ExprCXX.h revision 6d00c1365dd3601f6d93bbda9162913c57ae788f
1//===--- ExprCXX.h - Classes for representing expressions -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses for C++ expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPRCXX_H
15#define LLVM_CLANG_AST_EXPRCXX_H
16
17#include "clang/Basic/TypeTraits.h"
18#include "clang/AST/Expr.h"
19#include "clang/AST/UnresolvedSet.h"
20#include "clang/AST/TemplateBase.h"
21
22namespace clang {
23
24  class CXXConstructorDecl;
25  class CXXDestructorDecl;
26  class CXXMethodDecl;
27  class CXXTemporary;
28  class TemplateArgumentListInfo;
29
30//===--------------------------------------------------------------------===//
31// C++ Expressions.
32//===--------------------------------------------------------------------===//
33
34/// \brief A call to an overloaded operator written using operator
35/// syntax.
36///
37/// Represents a call to an overloaded operator written using operator
38/// syntax, e.g., "x + y" or "*p". While semantically equivalent to a
39/// normal call, this AST node provides better information about the
40/// syntactic representation of the call.
41///
42/// In a C++ template, this expression node kind will be used whenever
43/// any of the arguments are type-dependent. In this case, the
44/// function itself will be a (possibly empty) set of functions and
45/// function templates that were found by name lookup at template
46/// definition time.
47class CXXOperatorCallExpr : public CallExpr {
48  /// \brief The overloaded operator.
49  OverloadedOperatorKind Operator;
50
51public:
52  CXXOperatorCallExpr(ASTContext& C, OverloadedOperatorKind Op, Expr *fn,
53                      Expr **args, unsigned numargs, QualType t,
54                      SourceLocation operatorloc)
55    : CallExpr(C, CXXOperatorCallExprClass, fn, args, numargs, t, operatorloc),
56      Operator(Op) {}
57  explicit CXXOperatorCallExpr(ASTContext& C, EmptyShell Empty) :
58    CallExpr(C, CXXOperatorCallExprClass, Empty) { }
59
60
61  /// getOperator - Returns the kind of overloaded operator that this
62  /// expression refers to.
63  OverloadedOperatorKind getOperator() const { return Operator; }
64  void setOperator(OverloadedOperatorKind Kind) { Operator = Kind; }
65
66  /// getOperatorLoc - Returns the location of the operator symbol in
67  /// the expression. When @c getOperator()==OO_Call, this is the
68  /// location of the right parentheses; when @c
69  /// getOperator()==OO_Subscript, this is the location of the right
70  /// bracket.
71  SourceLocation getOperatorLoc() const { return getRParenLoc(); }
72
73  virtual SourceRange getSourceRange() const;
74
75  static bool classof(const Stmt *T) {
76    return T->getStmtClass() == CXXOperatorCallExprClass;
77  }
78  static bool classof(const CXXOperatorCallExpr *) { return true; }
79};
80
81/// CXXMemberCallExpr - Represents a call to a member function that
82/// may be written either with member call syntax (e.g., "obj.func()"
83/// or "objptr->func()") or with normal function-call syntax
84/// ("func()") within a member function that ends up calling a member
85/// function. The callee in either case is a MemberExpr that contains
86/// both the object argument and the member function, while the
87/// arguments are the arguments within the parentheses (not including
88/// the object argument).
89class CXXMemberCallExpr : public CallExpr {
90public:
91  CXXMemberCallExpr(ASTContext &C, Expr *fn, Expr **args, unsigned numargs,
92                    QualType t, SourceLocation rparenloc)
93    : CallExpr(C, CXXMemberCallExprClass, fn, args, numargs, t, rparenloc) {}
94
95  CXXMemberCallExpr(ASTContext &C, EmptyShell Empty)
96    : CallExpr(C, CXXMemberCallExprClass, Empty) { }
97
98  /// getImplicitObjectArgument - Retrieves the implicit object
99  /// argument for the member call. For example, in "x.f(5)", this
100  /// operation would return "x".
101  Expr *getImplicitObjectArgument();
102
103  virtual SourceRange getSourceRange() const;
104
105  static bool classof(const Stmt *T) {
106    return T->getStmtClass() == CXXMemberCallExprClass;
107  }
108  static bool classof(const CXXMemberCallExpr *) { return true; }
109};
110
111/// CXXNamedCastExpr - Abstract class common to all of the C++ "named"
112/// casts, @c static_cast, @c dynamic_cast, @c reinterpret_cast, or @c
113/// const_cast.
114///
115/// This abstract class is inherited by all of the classes
116/// representing "named" casts, e.g., CXXStaticCastExpr,
117/// CXXDynamicCastExpr, CXXReinterpretCastExpr, and CXXConstCastExpr.
118class CXXNamedCastExpr : public ExplicitCastExpr {
119private:
120  SourceLocation Loc; // the location of the casting op
121
122protected:
123  CXXNamedCastExpr(StmtClass SC, QualType ty, CastKind kind, Expr *op,
124                   CXXBaseSpecifierArray BasePath, TypeSourceInfo *writtenTy,
125                   SourceLocation l)
126    : ExplicitCastExpr(SC, ty, kind, op, BasePath, writtenTy), Loc(l) {}
127
128  explicit CXXNamedCastExpr(StmtClass SC, EmptyShell Shell)
129    : ExplicitCastExpr(SC, Shell) { }
130
131public:
132  const char *getCastName() const;
133
134  /// \brief Retrieve the location of the cast operator keyword, e.g.,
135  /// "static_cast".
136  SourceLocation getOperatorLoc() const { return Loc; }
137  void setOperatorLoc(SourceLocation L) { Loc = L; }
138
139  virtual SourceRange getSourceRange() const {
140    return SourceRange(Loc, getSubExpr()->getSourceRange().getEnd());
141  }
142  static bool classof(const Stmt *T) {
143    switch (T->getStmtClass()) {
144    case CXXStaticCastExprClass:
145    case CXXDynamicCastExprClass:
146    case CXXReinterpretCastExprClass:
147    case CXXConstCastExprClass:
148      return true;
149    default:
150      return false;
151    }
152  }
153  static bool classof(const CXXNamedCastExpr *) { return true; }
154};
155
156/// CXXStaticCastExpr - A C++ @c static_cast expression (C++ [expr.static.cast]).
157///
158/// This expression node represents a C++ static cast, e.g.,
159/// @c static_cast<int>(1.0).
160class CXXStaticCastExpr : public CXXNamedCastExpr {
161public:
162  CXXStaticCastExpr(QualType ty, CastKind kind, Expr *op,
163                    CXXBaseSpecifierArray BasePath, TypeSourceInfo *writtenTy,
164                    SourceLocation l)
165    : CXXNamedCastExpr(CXXStaticCastExprClass, ty, kind, op, BasePath, writtenTy, l) {}
166
167  explicit CXXStaticCastExpr(EmptyShell Empty)
168    : CXXNamedCastExpr(CXXStaticCastExprClass, Empty) { }
169
170  static bool classof(const Stmt *T) {
171    return T->getStmtClass() == CXXStaticCastExprClass;
172  }
173  static bool classof(const CXXStaticCastExpr *) { return true; }
174};
175
176/// CXXDynamicCastExpr - A C++ @c dynamic_cast expression
177/// (C++ [expr.dynamic.cast]), which may perform a run-time check to
178/// determine how to perform the type cast.
179///
180/// This expression node represents a dynamic cast, e.g.,
181/// @c dynamic_cast<Derived*>(BasePtr).
182class CXXDynamicCastExpr : public CXXNamedCastExpr {
183public:
184  CXXDynamicCastExpr(QualType ty, CastKind kind, Expr *op,
185                     CXXBaseSpecifierArray BasePath, TypeSourceInfo *writtenTy,
186                     SourceLocation l)
187    : CXXNamedCastExpr(CXXDynamicCastExprClass, ty, kind, op, BasePath,
188                       writtenTy, l) {}
189
190  explicit CXXDynamicCastExpr(EmptyShell Empty)
191    : CXXNamedCastExpr(CXXDynamicCastExprClass, Empty) { }
192
193  static bool classof(const Stmt *T) {
194    return T->getStmtClass() == CXXDynamicCastExprClass;
195  }
196  static bool classof(const CXXDynamicCastExpr *) { return true; }
197};
198
199/// CXXReinterpretCastExpr - A C++ @c reinterpret_cast expression (C++
200/// [expr.reinterpret.cast]), which provides a differently-typed view
201/// of a value but performs no actual work at run time.
202///
203/// This expression node represents a reinterpret cast, e.g.,
204/// @c reinterpret_cast<int>(VoidPtr).
205class CXXReinterpretCastExpr : public CXXNamedCastExpr {
206public:
207  CXXReinterpretCastExpr(QualType ty, CastKind kind, Expr *op,
208                         CXXBaseSpecifierArray BasePath,
209                         TypeSourceInfo *writtenTy, SourceLocation l)
210    : CXXNamedCastExpr(CXXReinterpretCastExprClass, ty, kind, op, BasePath,
211                       writtenTy, l) {}
212
213  explicit CXXReinterpretCastExpr(EmptyShell Empty)
214    : CXXNamedCastExpr(CXXReinterpretCastExprClass, Empty) { }
215
216  static bool classof(const Stmt *T) {
217    return T->getStmtClass() == CXXReinterpretCastExprClass;
218  }
219  static bool classof(const CXXReinterpretCastExpr *) { return true; }
220};
221
222/// CXXConstCastExpr - A C++ @c const_cast expression (C++ [expr.const.cast]),
223/// which can remove type qualifiers but does not change the underlying value.
224///
225/// This expression node represents a const cast, e.g.,
226/// @c const_cast<char*>(PtrToConstChar).
227class CXXConstCastExpr : public CXXNamedCastExpr {
228public:
229  CXXConstCastExpr(QualType ty, Expr *op, TypeSourceInfo *writtenTy,
230                   SourceLocation l)
231    : CXXNamedCastExpr(CXXConstCastExprClass, ty, CK_NoOp, op,
232                       CXXBaseSpecifierArray(), writtenTy, l) {}
233
234  explicit CXXConstCastExpr(EmptyShell Empty)
235    : CXXNamedCastExpr(CXXConstCastExprClass, Empty) { }
236
237  static bool classof(const Stmt *T) {
238    return T->getStmtClass() == CXXConstCastExprClass;
239  }
240  static bool classof(const CXXConstCastExpr *) { return true; }
241};
242
243/// CXXBoolLiteralExpr - [C++ 2.13.5] C++ Boolean Literal.
244///
245class CXXBoolLiteralExpr : public Expr {
246  bool Value;
247  SourceLocation Loc;
248public:
249  CXXBoolLiteralExpr(bool val, QualType Ty, SourceLocation l) :
250    Expr(CXXBoolLiteralExprClass, Ty, false, false), Value(val), Loc(l) {}
251
252  explicit CXXBoolLiteralExpr(EmptyShell Empty)
253    : Expr(CXXBoolLiteralExprClass, Empty) { }
254
255  bool getValue() const { return Value; }
256  void setValue(bool V) { Value = V; }
257
258  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
259
260  SourceLocation getLocation() const { return Loc; }
261  void setLocation(SourceLocation L) { Loc = L; }
262
263  static bool classof(const Stmt *T) {
264    return T->getStmtClass() == CXXBoolLiteralExprClass;
265  }
266  static bool classof(const CXXBoolLiteralExpr *) { return true; }
267
268  // Iterators
269  virtual child_iterator child_begin();
270  virtual child_iterator child_end();
271};
272
273/// CXXNullPtrLiteralExpr - [C++0x 2.14.7] C++ Pointer Literal
274class CXXNullPtrLiteralExpr : public Expr {
275  SourceLocation Loc;
276public:
277  CXXNullPtrLiteralExpr(QualType Ty, SourceLocation l) :
278    Expr(CXXNullPtrLiteralExprClass, Ty, false, false), Loc(l) {}
279
280  explicit CXXNullPtrLiteralExpr(EmptyShell Empty)
281    : Expr(CXXNullPtrLiteralExprClass, Empty) { }
282
283  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
284
285  SourceLocation getLocation() const { return Loc; }
286  void setLocation(SourceLocation L) { Loc = L; }
287
288  static bool classof(const Stmt *T) {
289    return T->getStmtClass() == CXXNullPtrLiteralExprClass;
290  }
291  static bool classof(const CXXNullPtrLiteralExpr *) { return true; }
292
293  virtual child_iterator child_begin();
294  virtual child_iterator child_end();
295};
296
297/// CXXTypeidExpr - A C++ @c typeid expression (C++ [expr.typeid]), which gets
298/// the type_info that corresponds to the supplied type, or the (possibly
299/// dynamic) type of the supplied expression.
