ExprCXX.h revision 99a2e600f9e2e51d3ce10fb6f27191677ac65b2a
1//===--- ExprCXX.h - Classes for representing expressions -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses for C++ expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPRCXX_H
15#define LLVM_CLANG_AST_EXPRCXX_H
16
17#include "clang/Basic/TypeTraits.h"
18#include "clang/AST/Expr.h"
19#include "clang/AST/Decl.h"
20#include "clang/AST/TemplateBase.h"
21
22namespace clang {
23
24  class CXXConstructorDecl;
25  class CXXDestructorDecl;
26  class CXXMethodDecl;
27  class CXXTemporary;
28  class TemplateArgumentListInfo;
29
30//===--------------------------------------------------------------------===//
31// C++ Expressions.
32//===--------------------------------------------------------------------===//
33
34/// \brief A call to an overloaded operator written using operator
35/// syntax.
36///
37/// Represents a call to an overloaded operator written using operator
38/// syntax, e.g., "x + y" or "*p". While semantically equivalent to a
39/// normal call, this AST node provides better information about the
40/// syntactic representation of the call.
41///
42/// In a C++ template, this expression node kind will be used whenever
43/// any of the arguments are type-dependent. In this case, the
44/// function itself will be a (possibly empty) set of functions and
45/// function templates that were found by name lookup at template
46/// definition time.
47class CXXOperatorCallExpr : public CallExpr {
48  /// \brief The overloaded operator.
49  OverloadedOperatorKind Operator;
50
51public:
52  CXXOperatorCallExpr(ASTContext& C, OverloadedOperatorKind Op, Expr *fn,
53                      Expr **args, unsigned numargs, QualType t,
54                      SourceLocation operatorloc)
55    : CallExpr(C, CXXOperatorCallExprClass, fn, args, numargs, t, operatorloc),
56      Operator(Op) {}
57  explicit CXXOperatorCallExpr(ASTContext& C, EmptyShell Empty) :
58    CallExpr(C, CXXOperatorCallExprClass, Empty) { }
59
60
61  /// getOperator - Returns the kind of overloaded operator that this
62  /// expression refers to.
63  OverloadedOperatorKind getOperator() const { return Operator; }
64  void setOperator(OverloadedOperatorKind Kind) { Operator = Kind; }
65
66  /// getOperatorLoc - Returns the location of the operator symbol in
67  /// the expression. When @c getOperator()==OO_Call, this is the
68  /// location of the right parentheses; when @c
69  /// getOperator()==OO_Subscript, this is the location of the right
70  /// bracket.
71  SourceLocation getOperatorLoc() const { return getRParenLoc(); }
72
73  virtual SourceRange getSourceRange() const;
74
75  static bool classof(const Stmt *T) {
76    return T->getStmtClass() == CXXOperatorCallExprClass;
77  }
78  static bool classof(const CXXOperatorCallExpr *) { return true; }
79};
80
81/// CXXMemberCallExpr - Represents a call to a member function that
82/// may be written either with member call syntax (e.g., "obj.func()"
83/// or "objptr->func()") or with normal function-call syntax
84/// ("func()") within a member function that ends up calling a member
85/// function. The callee in either case is a MemberExpr that contains
86/// both the object argument and the member function, while the
87/// arguments are the arguments within the parentheses (not including
88/// the object argument).
89class CXXMemberCallExpr : public CallExpr {
90public:
91  CXXMemberCallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs,
92                    QualType t, SourceLocation rparenloc)
93    : CallExpr(C, CXXMemberCallExprClass, fn, args, numargs, t, rparenloc) {}
94
95  /// getImplicitObjectArgument - Retrieves the implicit object
96  /// argument for the member call. For example, in "x.f(5)", this
97  /// operation would return "x".
98  Expr *getImplicitObjectArgument();
99
100  virtual SourceRange getSourceRange() const;
101
102  static bool classof(const Stmt *T) {
103    return T->getStmtClass() == CXXMemberCallExprClass;
104  }
105  static bool classof(const CXXMemberCallExpr *) { return true; }
106};
107
108/// CXXNamedCastExpr - Abstract class common to all of the C++ "named"
109/// casts, @c static_cast, @c dynamic_cast, @c reinterpret_cast, or @c
110/// const_cast.
111///
112/// This abstract class is inherited by all of the classes
113/// representing "named" casts, e.g., CXXStaticCastExpr,
114/// CXXDynamicCastExpr, CXXReinterpretCastExpr, and CXXConstCastExpr.
115class CXXNamedCastExpr : public ExplicitCastExpr {
116private:
117  SourceLocation Loc; // the location of the casting op
118
119protected:
120  CXXNamedCastExpr(StmtClass SC, QualType ty, CastKind kind, Expr *op,
121                   QualType writtenTy, SourceLocation l)
122    : ExplicitCastExpr(SC, ty, kind, op, writtenTy), Loc(l) {}
123
124public:
125  const char *getCastName() const;
126
127  /// \brief Retrieve the location of the cast operator keyword, e.g.,
128  /// "static_cast".
129  SourceLocation getOperatorLoc() const { return Loc; }
130  void setOperatorLoc(SourceLocation L) { Loc = L; }
131
132  virtual SourceRange getSourceRange() const {
133    return SourceRange(Loc, getSubExpr()->getSourceRange().getEnd());
134  }
135  static bool classof(const Stmt *T) {
136    switch (T->getStmtClass()) {
137    case CXXNamedCastExprClass:
138    case CXXStaticCastExprClass:
139    case CXXDynamicCastExprClass:
140    case CXXReinterpretCastExprClass:
141    case CXXConstCastExprClass:
142      return true;
143    default:
144      return false;
145    }
146  }
147  static bool classof(const CXXNamedCastExpr *) { return true; }
148};
149
150/// CXXStaticCastExpr - A C++ @c static_cast expression (C++ [expr.static.cast]).
151///
152/// This expression node represents a C++ static cast, e.g.,
153/// @c static_cast<int>(1.0).
154class CXXStaticCastExpr : public CXXNamedCastExpr {
155public:
156  CXXStaticCastExpr(QualType ty, CastKind kind, Expr *op,
157                    QualType writtenTy, SourceLocation l)
158    : CXXNamedCastExpr(CXXStaticCastExprClass, ty, kind, op, writtenTy, l) {}
159
160  static bool classof(const Stmt *T) {
161    return T->getStmtClass() == CXXStaticCastExprClass;
162  }
163  static bool classof(const CXXStaticCastExpr *) { return true; }
164};
165
166/// CXXDynamicCastExpr - A C++ @c dynamic_cast expression
167/// (C++ [expr.dynamic.cast]), which may perform a run-time check to
168/// determine how to perform the type cast.
169///
170/// This expression node represents a dynamic cast, e.g.,
171/// @c dynamic_cast<Derived*>(BasePtr).
172class CXXDynamicCastExpr : public CXXNamedCastExpr {
173public:
174  CXXDynamicCastExpr(QualType ty, CastKind kind, Expr *op, QualType writtenTy,
175                     SourceLocation l)
176    : CXXNamedCastExpr(CXXDynamicCastExprClass, ty, kind, op, writtenTy, l) {}
177
178  static bool classof(const Stmt *T) {
179    return T->getStmtClass() == CXXDynamicCastExprClass;
180  }
181  static bool classof(const CXXDynamicCastExpr *) { return true; }
182};
183
184/// CXXReinterpretCastExpr - A C++ @c reinterpret_cast expression (C++
185/// [expr.reinterpret.cast]), which provides a differently-typed view
186/// of a value but performs no actual work at run time.
187///
188/// This expression node represents a reinterpret cast, e.g.,
189/// @c reinterpret_cast<int>(VoidPtr).
190class CXXReinterpretCastExpr : public CXXNamedCastExpr {
191public:
192  CXXReinterpretCastExpr(QualType ty, CastKind kind, Expr *op,
193                         QualType writtenTy, SourceLocation l)
194    : CXXNamedCastExpr(CXXReinterpretCastExprClass, ty, kind, op,
195                       writtenTy, l) {}
196
197  static bool classof(const Stmt *T) {
198    return T->getStmtClass() == CXXReinterpretCastExprClass;
199  }
200  static bool classof(const CXXReinterpretCastExpr *) { return true; }
201};
202
203/// CXXConstCastExpr - A C++ @c const_cast expression (C++ [expr.const.cast]),
204/// which can remove type qualifiers but does not change the underlying value.
205///
206/// This expression node represents a const cast, e.g.,
207/// @c const_cast<char*>(PtrToConstChar).
208class CXXConstCastExpr : public CXXNamedCastExpr {
209public:
210  CXXConstCastExpr(QualType ty, Expr *op, QualType writtenTy,
211                   SourceLocation l)
212    : CXXNamedCastExpr(CXXConstCastExprClass, ty, CK_NoOp, op, writtenTy, l) {}
213
214  static bool classof(const Stmt *T) {
215    return T->getStmtClass() == CXXConstCastExprClass;
216  }
217  static bool classof(const CXXConstCastExpr *) { return true; }
218};
219
220/// CXXBoolLiteralExpr - [C++ 2.13.5] C++ Boolean Literal.
