefaultArg()
739             ? param->getType().getNonReferenceType()
740             : param->getDefaultArg()->getType(),
741           param->getDefaultArg()->getValueKind(),
742           param->getDefaultArg()->getObjectKind(), false, false, false, false),
743      Param(param, false), Loc(Loc) { }
744
745  CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param,
746                    Expr *SubExpr)
747    : Expr(SC, SubExpr->getType(),
748           SubExpr->getValueKind(), SubExpr->getObjectKind(),
749           false, false, false, false),
750      Param(param, true), Loc(Loc) {
751    *reinterpret_cast<Expr **>(this + 1) = SubExpr;
752  }
753
754public:
755  CXXDefaultArgExpr(EmptyShell Empty) : Expr(CXXDefaultArgExprClass, Empty) {}
756
757
758  // Param is the parameter whose default argument is used by this
759  // expression.
760  static CXXDefaultArgExpr *Create(ASTContext &C, SourceLocation Loc,
761                                   ParmVarDecl *Param) {
762    return new (C) CXXDefaultArgExpr(CXXDefaultArgExprClass, Loc, Param);
763  }
764
765  // Param is the parameter whose default argument is used by this
766  // expression, and SubExpr is the expression that will actually be used.
767  static CXXDefaultArgExpr *Create(ASTContext &C,
768                                   SourceLocation Loc,
769                                   ParmVarDecl *Param,
770                                   Expr *SubExpr);
771
772  // Retrieve the parameter that the argument was created from.
773  const ParmVarDecl *getParam() const { return Param.getPointer(); }
774  ParmVarDecl *getParam() { return Param.getPointer(); }
775
776  // Retrieve the actual argument to the function call.
777  const Expr *getExpr() const {
778    if (Param.getInt())
779      return *reinterpret_cast<Expr const * const*> (this + 1);
780    return getParam()->getDefaultArg();
781  }
782  Expr *getExpr() {
783    if (Param.getInt())
784      return *reinterpret_cast<Expr **> (this + 1);
785    return getParam()->getDefaultArg();
786  }
787
788  /// \brief Retrieve the location where this default argument was actually
789  /// used.
790  SourceLocation getUsedLocation() const { return Loc; }
791
792  SourceRange getSourceRange() const LLVM_READONLY {
793    // Default argument expressions have no representation in the
794    // source, so they have an empty source range.
795    return SourceRange();
796  }
797
798  SourceLocation getExprLoc() const LLVM_READONLY { return Loc; }
799
800  static bool classof(const Stmt *T) {
801    return T->getStmtClass() == CXXDefaultArgExprClass;
802  }
803
804  // Iterators
805  child_range children() { return child_range(); }
806
807  friend class ASTStmtReader;
808  friend class ASTStmtWriter;
809};
810
811/// CXXTemporary - Represents a C++ temporary.
812class CXXTemporary {
813  /// Destructor - The destructor that needs to be called.
814  const CXXDestructorDecl *Destructor;
815
816  CXXTemporary(const CXXDestructorDecl *destructor)
817    : Destructor(destructor) { }
818
819public:
820  static CXXTemporary *Create(ASTContext &C,
821                              const CXXDestructorDecl *Destructor);
822
823  const CXXDestructorDecl *getDestructor() const { return Destructor; }
824  void setDestructor(const CXXDestructorDecl *Dtor) {
825    Destructor = Dtor;
826  }
827};
828
829/// \brief Represents binding an expression to a temporary.
830///
831/// This ensures the destructor is called for the temporary. It should only be
832/// needed for non-POD, non-trivially destructable class types. For example:
833///
834/// \code
835///   struct S {
836///     S() { }  // User defined constructor makes S non-POD.
837///     ~S() { } // User defined destructor makes it non-trivial.
838///   };
839///   void test() {
840///     const S &s_ref = S(); // Requires a CXXBindTemporaryExpr.
841///   }
842/// \endcode
843class CXXBindTemporaryExpr : public Expr {
844  CXXTemporary *Temp;
845
846  Stmt *SubExpr;
847
848  CXXBindTemporaryExpr(CXXTemporary *temp, Expr* SubExpr)
849   : Expr(CXXBindTemporaryExprClass, SubExpr->getType(),
850          VK_RValue, OK_Ordinary, SubExpr->isTypeDependent(),
851          SubExpr->isValueDependent(),
852          SubExpr->isInstantiationDependent(),
853          SubExpr->containsUnexpandedParameterPack()),
854     Temp(temp), SubExpr(SubExpr) { }
855
856public:
857  CXXBindTemporaryExpr(EmptyShell Empty)
858    : Expr(CXXBindTemporaryExprClass, Empty), Temp(0), SubExpr(0) {}
859
860  static CXXBindTemporaryExpr *Create(ASTContext &C, CXXTemporary *Temp,
861                                      Expr* SubExpr);
862
863  CXXTemporary *getTemporary() { return Temp; }
864  const CXXTemporary *getTemporary() const { return Temp; }
865  void setTemporary(CXXTemporary *T) { Temp = T; }
866
867  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
868  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
869  void setSubExpr(Expr *E) { SubExpr = E; }
870
871  SourceRange getSourceRange() const LLVM_READONLY {
872    return SubExpr->getSourceRange();
873  }
874
875  // Implement isa/cast/dyncast/etc.
876  static bool classof(const Stmt *T) {
877    return T->getStmtClass() == CXXBindTemporaryExprClass;
878  }
879
880  // Iterators
881  child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
882};
883
884/// \brief Represents a call to a C++ constructor.
885class CXXConstructExpr : public Expr {
886public:
887  enum ConstructionKind {
888    CK_Complete,
889    CK_NonVirtualBase,
890    CK_VirtualBase,
891    CK_Delegating
892  };
893
894private:
895  CXXConstructorDecl *Constructor;
896
897  SourceLocation Loc;
898  SourceRange ParenRange;
899  unsigned NumArgs : 16;
900  bool Elidable : 1;
901  bool HadMultipleCandidates : 1;
902  bool ListInitialization : 1;
903  bool ZeroInitialization : 1;
904  unsigned ConstructKind : 2;
905  Stmt **Args;
906
907protected:
908  CXXConstructExpr(ASTContext &C, StmtClass SC, QualType T,
909                   SourceLocation Loc,
910                   CXXConstructorDecl *d, bool elidable,
911                   ArrayRef<Expr *> Args,
912                   bool HadMultipleCandidates,
913                   bool ListInitialization,
914                   bool ZeroInitialization,
915                   ConstructionKind ConstructKind,
916                   SourceRange ParenRange);
917
918  /// \brief Construct an empty C++ construction expression.
919  CXXConstructExpr(StmtClass SC, EmptyShell Empty)
920    : Expr(SC, Empty), Constructor(0), NumArgs(0), Elidable(false),
921      HadMultipleCandidates(false), ListInitialization(false),
922      ZeroInitialization(false), ConstructKind(0), Args(0)
923  { }
924
925public:
926  /// \brief Construct an empty C++ construction expression.
927  explicit CXXConstructExpr(EmptyShell Empty)
928    : Expr(CXXConstructExprClass, Empty), Constructor(0),
929      NumArgs(0), Elidable(false), HadMultipleCandidates(false),
930      ListInitialization(false), ZeroInitialization(false),
931      ConstructKind(0), Args(0)
932  { }
933
934  static CXXConstructExpr *Create(ASTContext &C, QualType T,
935                                  SourceLocation Loc,
936                                  CXXConstructorDecl *D, bool Elidable,
937                                  ArrayRef<Expr *> Args,
938                                  bool HadMultipleCandidates,
939                                  bool ListInitialization,
940                                  bool ZeroInitialization,
941                                  ConstructionKind ConstructKind,
942                                  SourceRange ParenRange);
943
944  CXXConstructorDecl* getConstructor() const { return Constructor; }
945  void setConstructor(CXXConstructorDecl *C) { Constructor = C; }
946
947  SourceLocation getLocation() const { return Loc; }
948  void setLocation(SourceLocation Loc) { this->Loc = Loc; }
949
950  /// \brief Whether this construction is elidable.
951  bool isElidable() const { return Elidable; }
952  void setElidable(bool E) { Elidable = E; }
953
954  /// \brief Whether the referred constructor was resolved from
955  /// an overloaded set having size greater than 1.
956  bool hadMultipleCandidates() const { return HadMultipleCandidates; }
957  void setHadMultipleCandidates(bool V) { HadMultipleCandidates = V; }
958
959  /// \brief Whether this constructor call was written as list-initialization.
960  bool isListInitialization() const { return ListInitialization; }
961  void setListInitialization(bool V) { ListInitialization = V; }
962
963  /// \brief Whether this construction first requires
964  /// zero-initialization before the initializer is called.
965  bool requiresZeroInitialization() const { return ZeroInitialization; }
966  void setRequiresZeroInitialization(bool ZeroInit) {
967    ZeroInitialization = ZeroInit;
968  }
969
970  /// \brief Determines whether this constructor is actually constructing
971  /// a base class (rather than a complete object).
972  ConstructionKind getConstructionKind() const {
973    return (ConstructionKind)ConstructKind;
974  }
975  void setConstructionKind(ConstructionKind CK) {
976    ConstructKind = CK;
977  }
978
979  typedef ExprIterator arg_iterator;
980  typedef ConstExprIterator const_arg_iterator;
981
982  arg_iterator arg_begin() { return Args; }
983  arg_iterator arg_end() { return Args + NumArgs; }
984  const_arg_iterator arg_begin() const { return Args; }
985  const_arg_iterator arg_end() const { return Args + NumArgs; }
986
987  Expr **getArgs() const { return reinterpret_cast<Expr **>(Args); }
988  unsigned getNumArgs() const { return NumArgs; }
989
990  /// getArg - Return the specified argument.
991  Expr *getArg(unsigned Arg) {
992    assert(Arg < NumArgs && "Arg access out of range!");
993    return cast<Expr>(Args[Arg]);
994  }
995  const Expr *getArg(unsigned Arg) const {
996    assert(Arg < NumArgs && "Arg access out of range!");
997    return cast<Expr>(Args[Arg]);
998  }
999
1000  /// setArg - Set the specified argument.
1001  void setArg(unsigned Arg, Expr *ArgExpr) {
1002    assert(Arg < NumArgs && "Arg access out of range!");
1003    Args[Arg] = ArgExpr;
1004  }
1005
1006  SourceRange getSourceRange() const LLVM_READONLY;
1007  SourceRange getParenRange() const { return ParenRange; }
1008  void setParenRange(SourceRange Range) { ParenRange = Range; }
1009
1010  static bool classof(const Stmt *T) {
1011    return T->getStmtClass() == CXXConstructExprClass ||
1012      T->getStmtClass() == CXXTemporaryObjectExprClass;
1013  }
1014
1015  // Iterators
1016  child_range children() {
1017    return child_range(&Args[0], &Args[0]+NumArgs);
1018  }
1019
1020  friend class ASTStmtReader;
1021};
1022
1023/// \brief Represents an explicit C++ type conversion that uses "functional"
1024/// notation (C++ [expr.type.conv]).
1025///
1026/// Example:
1027/// @code
1028///   x = int(0.5);
1029/// @endcode
1030class CXXFunctionalCastExpr : public ExplicitCastExpr {
1031  SourceLocation TyBeginLoc;
1032  SourceLocation RParenLoc;
1033
1034  CXXFunctionalCastExpr(QualType ty, ExprValueKind VK,
1035                        TypeSourceInfo *writtenTy,
1036                        SourceLocation tyBeginLoc, CastKind kind,
1037                        Expr *castExpr, unsigned pathSize,
1038                        SourceLocation rParenLoc)
1039    : ExplicitCastExpr(CXXFunctionalCastExprClass, ty, VK, kind,
1040                       castExpr, pathSize, writtenTy),
1041      TyBeginLoc(tyBeginLoc), RParenLoc(rParenLoc) {}
1042
1043  explicit CXXFunctionalCastExpr(EmptyShell Shell, unsigned PathSize)
1044    : ExplicitCastExpr(CXXFunctionalCastExprClass, Shell, PathSize) { }
1045
1046public:
1047  static CXXFunctionalCastExpr *Create(ASTContext &Context, QualType T,
1048                                       ExprValueKind VK,
1049                                       TypeSourceInfo *Written,
1050                                       SourceLocation TyBeginLoc,
1051                                       CastKind Kind, Expr *Op,
1052                                       const CXXCastPath *Path,
1053                                       SourceLocation RPLoc);
1054  static CXXFunctionalCastExpr *CreateEmpty(ASTContext &Context,
1055                                            unsigned PathSize);
1056
1057  SourceLocation getTypeBeginLoc() const { return TyBeginLoc; }
1058  void setTypeBeginLoc(SourceLocation L) { TyBeginLoc = L; }
1059  SourceLocation getRParenLoc() const { return RParenLoc; }
1060  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1061
1062  SourceRange getSourceRange() const LLVM_READONLY {
1063    return SourceRange(TyBeginLoc, RParenLoc);
1064  }
1065  static bool classof(const Stmt *T) {
1066    return T->getStmtClass() == CXXFunctionalCastExprClass;
1067  }
1068};
1069
1070/// @brief Represents a C++ functional cast expression that builds a
1071/// temporary object.
1072///
1073/// This expression type represents a C++ "functional" cast
1074/// (C++[expr.type.conv]) with N != 1 arguments that invokes a
1075/// constructor to build a temporary object. With N == 1 arguments the
1076/// functional cast expression will be represented by CXXFunctionalCastExpr.
1077/// Example:
1078/// @code
1079/// struct X { X(int, float); }
1080///
1081/// X create_X() {
1082///   return X(1, 3.14f); // creates a CXXTemporaryObjectExpr
1083/// };
1084/// @endcode
1085class CXXTemporaryObjectExpr : public CXXConstructExpr {
1086  TypeSourceInfo *Type;
1087
1088public:
1089  CXXTemporaryObjectExpr(ASTContext &C, CXXConstructorDecl *Cons,
1090                         TypeSourceInfo *Type,
1091                         ArrayRef<Expr *> Args,
1092                         SourceRange parenRange,
1093                         bool HadMultipleCandidates,
1094                         bool ZeroInitialization = false);
1095  explicit CXXTemporaryObjectExpr(EmptyShell Empty)
1096    : CXXConstructExpr(CXXTemporaryObjectExprClass, Empty), Type() { }
1097
1098  TypeSourceInfo *getTypeSourceInfo() const { return Type; }
1099
1100  SourceRange getSourceRange() const LLVM_READONLY;
1101
1102  static bool classof(const Stmt *T) {
1103    return T->getStmtClass() == CXXTemporaryObjectExprClass;
1104  }
1105
1106  friend class ASTStmtReader;
1107};
1108
1109/// \brief A C++ lambda expression, which produces a function object
1110/// (of unspecified type) that can be invoked later.
1111///
1112/// Example:
1113/// \code
1114/// void low_pass_filter(std::vector<double> &values, double cutoff) {
1115///   values.erase(std::remove_if(values.begin(), values.end(),
1116///                               [=](double value) { return value > cutoff; });
1117/// }
1118/// \endcode
1119///
1120/// Lambda expressions can capture local variables, either by copying
1121/// the values of those local variables at the time the function
1122/// object is constructed (not when it is called!) or by holding a
1123/// reference to the local variable. These captures can occur either
1124/// implicitly or can be written explicitly between the square
1125/// brackets ([...]) that start the lambda expression.
