ExprCXX.h revision 63c00d7f35fa060c0a446c9df3a4402d9c7757fe
1//===--- ExprCXX.h - Classes for representing expressions -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses for C++ expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPRCXX_H
15#define LLVM_CLANG_AST_EXPRCXX_H
16
17#include "clang/Basic/TypeTraits.h"
18#include "clang/AST/Expr.h"
19#include "clang/AST/UnresolvedSet.h"
20#include "clang/AST/TemplateBase.h"
21
22namespace clang {
23
24class CXXConstructorDecl;
25class CXXDestructorDecl;
26class CXXMethodDecl;
27class CXXTemporary;
28class TemplateArgumentListInfo;
29
30//===--------------------------------------------------------------------===//
31// C++ Expressions.
32//===--------------------------------------------------------------------===//
33
34/// \brief A call to an overloaded operator written using operator
35/// syntax.
36///
37/// Represents a call to an overloaded operator written using operator
38/// syntax, e.g., "x + y" or "*p". While semantically equivalent to a
39/// normal call, this AST node provides better information about the
40/// syntactic representation of the call.
41///
42/// In a C++ template, this expression node kind will be used whenever
43/// any of the arguments are type-dependent. In this case, the
44/// function itself will be a (possibly empty) set of functions and
45/// function templates that were found by name lookup at template
46/// definition time.
47class CXXOperatorCallExpr : public CallExpr {
48  /// \brief The overloaded operator.
49  OverloadedOperatorKind Operator;
50
51public:
52  CXXOperatorCallExpr(ASTContext& C, OverloadedOperatorKind Op, Expr *fn,
53                      Expr **args, unsigned numargs, QualType t,
54                      ExprValueKind VK, SourceLocation operatorloc)
55    : CallExpr(C, CXXOperatorCallExprClass, fn, 0, args, numargs, t, VK,
56               operatorloc),
57      Operator(Op) {}
58  explicit CXXOperatorCallExpr(ASTContext& C, EmptyShell Empty) :
59    CallExpr(C, CXXOperatorCallExprClass, Empty) { }
60
61
62  /// getOperator - Returns the kind of overloaded operator that this
63  /// expression refers to.
64  OverloadedOperatorKind getOperator() const { return Operator; }
65  void setOperator(OverloadedOperatorKind Kind) { Operator = Kind; }
66
67  /// getOperatorLoc - Returns the location of the operator symbol in
68  /// the expression. When @c getOperator()==OO_Call, this is the
69  /// location of the right parentheses; when @c
70  /// getOperator()==OO_Subscript, this is the location of the right
71  /// bracket.
72  SourceLocation getOperatorLoc() const { return getRParenLoc(); }
73
74  SourceRange getSourceRange() const;
75
76  static bool classof(const Stmt *T) {
77    return T->getStmtClass() == CXXOperatorCallExprClass;
78  }
79  static bool classof(const CXXOperatorCallExpr *) { return true; }
80};
81
82/// CXXMemberCallExpr - Represents a call to a member function that
83/// may be written either with member call syntax (e.g., "obj.func()"
84/// or "objptr->func()") or with normal function-call syntax
85/// ("func()") within a member function that ends up calling a member
86/// function. The callee in either case is a MemberExpr that contains
87/// both the object argument and the member function, while the
88/// arguments are the arguments within the parentheses (not including
89/// the object argument).
90class CXXMemberCallExpr : public CallExpr {
91public:
92  CXXMemberCallExpr(ASTContext &C, Expr *fn, Expr **args, unsigned numargs,
93                    QualType t, ExprValueKind VK, SourceLocation RP)
94    : CallExpr(C, CXXMemberCallExprClass, fn, 0, args, numargs, t, VK, RP) {}
95
96  CXXMemberCallExpr(ASTContext &C, EmptyShell Empty)
97    : CallExpr(C, CXXMemberCallExprClass, Empty) { }
98
99  /// getImplicitObjectArgument - Retrieves the implicit object
100  /// argument for the member call. For example, in "x.f(5)", this
101  /// operation would return "x".
102  Expr *getImplicitObjectArgument();
103
104  /// getRecordDecl - Retrieves the CXXRecordDecl for the underlying type of
105  /// the implicit object argument. Note that this is may not be the same
106  /// declaration as that of the class context of the CXXMethodDecl which this
107  /// function is calling.
108  /// FIXME: Returns 0 for member pointer call exprs.
109  CXXRecordDecl *getRecordDecl();
110
111  SourceRange getSourceRange() const;
112
113  static bool classof(const Stmt *T) {
114    return T->getStmtClass() == CXXMemberCallExprClass;
115  }
116  static bool classof(const CXXMemberCallExpr *) { return true; }
117};
118
119/// CXXNamedCastExpr - Abstract class common to all of the C++ "named"
120/// casts, @c static_cast, @c dynamic_cast, @c reinterpret_cast, or @c
121/// const_cast.
122///
123/// This abstract class is inherited by all of the classes
124/// representing "named" casts, e.g., CXXStaticCastExpr,
125/// CXXDynamicCastExpr, CXXReinterpretCastExpr, and CXXConstCastExpr.
126class CXXNamedCastExpr : public ExplicitCastExpr {
127private:
128  SourceLocation Loc; // the location of the casting op
129  SourceLocation RParenLoc; // the location of the right parenthesis
130
131protected:
132  CXXNamedCastExpr(StmtClass SC, QualType ty, ExprValueKind VK,
133                   CastKind kind, Expr *op, unsigned PathSize,
134                   TypeSourceInfo *writtenTy, SourceLocation l,
135                   SourceLocation RParenLoc)
136    : ExplicitCastExpr(SC, ty, VK, kind, op, PathSize, writtenTy), Loc(l),
137      RParenLoc(RParenLoc) {}
138
139  explicit CXXNamedCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
140    : ExplicitCastExpr(SC, Shell, PathSize) { }
141
142  friend class ASTStmtReader;
143
144public:
145  const char *getCastName() const;
146
147  /// \brief Retrieve the location of the cast operator keyword, e.g.,
148  /// "static_cast".
149  SourceLocation getOperatorLoc() const { return Loc; }
150
151  /// \brief Retrieve the location of the closing parenthesis.
152  SourceLocation getRParenLoc() const { return RParenLoc; }
153
154  SourceRange getSourceRange() const {
155    return SourceRange(Loc, RParenLoc);
156  }
157  static bool classof(const Stmt *T) {
158    switch (T->getStmtClass()) {
159    case CXXStaticCastExprClass:
160    case CXXDynamicCastExprClass:
161    case CXXReinterpretCastExprClass:
162    case CXXConstCastExprClass:
163      return true;
164    default:
165      return false;
166    }
167  }
168  static bool classof(const CXXNamedCastExpr *) { return true; }
169};
170
171/// CXXStaticCastExpr - A C++ @c static_cast expression (C++ [expr.static.cast]).
172///
173/// This expression node represents a C++ static cast, e.g.,
174/// @c static_cast<int>(1.0).
175class CXXStaticCastExpr : public CXXNamedCastExpr {
176  CXXStaticCastExpr(QualType ty, ExprValueKind vk, CastKind kind, Expr *op,
177                    unsigned pathSize, TypeSourceInfo *writtenTy,
178                    SourceLocation l, SourceLocation RParenLoc)
179    : CXXNamedCastExpr(CXXStaticCastExprClass, ty, vk, kind, op, pathSize,
180                       writtenTy, l, RParenLoc) {}
181
182  explicit CXXStaticCastExpr(EmptyShell Empty, unsigned PathSize)
183    : CXXNamedCastExpr(CXXStaticCastExprClass, Empty, PathSize) { }
184
185public:
186  static CXXStaticCastExpr *Create(ASTContext &Context, QualType T,
187                                   ExprValueKind VK, CastKind K, Expr *Op,
188                                   const CXXCastPath *Path,
189                                   TypeSourceInfo *Written, SourceLocation L,
190                                   SourceLocation RParenLoc);
191  static CXXStaticCastExpr *CreateEmpty(ASTContext &Context,
192                                        unsigned PathSize);
193
194  static bool classof(const Stmt *T) {
195    return T->getStmtClass() == CXXStaticCastExprClass;
196  }
197  static bool classof(const CXXStaticCastExpr *) { return true; }
198};
199
200/// CXXDynamicCastExpr - A C++ @c dynamic_cast expression
201/// (C++ [expr.dynamic.cast]), which may perform a run-time check to
202/// determine how to perform the type cast.
203///
204/// This expression node represents a dynamic cast, e.g.,
205/// @c dynamic_cast<Derived*>(BasePtr).
206class CXXDynamicCastExpr : public CXXNamedCastExpr {
207  CXXDynamicCastExpr(QualType ty, ExprValueKind VK, CastKind kind,
208                     Expr *op, unsigned pathSize, TypeSourceInfo *writtenTy,
209                     SourceLocation l, SourceLocation RParenLoc)
210    : CXXNamedCastExpr(CXXDynamicCastExprClass, ty, VK, kind, op, pathSize,
211                       writtenTy, l, RParenLoc) {}
212
213  explicit CXXDynamicCastExpr(EmptyShell Empty, unsigned pathSize)
214    : CXXNamedCastExpr(CXXDynamicCastExprClass, Empty, pathSize) { }
215
216public:
217  static CXXDynamicCastExpr *Create(ASTContext &Context, QualType T,
218                                    ExprValueKind VK, CastKind Kind, Expr *Op,
219                                    const CXXCastPath *Path,
220                                    TypeSourceInfo *Written, SourceLocation L,
221                                    SourceLocation RParenLoc);
222
223  static CXXDynamicCastExpr *CreateEmpty(ASTContext &Context,
224                                         unsigned pathSize);
225
226  static bool classof(const Stmt *T) {
227    return T->getStmtClass() == CXXDynamicCastExprClass;
228  }
229  static bool classof(const CXXDynamicCastExpr *) { return true; }
230};
231
232/// CXXReinterpretCastExpr - A C++ @c reinterpret_cast expression (C++
233/// [expr.reinterpret.cast]), which provides a differently-typed view
234/// of a value but performs no actual work at run time.
235///
236/// This expression node represents a reinterpret cast, e.g.,
237/// @c reinterpret_cast<int>(VoidPtr).
238class CXXReinterpretCastExpr : public CXXNamedCastExpr {
239  CXXReinterpretCastExpr(QualType ty, ExprValueKind vk, CastKind kind,
240                         Expr *op, unsigned pathSize,
241                         TypeSourceInfo *writtenTy, SourceLocation l,
242                         SourceLocation RParenLoc)
243    : CXXNamedCastExpr(CXXReinterpretCastExprClass, ty, vk, kind, op,
244                       pathSize, writtenTy, l, RParenLoc) {}
245
246  CXXReinterpretCastExpr(EmptyShell Empty, unsigned pathSize)
247    : CXXNamedCastExpr(CXXReinterpretCastExprClass, Empty, pathSize) { }
248
249public:
250  static CXXReinterpretCastExpr *Create(ASTContext &Context, QualType T,
251                                        ExprValueKind VK, CastKind Kind,
252                                        Expr *Op, const CXXCastPath *Path,
253                                 TypeSourceInfo *WrittenTy, SourceLocation L,
254                                        SourceLocation RParenLoc);
255  static CXXReinterpretCastExpr *CreateEmpty(ASTContext &Context,
256                                             unsigned pathSize);
257
258  static bool classof(const Stmt *T) {
259    return T->getStmtClass() == CXXReinterpretCastExprClass;
260  }
261  static bool classof(const CXXReinterpretCastExpr *) { return true; }
262};
263
264/// CXXConstCastExpr - A C++ @c const_cast expression (C++ [expr.const.cast]),
265/// which can remove type qualifiers but does not change the underlying value.
266///
267/// This expression node represents a const cast, e.g.,
268/// @c const_cast<char*>(PtrToConstChar).
269class CXXConstCastExpr : public CXXNamedCastExpr {
270  CXXConstCastExpr(QualType ty, ExprValueKind VK, Expr *op,
271                   TypeSourceInfo *writtenTy, SourceLocation l,
272                   SourceLocation RParenLoc)
273    : CXXNamedCastExpr(CXXConstCastExprClass, ty, VK, CK_NoOp, op,
274                       0, writtenTy, l, RParenLoc) {}
275
276  explicit CXXConstCastExpr(EmptyShell Empty)
277    : CXXNamedCastExpr(CXXConstCastExprClass, Empty, 0) { }
278
279public:
280  static CXXConstCastExpr *Create(ASTContext &Context, QualType T,
281                                  ExprValueKind VK, Expr *Op,
282                                  TypeSourceInfo *WrittenTy, SourceLocation L,
283                                  SourceLocation RParenLoc);
284  static CXXConstCastExpr *CreateEmpty(ASTContext &Context);
285
286  static bool classof(const Stmt *T) {
287    return T->getStmtClass() == CXXConstCastExprClass;
288  }
289  static bool classof(const CXXConstCastExpr *) { return true; }
290};
291
292/// CXXBoolLiteralExpr - [C++ 2.13.5] C++ Boolean Literal.
293///
294class CXXBoolLiteralExpr : public Expr {
295  bool Value;
296  SourceLocation Loc;
297public:
298  CXXBoolLiteralExpr(bool val, QualType Ty, SourceLocation l) :
299    Expr(CXXBoolLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
300         false),
301    Value(val), Loc(l) {}
302
303  explicit CXXBoolLiteralExpr(EmptyShell Empty)
304    : Expr(CXXBoolLiteralExprClass, Empty) { }
305
306  bool getValue() const { return Value; }
307  void setValue(bool V) { Value = V; }
308
309  SourceRange getSourceRange() const { return SourceRange(Loc); }
310
311  SourceLocation getLocation() const { return Loc; }
312  void setLocation(SourceLocation L) { Loc = L; }
313
314  static bool classof(const Stmt *T) {
315    return T->getStmtClass() == CXXBoolLiteralExprClass;
316  }
317  static bool classof(const CXXBoolLiteralExpr *) { return true; }
318
319  // Iterators
320  child_range children() { return child_range(); }
321};
322
323/// CXXNullPtrLiteralExpr - [C++0x 2.14.7] C++ Pointer Literal
324class CXXNullPtrLiteralExpr : public Expr {
325  SourceLocation Loc;
326public:
327  CXXNullPtrLiteralExpr(QualType Ty, SourceLocation l) :
328    Expr(CXXNullPtrLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
329         false),
330    Loc(l) {}
331
332  explicit CXXNullPtrLiteralExpr(EmptyShell Empty)
333    : Expr(CXXNullPtrLiteralExprClass, Empty) { }
334
335  SourceRange getSourceRange() const { return SourceRange(Loc); }
336
337  SourceLocation getLocation() const { return Loc; }
338  void setLocation(SourceLocation L) { Loc = L; }
339
340  static bool classof(const Stmt *T) {
341    return T->getStmtClass() == CXXNullPtrLiteralExprClass;
342  }
343  static bool classof(const CXXNullPtrLiteralExpr *) { return true; }
344
345  child_range children() { return child_range(); }
346};
347
348/// CXXTypeidExpr - A C++ @c typeid expression (C++ [expr.typeid]), which gets
349/// the type_info that corresponds to the supplied type, or the (possibly
350/// dynamic) type of the supplied expression.