221///
222class CXXBoolLiteralExpr : public Expr {
223  bool Value;
224  SourceLocation Loc;
225public:
226  CXXBoolLiteralExpr(bool val, QualType Ty, SourceLocation l) :
227    Expr(CXXBoolLiteralExprClass, Ty), Value(val), Loc(l) {}
228
229  bool getValue() const { return Value; }
230
231  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
232
233  static bool classof(const Stmt *T) {
234    return T->getStmtClass() == CXXBoolLiteralExprClass;
235  }
236  static bool classof(const CXXBoolLiteralExpr *) { return true; }
237
238  // Iterators
239  virtual child_iterator child_begin();
240  virtual child_iterator child_end();
241};
242
243/// CXXNullPtrLiteralExpr - [C++0x 2.14.7] C++ Pointer Literal
244class CXXNullPtrLiteralExpr : public Expr {
245  SourceLocation Loc;
246public:
247  CXXNullPtrLiteralExpr(QualType Ty, SourceLocation l) :
248    Expr(CXXNullPtrLiteralExprClass, Ty), Loc(l) {}
249
250  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
251
252  static bool classof(const Stmt *T) {
253    return T->getStmtClass() == CXXNullPtrLiteralExprClass;
254  }
255  static bool classof(const CXXNullPtrLiteralExpr *) { return true; }
256
257  virtual child_iterator child_begin();
258  virtual child_iterator child_end();
259};
260
261/// CXXTypeidExpr - A C++ @c typeid expression (C++ [expr.typeid]), which gets
262/// the type_info that corresponds to the supplied type, or the (possibly
263/// dynamic) type of the supplied expression.
264///
265/// This represents code like @c typeid(int) or @c typeid(*objPtr)
266class CXXTypeidExpr : public Expr {
267private:
268  bool isTypeOp : 1;
269  union {
270    void *Ty;
271    Stmt *Ex;
272  } Operand;
273  SourceRange Range;
274
275public:
276  CXXTypeidExpr(bool isTypeOp, void *op, QualType Ty, const SourceRange r) :
277      Expr(CXXTypeidExprClass, Ty,
278        // typeid is never type-dependent (C++ [temp.dep.expr]p4)
279        false,
280        // typeid is value-dependent if the type or expression are dependent
281        (isTypeOp ? QualType::getFromOpaquePtr(op)->isDependentType()
282                  : static_cast<Expr*>(op)->isValueDependent())),
283      isTypeOp(isTypeOp), Range(r) {
284    if (isTypeOp)
285      Operand.Ty = op;
286    else
287      // op was an Expr*, so cast it back to that to be safe
288      Operand.Ex = static_cast<Expr*>(op);
289  }
290
291  bool isTypeOperand() const { return isTypeOp; }
292  QualType getTypeOperand() const {
293    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
294    return QualType::getFromOpaquePtr(Operand.Ty);
295  }
296  Expr* getExprOperand() const {
297    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
298    return static_cast<Expr*>(Operand.Ex);
299  }
300
301  virtual SourceRange getSourceRange() const {
302    return Range;
303  }
304  static bool classof(const Stmt *T) {
305    return T->getStmtClass() == CXXTypeidExprClass;
306  }
307  static bool classof(const CXXTypeidExpr *) { return true; }
308
309  // Iterators
310  virtual child_iterator child_begin();
311  virtual child_iterator child_end();
312};
313
314/// CXXThisExpr - Represents the "this" expression in C++, which is a
315/// pointer to the object on which the current member function is
316/// executing (C++ [expr.prim]p3). Example:
317///
318/// @code
319/// class Foo {
320/// public:
321///   void bar();
322///   void test() { this->bar(); }
323/// };
324/// @endcode
325class CXXThisExpr : public Expr {
326  SourceLocation Loc;
327
328public:
329  CXXThisExpr(SourceLocation L, QualType Type)
330    : Expr(CXXThisExprClass, Type,
331           // 'this' is type-dependent if the class type of the enclosing
332           // member function is dependent (C++ [temp.dep.expr]p2)
333           Type->isDependentType(), Type->isDependentType()),
334      Loc(L) { }
335
336  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
337
338  static bool classof(const Stmt *T) {
339    return T->getStmtClass() == CXXThisExprClass;
340  }
341  static bool classof(const CXXThisExpr *) { return true; }
342
343  // Iterators
344  virtual child_iterator child_begin();
345  virtual child_iterator child_end();
346};
347
348///  CXXThrowExpr - [C++ 15] C++ Throw Expression.  This handles
349///  'throw' and 'throw' assignment-expression.  When
350///  assignment-expression isn't present, Op will be null.
351///
352class CXXThrowExpr : public Expr {
353  Stmt *Op;
354  SourceLocation ThrowLoc;
355public:
356  // Ty is the void type which is used as the result type of the
357  // exepression.  The l is the location of the throw keyword.  expr
358  // can by null, if the optional expression to throw isn't present.
359  CXXThrowExpr(Expr *expr, QualType Ty, SourceLocation l) :
360    Expr(CXXThrowExprClass, Ty, false, false), Op(expr), ThrowLoc(l) {}
361  const Expr *getSubExpr() const { return cast_or_null<Expr>(Op); }
362  Expr *getSubExpr() { return cast_or_null<Expr>(Op); }
363  void setSubExpr(Expr *E) { Op = E; }
364
365  SourceLocation getThrowLoc() const { return ThrowLoc; }
366  void setThrowLoc(SourceLocation L) { ThrowLoc = L; }
367
368  virtual SourceRange getSourceRange() const {
369    if (getSubExpr() == 0)
370      return SourceRange(ThrowLoc, ThrowLoc);
371    return SourceRange(ThrowLoc, getSubExpr()->getSourceRange().getEnd());
372  }
373
374  static bool classof(const Stmt *T) {
375    return T->getStmtClass() == CXXThrowExprClass;
376  }
377  static bool classof(const CXXThrowExpr *) { return true; }
378
379  // Iterators
380  virtual child_iterator child_begin();
381  virtual child_iterator child_end();
382};
383
384/// CXXDefaultArgExpr - C++ [dcl.fct.default]. This wraps up a
385/// function call argument that was created from the corresponding
386/// parameter's default argument, when the call did not explicitly
387/// supply arguments for all of the parameters.
388class CXXDefaultArgExpr : public Expr {
389  ParmVarDecl *Param;
390
391protected:
392  CXXDefaultArgExpr(StmtClass SC, ParmVarDecl *param)
393    : Expr(SC, param->hasUnparsedDefaultArg() ?
394           param->getType().getNonReferenceType()
395           : param->getDefaultArg()->getType()),
396    Param(param) { }
397
398public:
399  // Param is the parameter whose default argument is used by this
400  // expression.
401  static CXXDefaultArgExpr *Create(ASTContext &C, ParmVarDecl *Param) {
402    return new (C) CXXDefaultArgExpr(CXXDefaultArgExprClass, Param);
403  }
404
405  // Retrieve the parameter that the argument was created from.
406  const ParmVarDecl *getParam() const { return Param; }
407  ParmVarDecl *getParam() { return Param; }
408
409  // Retrieve the actual argument to the function call.
410  const Expr *getExpr() const { return Param->getDefaultArg(); }
411  Expr *getExpr() { return Param->getDefaultArg(); }
412
413  virtual SourceRange getSourceRange() const {
414    // Default argument expressions have no representation in the
415    // source, so they have an empty source range.
416    return SourceRange();
417  }
418
419  static bool classof(const Stmt *T) {
420    return T->getStmtClass() == CXXDefaultArgExprClass;
421  }
422  static bool classof(const CXXDefaultArgExpr *) { return true; }
423
424  // Iterators
425  virtual child_iterator child_begin();
426  virtual child_iterator child_end();
427};
428
429/// CXXTemporary - Represents a C++ temporary.
430class CXXTemporary {
431  /// Destructor - The destructor that needs to be called.
432  const CXXDestructorDecl *Destructor;
433
434  CXXTemporary(const CXXDestructorDecl *destructor)
435    : Destructor(destructor) { }
436  ~CXXTemporary() { }
437
438public:
439  static CXXTemporary *Create(ASTContext &C,
440                              const CXXDestructorDecl *Destructor);
441
442  void Destroy(ASTContext &Ctx);
443
444  const CXXDestructorDecl *getDestructor() const { return Destructor; }
445};
446
447/// CXXBindTemporaryExpr - Represents binding an expression to a temporary,
448/// so its destructor can be called later.
449class CXXBindTemporaryExpr : public Expr {
450  CXXTemporary *Temp;
451
452  Stmt *SubExpr;
453
454  CXXBindTemporaryExpr(CXXTemporary *temp, Expr* subexpr)
455   : Expr(CXXBindTemporaryExprClass,
456          subexpr->getType()), Temp(temp), SubExpr(subexpr) { }
457  ~CXXBindTemporaryExpr() { }
458
459protected:
460  virtual void DoDestroy(ASTContext &C);
461
462public:
463  static CXXBindTemporaryExpr *Create(ASTContext &C, CXXTemporary *Temp,
464                                      Expr* SubExpr);
465
466  CXXTemporary *getTemporary() { return Temp; }
467  const CXXTemporary *getTemporary() const { return Temp; }
468
469  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
470  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
471  void setSubExpr(Expr *E) { SubExpr = E; }
472
473  virtual SourceRange getSourceRange() const {
474    return SubExpr->getSourceRange();
475  }
476
477  // Implement isa/cast/dyncast/etc.