300///
301/// This represents code like @c typeid(int) or @c typeid(*objPtr)
302class CXXTypeidExpr : public Expr {
303private:
304  llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
305  SourceRange Range;
306
307public:
308  CXXTypeidExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
309    : Expr(CXXTypeidExprClass, Ty,
310           // typeid is never type-dependent (C++ [temp.dep.expr]p4)
311           false,
312           // typeid is value-dependent if the type or expression are dependent
313           Operand->getType()->isDependentType()),
314      Operand(Operand), Range(R) { }
315
316  CXXTypeidExpr(QualType Ty, Expr *Operand, SourceRange R)
317    : Expr(CXXTypeidExprClass, Ty,
318        // typeid is never type-dependent (C++ [temp.dep.expr]p4)
319        false,
320        // typeid is value-dependent if the type or expression are dependent
321        Operand->isTypeDependent() || Operand->isValueDependent()),
322      Operand(Operand), Range(R) { }
323
324  CXXTypeidExpr(EmptyShell Empty, bool isExpr)
325    : Expr(CXXTypeidExprClass, Empty) {
326    if (isExpr)
327      Operand = (Expr*)0;
328    else
329      Operand = (TypeSourceInfo*)0;
330  }
331
332  bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
333
334  /// \brief Retrieves the type operand of this typeid() expression after
335  /// various required adjustments (removing reference types, cv-qualifiers).
336  QualType getTypeOperand() const;
337
338  /// \brief Retrieve source information for the type operand.
339  TypeSourceInfo *getTypeOperandSourceInfo() const {
340    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
341    return Operand.get<TypeSourceInfo *>();
342  }
343
344  void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
345    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
346    Operand = TSI;
347  }
348
349  Expr *getExprOperand() const {
350    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
351    return static_cast<Expr*>(Operand.get<Stmt *>());
352  }
353
354  void setExprOperand(Expr *E) {
355    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
356    Operand = E;
357  }
358
359  virtual SourceRange getSourceRange() const { return Range; }
360  void setSourceRange(SourceRange R) { Range = R; }
361
362  static bool classof(const Stmt *T) {
363    return T->getStmtClass() == CXXTypeidExprClass;
364  }
365  static bool classof(const CXXTypeidExpr *) { return true; }
366
367  // Iterators
368  virtual child_iterator child_begin();
369  virtual child_iterator child_end();
370};
371
372/// CXXThisExpr - Represents the "this" expression in C++, which is a
373/// pointer to the object on which the current member function is
374/// executing (C++ [expr.prim]p3). Example:
375///
376/// @code
377/// class Foo {
378/// public:
379///   void bar();
380///   void test() { this->bar(); }
381/// };
382/// @endcode
383class CXXThisExpr : public Expr {
384  SourceLocation Loc;
385  bool Implicit : 1;
386
387public:
388  CXXThisExpr(SourceLocation L, QualType Type, bool isImplicit)
389    : Expr(CXXThisExprClass, Type,
390           // 'this' is type-dependent if the class type of the enclosing
391           // member function is dependent (C++ [temp.dep.expr]p2)
392           Type->isDependentType(), Type->isDependentType()),
393      Loc(L), Implicit(isImplicit) { }
394
395  CXXThisExpr(EmptyShell Empty) : Expr(CXXThisExprClass, Empty) {}
396
397  SourceLocation getLocation() const { return Loc; }
398  void setLocation(SourceLocation L) { Loc = L; }
399
400  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
401
402  bool isImplicit() const { return Implicit; }
403  void setImplicit(bool I) { Implicit = I; }
404
405  static bool classof(const Stmt *T) {
406    return T->getStmtClass() == CXXThisExprClass;
407  }
408  static bool classof(const CXXThisExpr *) { return true; }
409
410  // Iterators
411  virtual child_iterator child_begin();
412  virtual child_iterator child_end();
413};
414
415///  CXXThrowExpr - [C++ 15] C++ Throw Expression.  This handles
416///  'throw' and 'throw' assignment-expression.  When
417///  assignment-expression isn't present, Op will be null.
418///
419class CXXThrowExpr : public Expr {
420  Stmt *Op;
421  SourceLocation ThrowLoc;
422public:
423  // Ty is the void type which is used as the result type of the
424  // exepression.  The l is the location of the throw keyword.  expr
425  // can by null, if the optional expression to throw isn't present.
426  CXXThrowExpr(Expr *expr, QualType Ty, SourceLocation l) :
427    Expr(CXXThrowExprClass, Ty, false, false), Op(expr), ThrowLoc(l) {}
428  CXXThrowExpr(EmptyShell Empty) : Expr(CXXThrowExprClass, Empty) {}
429
430  const Expr *getSubExpr() const { return cast_or_null<Expr>(Op); }
431  Expr *getSubExpr() { return cast_or_null<Expr>(Op); }
432  void setSubExpr(Expr *E) { Op = E; }
433
434  SourceLocation getThrowLoc() const { return ThrowLoc; }
435  void setThrowLoc(SourceLocation L) { ThrowLoc = L; }
436
437  virtual SourceRange getSourceRange() const {
438    if (getSubExpr() == 0)
439      return SourceRange(ThrowLoc, ThrowLoc);
440    return SourceRange(ThrowLoc, getSubExpr()->getSourceRange().getEnd());
441  }
442
443  static bool classof(const Stmt *T) {
444    return T->getStmtClass() == CXXThrowExprClass;
445  }
446  static bool classof(const CXXThrowExpr *) { return true; }
447
448  // Iterators
449  virtual child_iterator child_begin();
450  virtual child_iterator child_end();
451};
452
453/// CXXDefaultArgExpr - C++ [dcl.fct.default]. This wraps up a
454/// function call argument that was created from the corresponding
455/// parameter's default argument, when the call did not explicitly
456/// supply arguments for all of the parameters.
457class CXXDefaultArgExpr : public Expr {
458  /// \brief The parameter whose default is being used.
459  ///
460  /// When the bit is set, the subexpression is stored after the
461  /// CXXDefaultArgExpr itself. When the bit is clear, the parameter's
462  /// actual default expression is the subexpression.
463  llvm::PointerIntPair<ParmVarDecl *, 1, bool> Param;
464
465  /// \brief The location where the default argument expression was used.
466  SourceLocation Loc;
467
468  CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param)
469    : Expr(SC,
470           param->hasUnparsedDefaultArg()
471             ? param->getType().getNonReferenceType()
472             : param->getDefaultArg()->getType(),
473           false, false),
474      Param(param, false), Loc(Loc) { }
475
476  CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param,
477                    Expr *SubExpr)
478    : Expr(SC, SubExpr->getType(), false, false), Param(param, true), Loc(Loc) {
479    *reinterpret_cast<Expr **>(this + 1) = SubExpr;
480  }
481
482protected:
483  virtual void DoDestroy(ASTContext &C);
484
485public:
486  CXXDefaultArgExpr(EmptyShell Empty) : Expr(CXXDefaultArgExprClass, Empty) {}
487
488
489  // Param is the parameter whose default argument is used by this
490  // expression.
491  static CXXDefaultArgExpr *Create(ASTContext &C, SourceLocation Loc,
492                                   ParmVarDecl *Param) {
493    return new (C) CXXDefaultArgExpr(CXXDefaultArgExprClass, Loc, Param);
494  }
495
496  // Param is the parameter whose default argument is used by this
497  // expression, and SubExpr is the expression that will actually be used.
498  static CXXDefaultArgExpr *Create(ASTContext &C,
499                                   SourceLocation Loc,
500                                   ParmVarDecl *Param,
501                                   Expr *SubExpr);
502
503  // Retrieve the parameter that the argument was created from.
504  const ParmVarDecl *getParam() const { return Param.getPointer(); }
505  ParmVarDecl *getParam() { return Param.getPointer(); }
506
507  // Retrieve the actual argument to the function call.
508  const Expr *getExpr() const {
509    if (Param.getInt())
510      return *reinterpret_cast<Expr const * const*> (this + 1);
511    return getParam()->getDefaultArg();
512  }
513  Expr *getExpr() {
514    if (Param.getInt())
515      return *reinterpret_cast<Expr **> (this + 1);
516    return getParam()->getDefaultArg();
517  }
518
519  /// \brief Retrieve the location where this default argument was actually
520  /// used.
521  SourceLocation getUsedLocation() const { return Loc; }
522
523  virtual SourceRange getSourceRange() const {
524    // Default argument expressions have no representation in the
525    // source, so they have an empty source range.
526    return SourceRange();
527  }
528
529  static bool classof(const Stmt *T) {
530    return T->getStmtClass() == CXXDefaultArgExprClass;
531  }
532  static bool classof(const CXXDefaultArgExpr *) { return true; }
533
534  // Iterators
535  virtual child_iterator child_begin();
536  virtual child_iterator child_end();
537
538  friend class PCHStmtReader;
539  friend class PCHStmtWriter;
540};
541
542/// CXXTemporary - Represents a C++ temporary.
543class CXXTemporary {
544  /// Destructor - The destructor that needs to be called.
545  const CXXDestructorDecl *Destructor;
546
547  CXXTemporary(const CXXDestructorDecl *destructor)
548    : Destructor(destructor) { }
549  ~CXXTemporary() { }
550
551public:
552  static CXXTemporary *Create(ASTContext &C,
553                              const CXXDestructorDecl *Destructor);
554
555  void Destroy(ASTContext &Ctx);
556
557  const CXXDestructorDecl *getDestructor() const { return Destructor; }
558};
559
560/// \brief Represents binding an expression to a temporary.
561///
562/// This ensures the destructor is called for the temporary. It should only be
563/// needed for non-POD, non-trivially destructable class types. For example:
564///
565/// \code
566///   struct S {
567///     S() { }  // User defined constructor makes S non-POD.
568///     ~S() { } // User defined destructor makes it non-trivial.
569///   };
570///   void test() {
571///     const S &s_ref = S(); // Requires a CXXBindTemporaryExpr.
572///   }
573/// \endcode
574class CXXBindTemporaryExpr : public Expr {
575  CXXTemporary *Temp;
576
577  Stmt *SubExpr;
578
579  CXXBindTemporaryExpr(CXXTemporary *temp, Expr* subexpr)
580   : Expr(CXXBindTemporaryExprClass, subexpr->getType(), false, false),
581     Temp(temp), SubExpr(subexpr) { }
582  ~CXXBindTemporaryExpr() { }
583
584protected:
585  virtual void DoDestroy(ASTContext &C);
586
587public:
588  CXXBindTemporaryExpr(EmptyShell Empty)
589    : Expr(CXXBindTemporaryExprClass, Empty), Temp(0), SubExpr(0) {}
590
591  static CXXBindTemporaryExpr *Create(ASTContext &C, CXXTemporary *Temp,
592                                      Expr* SubExpr);
593
594  CXXTemporary *getTemporary() { return Temp; }
595  const CXXTemporary *getTemporary() const { return Temp; }
596  void setTemporary(CXXTemporary *T) { Temp = T; }
597
598  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
599  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
600  void setSubExpr(Expr *E) { SubExpr = E; }
601
602  virtual SourceRange getSourceRange() const {
603    return SubExpr->getSourceRange();
604  }
605
606  // Implement isa/cast/dyncast/etc.
607  static bool classof(const Stmt *T) {
608    return T->getStmtClass() == CXXBindTemporaryExprClass;
609  }
610  static bool classof(const CXXBindTemporaryExpr *) { return true; }
611
612  // Iterators
613  virtual child_iterator child_begin();
614  virtual child_iterator child_end();
615};
616
617/// CXXBindReferenceExpr - Represents binding an expression to a reference.
618/// In the example:
619///
620/// const int &i = 10;
621///
622/// a bind reference expression is inserted to indicate that 10 is bound to
623/// a reference, and that a temporary needs to be created to hold the
624/// value.