351///
352/// This represents code like @c typeid(int) or @c typeid(*objPtr)
353class CXXTypeidExpr : public Expr {
354private:
355  llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
356  SourceRange Range;
357
358public:
359  CXXTypeidExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
360    : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
361           // typeid is never type-dependent (C++ [temp.dep.expr]p4)
362           false,
363           // typeid is value-dependent if the type or expression are dependent
364           Operand->getType()->isDependentType(),
365           Operand->getType()->containsUnexpandedParameterPack()),
366      Operand(Operand), Range(R) { }
367
368  CXXTypeidExpr(QualType Ty, Expr *Operand, SourceRange R)
369    : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
370        // typeid is never type-dependent (C++ [temp.dep.expr]p4)
371           false,
372        // typeid is value-dependent if the type or expression are dependent
373           Operand->isTypeDependent() || Operand->isValueDependent(),
374           Operand->containsUnexpandedParameterPack()),
375      Operand(Operand), Range(R) { }
376
377  CXXTypeidExpr(EmptyShell Empty, bool isExpr)
378    : Expr(CXXTypeidExprClass, Empty) {
379    if (isExpr)
380      Operand = (Expr*)0;
381    else
382      Operand = (TypeSourceInfo*)0;
383  }
384
385  bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
386
387  /// \brief Retrieves the type operand of this typeid() expression after
388  /// various required adjustments (removing reference types, cv-qualifiers).
389  QualType getTypeOperand() const;
390
391  /// \brief Retrieve source information for the type operand.
392  TypeSourceInfo *getTypeOperandSourceInfo() const {
393    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
394    return Operand.get<TypeSourceInfo *>();
395  }
396
397  void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
398    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
399    Operand = TSI;
400  }
401
402  Expr *getExprOperand() const {
403    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
404    return static_cast<Expr*>(Operand.get<Stmt *>());
405  }
406
407  void setExprOperand(Expr *E) {
408    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
409    Operand = E;
410  }
411
412  SourceRange getSourceRange() const { return Range; }
413  void setSourceRange(SourceRange R) { Range = R; }
414
415  static bool classof(const Stmt *T) {
416    return T->getStmtClass() == CXXTypeidExprClass;
417  }
418  static bool classof(const CXXTypeidExpr *) { return true; }
419
420  // Iterators
421  child_range children() {
422    if (isTypeOperand()) return child_range();
423    Stmt **begin = reinterpret_cast<Stmt**>(&Operand);
424    return child_range(begin, begin + 1);
425  }
426};
427
428/// CXXUuidofExpr - A microsoft C++ @c __uuidof expression, which gets
429/// the _GUID that corresponds to the supplied type or expression.
430///
431/// This represents code like @c __uuidof(COMTYPE) or @c __uuidof(*comPtr)
432class CXXUuidofExpr : public Expr {
433private:
434  llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
435  SourceRange Range;
436
437public:
438  CXXUuidofExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
439    : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary,
440           false, Operand->getType()->isDependentType(),
441           Operand->getType()->containsUnexpandedParameterPack()),
442      Operand(Operand), Range(R) { }
443
444  CXXUuidofExpr(QualType Ty, Expr *Operand, SourceRange R)
445    : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary,
446           false, Operand->isTypeDependent(),
447           Operand->containsUnexpandedParameterPack()),
448      Operand(Operand), Range(R) { }
449
450  CXXUuidofExpr(EmptyShell Empty, bool isExpr)
451    : Expr(CXXUuidofExprClass, Empty) {
452    if (isExpr)
453      Operand = (Expr*)0;
454    else
455      Operand = (TypeSourceInfo*)0;
456  }
457
458  bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
459
460  /// \brief Retrieves the type operand of this __uuidof() expression after
461  /// various required adjustments (removing reference types, cv-qualifiers).
462  QualType getTypeOperand() const;
463
464  /// \brief Retrieve source information for the type operand.
465  TypeSourceInfo *getTypeOperandSourceInfo() const {
466    assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
467    return Operand.get<TypeSourceInfo *>();
468  }
469
470  void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
471    assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
472    Operand = TSI;
473  }
474
475  Expr *getExprOperand() const {
476    assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
477    return static_cast<Expr*>(Operand.get<Stmt *>());
478  }
479
480  void setExprOperand(Expr *E) {
481    assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
482    Operand = E;
483  }
484
485  SourceRange getSourceRange() const { return Range; }
486  void setSourceRange(SourceRange R) { Range = R; }
487
488  static bool classof(const Stmt *T) {
489    return T->getStmtClass() == CXXUuidofExprClass;
490  }
491  static bool classof(const CXXUuidofExpr *) { return true; }
492
493  // Iterators
494  child_range children() {
495    if (isTypeOperand()) return child_range();
496    Stmt **begin = reinterpret_cast<Stmt**>(&Operand);
497    return child_range(begin, begin + 1);
498  }
499};
500
501/// CXXThisExpr - Represents the "this" expression in C++, which is a
502/// pointer to the object on which the current member function is
503/// executing (C++ [expr.prim]p3). Example:
504///
505/// @code
506/// class Foo {
507/// public:
508///   void bar();
509///   void test() { this->bar(); }
510/// };
511/// @endcode
512class CXXThisExpr : public Expr {
513  SourceLocation Loc;
514  bool Implicit : 1;
515
516public:
517  CXXThisExpr(SourceLocation L, QualType Type, bool isImplicit)
518    : Expr(CXXThisExprClass, Type, VK_RValue, OK_Ordinary,
519           // 'this' is type-dependent if the class type of the enclosing
520           // member function is dependent (C++ [temp.dep.expr]p2)
521           Type->isDependentType(), Type->isDependentType(),
522           /*ContainsUnexpandedParameterPack=*/false),
523      Loc(L), Implicit(isImplicit) { }
524
525  CXXThisExpr(EmptyShell Empty) : Expr(CXXThisExprClass, Empty) {}
526
527  SourceLocation getLocation() const { return Loc; }
528  void setLocation(SourceLocation L) { Loc = L; }
529
530  SourceRange getSourceRange() const { return SourceRange(Loc); }
531
532  bool isImplicit() const { return Implicit; }
533  void setImplicit(bool I) { Implicit = I; }
534
535  static bool classof(const Stmt *T) {
536    return T->getStmtClass() == CXXThisExprClass;
537  }
538  static bool classof(const CXXThisExpr *) { return true; }
539
540  // Iterators
541  child_range children() { return child_range(); }
542};
543
544///  CXXThrowExpr - [C++ 15] C++ Throw Expression.  This handles
545///  'throw' and 'throw' assignment-expression.  When
546///  assignment-expression isn't present, Op will be null.
547///
548class CXXThrowExpr : public Expr {
549  Stmt *Op;
550  SourceLocation ThrowLoc;
551public:
552  // Ty is the void type which is used as the result type of the
553  // exepression.  The l is the location of the throw keyword.  expr
554  // can by null, if the optional expression to throw isn't present.
555  CXXThrowExpr(Expr *expr, QualType Ty, SourceLocation l) :
556    Expr(CXXThrowExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
557         expr && expr->containsUnexpandedParameterPack()),
558    Op(expr), ThrowLoc(l) {}
559  CXXThrowExpr(EmptyShell Empty) : Expr(CXXThrowExprClass, Empty) {}
560
561  const Expr *getSubExpr() const { return cast_or_null<Expr>(Op); }
562  Expr *getSubExpr() { return cast_or_null<Expr>(Op); }
563  void setSubExpr(Expr *E) { Op = E; }
564
565  SourceLocation getThrowLoc() const { return ThrowLoc; }
566  void setThrowLoc(SourceLocation L) { ThrowLoc = L; }
567
568  SourceRange getSourceRange() const {
569    if (getSubExpr() == 0)
570      return SourceRange(ThrowLoc, ThrowLoc);
571    return SourceRange(ThrowLoc, getSubExpr()->getSourceRange().getEnd());
572  }
573
574  static bool classof(const Stmt *T) {
575    return T->getStmtClass() == CXXThrowExprClass;
576  }
577  static bool classof(const CXXThrowExpr *) { return true; }
578
579  // Iterators
580  child_range children() {
581    return child_range(&Op, Op ? &Op+1 : &Op);
582  }
583};
584
585/// CXXDefaultArgExpr - C++ [dcl.fct.default]. This wraps up a
586/// function call argument that was created from the corresponding
587/// parameter's default argument, when the call did not explicitly
588/// supply arguments for all of the parameters.
589class CXXDefaultArgExpr : public Expr {
590  /// \brief The parameter whose default is being used.
591  ///
592  /// When the bit is set, the subexpression is stored after the
593  /// CXXDefaultArgExpr itself. When the bit is clear, the parameter's
594  /// actual default expression is the subexpression.
595  llvm::PointerIntPair<ParmVarDecl *, 1, bool> Param;
596
597  /// \brief The location where the default argument expression was used.
598  SourceLocation Loc;
599
600  CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param)
601    : Expr(SC,
602           param->hasUnparsedDefaultArg()
603             ? param->getType().getNonReferenceType()
604             : param->getDefaultArg()->getType(),
605           param->getDefaultArg()->getValueKind(),
606           param->getDefaultArg()->getObjectKind(), false, false, false),
607      Param(param, false), Loc(Loc) { }
608
609  CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param,
610                    Expr *SubExpr)
611    : Expr(SC, SubExpr->getType(),
612           SubExpr->getValueKind(), SubExpr->getObjectKind(),
613           false, false, false),
614      Param(param, true), Loc(Loc) {
615    *reinterpret_cast<Expr **>(this + 1) = SubExpr;
616  }
617
618public:
619  CXXDefaultArgExpr(EmptyShell Empty) : Expr(CXXDefaultArgExprClass, Empty) {}
620
621
622  // Param is the parameter whose default argument is used by this
623  // expression.
624  static CXXDefaultArgExpr *Create(ASTContext &C, SourceLocation Loc,
625                                   ParmVarDecl *Param) {
626    return new (C) CXXDefaultArgExpr(CXXDefaultArgExprClass, Loc, Param);
627  }
628
629  // Param is the parameter whose default argument is used by this
630  // expression, and SubExpr is the expression that will actually be used.
631  static CXXDefaultArgExpr *Create(ASTContext &C,
632                                   SourceLocation Loc,
633                                   ParmVarDecl *Param,
634                                   Expr *SubExpr);
635
636  // Retrieve the parameter that the argument was created from.
637  const ParmVarDecl *getParam() const { return Param.getPointer(); }
638  ParmVarDecl *getParam() { return Param.getPointer(); }
639
640  // Retrieve the actual argument to the function call.
641  const Expr *getExpr() const {
642    if (Param.getInt())
643      return *reinterpret_cast<Expr const * const*> (this + 1);
644    return getParam()->getDefaultArg();
645  }
646  Expr *getExpr() {
647    if (Param.getInt())
648      return *reinterpret_cast<Expr **> (this + 1);
649    return getParam()->getDefaultArg();
650  }
651
652  /// \brief Retrieve the location where this default argument was actually
653  /// used.
654  SourceLocation getUsedLocation() const { return Loc; }
655
656  SourceRange getSourceRange() const {
657    // Default argument expressions have no representation in the
658    // source, so they have an empty source range.
659    return SourceRange();
660  }
661
662  static bool classof(const Stmt *T) {
663    return T->getStmtClass() == CXXDefaultArgExprClass;
664  }
665  static bool classof(const CXXDefaultArgExpr *) { return true; }
666
667  // Iterators
668  child_range children() { return child_range(); }
669
670  friend class ASTStmtReader;
671  friend class ASTStmtWriter;
672};
673
674/// CXXTemporary - Represents a C++ temporary.
675class CXXTemporary {
676  /// Destructor - The destructor that needs to be called.
677  const CXXDestructorDecl *Destructor;
678
679  CXXTemporary(const CXXDestructorDecl *destructor)
680    : Destructor(destructor) { }
681
682public:
683  static CXXTemporary *Create(ASTContext &C,
684                              const CXXDestructorDecl *Destructor);
685
686  const CXXDestructorDecl *getDestructor() const { return Destructor; }
687};
688
689/// \brief Represents binding an expression to a temporary.
690///
691/// This ensures the destructor is called for the temporary. It should only be
692/// needed for non-POD, non-trivially destructable class types. For example:
693///
694/// \code
695///   struct S {
696///     S() { }  // User defined constructor makes S non-POD.
697///     ~S() { } // User defined destructor makes it non-trivial.
698///   };
699///   void test() {
700///     const S &s_ref = S(); // Requires a CXXBindTemporaryExpr.
701///   }
702/// \endcode
703class CXXBindTemporaryExpr : public Expr {
704  CXXTemporary *Temp;
705
706  Stmt *SubExpr;
707
708  CXXBindTemporaryExpr(CXXTemporary *temp, Expr* SubExpr)
709   : Expr(CXXBindTemporaryExprClass, SubExpr->getType(),
710          VK_RValue, OK_Ordinary, SubExpr->isTypeDependent(),
711          SubExpr->isValueDependent(),
712          SubExpr->containsUnexpandedParameterPack()),
713     Temp(temp), SubExpr(SubExpr) { }
714
715public:
716  CXXBindTemporaryExpr(EmptyShell Empty)
717    : Expr(CXXBindTemporaryExprClass, Empty), Temp(0), SubExpr(0) {}
718
719  static CXXBindTemporaryExpr *Create(ASTContext &C, CXXTemporary *Temp,
720                                      Expr* SubExpr);
721
722  CXXTemporary *getTemporary() { return Temp; }
723  const CXXTemporary *getTemporary() const { return Temp; }
724  void setTemporary(CXXTemporary *T) { Temp = T; }
725
726  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
727  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
728  void setSubExpr(Expr *E) { SubExpr = E; }
729
730  SourceRange getSourceRange() const {
731    return SubExpr->getSourceRange();
732  }
733
734  // Implement isa/cast/dyncast/etc.
735  static bool classof(const Stmt *T) {
736    return T->getStmtClass() == CXXBindTemporaryExprClass;
737  }
738  static bool classof(const CXXBindTemporaryExpr *) { return true; }
739
740  // Iterators
741  child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
742};
743
744/// CXXConstructExpr - Represents a call to a C++ constructor.