478  static bool classof(const Stmt *T) {
479    return T->getStmtClass() == CXXBindTemporaryExprClass;
480  }
481  static bool classof(const CXXBindTemporaryExpr *) { return true; }
482
483  // Iterators
484  virtual child_iterator child_begin();
485  virtual child_iterator child_end();
486};
487
488/// CXXConstructExpr - Represents a call to a C++ constructor.
489class CXXConstructExpr : public Expr {
490  CXXConstructorDecl *Constructor;
491
492  SourceLocation Loc;
493  bool Elidable;
494
495  Stmt **Args;
496  unsigned NumArgs;
497
498protected:
499  CXXConstructExpr(ASTContext &C, StmtClass SC, QualType T,
500                   SourceLocation Loc,
501                   CXXConstructorDecl *d, bool elidable,
502                   Expr **args, unsigned numargs);
503  ~CXXConstructExpr() { }
504
505  virtual void DoDestroy(ASTContext &C);
506
507public:
508  /// \brief Construct an empty C++ construction expression that will store
509  /// \p numargs arguments.
510  CXXConstructExpr(EmptyShell Empty, ASTContext &C, unsigned numargs);
511
512  static CXXConstructExpr *Create(ASTContext &C, QualType T,
513                                  SourceLocation Loc,
514                                  CXXConstructorDecl *D, bool Elidable,
515                                  Expr **Args, unsigned NumArgs);
516
517
518  CXXConstructorDecl* getConstructor() const { return Constructor; }
519  void setConstructor(CXXConstructorDecl *C) { Constructor = C; }
520
521  SourceLocation getLocation() const { return Loc; }
522  void setLocation(SourceLocation Loc) { this->Loc = Loc; }
523
524  /// \brief Whether this construction is elidable.
525  bool isElidable() const { return Elidable; }
526  void setElidable(bool E) { Elidable = E; }
527
528  typedef ExprIterator arg_iterator;
529  typedef ConstExprIterator const_arg_iterator;
530
531  arg_iterator arg_begin() { return Args; }
532  arg_iterator arg_end() { return Args + NumArgs; }
533  const_arg_iterator arg_begin() const { return Args; }
534  const_arg_iterator arg_end() const { return Args + NumArgs; }
535
536  Expr **getArgs() const { return reinterpret_cast<Expr **>(Args); }
537  unsigned getNumArgs() const { return NumArgs; }
538
539  /// getArg - Return the specified argument.
540  Expr *getArg(unsigned Arg) {
541    assert(Arg < NumArgs && "Arg access out of range!");
542    return cast<Expr>(Args[Arg]);
543  }
544  const Expr *getArg(unsigned Arg) const {
545    assert(Arg < NumArgs && "Arg access out of range!");
546    return cast<Expr>(Args[Arg]);
547  }
548
549  /// setArg - Set the specified argument.
550  void setArg(unsigned Arg, Expr *ArgExpr) {
551    assert(Arg < NumArgs && "Arg access out of range!");
552    Args[Arg] = ArgExpr;
553  }
554
555  virtual SourceRange getSourceRange() const {
556    // FIXME: Should we know where the parentheses are, if there are any?
557    if (NumArgs == 0)
558      return SourceRange(Loc);
559
560    return SourceRange(Loc, Args[NumArgs - 1]->getLocEnd());
561  }
562
563  static bool classof(const Stmt *T) {
564    return T->getStmtClass() == CXXConstructExprClass ||
565      T->getStmtClass() == CXXTemporaryObjectExprClass;
566  }
567  static bool classof(const CXXConstructExpr *) { return true; }
568
569  // Iterators
570  virtual child_iterator child_begin();
571  virtual child_iterator child_end();
572};
573
574/// CXXFunctionalCastExpr - Represents an explicit C++ type conversion
575/// that uses "functional" notion (C++ [expr.type.conv]). Example: @c
576/// x = int(0.5);
577class CXXFunctionalCastExpr : public ExplicitCastExpr {
578  SourceLocation TyBeginLoc;
579  SourceLocation RParenLoc;
580public:
581  CXXFunctionalCastExpr(QualType ty, QualType writtenTy,
582                        SourceLocation tyBeginLoc, CastKind kind,
583                        Expr *castExpr, SourceLocation rParenLoc)
584    : ExplicitCastExpr(CXXFunctionalCastExprClass, ty, kind, castExpr,
585                       writtenTy),
586      TyBeginLoc(tyBeginLoc), RParenLoc(rParenLoc) {}
587
588  SourceLocation getTypeBeginLoc() const { return TyBeginLoc; }
589  SourceLocation getRParenLoc() const { return RParenLoc; }
590
591  virtual SourceRange getSourceRange() const {
592    return SourceRange(TyBeginLoc, RParenLoc);
593  }
594  static bool classof(const Stmt *T) {
595    return T->getStmtClass() == CXXFunctionalCastExprClass;
596  }
597  static bool classof(const CXXFunctionalCastExpr *) { return true; }
598};
599
600/// @brief Represents a C++ functional cast expression that builds a
601/// temporary object.
602///
603/// This expression type represents a C++ "functional" cast
604/// (C++[expr.type.conv]) with N != 1 arguments that invokes a
605/// constructor to build a temporary object. If N == 0 but no
606/// constructor will be called (because the functional cast is
607/// performing a value-initialized an object whose class type has no
608/// user-declared constructors), CXXZeroInitValueExpr will represent
609/// the functional cast. Finally, with N == 1 arguments the functional
610/// cast expression will be represented by CXXFunctionalCastExpr.
611/// Example:
612/// @code
613/// struct X { X(int, float); }
614///
615/// X create_X() {
616///   return X(1, 3.14f); // creates a CXXTemporaryObjectExpr
617/// };
618/// @endcode
619class CXXTemporaryObjectExpr : public CXXConstructExpr {
620  SourceLocation TyBeginLoc;
621  SourceLocation RParenLoc;
622
623public:
624  CXXTemporaryObjectExpr(ASTContext &C, CXXConstructorDecl *Cons,
625                         QualType writtenTy, SourceLocation tyBeginLoc,
626                         Expr **Args,unsigned NumArgs,
627                         SourceLocation rParenLoc);
628
629  ~CXXTemporaryObjectExpr() { }
630
631  SourceLocation getTypeBeginLoc() const { return TyBeginLoc; }
632  SourceLocation getRParenLoc() const { return RParenLoc; }
633
634  virtual SourceRange getSourceRange() const {
635    return SourceRange(TyBeginLoc, RParenLoc);
636  }
637  static bool classof(const Stmt *T) {
638    return T->getStmtClass() == CXXTemporaryObjectExprClass;
639  }
640  static bool classof(const CXXTemporaryObjectExpr *) { return true; }
641};
642
643/// CXXZeroInitValueExpr - [C++ 5.2.3p2]
644/// Expression "T()" which creates a value-initialized rvalue of type
645/// T, which is either a non-class type or a class type without any
646/// user-defined constructors.
647///
648class CXXZeroInitValueExpr : public Expr {
649  SourceLocation TyBeginLoc;
650  SourceLocation RParenLoc;
651
652public:
653  CXXZeroInitValueExpr(QualType ty, SourceLocation tyBeginLoc,
654                       SourceLocation rParenLoc ) :
655    Expr(CXXZeroInitValueExprClass, ty, false, false),
656    TyBeginLoc(tyBeginLoc), RParenLoc(rParenLoc) {}
657
658  SourceLocation getTypeBeginLoc() const { return TyBeginLoc; }
659  SourceLocation getRParenLoc() const { return RParenLoc; }
660
661  /// @brief Whether this initialization expression was
662  /// implicitly-generated.
663  bool isImplicit() const {
664    return TyBeginLoc.isInvalid() && RParenLoc.isInvalid();
665  }
666
667  virtual SourceRange getSourceRange() const {
668    return SourceRange(TyBeginLoc, RParenLoc);
669  }
670
671  static bool classof(const Stmt *T) {
672    return T->getStmtClass() == CXXZeroInitValueExprClass;
673  }
674  static bool classof(const CXXZeroInitValueExpr *) { return true; }
675
676  // Iterators
677  virtual child_iterator child_begin();
678  virtual child_iterator child_end();
679};
680
681/// CXXNewExpr - A new expression for memory allocation and constructor calls,
682/// e.g: "new CXXNewExpr(foo)".
683class CXXNewExpr : public Expr {
684  // Was the usage ::new, i.e. is the global new to be used?
685  bool GlobalNew : 1;
686  // Was the form (type-id) used? Otherwise, it was new-type-id.
687  bool ParenTypeId : 1;
688  // Is there an initializer? If not, built-ins are uninitialized, else they're
689  // value-initialized.
690  bool Initializer : 1;
691  // Do we allocate an array? If so, the first SubExpr is the size expression.
692  bool Array : 1;
693  // The number of placement new arguments.
694  unsigned NumPlacementArgs : 14;
695  // The number of constructor arguments. This may be 1 even for non-class
696  // types; use the pseudo copy constructor.