1126class LambdaExpr : public Expr {
1127  enum {
1128    /// \brief Flag used by the Capture class to indicate that the given
1129    /// capture was implicit.
1130    Capture_Implicit = 0x01,
1131
1132    /// \brief Flag used by the Capture class to indciate that the
1133    /// given capture was by-copy.
1134    Capture_ByCopy = 0x02
1135  };
1136
1137  /// \brief The source range that covers the lambda introducer ([...]).
1138  SourceRange IntroducerRange;
1139
1140  /// \brief The number of captures.
1141  unsigned NumCaptures : 16;
1142
1143  /// \brief The default capture kind, which is a value of type
1144  /// LambdaCaptureDefault.
1145  unsigned CaptureDefault : 2;
1146
1147  /// \brief Whether this lambda had an explicit parameter list vs. an
1148  /// implicit (and empty) parameter list.
1149  unsigned ExplicitParams : 1;
1150
1151  /// \brief Whether this lambda had the result type explicitly specified.
1152  unsigned ExplicitResultType : 1;
1153
1154  /// \brief Whether there are any array index variables stored at the end of
1155  /// this lambda expression.
1156  unsigned HasArrayIndexVars : 1;
1157
1158  /// \brief The location of the closing brace ('}') that completes
1159  /// the lambda.
1160  ///
1161  /// The location of the brace is also available by looking up the
1162  /// function call operator in the lambda class. However, it is
1163  /// stored here to improve the performance of getSourceRange(), and
1164  /// to avoid having to deserialize the function call operator from a
1165  /// module file just to determine the source range.
1166  SourceLocation ClosingBrace;
1167
1168  // Note: The capture initializers are stored directly after the lambda
1169  // expression, along with the index variables used to initialize by-copy
1170  // array captures.
1171
1172public:
1173  /// \brief Describes the capture of either a variable or 'this'.
1174  class Capture {
1175    llvm::PointerIntPair<VarDecl *, 2> VarAndBits;
1176    SourceLocation Loc;
1177    SourceLocation EllipsisLoc;
1178
1179    friend class ASTStmtReader;
1180    friend class ASTStmtWriter;
1181
1182  public:
1183    /// \brief Create a new capture.
1184    ///
1185    /// \param Loc The source location associated with this capture.
1186    ///
1187    /// \param Kind The kind of capture (this, byref, bycopy).
1188    ///
1189    /// \param Implicit Whether the capture was implicit or explicit.
1190    ///
1191    /// \param Var The local variable being captured, or null if capturing this.
1192    ///
1193    /// \param EllipsisLoc The location of the ellipsis (...) for a
1194    /// capture that is a pack expansion, or an invalid source
1195    /// location to indicate that this is not a pack expansion.
1196    Capture(SourceLocation Loc, bool Implicit,
1197            LambdaCaptureKind Kind, VarDecl *Var = 0,
1198            SourceLocation EllipsisLoc = SourceLocation());
1199
1200    /// \brief Determine the kind of capture.
1201    LambdaCaptureKind getCaptureKind() const;
1202
1203    /// \brief Determine whether this capture handles the C++ 'this'
1204    /// pointer.
1205    bool capturesThis() const { return VarAndBits.getPointer() == 0; }
1206
1207    /// \brief Determine whether this capture handles a variable.
1208    bool capturesVariable() const { return VarAndBits.getPointer() != 0; }
1209
1210    /// \brief Retrieve the declaration of the local variable being
1211    /// captured.
1212    ///
1213    /// This operation is only valid if this capture does not capture
1214    /// 'this'.
1215    VarDecl *getCapturedVar() const {
1216      assert(!capturesThis() && "No variable available for 'this' capture");
1217      return VarAndBits.getPointer();
1218    }
1219
1220    /// \brief Determine whether this was an implicit capture (not
1221    /// written between the square brackets introducing the lambda).
1222    bool isImplicit() const { return VarAndBits.getInt() & Capture_Implicit; }
1223
1224    /// \brief Determine whether this was an explicit capture, written
1225    /// between the square brackets introducing the lambda.
1226    bool isExplicit() const { return !isImplicit(); }
1227
1228    /// \brief Retrieve the source location of the capture.
1229    ///
1230    /// For an explicit capture, this returns the location of the
1231    /// explicit capture in the source. For an implicit capture, this
1232    /// returns the location at which the variable or 'this' was first
1233    /// used.
1234    SourceLocation getLocation() const { return Loc; }
1235
1236    /// \brief Determine whether this capture is a pack expansion,
1237    /// which captures a function parameter pack.
1238    bool isPackExpansion() const { return EllipsisLoc.isValid(); }
1239
1240    /// \brief Retrieve the location of the ellipsis for a capture
1241    /// that is a pack expansion.
1242    SourceLocation getEllipsisLoc() const {
1243      assert(isPackExpansion() && "No ellipsis location for a non-expansion");
1244      return EllipsisLoc;
1245    }
1246  };
1247
1248private:
1249  /// \brief Construct a lambda expression.
1250  LambdaExpr(QualType T, SourceRange IntroducerRange,
1251             LambdaCaptureDefault CaptureDefault,
1252             ArrayRef<Capture> Captures,
1253             bool ExplicitParams,
1254             bool ExplicitResultType,
1255             ArrayRef<Expr *> CaptureInits,
1256             ArrayRef<VarDecl *> ArrayIndexVars,
1257             ArrayRef<unsigned> ArrayIndexStarts,
1258             SourceLocation ClosingBrace,
1259             bool ContainsUnexpandedParameterPack);
1260
1261  /// \brief Construct an empty lambda expression.
1262  LambdaExpr(EmptyShell Empty, unsigned NumCaptures, bool HasArrayIndexVars)
1263    : Expr(LambdaExprClass, Empty),
1264      NumCaptures(NumCaptures), CaptureDefault(LCD_None), ExplicitParams(false),
1265      ExplicitResultType(false), HasArrayIndexVars(true) {
1266    getStoredStmts()[NumCaptures] = 0;
1267  }
1268
1269  Stmt **getStoredStmts() const {
1270    return reinterpret_cast<Stmt **>(const_cast<LambdaExpr *>(this) + 1);
1271  }
1272
1273  /// \brief Retrieve the mapping from captures to the first array index
1274  /// variable.
1275  unsigned *getArrayIndexStarts() const {
1276    return reinterpret_cast<unsigned *>(getStoredStmts() + NumCaptures + 1);
1277  }
1278
1279  /// \brief Retrieve the complete set of array-index variables.
1280  VarDecl **getArrayIndexVars() const {
1281    unsigned ArrayIndexSize =
1282        llvm::RoundUpToAlignment(sizeof(unsigned) * (NumCaptures + 1),
1283                                 llvm::alignOf<VarDecl*>());
1284    return reinterpret_cast<VarDecl **>(
1285        reinterpret_cast<char*>(getArrayIndexStarts()) + ArrayIndexSize);
1286  }
1287
1288public:
1289  /// \brief Construct a new lambda expression.
1290  static LambdaExpr *Create(ASTContext &C,
1291                            CXXRecordDecl *Class,
1292                            SourceRange IntroducerRange,
1293                            LambdaCaptureDefault CaptureDefault,
1294                            ArrayRef<Capture> Captures,
1295                            bool ExplicitParams,
1296                            bool ExplicitResultType,
1297                            ArrayRef<Expr *> CaptureInits,
1298                            ArrayRef<VarDecl *> ArrayIndexVars,
1299                            ArrayRef<unsigned> ArrayIndexStarts,
1300                            SourceLocation ClosingBrace,
1301                            bool ContainsUnexpandedParameterPack);
1302
1303  /// \brief Construct a new lambda expression that will be deserialized from
1304  /// an external source.
1305  static LambdaExpr *CreateDeserialized(ASTContext &C, unsigned NumCaptures,
1306                                        unsigned NumArrayIndexVars);
1307
1308  /// \brief Determine the default capture kind for this lambda.
1309  LambdaCaptureDefault getCaptureDefault() const {
1310    return static_cast<LambdaCaptureDefault>(CaptureDefault);
1311  }
1312
1313  /// \brief An iterator that walks over the captures of the lambda,
1314  /// both implicit and explicit.
1315  typedef const Capture *capture_iterator;
1316
1317  /// \brief Retrieve an iterator pointing to the first lambda capture.
1318  capture_iterator capture_begin() const;
1319
1320  /// \brief Retrieve an iterator pointing past the end of the
1321  /// sequence of lambda captures.
1322  capture_iterator capture_end() const;
1323
1324  /// \brief Determine the number of captures in this lambda.
1325  unsigned capture_size() const { return NumCaptures; }
1326
1327  /// \brief Retrieve an iterator pointing to the first explicit
1328  /// lambda capture.
1329  capture_iterator explicit_capture_begin() const;
1330
1331  /// \brief Retrieve an iterator pointing past the end of the sequence of
1332  /// explicit lambda captures.
1333  capture_iterator explicit_capture_end() const;
1334
1335  /// \brief Retrieve an iterator pointing to the first implicit
1336  /// lambda capture.
1337  capture_iterator implicit_capture_begin() const;
1338
1339  /// \brief Retrieve an iterator pointing past the end of the sequence of
1340  /// implicit lambda captures.
1341  capture_iterator implicit_capture_end() const;
1342
1343  /// \brief Iterator that walks over the capture initialization
1344  /// arguments.
1345  typedef Expr **capture_init_iterator;
1346
1347  /// \brief Retrieve the first initialization argument for this
1348  /// lambda expression (which initializes the first capture field).
1349  capture_init_iterator capture_init_begin() const {
1350    return reinterpret_cast<Expr **>(getStoredStmts());
1351  }
1352
1353  /// \brief Retrieve the iterator pointing one past the last
1354  /// initialization argument for this lambda expression.
1355  capture_init_iterator capture_init_end() const {
1356    return capture_init_begin() + NumCaptures;
1357  }
1358
1359  /// \brief Retrieve the set of index variables used in the capture
1360  /// initializer of an array captured by copy.
1361  ///
1362  /// \param Iter The iterator that points at the capture initializer for
1363  /// which we are extracting the corresponding index variables.
1364  ArrayRef<VarDecl *> getCaptureInitIndexVars(capture_init_iterator Iter) const;
1365
1366  /// \brief Retrieve the source range covering the lambda introducer,
1367  /// which contains the explicit capture list surrounded by square
1368  /// brackets ([...]).
1369  SourceRange getIntroducerRange() const { return IntroducerRange; }
1370
1371  /// \brief Retrieve the class that corresponds to the lambda, which
1372  /// stores the captures in its fields and provides the various
1373  /// operations permitted on a lambda (copying, calling).
1374  CXXRecordDecl *getLambdaClass() const;
1375
1376  /// \brief Retrieve the function call operator associated with this
1377  /// lambda expression.
1378  CXXMethodDecl *getCallOperator() const;
1379
1380  /// \brief Retrieve the body of the lambda.
1381  CompoundStmt *getBody() const;
1382
1383  /// \brief Determine whether the lambda is mutable, meaning that any
1384  /// captures values can be modified.
1385  bool isMutable() const;
1386
1387  /// \brief Determine whether this lambda has an explicit parameter
1388  /// list vs. an implicit (empty) parameter list.
1389  bool hasExplicitParameters() const { return ExplicitParams; }
1390
1391  /// \brief Whether this lambda had its result type explicitly specified.
1392  bool hasExplicitResultType() const { return ExplicitResultType; }
1393
1394  static bool classof(const Stmt *T) {
1395    return T->getStmtClass() == LambdaExprClass;
1396  }
1397
1398  SourceRange getSourceRange() const LLVM_READONLY {
1399    return SourceRange(IntroducerRange.getBegin(), ClosingBrace);
1400  }
1401
1402  child_range children() {
1403    return child_range(getStoredStmts(), getStoredStmts() + NumCaptures + 1);
1404  }
1405
1406  friend class ASTStmtReader;
1407  friend class ASTStmtWriter;
1408};
1409
1410/// CXXScalarValueInitExpr - [C++ 5.2.3p2]
1411/// Expression "T()" which creates a value-initialized rvalue of type
1412/// T, which is a non-class type.
1413///
1414class CXXScalarValueInitExpr : public Expr {
1415  SourceLocation RParenLoc;
1416  TypeSourceInfo *TypeInfo;
1417
1418  friend class ASTStmtReader;
1419
1420public:
1421  /// \brief Create an explicitly-written scalar-value initialization
1422  /// expression.
1423  CXXScalarValueInitExpr(QualType Type,
1424                         TypeSourceInfo *TypeInfo,
1425                         SourceLocation rParenLoc ) :
1426    Expr(CXXScalarValueInitExprClass, Type, VK_RValue, OK_Ordinary,
1427         false, false, Type->isInstantiationDependentType(), false),
1428    RParenLoc(rParenLoc), TypeInfo(TypeInfo) {}
1429
1430  explicit CXXScalarValueInitExpr(EmptyShell Shell)
1431    : Expr(CXXScalarValueInitExprClass, Shell) { }
1432
1433  TypeSourceInfo *getTypeSourceInfo() const {
1434    return TypeInfo;
1435  }
1436
1437  SourceLocation getRParenLoc() const { return RParenLoc; }
1438
1439  SourceRange getSourceRange() const LLVM_READONLY;
1440
1441  static bool classof(const Stmt *T) {
1442    return T->getStmtClass() == CXXScalarValueInitExprClass;
1443  }
1444
1445  // Iterators
1446  child_range children() { return child_range(); }
1447};
1448
1449/// @brief Represents a new-expression for memory allocation and constructor
1450// calls, e.g: "new CXXNewExpr(foo)".
1451class CXXNewExpr : public Expr {
1452  // Contains an optional array size expression, an optional initialization
1453  // expression, and any number of optional placement arguments, in that order.
1454  Stmt **SubExprs;
1455  /// \brief Points to the allocation function used.
1456  FunctionDecl *OperatorNew;
1457  /// \brief Points to the deallocation function used in case of error. May be
1458  /// null.
1459  FunctionDecl *OperatorDelete;
1460
1461  /// \brief The allocated type-source information, as written in the source.
1462  TypeSourceInfo *AllocatedTypeInfo;
1463
1464  /// \brief If the allocated type was expressed as a parenthesized type-id,
1465  /// the source range covering the parenthesized type-id.
1466  SourceRange TypeIdParens;
1467
1468  /// \brief Range of the entire new expression.
1469  SourceRange Range;
1470
1471  /// \brief Source-range of a paren-delimited initializer.
1472  SourceRange DirectInitRange;
1473
1474  // Was the usage ::new, i.e. is the global new to be used?
1475  bool GlobalNew : 1;
1476  // Do we allocate an array? If so, the first SubExpr is the size expression.
1477  bool Array : 1;
1478  // If this is an array allocation, does the usual deallocation
1479  // function for the allocated type want to know the allocated size?
1480  bool UsualArrayDeleteWantsSize : 1;
1481  // The number of placement new arguments.