625class CXXBindReferenceExpr : public Expr {
626  // SubExpr - The expression being bound.
627  Stmt *SubExpr;
628
629  // ExtendsLifetime - Whether binding this reference extends the lifetime of
630  // the expression being bound. FIXME: Add C++ reference.
631  bool ExtendsLifetime;
632
633  /// RequiresTemporaryCopy - Whether binding the subexpression requires a
634  /// temporary copy.
635  bool RequiresTemporaryCopy;
636
637  CXXBindReferenceExpr(Expr *subexpr, bool ExtendsLifetime,
638                       bool RequiresTemporaryCopy)
639  : Expr(CXXBindReferenceExprClass, subexpr->getType(), false, false),
640    SubExpr(subexpr), ExtendsLifetime(ExtendsLifetime),
641    RequiresTemporaryCopy(RequiresTemporaryCopy) { }
642  ~CXXBindReferenceExpr() { }
643
644protected:
645  virtual void DoDestroy(ASTContext &C);
646
647public:
648  static CXXBindReferenceExpr *Create(ASTContext &C, Expr *SubExpr,
649                                      bool ExtendsLifetime,
650                                      bool RequiresTemporaryCopy);
651
652  explicit CXXBindReferenceExpr(EmptyShell Empty)
653    : Expr(CXXBindReferenceExprClass, Empty) { }
654
655  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
656  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
657  void setSubExpr(Expr *E) { SubExpr = E; }
658
659  virtual SourceRange getSourceRange() const {
660    return SubExpr->getSourceRange();
661  }
662
663  /// requiresTemporaryCopy - Whether binding the subexpression requires a
664  /// temporary copy.
665  bool requiresTemporaryCopy() const { return RequiresTemporaryCopy; }
666
667  // extendsLifetime - Whether binding this reference extends the lifetime of
668  // the expression being bound. FIXME: Add C++ reference.
669  bool extendsLifetime() const { return ExtendsLifetime; }
670
671  // Implement isa/cast/dyncast/etc.
672  static bool classof(const Stmt *T) {
673    return T->getStmtClass() == CXXBindReferenceExprClass;
674  }
675  static bool classof(const CXXBindReferenceExpr *) { return true; }
676
677  // Iterators
678  virtual child_iterator child_begin();
679  virtual child_iterator child_end();
680
681  friend class PCHStmtReader;
682};
683
684/// CXXConstructExpr - Represents a call to a C++ constructor.
685class CXXConstructExpr : public Expr {
686public:
687  enum ConstructionKind {
688    CK_Complete,
689    CK_NonVirtualBase,
690    CK_VirtualBase
691  };
692
693private:
694  CXXConstructorDecl *Constructor;
695
696  SourceLocation Loc;
697  bool Elidable : 1;
698  bool ZeroInitialization : 1;
699  unsigned ConstructKind : 2;
700  Stmt **Args;
701  unsigned NumArgs;
702
703protected:
704  CXXConstructExpr(ASTContext &C, StmtClass SC, QualType T,
705                   SourceLocation Loc,
706                   CXXConstructorDecl *d, bool elidable,
707                   Expr **args, unsigned numargs,
708                   bool ZeroInitialization = false,
709                   ConstructionKind ConstructKind = CK_Complete);
710  ~CXXConstructExpr() { }
711
712  /// \brief Construct an empty C++ construction expression.
713  CXXConstructExpr(StmtClass SC, EmptyShell Empty)
714    : Expr(SC, Empty), Constructor(0), Elidable(0), ZeroInitialization(0),
715      ConstructKind(0), Args(0), NumArgs(0) { }
716
717  virtual void DoDestroy(ASTContext &C);
718
719public:
720  /// \brief Construct an empty C++ construction expression.
721  explicit CXXConstructExpr(EmptyShell Empty)
722    : Expr(CXXConstructExprClass, Empty), Constructor(0),
723      Elidable(0), ZeroInitialization(0),
724      ConstructKind(0), Args(0), NumArgs(0) { }
725
726  static CXXConstructExpr *Create(ASTContext &C, QualType T,
727                                  SourceLocation Loc,
728                                  CXXConstructorDecl *D, bool Elidable,
729                                  Expr **Args, unsigned NumArgs,
730                                  bool ZeroInitialization = false,
731                                  ConstructionKind ConstructKind = CK_Complete);
732
733
734  CXXConstructorDecl* getConstructor() const { return Constructor; }
735  void setConstructor(CXXConstructorDecl *C) { Constructor = C; }
736
737  SourceLocation getLocation() const { return Loc; }
738  void setLocation(SourceLocation Loc) { this->Loc = Loc; }
739
740  /// \brief Whether this construction is elidable.
741  bool isElidable() const { return Elidable; }
742  void setElidable(bool E) { Elidable = E; }
743
744  /// \brief Whether this construction first requires
745  /// zero-initialization before the initializer is called.
746  bool requiresZeroInitialization() const { return ZeroInitialization; }
747  void setRequiresZeroInitialization(bool ZeroInit) {
748    ZeroInitialization = ZeroInit;
749  }
750
751  /// \brief Determines whether this constructor is actually constructing
752  /// a base class (rather than a complete object).
753  ConstructionKind getConstructionKind() const {
754    return (ConstructionKind)ConstructKind;
755  }
756  void setConstructionKind(ConstructionKind CK) {
757    ConstructKind = CK;
758  }
759
760  typedef ExprIterator arg_iterator;
761  typedef ConstExprIterator const_arg_iterator;
762
763  arg_iterator arg_begin() { return Args; }
764  arg_iterator arg_end() { return Args + NumArgs; }
765  const_arg_iterator arg_begin() const { return Args; }
766  const_arg_iterator arg_end() const { return Args + NumArgs; }
767
768  Expr **getArgs() const { return reinterpret_cast<Expr **>(Args); }
769  unsigned getNumArgs() const { return NumArgs; }
770
771  /// getArg - Return the specified argument.
772  Expr *getArg(unsigned Arg) {
773    assert(Arg < NumArgs && "Arg access out of range!");
774    return cast<Expr>(Args[Arg]);
775  }
776  const Expr *getArg(unsigned Arg) const {
777    assert(Arg < NumArgs && "Arg access out of range!");
778    return cast<Expr>(Args[Arg]);
779  }
780
781  /// setArg - Set the specified argument.
782  void setArg(unsigned Arg, Expr *ArgExpr) {
783    assert(Arg < NumArgs && "Arg access out of range!");
784    Args[Arg] = ArgExpr;
785  }
786
787  virtual SourceRange getSourceRange() const;
788
789  static bool classof(const Stmt *T) {
790    return T->getStmtClass() == CXXConstructExprClass ||
791      T->getStmtClass() == CXXTemporaryObjectExprClass;
792  }
793  static bool classof(const CXXConstructExpr *) { return true; }
794
795  // Iterators
796  virtual child_iterator child_begin();
797  virtual child_iterator child_end();
798
799  friend class PCHStmtReader;
800};
801
802/// CXXFunctionalCastExpr - Represents an explicit C++ type conversion
803/// that uses "functional" notion (C++ [expr.type.conv]). Example: @c
804/// x = int(0.5);
805class CXXFunctionalCastExpr : public ExplicitCastExpr {
806  SourceLocation TyBeginLoc;
807  SourceLocation RParenLoc;
808public:
809  CXXFunctionalCastExpr(QualType ty, TypeSourceInfo *writtenTy,
810                        SourceLocation tyBeginLoc, CastKind kind,
811                        Expr *castExpr, CXXBaseSpecifierArray BasePath,
812                        SourceLocation rParenLoc)
813    : ExplicitCastExpr(CXXFunctionalCastExprClass, ty, kind, castExpr,
814                       BasePath, writtenTy),
815      TyBeginLoc(tyBeginLoc), RParenLoc(rParenLoc) {}
816
817  explicit CXXFunctionalCastExpr(EmptyShell Shell)
818    : ExplicitCastExpr(CXXFunctionalCastExprClass, Shell) { }
819
820  SourceLocation getTypeBeginLoc() const { return TyBeginLoc; }
821  void setTypeBeginLoc(SourceLocation L) { TyBeginLoc = L; }
822  SourceLocation getRParenLoc() const { return RParenLoc; }
823  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
824
825  virtual SourceRange getSourceRange() const {
826    return SourceRange(TyBeginLoc, RParenLoc);
827  }
828  static bool classof(const Stmt *T) {
829    return T->getStmtClass() == CXXFunctionalCastExprClass;
830  }
831  static bool classof(const CXXFunctionalCastExpr *) { return true; }
832};
833
834/// @brief Represents a C++ functional cast expression that builds a
835/// temporary object.
836///
837/// This expression type represents a C++ "functional" cast
838/// (C++[expr.type.conv]) with N != 1 arguments that invokes a
839/// constructor to build a temporary object. With N == 1 arguments the
840/// functional cast expression will be represented by CXXFunctionalCastExpr.
841/// Example:
842/// @code
843/// struct X { X(int, float); }
844///
845/// X create_X() {
846///   return X(1, 3.14f); // creates a CXXTemporaryObjectExpr
847/// };
848/// @endcode
849class CXXTemporaryObjectExpr : public CXXConstructExpr {
850  SourceLocation TyBeginLoc;
851  SourceLocation RParenLoc;
852
853public:
854  CXXTemporaryObjectExpr(ASTContext &C, CXXConstructorDecl *Cons,
855                         QualType writtenTy, SourceLocation tyBeginLoc,
856                         Expr **Args,unsigned NumArgs,
857                         SourceLocation rParenLoc,
858                         bool ZeroInitialization = false);
859  explicit CXXTemporaryObjectExpr(EmptyShell Empty)
860    : CXXConstructExpr(CXXTemporaryObjectExprClass, Empty) { }
861
862  ~CXXTemporaryObjectExpr() { }
863
864  SourceLocation getTypeBeginLoc() const { return TyBeginLoc; }
865  SourceLocation getRParenLoc() const { return RParenLoc; }
866
867  virtual SourceRange getSourceRange() const {
868    return SourceRange(TyBeginLoc, RParenLoc);
869  }
870  static bool classof(const Stmt *T) {
871    return T->getStmtClass() == CXXTemporaryObjectExprClass;
872  }
873  static bool classof(const CXXTemporaryObjectExpr *) { return true; }
874
875  friend class PCHStmtReader;
876};
877
878/// CXXScalarValueInitExpr - [C++ 5.2.3p2]
879/// Expression "T()" which creates a value-initialized rvalue of type
880/// T, which is a non-class type.
881///
882class CXXScalarValueInitExpr : public Expr {
883  SourceLocation TyBeginLoc;
884  SourceLocation RParenLoc;
885
886public:
887  CXXScalarValueInitExpr(QualType ty, SourceLocation tyBeginLoc,
888                       SourceLocation rParenLoc ) :
889    Expr(CXXScalarValueInitExprClass, ty, false, false),
890    TyBeginLoc(tyBeginLoc), RParenLoc(rParenLoc) {}
891  explicit CXXScalarValueInitExpr(EmptyShell Shell)
892    : Expr(CXXScalarValueInitExprClass, Shell) { }
893
894  SourceLocation getTypeBeginLoc() const { return TyBeginLoc; }
895  SourceLocation getRParenLoc() const { return RParenLoc; }
896
897  void setTypeBeginLoc(SourceLocation L) { TyBeginLoc = L; }
898  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
899
900  /// @brief Whether this initialization expression was
901  /// implicitly-generated.
902  bool isImplicit() const {
903    return TyBeginLoc.isInvalid() && RParenLoc.isInvalid();
904  }
905
906  virtual SourceRange getSourceRange() const {
907    return SourceRange(TyBeginLoc, RParenLoc);
908  }
909
910  static bool classof(const Stmt *T) {
911    return T->getStmtClass() == CXXScalarValueInitExprClass;
912  }
913  static bool classof(const CXXScalarValueInitExpr *) { return true; }
914
915  // Iterators
916  virtual child_iterator child_begin();
917  virtual child_iterator child_end();
918};
919
920/// CXXNewExpr - A new expression for memory allocation and constructor calls,
921/// e.g: "new CXXNewExpr(foo)".
922class CXXNewExpr : public Expr {
923  // Was the usage ::new, i.e. is the global new to be used?
