ExprCXX.h revision 63ef464c3fad1e8b9f9360baa6c81f974b712e90
1//===--- ExprCXX.h - Classes for representing expressions -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses for C++ expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPRCXX_H
15#define LLVM_CLANG_AST_EXPRCXX_H
16
17#include "clang/Basic/TypeTraits.h"
18#include "clang/AST/Expr.h"
19#include "clang/AST/UnresolvedSet.h"
20#include "clang/AST/TemplateBase.h"
21
22namespace clang {
23
24  class CXXConstructorDecl;
25  class CXXDestructorDecl;
26  class CXXMethodDecl;
27  class CXXTemporary;
28  class TemplateArgumentListInfo;
29
30//===--------------------------------------------------------------------===//
31// C++ Expressions.
32//===--------------------------------------------------------------------===//
33
34/// \brief A call to an overloaded operator written using operator
35/// syntax.
36///
37/// Represents a call to an overloaded operator written using operator
38/// syntax, e.g., "x + y" or "*p". While semantically equivalent to a
39/// normal call, this AST node provides better information about the
40/// syntactic representation of the call.
41///
42/// In a C++ template, this expression node kind will be used whenever
43/// any of the arguments are type-dependent. In this case, the
44/// function itself will be a (possibly empty) set of functions and
45/// function templates that were found by name lookup at template
46/// definition time.
47class CXXOperatorCallExpr : public CallExpr {
48  /// \brief The overloaded operator.
49  OverloadedOperatorKind Operator;
50
51public:
52  CXXOperatorCallExpr(ASTContext& C, OverloadedOperatorKind Op, Expr *fn,
53                      Expr **args, unsigned numargs, QualType t,
54                      SourceLocation operatorloc)
55    : CallExpr(C, CXXOperatorCallExprClass, fn, args, numargs, t, operatorloc),
56      Operator(Op) {}
57  explicit CXXOperatorCallExpr(ASTContext& C, EmptyShell Empty) :
58    CallExpr(C, CXXOperatorCallExprClass, Empty) { }
59
60
61  /// getOperator - Returns the kind of overloaded operator that this
62  /// expression refers to.
63  OverloadedOperatorKind getOperator() const { return Operator; }
64  void setOperator(OverloadedOperatorKind Kind) { Operator = Kind; }
65
66  /// getOperatorLoc - Returns the location of the operator symbol in
67  /// the expression. When @c getOperator()==OO_Call, this is the
68  /// location of the right parentheses; when @c
69  /// getOperator()==OO_Subscript, this is the location of the right
70  /// bracket.
71  SourceLocation getOperatorLoc() const { return getRParenLoc(); }
72
73  virtual SourceRange getSourceRange() const;
74
75  static bool classof(const Stmt *T) {
76    return T->getStmtClass() == CXXOperatorCallExprClass;
77  }
78  static bool classof(const CXXOperatorCallExpr *) { return true; }
79};
80
81/// CXXMemberCallExpr - Represents a call to a member function that
82/// may be written either with member call syntax (e.g., "obj.func()"
83/// or "objptr->func()") or with normal function-call syntax
84/// ("func()") within a member function that ends up calling a member
85/// function. The callee in either case is a MemberExpr that contains
86/// both the object argument and the member function, while the
87/// arguments are the arguments within the parentheses (not including
88/// the object argument).
89class CXXMemberCallExpr : public CallExpr {
90public:
91  CXXMemberCallExpr(ASTContext &C, Expr *fn, Expr **args, unsigned numargs,
92                    QualType t, SourceLocation rparenloc)
93    : CallExpr(C, CXXMemberCallExprClass, fn, args, numargs, t, rparenloc) {}
94
95  CXXMemberCallExpr(ASTContext &C, EmptyShell Empty)
96    : CallExpr(C, CXXMemberCallExprClass, Empty) { }
97
98  /// getImplicitObjectArgument - Retrieves the implicit object
99  /// argument for the member call. For example, in "x.f(5)", this
100  /// operation would return "x".
101  Expr *getImplicitObjectArgument();
102
103  virtual SourceRange getSourceRange() const;
104
105  static bool classof(const Stmt *T) {
106    return T->getStmtClass() == CXXMemberCallExprClass;
107  }
108  static bool classof(const CXXMemberCallExpr *) { return true; }
109};
110
111/// CXXNamedCastExpr - Abstract class common to all of the C++ "named"
112/// casts, @c static_cast, @c dynamic_cast, @c reinterpret_cast, or @c
113/// const_cast.
114///
115/// This abstract class is inherited by all of the classes
116/// representing "named" casts, e.g., CXXStaticCastExpr,
117/// CXXDynamicCastExpr, CXXReinterpretCastExpr, and CXXConstCastExpr.
118class CXXNamedCastExpr : public ExplicitCastExpr {
119private:
120  SourceLocation Loc; // the location of the casting op
121
122protected:
123  CXXNamedCastExpr(StmtClass SC, QualType ty, CastKind kind, Expr *op,
124                   CXXBaseSpecifierArray BasePath, TypeSourceInfo *writtenTy,
125                   SourceLocation l)
126    : ExplicitCastExpr(SC, ty, kind, op, BasePath, writtenTy), Loc(l) {}
127
128  explicit CXXNamedCastExpr(StmtClass SC, EmptyShell Shell)
129    : ExplicitCastExpr(SC, Shell) { }
130
131public:
132  const char *getCastName() const;
133
134  /// \brief Retrieve the location of the cast operator keyword, e.g.,
135  /// "static_cast".
136  SourceLocation getOperatorLoc() const { return Loc; }
137  void setOperatorLoc(SourceLocation L) { Loc = L; }
138
139  virtual SourceRange getSourceRange() const {
140    return SourceRange(Loc, getSubExpr()->getSourceRange().getEnd());
141  }
142  static bool classof(const Stmt *T) {
143    switch (T->getStmtClass()) {
144    case CXXStaticCastExprClass:
145    case CXXDynamicCastExprClass:
146    case CXXReinterpretCastExprClass:
147    case CXXConstCastExprClass:
148      return true;
149    default:
150      return false;
151    }
152  }
153  static bool classof(const CXXNamedCastExpr *) { return true; }
154};
155
156/// CXXStaticCastExpr - A C++ @c static_cast expression (C++ [expr.static.cast]).
157///
158/// This expression node represents a C++ static cast, e.g.,
159/// @c static_cast<int>(1.0).
160class CXXStaticCastExpr : public CXXNamedCastExpr {
161public:
162  CXXStaticCastExpr(QualType ty, CastKind kind, Expr *op,
163                    CXXBaseSpecifierArray BasePath, TypeSourceInfo *writtenTy,
164                    SourceLocation l)
165    : CXXNamedCastExpr(CXXStaticCastExprClass, ty, kind, op, BasePath, writtenTy, l) {}
166
167  explicit CXXStaticCastExpr(EmptyShell Empty)
168    : CXXNamedCastExpr(CXXStaticCastExprClass, Empty) { }
169
170  static bool classof(const Stmt *T) {
171    return T->getStmtClass() == CXXStaticCastExprClass;
172  }
173  static bool classof(const CXXStaticCastExpr *) { return true; }
174};
175
176/// CXXDynamicCastExpr - A C++ @c dynamic_cast expression
177/// (C++ [expr.dynamic.cast]), which may perform a run-time check to
178/// determine how to perform the type cast.
179///
180/// This expression node represents a dynamic cast, e.g.,
181/// @c dynamic_cast<Derived*>(BasePtr).
182class CXXDynamicCastExpr : public CXXNamedCastExpr {
183public:
184  CXXDynamicCastExpr(QualType ty, CastKind kind, Expr *op,
185                     CXXBaseSpecifierArray BasePath, TypeSourceInfo *writtenTy,
186                     SourceLocation l)
187    : CXXNamedCastExpr(CXXDynamicCastExprClass, ty, kind, op, BasePath,
188                       writtenTy, l) {}
189
190  explicit CXXDynamicCastExpr(EmptyShell Empty)
191    : CXXNamedCastExpr(CXXDynamicCastExprClass, Empty) { }
192
193  static bool classof(const Stmt *T) {
194    return T->getStmtClass() == CXXDynamicCastExprClass;
195  }
196  static bool classof(const CXXDynamicCastExpr *) { return true; }
197};
198
199/// CXXReinterpretCastExpr - A C++ @c reinterpret_cast expression (C++
200/// [expr.reinterpret.cast]), which provides a differently-typed view
201/// of a value but performs no actual work at run time.
202///
203/// This expression node represents a reinterpret cast, e.g.,
204/// @c reinterpret_cast<int>(VoidPtr).
205class CXXReinterpretCastExpr : public CXXNamedCastExpr {
206public:
207  CXXReinterpretCastExpr(QualType ty, CastKind kind, Expr *op,
208                         CXXBaseSpecifierArray BasePath,
209                         TypeSourceInfo *writtenTy, SourceLocation l)
210    : CXXNamedCastExpr(CXXReinterpretCastExprClass, ty, kind, op, BasePath,
211                       writtenTy, l) {}
212
213  explicit CXXReinterpretCastExpr(EmptyShell Empty)
214    : CXXNamedCastExpr(CXXReinterpretCastExprClass, Empty) { }
215
216  static bool classof(const Stmt *T) {
217    return T->getStmtClass() == CXXReinterpretCastExprClass;
218  }
219  static bool classof(const CXXReinterpretCastExpr *) { return true; }
220};
221
222/// CXXConstCastExpr - A C++ @c const_cast expression (C++ [expr.const.cast]),
223/// which can remove type qualifiers but does not change the underlying value.
224///
225/// This expression node represents a const cast, e.g.,
226/// @c const_cast<char*>(PtrToConstChar).
227class CXXConstCastExpr : public CXXNamedCastExpr {
228public:
229  CXXConstCastExpr(QualType ty, Expr *op, TypeSourceInfo *writtenTy,
230                   SourceLocation l)
231    : CXXNamedCastExpr(CXXConstCastExprClass, ty, CK_NoOp, op,
232                       CXXBaseSpecifierArray(), writtenTy, l) {}
233
234  explicit CXXConstCastExpr(EmptyShell Empty)
235    : CXXNamedCastExpr(CXXConstCastExprClass, Empty) { }
236
237  static bool classof(const Stmt *T) {
238    return T->getStmtClass() == CXXConstCastExprClass;
239  }
240  static bool classof(const CXXConstCastExpr *) { return true; }
241};
242
243/// CXXBoolLiteralExpr - [C++ 2.13.5] C++ Boolean Literal.
244///
245class CXXBoolLiteralExpr : public Expr {
246  bool Value;
247  SourceLocation Loc;
248public:
249  CXXBoolLiteralExpr(bool val, QualType Ty, SourceLocation l) :
250    Expr(CXXBoolLiteralExprClass, Ty, false, false), Value(val), Loc(l) {}
251
252  explicit CXXBoolLiteralExpr(EmptyShell Empty)
253    : Expr(CXXBoolLiteralExprClass, Empty) { }
254
255  bool getValue() const { return Value; }
256  void setValue(bool V) { Value = V; }
257
258  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
259
260  SourceLocation getLocation() const { return Loc; }
261  void setLocation(SourceLocation L) { Loc = L; }
262
263  static bool classof(const Stmt *T) {
264    return T->getStmtClass() == CXXBoolLiteralExprClass;
265  }
266  static bool classof(const CXXBoolLiteralExpr *) { return true; }
267
268  // Iterators
269  virtual child_iterator child_begin();
270  virtual child_iterator child_end();
271};
272
273/// CXXNullPtrLiteralExpr - [C++0x 2.14.7] C++ Pointer Literal
274class CXXNullPtrLiteralExpr : public Expr {
275  SourceLocation Loc;
276public:
277  CXXNullPtrLiteralExpr(QualType Ty, SourceLocation l) :
278    Expr(CXXNullPtrLiteralExprClass, Ty, false, false), Loc(l) {}
279
280  explicit CXXNullPtrLiteralExpr(EmptyShell Empty)
281    : Expr(CXXNullPtrLiteralExprClass, Empty) { }
282
283  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
284
285  SourceLocation getLocation() const { return Loc; }
286  void setLocation(SourceLocation L) { Loc = L; }
287
288  static bool classof(const Stmt *T) {
289    return T->getStmtClass() == CXXNullPtrLiteralExprClass;
290  }
291  static bool classof(const CXXNullPtrLiteralExpr *) { return true; }
292
293  virtual child_iterator child_begin();
294  virtual child_iterator child_end();
295};
296
297/// CXXTypeidExpr - A C++ @c typeid expression (C++ [expr.typeid]), which gets
298/// the type_info that corresponds to the supplied type, or the (possibly
299/// dynamic) type of the supplied expression.