1482  unsigned NumPlacementArgs : 13;
1483  // What kind of initializer do we have? Could be none, parens, or braces.
1484  // In storage, we distinguish between "none, and no initializer expr", and
1485  // "none, but an implicit initializer expr".
1486  unsigned StoredInitializationStyle : 2;
1487
1488  friend class ASTStmtReader;
1489  friend class ASTStmtWriter;
1490public:
1491  enum InitializationStyle {
1492    NoInit,   ///< New-expression has no initializer as written.
1493    CallInit, ///< New-expression has a C++98 paren-delimited initializer.
1494    ListInit  ///< New-expression has a C++11 list-initializer.
1495  };
1496
1497  CXXNewExpr(ASTContext &C, bool globalNew, FunctionDecl *operatorNew,
1498             FunctionDecl *operatorDelete, bool usualArrayDeleteWantsSize,
1499             ArrayRef<Expr*> placementArgs,
1500             SourceRange typeIdParens, Expr *arraySize,
1501             InitializationStyle initializationStyle, Expr *initializer,
1502             QualType ty, TypeSourceInfo *AllocatedTypeInfo,
1503             SourceRange Range, SourceRange directInitRange);
1504  explicit CXXNewExpr(EmptyShell Shell)
1505    : Expr(CXXNewExprClass, Shell), SubExprs(0) { }
1506
1507  void AllocateArgsArray(ASTContext &C, bool isArray, unsigned numPlaceArgs,
1508                         bool hasInitializer);
1509
1510  QualType getAllocatedType() const {
1511    assert(getType()->isPointerType());
1512    return getType()->getAs<PointerType>()->getPointeeType();
1513  }
1514
1515  TypeSourceInfo *getAllocatedTypeSourceInfo() const {
1516    return AllocatedTypeInfo;
1517  }
1518
1519  /// \brief True if the allocation result needs to be null-checked.
1520  /// C++0x [expr.new]p13:
1521  ///   If the allocation function returns null, initialization shall
1522  ///   not be done, the deallocation function shall not be called,
1523  ///   and the value of the new-expression shall be null.
1524  /// An allocation function is not allowed to return null unless it
1525  /// has a non-throwing exception-specification.  The '03 rule is
1526  /// identical except that the definition of a non-throwing
1527  /// exception specification is just "is it throw()?".
1528  bool shouldNullCheckAllocation(ASTContext &Ctx) const;
1529
1530  FunctionDecl *getOperatorNew() const { return OperatorNew; }
1531  void setOperatorNew(FunctionDecl *D) { OperatorNew = D; }
1532  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
1533  void setOperatorDelete(FunctionDecl *D) { OperatorDelete = D; }
1534
1535  bool isArray() const { return Array; }
1536  Expr *getArraySize() {
1537    return Array ? cast<Expr>(SubExprs[0]) : 0;
1538  }
1539  const Expr *getArraySize() const {
1540    return Array ? cast<Expr>(SubExprs[0]) : 0;
1541  }
1542
1543  unsigned getNumPlacementArgs() const { return NumPlacementArgs; }
1544  Expr **getPlacementArgs() {
1545    return reinterpret_cast<Expr **>(SubExprs + Array + hasInitializer());
1546  }
1547
1548  Expr *getPlacementArg(unsigned i) {
1549    assert(i < NumPlacementArgs && "Index out of range");
1550    return getPlacementArgs()[i];
1551  }
1552  const Expr *getPlacementArg(unsigned i) const {
1553    assert(i < NumPlacementArgs && "Index out of range");
1554    return const_cast<CXXNewExpr*>(this)->getPlacementArg(i);
1555  }
1556
1557  bool isParenTypeId() const { return TypeIdParens.isValid(); }
1558  SourceRange getTypeIdParens() const { return TypeIdParens; }
1559
1560  bool isGlobalNew() const { return GlobalNew; }
1561
1562  /// \brief Whether this new-expression has any initializer at all.
1563  bool hasInitializer() const { return StoredInitializationStyle > 0; }
1564
1565  /// \brief The kind of initializer this new-expression has.
1566  InitializationStyle getInitializationStyle() const {
1567    if (StoredInitializationStyle == 0)
1568      return NoInit;
1569    return static_cast<InitializationStyle>(StoredInitializationStyle-1);
1570  }
1571
1572  /// \brief The initializer of this new-expression.
1573  Expr *getInitializer() {
1574    return hasInitializer() ? cast<Expr>(SubExprs[Array]) : 0;
1575  }
1576  const Expr *getInitializer() const {
1577    return hasInitializer() ? cast<Expr>(SubExprs[Array]) : 0;
1578  }
1579
1580  /// \brief Returns the CXXConstructExpr from this new-expression, or NULL.
1581  const CXXConstructExpr* getConstructExpr() const {
1582    return dyn_cast_or_null<CXXConstructExpr>(getInitializer());
1583  }
1584
1585  /// Answers whether the usual array deallocation function for the
1586  /// allocated type expects the size of the allocation as a
1587  /// parameter.
1588  bool doesUsualArrayDeleteWantSize() const {
1589    return UsualArrayDeleteWantsSize;
1590  }
1591
1592  typedef ExprIterator arg_iterator;
1593  typedef ConstExprIterator const_arg_iterator;
1594
1595  arg_iterator placement_arg_begin() {
1596    return SubExprs + Array + hasInitializer();
1597  }
1598  arg_iterator placement_arg_end() {
1599    return SubExprs + Array + hasInitializer() + getNumPlacementArgs();
1600  }
1601  const_arg_iterator placement_arg_begin() const {
1602    return SubExprs + Array + hasInitializer();
1603  }
1604  const_arg_iterator placement_arg_end() const {
1605    return SubExprs + Array + hasInitializer() + getNumPlacementArgs();
1606  }
1607
1608  typedef Stmt **raw_arg_iterator;
1609  raw_arg_iterator raw_arg_begin() { return SubExprs; }
1610  raw_arg_iterator raw_arg_end() {
1611    return SubExprs + Array + hasInitializer() + getNumPlacementArgs();
1612  }
1613  const_arg_iterator raw_arg_begin() const { return SubExprs; }
1614  const_arg_iterator raw_arg_end() const {
1615    return SubExprs + Array + hasInitializer() + getNumPlacementArgs();
1616  }
1617
1618  SourceLocation getStartLoc() const { return Range.getBegin(); }
1619  SourceLocation getEndLoc() const { return Range.getEnd(); }
1620
1621  SourceRange getDirectInitRange() const { return DirectInitRange; }
1622
1623  SourceRange getSourceRange() const LLVM_READONLY {
1624    return Range;
1625  }
1626
1627  static bool classof(const Stmt *T) {
1628    return T->getStmtClass() == CXXNewExprClass;
1629  }
1630
1631  // Iterators
1632  child_range children() {
1633    return child_range(raw_arg_begin(), raw_arg_end());
1634  }
1635};
1636
1637/// \brief Represents a \c delete expression for memory deallocation and
1638/// destructor calls, e.g. "delete[] pArray".
1639class CXXDeleteExpr : public Expr {
1640  // Points to the operator delete overload that is used. Could be a member.
1641  FunctionDecl *OperatorDelete;
1642  // The pointer expression to be deleted.
1643  Stmt *Argument;
1644  // Location of the expression.
1645  SourceLocation Loc;
1646  // Is this a forced global delete, i.e. "::delete"?
1647  bool GlobalDelete : 1;
1648  // Is this the array form of delete, i.e. "delete[]"?
1649  bool ArrayForm : 1;
1650  // ArrayFormAsWritten can be different from ArrayForm if 'delete' is applied
1651  // to pointer-to-array type (ArrayFormAsWritten will be false while ArrayForm
1652  // will be true).
1653  bool ArrayFormAsWritten : 1;
1654  // Does the usual deallocation function for the element type require
1655  // a size_t argument?
1656  bool UsualArrayDeleteWantsSize : 1;
1657public:
1658  CXXDeleteExpr(QualType ty, bool globalDelete, bool arrayForm,
1659                bool arrayFormAsWritten, bool usualArrayDeleteWantsSize,
1660                FunctionDecl *operatorDelete, Expr *arg, SourceLocation loc)
1661    : Expr(CXXDeleteExprClass, ty, VK_RValue, OK_Ordinary, false, false,
1662           arg->isInstantiationDependent(),
1663           arg->containsUnexpandedParameterPack()),
1664      OperatorDelete(operatorDelete), Argument(arg), Loc(loc),
1665      GlobalDelete(globalDelete),
1666      ArrayForm(arrayForm), ArrayFormAsWritten(arrayFormAsWritten),
1667      UsualArrayDeleteWantsSize(usualArrayDeleteWantsSize) { }
1668  explicit CXXDeleteExpr(EmptyShell Shell)
1669    : Expr(CXXDeleteExprClass, Shell), OperatorDelete(0), Argument(0) { }
1670
1671  bool isGlobalDelete() const { return GlobalDelete; }
1672  bool isArrayForm() const { return ArrayForm; }
1673  bool isArrayFormAsWritten() const { return ArrayFormAsWritten; }
1674
1675  /// Answers whether the usual array deallocation function for the
1676  /// allocated type expects the size of the allocation as a
1677  /// parameter.  This can be true even if the actual deallocation
1678  /// function that we're using doesn't want a size.
1679  bool doesUsualArrayDeleteWantSize() const {
1680    return UsualArrayDeleteWantsSize;
1681  }
1682
1683  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
1684
1685  Expr *getArgument() { return cast<Expr>(Argument); }
1686  const Expr *getArgument() const { return cast<Expr>(Argument); }
1687
1688  /// \brief Retrieve the type being destroyed.  If the type being
1689  /// destroyed is a dependent type which may or may not be a pointer,
1690  /// return an invalid type.
1691  QualType getDestroyedType() const;
1692
1693  SourceRange getSourceRange() const LLVM_READONLY {
1694    return SourceRange(Loc, Argument->getLocEnd());
1695  }
1696
1697  static bool classof(const Stmt *T) {
1698    return T->getStmtClass() == CXXDeleteExprClass;
1699  }
1700
1701  // Iterators
1702  child_range children() { return child_range(&Argument, &Argument+1); }
1703
1704  friend class ASTStmtReader;
1705};
1706
1707/// \brief Stores the type being destroyed by a pseudo-destructor expression.
1708class PseudoDestructorTypeStorage {
1709  /// \brief Either the type source information or the name of the type, if
1710  /// it couldn't be resolved due to type-dependence.
1711  llvm::PointerUnion<TypeSourceInfo *, IdentifierInfo *> Type;
1712
1713  /// \brief The starting source location of the pseudo-destructor type.
1714  SourceLocation Location;
1715
1716public:
1717  PseudoDestructorTypeStorage() { }
1718
1719  PseudoDestructorTypeStorage(IdentifierInfo *II, SourceLocation Loc)
1720    : Type(II), Location(Loc) { }
1721
1722  PseudoDestructorTypeStorage(TypeSourceInfo *Info);
1723
1724  TypeSourceInfo *getTypeSourceInfo() const {
1725    return Type.dyn_cast<TypeSourceInfo *>();
1726  }
1727
1728  IdentifierInfo *getIdentifier() const {
1729    return Type.dyn_cast<IdentifierInfo *>();
1730  }
1731
1732  SourceLocation getLocation() const { return Location; }
1733};
1734
1735/// \brief Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
1736///
1737/// A pseudo-destructor is an expression that looks like a member access to a
1738/// destructor of a scalar type, except that scalar types don't have
1739/// destructors. For example:
1740///
1741/// \code
1742/// typedef int T;
1743/// void f(int *p) {
1744///   p->T::~T();
1745/// }
1746/// \endcode
1747///
1748/// Pseudo-destructors typically occur when instantiating templates such as:
1749///
1750/// \code
1751/// template<typename T>
1752/// void destroy(T* ptr) {
1753///   ptr->T::~T();
1754/// }
1755/// \endcode
1756///
1757/// for scalar types. A pseudo-destructor expression has no run-time semantics
1758/// beyond evaluating the base expression.
1759class CXXPseudoDestructorExpr : public Expr {
1760  /// \brief The base expression (that is being destroyed).
1761  Stmt *Base;
1762
1763  /// \brief Whether the operator was an arrow ('->'); otherwise, it was a
1764  /// period ('.').
1765  bool IsArrow : 1;
1766
1767  /// \brief The location of the '.' or '->' operator.
1768  SourceLocation OperatorLoc;
1769
1770  /// \brief The nested-name-specifier that follows the operator, if present.
1771  NestedNameSpecifierLoc QualifierLoc;
1772
1773  /// \brief The type that precedes the '::' in a qualified pseudo-destructor
1774  /// expression.
1775  TypeSourceInfo *ScopeType;
1776
1777  /// \brief The location of the '::' in a qualified pseudo-destructor
1778  /// expression.
1779  SourceLocation ColonColonLoc;
1780
1781  /// \brief The location of the '~'.
1782  SourceLocation TildeLoc;
1783
1784  /// \brief The type being destroyed, or its name if we were unable to
1785  /// resolve the name.
1786  PseudoDestructorTypeStorage DestroyedType;
1787
1788  friend class ASTStmtReader;
1789
1790public:
1791  CXXPseudoDestructorExpr(ASTContext &Context,
1792                          Expr *Base, bool isArrow, SourceLocation OperatorLoc,
1793                          NestedNameSpecifierLoc QualifierLoc,
1794                          TypeSourceInfo *ScopeType,
1795                          SourceLocation ColonColonLoc,
1796                          SourceLocation TildeLoc,
1797                          PseudoDestructorTypeStorage DestroyedType);
1798
1799  explicit CXXPseudoDestructorExpr(EmptyShell Shell)
1800    : Expr(CXXPseudoDestructorExprClass, Shell),
1801      Base(0), IsArrow(false), QualifierLoc(), ScopeType(0) { }
1802
1803  Expr *getBase() const { return cast<Expr>(Base); }
1804
1805  /// \brief Determines whether this member expression actually had
1806  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
1807  /// x->Base::foo.
1808  bool hasQualifier() const { return QualifierLoc; }
1809
1810  /// \brief Retrieves the nested-name-specifier that qualifies the type name,
1811  /// with source-location information.
1812  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
1813
1814  /// \brief If the member name was qualified, retrieves the
1815  /// nested-name-specifier that precedes the member name. Otherwise, returns
1816  /// NULL.
1817  NestedNameSpecifier *getQualifier() const {
1818    return QualifierLoc.getNestedNameSpecifier();
1819  }
1820
1821  /// \brief Determine whether this pseudo-destructor expression was written
1822  /// using an '->' (otherwise, it used a '.').
1823  bool isArrow() const { return IsArrow; }
1824
1825  /// \brief Retrieve the location of the '.' or '->' operator.
1826  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1827
1828  /// \brief Retrieve the scope type in a qualified pseudo-destructor
1829  /// expression.
1830  ///
1831  /// Pseudo-destructor expressions can have extra qualification within them
1832  /// that is not part of the nested-name-specifier, e.g., \c p->T::~T().
1833  /// Here, if the object type of the expression is (or may be) a scalar type,
1834  /// \p T may also be a scalar type and, therefore, cannot be part of a
1835  /// nested-name-specifier. It is stored as the "scope type" of the pseudo-
1836  /// destructor expression.
