ExprCXX.h revision 9daa7bfdff7256cef693d7bf10084881bcb9253c
1//===--- ExprCXX.h - Classes for representing expressions -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses for C++ expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPRCXX_H
15#define LLVM_CLANG_AST_EXPRCXX_H
16
17#include "clang/AST/Expr.h"
18#include "clang/AST/UnresolvedSet.h"
19#include "clang/AST/TemplateBase.h"
20#include "clang/Basic/ExpressionTraits.h"
21#include "clang/Basic/Lambda.h"
22#include "clang/Basic/TypeTraits.h"
23
24namespace clang {
25
26class CXXConstructorDecl;
27class CXXDestructorDecl;
28class CXXMethodDecl;
29class CXXTemporary;
30class TemplateArgumentListInfo;
31
32//===--------------------------------------------------------------------===//
33// C++ Expressions.
34//===--------------------------------------------------------------------===//
35
36/// \brief A call to an overloaded operator written using operator
37/// syntax.
38///
39/// Represents a call to an overloaded operator written using operator
40/// syntax, e.g., "x + y" or "*p". While semantically equivalent to a
41/// normal call, this AST node provides better information about the
42/// syntactic representation of the call.
43///
44/// In a C++ template, this expression node kind will be used whenever
45/// any of the arguments are type-dependent. In this case, the
46/// function itself will be a (possibly empty) set of functions and
47/// function templates that were found by name lookup at template
48/// definition time.
49class CXXOperatorCallExpr : public CallExpr {
50  /// \brief The overloaded operator.
51  OverloadedOperatorKind Operator;
52
53public:
54  CXXOperatorCallExpr(ASTContext& C, OverloadedOperatorKind Op, Expr *fn,
55                      Expr **args, unsigned numargs, QualType t,
56                      ExprValueKind VK, SourceLocation operatorloc)
57    : CallExpr(C, CXXOperatorCallExprClass, fn, 0, args, numargs, t, VK,
58               operatorloc),
59      Operator(Op) {}
60  explicit CXXOperatorCallExpr(ASTContext& C, EmptyShell Empty) :
61    CallExpr(C, CXXOperatorCallExprClass, Empty) { }
62
63
64  /// getOperator - Returns the kind of overloaded operator that this
65  /// expression refers to.
66  OverloadedOperatorKind getOperator() const { return Operator; }
67  void setOperator(OverloadedOperatorKind Kind) { Operator = Kind; }
68
69  /// getOperatorLoc - Returns the location of the operator symbol in
70  /// the expression. When @c getOperator()==OO_Call, this is the
71  /// location of the right parentheses; when @c
72  /// getOperator()==OO_Subscript, this is the location of the right
73  /// bracket.
74  SourceLocation getOperatorLoc() const { return getRParenLoc(); }
75
76  SourceRange getSourceRange() const;
77
78  static bool classof(const Stmt *T) {
79    return T->getStmtClass() == CXXOperatorCallExprClass;
80  }
81  static bool classof(const CXXOperatorCallExpr *) { return true; }
82};
83
84/// CXXMemberCallExpr - Represents a call to a member function that
85/// may be written either with member call syntax (e.g., "obj.func()"
86/// or "objptr->func()") or with normal function-call syntax
87/// ("func()") within a member function that ends up calling a member
88/// function. The callee in either case is a MemberExpr that contains
89/// both the object argument and the member function, while the
90/// arguments are the arguments within the parentheses (not including
91/// the object argument).
92class CXXMemberCallExpr : public CallExpr {
93public:
94  CXXMemberCallExpr(ASTContext &C, Expr *fn, Expr **args, unsigned numargs,
95                    QualType t, ExprValueKind VK, SourceLocation RP)
96    : CallExpr(C, CXXMemberCallExprClass, fn, 0, args, numargs, t, VK, RP) {}
97
98  CXXMemberCallExpr(ASTContext &C, EmptyShell Empty)
99    : CallExpr(C, CXXMemberCallExprClass, Empty) { }
100
101  /// getImplicitObjectArgument - Retrieves the implicit object
102  /// argument for the member call. For example, in "x.f(5)", this
103  /// operation would return "x".
104  Expr *getImplicitObjectArgument() const;
105
106  /// Retrieves the declaration of the called method.
107  CXXMethodDecl *getMethodDecl() const;
108
109  /// getRecordDecl - Retrieves the CXXRecordDecl for the underlying type of
110  /// the implicit object argument. Note that this is may not be the same
111  /// declaration as that of the class context of the CXXMethodDecl which this
112  /// function is calling.
113  /// FIXME: Returns 0 for member pointer call exprs.
114  CXXRecordDecl *getRecordDecl();
115
116  static bool classof(const Stmt *T) {
117    return T->getStmtClass() == CXXMemberCallExprClass;
118  }
119  static bool classof(const CXXMemberCallExpr *) { return true; }
120};
121
122/// CUDAKernelCallExpr - Represents a call to a CUDA kernel function.
123class CUDAKernelCallExpr : public CallExpr {
124private:
125  enum { CONFIG, END_PREARG };
126
127public:
128  CUDAKernelCallExpr(ASTContext &C, Expr *fn, CallExpr *Config,
129                     Expr **args, unsigned numargs, QualType t,
130                     ExprValueKind VK, SourceLocation RP)
131    : CallExpr(C, CUDAKernelCallExprClass, fn, END_PREARG, args, numargs, t, VK,
132               RP) {
133    setConfig(Config);
134  }
135
136  CUDAKernelCallExpr(ASTContext &C, EmptyShell Empty)
137    : CallExpr(C, CUDAKernelCallExprClass, END_PREARG, Empty) { }
138
139  const CallExpr *getConfig() const {
140    return cast_or_null<CallExpr>(getPreArg(CONFIG));
141  }
142  CallExpr *getConfig() { return cast_or_null<CallExpr>(getPreArg(CONFIG)); }
143  void setConfig(CallExpr *E) { setPreArg(CONFIG, E); }
144
145  static bool classof(const Stmt *T) {
146    return T->getStmtClass() == CUDAKernelCallExprClass;
147  }
148  static bool classof(const CUDAKernelCallExpr *) { return true; }
149};
150
151/// CXXNamedCastExpr - Abstract class common to all of the C++ "named"
152/// casts, @c static_cast, @c dynamic_cast, @c reinterpret_cast, or @c
153/// const_cast.
154///
155/// This abstract class is inherited by all of the classes
156/// representing "named" casts, e.g., CXXStaticCastExpr,
157/// CXXDynamicCastExpr, CXXReinterpretCastExpr, and CXXConstCastExpr.
158class CXXNamedCastExpr : public ExplicitCastExpr {
159private:
160  SourceLocation Loc; // the location of the casting op
161  SourceLocation RParenLoc; // the location of the right parenthesis
162
163protected:
164  CXXNamedCastExpr(StmtClass SC, QualType ty, ExprValueKind VK,
165                   CastKind kind, Expr *op, unsigned PathSize,
166                   TypeSourceInfo *writtenTy, SourceLocation l,
167                   SourceLocation RParenLoc)
168    : ExplicitCastExpr(SC, ty, VK, kind, op, PathSize, writtenTy), Loc(l),
169      RParenLoc(RParenLoc) {}
170
171  explicit CXXNamedCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
172    : ExplicitCastExpr(SC, Shell, PathSize) { }
173
174  friend class ASTStmtReader;
175
176public:
177  const char *getCastName() const;
178
179  /// \brief Retrieve the location of the cast operator keyword, e.g.,
180  /// "static_cast".
181  SourceLocation getOperatorLoc() const { return Loc; }
182
183  /// \brief Retrieve the location of the closing parenthesis.
184  SourceLocation getRParenLoc() const { return RParenLoc; }
185
186  SourceRange getSourceRange() const {
187    return SourceRange(Loc, RParenLoc);
188  }
189  static bool classof(const Stmt *T) {
190    switch (T->getStmtClass()) {
191    case CXXStaticCastExprClass:
192    case CXXDynamicCastExprClass:
193    case CXXReinterpretCastExprClass:
194    case CXXConstCastExprClass:
195      return true;
196    default:
197      return false;
198    }
199  }
200  static bool classof(const CXXNamedCastExpr *) { return true; }
201};
202
203/// CXXStaticCastExpr - A C++ @c static_cast expression
204/// (C++ [expr.static.cast]).
205///
206/// This expression node represents a C++ static cast, e.g.,
207/// @c static_cast<int>(1.0).