300///
301/// This represents code like @c typeid(int) or @c typeid(*objPtr)
302class CXXTypeidExpr : public Expr {
303private:
304  llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
305  SourceRange Range;
306
307public:
308  CXXTypeidExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
309    : Expr(CXXTypeidExprClass, Ty,
310           // typeid is never type-dependent (C++ [temp.dep.expr]p4)
311           false,
312           // typeid is value-dependent if the type or expression are dependent
313           Operand->getType()->isDependentType()),
314      Operand(Operand), Range(R) { }
315
316  CXXTypeidExpr(QualType Ty, Expr *Operand, SourceRange R)
317    : Expr(CXXTypeidExprClass, Ty,
318        // typeid is never type-dependent (C++ [temp.dep.expr]p4)
319        false,
320        // typeid is value-dependent if the type or expression are dependent
321        Operand->isTypeDependent() || Operand->isValueDependent()),
322      Operand(Operand), Range(R) { }
323
324  CXXTypeidExpr(EmptyShell Empty, bool isExpr)
325    : Expr(CXXTypeidExprClass, Empty) {
326    if (isExpr)
327      Operand = (Expr*)0;
328    else
329      Operand = (TypeSourceInfo*)0;
330  }
331
332  bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
333
334  /// \brief Retrieves the type operand of this typeid() expression after
335  /// various required adjustments (removing reference types, cv-qualifiers).
336  QualType getTypeOperand() const;
337
338  /// \brief Retrieve source information for the type operand.
339  TypeSourceInfo *getTypeOperandSourceInfo() const {
340    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
341    return Operand.get<TypeSourceInfo *>();
342  }
343
344  void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
345    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
346    Operand = TSI;
347  }
348
349  Expr *getExprOperand() const {
350    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
351    return static_cast<Expr*>(Operand.get<Stmt *>());
352  }
353
354  void setExprOperand(Expr *E) {
355    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
356    Operand = E;
357  }
358
359  virtual SourceRange getSourceRange() const { return Range; }
360  void setSourceRange(SourceRange R) { Range = R; }
361
362  static bool classof(const Stmt *T) {
363    return T->getStmtClass() == CXXTypeidExprClass;
364  }
365  static bool classof(const CXXTypeidExpr *) { return true; }
366
367  // Iterators
368  virtual child_iterator child_begin();
369  virtual child_iterator child_end();
370};
371
372/// CXXThisExpr - Represents the "this" expression in C++, which is a
373/// pointer to the object on which the current member function is
374/// executing (C++ [expr.prim]p3). Example:
375///
376/// @code
377/// class Foo {
378/// public:
379///   void bar();
380///   void test() { this->bar(); }
381/// };
382/// @endcode
383class CXXThisExpr : public Expr {
384  SourceLocation Loc;
385  bool Implicit : 1;
386
387public:
388  CXXThisExpr(SourceLocation L, QualType Type, bool isImplicit)
389    : Expr(CXXThisExprClass, Type,
390           // 'this' is type-dependent if the class type of the enclosing
391           // member function is dependent (C++ [temp.dep.expr]p2)
392           Type->isDependentType(), Type->isDependentType()),
393      Loc(L), Implicit(isImplicit) { }
394
395  CXXThisExpr(EmptyShell Empty) : Expr(CXXThisExprClass, Empty) {}
396
397  SourceLocation getLocation() const { return Loc; }
398  void setLocation(SourceLocation L) { Loc = L; }
399
400  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
401
402  bool isImplicit() const { return Implicit; }
403  void setImplicit(bool I) { Implicit = I; }
404
405  static bool classof(const Stmt *T) {
406    return T->getStmtClass() == CXXThisExprClass;
407  }
408  static bool classof(const CXXThisExpr *) { return true; }
409
410  // Iterators
411  virtual child_iterator child_begin();
412  virtual child_iterator child_end();
413};
414
415///  CXXThrowExpr - [C++ 15] C++ Throw Expression.  This handles
416///  'throw' and 'throw' assignment-expression.  When
417///  assignment-expression isn't present, Op will be null.
418///
419class CXXThrowExpr : public Expr {
420  Stmt *Op;
421  SourceLocation ThrowLoc;
422public:
423  // Ty is the void type which is used as the result type of the
424  // exepression.  The l is the location of the throw keyword.  expr
425  // can by null, if the optional expression to throw isn't present.
426  CXXThrowExpr(Expr *expr, QualType Ty, SourceLocation l) :
427    Expr(CXXThrowExprClass, Ty, false, false), Op(expr), ThrowLoc(l) {}
428  CXXThrowExpr(EmptyShell Empty) : Expr(CXXThrowExprClass, Empty) {}
429
430  const Expr *getSubExpr() const { return cast_or_null<Expr>(Op); }
431  Expr *getSubExpr() { return cast_or_null<Expr>(Op); }
432  void setSubExpr(Expr *E) { Op = E; }
433
434  SourceLocation getThrowLoc() const { return ThrowLoc; }
435  void setThrowLoc(SourceLocation L) { ThrowLoc = L; }
436
437  virtual SourceRange getSourceRange() const {
438    if (getSubExpr() == 0)
439      return SourceRange(ThrowLoc, ThrowLoc);
440    return SourceRange(ThrowLoc, getSubExpr()->getSourceRange().getEnd());
441  }
442
443  static bool classof(const Stmt *T) {
444    return T->getStmtClass() == CXXThrowExprClass;
445  }
446  static bool classof(const CXXThrowExpr *) { return true; }
447
448  // Iterators
449  virtual child_iterator child_begin();
450  virtual child_iterator child_end();
451};
452
453/// CXXDefaultArgExpr - C++ [dcl.fct.default]. This wraps up a
454/// function call argument that was created from the corresponding
455/// parameter's default argument, when the call did not explicitly
456/// supply arguments for all of the parameters.
457class CXXDefaultArgExpr : public Expr {
458  /// \brief The parameter whose default is being used.
459  ///
460  /// When the bit is set, the subexpression is stored after the
461  /// CXXDefaultArgExpr itself. When the bit is clear, the parameter's
462  /// actual default expression is the subexpression.
463  llvm::PointerIntPair<ParmVarDecl *, 1, bool> Param;
464
465  /// \brief The location where the default argument expression was used.
466  SourceLocation Loc;
467
468  CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param)
469    : Expr(SC,
470           param->hasUnparsedDefaultArg()
471             ? param->getType().getNonReferenceType()
472             : param->getDefaultArg()->getType(),
473           false, false),
474      Param(param, false), Loc(Loc) { }
475
476  CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param,
477                    Expr *SubExpr)
478    : Expr(SC, SubExpr->getType(), false, false), Param(param, true), Loc(Loc) {
479    *reinterpret_cast<Expr **>(this + 1) = SubExpr;
480  }
481
482protected:
483  virtual void DoDestroy(ASTContext &C);
484
485public:
486  CXXDefaultArgExpr(EmptyShell Empty) : Expr(CXXDefaultArgExprClass, Empty) {}
487
488
489  // Param is the parameter whose default argument is used by this
490  // expression.
491  static CXXDefaultArgExpr *Create(ASTContext &C, SourceLocation Loc,
492                                   ParmVarDecl *Param) {
493    return new (C) CXXDefaultArgExpr(CXXDefaultArgExprClass, Loc, Param);
494  }
495
496  // Param is the parameter whose default argument is used by this
497  // expression, and SubExpr is the expression that will actually be used.
498  static CXXDefaultArgExpr *Create(ASTContext &C,
499                                   SourceLocation Loc,
500                                   ParmVarDecl *Param,
501                                   Expr *SubExpr);
502
503  // Retrieve the parameter that the argument was created from.
504  const ParmVarDecl *getParam() const { return Param.getPointer(); }
505  ParmVarDecl *getParam() { return Param.getPointer(); }
506
507  // Retrieve the actual argument to the function call.
508  const Expr *getExpr() const {
509    if (Param.getInt())
510      return *reinterpret_cast<Expr const * const*> (this + 1);
511    return getParam()->getDefaultArg();
512  }
513  Expr *getExpr() {
514    if (Param.getInt())
515      return *reinterpret_cast<Expr **> (this + 1);
516    return getParam()->getDefaultArg();
517  }
518
519  /// \brief Retrieve the location where this default argument was actually
520  /// used.
521  SourceLocation getUsedLocation() const { return Loc; }
522
523  virtual SourceRange getSourceRange() const {
524    // Default argument expressions have no representation in the
525    // source, so they have an empty source range.
526    return SourceRange();
527  }
528
529  static bool classof(const Stmt *T) {
530    return T->getStmtClass() == CXXDefaultArgExprClass;
531  }
532  static bool classof(const CXXDefaultArgExpr *) { return true; }
533
534  // Iterators
535  virtual child_iterator child_begin();
536  virtual child_iterator child_end();
537
538  friend class PCHStmtReader;
539  friend class PCHStmtWriter;
540};
541
542/// CXXTemporary - Represents a C++ temporary.
543class CXXTemporary {
544  /// Destructor - The destructor that needs to be called.
545  const CXXDestructorDecl *Destructor;
546
547  CXXTemporary(const CXXDestructorDecl *destructor)
548    : Destructor(destructor) { }
549  ~CXXTemporary() { }
550
551public:
552  static CXXTemporary *Create(ASTContext &C,
553                              const CXXDestructorDecl *Destructor);
554
555  void Destroy(ASTContext &Ctx);
556
557  const CXXDestructorDecl *getDestructor() const { return Destructor; }
558};
559
560/// \brief Represents binding an expression to a temporary.
561///
562/// This ensures the destructor is called for the temporary. It should only be
563/// needed for non-POD, non-trivially destructable class types. For example:
564///
565/// \code
566///   struct S {
567///     S() { }  // User defined constructor makes S non-POD.
568///     ~S() { } // User defined destructor makes it non-trivial.
569///   };
570///   void test() {
571///     const S &s_ref = S(); // Requires a CXXBindTemporaryExpr.
572///   }
573/// \endcode
574class CXXBindTemporaryExpr : public Expr {
575  CXXTemporary *Temp;
576
577  Stmt *SubExpr;
578
579  CXXBindTemporaryExpr(CXXTemporary *temp, Expr* subexpr)
580   : Expr(CXXBindTemporaryExprClass, subexpr->getType(), false, false),
581     Temp(temp), SubExpr(subexpr) { }
582  ~CXXBindTemporaryExpr() { }
583
584protected:
585  virtual void DoDestroy(ASTContext &C);
586
587public:
588  CXXBindTemporaryExpr(EmptyShell Empty)
589    : Expr(CXXBindTemporaryExprClass, Empty), Temp(0), SubExpr(0) {}
590
591  static CXXBindTemporaryExpr *Create(ASTContext &C, CXXTemporary *Temp,
592                                      Expr* SubExpr);
593
594  CXXTemporary *getTemporary() { return Temp; }
595  const CXXTemporary *getTemporary() const { return Temp; }
596  void setTemporary(CXXTemporary *T) { Temp = T; }
597
598  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
599  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
600  void setSubExpr(Expr *E) { SubExpr = E; }
601
602  virtual SourceRange getSourceRange() const {
603    return SubExpr->getSourceRange();
604  }
605
606  // Implement isa/cast/dyncast/etc.
607  static bool classof(const Stmt *T) {
608    return T->getStmtClass() == CXXBindTemporaryExprClass;
609  }
610  static bool classof(const CXXBindTemporaryExpr *) { return true; }
611
612  // Iterators
613  virtual child_iterator child_begin();
614  virtual child_iterator child_end();
615};
616
617/// CXXBindReferenceExpr - Represents binding an expression to a reference.