1837  TypeSourceInfo *getScopeTypeInfo() const { return ScopeType; }
1838
1839  /// \brief Retrieve the location of the '::' in a qualified pseudo-destructor
1840  /// expression.
1841  SourceLocation getColonColonLoc() const { return ColonColonLoc; }
1842
1843  /// \brief Retrieve the location of the '~'.
1844  SourceLocation getTildeLoc() const { return TildeLoc; }
1845
1846  /// \brief Retrieve the source location information for the type
1847  /// being destroyed.
1848  ///
1849  /// This type-source information is available for non-dependent
1850  /// pseudo-destructor expressions and some dependent pseudo-destructor
1851  /// expressions. Returns NULL if we only have the identifier for a
1852  /// dependent pseudo-destructor expression.
1853  TypeSourceInfo *getDestroyedTypeInfo() const {
1854    return DestroyedType.getTypeSourceInfo();
1855  }
1856
1857  /// \brief In a dependent pseudo-destructor expression for which we do not
1858  /// have full type information on the destroyed type, provides the name
1859  /// of the destroyed type.
1860  IdentifierInfo *getDestroyedTypeIdentifier() const {
1861    return DestroyedType.getIdentifier();
1862  }
1863
1864  /// \brief Retrieve the type being destroyed.
1865  QualType getDestroyedType() const;
1866
1867  /// \brief Retrieve the starting location of the type being destroyed.
1868  SourceLocation getDestroyedTypeLoc() const {
1869    return DestroyedType.getLocation();
1870  }
1871
1872  /// \brief Set the name of destroyed type for a dependent pseudo-destructor
1873  /// expression.
1874  void setDestroyedType(IdentifierInfo *II, SourceLocation Loc) {
1875    DestroyedType = PseudoDestructorTypeStorage(II, Loc);
1876  }
1877
1878  /// \brief Set the destroyed type.
1879  void setDestroyedType(TypeSourceInfo *Info) {
1880    DestroyedType = PseudoDestructorTypeStorage(Info);
1881  }
1882
1883  SourceRange getSourceRange() const LLVM_READONLY;
1884
1885  static bool classof(const Stmt *T) {
1886    return T->getStmtClass() == CXXPseudoDestructorExprClass;
1887  }
1888
1889  // Iterators
1890  child_range children() { return child_range(&Base, &Base + 1); }
1891};
1892
1893/// \brief Represents a GCC or MS unary type trait, as used in the
1894/// implementation of TR1/C++11 type trait templates.
1895///
1896/// Example:
1897/// @code
1898///   __is_pod(int) == true
1899///   __is_enum(std::string) == false
1900/// @endcode
1901class UnaryTypeTraitExpr : public Expr {
1902  /// UTT - The trait. A UnaryTypeTrait enum in MSVC compat unsigned.
1903  unsigned UTT : 31;
1904  /// The value of the type trait. Unspecified if dependent.
1905  bool Value : 1;
1906
1907  /// Loc - The location of the type trait keyword.
1908  SourceLocation Loc;
1909
1910  /// RParen - The location of the closing paren.
1911  SourceLocation RParen;
1912
1913  /// The type being queried.
1914  TypeSourceInfo *QueriedType;
1915
1916public:
1917  UnaryTypeTraitExpr(SourceLocation loc, UnaryTypeTrait utt,
1918                     TypeSourceInfo *queried, bool value,
1919                     SourceLocation rparen, QualType ty)
1920    : Expr(UnaryTypeTraitExprClass, ty, VK_RValue, OK_Ordinary,
1921           false,  queried->getType()->isDependentType(),
1922           queried->getType()->isInstantiationDependentType(),
1923           queried->getType()->containsUnexpandedParameterPack()),
1924      UTT(utt), Value(value), Loc(loc), RParen(rparen), QueriedType(queried) { }
1925
1926  explicit UnaryTypeTraitExpr(EmptyShell Empty)
1927    : Expr(UnaryTypeTraitExprClass, Empty), UTT(0), Value(false),
1928      QueriedType() { }
1929
1930  SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(Loc, RParen);}
1931
1932  UnaryTypeTrait getTrait() const { return static_cast<UnaryTypeTrait>(UTT); }
1933
1934  QualType getQueriedType() const { return QueriedType->getType(); }
1935
1936  TypeSourceInfo *getQueriedTypeSourceInfo() const { return QueriedType; }
1937
1938  bool getValue() const { return Value; }
1939
1940  static bool classof(const Stmt *T) {
1941    return T->getStmtClass() == UnaryTypeTraitExprClass;
1942  }
1943
1944  // Iterators
1945  child_range children() { return child_range(); }
1946
1947  friend class ASTStmtReader;
1948};
1949
1950/// \brief Represents a GCC or MS binary type trait, as used in the
1951/// implementation of TR1/C++11 type trait templates.
1952///
1953/// Example:
1954/// @code
1955///   __is_base_of(Base, Derived) == true
1956/// @endcode
1957class BinaryTypeTraitExpr : public Expr {
1958  /// BTT - The trait. A BinaryTypeTrait enum in MSVC compat unsigned.
1959  unsigned BTT : 8;
1960
1961  /// The value of the type trait. Unspecified if dependent.
1962  bool Value : 1;
1963
1964  /// Loc - The location of the type trait keyword.
1965  SourceLocation Loc;
1966
1967  /// RParen - The location of the closing paren.
1968  SourceLocation RParen;
1969
1970  /// The lhs type being queried.
1971  TypeSourceInfo *LhsType;
1972
1973  /// The rhs type being queried.
1974  TypeSourceInfo *RhsType;
1975
1976public:
1977  BinaryTypeTraitExpr(SourceLocation loc, BinaryTypeTrait btt,
1978                     TypeSourceInfo *lhsType, TypeSourceInfo *rhsType,
1979                     bool value, SourceLocation rparen, QualType ty)
1980    : Expr(BinaryTypeTraitExprClass, ty, VK_RValue, OK_Ordinary, false,
1981           lhsType->getType()->isDependentType() ||
1982           rhsType->getType()->isDependentType(),
1983           (lhsType->getType()->isInstantiationDependentType() ||
1984            rhsType->getType()->isInstantiationDependentType()),
1985           (lhsType->getType()->containsUnexpandedParameterPack() ||
1986            rhsType->getType()->containsUnexpandedParameterPack())),
1987      BTT(btt), Value(value), Loc(loc), RParen(rparen),
1988      LhsType(lhsType), RhsType(rhsType) { }
1989
1990
1991  explicit BinaryTypeTraitExpr(EmptyShell Empty)
1992    : Expr(BinaryTypeTraitExprClass, Empty), BTT(0), Value(false),
1993      LhsType(), RhsType() { }
1994
1995  SourceRange getSourceRange() const LLVM_READONLY {
1996    return SourceRange(Loc, RParen);
1997  }
1998
1999  BinaryTypeTrait getTrait() const {
2000    return static_cast<BinaryTypeTrait>(BTT);
2001  }
2002
2003  QualType getLhsType() const { return LhsType->getType(); }
2004  QualType getRhsType() const { return RhsType->getType(); }
2005
2006  TypeSourceInfo *getLhsTypeSourceInfo() const { return LhsType; }
2007  TypeSourceInfo *getRhsTypeSourceInfo() const { return RhsType; }
2008
2009  bool getValue() const { assert(!isTypeDependent()); return Value; }
2010
2011  static bool classof(const Stmt *T) {
2012    return T->getStmtClass() == BinaryTypeTraitExprClass;
2013  }
2014
2015  // Iterators
2016  child_range children() { return child_range(); }
2017
2018  friend class ASTStmtReader;
2019};
2020
2021/// \brief A type trait used in the implementation of various C++11 and
2022/// Library TR1 trait templates.
2023///
2024/// \code
2025///   __is_trivially_constructible(vector<int>, int*, int*)
2026/// \endcode
2027class TypeTraitExpr : public Expr {
2028  /// \brief The location of the type trait keyword.
2029  SourceLocation Loc;
2030
2031  /// \brief  The location of the closing parenthesis.
2032  SourceLocation RParenLoc;
2033
2034  // Note: The TypeSourceInfos for the arguments are allocated after the
2035  // TypeTraitExpr.
2036
2037  TypeTraitExpr(QualType T, SourceLocation Loc, TypeTrait Kind,
2038                ArrayRef<TypeSourceInfo *> Args,
2039                SourceLocation RParenLoc,
2040                bool Value);
2041
2042  TypeTraitExpr(EmptyShell Empty) : Expr(TypeTraitExprClass, Empty) { }
2043
2044  /// \brief Retrieve the argument types.
2045  TypeSourceInfo **getTypeSourceInfos() {
2046    return reinterpret_cast<TypeSourceInfo **>(this+1);
2047  }
2048
2049  /// \brief Retrieve the argument types.
2050  TypeSourceInfo * const *getTypeSourceInfos() const {
2051    return reinterpret_cast<TypeSourceInfo * const*>(this+1);
2052  }
2053
2054public:
2055  /// \brief Create a new type trait expression.
2056  static TypeTraitExpr *Create(ASTContext &C, QualType T, SourceLocation Loc,
2057                               TypeTrait Kind,
2058                               ArrayRef<TypeSourceInfo *> Args,
2059                               SourceLocation RParenLoc,
2060                               bool Value);
2061
2062  static TypeTraitExpr *CreateDeserialized(ASTContext &C, unsigned NumArgs);
2063
2064  /// \brief Determine which type trait this expression uses.
2065  TypeTrait getTrait() const {
2066    return static_cast<TypeTrait>(TypeTraitExprBits.Kind);
2067  }
2068
2069  bool getValue() const {
2070    assert(!isValueDependent());
2071    return TypeTraitExprBits.Value;
2072  }
2073
2074  /// \brief Determine the number of arguments to this type trait.
2075  unsigned getNumArgs() const { return TypeTraitExprBits.NumArgs; }
2076
2077  /// \brief Retrieve the Ith argument.
2078  TypeSourceInfo *getArg(unsigned I) const {
2079    assert(I < getNumArgs() && "Argument out-of-range");
2080    return getArgs()[I];
2081  }
2082
2083  /// \brief Retrieve the argument types.
2084  ArrayRef<TypeSourceInfo *> getArgs() const {
2085    return ArrayRef<TypeSourceInfo *>(getTypeSourceInfos(), getNumArgs());
2086  }
2087
2088  typedef TypeSourceInfo **arg_iterator;
2089  arg_iterator arg_begin() {
2090    return getTypeSourceInfos();
2091  }
2092  arg_iterator arg_end() {
2093    return getTypeSourceInfos() + getNumArgs();
2094  }
2095
2096  typedef TypeSourceInfo const * const *arg_const_iterator;
2097  arg_const_iterator arg_begin() const { return getTypeSourceInfos(); }
2098  arg_const_iterator arg_end() const {
2099    return getTypeSourceInfos() + getNumArgs();
2100  }
2101
2102  SourceRange getSourceRange() const LLVM_READONLY { return SourceRange(Loc, RParenLoc); }
2103
2104  static bool classof(const Stmt *T) {
2105    return T->getStmtClass() == TypeTraitExprClass;
2106  }
2107
2108  // Iterators
2109  child_range children() { return child_range(); }
2110
2111  friend class ASTStmtReader;
2112  friend class ASTStmtWriter;
2113
2114};
2115
2116/// \brief An Embarcadero array type trait, as used in the implementation of
2117/// __array_rank and __array_extent.
2118///
2119/// Example:
2120/// @code
2121///   __array_rank(int[10][20]) == 2
2122///   __array_extent(int, 1)    == 20
2123/// @endcode
2124class ArrayTypeTraitExpr : public Expr {
2125  virtual void anchor();
2126
2127  /// \brief The trait. An ArrayTypeTrait enum in MSVC compat unsigned.
2128  unsigned ATT : 2;
2129
2130  /// \brief The value of the type trait. Unspecified if dependent.
2131  uint64_t Value;
2132
2133  /// \brief The array dimension being queried, or -1 if not used.
2134  Expr *Dimension;
2135
2136  /// \brief The location of the type trait keyword.
2137  SourceLocation Loc;
2138
2139  /// \brief The location of the closing paren.
2140  SourceLocation RParen;
2141
2142  /// \brief The type being queried.
2143  TypeSourceInfo *QueriedType;
2144
2145public:
2146  ArrayTypeTraitExpr(SourceLocation loc, ArrayTypeTrait att,
2147                     TypeSourceInfo *queried, uint64_t value,
2148                     Expr *dimension, SourceLocation rparen, QualType ty)
2149    : Expr(ArrayTypeTraitExprClass, ty, VK_RValue, OK_Ordinary,
2150           false, queried->getType()->isDependentType(),
2151           (queried->getType()->isInstantiationDependentType() ||
2152            (dimension && dimension->isInstantiationDependent())),
2153           queried->getType()->containsUnexpandedParameterPack()),
2154      ATT(att), Value(value), Dimension(dimension),
2155      Loc(loc), RParen(rparen), QueriedType(queried) { }
2156
2157
2158  explicit ArrayTypeTraitExpr(EmptyShell Empty)
2159    : Expr(ArrayTypeTraitExprClass, Empty), ATT(0), Value(false),
2160      QueriedType() { }
2161
2162  virtual ~ArrayTypeTraitExpr() { }
2163
2164  virtual SourceRange getSourceRange() const LLVM_READONLY {
2165    return SourceRange(Loc, RParen);
2166  }
2167
2168  ArrayTypeTrait getTrait() const { return static_cast<ArrayTypeTrait>(ATT); }
2169
2170  QualType getQueriedType() const { return QueriedType->getType(); }
2171
2172  TypeSourceInfo *getQueriedTypeSourceInfo() const { return QueriedType; }
2173
2174  uint64_t getValue() const { assert(!isTypeDependent()); return Value; }
2175
2176  Expr *getDimensionExpression() const { return Dimension; }
2177
2178  static bool classof(const Stmt *T) {
2179    return T->getStmtClass() == ArrayTypeTraitExprClass;
2180  }
2181
2182  // Iterators
2183  child_range children() { return child_range(); }
2184
2185  friend class ASTStmtReader;
2186};
2187
2188/// \brief An expression trait intrinsic.
2189///
2190/// Example:
2191/// @code
2192///   __is_lvalue_expr(std::cout) == true
2193///   __is_lvalue_expr(1) == false
2194/// @endcode
2195class ExpressionTraitExpr : public Expr {
2196  /// \brief The trait. A ExpressionTrait enum in MSVC compat unsigned.
2197  unsigned ET : 31;
2198  /// \brief The value of the type trait. Unspecified if dependent.
2199  bool Value : 1;
2200
2201  /// \brief The location of the type trait keyword.
2202  SourceLocation Loc;
2203
2204  /// \brief The location of the closing paren.
2205  SourceLocation RParen;
2206
2207  /// \brief The expression being queried.
2208  Expr* QueriedExpression;
2209public:
2210  ExpressionTraitExpr(SourceLocation loc, ExpressionTrait et,
2211                     Expr *queried, bool value,
2212                     SourceLocation rparen, QualType resultType)
2213    : Expr(ExpressionTraitExprClass, resultType, VK_RValue, OK_Ordinary,
2214           false, // Not type-dependent
2215           // Value-dependent if the argument is type-dependent.