745class CXXConstructExpr : public Expr {
746public:
747  enum ConstructionKind {
748    CK_Complete,
749    CK_NonVirtualBase,
750    CK_VirtualBase
751  };
752
753private:
754  CXXConstructorDecl *Constructor;
755
756  SourceLocation Loc;
757  SourceRange ParenRange;
758  bool Elidable : 1;
759  bool ZeroInitialization : 1;
760  unsigned ConstructKind : 2;
761  Stmt **Args;
762  unsigned NumArgs;
763
764protected:
765  CXXConstructExpr(ASTContext &C, StmtClass SC, QualType T,
766                   SourceLocation Loc,
767                   CXXConstructorDecl *d, bool elidable,
768                   Expr **args, unsigned numargs,
769                   bool ZeroInitialization = false,
770                   ConstructionKind ConstructKind = CK_Complete,
771                   SourceRange ParenRange = SourceRange());
772
773  /// \brief Construct an empty C++ construction expression.
774  CXXConstructExpr(StmtClass SC, EmptyShell Empty)
775    : Expr(SC, Empty), Constructor(0), Elidable(0), ZeroInitialization(0),
776      ConstructKind(0), Args(0), NumArgs(0) { }
777
778public:
779  /// \brief Construct an empty C++ construction expression.
780  explicit CXXConstructExpr(EmptyShell Empty)
781    : Expr(CXXConstructExprClass, Empty), Constructor(0),
782      Elidable(0), ZeroInitialization(0),
783      ConstructKind(0), Args(0), NumArgs(0) { }
784
785  static CXXConstructExpr *Create(ASTContext &C, QualType T,
786                                  SourceLocation Loc,
787                                  CXXConstructorDecl *D, bool Elidable,
788                                  Expr **Args, unsigned NumArgs,
789                                  bool ZeroInitialization = false,
790                                  ConstructionKind ConstructKind = CK_Complete,
791                                  SourceRange ParenRange = SourceRange());
792
793
794  CXXConstructorDecl* getConstructor() const { return Constructor; }
795  void setConstructor(CXXConstructorDecl *C) { Constructor = C; }
796
797  SourceLocation getLocation() const { return Loc; }
798  void setLocation(SourceLocation Loc) { this->Loc = Loc; }
799
800  /// \brief Whether this construction is elidable.
801  bool isElidable() const { return Elidable; }
802  void setElidable(bool E) { Elidable = E; }
803
804  /// \brief Whether this construction first requires
805  /// zero-initialization before the initializer is called.
806  bool requiresZeroInitialization() const { return ZeroInitialization; }
807  void setRequiresZeroInitialization(bool ZeroInit) {
808    ZeroInitialization = ZeroInit;
809  }
810
811  /// \brief Determines whether this constructor is actually constructing
812  /// a base class (rather than a complete object).
813  ConstructionKind getConstructionKind() const {
814    return (ConstructionKind)ConstructKind;
815  }
816  void setConstructionKind(ConstructionKind CK) {
817    ConstructKind = CK;
818  }
819
820  typedef ExprIterator arg_iterator;
821  typedef ConstExprIterator const_arg_iterator;
822
823  arg_iterator arg_begin() { return Args; }
824  arg_iterator arg_end() { return Args + NumArgs; }
825  const_arg_iterator arg_begin() const { return Args; }
826  const_arg_iterator arg_end() const { return Args + NumArgs; }
827
828  Expr **getArgs() const { return reinterpret_cast<Expr **>(Args); }
829  unsigned getNumArgs() const { return NumArgs; }
830
831  /// getArg - Return the specified argument.
832  Expr *getArg(unsigned Arg) {
833    assert(Arg < NumArgs && "Arg access out of range!");
834    return cast<Expr>(Args[Arg]);
835  }
836  const Expr *getArg(unsigned Arg) const {
837    assert(Arg < NumArgs && "Arg access out of range!");
838    return cast<Expr>(Args[Arg]);
839  }
840
841  /// setArg - Set the specified argument.
842  void setArg(unsigned Arg, Expr *ArgExpr) {
843    assert(Arg < NumArgs && "Arg access out of range!");
844    Args[Arg] = ArgExpr;
845  }
846
847  SourceRange getSourceRange() const;
848  SourceRange getParenRange() const { return ParenRange; }
849
850  static bool classof(const Stmt *T) {
851    return T->getStmtClass() == CXXConstructExprClass ||
852      T->getStmtClass() == CXXTemporaryObjectExprClass;
853  }
854  static bool classof(const CXXConstructExpr *) { return true; }
855
856  // Iterators
857  child_range children() {
858    return child_range(&Args[0], &Args[0]+NumArgs);
859  }
860
861  friend class ASTStmtReader;
862};
863
864/// CXXFunctionalCastExpr - Represents an explicit C++ type conversion
865/// that uses "functional" notion (C++ [expr.type.conv]). Example: @c
866/// x = int(0.5);
867class CXXFunctionalCastExpr : public ExplicitCastExpr {
868  SourceLocation TyBeginLoc;
869  SourceLocation RParenLoc;
870
871  CXXFunctionalCastExpr(QualType ty, ExprValueKind VK,
872                        TypeSourceInfo *writtenTy,
873                        SourceLocation tyBeginLoc, CastKind kind,
874                        Expr *castExpr, unsigned pathSize,
875                        SourceLocation rParenLoc)
876    : ExplicitCastExpr(CXXFunctionalCastExprClass, ty, VK, kind,
877                       castExpr, pathSize, writtenTy),
878      TyBeginLoc(tyBeginLoc), RParenLoc(rParenLoc) {}
879
880  explicit CXXFunctionalCastExpr(EmptyShell Shell, unsigned PathSize)
881    : ExplicitCastExpr(CXXFunctionalCastExprClass, Shell, PathSize) { }
882
883public:
884  static CXXFunctionalCastExpr *Create(ASTContext &Context, QualType T,
885                                       ExprValueKind VK,
886                                       TypeSourceInfo *Written,
887                                       SourceLocation TyBeginLoc,
888                                       CastKind Kind, Expr *Op,
889                                       const CXXCastPath *Path,
890                                       SourceLocation RPLoc);
891  static CXXFunctionalCastExpr *CreateEmpty(ASTContext &Context,
892                                            unsigned PathSize);
893
894  SourceLocation getTypeBeginLoc() const { return TyBeginLoc; }
895  void setTypeBeginLoc(SourceLocation L) { TyBeginLoc = L; }
896  SourceLocation getRParenLoc() const { return RParenLoc; }
897  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
898
899  SourceRange getSourceRange() const {
900    return SourceRange(TyBeginLoc, RParenLoc);
901  }
902  static bool classof(const Stmt *T) {
903    return T->getStmtClass() == CXXFunctionalCastExprClass;
904  }
905  static bool classof(const CXXFunctionalCastExpr *) { return true; }
906};
907
908/// @brief Represents a C++ functional cast expression that builds a
909/// temporary object.
910///
911/// This expression type represents a C++ "functional" cast
912/// (C++[expr.type.conv]) with N != 1 arguments that invokes a
913/// constructor to build a temporary object. With N == 1 arguments the
914/// functional cast expression will be represented by CXXFunctionalCastExpr.
915/// Example:
916/// @code
917/// struct X { X(int, float); }
918///
919/// X create_X() {
920///   return X(1, 3.14f); // creates a CXXTemporaryObjectExpr
921/// };
922/// @endcode
923class CXXTemporaryObjectExpr : public CXXConstructExpr {
924  TypeSourceInfo *Type;
925
926public:
927  CXXTemporaryObjectExpr(ASTContext &C, CXXConstructorDecl *Cons,
928                         TypeSourceInfo *Type,
929                         Expr **Args,unsigned NumArgs,
930                         SourceRange parenRange,
931                         bool ZeroInitialization = false);
932  explicit CXXTemporaryObjectExpr(EmptyShell Empty)
933    : CXXConstructExpr(CXXTemporaryObjectExprClass, Empty), Type() { }
934
935  TypeSourceInfo *getTypeSourceInfo() const { return Type; }
936
937  SourceRange getSourceRange() const;
938
939  static bool classof(const Stmt *T) {
940    return T->getStmtClass() == CXXTemporaryObjectExprClass;
941  }
942  static bool classof(const CXXTemporaryObjectExpr *) { return true; }
943
944  friend class ASTStmtReader;
945};
946
947/// CXXScalarValueInitExpr - [C++ 5.2.3p2]
948/// Expression "T()" which creates a value-initialized rvalue of type
949/// T, which is a non-class type.
950///
951class CXXScalarValueInitExpr : public Expr {
952  SourceLocation RParenLoc;
953  TypeSourceInfo *TypeInfo;
954
955  friend class ASTStmtReader;
956
957public:
958  /// \brief Create an explicitly-written scalar-value initialization
959  /// expression.
960  CXXScalarValueInitExpr(QualType Type,
961                         TypeSourceInfo *TypeInfo,
962                         SourceLocation rParenLoc ) :
963    Expr(CXXScalarValueInitExprClass, Type, VK_RValue, OK_Ordinary,
964         false, false, false),
965    RParenLoc(rParenLoc), TypeInfo(TypeInfo) {}
966
967  explicit CXXScalarValueInitExpr(EmptyShell Shell)
968    : Expr(CXXScalarValueInitExprClass, Shell) { }
969
970  TypeSourceInfo *getTypeSourceInfo() const {
971    return TypeInfo;
972  }
973
974  SourceLocation getRParenLoc() const { return RParenLoc; }
975
976  SourceRange getSourceRange() const;
977
978  static bool classof(const Stmt *T) {
979    return T->getStmtClass() == CXXScalarValueInitExprClass;
980  }
981  static bool classof(const CXXScalarValueInitExpr *) { return true; }
982
983  // Iterators
984  child_range children() { return child_range(); }
985};
986
987/// CXXNewExpr - A new expression for memory allocation and constructor calls,
988/// e.g: "new CXXNewExpr(foo)".
989class CXXNewExpr : public Expr {
990  // Was the usage ::new, i.e. is the global new to be used?
991  bool GlobalNew : 1;
992  // Is there an initializer? If not, built-ins are uninitialized, else they're
993  // value-initialized.
994  bool Initializer : 1;
995  // Do we allocate an array? If so, the first SubExpr is the size expression.
996  bool Array : 1;
997  // If this is an array allocation, does the usual deallocation
998  // function for the allocated type want to know the allocated size?
999  bool UsualArrayDeleteWantsSize : 1;
1000  // The number of placement new arguments.
1001  unsigned NumPlacementArgs : 14;
1002  // The number of constructor arguments. This may be 1 even for non-class
1003  // types; use the pseudo copy constructor.
1004  unsigned NumConstructorArgs : 14;
1005  // Contains an optional array size expression, any number of optional
1006  // placement arguments, and any number of optional constructor arguments,
1007  // in that order.
1008  Stmt **SubExprs;
1009  // Points to the allocation function used.
1010  FunctionDecl *OperatorNew;
1011  // Points to the deallocation function used in case of error. May be null.
1012  FunctionDecl *OperatorDelete;
1013  // Points to the constructor used. Cannot be null if AllocType is a record;
1014  // it would still point at the default constructor (even an implicit one).
1015  // Must be null for all other types.
1016  CXXConstructorDecl *Constructor;
1017
1018  /// \brief The allocated type-source information, as written in the source.
1019  TypeSourceInfo *AllocatedTypeInfo;
1020
1021  /// \brief If the allocated type was expressed as a parenthesized type-id,
1022  /// the source range covering the parenthesized type-id.
1023  SourceRange TypeIdParens;
1024
1025  SourceLocation StartLoc;
1026  SourceLocation EndLoc;
1027  SourceLocation ConstructorLParen;
1028  SourceLocation ConstructorRParen;
1029
1030  friend class ASTStmtReader;
1031public:
1032  CXXNewExpr(ASTContext &C, bool globalNew, FunctionDecl *operatorNew,
1033             Expr **placementArgs, unsigned numPlaceArgs,
1034             SourceRange TypeIdParens,
1035             Expr *arraySize, CXXConstructorDecl *constructor, bool initializer,
1036             Expr **constructorArgs, unsigned numConsArgs,
1037             FunctionDecl *operatorDelete, bool usualArrayDeleteWantsSize,
1038             QualType ty, TypeSourceInfo *AllocatedTypeInfo,
1039             SourceLocation startLoc, SourceLocation endLoc,
1040             SourceLocation constructorLParen,
1041             SourceLocation constructorRParen);
1042  explicit CXXNewExpr(EmptyShell Shell)
1043    : Expr(CXXNewExprClass, Shell), SubExprs(0) { }
1044
1045  void AllocateArgsArray(ASTContext &C, bool isArray, unsigned numPlaceArgs,
1046                         unsigned numConsArgs);
1047
1048  QualType getAllocatedType() const {
1049    assert(getType()->isPointerType());
1050    return getType()->getAs<PointerType>()->getPointeeType();
1051  }
1052
1053  TypeSourceInfo *getAllocatedTypeSourceInfo() const {
1054    return AllocatedTypeInfo;
1055  }
1056
1057  FunctionDecl *getOperatorNew() const { return OperatorNew; }
1058  void setOperatorNew(FunctionDecl *D) { OperatorNew = D; }
1059  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
1060  void setOperatorDelete(FunctionDecl *D) { OperatorDelete = D; }
1061  CXXConstructorDecl *getConstructor() const { return Constructor; }
1062  void setConstructor(CXXConstructorDecl *D) { Constructor = D; }
1063
1064  bool isArray() const { return Array; }
1065  Expr *getArraySize() {
1066    return Array ? cast<Expr>(SubExprs[0]) : 0;
1067  }
1068  const Expr *getArraySize() const {
1069    return Array ? cast<Expr>(SubExprs[0]) : 0;
1070  }
1071
1072  unsigned getNumPlacementArgs() const { return NumPlacementArgs; }
1073  Expr **getPlacementArgs() {
1074    return reinterpret_cast<Expr **>(SubExprs + Array);
1075  }
1076
1077  Expr *getPlacementArg(unsigned i) {
1078    assert(i < NumPlacementArgs && "Index out of range");
1079    return cast<Expr>(SubExprs[Array + i]);
1080  }
1081  const Expr *getPlacementArg(unsigned i) const {
1082    assert(i < NumPlacementArgs && "Index out of range");
1083    return cast<Expr>(SubExprs[Array + i]);
1084  }
1085
1086  bool isParenTypeId() const { return TypeIdParens.isValid(); }
1087  SourceRange getTypeIdParens() const { return TypeIdParens; }
1088
1089  bool isGlobalNew() const { return GlobalNew; }
1090  bool hasInitializer() const { return Initializer; }
1091
1092  /// Answers whether the usual array deallocation function for the
1093  /// allocated type expects the size of the allocation as a
1094  /// parameter.