618/// In the example:
619///
620/// const int &i = 10;
621///
622/// a bind reference expression is inserted to indicate that 10 is bound to
623/// a reference, and that a temporary needs to be created to hold the
624/// value.
625class CXXBindReferenceExpr : public Expr {
626  // SubExpr - The expression being bound.
627  Stmt *SubExpr;
628
629  // ExtendsLifetime - Whether binding this reference extends the lifetime of
630  // the expression being bound. FIXME: Add C++ reference.
631  bool ExtendsLifetime;
632
633  /// RequiresTemporaryCopy - Whether binding the subexpression requires a
634  /// temporary copy.
635  bool RequiresTemporaryCopy;
636
637  CXXBindReferenceExpr(Expr *subexpr, bool ExtendsLifetime,
638                       bool RequiresTemporaryCopy)
639  : Expr(CXXBindReferenceExprClass, subexpr->getType(), false, false),
640    SubExpr(subexpr), ExtendsLifetime(ExtendsLifetime),
641    RequiresTemporaryCopy(RequiresTemporaryCopy) { }
642  ~CXXBindReferenceExpr() { }
643
644protected:
645  virtual void DoDestroy(ASTContext &C);
646
647public:
648  static CXXBindReferenceExpr *Create(ASTContext &C, Expr *SubExpr,
649                                      bool ExtendsLifetime,
650                                      bool RequiresTemporaryCopy);
651
652  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
653  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
654  void setSubExpr(Expr *E) { SubExpr = E; }
655
656  virtual SourceRange getSourceRange() const {
657    return SubExpr->getSourceRange();
658  }
659
660  /// requiresTemporaryCopy - Whether binding the subexpression requires a
661  /// temporary copy.
662  bool requiresTemporaryCopy() const { return RequiresTemporaryCopy; }
663
664  // extendsLifetime - Whether binding this reference extends the lifetime of
665  // the expression being bound. FIXME: Add C++ reference.
666  bool extendsLifetime() { return ExtendsLifetime; }
667
668  // Implement isa/cast/dyncast/etc.
669  static bool classof(const Stmt *T) {
670    return T->getStmtClass() == CXXBindReferenceExprClass;
671  }
672  static bool classof(const CXXBindReferenceExpr *) { return true; }
673
674  // Iterators
675  virtual child_iterator child_begin();
676  virtual child_iterator child_end();
677};
678
679/// CXXConstructExpr - Represents a call to a C++ constructor.
680class CXXConstructExpr : public Expr {
681public:
682  enum ConstructionKind {
683    CK_Complete,
684    CK_NonVirtualBase,
685    CK_VirtualBase
686  };
687
688private:
689  CXXConstructorDecl *Constructor;
690
691  SourceLocation Loc;
692  bool Elidable : 1;
693  bool ZeroInitialization : 1;
694  unsigned ConstructKind : 2;
695  Stmt **Args;
696  unsigned NumArgs;
697
698protected:
699  CXXConstructExpr(ASTContext &C, StmtClass SC, QualType T,
700                   SourceLocation Loc,
701                   CXXConstructorDecl *d, bool elidable,
702                   Expr **args, unsigned numargs,
703                   bool ZeroInitialization = false,
704                   ConstructionKind ConstructKind = CK_Complete);
705  ~CXXConstructExpr() { }
706
707  virtual void DoDestroy(ASTContext &C);
708
709public:
710  /// \brief Construct an empty C++ construction expression that will store
711  /// \p numargs arguments.
712  CXXConstructExpr(EmptyShell Empty, ASTContext &C, unsigned numargs);
713
714  static CXXConstructExpr *Create(ASTContext &C, QualType T,
715                                  SourceLocation Loc,
716                                  CXXConstructorDecl *D, bool Elidable,
717                                  Expr **Args, unsigned NumArgs,
718                                  bool ZeroInitialization = false,
719                                  ConstructionKind ConstructKind = CK_Complete);
720
721
722  CXXConstructorDecl* getConstructor() const { return Constructor; }
723  void setConstructor(CXXConstructorDecl *C) { Constructor = C; }
724
725  SourceLocation getLocation() const { return Loc; }
726  void setLocation(SourceLocation Loc) { this->Loc = Loc; }
727
728  /// \brief Whether this construction is elidable.
729  bool isElidable() const { return Elidable; }
730  void setElidable(bool E) { Elidable = E; }
731
732  /// \brief Whether this construction first requires
733  /// zero-initialization before the initializer is called.
734  bool requiresZeroInitialization() const { return ZeroInitialization; }
735  void setRequiresZeroInitialization(bool ZeroInit) {
736    ZeroInitialization = ZeroInit;
737  }
738
739  /// \brief Determines whether this constructor is actually constructing
740  /// a base class (rather than a complete object).
741  ConstructionKind getConstructionKind() const {
742    return (ConstructionKind)ConstructKind;
743  }
744  void setConstructionKind(ConstructionKind CK) {
745    ConstructKind = CK;
746  }
747
748  typedef ExprIterator arg_iterator;
749  typedef ConstExprIterator const_arg_iterator;
750
751  arg_iterator arg_begin() { return Args; }
752  arg_iterator arg_end() { return Args + NumArgs; }
753  const_arg_iterator arg_begin() const { return Args; }
754  const_arg_iterator arg_end() const { return Args + NumArgs; }
755
756  Expr **getArgs() const { return reinterpret_cast<Expr **>(Args); }
757  unsigned getNumArgs() const { return NumArgs; }
758
759  /// getArg - Return the specified argument.
760  Expr *getArg(unsigned Arg) {
761    assert(Arg < NumArgs && "Arg access out of range!");
762    return cast<Expr>(Args[Arg]);
763  }
764  const Expr *getArg(unsigned Arg) const {
765    assert(Arg < NumArgs && "Arg access out of range!");
766    return cast<Expr>(Args[Arg]);
767  }
768
769  /// setArg - Set the specified argument.
770  void setArg(unsigned Arg, Expr *ArgExpr) {
771    assert(Arg < NumArgs && "Arg access out of range!");
772    Args[Arg] = ArgExpr;
773  }
774
775  virtual SourceRange getSourceRange() const;
776
777  static bool classof(const Stmt *T) {
778    return T->getStmtClass() == CXXConstructExprClass ||
779      T->getStmtClass() == CXXTemporaryObjectExprClass;
780  }
781  static bool classof(const CXXConstructExpr *) { return true; }
782
783  // Iterators
784  virtual child_iterator child_begin();
785  virtual child_iterator child_end();
786};
787
788/// CXXFunctionalCastExpr - Represents an explicit C++ type conversion
789/// that uses "functional" notion (C++ [expr.type.conv]). Example: @c
790/// x = int(0.5);
791class CXXFunctionalCastExpr : public ExplicitCastExpr {
792  SourceLocation TyBeginLoc;
793  SourceLocation RParenLoc;
794public:
795  CXXFunctionalCastExpr(QualType ty, TypeSourceInfo *writtenTy,
796                        SourceLocation tyBeginLoc, CastKind kind,
797                        Expr *castExpr, CXXBaseSpecifierArray BasePath,
798                        SourceLocation rParenLoc)
799    : ExplicitCastExpr(CXXFunctionalCastExprClass, ty, kind, castExpr,
800                       BasePath, writtenTy),
801      TyBeginLoc(tyBeginLoc), RParenLoc(rParenLoc) {}
802
803  explicit CXXFunctionalCastExpr(EmptyShell Shell)
804    : ExplicitCastExpr(CXXFunctionalCastExprClass, Shell) { }
805
806  SourceLocation getTypeBeginLoc() const { return TyBeginLoc; }
807  void setTypeBeginLoc(SourceLocation L) { TyBeginLoc = L; }
808  SourceLocation getRParenLoc() const { return RParenLoc; }
809  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
810
811  virtual SourceRange getSourceRange() const {
812    return SourceRange(TyBeginLoc, RParenLoc);
813  }
814  static bool classof(const Stmt *T) {
815    return T->getStmtClass() == CXXFunctionalCastExprClass;
816  }
817  static bool classof(const CXXFunctionalCastExpr *) { return true; }
818};
819
820/// @brief Represents a C++ functional cast expression that builds a
821/// temporary object.
822///
823/// This expression type represents a C++ "functional" cast
824/// (C++[expr.type.conv]) with N != 1 arguments that invokes a
825/// constructor to build a temporary object. With N == 1 arguments the
826/// functional cast expression will be represented by CXXFunctionalCastExpr.
827/// Example:
828/// @code
829/// struct X { X(int, float); }
830///
831/// X create_X() {
832///   return X(1, 3.14f); // creates a CXXTemporaryObjectExpr
833/// };
834/// @endcode
835class CXXTemporaryObjectExpr : public CXXConstructExpr {
836  SourceLocation TyBeginLoc;
837  SourceLocation RParenLoc;
838
839public:
840  CXXTemporaryObjectExpr(ASTContext &C, CXXConstructorDecl *Cons,
841                         QualType writtenTy, SourceLocation tyBeginLoc,
842                         Expr **Args,unsigned NumArgs,
843                         SourceLocation rParenLoc,
844                         bool ZeroInitialization = false);
845
846  ~CXXTemporaryObjectExpr() { }
847
848  SourceLocation getTypeBeginLoc() const { return TyBeginLoc; }
849  SourceLocation getRParenLoc() const { return RParenLoc; }
850
851  virtual SourceRange getSourceRange() const {
852    return SourceRange(TyBeginLoc, RParenLoc);
853  }
854  static bool classof(const Stmt *T) {
855    return T->getStmtClass() == CXXTemporaryObjectExprClass;
856  }
857  static bool classof(const CXXTemporaryObjectExpr *) { return true; }
858};
859
860/// CXXZeroInitValueExpr - [C++ 5.2.3p2]
861/// Expression "T()" which creates a value-initialized rvalue of type
862/// T, which is a non-class type.
863///
864class CXXZeroInitValueExpr : public Expr {
865  SourceLocation TyBeginLoc;
866  SourceLocation RParenLoc;
867
868public:
869  CXXZeroInitValueExpr(QualType ty, SourceLocation tyBeginLoc,
870                       SourceLocation rParenLoc ) :
871    Expr(CXXZeroInitValueExprClass, ty, false, false),
872    TyBeginLoc(tyBeginLoc), RParenLoc(rParenLoc) {}
873  explicit CXXZeroInitValueExpr(EmptyShell Shell)
874    : Expr(CXXZeroInitValueExprClass, Shell) { }
875
876  SourceLocation getTypeBeginLoc() const { return TyBeginLoc; }
877  SourceLocation getRParenLoc() const { return RParenLoc; }
878
879  void setTypeBeginLoc(SourceLocation L) { TyBeginLoc = L; }
880  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
881
882  /// @brief Whether this initialization expression was
883  /// implicitly-generated.
884  bool isImplicit() const {
885    return TyBeginLoc.isInvalid() && RParenLoc.isInvalid();
886  }
887
888  virtual SourceRange getSourceRange() const {
889    return SourceRange(TyBeginLoc, RParenLoc);
890  }
891
892  static bool classof(const Stmt *T) {
893    return T->getStmtClass() == CXXZeroInitValueExprClass;
894  }
895  static bool classof(const CXXZeroInitValueExpr *) { return true; }
896
897  // Iterators
898  virtual child_iterator child_begin();
899  virtual child_iterator child_end();
900};
901
902/// CXXNewExpr - A new expression for memory allocation and constructor calls,
903/// e.g: "new CXXNewExpr(foo)".
904class CXXNewExpr : public Expr {
905  // Was the usage ::new, i.e. is the global new to be used?
906  bool GlobalNew : 1;
907  // Was the form (type-id) used? Otherwise, it was new-type-id.
908  bool ParenTypeId : 1;
909  // Is there an initializer? If not, built-ins are uninitialized, else they're
910  // value-initialized.
911  bool Initializer : 1;
912  // Do we allocate an array? If so, the first SubExpr is the size expression.
913  bool Array : 1;
914  // The number of placement new arguments.