924  bool GlobalNew : 1;
925  // Was the form (type-id) used? Otherwise, it was new-type-id.
926  bool ParenTypeId : 1;
927  // Is there an initializer? If not, built-ins are uninitialized, else they're
928  // value-initialized.
929  bool Initializer : 1;
930  // Do we allocate an array? If so, the first SubExpr is the size expression.
931  bool Array : 1;
932  // The number of placement new arguments.
933  unsigned NumPlacementArgs : 14;
934  // The number of constructor arguments. This may be 1 even for non-class
935  // types; use the pseudo copy constructor.
936  unsigned NumConstructorArgs : 14;
937  // Contains an optional array size expression, any number of optional
938  // placement arguments, and any number of optional constructor arguments,
939  // in that order.
940  Stmt **SubExprs;
941  // Points to the allocation function used.
942  FunctionDecl *OperatorNew;
943  // Points to the deallocation function used in case of error. May be null.
944  FunctionDecl *OperatorDelete;
945  // Points to the constructor used. Cannot be null if AllocType is a record;
946  // it would still point at the default constructor (even an implicit one).
947  // Must be null for all other types.
948  CXXConstructorDecl *Constructor;
949
950  SourceLocation StartLoc;
951  SourceLocation EndLoc;
952
953public:
954  CXXNewExpr(ASTContext &C, bool globalNew, FunctionDecl *operatorNew,
955             Expr **placementArgs, unsigned numPlaceArgs, bool ParenTypeId,
956             Expr *arraySize, CXXConstructorDecl *constructor, bool initializer,
957             Expr **constructorArgs, unsigned numConsArgs,
958             FunctionDecl *operatorDelete, QualType ty,
959             SourceLocation startLoc, SourceLocation endLoc);
960  explicit CXXNewExpr(EmptyShell Shell)
961    : Expr(CXXNewExprClass, Shell), SubExprs(0) { }
962
963  void AllocateArgsArray(ASTContext &C, bool isArray, unsigned numPlaceArgs,
964                         unsigned numConsArgs);
965
966  virtual void DoDestroy(ASTContext &C);
967
968  QualType getAllocatedType() const {
969    assert(getType()->isPointerType());
970    return getType()->getAs<PointerType>()->getPointeeType();
971  }
972
973  FunctionDecl *getOperatorNew() const { return OperatorNew; }
974  void setOperatorNew(FunctionDecl *D) { OperatorNew = D; }
975  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
976  void setOperatorDelete(FunctionDecl *D) { OperatorDelete = D; }
977  CXXConstructorDecl *getConstructor() const { return Constructor; }
978  void setConstructor(CXXConstructorDecl *D) { Constructor = D; }
979
980  bool isArray() const { return Array; }
981  Expr *getArraySize() {
982    return Array ? cast<Expr>(SubExprs[0]) : 0;
983  }
984  const Expr *getArraySize() const {
985    return Array ? cast<Expr>(SubExprs[0]) : 0;
986  }
987
988  unsigned getNumPlacementArgs() const { return NumPlacementArgs; }
989  Expr *getPlacementArg(unsigned i) {
990    assert(i < NumPlacementArgs && "Index out of range");
991    return cast<Expr>(SubExprs[Array + i]);
992  }
993  const Expr *getPlacementArg(unsigned i) const {
994    assert(i < NumPlacementArgs && "Index out of range");
995    return cast<Expr>(SubExprs[Array + i]);
996  }
997
998  bool isGlobalNew() const { return GlobalNew; }
999  void setGlobalNew(bool V) { GlobalNew = V; }
1000  bool isParenTypeId() const { return ParenTypeId; }
1001  void setParenTypeId(bool V) { ParenTypeId = V; }
1002  bool hasInitializer() const { return Initializer; }
1003  void setHasInitializer(bool V) { Initializer = V; }
1004
1005  unsigned getNumConstructorArgs() const { return NumConstructorArgs; }
1006  Expr *getConstructorArg(unsigned i) {
1007    assert(i < NumConstructorArgs && "Index out of range");
1008    return cast<Expr>(SubExprs[Array + NumPlacementArgs + i]);
1009  }
1010  const Expr *getConstructorArg(unsigned i) const {
1011    assert(i < NumConstructorArgs && "Index out of range");
1012    return cast<Expr>(SubExprs[Array + NumPlacementArgs + i]);
1013  }
1014
1015  typedef ExprIterator arg_iterator;
1016  typedef ConstExprIterator const_arg_iterator;
1017
1018  arg_iterator placement_arg_begin() {
1019    return SubExprs + Array;
1020  }
1021  arg_iterator placement_arg_end() {
1022    return SubExprs + Array + getNumPlacementArgs();
1023  }
1024  const_arg_iterator placement_arg_begin() const {
1025    return SubExprs + Array;
1026  }
1027  const_arg_iterator placement_arg_end() const {
1028    return SubExprs + Array + getNumPlacementArgs();
1029  }
1030
1031  arg_iterator constructor_arg_begin() {
1032    return SubExprs + Array + getNumPlacementArgs();
1033  }
1034  arg_iterator constructor_arg_end() {
1035    return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
1036  }
1037  const_arg_iterator constructor_arg_begin() const {
1038    return SubExprs + Array + getNumPlacementArgs();
1039  }
1040  const_arg_iterator constructor_arg_end() const {
1041    return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
1042  }
1043
1044  typedef Stmt **raw_arg_iterator;
1045  raw_arg_iterator raw_arg_begin() { return SubExprs; }
1046  raw_arg_iterator raw_arg_end() {
1047    return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
1048  }
1049  const_arg_iterator raw_arg_begin() const { return SubExprs; }
1050  const_arg_iterator raw_arg_end() const { return constructor_arg_end(); }
1051
1052
1053  SourceLocation getStartLoc() const { return StartLoc; }
1054  void setStartLoc(SourceLocation L) { StartLoc = L; }
1055  SourceLocation getEndLoc() const { return EndLoc; }
1056  void setEndLoc(SourceLocation L) { EndLoc = L; }
1057
1058  virtual SourceRange getSourceRange() const {
1059    return SourceRange(StartLoc, EndLoc);
1060  }
1061
1062  static bool classof(const Stmt *T) {
1063    return T->getStmtClass() == CXXNewExprClass;
1064  }
1065  static bool classof(const CXXNewExpr *) { return true; }
1066
1067  // Iterators
1068  virtual child_iterator child_begin();
1069  virtual child_iterator child_end();
1070};
1071
1072/// CXXDeleteExpr - A delete expression for memory deallocation and destructor
1073/// calls, e.g. "delete[] pArray".
1074class CXXDeleteExpr : public Expr {
1075  // Is this a forced global delete, i.e. "::delete"?
1076  bool GlobalDelete : 1;
1077  // Is this the array form of delete, i.e. "delete[]"?
1078  bool ArrayForm : 1;
1079  // Points to the operator delete overload that is used. Could be a member.
1080  FunctionDecl *OperatorDelete;
1081  // The pointer expression to be deleted.
1082  Stmt *Argument;
1083  // Location of the expression.
1084  SourceLocation Loc;
1085public:
1086  CXXDeleteExpr(QualType ty, bool globalDelete, bool arrayForm,
1087                FunctionDecl *operatorDelete, Expr *arg, SourceLocation loc)
1088    : Expr(CXXDeleteExprClass, ty, false, false), GlobalDelete(globalDelete),
1089      ArrayForm(arrayForm), OperatorDelete(operatorDelete), Argument(arg),
1090      Loc(loc) { }
1091  explicit CXXDeleteExpr(EmptyShell Shell)
1092    : Expr(CXXDeleteExprClass, Shell), OperatorDelete(0), Argument(0) { }
1093
1094  bool isGlobalDelete() const { return GlobalDelete; }
1095  bool isArrayForm() const { return ArrayForm; }
1096
1097  void setGlobalDelete(bool V) { GlobalDelete = V; }
1098  void setArrayForm(bool V) { ArrayForm = V; }
1099
1100  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
1101  void setOperatorDelete(FunctionDecl *D) { OperatorDelete = D; }
1102
1103  Expr *getArgument() { return cast<Expr>(Argument); }
1104  const Expr *getArgument() const { return cast<Expr>(Argument); }
1105  void setArgument(Expr *E) { Argument = E; }
1106
1107  virtual SourceRange getSourceRange() const {
1108    return SourceRange(Loc, Argument->getLocEnd());
1109  }
1110  void setStartLoc(SourceLocation L) { Loc = L; }
1111
1112  static bool classof(const Stmt *T) {
1113    return T->getStmtClass() == CXXDeleteExprClass;
1114  }
1115  static bool classof(const CXXDeleteExpr *) { return true; }
1116
1117  // Iterators
1118  virtual child_iterator child_begin();
1119  virtual child_iterator child_end();
1120};
1121
1122/// \brief Structure used to store the type being destroyed by a
1123/// pseudo-destructor expression.
1124class PseudoDestructorTypeStorage {
1125  /// \brief Either the type source information or the name of the type, if
1126  /// it couldn't be resolved due to type-dependence.
1127  llvm::PointerUnion<TypeSourceInfo *, IdentifierInfo *> Type;
1128
1129  /// \brief The starting source location of the pseudo-destructor type.
1130  SourceLocation Location;
1131
1132public:
1133  PseudoDestructorTypeStorage() { }
1134
1135  PseudoDestructorTypeStorage(IdentifierInfo *II, SourceLocation Loc)
1136    : Type(II), Location(Loc) { }
1137
1138  PseudoDestructorTypeStorage(TypeSourceInfo *Info);
1139
1140  TypeSourceInfo *getTypeSourceInfo() const {
1141    return Type.dyn_cast<TypeSourceInfo *>();
1142  }
1143
1144  IdentifierInfo *getIdentifier() const {
1145    return Type.dyn_cast<IdentifierInfo *>();
1146  }
1147
1148  SourceLocation getLocation() const { return Location; }
1149};
1150
1151/// \brief Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
1152///
1153/// A pseudo-destructor is an expression that looks like a member access to a
1154/// destructor of a scalar type, except that scalar types don't have
1155/// destructors. For example:
1156///
1157/// \code
1158/// typedef int T;
1159/// void f(int *p) {
1160///   p->T::~T();
1161/// }
1162/// \endcode
1163///
1164/// Pseudo-destructors typically occur when instantiating templates such as:
1165///
1166/// \code
1167/// template<typename T>
1168/// void destroy(T* ptr) {
1169///   ptr->T::~T();
1170/// }
1171/// \endcode
1172///
1173/// for scalar types. A pseudo-destructor expression has no run-time semantics
1174/// beyond evaluating the base expression.
1175class CXXPseudoDestructorExpr : public Expr {
1176  /// \brief The base expression (that is being destroyed).
1177  Stmt *Base;
1178
1179  /// \brief Whether the operator was an arrow ('->'); otherwise, it was a
1180  /// period ('.').
1181  bool IsArrow : 1;
1182
1183  /// \brief The location of the '.' or '->' operator.
1184  SourceLocation OperatorLoc;
1185
1186  /// \brief The nested-name-specifier that follows the operator, if present.
1187  NestedNameSpecifier *Qualifier;
1188
1189  /// \brief The source range that covers the nested-name-specifier, if
1190  /// present.
1191  SourceRange QualifierRange;
1192
1193  /// \brief The type that precedes the '::' in a qualified pseudo-destructor
1194  /// expression.
1195  TypeSourceInfo *ScopeType;
1196
1197  /// \brief The location of the '::' in a qualified pseudo-destructor
1198  /// expression.
1199  SourceLocation ColonColonLoc;
1200
1201  /// \brief The location of the '~'.
1202  SourceLocation TildeLoc;
1203
1204  /// \brief The type being destroyed, or its name if we were unable to
1205  /// resolve the name.