1095  bool doesUsualArrayDeleteWantSize() const {
1096    return UsualArrayDeleteWantsSize;
1097  }
1098
1099  unsigned getNumConstructorArgs() const { return NumConstructorArgs; }
1100
1101  Expr **getConstructorArgs() {
1102    return reinterpret_cast<Expr **>(SubExprs + Array + NumPlacementArgs);
1103  }
1104
1105  Expr *getConstructorArg(unsigned i) {
1106    assert(i < NumConstructorArgs && "Index out of range");
1107    return cast<Expr>(SubExprs[Array + NumPlacementArgs + i]);
1108  }
1109  const Expr *getConstructorArg(unsigned i) const {
1110    assert(i < NumConstructorArgs && "Index out of range");
1111    return cast<Expr>(SubExprs[Array + NumPlacementArgs + i]);
1112  }
1113
1114  typedef ExprIterator arg_iterator;
1115  typedef ConstExprIterator const_arg_iterator;
1116
1117  arg_iterator placement_arg_begin() {
1118    return SubExprs + Array;
1119  }
1120  arg_iterator placement_arg_end() {
1121    return SubExprs + Array + getNumPlacementArgs();
1122  }
1123  const_arg_iterator placement_arg_begin() const {
1124    return SubExprs + Array;
1125  }
1126  const_arg_iterator placement_arg_end() const {
1127    return SubExprs + Array + getNumPlacementArgs();
1128  }
1129
1130  arg_iterator constructor_arg_begin() {
1131    return SubExprs + Array + getNumPlacementArgs();
1132  }
1133  arg_iterator constructor_arg_end() {
1134    return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
1135  }
1136  const_arg_iterator constructor_arg_begin() const {
1137    return SubExprs + Array + getNumPlacementArgs();
1138  }
1139  const_arg_iterator constructor_arg_end() const {
1140    return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
1141  }
1142
1143  typedef Stmt **raw_arg_iterator;
1144  raw_arg_iterator raw_arg_begin() { return SubExprs; }
1145  raw_arg_iterator raw_arg_end() {
1146    return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
1147  }
1148  const_arg_iterator raw_arg_begin() const { return SubExprs; }
1149  const_arg_iterator raw_arg_end() const { return constructor_arg_end(); }
1150
1151  SourceLocation getStartLoc() const { return StartLoc; }
1152  SourceLocation getEndLoc() const { return EndLoc; }
1153
1154  SourceLocation getConstructorLParen() const { return ConstructorLParen; }
1155  SourceLocation getConstructorRParen() const { return ConstructorRParen; }
1156
1157  SourceRange getSourceRange() const {
1158    return SourceRange(StartLoc, EndLoc);
1159  }
1160
1161  static bool classof(const Stmt *T) {
1162    return T->getStmtClass() == CXXNewExprClass;
1163  }
1164  static bool classof(const CXXNewExpr *) { return true; }
1165
1166  // Iterators
1167  child_range children() {
1168    return child_range(&SubExprs[0],
1169                       &SubExprs[0] + Array + getNumPlacementArgs()
1170                         + getNumConstructorArgs());
1171  }
1172};
1173
1174/// CXXDeleteExpr - A delete expression for memory deallocation and destructor
1175/// calls, e.g. "delete[] pArray".
1176class CXXDeleteExpr : public Expr {
1177  // Is this a forced global delete, i.e. "::delete"?
1178  bool GlobalDelete : 1;
1179  // Is this the array form of delete, i.e. "delete[]"?
1180  bool ArrayForm : 1;
1181  // ArrayFormAsWritten can be different from ArrayForm if 'delete' is applied
1182  // to pointer-to-array type (ArrayFormAsWritten will be false while ArrayForm
1183  // will be true).
1184  bool ArrayFormAsWritten : 1;
1185  // Does the usual deallocation function for the element type require
1186  // a size_t argument?
1187  bool UsualArrayDeleteWantsSize : 1;
1188  // Points to the operator delete overload that is used. Could be a member.
1189  FunctionDecl *OperatorDelete;
1190  // The pointer expression to be deleted.
1191  Stmt *Argument;
1192  // Location of the expression.
1193  SourceLocation Loc;
1194public:
1195  CXXDeleteExpr(QualType ty, bool globalDelete, bool arrayForm,
1196                bool arrayFormAsWritten, bool usualArrayDeleteWantsSize,
1197                FunctionDecl *operatorDelete, Expr *arg, SourceLocation loc)
1198    : Expr(CXXDeleteExprClass, ty, VK_RValue, OK_Ordinary, false, false,
1199           arg->containsUnexpandedParameterPack()),
1200      GlobalDelete(globalDelete),
1201      ArrayForm(arrayForm), ArrayFormAsWritten(arrayFormAsWritten),
1202      UsualArrayDeleteWantsSize(usualArrayDeleteWantsSize),
1203      OperatorDelete(operatorDelete), Argument(arg), Loc(loc) { }
1204  explicit CXXDeleteExpr(EmptyShell Shell)
1205    : Expr(CXXDeleteExprClass, Shell), OperatorDelete(0), Argument(0) { }
1206
1207  bool isGlobalDelete() const { return GlobalDelete; }
1208  bool isArrayForm() const { return ArrayForm; }
1209  bool isArrayFormAsWritten() const { return ArrayFormAsWritten; }
1210
1211  /// Answers whether the usual array deallocation function for the
1212  /// allocated type expects the size of the allocation as a
1213  /// parameter.  This can be true even if the actual deallocation
1214  /// function that we're using doesn't want a size.
1215  bool doesUsualArrayDeleteWantSize() const {
1216    return UsualArrayDeleteWantsSize;
1217  }
1218
1219  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
1220
1221  Expr *getArgument() { return cast<Expr>(Argument); }
1222  const Expr *getArgument() const { return cast<Expr>(Argument); }
1223
1224  /// \brief Retrieve the type being destroyed.  If the type being
1225  /// destroyed is a dependent type which may or may not be a pointer,
1226  /// return an invalid type.
1227  QualType getDestroyedType() const;
1228
1229  SourceRange getSourceRange() const {
1230    return SourceRange(Loc, Argument->getLocEnd());
1231  }
1232
1233  static bool classof(const Stmt *T) {
1234    return T->getStmtClass() == CXXDeleteExprClass;
1235  }
1236  static bool classof(const CXXDeleteExpr *) { return true; }
1237
1238  // Iterators
1239  child_range children() { return child_range(&Argument, &Argument+1); }
1240
1241  friend class ASTStmtReader;
1242};
1243
1244/// \brief Structure used to store the type being destroyed by a
1245/// pseudo-destructor expression.
1246class PseudoDestructorTypeStorage {
1247  /// \brief Either the type source information or the name of the type, if
1248  /// it couldn't be resolved due to type-dependence.
1249  llvm::PointerUnion<TypeSourceInfo *, IdentifierInfo *> Type;
1250
1251  /// \brief The starting source location of the pseudo-destructor type.
1252  SourceLocation Location;
1253
1254public:
1255  PseudoDestructorTypeStorage() { }
1256
1257  PseudoDestructorTypeStorage(IdentifierInfo *II, SourceLocation Loc)
1258    : Type(II), Location(Loc) { }
1259
1260  PseudoDestructorTypeStorage(TypeSourceInfo *Info);
1261
1262  TypeSourceInfo *getTypeSourceInfo() const {
1263    return Type.dyn_cast<TypeSourceInfo *>();
1264  }
1265
1266  IdentifierInfo *getIdentifier() const {
1267    return Type.dyn_cast<IdentifierInfo *>();
1268  }
1269
1270  SourceLocation getLocation() const { return Location; }
1271};
1272
1273/// \brief Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
1274///
1275/// A pseudo-destructor is an expression that looks like a member access to a
1276/// destructor of a scalar type, except that scalar types don't have
1277/// destructors. For example:
1278///
1279/// \code
1280/// typedef int T;
1281/// void f(int *p) {
1282///   p->T::~T();
1283/// }
1284/// \endcode
1285///
1286/// Pseudo-destructors typically occur when instantiating templates such as:
1287///
1288/// \code
1289/// template<typename T>
1290/// void destroy(T* ptr) {
1291///   ptr->T::~T();
1292/// }
1293/// \endcode
1294///
1295/// for scalar types. A pseudo-destructor expression has no run-time semantics
1296/// beyond evaluating the base expression.
1297class CXXPseudoDestructorExpr : public Expr {
1298  /// \brief The base expression (that is being destroyed).
1299  Stmt *Base;
1300
1301  /// \brief Whether the operator was an arrow ('->'); otherwise, it was a
1302  /// period ('.').
1303  bool IsArrow : 1;
1304
1305  /// \brief The location of the '.' or '->' operator.
1306  SourceLocation OperatorLoc;
1307
1308  /// \brief The nested-name-specifier that follows the operator, if present.
1309  NestedNameSpecifier *Qualifier;
1310
1311  /// \brief The source range that covers the nested-name-specifier, if
1312  /// present.
1313  SourceRange QualifierRange;
1314
1315  /// \brief The type that precedes the '::' in a qualified pseudo-destructor
1316  /// expression.
1317  TypeSourceInfo *ScopeType;
1318
1319  /// \brief The location of the '::' in a qualified pseudo-destructor
1320  /// expression.
1321  SourceLocation ColonColonLoc;
1322
1323  /// \brief The location of the '~'.
1324  SourceLocation TildeLoc;
1325
1326  /// \brief The type being destroyed, or its name if we were unable to
1327  /// resolve the name.
1328  PseudoDestructorTypeStorage DestroyedType;
1329
1330public:
1331  CXXPseudoDestructorExpr(ASTContext &Context,
1332                          Expr *Base, bool isArrow, SourceLocation OperatorLoc,
1333                          NestedNameSpecifier *Qualifier,
1334                          SourceRange QualifierRange,
1335                          TypeSourceInfo *ScopeType,
1336                          SourceLocation ColonColonLoc,
1337                          SourceLocation TildeLoc,
1338                          PseudoDestructorTypeStorage DestroyedType);
1339
1340  explicit CXXPseudoDestructorExpr(EmptyShell Shell)
1341    : Expr(CXXPseudoDestructorExprClass, Shell),
1342      Base(0), IsArrow(false), Qualifier(0), ScopeType(0) { }
1343
1344  void setBase(Expr *E) { Base = E; }
1345  Expr *getBase() const { return cast<Expr>(Base); }
1346
1347  /// \brief Determines whether this member expression actually had
1348  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
1349  /// x->Base::foo.
1350  bool hasQualifier() const { return Qualifier != 0; }
1351
1352  /// \brief If the member name was qualified, retrieves the source range of
1353  /// the nested-name-specifier that precedes the member name. Otherwise,
1354  /// returns an empty source range.
1355  SourceRange getQualifierRange() const { return QualifierRange; }
1356  void setQualifierRange(SourceRange R) { QualifierRange = R; }
1357
1358  /// \brief If the member name was qualified, retrieves the
1359  /// nested-name-specifier that precedes the member name. Otherwise, returns
1360  /// NULL.
1361  NestedNameSpecifier *getQualifier() const { return Qualifier; }
1362  void setQualifier(NestedNameSpecifier *NNS) { Qualifier = NNS; }
1363
1364  /// \brief Determine whether this pseudo-destructor expression was written
1365  /// using an '->' (otherwise, it used a '.').
1366  bool isArrow() const { return IsArrow; }
1367  void setArrow(bool A) { IsArrow = A; }
1368
1369  /// \brief Retrieve the location of the '.' or '->' operator.
1370  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1371  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
1372
1373  /// \brief Retrieve the scope type in a qualified pseudo-destructor
1374  /// expression.
1375  ///
1376  /// Pseudo-destructor expressions can have extra qualification within them
1377  /// that is not part of the nested-name-specifier, e.g., \c p->T::~T().
1378  /// Here, if the object type of the expression is (or may be) a scalar type,
1379  /// \p T may also be a scalar type and, therefore, cannot be part of a
1380  /// nested-name-specifier. It is stored as the "scope type" of the pseudo-
1381  /// destructor expression.
1382  TypeSourceInfo *getScopeTypeInfo() const { return ScopeType; }
1383  void setScopeTypeInfo(TypeSourceInfo *Info) { ScopeType = Info; }
1384
1385  /// \brief Retrieve the location of the '::' in a qualified pseudo-destructor
1386  /// expression.
1387  SourceLocation getColonColonLoc() const { return ColonColonLoc; }
1388  void setColonColonLoc(SourceLocation L) { ColonColonLoc = L; }
1389
1390  /// \brief Retrieve the location of the '~'.
1391  SourceLocation getTildeLoc() const { return TildeLoc; }
1392  void setTildeLoc(SourceLocation L) { TildeLoc = L; }
1393
1394  /// \brief Retrieve the source location information for the type
1395  /// being destroyed.
1396  ///
1397  /// This type-source information is available for non-dependent
1398  /// pseudo-destructor expressions and some dependent pseudo-destructor
1399  /// expressions. Returns NULL if we only have the identifier for a
1400  /// dependent pseudo-destructor expression.
1401  TypeSourceInfo *getDestroyedTypeInfo() const {
1402    return DestroyedType.getTypeSourceInfo();
1403  }
1404
1405  /// \brief In a dependent pseudo-destructor expression for which we do not
1406  /// have full type information on the destroyed type, provides the name
1407  /// of the destroyed type.
1408  IdentifierInfo *getDestroyedTypeIdentifier() const {
1409    return DestroyedType.getIdentifier();
1410  }
1411
1412  /// \brief Retrieve the type being destroyed.
1413  QualType getDestroyedType() const;
1414
1415  /// \brief Retrieve the starting location of the type being destroyed.
1416  SourceLocation getDestroyedTypeLoc() const {
1417    return DestroyedType.getLocation();
1418  }
1419
1420  /// \brief Set the name of destroyed type for a dependent pseudo-destructor
1421  /// expression.
1422  void setDestroyedType(IdentifierInfo *II, SourceLocation Loc) {
1423    DestroyedType = PseudoDestructorTypeStorage(II, Loc);
1424  }
1425
1426  /// \brief Set the destroyed type.
1427  void setDestroyedType(TypeSourceInfo *Info) {
1428    DestroyedType = PseudoDestructorTypeStorage(Info);
1429  }
1430
1431  SourceRange getSourceRange() const;
1432
1433  static bool classof(const Stmt *T) {
1434    return T->getStmtClass() == CXXPseudoDestructorExprClass;
1435  }
1436  static bool classof(const CXXPseudoDestructorExpr *) { return true; }
1437
1438  // Iterators
1439  child_range children() { return child_range(&Base, &Base + 1); }
1440};
1441
1442/// UnaryTypeTraitExpr - A GCC or MS unary type trait, as used in the
1443/// implementation of TR1/C++0x type trait templates.