915  unsigned NumPlacementArgs : 14;
916  // The number of constructor arguments. This may be 1 even for non-class
917  // types; use the pseudo copy constructor.
918  unsigned NumConstructorArgs : 14;
919  // Contains an optional array size expression, any number of optional
920  // placement arguments, and any number of optional constructor arguments,
921  // in that order.
922  Stmt **SubExprs;
923  // Points to the allocation function used.
924  FunctionDecl *OperatorNew;
925  // Points to the deallocation function used in case of error. May be null.
926  FunctionDecl *OperatorDelete;
927  // Points to the constructor used. Cannot be null if AllocType is a record;
928  // it would still point at the default constructor (even an implicit one).
929  // Must be null for all other types.
930  CXXConstructorDecl *Constructor;
931
932  SourceLocation StartLoc;
933  SourceLocation EndLoc;
934
935public:
936  CXXNewExpr(ASTContext &C, bool globalNew, FunctionDecl *operatorNew,
937             Expr **placementArgs, unsigned numPlaceArgs, bool ParenTypeId,
938             Expr *arraySize, CXXConstructorDecl *constructor, bool initializer,
939             Expr **constructorArgs, unsigned numConsArgs,
940             FunctionDecl *operatorDelete, QualType ty,
941             SourceLocation startLoc, SourceLocation endLoc);
942  explicit CXXNewExpr(EmptyShell Shell)
943    : Expr(CXXNewExprClass, Shell), SubExprs(0) { }
944
945  void AllocateArgsArray(ASTContext &C, bool isArray, unsigned numPlaceArgs,
946                         unsigned numConsArgs);
947
948  virtual void DoDestroy(ASTContext &C);
949
950  QualType getAllocatedType() const {
951    assert(getType()->isPointerType());
952    return getType()->getAs<PointerType>()->getPointeeType();
953  }
954
955  FunctionDecl *getOperatorNew() const { return OperatorNew; }
956  void setOperatorNew(FunctionDecl *D) { OperatorNew = D; }
957  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
958  void setOperatorDelete(FunctionDecl *D) { OperatorDelete = D; }
959  CXXConstructorDecl *getConstructor() const { return Constructor; }
960  void setConstructor(CXXConstructorDecl *D) { Constructor = D; }
961
962  bool isArray() const { return Array; }
963  Expr *getArraySize() {
964    return Array ? cast<Expr>(SubExprs[0]) : 0;
965  }
966  const Expr *getArraySize() const {
967    return Array ? cast<Expr>(SubExprs[0]) : 0;
968  }
969
970  unsigned getNumPlacementArgs() const { return NumPlacementArgs; }
971  Expr *getPlacementArg(unsigned i) {
972    assert(i < NumPlacementArgs && "Index out of range");
973    return cast<Expr>(SubExprs[Array + i]);
974  }
975  const Expr *getPlacementArg(unsigned i) const {
976    assert(i < NumPlacementArgs && "Index out of range");
977    return cast<Expr>(SubExprs[Array + i]);
978  }
979
980  bool isGlobalNew() const { return GlobalNew; }
981  void setGlobalNew(bool V) { GlobalNew = V; }
982  bool isParenTypeId() const { return ParenTypeId; }
983  void setParenTypeId(bool V) { ParenTypeId = V; }
984  bool hasInitializer() const { return Initializer; }
985  void setHasInitializer(bool V) { Initializer = V; }
986
987  unsigned getNumConstructorArgs() const { return NumConstructorArgs; }
988  Expr *getConstructorArg(unsigned i) {
989    assert(i < NumConstructorArgs && "Index out of range");
990    return cast<Expr>(SubExprs[Array + NumPlacementArgs + i]);
991  }
992  const Expr *getConstructorArg(unsigned i) const {
993    assert(i < NumConstructorArgs && "Index out of range");
994    return cast<Expr>(SubExprs[Array + NumPlacementArgs + i]);
995  }
996
997  typedef ExprIterator arg_iterator;
998  typedef ConstExprIterator const_arg_iterator;
999
1000  arg_iterator placement_arg_begin() {
1001    return SubExprs + Array;
1002  }
1003  arg_iterator placement_arg_end() {
1004    return SubExprs + Array + getNumPlacementArgs();
1005  }
1006  const_arg_iterator placement_arg_begin() const {
1007    return SubExprs + Array;
1008  }
1009  const_arg_iterator placement_arg_end() const {
1010    return SubExprs + Array + getNumPlacementArgs();
1011  }
1012
1013  arg_iterator constructor_arg_begin() {
1014    return SubExprs + Array + getNumPlacementArgs();
1015  }
1016  arg_iterator constructor_arg_end() {
1017    return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
1018  }
1019  const_arg_iterator constructor_arg_begin() const {
1020    return SubExprs + Array + getNumPlacementArgs();
1021  }
1022  const_arg_iterator constructor_arg_end() const {
1023    return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
1024  }
1025
1026  typedef Stmt **raw_arg_iterator;
1027  raw_arg_iterator raw_arg_begin() { return SubExprs; }
1028  raw_arg_iterator raw_arg_end() {
1029    return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
1030  }
1031  const_arg_iterator raw_arg_begin() const { return SubExprs; }
1032  const_arg_iterator raw_arg_end() const { return constructor_arg_end(); }
1033
1034
1035  SourceLocation getStartLoc() const { return StartLoc; }
1036  void setStartLoc(SourceLocation L) { StartLoc = L; }
1037  SourceLocation getEndLoc() const { return EndLoc; }
1038  void setEndLoc(SourceLocation L) { EndLoc = L; }
1039
1040  virtual SourceRange getSourceRange() const {
1041    return SourceRange(StartLoc, EndLoc);
1042  }
1043
1044  static bool classof(const Stmt *T) {
1045    return T->getStmtClass() == CXXNewExprClass;
1046  }
1047  static bool classof(const CXXNewExpr *) { return true; }
1048
1049  // Iterators
1050  virtual child_iterator child_begin();
1051  virtual child_iterator child_end();
1052};
1053
1054/// CXXDeleteExpr - A delete expression for memory deallocation and destructor
1055/// calls, e.g. "delete[] pArray".
1056class CXXDeleteExpr : public Expr {
1057  // Is this a forced global delete, i.e. "::delete"?
1058  bool GlobalDelete : 1;
1059  // Is this the array form of delete, i.e. "delete[]"?
1060  bool ArrayForm : 1;
1061  // Points to the operator delete overload that is used. Could be a member.
1062  FunctionDecl *OperatorDelete;
1063  // The pointer expression to be deleted.
1064  Stmt *Argument;
1065  // Location of the expression.
1066  SourceLocation Loc;
1067public:
1068  CXXDeleteExpr(QualType ty, bool globalDelete, bool arrayForm,
1069                FunctionDecl *operatorDelete, Expr *arg, SourceLocation loc)
1070    : Expr(CXXDeleteExprClass, ty, false, false), GlobalDelete(globalDelete),
1071      ArrayForm(arrayForm), OperatorDelete(operatorDelete), Argument(arg),
1072      Loc(loc) { }
1073  explicit CXXDeleteExpr(EmptyShell Shell)
1074    : Expr(CXXDeleteExprClass, Shell), OperatorDelete(0), Argument(0) { }
1075
1076  bool isGlobalDelete() const { return GlobalDelete; }
1077  bool isArrayForm() const { return ArrayForm; }
1078
1079  void setGlobalDelete(bool V) { GlobalDelete = V; }
1080  void setArrayForm(bool V) { ArrayForm = V; }
1081
1082  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
1083  void setOperatorDelete(FunctionDecl *D) { OperatorDelete = D; }
1084
1085  Expr *getArgument() { return cast<Expr>(Argument); }
1086  const Expr *getArgument() const { return cast<Expr>(Argument); }
1087  void setArgument(Expr *E) { Argument = E; }
1088
1089  virtual SourceRange getSourceRange() const {
1090    return SourceRange(Loc, Argument->getLocEnd());
1091  }
1092  void setStartLoc(SourceLocation L) { Loc = L; }
1093
1094  static bool classof(const Stmt *T) {
1095    return T->getStmtClass() == CXXDeleteExprClass;
1096  }
1097  static bool classof(const CXXDeleteExpr *) { return true; }
1098
1099  // Iterators
1100  virtual child_iterator child_begin();
1101  virtual child_iterator child_end();
1102};
1103
1104/// \brief Structure used to store the type being destroyed by a
1105/// pseudo-destructor expression.
1106class PseudoDestructorTypeStorage {
1107  /// \brief Either the type source information or the name of the type, if
1108  /// it couldn't be resolved due to type-dependence.
1109  llvm::PointerUnion<TypeSourceInfo *, IdentifierInfo *> Type;
1110
1111  /// \brief The starting source location of the pseudo-destructor type.
1112  SourceLocation Location;
1113
1114public:
1115  PseudoDestructorTypeStorage() { }
1116
1117  PseudoDestructorTypeStorage(IdentifierInfo *II, SourceLocation Loc)
1118    : Type(II), Location(Loc) { }
1119
1120  PseudoDestructorTypeStorage(TypeSourceInfo *Info);
1121
1122  TypeSourceInfo *getTypeSourceInfo() const {
1123    return Type.dyn_cast<TypeSourceInfo *>();
1124  }
1125
1126  IdentifierInfo *getIdentifier() const {
1127    return Type.dyn_cast<IdentifierInfo *>();
1128  }
1129
1130  SourceLocation getLocation() const { return Location; }
1131};
1132
1133/// \brief Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
1134///
1135/// A pseudo-destructor is an expression that looks like a member access to a
1136/// destructor of a scalar type, except that scalar types don't have
1137/// destructors. For example:
1138///
1139/// \code
1140/// typedef int T;
1141/// void f(int *p) {
1142///   p->T::~T();
1143/// }
1144/// \endcode
1145///
1146/// Pseudo-destructors typically occur when instantiating templates such as:
1147///
1148/// \code
1149/// template<typename T>
1150/// void destroy(T* ptr) {
1151///   ptr->T::~T();
1152/// }
1153/// \endcode
1154///
1155/// for scalar types. A pseudo-destructor expression has no run-time semantics
1156/// beyond evaluating the base expression.
1157class CXXPseudoDestructorExpr : public Expr {
1158  /// \brief The base expression (that is being destroyed).
1159  Stmt *Base;
1160
1161  /// \brief Whether the operator was an arrow ('->'); otherwise, it was a
1162  /// period ('.').
1163  bool IsArrow : 1;
1164
1165  /// \brief The location of the '.' or '->' operator.
1166  SourceLocation OperatorLoc;
1167
1168  /// \brief The nested-name-specifier that follows the operator, if present.
1169  NestedNameSpecifier *Qualifier;
1170
1171  /// \brief The source range that covers the nested-name-specifier, if
1172  /// present.
1173  SourceRange QualifierRange;
1174
1175  /// \brief The type that precedes the '::' in a qualified pseudo-destructor
1176  /// expression.
1177  TypeSourceInfo *ScopeType;
1178
1179  /// \brief The location of the '::' in a qualified pseudo-destructor
1180  /// expression.
1181  SourceLocation ColonColonLoc;
1182
1183  /// \brief The location of the '~'.
1184  SourceLocation TildeLoc;
1185
1186  /// \brief The type being destroyed, or its name if we were unable to
1187  /// resolve the name.