1206  PseudoDestructorTypeStorage DestroyedType;
1207
1208public:
1209  CXXPseudoDestructorExpr(ASTContext &Context,
1210                          Expr *Base, bool isArrow, SourceLocation OperatorLoc,
1211                          NestedNameSpecifier *Qualifier,
1212                          SourceRange QualifierRange,
1213                          TypeSourceInfo *ScopeType,
1214                          SourceLocation ColonColonLoc,
1215                          SourceLocation TildeLoc,
1216                          PseudoDestructorTypeStorage DestroyedType)
1217    : Expr(CXXPseudoDestructorExprClass,
1218           Context.getPointerType(Context.getFunctionType(Context.VoidTy, 0, 0,
1219                                                          false, 0, false,
1220                                                          false, 0, 0,
1221                                                      FunctionType::ExtInfo())),
1222           /*isTypeDependent=*/(Base->isTypeDependent() ||
1223            (DestroyedType.getTypeSourceInfo() &&
1224              DestroyedType.getTypeSourceInfo()->getType()->isDependentType())),
1225           /*isValueDependent=*/Base->isValueDependent()),
1226      Base(static_cast<Stmt *>(Base)), IsArrow(isArrow),
1227      OperatorLoc(OperatorLoc), Qualifier(Qualifier),
1228      QualifierRange(QualifierRange),
1229      ScopeType(ScopeType), ColonColonLoc(ColonColonLoc), TildeLoc(TildeLoc),
1230      DestroyedType(DestroyedType) { }
1231
1232  explicit CXXPseudoDestructorExpr(EmptyShell Shell)
1233    : Expr(CXXPseudoDestructorExprClass, Shell),
1234      Base(0), IsArrow(false), Qualifier(0), ScopeType(0) { }
1235
1236  void setBase(Expr *E) { Base = E; }
1237  Expr *getBase() const { return cast<Expr>(Base); }
1238
1239  /// \brief Determines whether this member expression actually had
1240  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
1241  /// x->Base::foo.
1242  bool hasQualifier() const { return Qualifier != 0; }
1243
1244  /// \brief If the member name was qualified, retrieves the source range of
1245  /// the nested-name-specifier that precedes the member name. Otherwise,
1246  /// returns an empty source range.
1247  SourceRange getQualifierRange() const { return QualifierRange; }
1248  void setQualifierRange(SourceRange R) { QualifierRange = R; }
1249
1250  /// \brief If the member name was qualified, retrieves the
1251  /// nested-name-specifier that precedes the member name. Otherwise, returns
1252  /// NULL.
1253  NestedNameSpecifier *getQualifier() const { return Qualifier; }
1254  void setQualifier(NestedNameSpecifier *NNS) { Qualifier = NNS; }
1255
1256  /// \brief Determine whether this pseudo-destructor expression was written
1257  /// using an '->' (otherwise, it used a '.').
1258  bool isArrow() const { return IsArrow; }
1259  void setArrow(bool A) { IsArrow = A; }
1260
1261  /// \brief Retrieve the location of the '.' or '->' operator.
1262  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1263  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
1264
1265  /// \brief Retrieve the scope type in a qualified pseudo-destructor
1266  /// expression.
1267  ///
1268  /// Pseudo-destructor expressions can have extra qualification within them
1269  /// that is not part of the nested-name-specifier, e.g., \c p->T::~T().
1270  /// Here, if the object type of the expression is (or may be) a scalar type,
1271  /// \p T may also be a scalar type and, therefore, cannot be part of a
1272  /// nested-name-specifier. It is stored as the "scope type" of the pseudo-
1273  /// destructor expression.
1274  TypeSourceInfo *getScopeTypeInfo() const { return ScopeType; }
1275  void setScopeTypeInfo(TypeSourceInfo *Info) { ScopeType = Info; }
1276
1277  /// \brief Retrieve the location of the '::' in a qualified pseudo-destructor
1278  /// expression.
1279  SourceLocation getColonColonLoc() const { return ColonColonLoc; }
1280  void setColonColonLoc(SourceLocation L) { ColonColonLoc = L; }
1281
1282  /// \brief Retrieve the location of the '~'.
1283  SourceLocation getTildeLoc() const { return TildeLoc; }
1284  void setTildeLoc(SourceLocation L) { TildeLoc = L; }
1285
1286  /// \brief Retrieve the source location information for the type
1287  /// being destroyed.
1288  ///
1289  /// This type-source information is available for non-dependent
1290  /// pseudo-destructor expressions and some dependent pseudo-destructor
1291  /// expressions. Returns NULL if we only have the identifier for a
1292  /// dependent pseudo-destructor expression.
1293  TypeSourceInfo *getDestroyedTypeInfo() const {
1294    return DestroyedType.getTypeSourceInfo();
1295  }
1296
1297  /// \brief In a dependent pseudo-destructor expression for which we do not
1298  /// have full type information on the destroyed type, provides the name
1299  /// of the destroyed type.
1300  IdentifierInfo *getDestroyedTypeIdentifier() const {
1301    return DestroyedType.getIdentifier();
1302  }
1303
1304  /// \brief Retrieve the type being destroyed.
1305  QualType getDestroyedType() const;
1306
1307  /// \brief Retrieve the starting location of the type being destroyed.
1308  SourceLocation getDestroyedTypeLoc() const {
1309    return DestroyedType.getLocation();
1310  }
1311
1312  /// \brief Set the name of destroyed type for a dependent pseudo-destructor
1313  /// expression.
1314  void setDestroyedType(IdentifierInfo *II, SourceLocation Loc) {
1315    DestroyedType = PseudoDestructorTypeStorage(II, Loc);
1316  }
1317
1318  /// \brief Set the destroyed type.
1319  void setDestroyedType(TypeSourceInfo *Info) {
1320    DestroyedType = PseudoDestructorTypeStorage(Info);
1321  }
1322
1323  virtual SourceRange getSourceRange() const;
1324
1325  static bool classof(const Stmt *T) {
1326    return T->getStmtClass() == CXXPseudoDestructorExprClass;
1327  }
1328  static bool classof(const CXXPseudoDestructorExpr *) { return true; }
1329
1330  // Iterators
1331  virtual child_iterator child_begin();
1332  virtual child_iterator child_end();
1333};
1334
1335/// UnaryTypeTraitExpr - A GCC or MS unary type trait, as used in the
1336/// implementation of TR1/C++0x type trait templates.
1337/// Example:
1338/// __is_pod(int) == true
1339/// __is_enum(std::string) == false
1340class UnaryTypeTraitExpr : public Expr {
1341  /// UTT - The trait.
1342  UnaryTypeTrait UTT;
1343
1344  /// Loc - The location of the type trait keyword.
1345  SourceLocation Loc;
1346
1347  /// RParen - The location of the closing paren.
1348  SourceLocation RParen;
1349
1350  /// QueriedType - The type we're testing.
1351  QualType QueriedType;
1352
1353public:
1354  UnaryTypeTraitExpr(SourceLocation loc, UnaryTypeTrait utt, QualType queried,
1355                     SourceLocation rparen, QualType ty)
1356    : Expr(UnaryTypeTraitExprClass, ty, false, queried->isDependentType()),
1357      UTT(utt), Loc(loc), RParen(rparen), QueriedType(queried) { }
1358
1359  explicit UnaryTypeTraitExpr(EmptyShell Empty)
1360    : Expr(UnaryTypeTraitExprClass, Empty), UTT((UnaryTypeTrait)0) { }
1361
1362  virtual SourceRange getSourceRange() const { return SourceRange(Loc, RParen);}
1363
1364  UnaryTypeTrait getTrait() const { return UTT; }
1365
1366  QualType getQueriedType() const { return QueriedType; }
1367
1368  bool EvaluateTrait(ASTContext&) const;
1369
1370  static bool classof(const Stmt *T) {
1371    return T->getStmtClass() == UnaryTypeTraitExprClass;
1372  }
1373  static bool classof(const UnaryTypeTraitExpr *) { return true; }
1374
1375  // Iterators
1376  virtual child_iterator child_begin();
1377  virtual child_iterator child_end();
1378
1379  friend class PCHStmtReader;
1380};
1381
1382/// \brief A reference to an overloaded function set, either an
1383/// \t UnresolvedLookupExpr or an \t UnresolvedMemberExpr.
1384class OverloadExpr : public Expr {
1385  /// The results.  These are undesugared, which is to say, they may
1386  /// include UsingShadowDecls.  Access is relative to the naming
1387  /// class.
1388  // FIXME: Allocate this data after the OverloadExpr subclass.
1389  DeclAccessPair *Results;
1390  unsigned NumResults;
1391
1392  /// The common name of these declarations.
1393  DeclarationName Name;
1394
1395  /// The scope specifier, if any.
1396  NestedNameSpecifier *Qualifier;
1397
1398  /// The source range of the scope specifier.
1399  SourceRange QualifierRange;
1400
1401  /// The location of the name.
1402  SourceLocation NameLoc;
1403
1404protected:
1405  /// True if the name was a template-id.
1406  bool HasExplicitTemplateArgs;
1407
1408  OverloadExpr(StmtClass K, ASTContext &C, QualType T, bool Dependent,
1409               NestedNameSpecifier *Qualifier, SourceRange QRange,
1410               DeclarationName Name, SourceLocation NameLoc,
1411               bool HasTemplateArgs,
1412               UnresolvedSetIterator Begin, UnresolvedSetIterator End);
1413
1414  OverloadExpr(StmtClass K, EmptyShell Empty)
1415    : Expr(K, Empty), Results(0), NumResults(0),
1416      Qualifier(0), HasExplicitTemplateArgs(false) { }
1417
1418public:
1419  /// Computes whether an unresolved lookup on the given declarations
1420  /// and optional template arguments is type- and value-dependent.
1421  static bool ComputeDependence(UnresolvedSetIterator Begin,
1422                                UnresolvedSetIterator End,
1423                                const TemplateArgumentListInfo *Args);
1424
1425  /// Finds the overloaded expression in the given expression of
1426  /// OverloadTy.
1427  ///
1428  /// \return the expression (which must be there) and true if it is
1429  /// within an address-of operator.
1430  static llvm::PointerIntPair<OverloadExpr*,1> find(Expr *E) {
1431    assert(E->getType()->isSpecificBuiltinType(BuiltinType::Overload));
1432
1433    bool op = false;
1434    E = E->IgnoreParens();
1435    if (isa<UnaryOperator>(E))
1436      op = true, E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
1437    return llvm::PointerIntPair<OverloadExpr*,1>(cast<OverloadExpr>(E), op);
1438  }
1439
1440  /// Gets the naming class of this lookup, if any.
1441  CXXRecordDecl *getNamingClass() const;
1442
1443  typedef UnresolvedSetImpl::iterator decls_iterator;
1444  decls_iterator decls_begin() const { return UnresolvedSetIterator(Results); }
1445  decls_iterator decls_end() const {
1446    return UnresolvedSetIterator(Results + NumResults);
1447  }
1448
1449  void initializeResults(ASTContext &C,
1450                         UnresolvedSetIterator Begin,UnresolvedSetIterator End);
1451
1452  /// Gets the number of declarations in the unresolved set.
1453  unsigned getNumDecls() const { return NumResults; }
1454
1455  /// Gets the name looked up.
1456  DeclarationName getName() const { return Name; }
1457  void setName(DeclarationName N) { Name = N; }
1458
1459  /// Gets the location of the name.
1460  SourceLocation getNameLoc() const { return NameLoc; }
1461  void setNameLoc(SourceLocation Loc) { NameLoc = Loc; }
1462
1463  /// Fetches the nested-name qualifier, if one was given.
1464  NestedNameSpecifier *getQualifier() const { return Qualifier; }
1465  void setQualifier(NestedNameSpecifier *NNS) { Qualifier = NNS; }
1466
1467  /// Fetches the range of the nested-name qualifier.
1468  SourceRange getQualifierRange() const { return QualifierRange; }
1469  void setQualifierRange(SourceRange R) { QualifierRange = R; }
1470
1471  /// \brief Determines whether this expression had an explicit
1472  /// template argument list, e.g. f<int>.
1473  bool hasExplicitTemplateArgs() const { return HasExplicitTemplateArgs; }
1474
1475  ExplicitTemplateArgumentList &getExplicitTemplateArgs(); // defined far below
1476
1477  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
1478    return const_cast<OverloadExpr*>(this)->getExplicitTemplateArgs();
1479  }
1480
1481  ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() {
1482    if (hasExplicitTemplateArgs())
1483      return &getExplicitTemplateArgs();
1484    return 0;
1485  }
1486
1487  static bool classof(const Stmt *T) {
1488    return T->getStmtClass() == UnresolvedLookupExprClass ||
1489           T->getStmtClass() == UnresolvedMemberExprClass;
1490  }
1491  static bool classof(const OverloadExpr *) { return true; }
1492};
1493
1494/// \brief A reference to a name which we were able to look up during
1495/// parsing but could not resolve to a specific declaration.  This
1496/// arises in several ways:
1497///   * we might be waiting for argument-dependent lookup
1498///   * the name might resolve to an overloaded function
1499/// and eventually:
1500///   * the lookup might have included a function template
1501/// These never include UnresolvedUsingValueDecls, which are always
1502/// class members and therefore appear only in
1503/// UnresolvedMemberLookupExprs.