1444/// Example:
1445/// __is_pod(int) == true
1446/// __is_enum(std::string) == false
1447class UnaryTypeTraitExpr : public Expr {
1448  /// UTT - The trait. A UnaryTypeTrait enum in MSVC compat unsigned.
1449  unsigned UTT : 31;
1450  /// The value of the type trait. Unspecified if dependent.
1451  bool Value : 1;
1452
1453  /// Loc - The location of the type trait keyword.
1454  SourceLocation Loc;
1455
1456  /// RParen - The location of the closing paren.
1457  SourceLocation RParen;
1458
1459  /// The type being queried.
1460  TypeSourceInfo *QueriedType;
1461
1462public:
1463  UnaryTypeTraitExpr(SourceLocation loc, UnaryTypeTrait utt,
1464                     TypeSourceInfo *queried, bool value,
1465                     SourceLocation rparen, QualType ty)
1466    : Expr(UnaryTypeTraitExprClass, ty, VK_RValue, OK_Ordinary,
1467           false,  queried->getType()->isDependentType(),
1468           queried->getType()->containsUnexpandedParameterPack()),
1469      UTT(utt), Value(value), Loc(loc), RParen(rparen), QueriedType(queried) { }
1470
1471  explicit UnaryTypeTraitExpr(EmptyShell Empty)
1472    : Expr(UnaryTypeTraitExprClass, Empty), UTT(0), Value(false),
1473      QueriedType() { }
1474
1475  SourceRange getSourceRange() const { return SourceRange(Loc, RParen);}
1476
1477  UnaryTypeTrait getTrait() const { return static_cast<UnaryTypeTrait>(UTT); }
1478
1479  QualType getQueriedType() const { return QueriedType->getType(); }
1480
1481  TypeSourceInfo *getQueriedTypeSourceInfo() const { return QueriedType; }
1482
1483  bool getValue() const { return Value; }
1484
1485  static bool classof(const Stmt *T) {
1486    return T->getStmtClass() == UnaryTypeTraitExprClass;
1487  }
1488  static bool classof(const UnaryTypeTraitExpr *) { return true; }
1489
1490  // Iterators
1491  child_range children() { return child_range(); }
1492
1493  friend class ASTStmtReader;
1494};
1495
1496/// BinaryTypeTraitExpr - A GCC or MS binary type trait, as used in the
1497/// implementation of TR1/C++0x type trait templates.
1498/// Example:
1499/// __is_base_of(Base, Derived) == true
1500class BinaryTypeTraitExpr : public Expr {
1501  /// BTT - The trait. A BinaryTypeTrait enum in MSVC compat unsigned.
1502  unsigned BTT : 8;
1503
1504  /// The value of the type trait. Unspecified if dependent.
1505  bool Value : 1;
1506
1507  /// Loc - The location of the type trait keyword.
1508  SourceLocation Loc;
1509
1510  /// RParen - The location of the closing paren.
1511  SourceLocation RParen;
1512
1513  /// The lhs type being queried.
1514  TypeSourceInfo *LhsType;
1515
1516  /// The rhs type being queried.
1517  TypeSourceInfo *RhsType;
1518
1519public:
1520  BinaryTypeTraitExpr(SourceLocation loc, BinaryTypeTrait btt,
1521                     TypeSourceInfo *lhsType, TypeSourceInfo *rhsType,
1522                     bool value, SourceLocation rparen, QualType ty)
1523    : Expr(BinaryTypeTraitExprClass, ty, VK_RValue, OK_Ordinary, false,
1524           lhsType->getType()->isDependentType() ||
1525           rhsType->getType()->isDependentType(),
1526           (lhsType->getType()->containsUnexpandedParameterPack() ||
1527            rhsType->getType()->containsUnexpandedParameterPack())),
1528      BTT(btt), Value(value), Loc(loc), RParen(rparen),
1529      LhsType(lhsType), RhsType(rhsType) { }
1530
1531
1532  explicit BinaryTypeTraitExpr(EmptyShell Empty)
1533    : Expr(BinaryTypeTraitExprClass, Empty), BTT(0), Value(false),
1534      LhsType(), RhsType() { }
1535
1536  SourceRange getSourceRange() const {
1537    return SourceRange(Loc, RParen);
1538  }
1539
1540  BinaryTypeTrait getTrait() const {
1541    return static_cast<BinaryTypeTrait>(BTT);
1542  }
1543
1544  QualType getLhsType() const { return LhsType->getType(); }
1545  QualType getRhsType() const { return RhsType->getType(); }
1546
1547  TypeSourceInfo *getLhsTypeSourceInfo() const { return LhsType; }
1548  TypeSourceInfo *getRhsTypeSourceInfo() const { return RhsType; }
1549
1550  bool getValue() const { assert(!isTypeDependent()); return Value; }
1551
1552  static bool classof(const Stmt *T) {
1553    return T->getStmtClass() == BinaryTypeTraitExprClass;
1554  }
1555  static bool classof(const BinaryTypeTraitExpr *) { return true; }
1556
1557  // Iterators
1558  child_range children() { return child_range(); }
1559
1560  friend class ASTStmtReader;
1561};
1562
1563/// \brief A reference to an overloaded function set, either an
1564/// \t UnresolvedLookupExpr or an \t UnresolvedMemberExpr.
1565class OverloadExpr : public Expr {
1566  /// The results.  These are undesugared, which is to say, they may
1567  /// include UsingShadowDecls.  Access is relative to the naming
1568  /// class.
1569  // FIXME: Allocate this data after the OverloadExpr subclass.
1570  DeclAccessPair *Results;
1571  unsigned NumResults;
1572
1573  /// The common name of these declarations.
1574  DeclarationNameInfo NameInfo;
1575
1576  /// The scope specifier, if any.
1577  NestedNameSpecifier *Qualifier;
1578
1579  /// The source range of the scope specifier.
1580  SourceRange QualifierRange;
1581
1582protected:
1583  /// True if the name was a template-id.
1584  bool HasExplicitTemplateArgs;
1585
1586  OverloadExpr(StmtClass K, ASTContext &C,
1587               NestedNameSpecifier *Qualifier, SourceRange QRange,
1588               const DeclarationNameInfo &NameInfo,
1589               const TemplateArgumentListInfo *TemplateArgs,
1590               UnresolvedSetIterator Begin, UnresolvedSetIterator End,
1591               bool KnownDependent = false,
1592               bool KnownContainsUnexpandedParameterPack = false);
1593
1594  OverloadExpr(StmtClass K, EmptyShell Empty)
1595    : Expr(K, Empty), Results(0), NumResults(0),
1596      Qualifier(0), HasExplicitTemplateArgs(false) { }
1597
1598  void initializeResults(ASTContext &C,
1599                         UnresolvedSetIterator Begin,
1600                         UnresolvedSetIterator End);
1601
1602public:
1603  struct FindResult {
1604    OverloadExpr *Expression;
1605    bool IsAddressOfOperand;
1606    bool HasFormOfMemberPointer;
1607  };
1608
1609  /// Finds the overloaded expression in the given expression of
1610  /// OverloadTy.
1611  ///
1612  /// \return the expression (which must be there) and true if it has
1613  /// the particular form of a member pointer expression
1614  static FindResult find(Expr *E) {
1615    assert(E->getType()->isSpecificBuiltinType(BuiltinType::Overload));
1616
1617    FindResult Result;
1618
1619    E = E->IgnoreParens();
1620    if (isa<UnaryOperator>(E)) {
1621      assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
1622      E = cast<UnaryOperator>(E)->getSubExpr();
1623      OverloadExpr *Ovl = cast<OverloadExpr>(E->IgnoreParens());
1624
1625      Result.HasFormOfMemberPointer = (E == Ovl && Ovl->getQualifier());
1626      Result.IsAddressOfOperand = true;
1627      Result.Expression = Ovl;
1628    } else {
1629      Result.HasFormOfMemberPointer = false;
1630      Result.IsAddressOfOperand = false;
1631      Result.Expression = cast<OverloadExpr>(E);
1632    }
1633
1634    return Result;
1635  }
1636
1637  /// Gets the naming class of this lookup, if any.
1638  CXXRecordDecl *getNamingClass() const;
1639
1640  typedef UnresolvedSetImpl::iterator decls_iterator;
1641  decls_iterator decls_begin() const { return UnresolvedSetIterator(Results); }
1642  decls_iterator decls_end() const {
1643    return UnresolvedSetIterator(Results + NumResults);
1644  }
1645
1646  /// Gets the number of declarations in the unresolved set.
1647  unsigned getNumDecls() const { return NumResults; }
1648
1649  /// Gets the full name info.
1650  const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
1651  void setNameInfo(const DeclarationNameInfo &N) { NameInfo = N; }
1652
1653  /// Gets the name looked up.
1654  DeclarationName getName() const { return NameInfo.getName(); }
1655  void setName(DeclarationName N) { NameInfo.setName(N); }
1656
1657  /// Gets the location of the name.
1658  SourceLocation getNameLoc() const { return NameInfo.getLoc(); }
1659  void setNameLoc(SourceLocation Loc) { NameInfo.setLoc(Loc); }
1660
1661  /// Fetches the nested-name qualifier, if one was given.
1662  NestedNameSpecifier *getQualifier() const { return Qualifier; }
1663  void setQualifier(NestedNameSpecifier *NNS) { Qualifier = NNS; }
1664
1665  /// Fetches the range of the nested-name qualifier.
1666  SourceRange getQualifierRange() const { return QualifierRange; }
1667  void setQualifierRange(SourceRange R) { QualifierRange = R; }
1668
1669  /// \brief Determines whether this expression had an explicit
1670  /// template argument list, e.g. f<int>.
1671  bool hasExplicitTemplateArgs() const { return HasExplicitTemplateArgs; }
1672
1673  ExplicitTemplateArgumentList &getExplicitTemplateArgs(); // defined far below
1674
1675  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
1676    return const_cast<OverloadExpr*>(this)->getExplicitTemplateArgs();
1677  }
1678
1679  /// \brief Retrieves the optional explicit template arguments.
1680  /// This points to the same data as getExplicitTemplateArgs(), but
1681  /// returns null if there are no explicit template arguments.
1682  const ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() {
1683    if (!hasExplicitTemplateArgs()) return 0;
1684    return &getExplicitTemplateArgs();
1685  }
1686
1687  static bool classof(const Stmt *T) {
1688    return T->getStmtClass() == UnresolvedLookupExprClass ||
1689           T->getStmtClass() == UnresolvedMemberExprClass;
1690  }
1691  static bool classof(const OverloadExpr *) { return true; }
1692
1693  friend class ASTStmtReader;
1694  friend class ASTStmtWriter;
1695};
1696
1697/// \brief A reference to a name which we were able to look up during
1698/// parsing but could not resolve to a specific declaration.  This
1699/// arises in several ways:
1700///   * we might be waiting for argument-dependent lookup
1701///   * the name might resolve to an overloaded function
1702/// and eventually:
1703///   * the lookup might have included a function template
1704/// These never include UnresolvedUsingValueDecls, which are always
1705/// class members and therefore appear only in
1706/// UnresolvedMemberLookupExprs.
1707class UnresolvedLookupExpr : public OverloadExpr {
1708  /// True if these lookup results should be extended by
1709  /// argument-dependent lookup if this is the operand of a function
1710  /// call.
1711  bool RequiresADL;
1712
1713  /// True if these lookup results are overloaded.  This is pretty
1714  /// trivially rederivable if we urgently need to kill this field.
1715  bool Overloaded;
1716
1717  /// The naming class (C++ [class.access.base]p5) of the lookup, if
1718  /// any.  This can generally be recalculated from the context chain,
1719  /// but that can be fairly expensive for unqualified lookups.  If we
1720  /// want to improve memory use here, this could go in a union
1721  /// against the qualified-lookup bits.
1722  CXXRecordDecl *NamingClass;
1723
1724  UnresolvedLookupExpr(ASTContext &C,
1725                       CXXRecordDecl *NamingClass,
1726                       NestedNameSpecifier *Qualifier, SourceRange QRange,
1727                       const DeclarationNameInfo &NameInfo,
1728                       bool RequiresADL, bool Overloaded,
1729                       const TemplateArgumentListInfo *TemplateArgs,
1730                       UnresolvedSetIterator Begin, UnresolvedSetIterator End)
1731    : OverloadExpr(UnresolvedLookupExprClass, C, Qualifier,  QRange, NameInfo,
1732                   TemplateArgs, Begin, End),
1733      RequiresADL(RequiresADL), Overloaded(Overloaded), NamingClass(NamingClass)
1734  {}
1735
1736  UnresolvedLookupExpr(EmptyShell Empty)
1737    : OverloadExpr(UnresolvedLookupExprClass, Empty),
1738      RequiresADL(false), Overloaded(false), NamingClass(0)
1739  {}
1740
1741public:
1742  static UnresolvedLookupExpr *Create(ASTContext &C,
1743                                      CXXRecordDecl *NamingClass,
1744                                      NestedNameSpecifier *Qualifier,
1745                                      SourceRange QualifierRange,
1746                                      const DeclarationNameInfo &NameInfo,
1747                                      bool ADL, bool Overloaded,
1748                                      UnresolvedSetIterator Begin,
1749                                      UnresolvedSetIterator End) {
1750    return new(C) UnresolvedLookupExpr(C, NamingClass, Qualifier,
1751                                       QualifierRange, NameInfo, ADL,
1752                                       Overloaded, 0, Begin, End);
1753  }
1754
1755  static UnresolvedLookupExpr *Create(ASTContext &C,
1756                                      CXXRecordDecl *NamingClass,
1757                                      NestedNameSpecifier *Qualifier,
1758                                      SourceRange QualifierRange,
1759                                      const DeclarationNameInfo &NameInfo,
1760                                      bool ADL,
1761                                      const TemplateArgumentListInfo &Args,
1762                                      UnresolvedSetIterator Begin,
1763                                      UnresolvedSetIterator End);
1764
1765  static UnresolvedLookupExpr *CreateEmpty(ASTContext &C,
1766                                           bool HasExplicitTemplateArgs,
1767                                           unsigned NumTemplateArgs);
1768
1769  /// True if this declaration should be extended by
1770  /// argument-dependent lookup.
1771  bool requiresADL() const { return RequiresADL; }
1772  void setRequiresADL(bool V) { RequiresADL = V; }
1773
1774  /// True if this lookup is overloaded.
1775  bool isOverloaded() const { return Overloaded; }
1776  void setOverloaded(bool V) { Overloaded = V; }
1777
1778  /// Gets the 'naming class' (in the sense of C++0x
1779  /// [class.access.base]p5) of the lookup.  This is the scope
1780  /// that was looked in to find these results.
1781  CXXRecordDecl *getNamingClass() const { return NamingClass; }
1782  void setNamingClass(CXXRecordDecl *D) { NamingClass = D; }
1783
1784  // Note that, inconsistently with the explicit-template-argument AST
1785  // nodes, users are *forbidden* from calling these methods on objects
1786  // without explicit template arguments.