1188  PseudoDestructorTypeStorage DestroyedType;
1189
1190public:
1191  CXXPseudoDestructorExpr(ASTContext &Context,
1192                          Expr *Base, bool isArrow, SourceLocation OperatorLoc,
1193                          NestedNameSpecifier *Qualifier,
1194                          SourceRange QualifierRange,
1195                          TypeSourceInfo *ScopeType,
1196                          SourceLocation ColonColonLoc,
1197                          SourceLocation TildeLoc,
1198                          PseudoDestructorTypeStorage DestroyedType)
1199    : Expr(CXXPseudoDestructorExprClass,
1200           Context.getPointerType(Context.getFunctionType(Context.VoidTy, 0, 0,
1201                                                          false, 0, false,
1202                                                          false, 0, 0,
1203                                                      FunctionType::ExtInfo())),
1204           /*isTypeDependent=*/(Base->isTypeDependent() ||
1205            (DestroyedType.getTypeSourceInfo() &&
1206              DestroyedType.getTypeSourceInfo()->getType()->isDependentType())),
1207           /*isValueDependent=*/Base->isValueDependent()),
1208      Base(static_cast<Stmt *>(Base)), IsArrow(isArrow),
1209      OperatorLoc(OperatorLoc), Qualifier(Qualifier),
1210      QualifierRange(QualifierRange),
1211      ScopeType(ScopeType), ColonColonLoc(ColonColonLoc), TildeLoc(TildeLoc),
1212      DestroyedType(DestroyedType) { }
1213
1214  explicit CXXPseudoDestructorExpr(EmptyShell Shell)
1215    : Expr(CXXPseudoDestructorExprClass, Shell),
1216      Base(0), IsArrow(false), Qualifier(0), ScopeType(0) { }
1217
1218  void setBase(Expr *E) { Base = E; }
1219  Expr *getBase() const { return cast<Expr>(Base); }
1220
1221  /// \brief Determines whether this member expression actually had
1222  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
1223  /// x->Base::foo.
1224  bool hasQualifier() const { return Qualifier != 0; }
1225
1226  /// \brief If the member name was qualified, retrieves the source range of
1227  /// the nested-name-specifier that precedes the member name. Otherwise,
1228  /// returns an empty source range.
1229  SourceRange getQualifierRange() const { return QualifierRange; }
1230  void setQualifierRange(SourceRange R) { QualifierRange = R; }
1231
1232  /// \brief If the member name was qualified, retrieves the
1233  /// nested-name-specifier that precedes the member name. Otherwise, returns
1234  /// NULL.
1235  NestedNameSpecifier *getQualifier() const { return Qualifier; }
1236  void setQualifier(NestedNameSpecifier *NNS) { Qualifier = NNS; }
1237
1238  /// \brief Determine whether this pseudo-destructor expression was written
1239  /// using an '->' (otherwise, it used a '.').
1240  bool isArrow() const { return IsArrow; }
1241  void setArrow(bool A) { IsArrow = A; }
1242
1243  /// \brief Retrieve the location of the '.' or '->' operator.
1244  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1245  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
1246
1247  /// \brief Retrieve the scope type in a qualified pseudo-destructor
1248  /// expression.
1249  ///
1250  /// Pseudo-destructor expressions can have extra qualification within them
1251  /// that is not part of the nested-name-specifier, e.g., \c p->T::~T().
1252  /// Here, if the object type of the expression is (or may be) a scalar type,
1253  /// \p T may also be a scalar type and, therefore, cannot be part of a
1254  /// nested-name-specifier. It is stored as the "scope type" of the pseudo-
1255  /// destructor expression.
1256  TypeSourceInfo *getScopeTypeInfo() const { return ScopeType; }
1257  void setScopeTypeInfo(TypeSourceInfo *Info) { ScopeType = Info; }
1258
1259  /// \brief Retrieve the location of the '::' in a qualified pseudo-destructor
1260  /// expression.
1261  SourceLocation getColonColonLoc() const { return ColonColonLoc; }
1262  void setColonColonLoc(SourceLocation L) { ColonColonLoc = L; }
1263
1264  /// \brief Retrieve the location of the '~'.
1265  SourceLocation getTildeLoc() const { return TildeLoc; }
1266  void setTildeLoc(SourceLocation L) { TildeLoc = L; }
1267
1268  /// \brief Retrieve the source location information for the type
1269  /// being destroyed.
1270  ///
1271  /// This type-source information is available for non-dependent
1272  /// pseudo-destructor expressions and some dependent pseudo-destructor
1273  /// expressions. Returns NULL if we only have the identifier for a
1274  /// dependent pseudo-destructor expression.
1275  TypeSourceInfo *getDestroyedTypeInfo() const {
1276    return DestroyedType.getTypeSourceInfo();
1277  }
1278
1279  /// \brief In a dependent pseudo-destructor expression for which we do not
1280  /// have full type information on the destroyed type, provides the name
1281  /// of the destroyed type.
1282  IdentifierInfo *getDestroyedTypeIdentifier() const {
1283    return DestroyedType.getIdentifier();
1284  }
1285
1286  /// \brief Retrieve the type being destroyed.
1287  QualType getDestroyedType() const;
1288
1289  /// \brief Retrieve the starting location of the type being destroyed.
1290  SourceLocation getDestroyedTypeLoc() const {
1291    return DestroyedType.getLocation();
1292  }
1293
1294  /// \brief Set the name of destroyed type for a dependent pseudo-destructor
1295  /// expression.
1296  void setDestroyedType(IdentifierInfo *II, SourceLocation Loc) {
1297    DestroyedType = PseudoDestructorTypeStorage(II, Loc);
1298  }
1299
1300  /// \brief Set the destroyed type.
1301  void setDestroyedType(TypeSourceInfo *Info) {
1302    DestroyedType = PseudoDestructorTypeStorage(Info);
1303  }
1304
1305  virtual SourceRange getSourceRange() const;
1306
1307  static bool classof(const Stmt *T) {
1308    return T->getStmtClass() == CXXPseudoDestructorExprClass;
1309  }
1310  static bool classof(const CXXPseudoDestructorExpr *) { return true; }
1311
1312  // Iterators
1313  virtual child_iterator child_begin();
1314  virtual child_iterator child_end();
1315};
1316
1317/// UnaryTypeTraitExpr - A GCC or MS unary type trait, as used in the
1318/// implementation of TR1/C++0x type trait templates.
1319/// Example:
1320/// __is_pod(int) == true
1321/// __is_enum(std::string) == false
1322class UnaryTypeTraitExpr : public Expr {
1323  /// UTT - The trait.
1324  UnaryTypeTrait UTT;
1325
1326  /// Loc - The location of the type trait keyword.
1327  SourceLocation Loc;
1328
1329  /// RParen - The location of the closing paren.
1330  SourceLocation RParen;
1331
1332  /// QueriedType - The type we're testing.
1333  QualType QueriedType;
1334
1335public:
1336  UnaryTypeTraitExpr(SourceLocation loc, UnaryTypeTrait utt, QualType queried,
1337                     SourceLocation rparen, QualType ty)
1338    : Expr(UnaryTypeTraitExprClass, ty, false, queried->isDependentType()),
1339      UTT(utt), Loc(loc), RParen(rparen), QueriedType(queried) { }
1340
1341  virtual SourceRange getSourceRange() const { return SourceRange(Loc, RParen);}
1342
1343  UnaryTypeTrait getTrait() const { return UTT; }
1344
1345  QualType getQueriedType() const { return QueriedType; }
1346
1347  bool EvaluateTrait(ASTContext&) const;
1348
1349  static bool classof(const Stmt *T) {
1350    return T->getStmtClass() == UnaryTypeTraitExprClass;
1351  }
1352  static bool classof(const UnaryTypeTraitExpr *) { return true; }
1353
1354  // Iterators
1355  virtual child_iterator child_begin();
1356  virtual child_iterator child_end();
1357};
1358
1359/// \brief A reference to an overloaded function set, either an
1360/// \t UnresolvedLookupExpr or an \t UnresolvedMemberExpr.
1361class OverloadExpr : public Expr {
1362  /// The results.  These are undesugared, which is to say, they may
1363  /// include UsingShadowDecls.  Access is relative to the naming
1364  /// class.
1365  // FIXME: Allocate this data after the OverloadExpr subclass.
1366  DeclAccessPair *Results;
1367  unsigned NumResults;
1368
1369  /// The common name of these declarations.
1370  DeclarationName Name;
1371
1372  /// The scope specifier, if any.
1373  NestedNameSpecifier *Qualifier;
1374
1375  /// The source range of the scope specifier.
1376  SourceRange QualifierRange;
1377
1378  /// The location of the name.
1379  SourceLocation NameLoc;
1380
1381protected:
1382  /// True if the name was a template-id.
1383  bool HasExplicitTemplateArgs;
1384
1385  OverloadExpr(StmtClass K, ASTContext &C, QualType T, bool Dependent,
1386               NestedNameSpecifier *Qualifier, SourceRange QRange,
1387               DeclarationName Name, SourceLocation NameLoc,
1388               bool HasTemplateArgs,
1389               UnresolvedSetIterator Begin, UnresolvedSetIterator End);
1390
1391  OverloadExpr(StmtClass K, EmptyShell Empty)
1392    : Expr(K, Empty), Results(0), NumResults(0),
1393      Qualifier(0), HasExplicitTemplateArgs(false) { }
1394
1395public:
1396  /// Computes whether an unresolved lookup on the given declarations
1397  /// and optional template arguments is type- and value-dependent.
1398  static bool ComputeDependence(UnresolvedSetIterator Begin,
1399                                UnresolvedSetIterator End,
1400                                const TemplateArgumentListInfo *Args);
1401
1402  /// Finds the overloaded expression in the given expression of
1403  /// OverloadTy.
1404  ///
1405  /// \return the expression (which must be there) and true if it is
1406  /// within an address-of operator.
1407  static llvm::PointerIntPair<OverloadExpr*,1> find(Expr *E) {
1408    assert(E->getType()->isSpecificBuiltinType(BuiltinType::Overload));
1409
1410    bool op = false;
1411    E = E->IgnoreParens();
1412    if (isa<UnaryOperator>(E))
1413      op = true, E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
1414    return llvm::PointerIntPair<OverloadExpr*,1>(cast<OverloadExpr>(E), op);
1415  }
1416
1417  /// Gets the naming class of this lookup, if any.
1418  CXXRecordDecl *getNamingClass() const;
1419
1420  typedef UnresolvedSetImpl::iterator decls_iterator;
1421  decls_iterator decls_begin() const { return UnresolvedSetIterator(Results); }
1422  decls_iterator decls_end() const {
1423    return UnresolvedSetIterator(Results + NumResults);
1424  }
1425
1426  void initializeResults(ASTContext &C,
1427                         UnresolvedSetIterator Begin,UnresolvedSetIterator End);
1428
1429  /// Gets the number of declarations in the unresolved set.
1430  unsigned getNumDecls() const { return NumResults; }
1431
1432  /// Gets the name looked up.
1433  DeclarationName getName() const { return Name; }
1434  void setName(DeclarationName N) { Name = N; }
1435
1436  /// Gets the location of the name.
1437  SourceLocation getNameLoc() const { return NameLoc; }
1438  void setNameLoc(SourceLocation Loc) { NameLoc = Loc; }
1439
1440  /// Fetches the nested-name qualifier, if one was given.
1441  NestedNameSpecifier *getQualifier() const { return Qualifier; }
1442  void setQualifier(NestedNameSpecifier *NNS) { Qualifier = NNS; }
1443
1444  /// Fetches the range of the nested-name qualifier.
1445  SourceRange getQualifierRange() const { return QualifierRange; }
1446  void setQualifierRange(SourceRange R) { QualifierRange = R; }
1447
1448  /// \brief Determines whether this expression had an explicit
1449  /// template argument list, e.g. f<int>.
1450  bool hasExplicitTemplateArgs() const { return HasExplicitTemplateArgs; }
1451
1452  ExplicitTemplateArgumentList &getExplicitTemplateArgs(); // defined far below
1453
1454  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
1455    return const_cast<OverloadExpr*>(this)->getExplicitTemplateArgs();
1456  }
1457
1458  ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() {
1459    if (hasExplicitTemplateArgs())
1460      return &getExplicitTemplateArgs();
1461    return 0;
1462  }
1463
1464  static bool classof(const Stmt *T) {
1465    return T->getStmtClass() == UnresolvedLookupExprClass ||
1466           T->getStmtClass() == UnresolvedMemberExprClass;
1467  }
1468  static bool classof(const OverloadExpr *) { return true; }
1469};
1470
1471/// \brief A reference to a name which we were able to look up during
1472/// parsing but could not resolve to a specific declaration.  This
1473/// arises in several ways:
1474///   * we might be waiting for argument-dependent lookup
1475///   * the name might resolve to an overloaded function
1476/// and eventually:
1477///   * the lookup might have included a function template
1478/// These never include UnresolvedUsingValueDecls, which are always
1479/// class members and therefore appear only in
1480/// UnresolvedMemberLookupExprs.