697  unsigned NumConstructorArgs : 14;
698  // Contains an optional array size expression, any number of optional
699  // placement arguments, and any number of optional constructor arguments,
700  // in that order.
701  Stmt **SubExprs;
702  // Points to the allocation function used.
703  FunctionDecl *OperatorNew;
704  // Points to the deallocation function used in case of error. May be null.
705  FunctionDecl *OperatorDelete;
706  // Points to the constructor used. Cannot be null if AllocType is a record;
707  // it would still point at the default constructor (even an implicit one).
708  // Must be null for all other types.
709  CXXConstructorDecl *Constructor;
710
711  SourceLocation StartLoc;
712  SourceLocation EndLoc;
713
714public:
715  CXXNewExpr(bool globalNew, FunctionDecl *operatorNew, Expr **placementArgs,
716             unsigned numPlaceArgs, bool ParenTypeId, Expr *arraySize,
717             CXXConstructorDecl *constructor, bool initializer,
718             Expr **constructorArgs, unsigned numConsArgs,
719             FunctionDecl *operatorDelete, QualType ty,
720             SourceLocation startLoc, SourceLocation endLoc);
721  ~CXXNewExpr() {
722    delete[] SubExprs;
723  }
724
725  QualType getAllocatedType() const {
726    assert(getType()->isPointerType());
727    return getType()->getAs<PointerType>()->getPointeeType();
728  }
729
730  FunctionDecl *getOperatorNew() const { return OperatorNew; }
731  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
732  CXXConstructorDecl *getConstructor() const { return Constructor; }
733
734  bool isArray() const { return Array; }
735  Expr *getArraySize() {
736    return Array ? cast<Expr>(SubExprs[0]) : 0;
737  }
738  const Expr *getArraySize() const {
739    return Array ? cast<Expr>(SubExprs[0]) : 0;
740  }
741
742  unsigned getNumPlacementArgs() const { return NumPlacementArgs; }
743  Expr *getPlacementArg(unsigned i) {
744    assert(i < NumPlacementArgs && "Index out of range");
745    return cast<Expr>(SubExprs[Array + i]);
746  }
747  const Expr *getPlacementArg(unsigned i) const {
748    assert(i < NumPlacementArgs && "Index out of range");
749    return cast<Expr>(SubExprs[Array + i]);
750  }
751
752  bool isGlobalNew() const { return GlobalNew; }
753  bool isParenTypeId() const { return ParenTypeId; }
754  bool hasInitializer() const { return Initializer; }
755
756  unsigned getNumConstructorArgs() const { return NumConstructorArgs; }
757  Expr *getConstructorArg(unsigned i) {
758    assert(i < NumConstructorArgs && "Index out of range");
759    return cast<Expr>(SubExprs[Array + NumPlacementArgs + i]);
760  }
761  const Expr *getConstructorArg(unsigned i) const {
762    assert(i < NumConstructorArgs && "Index out of range");
763    return cast<Expr>(SubExprs[Array + NumPlacementArgs + i]);
764  }
765
766  typedef ExprIterator arg_iterator;
767  typedef ConstExprIterator const_arg_iterator;
768
769  arg_iterator placement_arg_begin() {
770    return SubExprs + Array;
771  }
772  arg_iterator placement_arg_end() {
773    return SubExprs + Array + getNumPlacementArgs();
774  }
775  const_arg_iterator placement_arg_begin() const {
776    return SubExprs + Array;
777  }
778  const_arg_iterator placement_arg_end() const {
779    return SubExprs + Array + getNumPlacementArgs();
780  }
781
782  arg_iterator constructor_arg_begin() {
783    return SubExprs + Array + getNumPlacementArgs();
784  }
785  arg_iterator constructor_arg_end() {
786    return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
787  }
788  const_arg_iterator constructor_arg_begin() const {
789    return SubExprs + Array + getNumPlacementArgs();
790  }
791  const_arg_iterator constructor_arg_end() const {
792    return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
793  }
794
795  virtual SourceRange getSourceRange() const {
796    return SourceRange(StartLoc, EndLoc);
797  }
798
799  static bool classof(const Stmt *T) {
800    return T->getStmtClass() == CXXNewExprClass;
801  }
802  static bool classof(const CXXNewExpr *) { return true; }
803
804  // Iterators
805  virtual child_iterator child_begin();
806  virtual child_iterator child_end();
807};
808
809/// CXXDeleteExpr - A delete expression for memory deallocation and destructor
810/// calls, e.g. "delete[] pArray".
811class CXXDeleteExpr : public Expr {
812  // Is this a forced global delete, i.e. "::delete"?
813  bool GlobalDelete : 1;
814  // Is this the array form of delete, i.e. "delete[]"?
815  bool ArrayForm : 1;
816  // Points to the operator delete overload that is used. Could be a member.
817  FunctionDecl *OperatorDelete;
818  // The pointer expression to be deleted.
819  Stmt *Argument;
820  // Location of the expression.
821  SourceLocation Loc;
822public:
823  CXXDeleteExpr(QualType ty, bool globalDelete, bool arrayForm,
824                FunctionDecl *operatorDelete, Expr *arg, SourceLocation loc)
825    : Expr(CXXDeleteExprClass, ty, false, false), GlobalDelete(globalDelete),
826      ArrayForm(arrayForm), OperatorDelete(operatorDelete), Argument(arg),
827      Loc(loc) { }
828
829  bool isGlobalDelete() const { return GlobalDelete; }
830  bool isArrayForm() const { return ArrayForm; }
831
832  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
833
834  Expr *getArgument() { return cast<Expr>(Argument); }
835  const Expr *getArgument() const { return cast<Expr>(Argument); }
836
837  virtual SourceRange getSourceRange() const {
838    return SourceRange(Loc, Argument->getLocEnd());
839  }
840
841  static bool classof(const Stmt *T) {
842    return T->getStmtClass() == CXXDeleteExprClass;
843  }
844  static bool classof(const CXXDeleteExpr *) { return true; }
845
846  // Iterators
847  virtual child_iterator child_begin();
848  virtual child_iterator child_end();
849};
850
851/// \brief Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
852///
853/// Example:
854///
855/// \code
856/// template<typename T>
857/// void destroy(T* ptr) {
858///   ptr->~T();
859/// }
860/// \endcode
861///
862/// When the template is parsed, the expression \c ptr->~T will be stored as
863/// a member reference expression. If it then instantiated with a scalar type
864/// as a template argument for T, the resulting expression will be a
865/// pseudo-destructor expression.
866class CXXPseudoDestructorExpr : public Expr {
867  /// \brief The base expression (that is being destroyed).
868  Stmt *Base;
869
870  /// \brief Whether the operator was an arrow ('->'); otherwise, it was a
871  /// period ('.').
872  bool IsArrow : 1;
873
874  /// \brief The location of the '.' or '->' operator.
875  SourceLocation OperatorLoc;
876
877  /// \brief The nested-name-specifier that follows the operator, if present.
878  NestedNameSpecifier *Qualifier;
879
880  /// \brief The source range that covers the nested-name-specifier, if
881  /// present.
882  SourceRange QualifierRange;
883
884  /// \brief The type being destroyed.
885  QualType DestroyedType;
886
887  /// \brief The location of the type after the '~'.
888  SourceLocation DestroyedTypeLoc;
889
890public:
891  CXXPseudoDestructorExpr(ASTContext &Context,
892                          Expr *Base, bool isArrow, SourceLocation OperatorLoc,
893                          NestedNameSpecifier *Qualifier,
894                          SourceRange QualifierRange,
895                          QualType DestroyedType,
896                          SourceLocation DestroyedTypeLoc)
897    : Expr(CXXPseudoDestructorExprClass,
898           Context.getPointerType(Context.getFunctionType(Context.VoidTy, 0, 0,
899                                                          false, 0)),
900           /*isTypeDependent=*/false,
901           /*isValueDependent=*/Base->isValueDependent()),
902      Base(static_cast<Stmt *>(Base)), IsArrow(isArrow),
903      OperatorLoc(OperatorLoc), Qualifier(Qualifier),
904      QualifierRange(QualifierRange), DestroyedType(DestroyedType),
905      DestroyedTypeLoc(DestroyedTypeLoc) { }
906
907  void setBase(Expr *E) { Base = E; }
908  Expr *getBase() const { return cast<Expr>(Base); }
909
910  /// \brief Determines whether this member expression actually had
911  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
912  /// x->Base::foo.
913  bool hasQualifier() const { return Qualifier != 0; }
914
915  /// \brief If the member name was qualified, retrieves the source range of
916  /// the nested-name-specifier that precedes the member name. Otherwise,
917  /// returns an empty source range.
918  SourceRange getQualifierRange() const { return QualifierRange; }
919
920  /// \brief If the member name was qualified, retrieves the
921  /// nested-name-specifier that precedes the member name. Otherwise, returns
922  /// NULL.
923  NestedNameSpecifier *getQualifier() const { return Qualifier; }
924
925  /// \brief Determine whether this pseudo-destructor expression was written
926  /// using an '->' (otherwise, it used a '.').
927  bool isArrow() const { return IsArrow; }
928  void setArrow(bool A) { IsArrow = A; }
929
930  /// \brief Retrieve the location of the '.' or '->' operator.