2216           queried->isTypeDependent(),
2217           queried->isInstantiationDependent(),
2218           queried->containsUnexpandedParameterPack()),
2219      ET(et), Value(value), Loc(loc), RParen(rparen),
2220      QueriedExpression(queried) { }
2221
2222  explicit ExpressionTraitExpr(EmptyShell Empty)
2223    : Expr(ExpressionTraitExprClass, Empty), ET(0), Value(false),
2224      QueriedExpression() { }
2225
2226  SourceRange getSourceRange() const LLVM_READONLY {
2227    return SourceRange(Loc, RParen);
2228  }
2229
2230  ExpressionTrait getTrait() const { return static_cast<ExpressionTrait>(ET); }
2231
2232  Expr *getQueriedExpression() const { return QueriedExpression; }
2233
2234  bool getValue() const { return Value; }
2235
2236  static bool classof(const Stmt *T) {
2237    return T->getStmtClass() == ExpressionTraitExprClass;
2238  }
2239
2240  // Iterators
2241  child_range children() { return child_range(); }
2242
2243  friend class ASTStmtReader;
2244};
2245
2246
2247/// \brief A reference to an overloaded function set, either an
2248/// \c UnresolvedLookupExpr or an \c UnresolvedMemberExpr.
2249class OverloadExpr : public Expr {
2250  /// \brief The common name of these declarations.
2251  DeclarationNameInfo NameInfo;
2252
2253  /// \brief The nested-name-specifier that qualifies the name, if any.
2254  NestedNameSpecifierLoc QualifierLoc;
2255
2256  /// The results.  These are undesugared, which is to say, they may
2257  /// include UsingShadowDecls.  Access is relative to the naming
2258  /// class.
2259  // FIXME: Allocate this data after the OverloadExpr subclass.
2260  DeclAccessPair *Results;
2261  unsigned NumResults;
2262
2263protected:
2264  /// \brief Whether the name includes info for explicit template
2265  /// keyword and arguments.
2266  bool HasTemplateKWAndArgsInfo;
2267
2268  /// \brief Return the optional template keyword and arguments info.
2269  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo(); // defined far below.
2270
2271  /// \brief Return the optional template keyword and arguments info.
2272  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
2273    return const_cast<OverloadExpr*>(this)->getTemplateKWAndArgsInfo();
2274  }
2275
2276  OverloadExpr(StmtClass K, ASTContext &C,
2277               NestedNameSpecifierLoc QualifierLoc,
2278               SourceLocation TemplateKWLoc,
2279               const DeclarationNameInfo &NameInfo,
2280               const TemplateArgumentListInfo *TemplateArgs,
2281               UnresolvedSetIterator Begin, UnresolvedSetIterator End,
2282               bool KnownDependent,
2283               bool KnownInstantiationDependent,
2284               bool KnownContainsUnexpandedParameterPack);
2285
2286  OverloadExpr(StmtClass K, EmptyShell Empty)
2287    : Expr(K, Empty), QualifierLoc(), Results(0), NumResults(0),
2288      HasTemplateKWAndArgsInfo(false) { }
2289
2290  void initializeResults(ASTContext &C,
2291                         UnresolvedSetIterator Begin,
2292                         UnresolvedSetIterator End);
2293
2294public:
2295  struct FindResult {
2296    OverloadExpr *Expression;
2297    bool IsAddressOfOperand;
2298    bool HasFormOfMemberPointer;
2299  };
2300
2301  /// Finds the overloaded expression in the given expression of
2302  /// OverloadTy.
2303  ///
2304  /// \return the expression (which must be there) and true if it has
2305  /// the particular form of a member pointer expression
2306  static FindResult find(Expr *E) {
2307    assert(E->getType()->isSpecificBuiltinType(BuiltinType::Overload));
2308
2309    FindResult Result;
2310
2311    E = E->IgnoreParens();
2312    if (isa<UnaryOperator>(E)) {
2313      assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
2314      E = cast<UnaryOperator>(E)->getSubExpr();
2315      OverloadExpr *Ovl = cast<OverloadExpr>(E->IgnoreParens());
2316
2317      Result.HasFormOfMemberPointer = (E == Ovl && Ovl->getQualifier());
2318      Result.IsAddressOfOperand = true;
2319      Result.Expression = Ovl;
2320    } else {
2321      Result.HasFormOfMemberPointer = false;
2322      Result.IsAddressOfOperand = false;
2323      Result.Expression = cast<OverloadExpr>(E);
2324    }
2325
2326    return Result;
2327  }
2328
2329  /// \brief Gets the naming class of this lookup, if any.
2330  CXXRecordDecl *getNamingClass() const;
2331
2332  typedef UnresolvedSetImpl::iterator decls_iterator;
2333  decls_iterator decls_begin() const { return UnresolvedSetIterator(Results); }
2334  decls_iterator decls_end() const {
2335    return UnresolvedSetIterator(Results + NumResults);
2336  }
2337
2338  /// \brief Gets the number of declarations in the unresolved set.
2339  unsigned getNumDecls() const { return NumResults; }
2340
2341  /// \brief Gets the full name info.
2342  const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
2343
2344  /// \brief Gets the name looked up.
2345  DeclarationName getName() const { return NameInfo.getName(); }
2346
2347  /// \brief Gets the location of the name.
2348  SourceLocation getNameLoc() const { return NameInfo.getLoc(); }
2349
2350  /// \brief Fetches the nested-name qualifier, if one was given.
2351  NestedNameSpecifier *getQualifier() const {
2352    return QualifierLoc.getNestedNameSpecifier();
2353  }
2354
2355  /// \brief Fetches the nested-name qualifier with source-location
2356  /// information, if one was given.
2357  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2358
2359  /// \brief Retrieve the location of the template keyword preceding
2360  /// this name, if any.
2361  SourceLocation getTemplateKeywordLoc() const {
2362    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2363    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
2364  }
2365
2366  /// \brief Retrieve the location of the left angle bracket starting the
2367  /// explicit template argument list following the name, if any.
2368  SourceLocation getLAngleLoc() const {
2369    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2370    return getTemplateKWAndArgsInfo()->LAngleLoc;
2371  }
2372
2373  /// \brief Retrieve the location of the right angle bracket ending the
2374  /// explicit template argument list following the name, if any.
2375  SourceLocation getRAngleLoc() const {
2376    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2377    return getTemplateKWAndArgsInfo()->RAngleLoc;
2378  }
2379
2380  /// \brief Determines whether the name was preceded by the template keyword.
2381  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
2382
2383  /// \brief Determines whether this expression had explicit template arguments.
2384  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
2385
2386  // Note that, inconsistently with the explicit-template-argument AST
2387  // nodes, users are *forbidden* from calling these methods on objects
2388  // without explicit template arguments.
2389
2390  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
2391    assert(hasExplicitTemplateArgs());
2392    return *getTemplateKWAndArgsInfo();
2393  }
2394
2395  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2396    return const_cast<OverloadExpr*>(this)->getExplicitTemplateArgs();
2397  }
2398
2399  TemplateArgumentLoc const *getTemplateArgs() const {
2400    return getExplicitTemplateArgs().getTemplateArgs();
2401  }
2402
2403  unsigned getNumTemplateArgs() const {
2404    return getExplicitTemplateArgs().NumTemplateArgs;
2405  }
2406
2407  /// \brief Copies the template arguments into the given structure.
2408  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2409    getExplicitTemplateArgs().copyInto(List);
2410  }
2411
2412  /// \brief Retrieves the optional explicit template arguments.
2413  ///
2414  /// This points to the same data as getExplicitTemplateArgs(), but
2415  /// returns null if there are no explicit template arguments.
2416  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() {
2417    if (!hasExplicitTemplateArgs()) return 0;
2418    return &getExplicitTemplateArgs();
2419  }
2420
2421  static bool classof(const Stmt *T) {
2422    return T->getStmtClass() == UnresolvedLookupExprClass ||
2423           T->getStmtClass() == UnresolvedMemberExprClass;
2424  }
2425
2426  friend class ASTStmtReader;
2427  friend class ASTStmtWriter;
2428};
2429
2430/// \brief A reference to a name which we were able to look up during
2431/// parsing but could not resolve to a specific declaration.
2432///
2433/// This arises in several ways:
2434///   * we might be waiting for argument-dependent lookup
2435///   * the name might resolve to an overloaded function
2436/// and eventually:
2437///   * the lookup might have included a function template
2438/// These never include UnresolvedUsingValueDecls, which are always class
2439/// members and therefore appear only in UnresolvedMemberLookupExprs.
2440class UnresolvedLookupExpr : public OverloadExpr {
2441  /// True if these lookup results should be extended by
2442  /// argument-dependent lookup if this is the operand of a function
2443  /// call.
2444  bool RequiresADL;
2445
2446  /// True if these lookup results are overloaded.  This is pretty
2447  /// trivially rederivable if we urgently need to kill this field.
2448  bool Overloaded;
2449
2450  /// The naming class (C++ [class.access.base]p5) of the lookup, if
2451  /// any.  This can generally be recalculated from the context chain,
2452  /// but that can be fairly expensive for unqualified lookups.  If we
2453  /// want to improve memory use here, this could go in a union
2454  /// against the qualified-lookup bits.
2455  CXXRecordDecl *NamingClass;
2456
2457  UnresolvedLookupExpr(ASTContext &C,
2458                       CXXRecordDecl *NamingClass,
2459                       NestedNameSpecifierLoc QualifierLoc,
2460                       SourceLocation TemplateKWLoc,
2461                       const DeclarationNameInfo &NameInfo,
2462                       bool RequiresADL, bool Overloaded,
2463                       const TemplateArgumentListInfo *TemplateArgs,
2464                       UnresolvedSetIterator Begin, UnresolvedSetIterator End)
2465    : OverloadExpr(UnresolvedLookupExprClass, C, QualifierLoc, TemplateKWLoc,
2466                   NameInfo, TemplateArgs, Begin, End, false, false, false),
2467      RequiresADL(RequiresADL),
2468      Overloaded(Overloaded), NamingClass(NamingClass)
2469  {}
2470
2471  UnresolvedLookupExpr(EmptyShell Empty)
2472    : OverloadExpr(UnresolvedLookupExprClass, Empty),
2473      RequiresADL(false), Overloaded(false), NamingClass(0)
2474  {}
2475
2476  friend class ASTStmtReader;
2477
2478public:
2479  static UnresolvedLookupExpr *Create(ASTContext &C,
2480                                      CXXRecordDecl *NamingClass,
2481                                      NestedNameSpecifierLoc QualifierLoc,
2482                                      const DeclarationNameInfo &NameInfo,
2483                                      bool ADL, bool Overloaded,
2484                                      UnresolvedSetIterator Begin,
2485                                      UnresolvedSetIterator End) {
2486    return new(C) UnresolvedLookupExpr(C, NamingClass, QualifierLoc,
2487                                       SourceLocation(), NameInfo,
2488                                       ADL, Overloaded, 0, Begin, End);
2489  }
2490
2491  static UnresolvedLookupExpr *Create(ASTContext &C,
2492                                      CXXRecordDecl *NamingClass,
2493                                      NestedNameSpecifierLoc QualifierLoc,
2494                                      SourceLocation TemplateKWLoc,
2495                                      const DeclarationNameInfo &NameInfo,
2496                                      bool ADL,
2497                                      const TemplateArgumentListInfo *Args,
2498                                      UnresolvedSetIterator Begin,
2499                                      UnresolvedSetIterator End);
2500
2501  static UnresolvedLookupExpr *CreateEmpty(ASTContext &C,
2502                                           bool HasTemplateKWAndArgsInfo,
2503                                           unsigned NumTemplateArgs);
2504
2505  /// True if this declaration should be extended by
2506  /// argument-dependent lookup.
2507  bool requiresADL() const { return RequiresADL; }
2508
2509  /// True if this lookup is overloaded.
2510  bool isOverloaded() const { return Overloaded; }
2511
2512  /// Gets the 'naming class' (in the sense of C++0x
2513  /// [class.access.base]p5) of the lookup.  This is the scope
2514  /// that was looked in to find these results.
2515  CXXRecordDecl *getNamingClass() const { return NamingClass; }
2516
2517  SourceRange getSourceRange() const LLVM_READONLY {
2518    SourceRange Range(getNameInfo().getSourceRange());
2519    if (getQualifierLoc())
2520      Range.setBegin(getQualifierLoc().getBeginLoc());
2521    if (hasExplicitTemplateArgs())
2522      Range.setEnd(getRAngleLoc());
2523    return Range;
2524  }
2525
2526  child_range children() { return child_range(); }
2527
2528  static bool classof(const Stmt *T) {
2529    return T->getStmtClass() == UnresolvedLookupExprClass;
2530  }
2531};
2532
2533/// \brief A qualified reference to a name whose declaration cannot
2534/// yet be resolved.
2535///
2536/// DependentScopeDeclRefExpr is similar to DeclRefExpr in that
2537/// it expresses a reference to a declaration such as
2538/// X<T>::value. The difference, however, is that an
2539/// DependentScopeDeclRefExpr node is used only within C++ templates when
2540/// the qualification (e.g., X<T>::) refers to a dependent type. In
2541/// this case, X<T>::value cannot resolve to a declaration because the
2542/// declaration will differ from on instantiation of X<T> to the
2543/// next. Therefore, DependentScopeDeclRefExpr keeps track of the
2544/// qualifier (X<T>::) and the name of the entity being referenced
2545/// ("value"). Such expressions will instantiate to a DeclRefExpr once the
2546/// declaration can be found.
2547class DependentScopeDeclRefExpr : public Expr {
2548  /// \brief The nested-name-specifier that qualifies this unresolved
2549  /// declaration name.
2550  NestedNameSpecifierLoc QualifierLoc;
2551
2552  /// The name of the entity we will be referencing.
2553  DeclarationNameInfo NameInfo;
2554
2555  /// \brief Whether the name includes info for explicit template
2556  /// keyword and arguments.
2557  bool HasTemplateKWAndArgsInfo;
2558
2559  /// \brief Return the optional template keyword and arguments info.
2560  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
2561    if (!HasTemplateKWAndArgsInfo) return 0;
2562    return reinterpret_cast<ASTTemplateKWAndArgsInfo*>(this + 1);
2563  }
2564  /// \brief Return the optional template keyword and arguments info.
2565  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
2566    return const_cast<DependentScopeDeclRefExpr*>(this)
2567      ->getTemplateKWAndArgsInfo();
2568  }
2569
2570  DependentScopeDeclRefExpr(QualType T,
2571                            NestedNameSpecifierLoc QualifierLoc,
2572                            SourceLocation TemplateKWLoc,
2573                            const DeclarationNameInfo &NameInfo,
2574                            const TemplateArgumentListInfo *Args);
2575
2576public:
2577  static DependentScopeDeclRefExpr *Create(ASTContext &C,
2578                                           NestedNameSpecifierLoc QualifierLoc,
2579                                           SourceLocation TemplateKWLoc,
2580                                           const DeclarationNameInfo &NameInfo,
2581                              const TemplateArgumentListInfo *TemplateArgs);
2582
2583  static DependentScopeDeclRefExpr *CreateEmpty(ASTContext &C,
2584                                                bool HasTemplateKWAndArgsInfo,
2585                                                unsigned NumTemplateArgs);
2586
2587  /// \brief Retrieve the name that this expression refers to.