1481class UnresolvedLookupExpr : public OverloadExpr {
1482  /// True if these lookup results should be extended by
1483  /// argument-dependent lookup if this is the operand of a function
1484  /// call.
1485  bool RequiresADL;
1486
1487  /// True if these lookup results are overloaded.  This is pretty
1488  /// trivially rederivable if we urgently need to kill this field.
1489  bool Overloaded;
1490
1491  /// The naming class (C++ [class.access.base]p5) of the lookup, if
1492  /// any.  This can generally be recalculated from the context chain,
1493  /// but that can be fairly expensive for unqualified lookups.  If we
1494  /// want to improve memory use here, this could go in a union
1495  /// against the qualified-lookup bits.
1496  CXXRecordDecl *NamingClass;
1497
1498  UnresolvedLookupExpr(ASTContext &C, QualType T, bool Dependent,
1499                       CXXRecordDecl *NamingClass,
1500                       NestedNameSpecifier *Qualifier, SourceRange QRange,
1501                       DeclarationName Name, SourceLocation NameLoc,
1502                       bool RequiresADL, bool Overloaded, bool HasTemplateArgs,
1503                       UnresolvedSetIterator Begin, UnresolvedSetIterator End)
1504    : OverloadExpr(UnresolvedLookupExprClass, C, T, Dependent, Qualifier,
1505                   QRange, Name, NameLoc, HasTemplateArgs, Begin, End),
1506      RequiresADL(RequiresADL), Overloaded(Overloaded), NamingClass(NamingClass)
1507  {}
1508
1509  UnresolvedLookupExpr(EmptyShell Empty)
1510    : OverloadExpr(UnresolvedLookupExprClass, Empty),
1511      RequiresADL(false), Overloaded(false), NamingClass(0)
1512  {}
1513
1514public:
1515  static UnresolvedLookupExpr *Create(ASTContext &C,
1516                                      bool Dependent,
1517                                      CXXRecordDecl *NamingClass,
1518                                      NestedNameSpecifier *Qualifier,
1519                                      SourceRange QualifierRange,
1520                                      DeclarationName Name,
1521                                      SourceLocation NameLoc,
1522                                      bool ADL, bool Overloaded,
1523                                      UnresolvedSetIterator Begin,
1524                                      UnresolvedSetIterator End) {
1525    return new(C) UnresolvedLookupExpr(C,
1526                                       Dependent ? C.DependentTy : C.OverloadTy,
1527                                       Dependent, NamingClass,
1528                                       Qualifier, QualifierRange,
1529                                       Name, NameLoc, ADL, Overloaded, false,
1530                                       Begin, End);
1531  }
1532
1533  static UnresolvedLookupExpr *Create(ASTContext &C,
1534                                      bool Dependent,
1535                                      CXXRecordDecl *NamingClass,
1536                                      NestedNameSpecifier *Qualifier,
1537                                      SourceRange QualifierRange,
1538                                      DeclarationName Name,
1539                                      SourceLocation NameLoc,
1540                                      bool ADL,
1541                                      const TemplateArgumentListInfo &Args,
1542                                      UnresolvedSetIterator Begin,
1543                                      UnresolvedSetIterator End);
1544
1545  static UnresolvedLookupExpr *CreateEmpty(ASTContext &C,
1546                                           unsigned NumTemplateArgs);
1547
1548  /// True if this declaration should be extended by
1549  /// argument-dependent lookup.
1550  bool requiresADL() const { return RequiresADL; }
1551  void setRequiresADL(bool V) { RequiresADL = V; }
1552
1553  /// True if this lookup is overloaded.
1554  bool isOverloaded() const { return Overloaded; }
1555  void setOverloaded(bool V) { Overloaded = V; }
1556
1557  /// Gets the 'naming class' (in the sense of C++0x
1558  /// [class.access.base]p5) of the lookup.  This is the scope
1559  /// that was looked in to find these results.
1560  CXXRecordDecl *getNamingClass() const { return NamingClass; }
1561  void setNamingClass(CXXRecordDecl *D) { NamingClass = D; }
1562
1563  // Note that, inconsistently with the explicit-template-argument AST
1564  // nodes, users are *forbidden* from calling these methods on objects
1565  // without explicit template arguments.
1566
1567  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
1568    assert(hasExplicitTemplateArgs());
1569    return *reinterpret_cast<ExplicitTemplateArgumentList*>(this + 1);
1570  }
1571
1572  /// Gets a reference to the explicit template argument list.
1573  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
1574    assert(hasExplicitTemplateArgs());
1575    return *reinterpret_cast<const ExplicitTemplateArgumentList*>(this + 1);
1576  }
1577
1578  /// \brief Copies the template arguments (if present) into the given
1579  /// structure.
1580  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1581    getExplicitTemplateArgs().copyInto(List);
1582  }
1583
1584  SourceLocation getLAngleLoc() const {
1585    return getExplicitTemplateArgs().LAngleLoc;
1586  }
1587
1588  SourceLocation getRAngleLoc() const {
1589    return getExplicitTemplateArgs().RAngleLoc;
1590  }
1591
1592  TemplateArgumentLoc const *getTemplateArgs() const {
1593    return getExplicitTemplateArgs().getTemplateArgs();
1594  }
1595
1596  unsigned getNumTemplateArgs() const {
1597    return getExplicitTemplateArgs().NumTemplateArgs;
1598  }
1599
1600  virtual SourceRange getSourceRange() const {
1601    SourceRange Range(getNameLoc());
1602    if (getQualifier()) Range.setBegin(getQualifierRange().getBegin());
1603    if (hasExplicitTemplateArgs()) Range.setEnd(getRAngleLoc());
1604    return Range;
1605  }
1606
1607  virtual StmtIterator child_begin();
1608  virtual StmtIterator child_end();
1609
1610  static bool classof(const Stmt *T) {
1611    return T->getStmtClass() == UnresolvedLookupExprClass;
1612  }
1613  static bool classof(const UnresolvedLookupExpr *) { return true; }
1614};
1615
1616/// \brief A qualified reference to a name whose declaration cannot
1617/// yet be resolved.
1618///
1619/// DependentScopeDeclRefExpr is similar to DeclRefExpr in that
1620/// it expresses a reference to a declaration such as
1621/// X<T>::value. The difference, however, is that an
1622/// DependentScopeDeclRefExpr node is used only within C++ templates when
1623/// the qualification (e.g., X<T>::) refers to a dependent type. In
1624/// this case, X<T>::value cannot resolve to a declaration because the
1625/// declaration will differ from on instantiation of X<T> to the
1626/// next. Therefore, DependentScopeDeclRefExpr keeps track of the
1627/// qualifier (X<T>::) and the name of the entity being referenced
1628/// ("value"). Such expressions will instantiate to a DeclRefExpr once the
1629/// declaration can be found.
1630class DependentScopeDeclRefExpr : public Expr {
1631  /// The name of the entity we will be referencing.
1632  DeclarationName Name;
1633
1634  /// Location of the name of the declaration we're referencing.
1635  SourceLocation Loc;
1636
1637  /// QualifierRange - The source range that covers the
1638  /// nested-name-specifier.
1639  SourceRange QualifierRange;
1640
1641  /// \brief The nested-name-specifier that qualifies this unresolved
1642  /// declaration name.
1643  NestedNameSpecifier *Qualifier;
1644
1645  /// \brief Whether the name includes explicit template arguments.
1646  bool HasExplicitTemplateArgs;
1647
1648  DependentScopeDeclRefExpr(QualType T,
1649                            NestedNameSpecifier *Qualifier,
1650                            SourceRange QualifierRange,
1651                            DeclarationName Name,
1652                            SourceLocation NameLoc,
1653                            bool HasExplicitTemplateArgs)
1654    : Expr(DependentScopeDeclRefExprClass, T, true, true),
1655      Name(Name), Loc(NameLoc),
1656      QualifierRange(QualifierRange), Qualifier(Qualifier),
1657      HasExplicitTemplateArgs(HasExplicitTemplateArgs)
1658  {}
1659
1660public:
1661  static DependentScopeDeclRefExpr *Create(ASTContext &C,
1662                                           NestedNameSpecifier *Qualifier,
1663                                           SourceRange QualifierRange,
1664                                           DeclarationName Name,
1665                                           SourceLocation NameLoc,
1666                              const TemplateArgumentListInfo *TemplateArgs = 0);
1667
1668  static DependentScopeDeclRefExpr *CreateEmpty(ASTContext &C,
1669                                                unsigned NumTemplateArgs);
1670
1671  /// \brief Retrieve the name that this expression refers to.
1672  DeclarationName getDeclName() const { return Name; }
1673  void setDeclName(DeclarationName N) { Name =  N; }
1674
1675  /// \brief Retrieve the location of the name within the expression.
1676  SourceLocation getLocation() const { return Loc; }
1677  void setLocation(SourceLocation L) { Loc = L; }
1678
1679  /// \brief Retrieve the source range of the nested-name-specifier.
1680  SourceRange getQualifierRange() const { return QualifierRange; }
1681  void setQualifierRange(SourceRange R) { QualifierRange = R; }
1682
1683  /// \brief Retrieve the nested-name-specifier that qualifies this
1684  /// declaration.
1685  NestedNameSpecifier *getQualifier() const { return Qualifier; }
1686  void setQualifier(NestedNameSpecifier *NNS) { Qualifier = NNS; }
1687
1688  /// Determines whether this lookup had explicit template arguments.
1689  bool hasExplicitTemplateArgs() const { return HasExplicitTemplateArgs; }
1690
1691  // Note that, inconsistently with the explicit-template-argument AST
1692  // nodes, users are *forbidden* from calling these methods on objects
1693  // without explicit template arguments.
1694
1695  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
1696    assert(hasExplicitTemplateArgs());
1697    return *reinterpret_cast<ExplicitTemplateArgumentList*>(this + 1);
1698  }
1699
1700  /// Gets a reference to the explicit template argument list.
1701  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
1702    assert(hasExplicitTemplateArgs());
1703    return *reinterpret_cast<const ExplicitTemplateArgumentList*>(this + 1);
1704  }
1705
1706  /// \brief Copies the template arguments (if present) into the given
1707  /// structure.
1708  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1709    getExplicitTemplateArgs().copyInto(List);
1710  }
1711
1712  SourceLocation getLAngleLoc() const {
1713    return getExplicitTemplateArgs().LAngleLoc;
1714  }
1715
1716  SourceLocation getRAngleLoc() const {
1717    return getExplicitTemplateArgs().RAngleLoc;
1718  }
1719
1720  TemplateArgumentLoc const *getTemplateArgs() const {
1721    return getExplicitTemplateArgs().getTemplateArgs();
1722  }
1723
1724  unsigned getNumTemplateArgs() const {
1725    return getExplicitTemplateArgs().NumTemplateArgs;
1726  }
1727
1728  virtual SourceRange getSourceRange() const {
1729    SourceRange Range(QualifierRange.getBegin(), getLocation());
1730    if (hasExplicitTemplateArgs())
1731      Range.setEnd(getRAngleLoc());
1732    return Range;
1733  }
1734
1735  static bool classof(const Stmt *T) {
1736    return T->getStmtClass() == DependentScopeDeclRefExprClass;
1737  }
1738  static bool classof(const DependentScopeDeclRefExpr *) { return true; }
1739
1740  virtual StmtIterator child_begin();
1741  virtual StmtIterator child_end();
1742};
1743
1744class CXXExprWithTemporaries : public Expr {
1745  Stmt *SubExpr;
1746
1747  CXXTemporary **Temps;
1748  unsigned NumTemps;
1749
1750  CXXExprWithTemporaries(ASTContext &C, Expr *SubExpr, CXXTemporary **Temps,
1751                         unsigned NumTemps);
1752  ~CXXExprWithTemporaries();
1753
1754protected:
1755  virtual void DoDestroy(ASTContext &C);
1756
1757public:
1758  CXXExprWithTemporaries(EmptyShell Empty)
1759    : Expr(CXXExprWithTemporariesClass, Empty),
1760      SubExpr(0), Temps(0), NumTemps(0) {}
1761
1762  static CXXExprWithTemporaries *Create(ASTContext &C, Expr *SubExpr,
1763                                        CXXTemporary **Temps,
1764                                        unsigned NumTemps);
1765
1766  unsigned getNumTemporaries() const { return NumTemps; }
1767  void setNumTemporaries(ASTContext &C, unsigned N);
1768
1769  CXXTemporary *getTemporary(unsigned i) {
1770    assert(i < NumTemps && "Index out of range");
1771    return Temps[i];
1772  }
1773  const CXXTemporary *getTemporary(unsigned i) const {
1774    return const_cast<CXXExprWithTemporaries*>(this)->getTemporary(i);
1775  }
1776  void setTemporary(unsigned i, CXXTemporary *T) {
1777    assert(i < NumTemps && "Index out of range");
1778    Temps[i] = T;
1779  }
1780
1781  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
1782  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
1783  void setSubExpr(Expr *E) { SubExpr = E; }
1784
1785  virtual SourceRange getSourceRange() const {
1786    return SubExpr->getSourceRange();
1787  }
1788
1789  // Implement isa/cast/dyncast/etc.