1787
1788  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
1789    assert(hasExplicitTemplateArgs());
1790    return *reinterpret_cast<ExplicitTemplateArgumentList*>(this + 1);
1791  }
1792
1793  /// Gets a reference to the explicit template argument list.
1794  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
1795    assert(hasExplicitTemplateArgs());
1796    return *reinterpret_cast<const ExplicitTemplateArgumentList*>(this + 1);
1797  }
1798
1799  /// \brief Retrieves the optional explicit template arguments.
1800  /// This points to the same data as getExplicitTemplateArgs(), but
1801  /// returns null if there are no explicit template arguments.
1802  const ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() {
1803    if (!hasExplicitTemplateArgs()) return 0;
1804    return &getExplicitTemplateArgs();
1805  }
1806
1807  /// \brief Copies the template arguments (if present) into the given
1808  /// structure.
1809  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1810    getExplicitTemplateArgs().copyInto(List);
1811  }
1812
1813  SourceLocation getLAngleLoc() const {
1814    return getExplicitTemplateArgs().LAngleLoc;
1815  }
1816
1817  SourceLocation getRAngleLoc() const {
1818    return getExplicitTemplateArgs().RAngleLoc;
1819  }
1820
1821  TemplateArgumentLoc const *getTemplateArgs() const {
1822    return getExplicitTemplateArgs().getTemplateArgs();
1823  }
1824
1825  unsigned getNumTemplateArgs() const {
1826    return getExplicitTemplateArgs().NumTemplateArgs;
1827  }
1828
1829  SourceRange getSourceRange() const {
1830    SourceRange Range(getNameInfo().getSourceRange());
1831    if (getQualifier()) Range.setBegin(getQualifierRange().getBegin());
1832    if (hasExplicitTemplateArgs()) Range.setEnd(getRAngleLoc());
1833    return Range;
1834  }
1835
1836  child_range children() { return child_range(); }
1837
1838  static bool classof(const Stmt *T) {
1839    return T->getStmtClass() == UnresolvedLookupExprClass;
1840  }
1841  static bool classof(const UnresolvedLookupExpr *) { return true; }
1842};
1843
1844/// \brief A qualified reference to a name whose declaration cannot
1845/// yet be resolved.
1846///
1847/// DependentScopeDeclRefExpr is similar to DeclRefExpr in that
1848/// it expresses a reference to a declaration such as
1849/// X<T>::value. The difference, however, is that an
1850/// DependentScopeDeclRefExpr node is used only within C++ templates when
1851/// the qualification (e.g., X<T>::) refers to a dependent type. In
1852/// this case, X<T>::value cannot resolve to a declaration because the
1853/// declaration will differ from on instantiation of X<T> to the
1854/// next. Therefore, DependentScopeDeclRefExpr keeps track of the
1855/// qualifier (X<T>::) and the name of the entity being referenced
1856/// ("value"). Such expressions will instantiate to a DeclRefExpr once the
1857/// declaration can be found.
1858class DependentScopeDeclRefExpr : public Expr {
1859  /// The name of the entity we will be referencing.
1860  DeclarationNameInfo NameInfo;
1861
1862  /// QualifierRange - The source range that covers the
1863  /// nested-name-specifier.
1864  SourceRange QualifierRange;
1865
1866  /// \brief The nested-name-specifier that qualifies this unresolved
1867  /// declaration name.
1868  NestedNameSpecifier *Qualifier;
1869
1870  /// \brief Whether the name includes explicit template arguments.
1871  bool HasExplicitTemplateArgs;
1872
1873  DependentScopeDeclRefExpr(QualType T,
1874                            NestedNameSpecifier *Qualifier,
1875                            SourceRange QualifierRange,
1876                            const DeclarationNameInfo &NameInfo,
1877                            const TemplateArgumentListInfo *Args);
1878
1879public:
1880  static DependentScopeDeclRefExpr *Create(ASTContext &C,
1881                                           NestedNameSpecifier *Qualifier,
1882                                           SourceRange QualifierRange,
1883                                           const DeclarationNameInfo &NameInfo,
1884                              const TemplateArgumentListInfo *TemplateArgs = 0);
1885
1886  static DependentScopeDeclRefExpr *CreateEmpty(ASTContext &C,
1887                                                bool HasExplicitTemplateArgs,
1888                                                unsigned NumTemplateArgs);
1889
1890  /// \brief Retrieve the name that this expression refers to.
1891  const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
1892  void setNameInfo(const DeclarationNameInfo &N) { NameInfo =  N; }
1893
1894  /// \brief Retrieve the name that this expression refers to.
1895  DeclarationName getDeclName() const { return NameInfo.getName(); }
1896  void setDeclName(DeclarationName N) { NameInfo.setName(N); }
1897
1898  /// \brief Retrieve the location of the name within the expression.
1899  SourceLocation getLocation() const { return NameInfo.getLoc(); }
1900  void setLocation(SourceLocation L) { NameInfo.setLoc(L); }
1901
1902  /// \brief Retrieve the source range of the nested-name-specifier.
1903  SourceRange getQualifierRange() const { return QualifierRange; }
1904  void setQualifierRange(SourceRange R) { QualifierRange = R; }
1905
1906  /// \brief Retrieve the nested-name-specifier that qualifies this
1907  /// declaration.
1908  NestedNameSpecifier *getQualifier() const { return Qualifier; }
1909  void setQualifier(NestedNameSpecifier *NNS) { Qualifier = NNS; }
1910
1911  /// Determines whether this lookup had explicit template arguments.
1912  bool hasExplicitTemplateArgs() const { return HasExplicitTemplateArgs; }
1913
1914  // Note that, inconsistently with the explicit-template-argument AST
1915  // nodes, users are *forbidden* from calling these methods on objects
1916  // without explicit template arguments.
1917
1918  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
1919    assert(hasExplicitTemplateArgs());
1920    return *reinterpret_cast<ExplicitTemplateArgumentList*>(this + 1);
1921  }
1922
1923  /// Gets a reference to the explicit template argument list.
1924  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
1925    assert(hasExplicitTemplateArgs());
1926    return *reinterpret_cast<const ExplicitTemplateArgumentList*>(this + 1);
1927  }
1928
1929  /// \brief Retrieves the optional explicit template arguments.
1930  /// This points to the same data as getExplicitTemplateArgs(), but
1931  /// returns null if there are no explicit template arguments.
1932  const ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() {
1933    if (!hasExplicitTemplateArgs()) return 0;
1934    return &getExplicitTemplateArgs();
1935  }
1936
1937  /// \brief Copies the template arguments (if present) into the given
1938  /// structure.
1939  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1940    getExplicitTemplateArgs().copyInto(List);
1941  }
1942
1943  SourceLocation getLAngleLoc() const {
1944    return getExplicitTemplateArgs().LAngleLoc;
1945  }
1946
1947  SourceLocation getRAngleLoc() const {
1948    return getExplicitTemplateArgs().RAngleLoc;
1949  }
1950
1951  TemplateArgumentLoc const *getTemplateArgs() const {
1952    return getExplicitTemplateArgs().getTemplateArgs();
1953  }
1954
1955  unsigned getNumTemplateArgs() const {
1956    return getExplicitTemplateArgs().NumTemplateArgs;
1957  }
1958
1959  SourceRange getSourceRange() const {
1960    SourceRange Range(QualifierRange.getBegin(), getLocation());
1961    if (hasExplicitTemplateArgs())
1962      Range.setEnd(getRAngleLoc());
1963    return Range;
1964  }
1965
1966  static bool classof(const Stmt *T) {
1967    return T->getStmtClass() == DependentScopeDeclRefExprClass;
1968  }
1969  static bool classof(const DependentScopeDeclRefExpr *) { return true; }
1970
1971  child_range children() { return child_range(); }
1972
1973  friend class ASTStmtReader;
1974  friend class ASTStmtWriter;
1975};
1976
1977/// Represents an expression --- generally a full-expression --- which
1978/// introduces cleanups to be run at the end of the sub-expression's
1979/// evaluation.  The most common source of expression-introduced
1980/// cleanups is temporary objects in C++, but several other C++
1981/// expressions can create cleanups.
1982class ExprWithCleanups : public Expr {
1983  Stmt *SubExpr;
1984
1985  CXXTemporary **Temps;
1986  unsigned NumTemps;
1987
1988  ExprWithCleanups(ASTContext &C, Expr *SubExpr,
1989                   CXXTemporary **Temps, unsigned NumTemps);
1990
1991public:
1992  ExprWithCleanups(EmptyShell Empty)
1993    : Expr(ExprWithCleanupsClass, Empty),
1994      SubExpr(0), Temps(0), NumTemps(0) {}
1995
1996  static ExprWithCleanups *Create(ASTContext &C, Expr *SubExpr,
1997                                        CXXTemporary **Temps,
1998                                        unsigned NumTemps);
1999
2000  unsigned getNumTemporaries() const { return NumTemps; }
2001  void setNumTemporaries(ASTContext &C, unsigned N);
2002
2003  CXXTemporary *getTemporary(unsigned i) {
2004    assert(i < NumTemps && "Index out of range");
2005    return Temps[i];
2006  }
2007  const CXXTemporary *getTemporary(unsigned i) const {
2008    return const_cast<ExprWithCleanups*>(this)->getTemporary(i);
2009  }
2010  void setTemporary(unsigned i, CXXTemporary *T) {
2011    assert(i < NumTemps && "Index out of range");
2012    Temps[i] = T;
2013  }
2014
2015  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
2016  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
2017  void setSubExpr(Expr *E) { SubExpr = E; }
2018
2019  SourceRange getSourceRange() const {
2020    return SubExpr->getSourceRange();
2021  }
2022
2023  // Implement isa/cast/dyncast/etc.
2024  static bool classof(const Stmt *T) {
2025    return T->getStmtClass() == ExprWithCleanupsClass;
2026  }
2027  static bool classof(const ExprWithCleanups *) { return true; }
2028
2029  // Iterators
2030  child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
2031};
2032
2033/// \brief Describes an explicit type conversion that uses functional
2034/// notion but could not be resolved because one or more arguments are
2035/// type-dependent.
2036///
2037/// The explicit type conversions expressed by
2038/// CXXUnresolvedConstructExpr have the form \c T(a1, a2, ..., aN),
2039/// where \c T is some type and \c a1, a2, ..., aN are values, and
2040/// either \C T is a dependent type or one or more of the \c a's is
2041/// type-dependent. For example, this would occur in a template such
2042/// as:
2043///
2044/// \code
2045///   template<typename T, typename A1>
2046///   inline T make_a(const A1& a1) {
2047///     return T(a1);
2048///   }
2049/// \endcode
2050///
2051/// When the returned expression is instantiated, it may resolve to a
2052/// constructor call, conversion function call, or some kind of type
2053/// conversion.
2054class CXXUnresolvedConstructExpr : public Expr {
2055  /// \brief The type being constructed.
2056  TypeSourceInfo *Type;
2057
2058  /// \brief The location of the left parentheses ('(').
2059  SourceLocation LParenLoc;
2060
2061  /// \brief The location of the right parentheses (')').
2062  SourceLocation RParenLoc;
2063
2064  /// \brief The number of arguments used to construct the type.
2065  unsigned NumArgs;
2066
2067  CXXUnresolvedConstructExpr(TypeSourceInfo *Type,
2068                             SourceLocation LParenLoc,
2069                             Expr **Args,
2070                             unsigned NumArgs,
2071                             SourceLocation RParenLoc);
2072
2073  CXXUnresolvedConstructExpr(EmptyShell Empty, unsigned NumArgs)
2074    : Expr(CXXUnresolvedConstructExprClass, Empty), Type(), NumArgs(NumArgs) { }
2075
2076  friend class ASTStmtReader;
2077
2078public:
2079  static CXXUnresolvedConstructExpr *Create(ASTContext &C,
2080                                            TypeSourceInfo *Type,
2081                                            SourceLocation LParenLoc,
2082                                            Expr **Args,
2083                                            unsigned NumArgs,
2084                                            SourceLocation RParenLoc);
2085
2086  static CXXUnresolvedConstructExpr *CreateEmpty(ASTContext &C,
2087                                                 unsigned NumArgs);
2088
2089  /// \brief Retrieve the type that is being constructed, as specified
2090  /// in the source code.
2091  QualType getTypeAsWritten() const { return Type->getType(); }
2092
2093  /// \brief Retrieve the type source information for the type being
2094  /// constructed.
2095  TypeSourceInfo *getTypeSourceInfo() const { return Type; }
2096
2097  /// \brief Retrieve the location of the left parentheses ('(') that
2098  /// precedes the argument list.
2099  SourceLocation getLParenLoc() const { return LParenLoc; }
2100  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2101
2102  /// \brief Retrieve the location of the right parentheses (')') that
2103  /// follows the argument list.
2104  SourceLocation getRParenLoc() const { return RParenLoc; }
2105  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2106
2107  /// \brief Retrieve the number of arguments.
2108  unsigned arg_size() const { return NumArgs; }
2109
2110  typedef Expr** arg_iterator;
2111  arg_iterator arg_begin() { return reinterpret_cast<Expr**>(this + 1); }
2112  arg_iterator arg_end() { return arg_begin() + NumArgs; }
2113
2114  typedef const Expr* const * const_arg_iterator;
2115  const_arg_iterator arg_begin() const {
2116    return reinterpret_cast<const Expr* const *>(this + 1);
2117  }
2118  const_arg_iterator arg_end() const {
2119    return arg_begin() + NumArgs;
2120  }
2121
2122  Expr *getArg(unsigned I) {
2123    assert(I < NumArgs && "Argument index out-of-range");
2124    return *(arg_begin() + I);
2125  }
2126
2127  const Expr *getArg(unsigned I) const {
2128    assert(I < NumArgs && "Argument index out-of-range");
2129    return *(arg_begin() + I);
2130  }
2131
2132  void setArg(unsigned I, Expr *E) {
2133    assert(I < NumArgs && "Argument index out-of-range");
2134    *(arg_begin() + I) = E;
2135  }
2136
2137  SourceRange getSourceRange() const;
2138
2139  static bool classof(const Stmt *T) {
2140    return T->getStmtClass() == CXXUnresolvedConstructExprClass;
2141  }
2142  static bool classof(const CXXUnresolvedConstructExpr *) { return true; }
2143
2144  // Iterators
2145  child_range children() {
2146    Stmt **begin = reinterpret_cast<Stmt**>(this+1);
2147    return child_range(begin, begin + NumArgs);
2148  }
2149};
2150
2151/// \brief Represents a C++ member access expression where the actual
2152/// member referenced could not be resolved because the base
2153/// expression or the member name was dependent.