1504class UnresolvedLookupExpr : public OverloadExpr {
1505  /// True if these lookup results should be extended by
1506  /// argument-dependent lookup if this is the operand of a function
1507  /// call.
1508  bool RequiresADL;
1509
1510  /// True if these lookup results are overloaded.  This is pretty
1511  /// trivially rederivable if we urgently need to kill this field.
1512  bool Overloaded;
1513
1514  /// The naming class (C++ [class.access.base]p5) of the lookup, if
1515  /// any.  This can generally be recalculated from the context chain,
1516  /// but that can be fairly expensive for unqualified lookups.  If we
1517  /// want to improve memory use here, this could go in a union
1518  /// against the qualified-lookup bits.
1519  CXXRecordDecl *NamingClass;
1520
1521  UnresolvedLookupExpr(ASTContext &C, QualType T, bool Dependent,
1522                       CXXRecordDecl *NamingClass,
1523                       NestedNameSpecifier *Qualifier, SourceRange QRange,
1524                       DeclarationName Name, SourceLocation NameLoc,
1525                       bool RequiresADL, bool Overloaded, bool HasTemplateArgs,
1526                       UnresolvedSetIterator Begin, UnresolvedSetIterator End)
1527    : OverloadExpr(UnresolvedLookupExprClass, C, T, Dependent, Qualifier,
1528                   QRange, Name, NameLoc, HasTemplateArgs, Begin, End),
1529      RequiresADL(RequiresADL), Overloaded(Overloaded), NamingClass(NamingClass)
1530  {}
1531
1532  UnresolvedLookupExpr(EmptyShell Empty)
1533    : OverloadExpr(UnresolvedLookupExprClass, Empty),
1534      RequiresADL(false), Overloaded(false), NamingClass(0)
1535  {}
1536
1537public:
1538  static UnresolvedLookupExpr *Create(ASTContext &C,
1539                                      bool Dependent,
1540                                      CXXRecordDecl *NamingClass,
1541                                      NestedNameSpecifier *Qualifier,
1542                                      SourceRange QualifierRange,
1543                                      DeclarationName Name,
1544                                      SourceLocation NameLoc,
1545                                      bool ADL, bool Overloaded,
1546                                      UnresolvedSetIterator Begin,
1547                                      UnresolvedSetIterator End) {
1548    return new(C) UnresolvedLookupExpr(C,
1549                                       Dependent ? C.DependentTy : C.OverloadTy,
1550                                       Dependent, NamingClass,
1551                                       Qualifier, QualifierRange,
1552                                       Name, NameLoc, ADL, Overloaded, false,
1553                                       Begin, End);
1554  }
1555
1556  static UnresolvedLookupExpr *Create(ASTContext &C,
1557                                      bool Dependent,
1558                                      CXXRecordDecl *NamingClass,
1559                                      NestedNameSpecifier *Qualifier,
1560                                      SourceRange QualifierRange,
1561                                      DeclarationName Name,
1562                                      SourceLocation NameLoc,
1563                                      bool ADL,
1564                                      const TemplateArgumentListInfo &Args,
1565                                      UnresolvedSetIterator Begin,
1566                                      UnresolvedSetIterator End);
1567
1568  static UnresolvedLookupExpr *CreateEmpty(ASTContext &C,
1569                                           unsigned NumTemplateArgs);
1570
1571  /// True if this declaration should be extended by
1572  /// argument-dependent lookup.
1573  bool requiresADL() const { return RequiresADL; }
1574  void setRequiresADL(bool V) { RequiresADL = V; }
1575
1576  /// True if this lookup is overloaded.
1577  bool isOverloaded() const { return Overloaded; }
1578  void setOverloaded(bool V) { Overloaded = V; }
1579
1580  /// Gets the 'naming class' (in the sense of C++0x
1581  /// [class.access.base]p5) of the lookup.  This is the scope
1582  /// that was looked in to find these results.
1583  CXXRecordDecl *getNamingClass() const { return NamingClass; }
1584  void setNamingClass(CXXRecordDecl *D) { NamingClass = D; }
1585
1586  // Note that, inconsistently with the explicit-template-argument AST
1587  // nodes, users are *forbidden* from calling these methods on objects
1588  // without explicit template arguments.
1589
1590  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
1591    assert(hasExplicitTemplateArgs());
1592    return *reinterpret_cast<ExplicitTemplateArgumentList*>(this + 1);
1593  }
1594
1595  /// Gets a reference to the explicit template argument list.
1596  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
1597    assert(hasExplicitTemplateArgs());
1598    return *reinterpret_cast<const ExplicitTemplateArgumentList*>(this + 1);
1599  }
1600
1601  /// \brief Copies the template arguments (if present) into the given
1602  /// structure.
1603  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1604    getExplicitTemplateArgs().copyInto(List);
1605  }
1606
1607  SourceLocation getLAngleLoc() const {
1608    return getExplicitTemplateArgs().LAngleLoc;
1609  }
1610
1611  SourceLocation getRAngleLoc() const {
1612    return getExplicitTemplateArgs().RAngleLoc;
1613  }
1614
1615  TemplateArgumentLoc const *getTemplateArgs() const {
1616    return getExplicitTemplateArgs().getTemplateArgs();
1617  }
1618
1619  unsigned getNumTemplateArgs() const {
1620    return getExplicitTemplateArgs().NumTemplateArgs;
1621  }
1622
1623  virtual SourceRange getSourceRange() const {
1624    SourceRange Range(getNameLoc());
1625    if (getQualifier()) Range.setBegin(getQualifierRange().getBegin());
1626    if (hasExplicitTemplateArgs()) Range.setEnd(getRAngleLoc());
1627    return Range;
1628  }
1629
1630  virtual StmtIterator child_begin();
1631  virtual StmtIterator child_end();
1632
1633  static bool classof(const Stmt *T) {
1634    return T->getStmtClass() == UnresolvedLookupExprClass;
1635  }
1636  static bool classof(const UnresolvedLookupExpr *) { return true; }
1637};
1638
1639/// \brief A qualified reference to a name whose declaration cannot
1640/// yet be resolved.
1641///
1642/// DependentScopeDeclRefExpr is similar to DeclRefExpr in that
1643/// it expresses a reference to a declaration such as
1644/// X<T>::value. The difference, however, is that an
1645/// DependentScopeDeclRefExpr node is used only within C++ templates when
1646/// the qualification (e.g., X<T>::) refers to a dependent type. In
1647/// this case, X<T>::value cannot resolve to a declaration because the
1648/// declaration will differ from on instantiation of X<T> to the
1649/// next. Therefore, DependentScopeDeclRefExpr keeps track of the
1650/// qualifier (X<T>::) and the name of the entity being referenced
1651/// ("value"). Such expressions will instantiate to a DeclRefExpr once the
1652/// declaration can be found.
1653class DependentScopeDeclRefExpr : public Expr {
1654  /// The name of the entity we will be referencing.
1655  DeclarationName Name;
1656
1657  /// Location of the name of the declaration we're referencing.
1658  SourceLocation Loc;
1659
1660  /// QualifierRange - The source range that covers the
1661  /// nested-name-specifier.
1662  SourceRange QualifierRange;
1663
1664  /// \brief The nested-name-specifier that qualifies this unresolved
1665  /// declaration name.
1666  NestedNameSpecifier *Qualifier;
1667
1668  /// \brief Whether the name includes explicit template arguments.
1669  bool HasExplicitTemplateArgs;
1670
1671  DependentScopeDeclRefExpr(QualType T,
1672                            NestedNameSpecifier *Qualifier,
1673                            SourceRange QualifierRange,
1674                            DeclarationName Name,
1675                            SourceLocation NameLoc,
1676                            bool HasExplicitTemplateArgs)
1677    : Expr(DependentScopeDeclRefExprClass, T, true, true),
1678      Name(Name), Loc(NameLoc),
1679      QualifierRange(QualifierRange), Qualifier(Qualifier),
1680      HasExplicitTemplateArgs(HasExplicitTemplateArgs)
1681  {}
1682
1683public:
1684  static DependentScopeDeclRefExpr *Create(ASTContext &C,
1685                                           NestedNameSpecifier *Qualifier,
1686                                           SourceRange QualifierRange,
1687                                           DeclarationName Name,
1688                                           SourceLocation NameLoc,
1689                              const TemplateArgumentListInfo *TemplateArgs = 0);
1690
1691  static DependentScopeDeclRefExpr *CreateEmpty(ASTContext &C,
1692                                                unsigned NumTemplateArgs);
1693
1694  /// \brief Retrieve the name that this expression refers to.
1695  DeclarationName getDeclName() const { return Name; }
1696  void setDeclName(DeclarationName N) { Name =  N; }
1697
1698  /// \brief Retrieve the location of the name within the expression.
1699  SourceLocation getLocation() const { return Loc; }
1700  void setLocation(SourceLocation L) { Loc = L; }
1701
1702  /// \brief Retrieve the source range of the nested-name-specifier.
1703  SourceRange getQualifierRange() const { return QualifierRange; }
1704  void setQualifierRange(SourceRange R) { QualifierRange = R; }
1705
1706  /// \brief Retrieve the nested-name-specifier that qualifies this
1707  /// declaration.
1708  NestedNameSpecifier *getQualifier() const { return Qualifier; }
1709  void setQualifier(NestedNameSpecifier *NNS) { Qualifier = NNS; }
1710
1711  /// Determines whether this lookup had explicit template arguments.
1712  bool hasExplicitTemplateArgs() const { return HasExplicitTemplateArgs; }
1713
1714  // Note that, inconsistently with the explicit-template-argument AST
1715  // nodes, users are *forbidden* from calling these methods on objects
1716  // without explicit template arguments.
1717
1718  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
1719    assert(hasExplicitTemplateArgs());
1720    return *reinterpret_cast<ExplicitTemplateArgumentList*>(this + 1);
1721  }
1722
1723  /// Gets a reference to the explicit template argument list.
1724  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
1725    assert(hasExplicitTemplateArgs());
1726    return *reinterpret_cast<const ExplicitTemplateArgumentList*>(this + 1);
1727  }
1728
1729  /// \brief Copies the template arguments (if present) into the given
1730  /// structure.
1731  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1732    getExplicitTemplateArgs().copyInto(List);
1733  }
1734
1735  SourceLocation getLAngleLoc() const {
1736    return getExplicitTemplateArgs().LAngleLoc;
1737  }
1738
1739  SourceLocation getRAngleLoc() const {
1740    return getExplicitTemplateArgs().RAngleLoc;
1741  }
1742
1743  TemplateArgumentLoc const *getTemplateArgs() const {
1744    return getExplicitTemplateArgs().getTemplateArgs();
1745  }
1746
1747  unsigned getNumTemplateArgs() const {
1748    return getExplicitTemplateArgs().NumTemplateArgs;
1749  }
1750
1751  virtual SourceRange getSourceRange() const {
1752    SourceRange Range(QualifierRange.getBegin(), getLocation());
1753    if (hasExplicitTemplateArgs())
1754      Range.setEnd(getRAngleLoc());
1755    return Range;
1756  }
1757
1758  static bool classof(const Stmt *T) {
1759    return T->getStmtClass() == DependentScopeDeclRefExprClass;
1760  }
1761  static bool classof(const DependentScopeDeclRefExpr *) { return true; }
1762
1763  virtual StmtIterator child_begin();
1764  virtual StmtIterator child_end();
1765};
1766
1767class CXXExprWithTemporaries : public Expr {
1768  Stmt *SubExpr;
1769
1770  CXXTemporary **Temps;
1771  unsigned NumTemps;
1772
1773  CXXExprWithTemporaries(ASTContext &C, Expr *SubExpr, CXXTemporary **Temps,
1774                         unsigned NumTemps);
1775  ~CXXExprWithTemporaries();
1776
1777protected:
1778  virtual void DoDestroy(ASTContext &C);
1779
1780public:
1781  CXXExprWithTemporaries(EmptyShell Empty)
1782    : Expr(CXXExprWithTemporariesClass, Empty),
1783      SubExpr(0), Temps(0), NumTemps(0) {}
1784
1785  static CXXExprWithTemporaries *Create(ASTContext &C, Expr *SubExpr,
1786                                        CXXTemporary **Temps,
1787                                        unsigned NumTemps);
1788
1789  unsigned getNumTemporaries() const { return NumTemps; }
1790  void setNumTemporaries(ASTContext &C, unsigned N);
1791
1792  CXXTemporary *getTemporary(unsigned i) {
1793    assert(i < NumTemps && "Index out of range");
1794    return Temps[i];
1795  }
1796  const CXXTemporary *getTemporary(unsigned i) const {
1797    return const_cast<CXXExprWithTemporaries*>(this)->getTemporary(i);
1798  }
1799  void setTemporary(unsigned i, CXXTemporary *T) {
1800    assert(i < NumTemps && "Index out of range");
1801    Temps[i] = T;
1802  }
1803
1804  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
1805  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
1806  void setSubExpr(Expr *E) { SubExpr = E; }
1807
1808  virtual SourceRange getSourceRange() const {
1809    return SubExpr->getSourceRange();
1810  }
1811
1812  // Implement isa/cast/dyncast/etc.