208class CXXStaticCastExpr : public CXXNamedCastExpr {
209  CXXStaticCastExpr(QualType ty, ExprValueKind vk, CastKind kind, Expr *op,
210                    unsigned pathSize, TypeSourceInfo *writtenTy,
211                    SourceLocation l, SourceLocation RParenLoc)
212    : CXXNamedCastExpr(CXXStaticCastExprClass, ty, vk, kind, op, pathSize,
213                       writtenTy, l, RParenLoc) {}
214
215  explicit CXXStaticCastExpr(EmptyShell Empty, unsigned PathSize)
216    : CXXNamedCastExpr(CXXStaticCastExprClass, Empty, PathSize) { }
217
218public:
219  static CXXStaticCastExpr *Create(ASTContext &Context, QualType T,
220                                   ExprValueKind VK, CastKind K, Expr *Op,
221                                   const CXXCastPath *Path,
222                                   TypeSourceInfo *Written, SourceLocation L,
223                                   SourceLocation RParenLoc);
224  static CXXStaticCastExpr *CreateEmpty(ASTContext &Context,
225                                        unsigned PathSize);
226
227  static bool classof(const Stmt *T) {
228    return T->getStmtClass() == CXXStaticCastExprClass;
229  }
230  static bool classof(const CXXStaticCastExpr *) { return true; }
231};
232
233/// CXXDynamicCastExpr - A C++ @c dynamic_cast expression
234/// (C++ [expr.dynamic.cast]), which may perform a run-time check to
235/// determine how to perform the type cast.
236///
237/// This expression node represents a dynamic cast, e.g.,
238/// @c dynamic_cast<Derived*>(BasePtr).
239class CXXDynamicCastExpr : public CXXNamedCastExpr {
240  CXXDynamicCastExpr(QualType ty, ExprValueKind VK, CastKind kind,
241                     Expr *op, unsigned pathSize, TypeSourceInfo *writtenTy,
242                     SourceLocation l, SourceLocation RParenLoc)
243    : CXXNamedCastExpr(CXXDynamicCastExprClass, ty, VK, kind, op, pathSize,
244                       writtenTy, l, RParenLoc) {}
245
246  explicit CXXDynamicCastExpr(EmptyShell Empty, unsigned pathSize)
247    : CXXNamedCastExpr(CXXDynamicCastExprClass, Empty, pathSize) { }
248
249public:
250  static CXXDynamicCastExpr *Create(ASTContext &Context, QualType T,
251                                    ExprValueKind VK, CastKind Kind, Expr *Op,
252                                    const CXXCastPath *Path,
253                                    TypeSourceInfo *Written, SourceLocation L,
254                                    SourceLocation RParenLoc);
255
256  static CXXDynamicCastExpr *CreateEmpty(ASTContext &Context,
257                                         unsigned pathSize);
258
259  bool isAlwaysNull() const;
260
261  static bool classof(const Stmt *T) {
262    return T->getStmtClass() == CXXDynamicCastExprClass;
263  }
264  static bool classof(const CXXDynamicCastExpr *) { return true; }
265};
266
267/// CXXReinterpretCastExpr - A C++ @c reinterpret_cast expression (C++
268/// [expr.reinterpret.cast]), which provides a differently-typed view
269/// of a value but performs no actual work at run time.
270///
271/// This expression node represents a reinterpret cast, e.g.,
272/// @c reinterpret_cast<int>(VoidPtr).
273class CXXReinterpretCastExpr : public CXXNamedCastExpr {
274  CXXReinterpretCastExpr(QualType ty, ExprValueKind vk, CastKind kind,
275                         Expr *op, unsigned pathSize,
276                         TypeSourceInfo *writtenTy, SourceLocation l,
277                         SourceLocation RParenLoc)
278    : CXXNamedCastExpr(CXXReinterpretCastExprClass, ty, vk, kind, op,
279                       pathSize, writtenTy, l, RParenLoc) {}
280
281  CXXReinterpretCastExpr(EmptyShell Empty, unsigned pathSize)
282    : CXXNamedCastExpr(CXXReinterpretCastExprClass, Empty, pathSize) { }
283
284public:
285  static CXXReinterpretCastExpr *Create(ASTContext &Context, QualType T,
286                                        ExprValueKind VK, CastKind Kind,
287                                        Expr *Op, const CXXCastPath *Path,
288                                 TypeSourceInfo *WrittenTy, SourceLocation L,
289                                        SourceLocation RParenLoc);
290  static CXXReinterpretCastExpr *CreateEmpty(ASTContext &Context,
291                                             unsigned pathSize);
292
293  static bool classof(const Stmt *T) {
294    return T->getStmtClass() == CXXReinterpretCastExprClass;
295  }
296  static bool classof(const CXXReinterpretCastExpr *) { return true; }
297};
298
299/// CXXConstCastExpr - A C++ @c const_cast expression (C++ [expr.const.cast]),
300/// which can remove type qualifiers but does not change the underlying value.
301///
302/// This expression node represents a const cast, e.g.,
303/// @c const_cast<char*>(PtrToConstChar).
304class CXXConstCastExpr : public CXXNamedCastExpr {
305  CXXConstCastExpr(QualType ty, ExprValueKind VK, Expr *op,
306                   TypeSourceInfo *writtenTy, SourceLocation l,
307                   SourceLocation RParenLoc)
308    : CXXNamedCastExpr(CXXConstCastExprClass, ty, VK, CK_NoOp, op,
309                       0, writtenTy, l, RParenLoc) {}
310
311  explicit CXXConstCastExpr(EmptyShell Empty)
312    : CXXNamedCastExpr(CXXConstCastExprClass, Empty, 0) { }
313
314public:
315  static CXXConstCastExpr *Create(ASTContext &Context, QualType T,
316                                  ExprValueKind VK, Expr *Op,
317                                  TypeSourceInfo *WrittenTy, SourceLocation L,
318                                  SourceLocation RParenLoc);
319  static CXXConstCastExpr *CreateEmpty(ASTContext &Context);
320
321  static bool classof(const Stmt *T) {
322    return T->getStmtClass() == CXXConstCastExprClass;
323  }
324  static bool classof(const CXXConstCastExpr *) { return true; }
325};
326
327/// CXXBoolLiteralExpr - [C++ 2.13.5] C++ Boolean Literal.
328///
329class CXXBoolLiteralExpr : public Expr {
330  bool Value;
331  SourceLocation Loc;
332public:
333  CXXBoolLiteralExpr(bool val, QualType Ty, SourceLocation l) :
334    Expr(CXXBoolLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
335         false, false),
336    Value(val), Loc(l) {}
337
338  explicit CXXBoolLiteralExpr(EmptyShell Empty)
339    : Expr(CXXBoolLiteralExprClass, Empty) { }
340
341  bool getValue() const { return Value; }
342  void setValue(bool V) { Value = V; }
343
344  SourceRange getSourceRange() const { return SourceRange(Loc); }
345
346  SourceLocation getLocation() const { return Loc; }
347  void setLocation(SourceLocation L) { Loc = L; }
348
349  static bool classof(const Stmt *T) {
350    return T->getStmtClass() == CXXBoolLiteralExprClass;
351  }
352  static bool classof(const CXXBoolLiteralExpr *) { return true; }
353
354  // Iterators
355  child_range children() { return child_range(); }
356};
357
358/// CXXNullPtrLiteralExpr - [C++0x 2.14.7] C++ Pointer Literal
359class CXXNullPtrLiteralExpr : public Expr {
360  SourceLocation Loc;
361public:
362  CXXNullPtrLiteralExpr(QualType Ty, SourceLocation l) :
363    Expr(CXXNullPtrLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
364         false, false),
365    Loc(l) {}
366
367  explicit CXXNullPtrLiteralExpr(EmptyShell Empty)
368    : Expr(CXXNullPtrLiteralExprClass, Empty) { }
369
370  SourceRange getSourceRange() const { return SourceRange(Loc); }
371
372  SourceLocation getLocation() const { return Loc; }
373  void setLocation(SourceLocation L) { Loc = L; }
374
375  static bool classof(const Stmt *T) {
376    return T->getStmtClass() == CXXNullPtrLiteralExprClass;
377  }
378  static bool classof(const CXXNullPtrLiteralExpr *) { return true; }
379
380  child_range children() { return child_range(); }
381};
382
383/// CXXTypeidExpr - A C++ @c typeid expression (C++ [expr.typeid]), which gets
384/// the type_info that corresponds to the supplied type, or the (possibly
385/// dynamic) type of the supplied expression.