1790  static bool classof(const Stmt *T) {
1791    return T->getStmtClass() == CXXExprWithTemporariesClass;
1792  }
1793  static bool classof(const CXXExprWithTemporaries *) { return true; }
1794
1795  // Iterators
1796  virtual child_iterator child_begin();
1797  virtual child_iterator child_end();
1798};
1799
1800/// \brief Describes an explicit type conversion that uses functional
1801/// notion but could not be resolved because one or more arguments are
1802/// type-dependent.
1803///
1804/// The explicit type conversions expressed by
1805/// CXXUnresolvedConstructExpr have the form \c T(a1, a2, ..., aN),
1806/// where \c T is some type and \c a1, a2, ..., aN are values, and
1807/// either \C T is a dependent type or one or more of the \c a's is
1808/// type-dependent. For example, this would occur in a template such
1809/// as:
1810///
1811/// \code
1812///   template<typename T, typename A1>
1813///   inline T make_a(const A1& a1) {
1814///     return T(a1);
1815///   }
1816/// \endcode
1817///
1818/// When the returned expression is instantiated, it may resolve to a
1819/// constructor call, conversion function call, or some kind of type
1820/// conversion.
1821class CXXUnresolvedConstructExpr : public Expr {
1822  /// \brief The starting location of the type
1823  SourceLocation TyBeginLoc;
1824
1825  /// \brief The type being constructed.
1826  QualType Type;
1827
1828  /// \brief The location of the left parentheses ('(').
1829  SourceLocation LParenLoc;
1830
1831  /// \brief The location of the right parentheses (')').
1832  SourceLocation RParenLoc;
1833
1834  /// \brief The number of arguments used to construct the type.
1835  unsigned NumArgs;
1836
1837  CXXUnresolvedConstructExpr(SourceLocation TyBegin,
1838                             QualType T,
1839                             SourceLocation LParenLoc,
1840                             Expr **Args,
1841                             unsigned NumArgs,
1842                             SourceLocation RParenLoc);
1843
1844  CXXUnresolvedConstructExpr(EmptyShell Empty, unsigned NumArgs)
1845    : Expr(CXXUnresolvedConstructExprClass, Empty), NumArgs(NumArgs) { }
1846
1847public:
1848  static CXXUnresolvedConstructExpr *Create(ASTContext &C,
1849                                            SourceLocation TyBegin,
1850                                            QualType T,
1851                                            SourceLocation LParenLoc,
1852                                            Expr **Args,
1853                                            unsigned NumArgs,
1854                                            SourceLocation RParenLoc);
1855
1856  static CXXUnresolvedConstructExpr *CreateEmpty(ASTContext &C,
1857                                                 unsigned NumArgs);
1858
1859  /// \brief Retrieve the source location where the type begins.
1860  SourceLocation getTypeBeginLoc() const { return TyBeginLoc; }
1861  void setTypeBeginLoc(SourceLocation L) { TyBeginLoc = L; }
1862
1863  /// \brief Retrieve the type that is being constructed, as specified
1864  /// in the source code.
1865  QualType getTypeAsWritten() const { return Type; }
1866  void setTypeAsWritten(QualType T) { Type = T; }
1867
1868  /// \brief Retrieve the location of the left parentheses ('(') that
1869  /// precedes the argument list.
1870  SourceLocation getLParenLoc() const { return LParenLoc; }
1871  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
1872
1873  /// \brief Retrieve the location of the right parentheses (')') that
1874  /// follows the argument list.
1875  SourceLocation getRParenLoc() const { return RParenLoc; }
1876  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1877
1878  /// \brief Retrieve the number of arguments.
1879  unsigned arg_size() const { return NumArgs; }
1880
1881  typedef Expr** arg_iterator;
1882  arg_iterator arg_begin() { return reinterpret_cast<Expr**>(this + 1); }
1883  arg_iterator arg_end() { return arg_begin() + NumArgs; }
1884
1885  typedef const Expr* const * const_arg_iterator;
1886  const_arg_iterator arg_begin() const {
1887    return reinterpret_cast<const Expr* const *>(this + 1);
1888  }
1889  const_arg_iterator arg_end() const {
1890    return arg_begin() + NumArgs;
1891  }
1892
1893  Expr *getArg(unsigned I) {
1894    assert(I < NumArgs && "Argument index out-of-range");
1895    return *(arg_begin() + I);
1896  }
1897
1898  const Expr *getArg(unsigned I) const {
1899    assert(I < NumArgs && "Argument index out-of-range");
1900    return *(arg_begin() + I);
1901  }
1902
1903  void setArg(unsigned I, Expr *E) {
1904    assert(I < NumArgs && "Argument index out-of-range");
1905    *(arg_begin() + I) = E;
1906  }
1907
1908  virtual SourceRange getSourceRange() const {
1909    return SourceRange(TyBeginLoc, RParenLoc);
1910  }
1911  static bool classof(const Stmt *T) {
1912    return T->getStmtClass() == CXXUnresolvedConstructExprClass;
1913  }
1914  static bool classof(const CXXUnresolvedConstructExpr *) { return true; }
1915
1916  // Iterators
1917  virtual child_iterator child_begin();
1918  virtual child_iterator child_end();
1919};
1920
1921/// \brief Represents a C++ member access expression where the actual
1922/// member referenced could not be resolved because the base
1923/// expression or the member name was dependent.
1924///
1925/// Like UnresolvedMemberExprs, these can be either implicit or
1926/// explicit accesses.  It is only possible to get one of these with
1927/// an implicit access if a qualifier is provided.
1928class CXXDependentScopeMemberExpr : public Expr {
1929  /// \brief The expression for the base pointer or class reference,
1930  /// e.g., the \c x in x.f.  Can be null in implicit accesses.
1931  Stmt *Base;
1932
1933  /// \brief The type of the base expression.  Never null, even for
1934  /// implicit accesses.
1935  QualType BaseType;
1936
1937  /// \brief Whether this member expression used the '->' operator or
1938  /// the '.' operator.
1939  bool IsArrow : 1;
1940
1941  /// \brief Whether this member expression has explicitly-specified template
1942  /// arguments.
1943  bool HasExplicitTemplateArgs : 1;
1944
1945  /// \brief The location of the '->' or '.' operator.
1946  SourceLocation OperatorLoc;
1947
1948  /// \brief The nested-name-specifier that precedes the member name, if any.
1949  NestedNameSpecifier *Qualifier;
1950
1951  /// \brief The source range covering the nested name specifier.
1952  SourceRange QualifierRange;
1953
1954  /// \brief In a qualified member access expression such as t->Base::f, this
1955  /// member stores the resolves of name lookup in the context of the member
1956  /// access expression, to be used at instantiation time.
1957  ///
1958  /// FIXME: This member, along with the Qualifier and QualifierRange, could
1959  /// be stuck into a structure that is optionally allocated at the end of
1960  /// the CXXDependentScopeMemberExpr, to save space in the common case.
1961  NamedDecl *FirstQualifierFoundInScope;
1962
1963  /// \brief The member to which this member expression refers, which
1964  /// can be name, overloaded operator, or destructor.
1965  /// FIXME: could also be a template-id
1966  DeclarationName Member;
1967
1968  /// \brief The location of the member name.
1969  SourceLocation MemberLoc;
1970
1971  CXXDependentScopeMemberExpr(ASTContext &C,
1972                          Expr *Base, QualType BaseType, bool IsArrow,
1973                          SourceLocation OperatorLoc,
1974                          NestedNameSpecifier *Qualifier,
1975                          SourceRange QualifierRange,
1976                          NamedDecl *FirstQualifierFoundInScope,
1977                          DeclarationName Member,
1978                          SourceLocation MemberLoc,
1979                          const TemplateArgumentListInfo *TemplateArgs);
1980
1981public:
1982  CXXDependentScopeMemberExpr(ASTContext &C,
1983                          Expr *Base, QualType BaseType,
1984                          bool IsArrow,
1985                          SourceLocation OperatorLoc,
1986                          NestedNameSpecifier *Qualifier,
1987                          SourceRange QualifierRange,
1988                          NamedDecl *FirstQualifierFoundInScope,
1989                          DeclarationName Member,
1990                          SourceLocation MemberLoc)
1991  : Expr(CXXDependentScopeMemberExprClass, C.DependentTy, true, true),
1992    Base(Base), BaseType(BaseType), IsArrow(IsArrow),
1993    HasExplicitTemplateArgs(false), OperatorLoc(OperatorLoc),
1994    Qualifier(Qualifier), QualifierRange(QualifierRange),
1995    FirstQualifierFoundInScope(FirstQualifierFoundInScope),
1996    Member(Member), MemberLoc(MemberLoc) { }
1997
1998  static CXXDependentScopeMemberExpr *
1999  Create(ASTContext &C,
2000         Expr *Base, QualType BaseType, bool IsArrow,
2001         SourceLocation OperatorLoc,
2002         NestedNameSpecifier *Qualifier,
2003         SourceRange QualifierRange,
2004         NamedDecl *FirstQualifierFoundInScope,
2005         DeclarationName Member,
2006         SourceLocation MemberLoc,
2007         const TemplateArgumentListInfo *TemplateArgs);
2008
2009  static CXXDependentScopeMemberExpr *
2010  CreateEmpty(ASTContext &C, unsigned NumTemplateArgs);
2011
2012  /// \brief True if this is an implicit access, i.e. one in which the
2013  /// member being accessed was not written in the source.  The source
2014  /// location of the operator is invalid in this case.
2015  bool isImplicitAccess() const { return Base == 0; }
2016
2017  /// \brief Retrieve the base object of this member expressions,
2018  /// e.g., the \c x in \c x.m.
2019  Expr *getBase() const {
2020    assert(!isImplicitAccess());
2021    return cast<Expr>(Base);
2022  }
2023  void setBase(Expr *E) { Base = E; }
2024
2025  QualType getBaseType() const { return BaseType; }
2026  void setBaseType(QualType T) { BaseType = T; }
2027
2028  /// \brief Determine whether this member expression used the '->'
2029  /// operator; otherwise, it used the '.' operator.
2030  bool isArrow() const { return IsArrow; }
2031  void setArrow(bool A) { IsArrow = A; }
2032
2033  /// \brief Retrieve the location of the '->' or '.' operator.
2034  SourceLocation getOperatorLoc() const { return OperatorLoc; }
2035  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
2036
2037  /// \brief Retrieve the nested-name-specifier that qualifies the member
2038  /// name.
2039  NestedNameSpecifier *getQualifier() const { return Qualifier; }
2040  void setQualifier(NestedNameSpecifier *NNS) { Qualifier = NNS; }
2041
2042  /// \brief Retrieve the source range covering the nested-name-specifier
2043  /// that qualifies the member name.
2044  SourceRange getQualifierRange() const { return QualifierRange; }
2045  void setQualifierRange(SourceRange R) { QualifierRange = R; }
2046
2047  /// \brief Retrieve the first part of the nested-name-specifier that was
2048  /// found in the scope of the member access expression when the member access
2049  /// was initially parsed.