2588  const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
2589
2590  /// \brief Retrieve the name that this expression refers to.
2591  DeclarationName getDeclName() const { return NameInfo.getName(); }
2592
2593  /// \brief Retrieve the location of the name within the expression.
2594  SourceLocation getLocation() const { return NameInfo.getLoc(); }
2595
2596  /// \brief Retrieve the nested-name-specifier that qualifies the
2597  /// name, with source location information.
2598  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2599
2600
2601  /// \brief Retrieve the nested-name-specifier that qualifies this
2602  /// declaration.
2603  NestedNameSpecifier *getQualifier() const {
2604    return QualifierLoc.getNestedNameSpecifier();
2605  }
2606
2607  /// \brief Retrieve the location of the template keyword preceding
2608  /// this name, if any.
2609  SourceLocation getTemplateKeywordLoc() const {
2610    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2611    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
2612  }
2613
2614  /// \brief Retrieve the location of the left angle bracket starting the
2615  /// explicit template argument list following the name, if any.
2616  SourceLocation getLAngleLoc() const {
2617    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2618    return getTemplateKWAndArgsInfo()->LAngleLoc;
2619  }
2620
2621  /// \brief Retrieve the location of the right angle bracket ending the
2622  /// explicit template argument list following the name, if any.
2623  SourceLocation getRAngleLoc() const {
2624    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2625    return getTemplateKWAndArgsInfo()->RAngleLoc;
2626  }
2627
2628  /// Determines whether the name was preceded by the template keyword.
2629  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
2630
2631  /// Determines whether this lookup had explicit template arguments.
2632  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
2633
2634  // Note that, inconsistently with the explicit-template-argument AST
2635  // nodes, users are *forbidden* from calling these methods on objects
2636  // without explicit template arguments.
2637
2638  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
2639    assert(hasExplicitTemplateArgs());
2640    return *reinterpret_cast<ASTTemplateArgumentListInfo*>(this + 1);
2641  }
2642
2643  /// Gets a reference to the explicit template argument list.
2644  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2645    assert(hasExplicitTemplateArgs());
2646    return *reinterpret_cast<const ASTTemplateArgumentListInfo*>(this + 1);
2647  }
2648
2649  /// \brief Retrieves the optional explicit template arguments.
2650  /// This points to the same data as getExplicitTemplateArgs(), but
2651  /// returns null if there are no explicit template arguments.
2652  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() {
2653    if (!hasExplicitTemplateArgs()) return 0;
2654    return &getExplicitTemplateArgs();
2655  }
2656
2657  /// \brief Copies the template arguments (if present) into the given
2658  /// structure.
2659  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2660    getExplicitTemplateArgs().copyInto(List);
2661  }
2662
2663  TemplateArgumentLoc const *getTemplateArgs() const {
2664    return getExplicitTemplateArgs().getTemplateArgs();
2665  }
2666
2667  unsigned getNumTemplateArgs() const {
2668    return getExplicitTemplateArgs().NumTemplateArgs;
2669  }
2670
2671  SourceRange getSourceRange() const LLVM_READONLY {
2672    SourceRange Range(QualifierLoc.getBeginLoc(), getLocation());
2673    if (hasExplicitTemplateArgs())
2674      Range.setEnd(getRAngleLoc());
2675    return Range;
2676  }
2677
2678  static bool classof(const Stmt *T) {
2679    return T->getStmtClass() == DependentScopeDeclRefExprClass;
2680  }
2681
2682  child_range children() { return child_range(); }
2683
2684  friend class ASTStmtReader;
2685  friend class ASTStmtWriter;
2686};
2687
2688/// Represents an expression --- generally a full-expression --- which
2689/// introduces cleanups to be run at the end of the sub-expression's
2690/// evaluation.  The most common source of expression-introduced
2691/// cleanups is temporary objects in C++, but several other kinds of
2692/// expressions can create cleanups, including basically every
2693/// call in ARC that returns an Objective-C pointer.
2694///
2695/// This expression also tracks whether the sub-expression contains a
2696/// potentially-evaluated block literal.  The lifetime of a block
2697/// literal is the extent of the enclosing scope.
2698class ExprWithCleanups : public Expr {
2699public:
2700  /// The type of objects that are kept in the cleanup.
2701  /// It's useful to remember the set of blocks;  we could also
2702  /// remember the set of temporaries, but there's currently
2703  /// no need.
2704  typedef BlockDecl *CleanupObject;
2705
2706private:
2707  Stmt *SubExpr;
2708
2709  ExprWithCleanups(EmptyShell, unsigned NumObjects);
2710  ExprWithCleanups(Expr *SubExpr, ArrayRef<CleanupObject> Objects);
2711
2712  CleanupObject *getObjectsBuffer() {
2713    return reinterpret_cast<CleanupObject*>(this + 1);
2714  }
2715  const CleanupObject *getObjectsBuffer() const {
2716    return reinterpret_cast<const CleanupObject*>(this + 1);
2717  }
2718  friend class ASTStmtReader;
2719
2720public:
2721  static ExprWithCleanups *Create(ASTContext &C, EmptyShell empty,
2722                                  unsigned numObjects);
2723
2724  static ExprWithCleanups *Create(ASTContext &C, Expr *subexpr,
2725                                  ArrayRef<CleanupObject> objects);
2726
2727  ArrayRef<CleanupObject> getObjects() const {
2728    return ArrayRef<CleanupObject>(getObjectsBuffer(), getNumObjects());
2729  }
2730
2731  unsigned getNumObjects() const { return ExprWithCleanupsBits.NumObjects; }
2732
2733  CleanupObject getObject(unsigned i) const {
2734    assert(i < getNumObjects() && "Index out of range");
2735    return getObjects()[i];
2736  }
2737
2738  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
2739  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
2740
2741  /// setSubExpr - As with any mutator of the AST, be very careful
2742  /// when modifying an existing AST to preserve its invariants.
2743  void setSubExpr(Expr *E) { SubExpr = E; }
2744
2745  SourceRange getSourceRange() const LLVM_READONLY {
2746    return SubExpr->getSourceRange();
2747  }
2748
2749  // Implement isa/cast/dyncast/etc.
2750  static bool classof(const Stmt *T) {
2751    return T->getStmtClass() == ExprWithCleanupsClass;
2752  }
2753
2754  // Iterators
2755  child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
2756};
2757
2758/// \brief Describes an explicit type conversion that uses functional
2759/// notion but could not be resolved because one or more arguments are
2760/// type-dependent.
2761///
2762/// The explicit type conversions expressed by
2763/// CXXUnresolvedConstructExpr have the form <tt>T(a1, a2, ..., aN)</tt>,
2764/// where \c T is some type and \c a1, \c a2, ..., \c aN are values, and
2765/// either \c T is a dependent type or one or more of the <tt>a</tt>'s is
2766/// type-dependent. For example, this would occur in a template such
2767/// as:
2768///
2769/// \code
2770///   template<typename T, typename A1>
2771///   inline T make_a(const A1& a1) {
2772///     return T(a1);
2773///   }
2774/// \endcode
2775///
2776/// When the returned expression is instantiated, it may resolve to a
2777/// constructor call, conversion function call, or some kind of type
2778/// conversion.
2779class CXXUnresolvedConstructExpr : public Expr {
2780  /// \brief The type being constructed.
2781  TypeSourceInfo *Type;
2782
2783  /// \brief The location of the left parentheses ('(').
2784  SourceLocation LParenLoc;
2785
2786  /// \brief The location of the right parentheses (')').
2787  SourceLocation RParenLoc;
2788
2789  /// \brief The number of arguments used to construct the type.
2790  unsigned NumArgs;
2791
2792  CXXUnresolvedConstructExpr(TypeSourceInfo *Type,
2793                             SourceLocation LParenLoc,
2794                             ArrayRef<Expr*> Args,
2795                             SourceLocation RParenLoc);
2796
2797  CXXUnresolvedConstructExpr(EmptyShell Empty, unsigned NumArgs)
2798    : Expr(CXXUnresolvedConstructExprClass, Empty), Type(), NumArgs(NumArgs) { }
2799
2800  friend class ASTStmtReader;
2801
2802public:
2803  static CXXUnresolvedConstructExpr *Create(ASTContext &C,
2804                                            TypeSourceInfo *Type,
2805                                            SourceLocation LParenLoc,
2806                                            ArrayRef<Expr*> Args,
2807                                            SourceLocation RParenLoc);
2808
2809  static CXXUnresolvedConstructExpr *CreateEmpty(ASTContext &C,
2810                                                 unsigned NumArgs);
2811
2812  /// \brief Retrieve the type that is being constructed, as specified
2813  /// in the source code.
2814  QualType getTypeAsWritten() const { return Type->getType(); }
2815
2816  /// \brief Retrieve the type source information for the type being
2817  /// constructed.
2818  TypeSourceInfo *getTypeSourceInfo() const { return Type; }
2819
2820  /// \brief Retrieve the location of the left parentheses ('(') that
2821  /// precedes the argument list.
2822  SourceLocation getLParenLoc() const { return LParenLoc; }
2823  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2824
2825  /// \brief Retrieve the location of the right parentheses (')') that
2826  /// follows the argument list.
2827  SourceLocation getRParenLoc() const { return RParenLoc; }
2828  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2829
2830  /// \brief Retrieve the number of arguments.
2831  unsigned arg_size() const { return NumArgs; }
2832
2833  typedef Expr** arg_iterator;
2834  arg_iterator arg_begin() { return reinterpret_cast<Expr**>(this + 1); }
2835  arg_iterator arg_end() { return arg_begin() + NumArgs; }
2836
2837  typedef const Expr* const * const_arg_iterator;
2838  const_arg_iterator arg_begin() const {
2839    return reinterpret_cast<const Expr* const *>(this + 1);
2840  }
2841  const_arg_iterator arg_end() const {
2842    return arg_begin() + NumArgs;
2843  }
2844
2845  Expr *getArg(unsigned I) {
2846    assert(I < NumArgs && "Argument index out-of-range");
2847    return *(arg_begin() + I);
2848  }
2849
2850  const Expr *getArg(unsigned I) const {
2851    assert(I < NumArgs && "Argument index out-of-range");
2852    return *(arg_begin() + I);
2853  }
2854
2855  void setArg(unsigned I, Expr *E) {
2856    assert(I < NumArgs && "Argument index out-of-range");
2857    *(arg_begin() + I) = E;
2858  }
2859
2860  SourceRange getSourceRange() const LLVM_READONLY;
2861
2862  static bool classof(const Stmt *T) {
2863    return T->getStmtClass() == CXXUnresolvedConstructExprClass;
2864  }
2865
2866  // Iterators
2867  child_range children() {
2868    Stmt **begin = reinterpret_cast<Stmt**>(this+1);
2869    return child_range(begin, begin + NumArgs);
2870  }
2871};
2872
2873/// \brief Represents a C++ member access expression where the actual
2874/// member referenced could not be resolved because the base
2875/// expression or the member name was dependent.
2876///
2877/// Like UnresolvedMemberExprs, these can be either implicit or
2878/// explicit accesses.  It is only possible to get one of these with
2879/// an implicit access if a qualifier is provided.
2880class CXXDependentScopeMemberExpr : public Expr {
2881  /// \brief The expression for the base pointer or class reference,
2882  /// e.g., the \c x in x.f.  Can be null in implicit accesses.
2883  Stmt *Base;
2884
2885  /// \brief The type of the base expression.  Never null, even for
2886  /// implicit accesses.
2887  QualType BaseType;
2888
2889  /// \brief Whether this member expression used the '->' operator or
2890  /// the '.' operator.
2891  bool IsArrow : 1;
2892
2893  /// \brief Whether this member expression has info for explicit template
2894  /// keyword and arguments.
2895  bool HasTemplateKWAndArgsInfo : 1;
2896
2897  /// \brief The location of the '->' or '.' operator.
2898  SourceLocation OperatorLoc;
2899
2900  /// \brief The nested-name-specifier that precedes the member name, if any.
2901  NestedNameSpecifierLoc QualifierLoc;
2902
2903  /// \brief In a qualified member access expression such as t->Base::f, this
2904  /// member stores the resolves of name lookup in the context of the member
2905  /// access expression, to be used at instantiation time.
2906  ///
2907  /// FIXME: This member, along with the QualifierLoc, could
2908  /// be stuck into a structure that is optionally allocated at the end of
2909  /// the CXXDependentScopeMemberExpr, to save space in the common case.
2910  NamedDecl *FirstQualifierFoundInScope;
2911
2912  /// \brief The member to which this member expression refers, which
2913  /// can be name, overloaded operator, or destructor.
2914  /// FIXME: could also be a template-id
2915  DeclarationNameInfo MemberNameInfo;
2916
2917  /// \brief Return the optional template keyword and arguments info.
2918  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
2919    if (!HasTemplateKWAndArgsInfo) return 0;
2920    return reinterpret_cast<ASTTemplateKWAndArgsInfo*>(this + 1);
2921  }
2922  /// \brief Return the optional template keyword and arguments info.
2923  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
2924    return const_cast<CXXDependentScopeMemberExpr*>(this)
2925      ->getTemplateKWAndArgsInfo();
2926  }
2927
2928  CXXDependentScopeMemberExpr(ASTContext &C,
2929                          Expr *Base, QualType BaseType, bool IsArrow,
2930                          SourceLocation OperatorLoc,
2931                          NestedNameSpecifierLoc QualifierLoc,
2932                          SourceLocation TemplateKWLoc,
2933                          NamedDecl *FirstQualifierFoundInScope,
2934                          DeclarationNameInfo MemberNameInfo,
2935                          const TemplateArgumentListInfo *TemplateArgs);
2936
2937public:
2938  CXXDependentScopeMemberExpr(ASTContext &C,
2939                              Expr *Base, QualType BaseType,
2940                              bool IsArrow,
2941                              SourceLocation OperatorLoc,
2942                              NestedNameSpecifierLoc QualifierLoc,
2943                              NamedDecl *FirstQualifierFoundInScope,
2944                              DeclarationNameInfo MemberNameInfo);
2945
2946  static CXXDependentScopeMemberExpr *
2947  Create(ASTContext &C,
2948         Expr *Base, QualType BaseType, bool IsArrow,
2949         SourceLocation OperatorLoc,
2950         NestedNameSpecifierLoc QualifierLoc,
2951         SourceLocation TemplateKWLoc,
2952         NamedDecl *FirstQualifierFoundInScope,
2953         DeclarationNameInfo MemberNameInfo,
2954         const TemplateArgumentListInfo *TemplateArgs);
2955
2956  static CXXDependentScopeMemberExpr *
2957  CreateEmpty(ASTContext &C, bool HasTemplateKWAndArgsInfo,
2958              unsigned NumTemplateArgs);
2959
2960  /// \brief True if this is an implicit access, i.e. one in which the
2961  /// member being accessed was not written in the source.  The source
2962  /// location of the operator is invalid in this case.
2963  bool isImplicitAccess() const;
2964
2965  /// \brief Retrieve the base object of this member expressions,
2966  /// e.g., the \c x in \c x.m.