386///
387/// This represents code like @c typeid(int) or @c typeid(*objPtr)
388class CXXTypeidExpr : public Expr {
389private:
390  llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
391  SourceRange Range;
392
393public:
394  CXXTypeidExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
395    : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
396           // typeid is never type-dependent (C++ [temp.dep.expr]p4)
397           false,
398           // typeid is value-dependent if the type or expression are dependent
399           Operand->getType()->isDependentType(),
400           Operand->getType()->isInstantiationDependentType(),
401           Operand->getType()->containsUnexpandedParameterPack()),
402      Operand(Operand), Range(R) { }
403
404  CXXTypeidExpr(QualType Ty, Expr *Operand, SourceRange R)
405    : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
406        // typeid is never type-dependent (C++ [temp.dep.expr]p4)
407           false,
408        // typeid is value-dependent if the type or expression are dependent
409           Operand->isTypeDependent() || Operand->isValueDependent(),
410           Operand->isInstantiationDependent(),
411           Operand->containsUnexpandedParameterPack()),
412      Operand(Operand), Range(R) { }
413
414  CXXTypeidExpr(EmptyShell Empty, bool isExpr)
415    : Expr(CXXTypeidExprClass, Empty) {
416    if (isExpr)
417      Operand = (Expr*)0;
418    else
419      Operand = (TypeSourceInfo*)0;
420  }
421
422  bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
423
424  /// \brief Retrieves the type operand of this typeid() expression after
425  /// various required adjustments (removing reference types, cv-qualifiers).
426  QualType getTypeOperand() const;
427
428  /// \brief Retrieve source information for the type operand.
429  TypeSourceInfo *getTypeOperandSourceInfo() const {
430    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
431    return Operand.get<TypeSourceInfo *>();
432  }
433
434  void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
435    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
436    Operand = TSI;
437  }
438
439  Expr *getExprOperand() const {
440    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
441    return static_cast<Expr*>(Operand.get<Stmt *>());
442  }
443
444  void setExprOperand(Expr *E) {
445    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
446    Operand = E;
447  }
448
449  SourceRange getSourceRange() const { return Range; }
450  void setSourceRange(SourceRange R) { Range = R; }
451
452  static bool classof(const Stmt *T) {
453    return T->getStmtClass() == CXXTypeidExprClass;
454  }
455  static bool classof(const CXXTypeidExpr *) { return true; }
456
457  // Iterators
458  child_range children() {
459    if (isTypeOperand()) return child_range();
460    Stmt **begin = reinterpret_cast<Stmt**>(&Operand);
461    return child_range(begin, begin + 1);
462  }
463};
464
465/// CXXUuidofExpr - A microsoft C++ @c __uuidof expression, which gets
466/// the _GUID that corresponds to the supplied type or expression.
467///
468/// This represents code like @c __uuidof(COMTYPE) or @c __uuidof(*comPtr)
469class CXXUuidofExpr : public Expr {
470private:
471  llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
472  SourceRange Range;
473
474public:
475  CXXUuidofExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
476    : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary,
477           false, Operand->getType()->isDependentType(),
478           Operand->getType()->isInstantiationDependentType(),
479           Operand->getType()->containsUnexpandedParameterPack()),
480      Operand(Operand), Range(R) { }
481
482  CXXUuidofExpr(QualType Ty, Expr *Operand, SourceRange R)
483    : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary,
484           false, Operand->isTypeDependent(),
485           Operand->isInstantiationDependent(),
486           Operand->containsUnexpandedParameterPack()),
487      Operand(Operand), Range(R) { }
488
489  CXXUuidofExpr(EmptyShell Empty, bool isExpr)
490    : Expr(CXXUuidofExprClass, Empty) {
491    if (isExpr)
492      Operand = (Expr*)0;
493    else
494      Operand = (TypeSourceInfo*)0;
495  }
496
497  bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
498
499  /// \brief Retrieves the type operand of this __uuidof() expression after
500  /// various required adjustments (removing reference types, cv-qualifiers).
501  QualType getTypeOperand() const;
502
503  /// \brief Retrieve source information for the type operand.
504  TypeSourceInfo *getTypeOperandSourceInfo() const {
505    assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
506    return Operand.get<TypeSourceInfo *>();
507  }
508
509  void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
510    assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
511    Operand = TSI;
512  }
513
514  Expr *getExprOperand() const {
515    assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
516    return static_cast<Expr*>(Operand.get<Stmt *>());
517  }
518
519  void setExprOperand(Expr *E) {
520    assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
521    Operand = E;
522  }
523
524  SourceRange getSourceRange() const { return Range; }
525  void setSourceRange(SourceRange R) { Range = R; }
526
527  static bool classof(const Stmt *T) {
528    return T->getStmtClass() == CXXUuidofExprClass;
529  }
530  static bool classof(const CXXUuidofExpr *) { return true; }
531
532  // Iterators
533  child_range children() {
534    if (isTypeOperand()) return child_range();
535    Stmt **begin = reinterpret_cast<Stmt**>(&Operand);
536    return child_range(begin, begin + 1);
537  }
538};
539
540/// CXXThisExpr - Represents the "this" expression in C++, which is a
541/// pointer to the object on which the current member function is
542/// executing (C++ [expr.prim]p3). Example:
543///
544/// @code
545/// class Foo {
546/// public:
547///   void bar();
548///   void test() { this->bar(); }
549/// };
550/// @endcode
551class CXXThisExpr : public Expr {
552  SourceLocation Loc;
553  bool Implicit : 1;
554
555public:
556  CXXThisExpr(SourceLocation L, QualType Type, bool isImplicit)
557    : Expr(CXXThisExprClass, Type, VK_RValue, OK_Ordinary,
558           // 'this' is type-dependent if the class type of the enclosing
559           // member function is dependent (C++ [temp.dep.expr]p2)
560           Type->isDependentType(), Type->isDependentType(),
561           Type->isInstantiationDependentType(),
562           /*ContainsUnexpandedParameterPack=*/false),
563      Loc(L), Implicit(isImplicit) { }
564
565  CXXThisExpr(EmptyShell Empty) : Expr(CXXThisExprClass, Empty) {}
566
567  SourceLocation getLocation() const { return Loc; }
568  void setLocation(SourceLocation L) { Loc = L; }
569
570  SourceRange getSourceRange() const { return SourceRange(Loc); }
571
572  bool isImplicit() const { return Implicit; }
573  void setImplicit(bool I) { Implicit = I; }
574
575  static bool classof(const Stmt *T) {
576    return T->getStmtClass() == CXXThisExprClass;
577  }
578  static bool classof(const CXXThisExpr *) { return true; }
579
580  // Iterators
581  child_range children() { return child_range(); }
582};
583
584///  CXXThrowExpr - [C++ 15] C++ Throw Expression.  This handles
585///  'throw' and 'throw' assignment-expression.  When
586///  assignment-expression isn't present, Op will be null.
587///
588class CXXThrowExpr : public Expr {
589  Stmt *Op;
590  SourceLocation ThrowLoc;
591  /// \brief Whether the thrown variable (if any) is in scope.
592  unsigned IsThrownVariableInScope : 1;
593
594  friend class ASTStmtReader;
595
596public:
597  // Ty is the void type which is used as the result type of the
598  // exepression.  The l is the location of the throw keyword.  expr
599  // can by null, if the optional expression to throw isn't present.
600  CXXThrowExpr(Expr *expr, QualType Ty, SourceLocation l,
601               bool IsThrownVariableInScope) :
602    Expr(CXXThrowExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
603         expr && expr->isInstantiationDependent(),
604         expr && expr->containsUnexpandedParameterPack()),
605    Op(expr), ThrowLoc(l), IsThrownVariableInScope(IsThrownVariableInScope) {}
606  CXXThrowExpr(EmptyShell Empty) : Expr(CXXThrowExprClass, Empty) {}
607
608  const Expr *getSubExpr() const { return cast_or_null<Expr>(Op); }
609  Expr *getSubExpr() { return cast_or_null<Expr>(Op); }
610
611  SourceLocation getThrowLoc() const { return ThrowLoc; }
612
613  /// \brief Determines whether the variable thrown by this expression (if any!)
614  /// is within the innermost try block.
615  ///
616  /// This information is required to determine whether the NRVO can apply to
617  /// this variable.