2050  ///
2051  /// This function only returns a useful result when member access expression
2052  /// uses a qualified member name, e.g., "x.Base::f". Here, the declaration
2053  /// returned by this function describes what was found by unqualified name
2054  /// lookup for the identifier "Base" within the scope of the member access
2055  /// expression itself. At template instantiation time, this information is
2056  /// combined with the results of name lookup into the type of the object
2057  /// expression itself (the class type of x).
2058  NamedDecl *getFirstQualifierFoundInScope() const {
2059    return FirstQualifierFoundInScope;
2060  }
2061  void setFirstQualifierFoundInScope(NamedDecl *D) {
2062    FirstQualifierFoundInScope = D;
2063  }
2064
2065  /// \brief Retrieve the name of the member that this expression
2066  /// refers to.
2067  DeclarationName getMember() const { return Member; }
2068  void setMember(DeclarationName N) { Member = N; }
2069
2070  // \brief Retrieve the location of the name of the member that this
2071  // expression refers to.
2072  SourceLocation getMemberLoc() const { return MemberLoc; }
2073  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
2074
2075  /// \brief Determines whether this member expression actually had a C++
2076  /// template argument list explicitly specified, e.g., x.f<int>.
2077  bool hasExplicitTemplateArgs() const {
2078    return HasExplicitTemplateArgs;
2079  }
2080
2081  /// \brief Retrieve the explicit template argument list that followed the
2082  /// member template name, if any.
2083  ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() {
2084    assert(HasExplicitTemplateArgs);
2085    return reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
2086  }
2087
2088  /// \brief Retrieve the explicit template argument list that followed the
2089  /// member template name, if any.
2090  const ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() const {
2091    return const_cast<CXXDependentScopeMemberExpr *>(this)
2092             ->getExplicitTemplateArgumentList();
2093  }
2094
2095  /// \brief Copies the template arguments (if present) into the given
2096  /// structure.
2097  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2098    assert(HasExplicitTemplateArgs);
2099    getExplicitTemplateArgumentList()->copyInto(List);
2100  }
2101
2102  /// \brief Initializes the template arguments using the given structure.
2103  void initializeTemplateArgumentsFrom(const TemplateArgumentListInfo &List) {
2104    assert(HasExplicitTemplateArgs);
2105    getExplicitTemplateArgumentList()->initializeFrom(List);
2106  }
2107
2108  /// \brief Retrieve the location of the left angle bracket following the
2109  /// member name ('<'), if any.
2110  SourceLocation getLAngleLoc() const {
2111    assert(HasExplicitTemplateArgs);
2112    return getExplicitTemplateArgumentList()->LAngleLoc;
2113  }
2114
2115  /// \brief Retrieve the template arguments provided as part of this
2116  /// template-id.
2117  const TemplateArgumentLoc *getTemplateArgs() const {
2118    assert(HasExplicitTemplateArgs);
2119    return getExplicitTemplateArgumentList()->getTemplateArgs();
2120  }
2121
2122  /// \brief Retrieve the number of template arguments provided as part of this
2123  /// template-id.
2124  unsigned getNumTemplateArgs() const {
2125    assert(HasExplicitTemplateArgs);
2126    return getExplicitTemplateArgumentList()->NumTemplateArgs;
2127  }
2128
2129  /// \brief Retrieve the location of the right angle bracket following the
2130  /// template arguments ('>').
2131  SourceLocation getRAngleLoc() const {
2132    assert(HasExplicitTemplateArgs);
2133    return getExplicitTemplateArgumentList()->RAngleLoc;
2134  }
2135
2136  virtual SourceRange getSourceRange() const {
2137    SourceRange Range;
2138    if (!isImplicitAccess())
2139      Range.setBegin(Base->getSourceRange().getBegin());
2140    else if (getQualifier())
2141      Range.setBegin(getQualifierRange().getBegin());
2142    else
2143      Range.setBegin(MemberLoc);
2144
2145    if (hasExplicitTemplateArgs())
2146      Range.setEnd(getRAngleLoc());
2147    else
2148      Range.setEnd(MemberLoc);
2149    return Range;
2150  }
2151
2152  static bool classof(const Stmt *T) {
2153    return T->getStmtClass() == CXXDependentScopeMemberExprClass;
2154  }
2155  static bool classof(const CXXDependentScopeMemberExpr *) { return true; }
2156
2157  // Iterators
2158  virtual child_iterator child_begin();
2159  virtual child_iterator child_end();
2160};
2161
2162/// \brief Represents a C++ member access expression for which lookup
2163/// produced a set of overloaded functions.
2164///
2165/// The member access may be explicit or implicit:
2166///    struct A {
2167///      int a, b;
2168///      int explicitAccess() { return this->a + this->A::b; }
2169///      int implicitAccess() { return a + A::b; }
2170///    };
2171///
2172/// In the final AST, an explicit access always becomes a MemberExpr.
2173/// An implicit access may become either a MemberExpr or a
2174/// DeclRefExpr, depending on whether the member is static.
2175class UnresolvedMemberExpr : public OverloadExpr {
2176  /// \brief Whether this member expression used the '->' operator or
2177  /// the '.' operator.
2178  bool IsArrow : 1;
2179
2180  /// \brief Whether the lookup results contain an unresolved using
2181  /// declaration.
2182  bool HasUnresolvedUsing : 1;
2183
2184  /// \brief The expression for the base pointer or class reference,
2185  /// e.g., the \c x in x.f.  This can be null if this is an 'unbased'
2186  /// member expression
2187  Stmt *Base;
2188
2189  /// \brief The type of the base expression;  never null.
2190  QualType BaseType;
2191
2192  /// \brief The location of the '->' or '.' operator.
2193  SourceLocation OperatorLoc;
2194
2195  UnresolvedMemberExpr(ASTContext &C, QualType T, bool Dependent,
2196                       bool HasUnresolvedUsing,
2197                       Expr *Base, QualType BaseType, bool IsArrow,
2198                       SourceLocation OperatorLoc,
2199                       NestedNameSpecifier *Qualifier,
2200                       SourceRange QualifierRange,
2201                       DeclarationName Member,
2202                       SourceLocation MemberLoc,
2203                       const TemplateArgumentListInfo *TemplateArgs,
2204                       UnresolvedSetIterator Begin, UnresolvedSetIterator End);
2205
2206  UnresolvedMemberExpr(EmptyShell Empty)
2207    : OverloadExpr(UnresolvedMemberExprClass, Empty), IsArrow(false),
2208      HasUnresolvedUsing(false), Base(0) { }
2209
2210public:
2211  static UnresolvedMemberExpr *
2212  Create(ASTContext &C, bool Dependent, bool HasUnresolvedUsing,
2213         Expr *Base, QualType BaseType, bool IsArrow,
2214         SourceLocation OperatorLoc,
2215         NestedNameSpecifier *Qualifier,
2216         SourceRange QualifierRange,
2217         DeclarationName Member,
2218         SourceLocation MemberLoc,
2219         const TemplateArgumentListInfo *TemplateArgs,
2220         UnresolvedSetIterator Begin, UnresolvedSetIterator End);
2221
2222  static UnresolvedMemberExpr *
2223  CreateEmpty(ASTContext &C, unsigned NumTemplateArgs);
2224
2225  /// \brief True if this is an implicit access, i.e. one in which the
2226  /// member being accessed was not written in the source.  The source
2227  /// location of the operator is invalid in this case.
2228  bool isImplicitAccess() const { return Base == 0; }
2229
2230  /// \brief Retrieve the base object of this member expressions,
2231  /// e.g., the \c x in \c x.m.
2232  Expr *getBase() {
2233    assert(!isImplicitAccess());
2234    return cast<Expr>(Base);
2235  }
2236  const Expr *getBase() const {
2237    assert(!isImplicitAccess());
2238    return cast<Expr>(Base);
2239  }
2240  void setBase(Expr *E) { Base = E; }
2241
2242  QualType getBaseType() const { return BaseType; }
2243  void setBaseType(QualType T) { BaseType = T; }
2244
2245  /// \brief Determine whether the lookup results contain an unresolved using
2246  /// declaration.
2247  bool hasUnresolvedUsing() const { return HasUnresolvedUsing; }
2248  void setHasUnresolvedUsing(bool V) { HasUnresolvedUsing = V; }
2249
2250  /// \brief Determine whether this member expression used the '->'
2251  /// operator; otherwise, it used the '.' operator.
2252  bool isArrow() const { return IsArrow; }
2253  void setArrow(bool A) { IsArrow = A; }
2254
2255  /// \brief Retrieve the location of the '->' or '.' operator.
2256  SourceLocation getOperatorLoc() const { return OperatorLoc; }
2257  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
2258
2259  /// \brief Retrieves the naming class of this lookup.
2260  CXXRecordDecl *getNamingClass() const;
2261
2262  /// \brief Retrieve the name of the member that this expression
2263  /// refers to.
2264  DeclarationName getMemberName() const { return getName(); }
2265  void setMemberName(DeclarationName N) { setName(N); }
2266
2267  // \brief Retrieve the location of the name of the member that this
2268  // expression refers to.
2269  SourceLocation getMemberLoc() const { return getNameLoc(); }
2270  void setMemberLoc(SourceLocation L) { setNameLoc(L); }
2271
2272  /// \brief Retrieve the explicit template argument list that followed the
2273  /// member template name.
2274  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
2275    assert(hasExplicitTemplateArgs());
2276    return *reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
2277  }
2278
2279  /// \brief Retrieve the explicit template argument list that followed the
2280  /// member template name, if any.
2281  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
2282    assert(hasExplicitTemplateArgs());
2283    return *reinterpret_cast<const ExplicitTemplateArgumentList *>(this + 1);
2284  }
2285
2286  /// \brief Copies the template arguments into the given structure.
2287  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2288    getExplicitTemplateArgs().copyInto(List);
2289  }
2290
2291  /// \brief Retrieve the location of the left angle bracket following
2292  /// the member name ('<').
2293  SourceLocation getLAngleLoc() const {
2294    return getExplicitTemplateArgs().LAngleLoc;
2295  }
2296
2297  /// \brief Retrieve the template arguments provided as part of this
2298  /// template-id.
2299  const TemplateArgumentLoc *getTemplateArgs() const {
2300    return getExplicitTemplateArgs().getTemplateArgs();
2301  }
2302
2303  /// \brief Retrieve the number of template arguments provided as
2304  /// part of this template-id.
2305  unsigned getNumTemplateArgs() const {
2306    return getExplicitTemplateArgs().NumTemplateArgs;
2307  }
2308
2309  /// \brief Retrieve the location of the right angle bracket
2310  /// following the template arguments ('>').
2311  SourceLocation getRAngleLoc() const {
2312    return getExplicitTemplateArgs().RAngleLoc;
2313  }
2314
2315  virtual SourceRange getSourceRange() const {
2316    SourceRange Range;
2317    if (!isImplicitAccess())
2318      Range.setBegin(Base->getSourceRange().getBegin());
2319    else if (getQualifier())
2320      Range.setBegin(getQualifierRange().getBegin());
2321    else
2322      Range.setBegin(getMemberLoc());
2323
2324    if (hasExplicitTemplateArgs())
2325      Range.setEnd(getRAngleLoc());
2326    else
2327      Range.setEnd(getMemberLoc());
2328    return Range;
2329  }
2330
2331  static bool classof(const Stmt *T) {
2332    return T->getStmtClass() == UnresolvedMemberExprClass;
2333  }
2334  static bool classof(const UnresolvedMemberExpr *) { return true; }
2335
2336  // Iterators
2337  virtual child_iterator child_begin();
2338  virtual child_iterator child_end();
2339};
2340
2341inline ExplicitTemplateArgumentList &OverloadExpr::getExplicitTemplateArgs() {
2342  if (isa<UnresolvedLookupExpr>(this))
2343    return cast<UnresolvedLookupExpr>(this)->getExplicitTemplateArgs();
2344  else
2345    return cast<UnresolvedMemberExpr>(this)->getExplicitTemplateArgs();
2346}
2347
2348}  // end namespace clang
2349
2350#endif
2351