931  SourceLocation getOperatorLoc() const { return OperatorLoc; }
932
933  /// \brief Retrieve the type that is being destroyed.
934  QualType getDestroyedType() const { return DestroyedType; }
935
936  /// \brief Retrieve the location of the type being destroyed.
937  SourceLocation getDestroyedTypeLoc() const { return DestroyedTypeLoc; }
938
939  virtual SourceRange getSourceRange() const {
940    return SourceRange(Base->getLocStart(), DestroyedTypeLoc);
941  }
942
943  static bool classof(const Stmt *T) {
944    return T->getStmtClass() == CXXPseudoDestructorExprClass;
945  }
946  static bool classof(const CXXPseudoDestructorExpr *) { return true; }
947
948  // Iterators
949  virtual child_iterator child_begin();
950  virtual child_iterator child_end();
951};
952
953/// UnaryTypeTraitExpr - A GCC or MS unary type trait, as used in the
954/// implementation of TR1/C++0x type trait templates.
955/// Example:
956/// __is_pod(int) == true
957/// __is_enum(std::string) == false
958class UnaryTypeTraitExpr : public Expr {
959  /// UTT - The trait.
960  UnaryTypeTrait UTT;
961
962  /// Loc - The location of the type trait keyword.
963  SourceLocation Loc;
964
965  /// RParen - The location of the closing paren.
966  SourceLocation RParen;
967
968  /// QueriedType - The type we're testing.
969  QualType QueriedType;
970
971public:
972  UnaryTypeTraitExpr(SourceLocation loc, UnaryTypeTrait utt, QualType queried,
973                     SourceLocation rparen, QualType ty)
974    : Expr(UnaryTypeTraitExprClass, ty, false, queried->isDependentType()),
975      UTT(utt), Loc(loc), RParen(rparen), QueriedType(queried) { }
976
977  virtual SourceRange getSourceRange() const { return SourceRange(Loc, RParen);}
978
979  UnaryTypeTrait getTrait() const { return UTT; }
980
981  QualType getQueriedType() const { return QueriedType; }
982
983  bool EvaluateTrait(ASTContext&) const;
984
985  static bool classof(const Stmt *T) {
986    return T->getStmtClass() == UnaryTypeTraitExprClass;
987  }
988  static bool classof(const UnaryTypeTraitExpr *) { return true; }
989
990  // Iterators
991  virtual child_iterator child_begin();
992  virtual child_iterator child_end();
993};
994
995/// \brief A reference to a name which we were able to look up during
996/// parsing but could not resolve to a specific declaration.  This
997/// arises in several ways:
998///   * we might be waiting for argument-dependent lookup
999///   * the name might resolve to an overloaded function
1000/// and eventually:
1001///   * the lookup might have included a function template
1002/// These never include UnresolvedUsingValueDecls, which are always
1003/// class members and therefore appear only in
1004/// UnresolvedMemberLookupExprs.
1005class UnresolvedLookupExpr : public Expr {
1006  /// The results.  These are undesugared, which is to say, they may
1007  /// include UsingShadowDecls.
1008  UnresolvedSet Results;
1009
1010  /// The name declared.
1011  DeclarationName Name;
1012
1013  /// The qualifier given, if any.
1014  NestedNameSpecifier *Qualifier;
1015
1016  /// The source range of the nested name specifier.
1017  SourceRange QualifierRange;
1018
1019  /// The location of the name.
1020  SourceLocation NameLoc;
1021
1022  /// True if these lookup results should be extended by
1023  /// argument-dependent lookup if this is the operand of a function
1024  /// call.
1025  bool RequiresADL;
1026
1027  /// True if these lookup results are overloaded.  This is pretty
1028  /// trivially rederivable if we urgently need to kill this field.
1029  bool Overloaded;
1030
1031  /// True if the name looked up had explicit template arguments.
1032  /// This requires all the results to be function templates.
1033  bool HasExplicitTemplateArgs;
1034
1035  UnresolvedLookupExpr(QualType T, bool Dependent,
1036                       NestedNameSpecifier *Qualifier, SourceRange QRange,
1037                       DeclarationName Name, SourceLocation NameLoc,
1038                       bool RequiresADL, bool Overloaded, bool HasTemplateArgs)
1039    : Expr(UnresolvedLookupExprClass, T, Dependent, Dependent),
1040      Name(Name), Qualifier(Qualifier), QualifierRange(QRange),
1041      NameLoc(NameLoc), RequiresADL(RequiresADL), Overloaded(Overloaded),
1042      HasExplicitTemplateArgs(HasTemplateArgs)
1043  {}
1044
1045public:
1046  static UnresolvedLookupExpr *Create(ASTContext &C,
1047                                      bool Dependent,
1048                                      NestedNameSpecifier *Qualifier,
1049                                      SourceRange QualifierRange,
1050                                      DeclarationName Name,
1051                                      SourceLocation NameLoc,
1052                                      bool ADL, bool Overloaded) {
1053    return new(C) UnresolvedLookupExpr(Dependent ? C.DependentTy : C.OverloadTy,
1054                                       Dependent, Qualifier, QualifierRange,
1055                                       Name, NameLoc, ADL, Overloaded, false);
1056  }
1057
1058  static UnresolvedLookupExpr *Create(ASTContext &C,
1059                                      bool Dependent,
1060                                      NestedNameSpecifier *Qualifier,
1061                                      SourceRange QualifierRange,
1062                                      DeclarationName Name,
1063                                      SourceLocation NameLoc,
1064                                      bool ADL,
1065                                      const TemplateArgumentListInfo &Args);
1066
1067  /// Computes whether an unresolved lookup on the given declarations
1068  /// and optional template arguments is type- and value-dependent.
1069  static bool ComputeDependence(NamedDecl * const *Begin,
1070                                NamedDecl * const *End,
1071                                const TemplateArgumentListInfo *Args);
1072
1073  void addDecl(NamedDecl *Decl) {
1074    Results.addDecl(Decl);
1075  }
1076
1077  typedef UnresolvedSet::iterator decls_iterator;
1078  decls_iterator decls_begin() const { return Results.begin(); }
1079  decls_iterator decls_end() const { return Results.end(); }
1080
1081  /// True if this declaration should be extended by
1082  /// argument-dependent lookup.
1083  bool requiresADL() const { return RequiresADL; }
1084
1085  /// True if this lookup is overloaded.
1086  bool isOverloaded() const { return Overloaded; }
1087
1088  /// Fetches the name looked up.
1089  DeclarationName getName() const { return Name; }
1090
1091  /// Gets the location of the name.
1092  SourceLocation getNameLoc() const { return NameLoc; }
1093
1094  /// Fetches the nested-name qualifier, if one was given.
1095  NestedNameSpecifier *getQualifier() const { return Qualifier; }
1096
1097  /// Fetches the range of the nested-name qualifier.
1098  SourceRange getQualifierRange() const { return QualifierRange; }
1099
1100  /// Determines whether this lookup had explicit template arguments.
1101  bool hasExplicitTemplateArgs() const { return HasExplicitTemplateArgs; }
1102
1103  // Note that, inconsistently with the explicit-template-argument AST
1104  // nodes, users are *forbidden* from calling these methods on objects
1105  // without explicit template arguments.
1106
1107  /// Gets a reference to the explicit template argument list.
1108  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
1109    assert(hasExplicitTemplateArgs());
1110    return *reinterpret_cast<const ExplicitTemplateArgumentList*>(this + 1);
1111  }
1112
1113  /// \brief Copies the template arguments (if present) into the given
1114  /// structure.
1115  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1116    getExplicitTemplateArgs().copyInto(List);
1117  }
1118
1119  SourceLocation getLAngleLoc() const {
1120    return getExplicitTemplateArgs().LAngleLoc;
1121  }
1122
1123  SourceLocation getRAngleLoc() const {
1124    return getExplicitTemplateArgs().RAngleLoc;
1125  }
1126
1127  TemplateArgumentLoc const *getTemplateArgs() const {
1128    return getExplicitTemplateArgs().getTemplateArgs();
1129  }
1130
1131  unsigned getNumTemplateArgs() const {
1132    return getExplicitTemplateArgs().NumTemplateArgs;
1133  }
1134
1135  virtual SourceRange getSourceRange() const {
1136    SourceRange Range(NameLoc);
1137    if (Qualifier) Range.setBegin(QualifierRange.getBegin());
1138    if (hasExplicitTemplateArgs()) Range.setEnd(getRAngleLoc());
1139    return Range;
1140  }
1141
1142  virtual StmtIterator child_begin();
1143  virtual StmtIterator child_end();
1144
1145  static bool classof(const Stmt *T) {
1146    return T->getStmtClass() == UnresolvedLookupExprClass;
1147  }
1148  static bool classof(const UnresolvedLookupExpr *) { return true; }
1149};
1150
1151/// \brief A qualified reference to a name whose declaration cannot
1152/// yet be resolved.