618  bool isThrownVariableInScope() const { return IsThrownVariableInScope; }
619
620  SourceRange getSourceRange() const {
621    if (getSubExpr() == 0)
622      return SourceRange(ThrowLoc, ThrowLoc);
623    return SourceRange(ThrowLoc, getSubExpr()->getSourceRange().getEnd());
624  }
625
626  static bool classof(const Stmt *T) {
627    return T->getStmtClass() == CXXThrowExprClass;
628  }
629  static bool classof(const CXXThrowExpr *) { return true; }
630
631  // Iterators
632  child_range children() {
633    return child_range(&Op, Op ? &Op+1 : &Op);
634  }
635};
636
637/// CXXDefaultArgExpr - C++ [dcl.fct.default]. This wraps up a
638/// function call argument that was created from the corresponding
639/// parameter's default argument, when the call did not explicitly
640/// supply arguments for all of the parameters.
641class CXXDefaultArgExpr : public Expr {
642  /// \brief The parameter whose default is being used.
643  ///
644  /// When the bit is set, the subexpression is stored after the
645  /// CXXDefaultArgExpr itself. When the bit is clear, the parameter's
646  /// actual default expression is the subexpression.
647  llvm::PointerIntPair<ParmVarDecl *, 1, bool> Param;
648
649  /// \brief The location where the default argument expression was used.
650  SourceLocation Loc;
651
652  CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param)
653    : Expr(SC,
654           param->hasUnparsedDefaultArg()
655             ? param->getType().getNonReferenceType()
656             : param->getDefaultArg()->getType(),
657           param->getDefaultArg()->getValueKind(),
658           param->getDefaultArg()->getObjectKind(), false, false, false, false),
659      Param(param, false), Loc(Loc) { }
660
661  CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param,
662                    Expr *SubExpr)
663    : Expr(SC, SubExpr->getType(),
664           SubExpr->getValueKind(), SubExpr->getObjectKind(),
665           false, false, false, false),
666      Param(param, true), Loc(Loc) {
667    *reinterpret_cast<Expr **>(this + 1) = SubExpr;
668  }
669
670public:
671  CXXDefaultArgExpr(EmptyShell Empty) : Expr(CXXDefaultArgExprClass, Empty) {}
672
673
674  // Param is the parameter whose default argument is used by this
675  // expression.
676  static CXXDefaultArgExpr *Create(ASTContext &C, SourceLocation Loc,
677                                   ParmVarDecl *Param) {
678    return new (C) CXXDefaultArgExpr(CXXDefaultArgExprClass, Loc, Param);
679  }
680
681  // Param is the parameter whose default argument is used by this
682  // expression, and SubExpr is the expression that will actually be used.
683  static CXXDefaultArgExpr *Create(ASTContext &C,
684                                   SourceLocation Loc,
685                                   ParmVarDecl *Param,
686                                   Expr *SubExpr);
687
688  // Retrieve the parameter that the argument was created from.
689  const ParmVarDecl *getParam() const { return Param.getPointer(); }
690  ParmVarDecl *getParam() { return Param.getPointer(); }
691
692  // Retrieve the actual argument to the function call.
693  const Expr *getExpr() const {
694    if (Param.getInt())
695      return *reinterpret_cast<Expr const * const*> (this + 1);
696    return getParam()->getDefaultArg();
697  }
698  Expr *getExpr() {
699    if (Param.getInt())
700      return *reinterpret_cast<Expr **> (this + 1);
701    return getParam()->getDefaultArg();
702  }
703
704  /// \brief Retrieve the location where this default argument was actually
705  /// used.
706  SourceLocation getUsedLocation() const { return Loc; }
707
708  SourceRange getSourceRange() const {
709    // Default argument expressions have no representation in the
710    // source, so they have an empty source range.
711    return SourceRange();
712  }
713
714  static bool classof(const Stmt *T) {
715    return T->getStmtClass() == CXXDefaultArgExprClass;
716  }
717  static bool classof(const CXXDefaultArgExpr *) { return true; }
718
719  // Iterators
720  child_range children() { return child_range(); }
721
722  friend class ASTStmtReader;
723  friend class ASTStmtWriter;
724};
725
726/// CXXTemporary - Represents a C++ temporary.
727class CXXTemporary {
728  /// Destructor - The destructor that needs to be called.
729  const CXXDestructorDecl *Destructor;
730
731  CXXTemporary(const CXXDestructorDecl *destructor)
732    : Destructor(destructor) { }
733
734public:
735  static CXXTemporary *Create(ASTContext &C,
736                              const CXXDestructorDecl *Destructor);
737
738  const CXXDestructorDecl *getDestructor() const { return Destructor; }
739};
740
741/// \brief Represents binding an expression to a temporary.
742///
743/// This ensures the destructor is called for the temporary. It should only be
744/// needed for non-POD, non-trivially destructable class types. For example:
745///
746/// \code
747///   struct S {
748///     S() { }  // User defined constructor makes S non-POD.
749///     ~S() { } // User defined destructor makes it non-trivial.
750///   };
751///   void test() {
752///     const S &s_ref = S(); // Requires a CXXBindTemporaryExpr.
753///   }
754/// \endcode
755class CXXBindTemporaryExpr : public Expr {
756  CXXTemporary *Temp;
757
758  Stmt *SubExpr;
759
760  CXXBindTemporaryExpr(CXXTemporary *temp, Expr* SubExpr)
761   : Expr(CXXBindTemporaryExprClass, SubExpr->getType(),
762          VK_RValue, OK_Ordinary, SubExpr->isTypeDependent(),
763          SubExpr->isValueDependent(),
764          SubExpr->isInstantiationDependent(),
765          SubExpr->containsUnexpandedParameterPack()),
766     Temp(temp), SubExpr(SubExpr) { }
767
768public:
769  CXXBindTemporaryExpr(EmptyShell Empty)
770    : Expr(CXXBindTemporaryExprClass, Empty), Temp(0), SubExpr(0) {}
771
772  static CXXBindTemporaryExpr *Create(ASTContext &C, CXXTemporary *Temp,
773                                      Expr* SubExpr);
774
775  CXXTemporary *getTemporary() { return Temp; }
776  const CXXTemporary *getTemporary() const { return Temp; }
777  void setTemporary(CXXTemporary *T) { Temp = T; }
778
779  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
780  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
781  void setSubExpr(Expr *E) { SubExpr = E; }
782
783  SourceRange getSourceRange() const {
784    return SubExpr->getSourceRange();
785  }
786
787  // Implement isa/cast/dyncast/etc.
788  static bool classof(const Stmt *T) {
789    return T->getStmtClass() == CXXBindTemporaryExprClass;
790  }
791  static bool classof(const CXXBindTemporaryExpr *) { return true; }
792
793  // Iterators
794  child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
795};
796
797/// CXXConstructExpr - Represents a call to a C++ constructor.
798class CXXConstructExpr : public Expr {
799public:
800  enum ConstructionKind {
801    CK_Complete,
802    CK_NonVirtualBase,
803    CK_VirtualBase,
804    CK_Delegating
805  };
806
807private:
808  CXXConstructorDecl *Constructor;
809
810  SourceLocation Loc;
811  SourceRange ParenRange;
812  unsigned NumArgs : 16;
813  bool Elidable : 1;
814  bool HadMultipleCandidates : 1;
815  bool ListInitialization : 1;
816  bool ZeroInitialization : 1;
817  unsigned ConstructKind : 2;
818  Stmt **Args;
819
820protected:
821  CXXConstructExpr(ASTContext &C, StmtClass SC, QualType T,
822                   SourceLocation Loc,
823                   CXXConstructorDecl *d, bool elidable,
824                   Expr **args, unsigned numargs,
825                   bool HadMultipleCandidates,
826                   bool ListInitialization,
827                   bool ZeroInitialization,
828                   ConstructionKind ConstructKind,
829                   SourceRange ParenRange);
830
831  /// \brief Construct an empty C++ construction expression.
832  CXXConstructExpr(StmtClass SC, EmptyShell Empty)
833    : Expr(SC, Empty), Constructor(0), NumArgs(0), Elidable(false),
834      HadMultipleCandidates(false), ListInitialization(false),
835      ZeroInitialization(false), ConstructKind(0), Args(0)
836  { }
837
838public:
839  /// \brief Construct an empty C++ construction expression.