2154///
2155/// Like UnresolvedMemberExprs, these can be either implicit or
2156/// explicit accesses.  It is only possible to get one of these with
2157/// an implicit access if a qualifier is provided.
2158class CXXDependentScopeMemberExpr : public Expr {
2159  /// \brief The expression for the base pointer or class reference,
2160  /// e.g., the \c x in x.f.  Can be null in implicit accesses.
2161  Stmt *Base;
2162
2163  /// \brief The type of the base expression.  Never null, even for
2164  /// implicit accesses.
2165  QualType BaseType;
2166
2167  /// \brief Whether this member expression used the '->' operator or
2168  /// the '.' operator.
2169  bool IsArrow : 1;
2170
2171  /// \brief Whether this member expression has explicitly-specified template
2172  /// arguments.
2173  bool HasExplicitTemplateArgs : 1;
2174
2175  /// \brief The location of the '->' or '.' operator.
2176  SourceLocation OperatorLoc;
2177
2178  /// \brief The nested-name-specifier that precedes the member name, if any.
2179  NestedNameSpecifier *Qualifier;
2180
2181  /// \brief The source range covering the nested name specifier.
2182  SourceRange QualifierRange;
2183
2184  /// \brief In a qualified member access expression such as t->Base::f, this
2185  /// member stores the resolves of name lookup in the context of the member
2186  /// access expression, to be used at instantiation time.
2187  ///
2188  /// FIXME: This member, along with the Qualifier and QualifierRange, could
2189  /// be stuck into a structure that is optionally allocated at the end of
2190  /// the CXXDependentScopeMemberExpr, to save space in the common case.
2191  NamedDecl *FirstQualifierFoundInScope;
2192
2193  /// \brief The member to which this member expression refers, which
2194  /// can be name, overloaded operator, or destructor.
2195  /// FIXME: could also be a template-id
2196  DeclarationNameInfo MemberNameInfo;
2197
2198  CXXDependentScopeMemberExpr(ASTContext &C,
2199                          Expr *Base, QualType BaseType, bool IsArrow,
2200                          SourceLocation OperatorLoc,
2201                          NestedNameSpecifier *Qualifier,
2202                          SourceRange QualifierRange,
2203                          NamedDecl *FirstQualifierFoundInScope,
2204                          DeclarationNameInfo MemberNameInfo,
2205                          const TemplateArgumentListInfo *TemplateArgs);
2206
2207public:
2208  CXXDependentScopeMemberExpr(ASTContext &C,
2209                              Expr *Base, QualType BaseType,
2210                              bool IsArrow,
2211                              SourceLocation OperatorLoc,
2212                              NestedNameSpecifier *Qualifier,
2213                              SourceRange QualifierRange,
2214                              NamedDecl *FirstQualifierFoundInScope,
2215                              DeclarationNameInfo MemberNameInfo);
2216
2217  static CXXDependentScopeMemberExpr *
2218  Create(ASTContext &C,
2219         Expr *Base, QualType BaseType, bool IsArrow,
2220         SourceLocation OperatorLoc,
2221         NestedNameSpecifier *Qualifier,
2222         SourceRange QualifierRange,
2223         NamedDecl *FirstQualifierFoundInScope,
2224         DeclarationNameInfo MemberNameInfo,
2225         const TemplateArgumentListInfo *TemplateArgs);
2226
2227  static CXXDependentScopeMemberExpr *
2228  CreateEmpty(ASTContext &C, bool HasExplicitTemplateArgs,
2229              unsigned NumTemplateArgs);
2230
2231  /// \brief True if this is an implicit access, i.e. one in which the
2232  /// member being accessed was not written in the source.  The source
2233  /// location of the operator is invalid in this case.
2234  bool isImplicitAccess() const { return Base == 0; }
2235
2236  /// \brief Retrieve the base object of this member expressions,
2237  /// e.g., the \c x in \c x.m.
2238  Expr *getBase() const {
2239    assert(!isImplicitAccess());
2240    return cast<Expr>(Base);
2241  }
2242  void setBase(Expr *E) { Base = E; }
2243
2244  QualType getBaseType() const { return BaseType; }
2245  void setBaseType(QualType T) { BaseType = T; }
2246
2247  /// \brief Determine whether this member expression used the '->'
2248  /// operator; otherwise, it used the '.' operator.
2249  bool isArrow() const { return IsArrow; }
2250  void setArrow(bool A) { IsArrow = A; }
2251
2252  /// \brief Retrieve the location of the '->' or '.' operator.
2253  SourceLocation getOperatorLoc() const { return OperatorLoc; }
2254  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
2255
2256  /// \brief Retrieve the nested-name-specifier that qualifies the member
2257  /// name.
2258  NestedNameSpecifier *getQualifier() const { return Qualifier; }
2259  void setQualifier(NestedNameSpecifier *NNS) { Qualifier = NNS; }
2260
2261  /// \brief Retrieve the source range covering the nested-name-specifier
2262  /// that qualifies the member name.
2263  SourceRange getQualifierRange() const { return QualifierRange; }
2264  void setQualifierRange(SourceRange R) { QualifierRange = R; }
2265
2266  /// \brief Retrieve the first part of the nested-name-specifier that was
2267  /// found in the scope of the member access expression when the member access
2268  /// was initially parsed.
2269  ///
2270  /// This function only returns a useful result when member access expression
2271  /// uses a qualified member name, e.g., "x.Base::f". Here, the declaration
2272  /// returned by this function describes what was found by unqualified name
2273  /// lookup for the identifier "Base" within the scope of the member access
2274  /// expression itself. At template instantiation time, this information is
2275  /// combined with the results of name lookup into the type of the object
2276  /// expression itself (the class type of x).
2277  NamedDecl *getFirstQualifierFoundInScope() const {
2278    return FirstQualifierFoundInScope;
2279  }
2280  void setFirstQualifierFoundInScope(NamedDecl *D) {
2281    FirstQualifierFoundInScope = D;
2282  }
2283
2284  /// \brief Retrieve the name of the member that this expression
2285  /// refers to.
2286  const DeclarationNameInfo &getMemberNameInfo() const {
2287    return MemberNameInfo;
2288  }
2289  void setMemberNameInfo(const DeclarationNameInfo &N) { MemberNameInfo = N; }
2290
2291  /// \brief Retrieve the name of the member that this expression
2292  /// refers to.
2293  DeclarationName getMember() const { return MemberNameInfo.getName(); }
2294  void setMember(DeclarationName N) { MemberNameInfo.setName(N); }
2295
2296  // \brief Retrieve the location of the name of the member that this
2297  // expression refers to.
2298  SourceLocation getMemberLoc() const { return MemberNameInfo.getLoc(); }
2299  void setMemberLoc(SourceLocation L) { MemberNameInfo.setLoc(L); }
2300
2301  /// \brief Determines whether this member expression actually had a C++
2302  /// template argument list explicitly specified, e.g., x.f<int>.
2303  bool hasExplicitTemplateArgs() const {
2304    return HasExplicitTemplateArgs;
2305  }
2306
2307  /// \brief Retrieve the explicit template argument list that followed the
2308  /// member template name, if any.
2309  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
2310    assert(HasExplicitTemplateArgs);
2311    return *reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
2312  }
2313
2314  /// \brief Retrieve the explicit template argument list that followed the
2315  /// member template name, if any.
2316  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
2317    return const_cast<CXXDependentScopeMemberExpr *>(this)
2318             ->getExplicitTemplateArgs();
2319  }
2320
2321  /// \brief Retrieves the optional explicit template arguments.
2322  /// This points to the same data as getExplicitTemplateArgs(), but
2323  /// returns null if there are no explicit template arguments.
2324  const ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() {
2325    if (!hasExplicitTemplateArgs()) return 0;
2326    return &getExplicitTemplateArgs();
2327  }
2328
2329  /// \brief Copies the template arguments (if present) into the given
2330  /// structure.
2331  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2332    getExplicitTemplateArgs().copyInto(List);
2333  }
2334
2335  /// \brief Initializes the template arguments using the given structure.
2336  void initializeTemplateArgumentsFrom(const TemplateArgumentListInfo &List) {
2337    getExplicitTemplateArgs().initializeFrom(List);
2338  }
2339
2340  /// \brief Retrieve the location of the left angle bracket following the
2341  /// member name ('<'), if any.
2342  SourceLocation getLAngleLoc() const {
2343    return getExplicitTemplateArgs().LAngleLoc;
2344  }
2345
2346  /// \brief Retrieve the template arguments provided as part of this
2347  /// template-id.
2348  const TemplateArgumentLoc *getTemplateArgs() const {
2349    return getExplicitTemplateArgs().getTemplateArgs();
2350  }
2351
2352  /// \brief Retrieve the number of template arguments provided as part of this
2353  /// template-id.
2354  unsigned getNumTemplateArgs() const {
2355    return getExplicitTemplateArgs().NumTemplateArgs;
2356  }
2357
2358  /// \brief Retrieve the location of the right angle bracket following the
2359  /// template arguments ('>').
2360  SourceLocation getRAngleLoc() const {
2361    return getExplicitTemplateArgs().RAngleLoc;
2362  }
2363
2364  SourceRange getSourceRange() const {
2365    SourceRange Range;
2366    if (!isImplicitAccess())
2367      Range.setBegin(Base->getSourceRange().getBegin());
2368    else if (getQualifier())
2369      Range.setBegin(getQualifierRange().getBegin());
2370    else
2371      Range.setBegin(MemberNameInfo.getBeginLoc());
2372
2373    if (hasExplicitTemplateArgs())
2374      Range.setEnd(getRAngleLoc());
2375    else
2376      Range.setEnd(MemberNameInfo.getEndLoc());
2377    return Range;
2378  }
2379
2380  static bool classof(const Stmt *T) {
2381    return T->getStmtClass() == CXXDependentScopeMemberExprClass;
2382  }
2383  static bool classof(const CXXDependentScopeMemberExpr *) { return true; }
2384
2385  // Iterators
2386  child_range children() {
2387    if (isImplicitAccess()) return child_range();
2388    return child_range(&Base, &Base + 1);
2389  }
2390
2391  friend class ASTStmtReader;
2392  friend class ASTStmtWriter;
2393};
2394
2395/// \brief Represents a C++ member access expression for which lookup
2396/// produced a set of overloaded functions.
2397///
2398/// The member access may be explicit or implicit:
2399///    struct A {
2400///      int a, b;
2401///      int explicitAccess() { return this->a + this->A::b; }
2402///      int implicitAccess() { return a + A::b; }
2403///    };
2404///
2405/// In the final AST, an explicit access always becomes a MemberExpr.
2406/// An implicit access may become either a MemberExpr or a
2407/// DeclRefExpr, depending on whether the member is static.
2408class UnresolvedMemberExpr : public OverloadExpr {
2409  /// \brief Whether this member expression used the '->' operator or
2410  /// the '.' operator.
2411  bool IsArrow : 1;
2412
2413  /// \brief Whether the lookup results contain an unresolved using
2414  /// declaration.
2415  bool HasUnresolvedUsing : 1;
2416
2417  /// \brief The expression for the base pointer or class reference,
2418  /// e.g., the \c x in x.f.  This can be null if this is an 'unbased'
2419  /// member expression
2420  Stmt *Base;
2421
2422  /// \brief The type of the base expression;  never null.
2423  QualType BaseType;
2424
2425  /// \brief The location of the '->' or '.' operator.
2426  SourceLocation OperatorLoc;
2427
2428  UnresolvedMemberExpr(ASTContext &C, bool HasUnresolvedUsing,
2429                       Expr *Base, QualType BaseType, bool IsArrow,
2430                       SourceLocation OperatorLoc,
2431                       NestedNameSpecifier *Qualifier,
2432                       SourceRange QualifierRange,
2433                       const DeclarationNameInfo &MemberNameInfo,
2434                       const TemplateArgumentListInfo *TemplateArgs,
2435                       UnresolvedSetIterator Begin, UnresolvedSetIterator End);
2436
2437  UnresolvedMemberExpr(EmptyShell Empty)
2438    : OverloadExpr(UnresolvedMemberExprClass, Empty), IsArrow(false),
2439      HasUnresolvedUsing(false), Base(0) { }
2440
2441public:
2442  static UnresolvedMemberExpr *
2443  Create(ASTContext &C, bool HasUnresolvedUsing,
2444         Expr *Base, QualType BaseType, bool IsArrow,
2445         SourceLocation OperatorLoc,
2446         NestedNameSpecifier *Qualifier,
2447         SourceRange QualifierRange,
2448         const DeclarationNameInfo &MemberNameInfo,
2449         const TemplateArgumentListInfo *TemplateArgs,
2450         UnresolvedSetIterator Begin, UnresolvedSetIterator End);
2451
2452  static UnresolvedMemberExpr *
2453  CreateEmpty(ASTContext &C, bool HasExplicitTemplateArgs,
2454              unsigned NumTemplateArgs);
2455
2456  /// \brief True if this is an implicit access, i.e. one in which the
2457  /// member being accessed was not written in the source.  The source
2458  /// location of the operator is invalid in this case.
2459  bool isImplicitAccess() const { return Base == 0; }
2460
2461  /// \brief Retrieve the base object of this member expressions,
2462  /// e.g., the \c x in \c x.m.
2463  Expr *getBase() {
2464    assert(!isImplicitAccess());
2465    return cast<Expr>(Base);
2466  }
2467  const Expr *getBase() const {
2468    assert(!isImplicitAccess());
2469    return cast<Expr>(Base);
2470  }
2471  void setBase(Expr *E) { Base = E; }
2472
2473  QualType getBaseType() const { return BaseType; }
2474  void setBaseType(QualType T) { BaseType = T; }
2475
2476  /// \brief Determine whether the lookup results contain an unresolved using
2477  /// declaration.
2478  bool hasUnresolvedUsing() const { return HasUnresolvedUsing; }
2479  void setHasUnresolvedUsing(bool V) { HasUnresolvedUsing = V; }
2480
2481  /// \brief Determine whether this member expression used the '->'
2482  /// operator; otherwise, it used the '.' operator.
2483  bool isArrow() const { return IsArrow; }
2484  void setArrow(bool A) { IsArrow = A; }
2485
2486  /// \brief Retrieve the location of the '->' or '.' operator.
2487  SourceLocation getOperatorLoc() const { return OperatorLoc; }
2488  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
2489
2490  /// \brief Retrieves the naming class of this lookup.
2491  CXXRecordDecl *getNamingClass() const;
2492
2493  /// \brief Retrieve the full name info for the member that this expression
2494  /// refers to.
2495  const DeclarationNameInfo &getMemberNameInfo() const { return getNameInfo(); }
2496  void setMemberNameInfo(const DeclarationNameInfo &N) { setNameInfo(N); }
2497
2498  /// \brief Retrieve the name of the member that this expression
2499  /// refers to.