1813  static bool classof(const Stmt *T) {
1814    return T->getStmtClass() == CXXExprWithTemporariesClass;
1815  }
1816  static bool classof(const CXXExprWithTemporaries *) { return true; }
1817
1818  // Iterators
1819  virtual child_iterator child_begin();
1820  virtual child_iterator child_end();
1821};
1822
1823/// \brief Describes an explicit type conversion that uses functional
1824/// notion but could not be resolved because one or more arguments are
1825/// type-dependent.
1826///
1827/// The explicit type conversions expressed by
1828/// CXXUnresolvedConstructExpr have the form \c T(a1, a2, ..., aN),
1829/// where \c T is some type and \c a1, a2, ..., aN are values, and
1830/// either \C T is a dependent type or one or more of the \c a's is
1831/// type-dependent. For example, this would occur in a template such
1832/// as:
1833///
1834/// \code
1835///   template<typename T, typename A1>
1836///   inline T make_a(const A1& a1) {
1837///     return T(a1);
1838///   }
1839/// \endcode
1840///
1841/// When the returned expression is instantiated, it may resolve to a
1842/// constructor call, conversion function call, or some kind of type
1843/// conversion.
1844class CXXUnresolvedConstructExpr : public Expr {
1845  /// \brief The starting location of the type
1846  SourceLocation TyBeginLoc;
1847
1848  /// \brief The type being constructed.
1849  QualType Type;
1850
1851  /// \brief The location of the left parentheses ('(').
1852  SourceLocation LParenLoc;
1853
1854  /// \brief The location of the right parentheses (')').
1855  SourceLocation RParenLoc;
1856
1857  /// \brief The number of arguments used to construct the type.
1858  unsigned NumArgs;
1859
1860  CXXUnresolvedConstructExpr(SourceLocation TyBegin,
1861                             QualType T,
1862                             SourceLocation LParenLoc,
1863                             Expr **Args,
1864                             unsigned NumArgs,
1865                             SourceLocation RParenLoc);
1866
1867  CXXUnresolvedConstructExpr(EmptyShell Empty, unsigned NumArgs)
1868    : Expr(CXXUnresolvedConstructExprClass, Empty), NumArgs(NumArgs) { }
1869
1870public:
1871  static CXXUnresolvedConstructExpr *Create(ASTContext &C,
1872                                            SourceLocation TyBegin,
1873                                            QualType T,
1874                                            SourceLocation LParenLoc,
1875                                            Expr **Args,
1876                                            unsigned NumArgs,
1877                                            SourceLocation RParenLoc);
1878
1879  static CXXUnresolvedConstructExpr *CreateEmpty(ASTContext &C,
1880                                                 unsigned NumArgs);
1881
1882  /// \brief Retrieve the source location where the type begins.
1883  SourceLocation getTypeBeginLoc() const { return TyBeginLoc; }
1884  void setTypeBeginLoc(SourceLocation L) { TyBeginLoc = L; }
1885
1886  /// \brief Retrieve the type that is being constructed, as specified
1887  /// in the source code.
1888  QualType getTypeAsWritten() const { return Type; }
1889  void setTypeAsWritten(QualType T) { Type = T; }
1890
1891  /// \brief Retrieve the location of the left parentheses ('(') that
1892  /// precedes the argument list.
1893  SourceLocation getLParenLoc() const { return LParenLoc; }
1894  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
1895
1896  /// \brief Retrieve the location of the right parentheses (')') that
1897  /// follows the argument list.
1898  SourceLocation getRParenLoc() const { return RParenLoc; }
1899  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1900
1901  /// \brief Retrieve the number of arguments.
1902  unsigned arg_size() const { return NumArgs; }
1903
1904  typedef Expr** arg_iterator;
1905  arg_iterator arg_begin() { return reinterpret_cast<Expr**>(this + 1); }
1906  arg_iterator arg_end() { return arg_begin() + NumArgs; }
1907
1908  typedef const Expr* const * const_arg_iterator;
1909  const_arg_iterator arg_begin() const {
1910    return reinterpret_cast<const Expr* const *>(this + 1);
1911  }
1912  const_arg_iterator arg_end() const {
1913    return arg_begin() + NumArgs;
1914  }
1915
1916  Expr *getArg(unsigned I) {
1917    assert(I < NumArgs && "Argument index out-of-range");
1918    return *(arg_begin() + I);
1919  }
1920
1921  const Expr *getArg(unsigned I) const {
1922    assert(I < NumArgs && "Argument index out-of-range");
1923    return *(arg_begin() + I);
1924  }
1925
1926  void setArg(unsigned I, Expr *E) {
1927    assert(I < NumArgs && "Argument index out-of-range");
1928    *(arg_begin() + I) = E;
1929  }
1930
1931  virtual SourceRange getSourceRange() const {
1932    return SourceRange(TyBeginLoc, RParenLoc);
1933  }
1934  static bool classof(const Stmt *T) {
1935    return T->getStmtClass() == CXXUnresolvedConstructExprClass;
1936  }
1937  static bool classof(const CXXUnresolvedConstructExpr *) { return true; }
1938
1939  // Iterators
1940  virtual child_iterator child_begin();
1941  virtual child_iterator child_end();
1942};
1943
1944/// \brief Represents a C++ member access expression where the actual
1945/// member referenced could not be resolved because the base
1946/// expression or the member name was dependent.
1947///
1948/// Like UnresolvedMemberExprs, these can be either implicit or
1949/// explicit accesses.  It is only possible to get one of these with
1950/// an implicit access if a qualifier is provided.
1951class CXXDependentScopeMemberExpr : public Expr {
1952  /// \brief The expression for the base pointer or class reference,
1953  /// e.g., the \c x in x.f.  Can be null in implicit accesses.
1954  Stmt *Base;
1955
1956  /// \brief The type of the base expression.  Never null, even for
1957  /// implicit accesses.
1958  QualType BaseType;
1959
1960  /// \brief Whether this member expression used the '->' operator or
1961  /// the '.' operator.
1962  bool IsArrow : 1;
1963
1964  /// \brief Whether this member expression has explicitly-specified template
1965  /// arguments.
1966  bool HasExplicitTemplateArgs : 1;
1967
1968  /// \brief The location of the '->' or '.' operator.
1969  SourceLocation OperatorLoc;
1970
1971  /// \brief The nested-name-specifier that precedes the member name, if any.
1972  NestedNameSpecifier *Qualifier;
1973
1974  /// \brief The source range covering the nested name specifier.
1975  SourceRange QualifierRange;
1976
1977  /// \brief In a qualified member access expression such as t->Base::f, this
1978  /// member stores the resolves of name lookup in the context of the member
1979  /// access expression, to be used at instantiation time.
1980  ///
1981  /// FIXME: This member, along with the Qualifier and QualifierRange, could
1982  /// be stuck into a structure that is optionally allocated at the end of
1983  /// the CXXDependentScopeMemberExpr, to save space in the common case.
1984  NamedDecl *FirstQualifierFoundInScope;
1985
1986  /// \brief The member to which this member expression refers, which
1987  /// can be name, overloaded operator, or destructor.
1988  /// FIXME: could also be a template-id
1989  DeclarationName Member;
1990
1991  /// \brief The location of the member name.
1992  SourceLocation MemberLoc;
1993
1994  CXXDependentScopeMemberExpr(ASTContext &C,
1995                          Expr *Base, QualType BaseType, bool IsArrow,
1996                          SourceLocation OperatorLoc,
1997                          NestedNameSpecifier *Qualifier,
1998                          SourceRange QualifierRange,
1999                          NamedDecl *FirstQualifierFoundInScope,
2000                          DeclarationName Member,
2001                          SourceLocation MemberLoc,
2002                          const TemplateArgumentListInfo *TemplateArgs);
2003
2004public:
2005  CXXDependentScopeMemberExpr(ASTContext &C,
2006                          Expr *Base, QualType BaseType,
2007                          bool IsArrow,
2008                          SourceLocation OperatorLoc,
2009                          NestedNameSpecifier *Qualifier,
2010                          SourceRange QualifierRange,
2011                          NamedDecl *FirstQualifierFoundInScope,
2012                          DeclarationName Member,
2013                          SourceLocation MemberLoc)
2014  : Expr(CXXDependentScopeMemberExprClass, C.DependentTy, true, true),
2015    Base(Base), BaseType(BaseType), IsArrow(IsArrow),
2016    HasExplicitTemplateArgs(false), OperatorLoc(OperatorLoc),
2017    Qualifier(Qualifier), QualifierRange(QualifierRange),
2018    FirstQualifierFoundInScope(FirstQualifierFoundInScope),
2019    Member(Member), MemberLoc(MemberLoc) { }
2020
2021  static CXXDependentScopeMemberExpr *
2022  Create(ASTContext &C,
2023         Expr *Base, QualType BaseType, bool IsArrow,
2024         SourceLocation OperatorLoc,
2025         NestedNameSpecifier *Qualifier,
2026         SourceRange QualifierRange,
2027         NamedDecl *FirstQualifierFoundInScope,
2028         DeclarationName Member,
2029         SourceLocation MemberLoc,
2030         const TemplateArgumentListInfo *TemplateArgs);
2031
2032  static CXXDependentScopeMemberExpr *
2033  CreateEmpty(ASTContext &C, unsigned NumTemplateArgs);
2034
2035  /// \brief True if this is an implicit access, i.e. one in which the
2036  /// member being accessed was not written in the source.  The source
2037  /// location of the operator is invalid in this case.
2038  bool isImplicitAccess() const { return Base == 0; }
2039
2040  /// \brief Retrieve the base object of this member expressions,
2041  /// e.g., the \c x in \c x.m.
2042  Expr *getBase() const {
2043    assert(!isImplicitAccess());
2044    return cast<Expr>(Base);
2045  }
2046  void setBase(Expr *E) { Base = E; }
2047
2048  QualType getBaseType() const { return BaseType; }
2049  void setBaseType(QualType T) { BaseType = T; }
2050
2051  /// \brief Determine whether this member expression used the '->'
2052  /// operator; otherwise, it used the '.' operator.
2053  bool isArrow() const { return IsArrow; }
2054  void setArrow(bool A) { IsArrow = A; }
2055
2056  /// \brief Retrieve the location of the '->' or '.' operator.
2057  SourceLocation getOperatorLoc() const { return OperatorLoc; }
2058  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
2059
2060  /// \brief Retrieve the nested-name-specifier that qualifies the member
2061  /// name.
2062  NestedNameSpecifier *getQualifier() const { return Qualifier; }
2063  void setQualifier(NestedNameSpecifier *NNS) { Qualifier = NNS; }
2064
2065  /// \brief Retrieve the source range covering the nested-name-specifier
2066  /// that qualifies the member name.