840  explicit CXXConstructExpr(EmptyShell Empty)
841    : Expr(CXXConstructExprClass, Empty), Constructor(0),
842      NumArgs(0), Elidable(false), HadMultipleCandidates(false),
843      ListInitialization(false), ZeroInitialization(false),
844      ConstructKind(0), Args(0)
845  { }
846
847  static CXXConstructExpr *Create(ASTContext &C, QualType T,
848                                  SourceLocation Loc,
849                                  CXXConstructorDecl *D, bool Elidable,
850                                  Expr **Args, unsigned NumArgs,
851                                  bool HadMultipleCandidates,
852                                  bool ListInitialization,
853                                  bool ZeroInitialization,
854                                  ConstructionKind ConstructKind,
855                                  SourceRange ParenRange);
856
857  CXXConstructorDecl* getConstructor() const { return Constructor; }
858  void setConstructor(CXXConstructorDecl *C) { Constructor = C; }
859
860  SourceLocation getLocation() const { return Loc; }
861  void setLocation(SourceLocation Loc) { this->Loc = Loc; }
862
863  /// \brief Whether this construction is elidable.
864  bool isElidable() const { return Elidable; }
865  void setElidable(bool E) { Elidable = E; }
866
867  /// \brief Whether the referred constructor was resolved from
868  /// an overloaded set having size greater than 1.
869  bool hadMultipleCandidates() const { return HadMultipleCandidates; }
870  void setHadMultipleCandidates(bool V) { HadMultipleCandidates = V; }
871
872  /// \brief Whether this constructor call was written as list-initialization.
873  bool isListInitialization() const { return ListInitialization; }
874  void setListInitialization(bool V) { ListInitialization = V; }
875
876  /// \brief Whether this construction first requires
877  /// zero-initialization before the initializer is called.
878  bool requiresZeroInitialization() const { return ZeroInitialization; }
879  void setRequiresZeroInitialization(bool ZeroInit) {
880    ZeroInitialization = ZeroInit;
881  }
882
883  /// \brief Determines whether this constructor is actually constructing
884  /// a base class (rather than a complete object).
885  ConstructionKind getConstructionKind() const {
886    return (ConstructionKind)ConstructKind;
887  }
888  void setConstructionKind(ConstructionKind CK) {
889    ConstructKind = CK;
890  }
891
892  typedef ExprIterator arg_iterator;
893  typedef ConstExprIterator const_arg_iterator;
894
895  arg_iterator arg_begin() { return Args; }
896  arg_iterator arg_end() { return Args + NumArgs; }
897  const_arg_iterator arg_begin() const { return Args; }
898  const_arg_iterator arg_end() const { return Args + NumArgs; }
899
900  Expr **getArgs() const { return reinterpret_cast<Expr **>(Args); }
901  unsigned getNumArgs() const { return NumArgs; }
902
903  /// getArg - Return the specified argument.
904  Expr *getArg(unsigned Arg) {
905    assert(Arg < NumArgs && "Arg access out of range!");
906    return cast<Expr>(Args[Arg]);
907  }
908  const Expr *getArg(unsigned Arg) const {
909    assert(Arg < NumArgs && "Arg access out of range!");
910    return cast<Expr>(Args[Arg]);
911  }
912
913  /// setArg - Set the specified argument.
914  void setArg(unsigned Arg, Expr *ArgExpr) {
915    assert(Arg < NumArgs && "Arg access out of range!");
916    Args[Arg] = ArgExpr;
917  }
918
919  SourceRange getSourceRange() const;
920  SourceRange getParenRange() const { return ParenRange; }
921
922  static bool classof(const Stmt *T) {
923    return T->getStmtClass() == CXXConstructExprClass ||
924      T->getStmtClass() == CXXTemporaryObjectExprClass;
925  }
926  static bool classof(const CXXConstructExpr *) { return true; }
927
928  // Iterators
929  child_range children() {
930    return child_range(&Args[0], &Args[0]+NumArgs);
931  }
932
933  friend class ASTStmtReader;
934};
935
936/// CXXFunctionalCastExpr - Represents an explicit C++ type conversion
937/// that uses "functional" notion (C++ [expr.type.conv]). Example: @c
938/// x = int(0.5);
939class CXXFunctionalCastExpr : public ExplicitCastExpr {
940  SourceLocation TyBeginLoc;
941  SourceLocation RParenLoc;
942
943  CXXFunctionalCastExpr(QualType ty, ExprValueKind VK,
944                        TypeSourceInfo *writtenTy,
945                        SourceLocation tyBeginLoc, CastKind kind,
946                        Expr *castExpr, unsigned pathSize,
947                        SourceLocation rParenLoc)
948    : ExplicitCastExpr(CXXFunctionalCastExprClass, ty, VK, kind,
949                       castExpr, pathSize, writtenTy),
950      TyBeginLoc(tyBeginLoc), RParenLoc(rParenLoc) {}
951
952  explicit CXXFunctionalCastExpr(EmptyShell Shell, unsigned PathSize)
953    : ExplicitCastExpr(CXXFunctionalCastExprClass, Shell, PathSize) { }
954
955public:
956  static CXXFunctionalCastExpr *Create(ASTContext &Context, QualType T,
957                                       ExprValueKind VK,
958                                       TypeSourceInfo *Written,
959                                       SourceLocation TyBeginLoc,
960                                       CastKind Kind, Expr *Op,
961                                       const CXXCastPath *Path,
962                                       SourceLocation RPLoc);
963  static CXXFunctionalCastExpr *CreateEmpty(ASTContext &Context,
964                                            unsigned PathSize);
965
966  SourceLocation getTypeBeginLoc() const { return TyBeginLoc; }
967  void setTypeBeginLoc(SourceLocation L) { TyBeginLoc = L; }
968  SourceLocation getRParenLoc() const { return RParenLoc; }
969  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
970
971  SourceRange getSourceRange() const {
972    return SourceRange(TyBeginLoc, RParenLoc);
973  }
974  static bool classof(const Stmt *T) {
975    return T->getStmtClass() == CXXFunctionalCastExprClass;
976  }
977  static bool classof(const CXXFunctionalCastExpr *) { return true; }
978};
979
980/// @brief Represents a C++ functional cast expression that builds a
981/// temporary object.
982///
983/// This expression type represents a C++ "functional" cast
984/// (C++[expr.type.conv]) with N != 1 arguments that invokes a
985/// constructor to build a temporary object. With N == 1 arguments the
986/// functional cast expression will be represented by CXXFunctionalCastExpr.
987/// Example:
988/// @code
989/// struct X { X(int, float); }
990///
991/// X create_X() {
992///   return X(1, 3.14f); // creates a CXXTemporaryObjectExpr
993/// };
994/// @endcode
995class CXXTemporaryObjectExpr : public CXXConstructExpr {
996  TypeSourceInfo *Type;
997
998public:
999  CXXTemporaryObjectExpr(ASTContext &C, CXXConstructorDecl *Cons,
1000                         TypeSourceInfo *Type,
1001                         Expr **Args,unsigned NumArgs,
1002                         SourceRange parenRange,
1003                         bool HadMultipleCandidates,
1004                         bool ZeroInitialization = false);
1005  explicit CXXTemporaryObjectExpr(EmptyShell Empty)
1006    : CXXConstructExpr(CXXTemporaryObjectExprClass, Empty), Type() { }
1007
1008  TypeSourceInfo *getTypeSourceInfo() const { return Type; }
1009
1010  SourceRange getSourceRange() const;
1011
1012  static bool classof(const Stmt *T) {
1013    return T->getStmtClass() == CXXTemporaryObjectExprClass;
1014  }
1015  static bool classof(const CXXTemporaryObjectExpr *) { return true; }
1016
1017  friend class ASTStmtReader;
1018};
1019
1020/// \brief A C++ lambda expression, which produces a function object
1021/// (of unspecified type) that can be invoked later.
1022///
1023/// Example:
1024/// \code
1025/// void low_pass_filter(std::vector<double> &values, double cutoff) {
1026///   values.erase(std::remove_if(values.begin(), values.end(),
1027//                                [=](double value) { return value > cutoff; });
1028/// }
1029/// \endcode
1030///
1031/// Lambda expressions can capture local variables, either by copying
1032/// the values of those local variables at the time the function
1033/// object is constructed (not when it is called!) or by holding a
1034/// reference to the local variable. These captures can occur either
1035/// implicitly or can be written explicitly between the square
1036/// brackets ([...]) that start the lambda expression.