2500  DeclarationName getMemberName() const { return getName(); }
2501  void setMemberName(DeclarationName N) { setName(N); }
2502
2503  // \brief Retrieve the location of the name of the member that this
2504  // expression refers to.
2505  SourceLocation getMemberLoc() const { return getNameLoc(); }
2506  void setMemberLoc(SourceLocation L) { setNameLoc(L); }
2507
2508  /// \brief Retrieve the explicit template argument list that followed the
2509  /// member template name.
2510  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
2511    assert(hasExplicitTemplateArgs());
2512    return *reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
2513  }
2514
2515  /// \brief Retrieve the explicit template argument list that followed the
2516  /// member template name, if any.
2517  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
2518    assert(hasExplicitTemplateArgs());
2519    return *reinterpret_cast<const ExplicitTemplateArgumentList *>(this + 1);
2520  }
2521
2522  /// \brief Retrieves the optional explicit template arguments.
2523  /// This points to the same data as getExplicitTemplateArgs(), but
2524  /// returns null if there are no explicit template arguments.
2525  const ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() {
2526    if (!hasExplicitTemplateArgs()) return 0;
2527    return &getExplicitTemplateArgs();
2528  }
2529
2530  /// \brief Copies the template arguments into the given structure.
2531  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2532    getExplicitTemplateArgs().copyInto(List);
2533  }
2534
2535  /// \brief Retrieve the location of the left angle bracket following
2536  /// the member name ('<').
2537  SourceLocation getLAngleLoc() const {
2538    return getExplicitTemplateArgs().LAngleLoc;
2539  }
2540
2541  /// \brief Retrieve the template arguments provided as part of this
2542  /// template-id.
2543  const TemplateArgumentLoc *getTemplateArgs() const {
2544    return getExplicitTemplateArgs().getTemplateArgs();
2545  }
2546
2547  /// \brief Retrieve the number of template arguments provided as
2548  /// part of this template-id.
2549  unsigned getNumTemplateArgs() const {
2550    return getExplicitTemplateArgs().NumTemplateArgs;
2551  }
2552
2553  /// \brief Retrieve the location of the right angle bracket
2554  /// following the template arguments ('>').
2555  SourceLocation getRAngleLoc() const {
2556    return getExplicitTemplateArgs().RAngleLoc;
2557  }
2558
2559  SourceRange getSourceRange() const {
2560    SourceRange Range = getMemberNameInfo().getSourceRange();
2561    if (!isImplicitAccess())
2562      Range.setBegin(Base->getSourceRange().getBegin());
2563    else if (getQualifier())
2564      Range.setBegin(getQualifierRange().getBegin());
2565
2566    if (hasExplicitTemplateArgs())
2567      Range.setEnd(getRAngleLoc());
2568    return Range;
2569  }
2570
2571  static bool classof(const Stmt *T) {
2572    return T->getStmtClass() == UnresolvedMemberExprClass;
2573  }
2574  static bool classof(const UnresolvedMemberExpr *) { return true; }
2575
2576  // Iterators
2577  child_range children() {
2578    if (isImplicitAccess()) return child_range();
2579    return child_range(&Base, &Base + 1);
2580  }
2581};
2582
2583/// \brief Represents a C++0x noexcept expression (C++ [expr.unary.noexcept]).
2584///
2585/// The noexcept expression tests whether a given expression might throw. Its
2586/// result is a boolean constant.
2587class CXXNoexceptExpr : public Expr {
2588  bool Value : 1;
2589  Stmt *Operand;
2590  SourceRange Range;
2591
2592  friend class ASTStmtReader;
2593
2594public:
2595  CXXNoexceptExpr(QualType Ty, Expr *Operand, CanThrowResult Val,
2596                  SourceLocation Keyword, SourceLocation RParen)
2597    : Expr(CXXNoexceptExprClass, Ty, VK_RValue, OK_Ordinary,
2598           /*TypeDependent*/false,
2599           /*ValueDependent*/Val == CT_Dependent,
2600           Operand->containsUnexpandedParameterPack()),
2601      Value(Val == CT_Cannot), Operand(Operand), Range(Keyword, RParen)
2602  { }
2603
2604  CXXNoexceptExpr(EmptyShell Empty)
2605    : Expr(CXXNoexceptExprClass, Empty)
2606  { }
2607
2608  Expr *getOperand() const { return static_cast<Expr*>(Operand); }
2609
2610  SourceRange getSourceRange() const { return Range; }
2611
2612  bool getValue() const { return Value; }
2613
2614  static bool classof(const Stmt *T) {
2615    return T->getStmtClass() == CXXNoexceptExprClass;
2616  }
2617  static bool classof(const CXXNoexceptExpr *) { return true; }
2618
2619  // Iterators
2620  child_range children() { return child_range(&Operand, &Operand + 1); }
2621};
2622
2623/// \brief Represents a C++0x pack expansion that produces a sequence of
2624/// expressions.
2625///
2626/// A pack expansion expression contains a pattern (which itself is an
2627/// expression) followed by an ellipsis. For example:
2628///
2629/// \code
2630/// template<typename F, typename ...Types>
2631/// void forward(F f, Types &&...args) {
2632///   f(static_cast<Types&&>(args)...);
2633/// }
2634/// \endcode
2635///
2636/// Here, the argument to the function object \c f is a pack expansion whose
2637/// pattern is \c static_cast<Types&&>(args). When the \c forward function
2638/// template is instantiated, the pack expansion will instantiate to zero or
2639/// or more function arguments to the function object \c f.
2640class PackExpansionExpr : public Expr {
2641  SourceLocation EllipsisLoc;
2642
2643  /// \brief The number of expansions that will be produced by this pack
2644  /// expansion expression, if known.
2645  ///
2646  /// When zero, the number of expansions is not known. Otherwise, this value
2647  /// is the number of expansions + 1.
2648  unsigned NumExpansions;
2649
2650  Stmt *Pattern;
2651
2652  friend class ASTStmtReader;
2653  friend class ASTStmtWriter;
2654
2655public:
2656  PackExpansionExpr(QualType T, Expr *Pattern, SourceLocation EllipsisLoc,
2657                    llvm::Optional<unsigned> NumExpansions)
2658    : Expr(PackExpansionExprClass, T, Pattern->getValueKind(),
2659           Pattern->getObjectKind(), /*TypeDependent=*/true,
2660           /*ValueDependent=*/true, /*ContainsUnexpandedParameterPack=*/false),
2661      EllipsisLoc(EllipsisLoc),
2662      NumExpansions(NumExpansions? *NumExpansions + 1 : 0),
2663      Pattern(Pattern) { }
2664
2665  PackExpansionExpr(EmptyShell Empty) : Expr(PackExpansionExprClass, Empty) { }
2666
2667  /// \brief Retrieve the pattern of the pack expansion.
2668  Expr *getPattern() { return reinterpret_cast<Expr *>(Pattern); }
2669
2670  /// \brief Retrieve the pattern of the pack expansion.
2671  const Expr *getPattern() const { return reinterpret_cast<Expr *>(Pattern); }
2672
2673  /// \brief Retrieve the location of the ellipsis that describes this pack
2674  /// expansion.
2675  SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
2676
2677  /// \brief Determine the number of expansions that will be produced when
2678  /// this pack expansion is instantiated, if already known.
2679  llvm::Optional<unsigned> getNumExpansions() const {
2680    if (NumExpansions)
2681      return NumExpansions - 1;
2682
2683    return llvm::Optional<unsigned>();
2684  }
2685
2686  SourceRange getSourceRange() const {
2687    return SourceRange(Pattern->getLocStart(), EllipsisLoc);
2688  }
2689
2690  static bool classof(const Stmt *T) {
2691    return T->getStmtClass() == PackExpansionExprClass;
2692  }
2693  static bool classof(const PackExpansionExpr *) { return true; }
2694
2695  // Iterators
2696  child_range children() {
2697    return child_range(&Pattern, &Pattern + 1);
2698  }
2699};
2700
2701inline ExplicitTemplateArgumentList &OverloadExpr::getExplicitTemplateArgs() {
2702  if (isa<UnresolvedLookupExpr>(this))
2703    return cast<UnresolvedLookupExpr>(this)->getExplicitTemplateArgs();
2704  else
2705    return cast<UnresolvedMemberExpr>(this)->getExplicitTemplateArgs();
2706}
2707
2708/// \brief Represents an expression that computes the length of a parameter
2709/// pack.
2710///
2711/// \code
2712/// template<typename ...Types>
2713/// struct count {
2714///   static const unsigned value = sizeof...(Types);
2715/// };
2716/// \endcode
2717class SizeOfPackExpr : public Expr {
2718  /// \brief The location of the 'sizeof' keyword.
2719  SourceLocation OperatorLoc;
2720
2721  /// \brief The location of the name of the parameter pack.
2722  SourceLocation PackLoc;
2723
2724  /// \brief The location of the closing parenthesis.
2725  SourceLocation RParenLoc;
2726
2727  /// \brief The length of the parameter pack, if known.
2728  ///
2729  /// When this expression is value-dependent, the length of the parameter pack
2730  /// is unknown. When this expression is not value-dependent, the length is
2731  /// known.
2732  unsigned Length;
2733
2734  /// \brief The parameter pack itself.
2735  NamedDecl *Pack;
2736
2737  friend class ASTStmtReader;
2738  friend class ASTStmtWriter;
2739
2740public:
2741  /// \brief Creates a value-dependent expression that computes the length of
2742  /// the given parameter pack.
2743  SizeOfPackExpr(QualType SizeType, SourceLocation OperatorLoc, NamedDecl *Pack,
2744                 SourceLocation PackLoc, SourceLocation RParenLoc)
2745    : Expr(SizeOfPackExprClass, SizeType, VK_RValue, OK_Ordinary,
2746           /*TypeDependent=*/false, /*ValueDependent=*/true,
2747           /*ContainsUnexpandedParameterPack=*/false),
2748      OperatorLoc(OperatorLoc), PackLoc(PackLoc), RParenLoc(RParenLoc),
2749      Length(0), Pack(Pack) { }
2750
2751  /// \brief Creates an expression that computes the length of
2752  /// the given parameter pack, which is already known.
2753  SizeOfPackExpr(QualType SizeType, SourceLocation OperatorLoc, NamedDecl *Pack,
2754                 SourceLocation PackLoc, SourceLocation RParenLoc,
2755                 unsigned Length)
2756  : Expr(SizeOfPackExprClass, SizeType, VK_RValue, OK_Ordinary,
2757         /*TypeDependent=*/false, /*ValueDependent=*/false,
2758         /*ContainsUnexpandedParameterPack=*/false),
2759    OperatorLoc(OperatorLoc), PackLoc(PackLoc), RParenLoc(RParenLoc),
2760    Length(Length), Pack(Pack) { }
2761
2762  /// \brief Create an empty expression.
2763  SizeOfPackExpr(EmptyShell Empty) : Expr(SizeOfPackExprClass, Empty) { }
2764
2765  /// \brief Determine the location of the 'sizeof' keyword.
2766  SourceLocation getOperatorLoc() const { return OperatorLoc; }
2767
2768  /// \brief Determine the location of the parameter pack.
2769  SourceLocation getPackLoc() const { return PackLoc; }
2770
2771  /// \brief Determine the location of the right parenthesis.
2772  SourceLocation getRParenLoc() const { return RParenLoc; }
2773
2774  /// \brief Retrieve the parameter pack.
2775  NamedDecl *getPack() const { return Pack; }
2776
2777  /// \brief Retrieve the length of the parameter pack.
2778  ///
2779  /// This routine may only be invoked when the expression is not
2780  /// value-dependent.
2781  unsigned getPackLength() const {
2782    assert(!isValueDependent() &&
2783           "Cannot get the length of a value-dependent pack size expression");
2784    return Length;
2785  }
2786
2787  SourceRange getSourceRange() const {
2788    return SourceRange(OperatorLoc, RParenLoc);
2789  }
2790
2791  static bool classof(const Stmt *T) {
2792    return T->getStmtClass() == SizeOfPackExprClass;
2793  }
2794  static bool classof(const SizeOfPackExpr *) { return true; }
2795
2796  // Iterators
2797  child_range children() { return child_range(); }
2798};
2799
2800/// \brief Represents a reference to a non-type template parameter pack that
2801/// has been substituted with a non-template argument pack.
2802///
2803/// When a pack expansion in the source code contains multiple parameter packs
2804/// and those parameter packs correspond to different levels of template
2805/// parameter lists, this node node is used to represent a non-type template
2806/// parameter pack from an outer level, which has already had its argument pack
2807/// substituted but that still lives within a pack expansion that itself
2808/// could not be instantiated. When actually performing a substitution into
2809/// that pack expansion (e.g., when all template parameters have corresponding
2810/// arguments), this type will be replaced with the appropriate underlying
2811/// expression at the current pack substitution index.
2812class SubstNonTypeTemplateParmPackExpr : public Expr {
2813  /// \brief The non-type template parameter pack itself.
2814  NonTypeTemplateParmDecl *Param;
2815
2816  /// \brief A pointer to the set of template arguments that this
2817  /// parameter pack is instantiated with.
2818  const TemplateArgument *Arguments;
2819
2820  /// \brief The number of template arguments in \c Arguments.
2821  unsigned NumArguments;
2822
2823  /// \brief The location of the non-type template parameter pack reference.
2824  SourceLocation NameLoc;
2825
2826  friend class ASTStmtReader;
2827  friend class ASTStmtWriter;
2828
2829public:
2830  SubstNonTypeTemplateParmPackExpr(QualType T,
2831                                   NonTypeTemplateParmDecl *Param,
2832                                   SourceLocation NameLoc,
2833                                   const TemplateArgument &ArgPack);
2834
2835  SubstNonTypeTemplateParmPackExpr(EmptyShell Empty)
2836    : Expr(SubstNonTypeTemplateParmPackExprClass, Empty) { }
2837
2838  /// \brief Retrieve the non-type template parameter pack being substituted.
2839  NonTypeTemplateParmDecl *getParameterPack() const { return Param; }
2840
2841  /// \brief Retrieve the location of the parameter pack name.
2842  SourceLocation getParameterPackLocation() const { return NameLoc; }
2843
2844  /// \brief Retrieve the template argument pack containing the substituted
2845  /// template arguments.
2846  TemplateArgument getArgumentPack() const;
2847
2848  SourceRange getSourceRange() const { return NameLoc; }
2849
2850  static bool classof(const Stmt *T) {
2851    return T->getStmtClass() == SubstNonTypeTemplateParmPackExprClass;
2852  }
2853  static bool classof(const SubstNonTypeTemplateParmPackExpr *) {
2854    return true;
2855  }
2856
2857  // Iterators
2858  child_range children() { return child_range(); }
2859};
2860
2861}  // end namespace clang
2862
2863#endif
2864