1153///
1154/// DependentScopeDeclRefExpr is similar to DeclRefExpr in that
1155/// it expresses a reference to a declaration such as
1156/// X<T>::value. The difference, however, is that an
1157/// DependentScopeDeclRefExpr node is used only within C++ templates when
1158/// the qualification (e.g., X<T>::) refers to a dependent type. In
1159/// this case, X<T>::value cannot resolve to a declaration because the
1160/// declaration will differ from on instantiation of X<T> to the
1161/// next. Therefore, DependentScopeDeclRefExpr keeps track of the
1162/// qualifier (X<T>::) and the name of the entity being referenced
1163/// ("value"). Such expressions will instantiate to a DeclRefExpr once the
1164/// declaration can be found.
1165class DependentScopeDeclRefExpr : public Expr {
1166  /// The name of the entity we will be referencing.
1167  DeclarationName Name;
1168
1169  /// Location of the name of the declaration we're referencing.
1170  SourceLocation Loc;
1171
1172  /// QualifierRange - The source range that covers the
1173  /// nested-name-specifier.
1174  SourceRange QualifierRange;
1175
1176  /// \brief The nested-name-specifier that qualifies this unresolved
1177  /// declaration name.
1178  NestedNameSpecifier *Qualifier;
1179
1180  /// \brief Whether the name includes explicit template arguments.
1181  bool HasExplicitTemplateArgs;
1182
1183  DependentScopeDeclRefExpr(QualType T,
1184                            NestedNameSpecifier *Qualifier,
1185                            SourceRange QualifierRange,
1186                            DeclarationName Name,
1187                            SourceLocation NameLoc,
1188                            bool HasExplicitTemplateArgs)
1189    : Expr(DependentScopeDeclRefExprClass, T, true, true),
1190      Name(Name), Loc(NameLoc),
1191      QualifierRange(QualifierRange), Qualifier(Qualifier),
1192      HasExplicitTemplateArgs(HasExplicitTemplateArgs)
1193  {}
1194
1195public:
1196  static DependentScopeDeclRefExpr *Create(ASTContext &C,
1197                                           NestedNameSpecifier *Qualifier,
1198                                           SourceRange QualifierRange,
1199                                           DeclarationName Name,
1200                                           SourceLocation NameLoc,
1201                              const TemplateArgumentListInfo *TemplateArgs = 0);
1202
1203  /// \brief Retrieve the name that this expression refers to.
1204  DeclarationName getDeclName() const { return Name; }
1205
1206  /// \brief Retrieve the location of the name within the expression.
1207  SourceLocation getLocation() const { return Loc; }
1208
1209  /// \brief Retrieve the source range of the nested-name-specifier.
1210  SourceRange getQualifierRange() const { return QualifierRange; }
1211
1212  /// \brief Retrieve the nested-name-specifier that qualifies this
1213  /// declaration.
1214  NestedNameSpecifier *getQualifier() const { return Qualifier; }
1215
1216  /// Determines whether this lookup had explicit template arguments.
1217  bool hasExplicitTemplateArgs() const { return HasExplicitTemplateArgs; }
1218
1219  // Note that, inconsistently with the explicit-template-argument AST
1220  // nodes, users are *forbidden* from calling these methods on objects
1221  // without explicit template arguments.
1222
1223  /// Gets a reference to the explicit template argument list.
1224  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
1225    assert(hasExplicitTemplateArgs());
1226    return *reinterpret_cast<const ExplicitTemplateArgumentList*>(this + 1);
1227  }
1228
1229  /// \brief Copies the template arguments (if present) into the given
1230  /// structure.
1231  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1232    getExplicitTemplateArgs().copyInto(List);
1233  }
1234
1235  SourceLocation getLAngleLoc() const {
1236    return getExplicitTemplateArgs().LAngleLoc;
1237  }
1238
1239  SourceLocation getRAngleLoc() const {
1240    return getExplicitTemplateArgs().RAngleLoc;
1241  }
1242
1243  TemplateArgumentLoc const *getTemplateArgs() const {
1244    return getExplicitTemplateArgs().getTemplateArgs();
1245  }
1246
1247  unsigned getNumTemplateArgs() const {
1248    return getExplicitTemplateArgs().NumTemplateArgs;
1249  }
1250
1251  virtual SourceRange getSourceRange() const {
1252    SourceRange Range(QualifierRange.getBegin(), getLocation());
1253    if (hasExplicitTemplateArgs())
1254      Range.setEnd(getRAngleLoc());
1255    return Range;
1256  }
1257
1258  static bool classof(const Stmt *T) {
1259    return T->getStmtClass() == DependentScopeDeclRefExprClass;
1260  }
1261  static bool classof(const DependentScopeDeclRefExpr *) { return true; }
1262
1263  virtual StmtIterator child_begin();
1264  virtual StmtIterator child_end();
1265};
1266
1267class CXXExprWithTemporaries : public Expr {
1268  Stmt *SubExpr;
1269
1270  CXXTemporary **Temps;
1271  unsigned NumTemps;
1272
1273  CXXExprWithTemporaries(Expr *SubExpr, CXXTemporary **Temps,
1274                         unsigned NumTemps);
1275  ~CXXExprWithTemporaries();
1276
1277protected:
1278  virtual void DoDestroy(ASTContext &C);
1279
1280public:
1281  static CXXExprWithTemporaries *Create(ASTContext &C, Expr *SubExpr,
1282                                        CXXTemporary **Temps,
1283                                        unsigned NumTemps);
1284
1285  unsigned getNumTemporaries() const { return NumTemps; }
1286  CXXTemporary *getTemporary(unsigned i) {
1287    assert(i < NumTemps && "Index out of range");
1288    return Temps[i];
1289  }
1290  const CXXTemporary *getTemporary(unsigned i) const {
1291    return const_cast<CXXExprWithTemporaries*>(this)->getTemporary(i);
1292  }
1293
1294  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
1295  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
1296  void setSubExpr(Expr *E) { SubExpr = E; }
1297
1298  virtual SourceRange getSourceRange() const {
1299    return SubExpr->getSourceRange();
1300  }
1301
1302  // Implement isa/cast/dyncast/etc.
1303  static bool classof(const Stmt *T) {
1304    return T->getStmtClass() == CXXExprWithTemporariesClass;
1305  }
1306  static bool classof(const CXXExprWithTemporaries *) { return true; }
1307
1308  // Iterators
1309  virtual child_iterator child_begin();
1310  virtual child_iterator child_end();
1311};
1312
1313/// \brief Describes an explicit type conversion that uses functional
1314/// notion but could not be resolved because one or more arguments are
1315/// type-dependent.
1316///
1317/// The explicit type conversions expressed by
1318/// CXXUnresolvedConstructExpr have the form \c T(a1, a2, ..., aN),
1319/// where \c T is some type and \c a1, a2, ..., aN are values, and
1320/// either \C T is a dependent type or one or more of the \c a's is
1321/// type-dependent. For example, this would occur in a template such
1322/// as:
1323///
1324/// \code
1325///   template<typename T, typename A1>
1326///   inline T make_a(const A1& a1) {
1327///     return T(a1);
1328///   }
1329/// \endcode
1330///
1331/// When the returned expression is instantiated, it may resolve to a
1332/// constructor call, conversion function call, or some kind of type
1333/// conversion.
1334class CXXUnresolvedConstructExpr : public Expr {
1335  /// \brief The starting location of the type
1336  SourceLocation TyBeginLoc;
1337
1338  /// \brief The type being constructed.
1339  QualType Type;
1340
1341  /// \brief The location of the left parentheses ('(').
1342  SourceLocation LParenLoc;
1343
1344  /// \brief The location of the right parentheses (')').
1345  SourceLocation RParenLoc;
1346
1347  /// \brief The number of arguments used to construct the type.
1348  unsigned NumArgs;
1349
1350  CXXUnresolvedConstructExpr(SourceLocation TyBegin,
1351                             QualType T,
1352                             SourceLocation LParenLoc,
1353                             Expr **Args,
1354                             unsigned NumArgs,
1355                             SourceLocation RParenLoc);
1356
1357public:
1358  static CXXUnresolvedConstructExpr *Create(ASTContext &C,
1359                                            SourceLocation TyBegin,
1360                                            QualType T,
1361                                            SourceLocation LParenLoc,
1362                                            Expr **Args,
1363                                            unsigned NumArgs,
1364                                            SourceLocation RParenLoc);
1365
1366  /// \brief Retrieve the source location where the type begins.
1367  SourceLocation getTypeBeginLoc() const { return TyBeginLoc; }
1368  void setTypeBeginLoc(SourceLocation L) { TyBeginLoc = L; }
1369
1370  /// \brief Retrieve the type that is being constructed, as specified
1371  /// in the source code.
1372  QualType getTypeAsWritten() const { return Type; }
1373  void setTypeAsWritten(QualType T) { Type = T; }
1374
1375  /// \brief Retrieve the location of the left parentheses ('(') that
1376  /// precedes the argument list.
1377  SourceLocation getLParenLoc() const { return LParenLoc; }
1378  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
1379
1380  /// \brief Retrieve the location of the right parentheses (')') that
1381  /// follows the argument list.
1382  SourceLocation getRParenLoc() const { return RParenLoc; }
1383  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1384
1385  /// \brief Retrieve the number of arguments.