1037class LambdaExpr : public Expr {
1038  enum {
1039    /// \brief Flag used by the Capture class to indicate that the given
1040    /// capture was implicit.
1041    Capture_Implicit = 0x01,
1042
1043    /// \brief Flag used by the Capture class to indciate that the
1044    /// given capture was by-copy.
1045    Capture_ByCopy = 0x02
1046  };
1047
1048  /// \brief The source range that covers the lambda introducer ([...]).
1049  SourceRange IntroducerRange;
1050
1051  /// \brief The default capture kind, which is a value of type
1052  /// LambdaCaptureDefault.
1053  unsigned CaptureDefault : 2;
1054
1055  /// \brief Whether this lambda had an explicit parameter list vs. an
1056  /// implicit (and empty) parameter list.
1057  unsigned ExplicitParams : 1;
1058
1059  /// \brief The location of the closing brace ('}') that completes
1060  /// the lambda.
1061  ///
1062  /// The location of the brace is also available by looking up the
1063  /// function call operator in the lambda class. However, it is
1064  /// stored here to improve the performance of getSourceRange(), and
1065  /// to avoid having to deserialize the function call operator from a
1066  /// module file just to determine the source range.
1067  SourceLocation ClosingBrace;
1068
1069public:
1070  /// \brief Describes the capture of either a variable or 'this'.
1071  class Capture {
1072    llvm::PointerIntPair<VarDecl *, 2> VarAndBits;
1073    SourceLocation Loc;
1074    SourceLocation EllipsisLoc;
1075
1076    friend class ASTStmtReader;
1077    friend class ASTStmtWriter;
1078
1079  public:
1080    /// \brief Create a new capture.
1081    ///
1082    /// \param Loc The source location associated with this capture.
1083    ///
1084    /// \param Kind The kind of capture (this, byref, bycopy).
1085    ///
1086    /// \param Implicit Whether the capture was implicit or explicit.
1087    ///
1088    /// \param Var The local variable being captured, or null if capturing this.
1089    ///
1090    /// \param EllipsisLoc The location of the ellipsis (...) for a
1091    /// capture that is a pack expansion, or an invalid source
1092    /// location to indicate that this is not a pack expansion.
1093    Capture(SourceLocation Loc, bool Implicit,
1094            LambdaCaptureKind Kind, VarDecl *Var = 0,
1095            SourceLocation EllipsisLoc = SourceLocation());
1096
1097    /// \brief Determine the kind of capture.
1098    LambdaCaptureKind getCaptureKind() const;
1099
1100    /// \brief Determine whether this capture handles the C++ 'this'
1101    /// pointer.
1102    bool capturesThis() const { return VarAndBits.getPointer() == 0; }
1103
1104    /// \brief Determine whether this capture handles a variable.
1105    bool capturesVariable() const { return VarAndBits.getPointer() != 0; }
1106
1107    /// \brief Retrieve the declaration of the local variable being
1108    /// captured.
1109    ///
1110    /// This operation is only valid if this capture does not capture
1111    /// 'this'.
1112    VarDecl *getCapturedVar() const {
1113      assert(!capturesThis() && "No variable available for 'this' capture");
1114      return VarAndBits.getPointer();
1115    }
1116
1117    /// \brief Determine whether this was an implicit capture (not
1118    /// written between the square brackets introducing the lambda).
1119    bool isImplicit() const { return VarAndBits.getInt() & Capture_Implicit; }
1120
1121    /// \brief Determine whether this was an explicit capture, written
1122    /// between the square brackets introducing the lambda.
1123    bool isExplicit() const { return !isImplicit(); }
1124
1125    /// \brief Retrieve the source location of the capture.
1126    ///
1127    /// For an explicit capture, this returns the location of the
1128    /// explicit capture in the source. For an implicit capture, this
1129    /// returns the location at which the variable or 'this' was first
1130    /// used.
1131    SourceLocation getLocation() const { return Loc; }
1132
1133    /// \brief Determine whether this capture is a pack expansion,
1134    /// which captures a function parameter pack.
1135    bool isPackExpansion() const { return EllipsisLoc.isValid(); }
1136
1137    /// \brief Retrieve the location of the ellipsis for a capture
1138    /// that is a pack expansion.
1139    SourceLocation getEllipsisLoc() const {
1140      assert(isPackExpansion() && "No ellipsis location for a non-expansion");
1141      return EllipsisLoc;
1142    }
1143  };
1144
1145private:
1146  /// \brief Construct a lambda expression.
1147  LambdaExpr(QualType T, SourceRange IntroducerRange,
1148             LambdaCaptureDefault CaptureDefault,
1149             ArrayRef<Capture> Captures,
1150             bool ExplicitParams,
1151             ArrayRef<Expr *> CaptureInits,
1152             ArrayRef<VarDecl *> ArrayIndexVars,
1153             ArrayRef<unsigned> ArrayIndexStarts,
1154             SourceLocation ClosingBrace);
1155
1156public:
1157  /// \brief Construct a new lambda expression.
1158  static LambdaExpr *Create(ASTContext &C,
1159                            CXXRecordDecl *Class,
1160                            SourceRange IntroducerRange,
1161                            LambdaCaptureDefault CaptureDefault,
1162                            ArrayRef<Capture> Captures,
1163                            bool ExplicitParams,
1164                            ArrayRef<Expr *> CaptureInits,
1165                            ArrayRef<VarDecl *> ArrayIndexVars,
1166                            ArrayRef<unsigned> ArrayIndexStarts,
1167                            SourceLocation ClosingBrace);
1168
1169  /// \brief Determine the default capture kind for this lambda.
1170  LambdaCaptureDefault getCaptureDefault() const {
1171    return static_cast<LambdaCaptureDefault>(CaptureDefault);
1172  }
1173
1174  /// \brief An iterator that walks over the captures of the lambda,
1175  /// both implicit and explicit.
1176  typedef const Capture *capture_iterator;
1177
1178  /// \brief Retrieve an iterator pointing to the first lambda capture.
1179  capture_iterator capture_begin() const;
1180
1181  /// \brief Retrieve an iterator pointing past the end of the
1182  /// sequence of lambda captures.
1183  capture_iterator capture_end() const;
1184
1185  /// \brief Retrieve an iterator pointing to the first explicit
1186  /// lambda capture.
1187  capture_iterator explicit_capture_begin() const;
1188
1189  /// \brief Retrieve an iterator pointing past the end of the sequence of
1190  /// explicit lambda captures.
1191  capture_iterator explicit_capture_end() const;
1192
1193  /// \brief Retrieve an iterator pointing to the first implicit
1194  /// lambda capture.
1195  capture_iterator implicit_capture_begin() const;
1196
1197  /// \brief Retrieve an iterator pointing past the end of the sequence of
1198  /// implicit lambda captures.
1199  capture_iterator implicit_capture_end() const;
1200
1201  /// \brief Iterator that walks over the capture initialization
1202  /// arguments.
1203  typedef Expr **capture_init_iterator;
1204
1205  /// \brief Retrieve the first initialization argument for this
1206  /// lambda expression (which initializes the first capture field).
1207  capture_init_iterator capture_init_begin() const;
1208
1209  /// \brief Retrieve the iterator pointing one past the last
1210  /// initialization argument for this lambda expression.
1211  capture_init_iterator capture_init_end() const;
1212
1213  /// \brief Retrieve the set of index variables used in the capture
1214  /// initializer of an array captured by copy.
1215  ///
1216  /// \param Iter The iterator that points at the capture initializer for
1217  /// which we are extracting the corresponding index variables.
1218  ArrayRef<VarDecl *> getCaptureInitIndexVars(capture_init_iterator Iter) const;
1219
1220  /// \brief Retrieve the source range covering the lambda introducer,
1221  /// which contains the explicit capture list surrounded by square
1222  /// brackets ([...]).
1223  SourceRange getIntroducerRange() const { return IntroducerRange; }
1224
1225  /// \brief Retrieve the class that corresponds to the lambda, which
1226  /// stores the captures in its fields and provides the various
1227  /// operations permitted on a lambda (copying, calling).
1228  CXXRecordDecl *getLambdaClass() const;
1229
1230  /// \brief Retrieve the function call operator associated with this
1231  /// lambda expression.
1232  CXXMethodDecl *getCallOperator() const;
1233
1234  /// \brief Retrieve the body of the lambda.
1235  CompoundStmt *getBody() const;
1236
1237  /// \brief Determine whether the lambda is mutable, meaning that any
1238  /// captures values can be modified.