2067  SourceRange getQualifierRange() const { return QualifierRange; }
2068  void setQualifierRange(SourceRange R) { QualifierRange = R; }
2069
2070  /// \brief Retrieve the first part of the nested-name-specifier that was
2071  /// found in the scope of the member access expression when the member access
2072  /// was initially parsed.
2073  ///
2074  /// This function only returns a useful result when member access expression
2075  /// uses a qualified member name, e.g., "x.Base::f". Here, the declaration
2076  /// returned by this function describes what was found by unqualified name
2077  /// lookup for the identifier "Base" within the scope of the member access
2078  /// expression itself. At template instantiation time, this information is
2079  /// combined with the results of name lookup into the type of the object
2080  /// expression itself (the class type of x).
2081  NamedDecl *getFirstQualifierFoundInScope() const {
2082    return FirstQualifierFoundInScope;
2083  }
2084  void setFirstQualifierFoundInScope(NamedDecl *D) {
2085    FirstQualifierFoundInScope = D;
2086  }
2087
2088  /// \brief Retrieve the name of the member that this expression
2089  /// refers to.
2090  DeclarationName getMember() const { return Member; }
2091  void setMember(DeclarationName N) { Member = N; }
2092
2093  // \brief Retrieve the location of the name of the member that this
2094  // expression refers to.
2095  SourceLocation getMemberLoc() const { return MemberLoc; }
2096  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
2097
2098  /// \brief Determines whether this member expression actually had a C++
2099  /// template argument list explicitly specified, e.g., x.f<int>.
2100  bool hasExplicitTemplateArgs() const {
2101    return HasExplicitTemplateArgs;
2102  }
2103
2104  /// \brief Retrieve the explicit template argument list that followed the
2105  /// member template name, if any.
2106  ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() {
2107    assert(HasExplicitTemplateArgs);
2108    return reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
2109  }
2110
2111  /// \brief Retrieve the explicit template argument list that followed the
2112  /// member template name, if any.
2113  const ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() const {
2114    return const_cast<CXXDependentScopeMemberExpr *>(this)
2115             ->getExplicitTemplateArgumentList();
2116  }
2117
2118  /// \brief Copies the template arguments (if present) into the given
2119  /// structure.
2120  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2121    assert(HasExplicitTemplateArgs);
2122    getExplicitTemplateArgumentList()->copyInto(List);
2123  }
2124
2125  /// \brief Initializes the template arguments using the given structure.
2126  void initializeTemplateArgumentsFrom(const TemplateArgumentListInfo &List) {
2127    assert(HasExplicitTemplateArgs);
2128    getExplicitTemplateArgumentList()->initializeFrom(List);
2129  }
2130
2131  /// \brief Retrieve the location of the left angle bracket following the
2132  /// member name ('<'), if any.
2133  SourceLocation getLAngleLoc() const {
2134    assert(HasExplicitTemplateArgs);
2135    return getExplicitTemplateArgumentList()->LAngleLoc;
2136  }
2137
2138  /// \brief Retrieve the template arguments provided as part of this
2139  /// template-id.
2140  const TemplateArgumentLoc *getTemplateArgs() const {
2141    assert(HasExplicitTemplateArgs);
2142    return getExplicitTemplateArgumentList()->getTemplateArgs();
2143  }
2144
2145  /// \brief Retrieve the number of template arguments provided as part of this
2146  /// template-id.
2147  unsigned getNumTemplateArgs() const {
2148    assert(HasExplicitTemplateArgs);
2149    return getExplicitTemplateArgumentList()->NumTemplateArgs;
2150  }
2151
2152  /// \brief Retrieve the location of the right angle bracket following the
2153  /// template arguments ('>').
2154  SourceLocation getRAngleLoc() const {
2155    assert(HasExplicitTemplateArgs);
2156    return getExplicitTemplateArgumentList()->RAngleLoc;
2157  }
2158
2159  virtual SourceRange getSourceRange() const {
2160    SourceRange Range;
2161    if (!isImplicitAccess())
2162      Range.setBegin(Base->getSourceRange().getBegin());
2163    else if (getQualifier())
2164      Range.setBegin(getQualifierRange().getBegin());
2165    else
2166      Range.setBegin(MemberLoc);
2167
2168    if (hasExplicitTemplateArgs())
2169      Range.setEnd(getRAngleLoc());
2170    else
2171      Range.setEnd(MemberLoc);
2172    return Range;
2173  }
2174
2175  static bool classof(const Stmt *T) {
2176    return T->getStmtClass() == CXXDependentScopeMemberExprClass;
2177  }
2178  static bool classof(const CXXDependentScopeMemberExpr *) { return true; }
2179
2180  // Iterators
2181  virtual child_iterator child_begin();
2182  virtual child_iterator child_end();
2183};
2184
2185/// \brief Represents a C++ member access expression for which lookup
2186/// produced a set of overloaded functions.
2187///
2188/// The member access may be explicit or implicit:
2189///    struct A {
2190///      int a, b;
2191///      int explicitAccess() { return this->a + this->A::b; }
2192///      int implicitAccess() { return a + A::b; }
2193///    };
2194///
2195/// In the final AST, an explicit access always becomes a MemberExpr.
2196/// An implicit access may become either a MemberExpr or a
2197/// DeclRefExpr, depending on whether the member is static.
2198class UnresolvedMemberExpr : public OverloadExpr {
2199  /// \brief Whether this member expression used the '->' operator or
2200  /// the '.' operator.
2201  bool IsArrow : 1;
2202
2203  /// \brief Whether the lookup results contain an unresolved using
2204  /// declaration.
2205  bool HasUnresolvedUsing : 1;
2206
2207  /// \brief The expression for the base pointer or class reference,
2208  /// e.g., the \c x in x.f.  This can be null if this is an 'unbased'
2209  /// member expression
2210  Stmt *Base;
2211
2212  /// \brief The type of the base expression;  never null.
2213  QualType BaseType;
2214
2215  /// \brief The location of the '->' or '.' operator.
2216  SourceLocation OperatorLoc;
2217
2218  UnresolvedMemberExpr(ASTContext &C, QualType T, bool Dependent,
2219                       bool HasUnresolvedUsing,
2220                       Expr *Base, QualType BaseType, bool IsArrow,
2221                       SourceLocation OperatorLoc,
2222                       NestedNameSpecifier *Qualifier,
2223                       SourceRange QualifierRange,
2224                       DeclarationName Member,
2225                       SourceLocation MemberLoc,
2226                       const TemplateArgumentListInfo *TemplateArgs,
2227                       UnresolvedSetIterator Begin, UnresolvedSetIterator End);
2228
2229  UnresolvedMemberExpr(EmptyShell Empty)
2230    : OverloadExpr(UnresolvedMemberExprClass, Empty), IsArrow(false),
2231      HasUnresolvedUsing(false), Base(0) { }
2232
2233public:
2234  static UnresolvedMemberExpr *
2235  Create(ASTContext &C, bool Dependent, bool HasUnresolvedUsing,
2236         Expr *Base, QualType BaseType, bool IsArrow,
2237         SourceLocation OperatorLoc,
2238         NestedNameSpecifier *Qualifier,
2239         SourceRange QualifierRange,
2240         DeclarationName Member,
2241         SourceLocation MemberLoc,
2242         const TemplateArgumentListInfo *TemplateArgs,
2243         UnresolvedSetIterator Begin, UnresolvedSetIterator End);
2244
2245  static UnresolvedMemberExpr *
2246  CreateEmpty(ASTContext &C, unsigned NumTemplateArgs);
2247
2248  /// \brief True if this is an implicit access, i.e. one in which the
2249  /// member being accessed was not written in the source.  The source
2250  /// location of the operator is invalid in this case.
2251  bool isImplicitAccess() const { return Base == 0; }
2252
2253  /// \brief Retrieve the base object of this member expressions,
2254  /// e.g., the \c x in \c x.m.
2255  Expr *getBase() {
2256    assert(!isImplicitAccess());
2257    return cast<Expr>(Base);
2258  }
2259  const Expr *getBase() const {
2260    assert(!isImplicitAccess());
2261    return cast<Expr>(Base);
2262  }
2263  void setBase(Expr *E) { Base = E; }
2264
2265  QualType getBaseType() const { return BaseType; }
2266  void setBaseType(QualType T) { BaseType = T; }
2267
2268  /// \brief Determine whether the lookup results contain an unresolved using
2269  /// declaration.
2270  bool hasUnresolvedUsing() const { return HasUnresolvedUsing; }
2271  void setHasUnresolvedUsing(bool V) { HasUnresolvedUsing = V; }
2272
2273  /// \brief Determine whether this member expression used the '->'
2274  /// operator; otherwise, it used the '.' operator.
2275  bool isArrow() const { return IsArrow; }
2276  void setArrow(bool A) { IsArrow = A; }
2277
2278  /// \brief Retrieve the location of the '->' or '.' operator.
2279  SourceLocation getOperatorLoc() const { return OperatorLoc; }
2280  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
2281
2282  /// \brief Retrieves the naming class of this lookup.
2283  CXXRecordDecl *getNamingClass() const;
2284
2285  /// \brief Retrieve the name of the member that this expression
2286  /// refers to.
2287  DeclarationName getMemberName() const { return getName(); }
2288  void setMemberName(DeclarationName N) { setName(N); }
2289
2290  // \brief Retrieve the location of the name of the member that this
2291  // expression refers to.
2292  SourceLocation getMemberLoc() const { return getNameLoc(); }
2293  void setMemberLoc(SourceLocation L) { setNameLoc(L); }
2294
2295  /// \brief Retrieve the explicit template argument list that followed the
2296  /// member template name.
2297  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
2298    assert(hasExplicitTemplateArgs());
2299    return *reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
2300  }
2301
2302  /// \brief Retrieve the explicit template argument list that followed the
2303  /// member template name, if any.
2304  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
2305    assert(hasExplicitTemplateArgs());
2306    return *reinterpret_cast<const ExplicitTemplateArgumentList *>(this + 1);
2307  }
2308
2309  /// \brief Copies the template arguments into the given structure.
2310  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2311    getExplicitTemplateArgs().copyInto(List);
2312  }
2313
2314  /// \brief Retrieve the location of the left angle bracket following
2315  /// the member name ('<').
2316  SourceLocation getLAngleLoc() const {
2317    return getExplicitTemplateArgs().LAngleLoc;
2318  }
2319
2320  /// \brief Retrieve the template arguments provided as part of this
2321  /// template-id.
2322  const TemplateArgumentLoc *getTemplateArgs() const {
2323    return getExplicitTemplateArgs().getTemplateArgs();
2324  }
2325
2326  /// \brief Retrieve the number of template arguments provided as
2327  /// part of this template-id.
2328  unsigned getNumTemplateArgs() const {
2329    return getExplicitTemplateArgs().NumTemplateArgs;
2330  }
2331
2332  /// \brief Retrieve the location of the right angle bracket
2333  /// following the template arguments ('>').
2334  SourceLocation getRAngleLoc() const {
2335    return getExplicitTemplateArgs().RAngleLoc;
2336  }
2337
2338  virtual SourceRange getSourceRange() const {
2339    SourceRange Range;
2340    if (!isImplicitAccess())
2341      Range.setBegin(Base->getSourceRange().getBegin());
2342    else if (getQualifier())
2343      Range.setBegin(getQualifierRange().getBegin());
2344    else
2345      Range.setBegin(getMemberLoc());
2346
2347    if (hasExplicitTemplateArgs())
2348      Range.setEnd(getRAngleLoc());
2349    else
2350      Range.setEnd(getMemberLoc());
2351    return Range;
2352  }
2353
2354  static bool classof(const Stmt *T) {
2355    return T->getStmtClass() == UnresolvedMemberExprClass;
2356  }
2357  static bool classof(const UnresolvedMemberExpr *) { return true; }
2358
2359  // Iterators
2360  virtual child_iterator child_begin();
2361  virtual child_iterator child_end();
2362};
2363
2364inline ExplicitTemplateArgumentList &OverloadExpr::getExplicitTemplateArgs() {
2365  if (isa<UnresolvedLookupExpr>(this))
2366    return cast<UnresolvedLookupExpr>(this)->getExplicitTemplateArgs();
2367  else
2368    return cast<UnresolvedMemberExpr>(this)->getExplicitTemplateArgs();
2369}
2370
2371}  // end namespace clang
2372
2373#endif
2374