2967  Expr *getBase() const {
2968    assert(!isImplicitAccess());
2969    return cast<Expr>(Base);
2970  }
2971
2972  QualType getBaseType() const { return BaseType; }
2973
2974  /// \brief Determine whether this member expression used the '->'
2975  /// operator; otherwise, it used the '.' operator.
2976  bool isArrow() const { return IsArrow; }
2977
2978  /// \brief Retrieve the location of the '->' or '.' operator.
2979  SourceLocation getOperatorLoc() const { return OperatorLoc; }
2980
2981  /// \brief Retrieve the nested-name-specifier that qualifies the member
2982  /// name.
2983  NestedNameSpecifier *getQualifier() const {
2984    return QualifierLoc.getNestedNameSpecifier();
2985  }
2986
2987  /// \brief Retrieve the nested-name-specifier that qualifies the member
2988  /// name, with source location information.
2989  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2990
2991
2992  /// \brief Retrieve the first part of the nested-name-specifier that was
2993  /// found in the scope of the member access expression when the member access
2994  /// was initially parsed.
2995  ///
2996  /// This function only returns a useful result when member access expression
2997  /// uses a qualified member name, e.g., "x.Base::f". Here, the declaration
2998  /// returned by this function describes what was found by unqualified name
2999  /// lookup for the identifier "Base" within the scope of the member access
3000  /// expression itself. At template instantiation time, this information is
3001  /// combined with the results of name lookup into the type of the object
3002  /// expression itself (the class type of x).
3003  NamedDecl *getFirstQualifierFoundInScope() const {
3004    return FirstQualifierFoundInScope;
3005  }
3006
3007  /// \brief Retrieve the name of the member that this expression
3008  /// refers to.
3009  const DeclarationNameInfo &getMemberNameInfo() const {
3010    return MemberNameInfo;
3011  }
3012
3013  /// \brief Retrieve the name of the member that this expression
3014  /// refers to.
3015  DeclarationName getMember() const { return MemberNameInfo.getName(); }
3016
3017  // \brief Retrieve the location of the name of the member that this
3018  // expression refers to.
3019  SourceLocation getMemberLoc() const { return MemberNameInfo.getLoc(); }
3020
3021  /// \brief Retrieve the location of the template keyword preceding the
3022  /// member name, if any.
3023  SourceLocation getTemplateKeywordLoc() const {
3024    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
3025    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
3026  }
3027
3028  /// \brief Retrieve the location of the left angle bracket starting the
3029  /// explicit template argument list following the member name, if any.
3030  SourceLocation getLAngleLoc() const {
3031    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
3032    return getTemplateKWAndArgsInfo()->LAngleLoc;
3033  }
3034
3035  /// \brief Retrieve the location of the right angle bracket ending the
3036  /// explicit template argument list following the member name, if any.
3037  SourceLocation getRAngleLoc() const {
3038    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
3039    return getTemplateKWAndArgsInfo()->RAngleLoc;
3040  }
3041
3042  /// Determines whether the member name was preceded by the template keyword.
3043  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
3044
3045  /// \brief Determines whether this member expression actually had a C++
3046  /// template argument list explicitly specified, e.g., x.f<int>.
3047  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
3048
3049  /// \brief Retrieve the explicit template argument list that followed the
3050  /// member template name, if any.
3051  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
3052    assert(hasExplicitTemplateArgs());
3053    return *reinterpret_cast<ASTTemplateArgumentListInfo *>(this + 1);
3054  }
3055
3056  /// \brief Retrieve the explicit template argument list that followed the
3057  /// member template name, if any.
3058  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
3059    return const_cast<CXXDependentScopeMemberExpr *>(this)
3060             ->getExplicitTemplateArgs();
3061  }
3062
3063  /// \brief Retrieves the optional explicit template arguments.
3064  /// This points to the same data as getExplicitTemplateArgs(), but
3065  /// returns null if there are no explicit template arguments.
3066  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() {
3067    if (!hasExplicitTemplateArgs()) return 0;
3068    return &getExplicitTemplateArgs();
3069  }
3070
3071  /// \brief Copies the template arguments (if present) into the given
3072  /// structure.
3073  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
3074    getExplicitTemplateArgs().copyInto(List);
3075  }
3076
3077  /// \brief Initializes the template arguments using the given structure.
3078  void initializeTemplateArgumentsFrom(const TemplateArgumentListInfo &List) {
3079    getExplicitTemplateArgs().initializeFrom(List);
3080  }
3081
3082  /// \brief Retrieve the template arguments provided as part of this
3083  /// template-id.
3084  const TemplateArgumentLoc *getTemplateArgs() const {
3085    return getExplicitTemplateArgs().getTemplateArgs();
3086  }
3087
3088  /// \brief Retrieve the number of template arguments provided as part of this
3089  /// template-id.
3090  unsigned getNumTemplateArgs() const {
3091    return getExplicitTemplateArgs().NumTemplateArgs;
3092  }
3093
3094  SourceRange getSourceRange() const LLVM_READONLY {
3095    SourceRange Range;
3096    if (!isImplicitAccess())
3097      Range.setBegin(Base->getSourceRange().getBegin());
3098    else if (getQualifier())
3099      Range.setBegin(getQualifierLoc().getBeginLoc());
3100    else
3101      Range.setBegin(MemberNameInfo.getBeginLoc());
3102
3103    if (hasExplicitTemplateArgs())
3104      Range.setEnd(getRAngleLoc());
3105    else
3106      Range.setEnd(MemberNameInfo.getEndLoc());
3107    return Range;
3108  }
3109
3110  static bool classof(const Stmt *T) {
3111    return T->getStmtClass() == CXXDependentScopeMemberExprClass;
3112  }
3113
3114  // Iterators
3115  child_range children() {
3116    if (isImplicitAccess()) return child_range();
3117    return child_range(&Base, &Base + 1);
3118  }
3119
3120  friend class ASTStmtReader;
3121  friend class ASTStmtWriter;
3122};
3123
3124/// \brief Represents a C++ member access expression for which lookup
3125/// produced a set of overloaded functions.
3126///
3127/// The member access may be explicit or implicit:
3128///    struct A {
3129///      int a, b;
3130///      int explicitAccess() { return this->a + this->A::b; }
3131///      int implicitAccess() { return a + A::b; }
3132///    };
3133///
3134/// In the final AST, an explicit access always becomes a MemberExpr.
3135/// An implicit access may become either a MemberExpr or a
3136/// DeclRefExpr, depending on whether the member is static.
3137class UnresolvedMemberExpr : public OverloadExpr {
3138  /// \brief Whether this member expression used the '->' operator or
3139  /// the '.' operator.
3140  bool IsArrow : 1;
3141
3142  /// \brief Whether the lookup results contain an unresolved using
3143  /// declaration.
3144  bool HasUnresolvedUsing : 1;
3145
3146  /// \brief The expression for the base pointer or class reference,
3147  /// e.g., the \c x in x.f.  This can be null if this is an 'unbased'
3148  /// member expression
3149  Stmt *Base;
3150
3151  /// \brief The type of the base expression;  never null.
3152  QualType BaseType;
3153
3154  /// \brief The location of the '->' or '.' operator.
3155  SourceLocation OperatorLoc;
3156
3157  UnresolvedMemberExpr(ASTContext &C, bool HasUnresolvedUsing,
3158                       Expr *Base, QualType BaseType, bool IsArrow,
3159                       SourceLocation OperatorLoc,
3160                       NestedNameSpecifierLoc QualifierLoc,
3161                       SourceLocation TemplateKWLoc,
3162                       const DeclarationNameInfo &MemberNameInfo,
3163                       const TemplateArgumentListInfo *TemplateArgs,
3164                       UnresolvedSetIterator Begin, UnresolvedSetIterator End);
3165
3166  UnresolvedMemberExpr(EmptyShell Empty)
3167    : OverloadExpr(UnresolvedMemberExprClass, Empty), IsArrow(false),
3168      HasUnresolvedUsing(false), Base(0) { }
3169
3170  friend class ASTStmtReader;
3171
3172public:
3173  static UnresolvedMemberExpr *
3174  Create(ASTContext &C, bool HasUnresolvedUsing,
3175         Expr *Base, QualType BaseType, bool IsArrow,
3176         SourceLocation OperatorLoc,
3177         NestedNameSpecifierLoc QualifierLoc,
3178         SourceLocation TemplateKWLoc,
3179         const DeclarationNameInfo &MemberNameInfo,
3180         const TemplateArgumentListInfo *TemplateArgs,
3181         UnresolvedSetIterator Begin, UnresolvedSetIterator End);
3182
3183  static UnresolvedMemberExpr *
3184  CreateEmpty(ASTContext &C, bool HasTemplateKWAndArgsInfo,
3185              unsigned NumTemplateArgs);
3186
3187  /// \brief True if this is an implicit access, i.e. one in which the
3188  /// member being accessed was not written in the source.  The source
3189  /// location of the operator is invalid in this case.
3190  bool isImplicitAccess() const;
3191
3192  /// \brief Retrieve the base object of this member expressions,
3193  /// e.g., the \c x in \c x.m.
3194  Expr *getBase() {
3195    assert(!isImplicitAccess());
3196    return cast<Expr>(Base);
3197  }
3198  const Expr *getBase() const {
3199    assert(!isImplicitAccess());
3200    return cast<Expr>(Base);
3201  }
3202
3203  QualType getBaseType() const { return BaseType; }
3204
3205  /// \brief Determine whether the lookup results contain an unresolved using
3206  /// declaration.
3207  bool hasUnresolvedUsing() const { return HasUnresolvedUsing; }
3208
3209  /// \brief Determine whether this member expression used the '->'
3210  /// operator; otherwise, it used the '.' operator.
3211  bool isArrow() const { return IsArrow; }
3212
3213  /// \brief Retrieve the location of the '->' or '.' operator.
3214  SourceLocation getOperatorLoc() const { return OperatorLoc; }
3215
3216  /// \brief Retrieves the naming class of this lookup.
3217  CXXRecordDecl *getNamingClass() const;
3218
3219  /// \brief Retrieve the full name info for the member that this expression
3220  /// refers to.
3221  const DeclarationNameInfo &getMemberNameInfo() const { return getNameInfo(); }
3222
3223  /// \brief Retrieve the name of the member that this expression
3224  /// refers to.
3225  DeclarationName getMemberName() const { return getName(); }
3226
3227  // \brief Retrieve the location of the name of the member that this
3228  // expression refers to.
3229  SourceLocation getMemberLoc() const { return getNameLoc(); }
3230
3231  SourceRange getSourceRange() const LLVM_READONLY {
3232    SourceRange Range = getMemberNameInfo().getSourceRange();
3233    if (!isImplicitAccess())
3234      Range.setBegin(Base->getSourceRange().getBegin());
3235    else if (getQualifierLoc())
3236      Range.setBegin(getQualifierLoc().getBeginLoc());
3237
3238    if (hasExplicitTemplateArgs())
3239      Range.setEnd(getRAngleLoc());
3240    return Range;
3241  }
3242
3243  static bool classof(const Stmt *T) {
3244    return T->getStmtClass() == UnresolvedMemberExprClass;
3245  }
3246
3247  // Iterators
3248  child_range children() {
3249    if (isImplicitAccess()) return child_range();
3250    return child_range(&Base, &Base + 1);
3251  }
3252};
3253
3254/// \brief Represents a C++0x noexcept expression (C++ [expr.unary.noexcept]).
3255///
3256/// The noexcept expression tests whether a given expression might throw. Its
3257/// result is a boolean constant.
3258class CXXNoexceptExpr : public Expr {
3259  bool Value : 1;
3260  Stmt *Operand;
3261  SourceRange Range;
3262
3263  friend class ASTStmtReader;
3264
3265public:
3266  CXXNoexceptExpr(QualType Ty, Expr *Operand, CanThrowResult Val,
3267                  SourceLocation Keyword, SourceLocation RParen)
3268    : Expr(CXXNoexceptExprClass, Ty, VK_RValue, OK_Ordinary,
3269           /*TypeDependent*/false,
3270           /*ValueDependent*/Val == CT_Dependent,
3271           Val == CT_Dependent || Operand->isInstantiationDependent(),
3272           Operand->containsUnexpandedParameterPack()),
3273      Value(Val == CT_Cannot), Operand(Operand), Range(Keyword, RParen)
3274  { }
3275
3276  CXXNoexceptExpr(EmptyShell Empty)
3277    : Expr(CXXNoexceptExprClass, Empty)
3278  { }
3279
3280  Expr *getOperand() const { return static_cast<Expr*>(Operand); }
3281
3282  SourceRange getSourceRange() const LLVM_READONLY { return Range; }
3283
3284  bool getValue() const { return Value; }
3285
3286  static bool classof(const Stmt *T) {
3287    return T->getStmtClass() == CXXNoexceptExprClass;
3288  }
3289
3290  // Iterators
3291  child_range children() { return child_range(&Operand, &Operand + 1); }
3292};
3293
3294/// \brief Represents a C++0x pack expansion that produces a sequence of
3295/// expressions.
3296///
3297/// A pack expansion expression contains a pattern (which itself is an
3298/// expression) followed by an ellipsis. For example:
3299///
3300/// \code
3301/// template<typename F, typename ...Types>
3302/// void forward(F f, Types &&...args) {
3303///   f(static_cast<Types&&>(args)...);
3304/// }
3305/// \endcode
3306///
3307/// Here, the argument to the function object \c f is a pack expansion whose
3308/// pattern is \c static_cast<Types&&>(args). When the \c forward function
3309/// template is instantiated, the pack expansion will instantiate to zero or
3310/// or more function arguments to the function object \c f.
3311class PackExpansionExpr : public Expr {
3312  SourceLocation EllipsisLoc;
3313
3314  /// \brief The number of expansions that will be produced by this pack
3315  /// expansion expression, if known.
3316  ///
3317  /// When zero, the number of expansions is not known. Otherwise, this value
3318  /// is the number of expansions + 1.
3319  unsigned NumExpansions;
3320
3321  Stmt *Pattern;
3322
3323  friend class ASTStmtReader;
3324  friend class ASTStmtWriter;
3325
3326public:
3327  PackExpansionExpr(QualType T, Expr *Pattern, SourceLocation EllipsisLoc,
3328                    llvm::Optional<unsigned> NumExpansions)
3329    : Expr(PackExpansionExprClass, T, Pattern->getValueKind(),
3330           Pattern->getObjectKind(), /*TypeDependent=*/true,
3331           /*ValueDependent=*/true, /*InstantiationDependent=*/true,
3332           /*ContainsUnexpandedParameterPack=*/false),
3333      EllipsisLoc(EllipsisLoc),
3334      NumExpansions(NumExpansions? *NumExpansions + 1 : 0),
3335      Pattern(Pattern) { }
3336
3337  PackExpansionExpr(EmptyShell Empty) : Expr(PackExpansionExprClass, Empty) { }
3338
3339  /// \brief Retrieve the pattern of the pack expansion.
3340  Expr *getPattern() { return reinterpret_cast<Expr *>(Pattern); }
3341
3342  /// \brief Retrieve the pattern of the pack expansion.