1239  bool isMutable() const;
1240
1241  /// \brief Determine whether this lambda has an explicit parameter
1242  /// list vs. an implicit (empty) parameter list.
1243  bool hasExplicitParameters() const { return ExplicitParams; }
1244
1245  static bool classof(const Stmt *T) {
1246    return T->getStmtClass() == LambdaExprClass;
1247  }
1248  static bool classof(const LambdaExpr *) { return true; }
1249
1250  SourceRange getSourceRange() const {
1251    return SourceRange(IntroducerRange.getBegin(), ClosingBrace);
1252  }
1253
1254  child_range children();
1255
1256  friend class ASTStmtReader;
1257  friend class ASTStmtWriter;
1258};
1259
1260/// CXXScalarValueInitExpr - [C++ 5.2.3p2]
1261/// Expression "T()" which creates a value-initialized rvalue of type
1262/// T, which is a non-class type.
1263///
1264class CXXScalarValueInitExpr : public Expr {
1265  SourceLocation RParenLoc;
1266  TypeSourceInfo *TypeInfo;
1267
1268  friend class ASTStmtReader;
1269
1270public:
1271  /// \brief Create an explicitly-written scalar-value initialization
1272  /// expression.
1273  CXXScalarValueInitExpr(QualType Type,
1274                         TypeSourceInfo *TypeInfo,
1275                         SourceLocation rParenLoc ) :
1276    Expr(CXXScalarValueInitExprClass, Type, VK_RValue, OK_Ordinary,
1277         false, false, Type->isInstantiationDependentType(), false),
1278    RParenLoc(rParenLoc), TypeInfo(TypeInfo) {}
1279
1280  explicit CXXScalarValueInitExpr(EmptyShell Shell)
1281    : Expr(CXXScalarValueInitExprClass, Shell) { }
1282
1283  TypeSourceInfo *getTypeSourceInfo() const {
1284    return TypeInfo;
1285  }
1286
1287  SourceLocation getRParenLoc() const { return RParenLoc; }
1288
1289  SourceRange getSourceRange() const;
1290
1291  static bool classof(const Stmt *T) {
1292    return T->getStmtClass() == CXXScalarValueInitExprClass;
1293  }
1294  static bool classof(const CXXScalarValueInitExpr *) { return true; }
1295
1296  // Iterators
1297  child_range children() { return child_range(); }
1298};
1299
1300/// CXXNewExpr - A new expression for memory allocation and constructor calls,
1301/// e.g: "new CXXNewExpr(foo)".
1302class CXXNewExpr : public Expr {
1303  // Was the usage ::new, i.e. is the global new to be used?
1304  bool GlobalNew : 1;
1305  // Is there an initializer? If not, built-ins are uninitialized, else they're
1306  // value-initialized.
1307  bool Initializer : 1;
1308  // Do we allocate an array? If so, the first SubExpr is the size expression.
1309  bool Array : 1;
1310  // If this is an array allocation, does the usual deallocation
1311  // function for the allocated type want to know the allocated size?
1312  bool UsualArrayDeleteWantsSize : 1;
1313  // Whether the referred constructor (if any) was resolved from an
1314  // overload set having size greater than 1.
1315  bool HadMultipleCandidates : 1;
1316  // The number of placement new arguments.
1317  unsigned NumPlacementArgs : 13;
1318  // The number of constructor arguments. This may be 1 even for non-class
1319  // types; use the pseudo copy constructor.
1320  unsigned NumConstructorArgs : 14;
1321  // Contains an optional array size expression, any number of optional
1322  // placement arguments, and any number of optional constructor arguments,
1323  // in that order.
1324  Stmt **SubExprs;
1325  // Points to the allocation function used.
1326  FunctionDecl *OperatorNew;
1327  // Points to the deallocation function used in case of error. May be null.
1328  FunctionDecl *OperatorDelete;
1329  // Points to the constructor used. Cannot be null if AllocType is a record;
1330  // it would still point at the default constructor (even an implicit one).
1331  // Must be null for all other types.
1332  CXXConstructorDecl *Constructor;
1333
1334  /// \brief The allocated type-source information, as written in the source.
1335  TypeSourceInfo *AllocatedTypeInfo;
1336
1337  /// \brief If the allocated type was expressed as a parenthesized type-id,
1338  /// the source range covering the parenthesized type-id.
1339  SourceRange TypeIdParens;
1340
1341  SourceLocation StartLoc;
1342  SourceLocation EndLoc;
1343  SourceLocation ConstructorLParen;
1344  SourceLocation ConstructorRParen;
1345
1346  friend class ASTStmtReader;
1347public:
1348  CXXNewExpr(ASTContext &C, bool globalNew, FunctionDecl *operatorNew,
1349             Expr **placementArgs, unsigned numPlaceArgs,
1350             SourceRange TypeIdParens,
1351             Expr *arraySize, CXXConstructorDecl *constructor, bool initializer,
1352             Expr **constructorArgs, unsigned numConsArgs,
1353             bool HadMultipleCandidates,
1354             FunctionDecl *operatorDelete, bool usualArrayDeleteWantsSize,
1355             QualType ty, TypeSourceInfo *AllocatedTypeInfo,
1356             SourceLocation startLoc, SourceLocation endLoc,
1357             SourceLocation constructorLParen,
1358             SourceLocation constructorRParen);
1359  explicit CXXNewExpr(EmptyShell Shell)
1360    : Expr(CXXNewExprClass, Shell), SubExprs(0) { }
1361
1362  void AllocateArgsArray(ASTContext &C, bool isArray, unsigned numPlaceArgs,
1363                         unsigned numConsArgs);
1364
1365  QualType getAllocatedType() const {
1366    assert(getType()->isPointerType());
1367    return getType()->getAs<PointerType>()->getPointeeType();
1368  }
1369
1370  TypeSourceInfo *getAllocatedTypeSourceInfo() const {
1371    return AllocatedTypeInfo;
1372  }
1373
1374  /// \brief True if the allocation result needs to be null-checked.
1375  /// C++0x [expr.new]p13:
1376  ///   If the allocation function returns null, initialization shall
1377  ///   not be done, the deallocation function shall not be called,
1378  ///   and the value of the new-expression shall be null.
1379  /// An allocation function is not allowed to return null unless it
1380  /// has a non-throwing exception-specification.  The '03 rule is
1381  /// identical except that the definition of a non-throwing
1382  /// exception specification is just "is it throw()?".
1383  bool shouldNullCheckAllocation(ASTContext &Ctx) const;
1384
1385  FunctionDecl *getOperatorNew() const { return OperatorNew; }
1386  void setOperatorNew(FunctionDecl *D) { OperatorNew = D; }
1387  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
1388  void setOperatorDelete(FunctionDecl *D) { OperatorDelete = D; }
1389  CXXConstructorDecl *getConstructor() const { return Constructor; }
1390  void setConstructor(CXXConstructorDecl *D) { Constructor = D; }
1391
1392  bool isArray() const { return Array; }
1393  Expr *getArraySize() {
1394    return Array ? cast<Expr>(SubExprs[0]) : 0;
1395  }
1396  const Expr *getArraySize() const {
1397    return Array ? cast<Expr>(SubExprs[0]) : 0;
1398  }
1399
1400  unsigned getNumPlacementArgs() const { return NumPlacementArgs; }
1401  Expr **getPlacementArgs() {
1402    return reinterpret_cast<Expr **>(SubExprs + Array);
1403  }
1404
1405  Expr *getPlacementArg(unsigned i) {
1406    assert(i < NumPlacementArgs && "Index out of range");
1407    return cast<Expr>(SubExprs[Array + i]);
1408  }
1409  const Expr *getPlacementArg(unsigned i) const {
1410    assert(i < NumPlacementArgs && "Index out of range");
1411    return cast<Expr>(SubExprs[Array + i]);
1412  }
1413
1414  bool isParenTypeId() const { return TypeIdParens.isValid(); }
1415  SourceRange getTypeIdParens() const { return TypeIdParens; }
1416
1417  bool isGlobalNew() const { return GlobalNew; }
1418  bool hasInitializer() const { return Initializer; }
1419
1420  /// Answers whether the usual array deallocation function for the
1421  /// allocated type expects the size of the allocation as a
1422  /// parameter.