1386  unsigned arg_size() const { return NumArgs; }
1387
1388  typedef Expr** arg_iterator;
1389  arg_iterator arg_begin() { return reinterpret_cast<Expr**>(this + 1); }
1390  arg_iterator arg_end() { return arg_begin() + NumArgs; }
1391
1392  Expr *getArg(unsigned I) {
1393    assert(I < NumArgs && "Argument index out-of-range");
1394    return *(arg_begin() + I);
1395  }
1396
1397  virtual SourceRange getSourceRange() const {
1398    return SourceRange(TyBeginLoc, RParenLoc);
1399  }
1400  static bool classof(const Stmt *T) {
1401    return T->getStmtClass() == CXXUnresolvedConstructExprClass;
1402  }
1403  static bool classof(const CXXUnresolvedConstructExpr *) { return true; }
1404
1405  // Iterators
1406  virtual child_iterator child_begin();
1407  virtual child_iterator child_end();
1408};
1409
1410/// \brief Represents a C++ member access expression where the actual
1411/// member referenced could not be resolved because the base
1412/// expression or the member name was dependent.
1413///
1414/// Like UnresolvedMemberExprs, these can be either implicit or
1415/// explicit accesses.  It is only possible to get one of these with
1416/// an implicit access if a qualifier is provided.
1417class CXXDependentScopeMemberExpr : public Expr {
1418  /// \brief The expression for the base pointer or class reference,
1419  /// e.g., the \c x in x.f.  Can be null in implicit accesses.
1420  Stmt *Base;
1421
1422  /// \brief The type of the base expression.  Never null, even for
1423  /// implicit accesses.
1424  QualType BaseType;
1425
1426  /// \brief Whether this member expression used the '->' operator or
1427  /// the '.' operator.
1428  bool IsArrow : 1;
1429
1430  /// \brief Whether this member expression has explicitly-specified template
1431  /// arguments.
1432  bool HasExplicitTemplateArgs : 1;
1433
1434  /// \brief The location of the '->' or '.' operator.
1435  SourceLocation OperatorLoc;
1436
1437  /// \brief The nested-name-specifier that precedes the member name, if any.
1438  NestedNameSpecifier *Qualifier;
1439
1440  /// \brief The source range covering the nested name specifier.
1441  SourceRange QualifierRange;
1442
1443  /// \brief In a qualified member access expression such as t->Base::f, this
1444  /// member stores the resolves of name lookup in the context of the member
1445  /// access expression, to be used at instantiation time.
1446  ///
1447  /// FIXME: This member, along with the Qualifier and QualifierRange, could
1448  /// be stuck into a structure that is optionally allocated at the end of
1449  /// the CXXDependentScopeMemberExpr, to save space in the common case.
1450  NamedDecl *FirstQualifierFoundInScope;
1451
1452  /// \brief The member to which this member expression refers, which
1453  /// can be name, overloaded operator, or destructor.
1454  /// FIXME: could also be a template-id
1455  DeclarationName Member;
1456
1457  /// \brief The location of the member name.
1458  SourceLocation MemberLoc;
1459
1460  /// \brief Retrieve the explicit template argument list that followed the
1461  /// member template name, if any.
1462  ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() {
1463    assert(HasExplicitTemplateArgs);
1464    return reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
1465  }
1466
1467  /// \brief Retrieve the explicit template argument list that followed the
1468  /// member template name, if any.
1469  const ExplicitTemplateArgumentList *getExplicitTemplateArgumentList() const {
1470    return const_cast<CXXDependentScopeMemberExpr *>(this)
1471             ->getExplicitTemplateArgumentList();
1472  }
1473
1474  CXXDependentScopeMemberExpr(ASTContext &C,
1475                          Expr *Base, QualType BaseType, bool IsArrow,
1476                          SourceLocation OperatorLoc,
1477                          NestedNameSpecifier *Qualifier,
1478                          SourceRange QualifierRange,
1479                          NamedDecl *FirstQualifierFoundInScope,
1480                          DeclarationName Member,
1481                          SourceLocation MemberLoc,
1482                          const TemplateArgumentListInfo *TemplateArgs);
1483
1484public:
1485  CXXDependentScopeMemberExpr(ASTContext &C,
1486                          Expr *Base, QualType BaseType,
1487                          bool IsArrow,
1488                          SourceLocation OperatorLoc,
1489                          NestedNameSpecifier *Qualifier,
1490                          SourceRange QualifierRange,
1491                          NamedDecl *FirstQualifierFoundInScope,
1492                          DeclarationName Member,
1493                          SourceLocation MemberLoc)
1494  : Expr(CXXDependentScopeMemberExprClass, C.DependentTy, true, true),
1495    Base(Base), BaseType(BaseType), IsArrow(IsArrow),
1496    HasExplicitTemplateArgs(false), OperatorLoc(OperatorLoc),
1497    Qualifier(Qualifier), QualifierRange(QualifierRange),
1498    FirstQualifierFoundInScope(FirstQualifierFoundInScope),
1499    Member(Member), MemberLoc(MemberLoc) { }
1500
1501  static CXXDependentScopeMemberExpr *
1502  Create(ASTContext &C,
1503         Expr *Base, QualType BaseType, bool IsArrow,
1504         SourceLocation OperatorLoc,
1505         NestedNameSpecifier *Qualifier,
1506         SourceRange QualifierRange,
1507         NamedDecl *FirstQualifierFoundInScope,
1508         DeclarationName Member,
1509         SourceLocation MemberLoc,
1510         const TemplateArgumentListInfo *TemplateArgs);
1511
1512  /// \brief True if this is an implicit access, i.e. one in which the
1513  /// member being accessed was not written in the source.  The source
1514  /// location of the operator is invalid in this case.
1515  bool isImplicitAccess() const { return Base == 0; }
1516
1517  /// \brief Retrieve the base object of this member expressions,
1518  /// e.g., the \c x in \c x.m.
1519  Expr *getBase() const {
1520    assert(!isImplicitAccess());
1521    return cast<Expr>(Base);
1522  }
1523  void setBase(Expr *E) { Base = E; }
1524
1525  QualType getBaseType() const { return BaseType; }
1526
1527  /// \brief Determine whether this member expression used the '->'
1528  /// operator; otherwise, it used the '.' operator.
1529  bool isArrow() const { return IsArrow; }
1530  void setArrow(bool A) { IsArrow = A; }
1531
1532  /// \brief Retrieve the location of the '->' or '.' operator.
1533  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1534  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
1535
1536  /// \brief Retrieve the nested-name-specifier that qualifies the member
1537  /// name.
1538  NestedNameSpecifier *getQualifier() const { return Qualifier; }
1539
1540  /// \brief Retrieve the source range covering the nested-name-specifier
1541  /// that qualifies the member name.
1542  SourceRange getQualifierRange() const { return QualifierRange; }
1543
1544  /// \brief Retrieve the first part of the nested-name-specifier that was
1545  /// found in the scope of the member access expression when the member access
1546  /// was initially parsed.
1547  ///
1548  /// This function only returns a useful result when member access expression
1549  /// uses a qualified member name, e.g., "x.Base::f". Here, the declaration
1550  /// returned by this function describes what was found by unqualified name
1551  /// lookup for the identifier "Base" within the scope of the member access
1552  /// expression itself. At template instantiation time, this information is
1553  /// combined with the results of name lookup into the type of the object
1554  /// expression itself (the class type of x).
1555  NamedDecl *getFirstQualifierFoundInScope() const {
1556    return FirstQualifierFoundInScope;
1557  }
1558
1559  /// \brief Retrieve the name of the member that this expression
1560  /// refers to.
1561  DeclarationName getMember() const { return Member; }
1562  void setMember(DeclarationName N) { Member = N; }
1563
1564  // \brief Retrieve the location of the name of the member that this
1565  // expression refers to.
1566  SourceLocation getMemberLoc() const { return MemberLoc; }
1567  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
1568
1569  /// \brief Determines whether this member expression actually had a C++
1570  /// template argument list explicitly specified, e.g., x.f<int>.
1571  bool hasExplicitTemplateArgs() const {
1572    return HasExplicitTemplateArgs;
1573  }
1574
1575  /// \brief Copies the template arguments (if present) into the given
1576  /// structure.
1577  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1578    assert(HasExplicitTemplateArgs);
1579    getExplicitTemplateArgumentList()->copyInto(List);
1580  }
1581
1582  /// \brief Retrieve the location of the left angle bracket following the
1583  /// member name ('<'), if any.
1584  SourceLocation getLAngleLoc() const {
1585    assert(HasExplicitTemplateArgs);
1586    return getExplicitTemplateArgumentList()->LAngleLoc;
1587  }
1588
1589  /// \brief Retrieve the template arguments provided as part of this
1590  /// template-id.
1591  const TemplateArgumentLoc *getTemplateArgs() const {
1592    assert(HasExplicitTemplateArgs);
1593    return getExplicitTemplateArgumentList()->getTemplateArgs();
1594  }
1595
1596  /// \brief Retrieve the number of template arguments provided as part of this
1597  /// template-id.
1598  unsigned getNumTemplateArgs() const {
1599    assert(HasExplicitTemplateArgs);
1600    return getExplicitTemplateArgumentList()->NumTemplateArgs;
1601  }
1602
1603  /// \brief Retrieve the location of the right angle bracket following the
1604  /// template arguments ('>').