3343  const Expr *getPattern() const { return reinterpret_cast<Expr *>(Pattern); }
3344
3345  /// \brief Retrieve the location of the ellipsis that describes this pack
3346  /// expansion.
3347  SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
3348
3349  /// \brief Determine the number of expansions that will be produced when
3350  /// this pack expansion is instantiated, if already known.
3351  llvm::Optional<unsigned> getNumExpansions() const {
3352    if (NumExpansions)
3353      return NumExpansions - 1;
3354
3355    return llvm::Optional<unsigned>();
3356  }
3357
3358  SourceRange getSourceRange() const LLVM_READONLY {
3359    return SourceRange(Pattern->getLocStart(), EllipsisLoc);
3360  }
3361
3362  static bool classof(const Stmt *T) {
3363    return T->getStmtClass() == PackExpansionExprClass;
3364  }
3365
3366  // Iterators
3367  child_range children() {
3368    return child_range(&Pattern, &Pattern + 1);
3369  }
3370};
3371
3372inline ASTTemplateKWAndArgsInfo *OverloadExpr::getTemplateKWAndArgsInfo() {
3373  if (!HasTemplateKWAndArgsInfo) return 0;
3374  if (isa<UnresolvedLookupExpr>(this))
3375    return reinterpret_cast<ASTTemplateKWAndArgsInfo*>
3376      (cast<UnresolvedLookupExpr>(this) + 1);
3377  else
3378    return reinterpret_cast<ASTTemplateKWAndArgsInfo*>
3379      (cast<UnresolvedMemberExpr>(this) + 1);
3380}
3381
3382/// \brief Represents an expression that computes the length of a parameter
3383/// pack.
3384///
3385/// \code
3386/// template<typename ...Types>
3387/// struct count {
3388///   static const unsigned value = sizeof...(Types);
3389/// };
3390/// \endcode
3391class SizeOfPackExpr : public Expr {
3392  /// \brief The location of the 'sizeof' keyword.
3393  SourceLocation OperatorLoc;
3394
3395  /// \brief The location of the name of the parameter pack.
3396  SourceLocation PackLoc;
3397
3398  /// \brief The location of the closing parenthesis.
3399  SourceLocation RParenLoc;
3400
3401  /// \brief The length of the parameter pack, if known.
3402  ///
3403  /// When this expression is value-dependent, the length of the parameter pack
3404  /// is unknown. When this expression is not value-dependent, the length is
3405  /// known.
3406  unsigned Length;
3407
3408  /// \brief The parameter pack itself.
3409  NamedDecl *Pack;
3410
3411  friend class ASTStmtReader;
3412  friend class ASTStmtWriter;
3413
3414public:
3415  /// \brief Creates a value-dependent expression that computes the length of
3416  /// the given parameter pack.
3417  SizeOfPackExpr(QualType SizeType, SourceLocation OperatorLoc, NamedDecl *Pack,
3418                 SourceLocation PackLoc, SourceLocation RParenLoc)
3419    : Expr(SizeOfPackExprClass, SizeType, VK_RValue, OK_Ordinary,
3420           /*TypeDependent=*/false, /*ValueDependent=*/true,
3421           /*InstantiationDependent=*/true,
3422           /*ContainsUnexpandedParameterPack=*/false),
3423      OperatorLoc(OperatorLoc), PackLoc(PackLoc), RParenLoc(RParenLoc),
3424      Length(0), Pack(Pack) { }
3425
3426  /// \brief Creates an expression that computes the length of
3427  /// the given parameter pack, which is already known.
3428  SizeOfPackExpr(QualType SizeType, SourceLocation OperatorLoc, NamedDecl *Pack,
3429                 SourceLocation PackLoc, SourceLocation RParenLoc,
3430                 unsigned Length)
3431  : Expr(SizeOfPackExprClass, SizeType, VK_RValue, OK_Ordinary,
3432         /*TypeDependent=*/false, /*ValueDependent=*/false,
3433         /*InstantiationDependent=*/false,
3434         /*ContainsUnexpandedParameterPack=*/false),
3435    OperatorLoc(OperatorLoc), PackLoc(PackLoc), RParenLoc(RParenLoc),
3436    Length(Length), Pack(Pack) { }
3437
3438  /// \brief Create an empty expression.
3439  SizeOfPackExpr(EmptyShell Empty) : Expr(SizeOfPackExprClass, Empty) { }
3440
3441  /// \brief Determine the location of the 'sizeof' keyword.
3442  SourceLocation getOperatorLoc() const { return OperatorLoc; }
3443
3444  /// \brief Determine the location of the parameter pack.
3445  SourceLocation getPackLoc() const { return PackLoc; }
3446
3447  /// \brief Determine the location of the right parenthesis.
3448  SourceLocation getRParenLoc() const { return RParenLoc; }
3449
3450  /// \brief Retrieve the parameter pack.
3451  NamedDecl *getPack() const { return Pack; }
3452
3453  /// \brief Retrieve the length of the parameter pack.
3454  ///
3455  /// This routine may only be invoked when the expression is not
3456  /// value-dependent.
3457  unsigned getPackLength() const {
3458    assert(!isValueDependent() &&
3459           "Cannot get the length of a value-dependent pack size expression");
3460    return Length;
3461  }
3462
3463  SourceRange getSourceRange() const LLVM_READONLY {
3464    return SourceRange(OperatorLoc, RParenLoc);
3465  }
3466
3467  static bool classof(const Stmt *T) {
3468    return T->getStmtClass() == SizeOfPackExprClass;
3469  }
3470
3471  // Iterators
3472  child_range children() { return child_range(); }
3473};
3474
3475/// \brief Represents a reference to a non-type template parameter
3476/// that has been substituted with a template argument.
3477class SubstNonTypeTemplateParmExpr : public Expr {
3478  /// \brief The replaced parameter.
3479  NonTypeTemplateParmDecl *Param;
3480
3481  /// \brief The replacement expression.
3482  Stmt *Replacement;
3483
3484  /// \brief The location of the non-type template parameter reference.
3485  SourceLocation NameLoc;
3486
3487  friend class ASTReader;
3488  friend class ASTStmtReader;
3489  explicit SubstNonTypeTemplateParmExpr(EmptyShell Empty)
3490    : Expr(SubstNonTypeTemplateParmExprClass, Empty) { }
3491
3492public:
3493  SubstNonTypeTemplateParmExpr(QualType type,
3494                               ExprValueKind valueKind,
3495                               SourceLocation loc,
3496                               NonTypeTemplateParmDecl *param,
3497                               Expr *replacement)
3498    : Expr(SubstNonTypeTemplateParmExprClass, type, valueKind, OK_Ordinary,
3499           replacement->isTypeDependent(), replacement->isValueDependent(),
3500           replacement->isInstantiationDependent(),
3501           replacement->containsUnexpandedParameterPack()),
3502      Param(param), Replacement(replacement), NameLoc(loc) {}
3503
3504  SourceLocation getNameLoc() const { return NameLoc; }
3505  SourceRange getSourceRange() const LLVM_READONLY { return NameLoc; }
3506
3507  Expr *getReplacement() const { return cast<Expr>(Replacement); }
3508
3509  NonTypeTemplateParmDecl *getParameter() const { return Param; }
3510
3511  static bool classof(const Stmt *s) {
3512    return s->getStmtClass() == SubstNonTypeTemplateParmExprClass;
3513  }
3514
3515  // Iterators
3516  child_range children() { return child_range(&Replacement, &Replacement+1); }
3517};
3518
3519/// \brief Represents a reference to a non-type template parameter pack that
3520/// has been substituted with a non-template argument pack.
3521///
3522/// When a pack expansion in the source code contains multiple parameter packs
3523/// and those parameter packs correspond to different levels of template
3524/// parameter lists, this node is used to represent a non-type template
3525/// parameter pack from an outer level, which has already had its argument pack
3526/// substituted but that still lives within a pack expansion that itself
3527/// could not be instantiated. When actually performing a substitution into
3528/// that pack expansion (e.g., when all template parameters have corresponding
3529/// arguments), this type will be replaced with the appropriate underlying
3530/// expression at the current pack substitution index.
3531class SubstNonTypeTemplateParmPackExpr : public Expr {
3532  /// \brief The non-type template parameter pack itself.
3533  NonTypeTemplateParmDecl *Param;
3534
3535  /// \brief A pointer to the set of template arguments that this
3536  /// parameter pack is instantiated with.
3537  const TemplateArgument *Arguments;
3538
3539  /// \brief The number of template arguments in \c Arguments.
3540  unsigned NumArguments;
3541
3542  /// \brief The location of the non-type template parameter pack reference.
3543  SourceLocation NameLoc;
3544
3545  friend class ASTReader;
3546  friend class ASTStmtReader;
3547  explicit SubstNonTypeTemplateParmPackExpr(EmptyShell Empty)
3548    : Expr(SubstNonTypeTemplateParmPackExprClass, Empty) { }
3549
3550public:
3551  SubstNonTypeTemplateParmPackExpr(QualType T,
3552                                   NonTypeTemplateParmDecl *Param,
3553                                   SourceLocation NameLoc,
3554                                   const TemplateArgument &ArgPack);
3555
3556  /// \brief Retrieve the non-type template parameter pack being substituted.
3557  NonTypeTemplateParmDecl *getParameterPack() const { return Param; }
3558
3559  /// \brief Retrieve the location of the parameter pack name.
3560  SourceLocation getParameterPackLocation() const { return NameLoc; }
3561
3562  /// \brief Retrieve the template argument pack containing the substituted
3563  /// template arguments.
3564  TemplateArgument getArgumentPack() const;
3565
3566  SourceRange getSourceRange() const LLVM_READONLY { return NameLoc; }
3567
3568  static bool classof(const Stmt *T) {
3569    return T->getStmtClass() == SubstNonTypeTemplateParmPackExprClass;
3570  }
3571
3572  // Iterators
3573  child_range children() { return child_range(); }
3574};
3575
3576/// \brief Represents a reference to a function parameter pack that has been
3577/// substituted but not yet expanded.
3578///
3579/// When a pack expansion contains multiple parameter packs at different levels,
3580/// this node is used to represent a function parameter pack at an outer level
3581/// which we have already substituted to refer to expanded parameters, but where
3582/// the containing pack expansion cannot yet be expanded.
3583///
3584/// \code
3585/// template<typename...Ts> struct S {
3586///   template<typename...Us> auto f(Ts ...ts) -> decltype(g(Us(ts)...));
3587/// };
3588/// template struct S<int, int>;
3589/// \endcode
3590class FunctionParmPackExpr : public Expr {
3591  /// \brief The function parameter pack which was referenced.
3592  ParmVarDecl *ParamPack;
3593
3594  /// \brief The location of the function parameter pack reference.
3595  SourceLocation NameLoc;
3596
3597  /// \brief The number of expansions of this pack.
3598  unsigned NumParameters;
3599
3600  FunctionParmPackExpr(QualType T, ParmVarDecl *ParamPack,
3601                       SourceLocation NameLoc, unsigned NumParams,
3602                       Decl * const *Params);
3603
3604  friend class ASTReader;
3605  friend class ASTStmtReader;
3606
3607public:
3608  static FunctionParmPackExpr *Create(ASTContext &Context, QualType T,
3609                                      ParmVarDecl *ParamPack,
3610                                      SourceLocation NameLoc,
3611                                      llvm::ArrayRef<Decl*> Params);
3612  static FunctionParmPackExpr *CreateEmpty(ASTContext &Context,
3613                                           unsigned NumParams);
3614
3615  /// \brief Get the parameter pack which this expression refers to.
3616  ParmVarDecl *getParameterPack() const { return ParamPack; }
3617
3618  /// \brief Get the location of the parameter pack.
3619  SourceLocation getParameterPackLocation() const { return NameLoc; }
3620
3621  /// \brief Iterators over the parameters which the parameter pack expanded
3622  /// into.
3623  typedef ParmVarDecl * const *iterator;
3624  iterator begin() const { return reinterpret_cast<iterator>(this+1); }
3625  iterator end() const { return begin() + NumParameters; }
3626
3627  /// \brief Get the number of parameters in this parameter pack.
3628  unsigned getNumExpansions() const { return NumParameters; }
3629
3630  /// \brief Get an expansion of the parameter pack by index.
3631  ParmVarDecl *getExpansion(unsigned I) const { return begin()[I]; }
3632
3633  SourceRange getSourceRange() const LLVM_READONLY { return NameLoc; }
3634
3635  static bool classof(const Stmt *T) {
3636    return T->getStmtClass() == FunctionParmPackExprClass;
3637  }
3638
3639  child_range children() { return child_range(); }
3640};
3641
3642/// \brief Represents a prvalue temporary that written into memory so that
3643/// a reference can bind to it.
3644///
3645/// Prvalue expressions are materialized when they need to have an address
3646/// in memory for a reference to bind to. This happens when binding a
3647/// reference to the result of a conversion, e.g.,
3648///
3649/// \code
3650/// const int &r = 1.0;
3651/// \endcode
3652///
3653/// Here, 1.0 is implicitly converted to an \c int. That resulting \c int is
3654/// then materialized via a \c MaterializeTemporaryExpr, and the reference
3655/// binds to the temporary. \c MaterializeTemporaryExprs are always glvalues
3656/// (either an lvalue or an xvalue, depending on the kind of reference binding
3657/// to it), maintaining the invariant that references always bind to glvalues.
3658class MaterializeTemporaryExpr : public Expr {
3659  /// \brief The temporary-generating expression whose value will be
3660  /// materialized.
3661  Stmt *Temporary;
3662
3663  friend class ASTStmtReader;
3664  friend class ASTStmtWriter;
3665
3666public:
3667  MaterializeTemporaryExpr(QualType T, Expr *Temporary,
3668                           bool BoundToLvalueReference)
3669    : Expr(MaterializeTemporaryExprClass, T,
3670           BoundToLvalueReference? VK_LValue : VK_XValue, OK_Ordinary,
3671           Temporary->isTypeDependent(), Temporary->isValueDependent(),
3672           Temporary->isInstantiationDependent(),
3673           Temporary->containsUnexpandedParameterPack()),
3674      Temporary(Temporary) { }
3675
3676  MaterializeTemporaryExpr(EmptyShell Empty)
3677    : Expr(MaterializeTemporaryExprClass, Empty) { }
3678
3679  /// \brief Retrieve the temporary-generating subexpression whose value will
3680  /// be materialized into a glvalue.
3681  Expr *GetTemporaryExpr() const { return reinterpret_cast<Expr *>(Temporary); }
3682
3683  /// \brief Determine whether this materialized temporary is bound to an
3684  /// lvalue reference; otherwise, it's bound to an rvalue reference.
3685  bool isBoundToLvalueReference() const {
3686    return getValueKind() == VK_LValue;
3687  }
3688
3689  SourceRange getSourceRange() const LLVM_READONLY {
3690    return Temporary->getSourceRange();
3691  }
3692
3693  static bool classof(const Stmt *T) {
3694    return T->getStmtClass() == MaterializeTemporaryExprClass;
3695  }
3696
3697  // Iterators
3698  child_range children() { return child_range(&Temporary, &Temporary + 1); }
3699};
3700
3701}  // end namespace clang
3702
3703#endif
3704