1605  SourceLocation getRAngleLoc() const {
1606    assert(HasExplicitTemplateArgs);
1607    return getExplicitTemplateArgumentList()->RAngleLoc;
1608  }
1609
1610  virtual SourceRange getSourceRange() const {
1611    SourceRange Range;
1612    if (!isImplicitAccess())
1613      Range.setBegin(Base->getSourceRange().getBegin());
1614    else if (getQualifier())
1615      Range.setBegin(getQualifierRange().getBegin());
1616    else
1617      Range.setBegin(MemberLoc);
1618
1619    if (hasExplicitTemplateArgs())
1620      Range.setEnd(getRAngleLoc());
1621    else
1622      Range.setEnd(MemberLoc);
1623    return Range;
1624  }
1625
1626  static bool classof(const Stmt *T) {
1627    return T->getStmtClass() == CXXDependentScopeMemberExprClass;
1628  }
1629  static bool classof(const CXXDependentScopeMemberExpr *) { return true; }
1630
1631  // Iterators
1632  virtual child_iterator child_begin();
1633  virtual child_iterator child_end();
1634};
1635
1636/// \brief Represents a C++ member access expression for which lookup
1637/// produced a set of overloaded functions.
1638///
1639/// The member access may be explicit or implicit:
1640///    struct A {
1641///      int a, b;
1642///      int explicitAccess() { return this->a + this->A::b; }
1643///      int implicitAccess() { return a + A::b; }
1644///    };
1645///
1646/// In the final AST, an explicit access always becomes a MemberExpr.
1647/// An implicit access may become either a MemberExpr or a
1648/// DeclRefExpr, depending on whether the member is static.
1649class UnresolvedMemberExpr : public Expr {
1650  /// The results.  These are undesugared, which is to say, they may
1651  /// include UsingShadowDecls.
1652  UnresolvedSet Results;
1653
1654  /// \brief The expression for the base pointer or class reference,
1655  /// e.g., the \c x in x.f.  This can be null if this is an 'unbased'
1656  /// member expression
1657  Stmt *Base;
1658
1659  /// \brief The type of the base expression;  never null.
1660  QualType BaseType;
1661
1662  /// \brief Whether this member expression used the '->' operator or
1663  /// the '.' operator.
1664  bool IsArrow : 1;
1665
1666  /// \brief Whether the lookup results contain an unresolved using
1667  /// declaration.
1668  bool HasUnresolvedUsing : 1;
1669
1670  /// \brief Whether this member expression has explicitly-specified template
1671  /// arguments.
1672  bool HasExplicitTemplateArgs : 1;
1673
1674  /// \brief The location of the '->' or '.' operator.
1675  SourceLocation OperatorLoc;
1676
1677  /// \brief The nested-name-specifier that precedes the member name, if any.
1678  NestedNameSpecifier *Qualifier;
1679
1680  /// \brief The source range covering the nested name specifier.
1681  SourceRange QualifierRange;
1682
1683  /// \brief The member to which this member expression refers, which
1684  /// can be a name or an overloaded operator.
1685  DeclarationName MemberName;
1686
1687  /// \brief The location of the member name.
1688  SourceLocation MemberLoc;
1689
1690  /// \brief Retrieve the explicit template argument list that followed the
1691  /// member template name.
1692  ExplicitTemplateArgumentList *getExplicitTemplateArgs() {
1693    assert(HasExplicitTemplateArgs);
1694    return reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
1695  }
1696
1697  /// \brief Retrieve the explicit template argument list that followed the
1698  /// member template name, if any.
1699  const ExplicitTemplateArgumentList *getExplicitTemplateArgs() const {
1700    return const_cast<UnresolvedMemberExpr*>(this)->getExplicitTemplateArgs();
1701  }
1702
1703  UnresolvedMemberExpr(QualType T, bool Dependent,
1704                       bool HasUnresolvedUsing,
1705                       Expr *Base, QualType BaseType, bool IsArrow,
1706                       SourceLocation OperatorLoc,
1707                       NestedNameSpecifier *Qualifier,
1708                       SourceRange QualifierRange,
1709                       DeclarationName Member,
1710                       SourceLocation MemberLoc,
1711                       const TemplateArgumentListInfo *TemplateArgs);
1712
1713public:
1714  static UnresolvedMemberExpr *
1715  Create(ASTContext &C, bool Dependent, bool HasUnresolvedUsing,
1716         Expr *Base, QualType BaseType, bool IsArrow,
1717         SourceLocation OperatorLoc,
1718         NestedNameSpecifier *Qualifier,
1719         SourceRange QualifierRange,
1720         DeclarationName Member,
1721         SourceLocation MemberLoc,
1722         const TemplateArgumentListInfo *TemplateArgs);
1723
1724  /// Adds a declaration to the unresolved set.  By assumption, all of
1725  /// these happen at initialization time and properties like
1726  /// 'Dependent' and 'HasUnresolvedUsing' take them into account.
1727  void addDecl(NamedDecl *Decl) {
1728    Results.addDecl(Decl);
1729  }
1730
1731  typedef UnresolvedSet::iterator decls_iterator;
1732  decls_iterator decls_begin() const { return Results.begin(); }
1733  decls_iterator decls_end() const { return Results.end(); }
1734
1735  unsigned getNumDecls() const { return Results.size(); }
1736
1737  /// \brief True if this is an implicit access, i.e. one in which the
1738  /// member being accessed was not written in the source.  The source
1739  /// location of the operator is invalid in this case.
1740  bool isImplicitAccess() const { return Base == 0; }
1741
1742  /// \brief Retrieve the base object of this member expressions,
1743  /// e.g., the \c x in \c x.m.
1744  Expr *getBase() {
1745    assert(!isImplicitAccess());
1746    return cast<Expr>(Base);
1747  }
1748  void setBase(Expr *E) { Base = E; }
1749
1750  QualType getBaseType() const { return BaseType; }
1751
1752  /// \brief Determine whether this member expression used the '->'
1753  /// operator; otherwise, it used the '.' operator.
1754  bool isArrow() const { return IsArrow; }
1755  void setArrow(bool A) { IsArrow = A; }
1756
1757  /// \brief Retrieve the location of the '->' or '.' operator.
1758  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1759  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
1760
1761  /// \brief Retrieve the nested-name-specifier that qualifies the member
1762  /// name.
1763  NestedNameSpecifier *getQualifier() const { return Qualifier; }
1764
1765  /// \brief Retrieve the source range covering the nested-name-specifier
1766  /// that qualifies the member name.
1767  SourceRange getQualifierRange() const { return QualifierRange; }
1768
1769  /// \brief Retrieve the name of the member that this expression
1770  /// refers to.
1771  DeclarationName getMemberName() const { return MemberName; }
1772  void setMemberName(DeclarationName N) { MemberName = N; }
1773
1774  // \brief Retrieve the location of the name of the member that this
1775  // expression refers to.
1776  SourceLocation getMemberLoc() const { return MemberLoc; }
1777  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
1778
1779  /// \brief Determines whether this member expression actually had a C++
1780  /// template argument list explicitly specified, e.g., x.f<int>.
1781  bool hasExplicitTemplateArgs() const {
1782    return HasExplicitTemplateArgs;
1783  }
1784
1785  /// \brief Copies the template arguments into the given structure.
1786  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1787    getExplicitTemplateArgs()->copyInto(List);
1788  }
1789
1790  /// \brief Retrieve the location of the left angle bracket following
1791  /// the member name ('<').
1792  SourceLocation getLAngleLoc() const {
1793    return getExplicitTemplateArgs()->LAngleLoc;
1794  }
1795
1796  /// \brief Retrieve the template arguments provided as part of this
1797  /// template-id.
1798  const TemplateArgumentLoc *getTemplateArgs() const {
1799    return getExplicitTemplateArgs()->getTemplateArgs();
1800  }
1801
1802  /// \brief Retrieve the number of template arguments provided as
1803  /// part of this template-id.
1804  unsigned getNumTemplateArgs() const {
1805    return getExplicitTemplateArgs()->NumTemplateArgs;
1806  }
1807
1808  /// \brief Retrieve the location of the right angle bracket
1809  /// following the template arguments ('>').
1810  SourceLocation getRAngleLoc() const {
1811    return getExplicitTemplateArgs()->RAngleLoc;
1812  }
1813
1814  virtual SourceRange getSourceRange() const {
1815    SourceRange Range;
1816    if (!isImplicitAccess())
1817      Range.setBegin(Base->getSourceRange().getBegin());
1818    else if (getQualifier())
1819      Range.setBegin(getQualifierRange().getBegin());
1820    else
1821      Range.setBegin(MemberLoc);
1822
1823    if (hasExplicitTemplateArgs())
1824      Range.setEnd(getRAngleLoc());
1825    else
1826      Range.setEnd(MemberLoc);
1827    return Range;
1828  }
1829
1830  static bool classof(const Stmt *T) {
1831    return T->getStmtClass() == UnresolvedMemberExprClass;
1832  }
1833  static bool classof(const UnresolvedMemberExpr *) { return true; }
1834
1835  // Iterators
1836  virtual child_iterator child_begin();
1837  virtual child_iterator child_end();
1838};
1839
1840}  // end namespace clang
1841
1842#endif
1843