1423  bool doesUsualArrayDeleteWantSize() const {
1424    return UsualArrayDeleteWantsSize;
1425  }
1426
1427  unsigned getNumConstructorArgs() const { return NumConstructorArgs; }
1428
1429  Expr **getConstructorArgs() {
1430    return reinterpret_cast<Expr **>(SubExprs + Array + NumPlacementArgs);
1431  }
1432
1433  Expr *getConstructorArg(unsigned i) {
1434    assert(i < NumConstructorArgs && "Index out of range");
1435    return cast<Expr>(SubExprs[Array + NumPlacementArgs + i]);
1436  }
1437  const Expr *getConstructorArg(unsigned i) const {
1438    assert(i < NumConstructorArgs && "Index out of range");
1439    return cast<Expr>(SubExprs[Array + NumPlacementArgs + i]);
1440  }
1441
1442  /// \brief Whether the new expression refers a constructor that was
1443  /// resolved from an overloaded set having size greater than 1.
1444  bool hadMultipleCandidates() const { return HadMultipleCandidates; }
1445  void setHadMultipleCandidates(bool V) { HadMultipleCandidates = V; }
1446
1447  typedef ExprIterator arg_iterator;
1448  typedef ConstExprIterator const_arg_iterator;
1449
1450  arg_iterator placement_arg_begin() {
1451    return SubExprs + Array;
1452  }
1453  arg_iterator placement_arg_end() {
1454    return SubExprs + Array + getNumPlacementArgs();
1455  }
1456  const_arg_iterator placement_arg_begin() const {
1457    return SubExprs + Array;
1458  }
1459  const_arg_iterator placement_arg_end() const {
1460    return SubExprs + Array + getNumPlacementArgs();
1461  }
1462
1463  arg_iterator constructor_arg_begin() {
1464    return SubExprs + Array + getNumPlacementArgs();
1465  }
1466  arg_iterator constructor_arg_end() {
1467    return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
1468  }
1469  const_arg_iterator constructor_arg_begin() const {
1470    return SubExprs + Array + getNumPlacementArgs();
1471  }
1472  const_arg_iterator constructor_arg_end() const {
1473    return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
1474  }
1475
1476  typedef Stmt **raw_arg_iterator;
1477  raw_arg_iterator raw_arg_begin() { return SubExprs; }
1478  raw_arg_iterator raw_arg_end() {
1479    return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
1480  }
1481  const_arg_iterator raw_arg_begin() const { return SubExprs; }
1482  const_arg_iterator raw_arg_end() const { return constructor_arg_end(); }
1483
1484  SourceLocation getStartLoc() const { return StartLoc; }
1485  SourceLocation getEndLoc() const { return EndLoc; }
1486
1487  SourceLocation getConstructorLParen() const { return ConstructorLParen; }
1488  SourceLocation getConstructorRParen() const { return ConstructorRParen; }
1489
1490  SourceRange getSourceRange() const {
1491    return SourceRange(StartLoc, EndLoc);
1492  }
1493
1494  static bool classof(const Stmt *T) {
1495    return T->getStmtClass() == CXXNewExprClass;
1496  }
1497  static bool classof(const CXXNewExpr *) { return true; }
1498
1499  // Iterators
1500  child_range children() {
1501    return child_range(&SubExprs[0],
1502                       &SubExprs[0] + Array + getNumPlacementArgs()
1503                         + getNumConstructorArgs());
1504  }
1505};
1506
1507/// CXXDeleteExpr - A delete expression for memory deallocation and destructor
1508/// calls, e.g. "delete[] pArray".
1509class CXXDeleteExpr : public Expr {
1510  // Is this a forced global delete, i.e. "::delete"?
1511  bool GlobalDelete : 1;
1512  // Is this the array form of delete, i.e. "delete[]"?
1513  bool ArrayForm : 1;
1514  // ArrayFormAsWritten can be different from ArrayForm if 'delete' is applied
1515  // to pointer-to-array type (ArrayFormAsWritten will be false while ArrayForm
1516  // will be true).
1517  bool ArrayFormAsWritten : 1;
1518  // Does the usual deallocation function for the element type require
1519  // a size_t argument?
1520  bool UsualArrayDeleteWantsSize : 1;
1521  // Points to the operator delete overload that is used. Could be a member.
1522  FunctionDecl *OperatorDelete;
1523  // The pointer expression to be deleted.
1524  Stmt *Argument;
1525  // Location of the expression.
1526  SourceLocation Loc;
1527public:
1528  CXXDeleteExpr(QualType ty, bool globalDelete, bool arrayForm,
1529                bool arrayFormAsWritten, bool usualArrayDeleteWantsSize,
1530                FunctionDecl *operatorDelete, Expr *arg, SourceLocation loc)
1531    : Expr(CXXDeleteExprClass, ty, VK_RValue, OK_Ordinary, false, false,
1532           arg->isInstantiationDependent(),
1533           arg->containsUnexpandedParameterPack()),
1534      GlobalDelete(globalDelete),
1535      ArrayForm(arrayForm), ArrayFormAsWritten(arrayFormAsWritten),
1536      UsualArrayDeleteWantsSize(usualArrayDeleteWantsSize),
1537      OperatorDelete(operatorDelete), Argument(arg), Loc(loc) { }
1538  explicit CXXDeleteExpr(EmptyShell Shell)
1539    : Expr(CXXDeleteExprClass, Shell), OperatorDelete(0), Argument(0) { }
1540
1541  bool isGlobalDelete() const { return GlobalDelete; }
1542  bool isArrayForm() const { return ArrayForm; }
1543  bool isArrayFormAsWritten() const { return ArrayFormAsWritten; }
1544
1545  /// Answers whether the usual array deallocation function for the
1546  /// allocated type expects the size of the allocation as a
1547  /// parameter.  This can be true even if the actual deallocation
1548  /// function that we're using doesn't want a size.
1549  bool doesUsualArrayDeleteWantSize() const {
1550    return UsualArrayDeleteWantsSize;
1551  }
1552
1553  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
1554
1555  Expr *getArgument() { return cast<Expr>(Argument); }
1556  const Expr *getArgument() const { return cast<Expr>(Argument); }
1557
1558  /// \brief Retrieve the type being destroyed.  If the type being
1559  /// destroyed is a dependent type which may or may not be a pointer,
1560  /// return an invalid type.
1561  QualType getDestroyedType() const;
1562
1563  SourceRange getSourceRange() const {
1564    return SourceRange(Loc, Argument->getLocEnd());
1565  }
1566
1567  static bool classof(const Stmt *T) {
1568    return T->getStmtClass() == CXXDeleteExprClass;
1569  }
1570  static bool classof(const CXXDeleteExpr *) { return true; }
1571
1572  // Iterators
1573  child_range children() { return child_range(&Argument, &Argument+1); }
1574
1575  friend class ASTStmtReader;
1576};
1577
1578/// \brief Structure used to store the type being destroyed by a
1579/// pseudo-destructor expression.
1580class PseudoDestructorTypeStorage {
1581  /// \brief Either the type source information or the name of the type, if
1582  /// it couldn't be resolved due to type-dependence.
1583  llvm::PointerUnion<TypeSourceInfo *, IdentifierInfo *> Type;
1584
1585  /// \brief The starting source location of the pseudo-destructor type.
1586  SourceLocation Location;
1587
1588public:
1589  PseudoDestructorTypeStorage() { }
1590
1591  PseudoDestructorTypeStorage(IdentifierInfo *II, SourceLocation Loc)
1592    : Type(II), Location(Loc) { }
1593
1594  PseudoDestructorTypeStorage(TypeSourceInfo *Info);
1595
1596  TypeSourceInfo *getTypeSourceInfo() const {
1597    return Type.dyn_cast<TypeSourceInfo *>();
1598  }
1599
1600  IdentifierInfo *getIdentifier() const {
1601    return Type.dyn_cast<IdentifierInfo *>();
1602  }
1603
1604  SourceLocation getLocation() const { return Location; }
1605};
1606
1607/// \brief Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
1608///
1609/// A pseudo-destructor is an expression that looks like a member access to a
1610/// destructor of a scalar type, except that scalar types don't have
1611/// destructors. For example:
1612///
1613/// \code
1614/// typedef int T;
1615/// void f(int *p) {
1616///   p->T::~T();
1617/// }
1618/// \endcode
1619///
1620/// Pseudo-destructors typically occur when instantiating templates such as:
1621///
1622/// \code
1623/// template<typename T>
1624/// void destroy(T* ptr) {
1625///   ptr->T::~T();
1626/// }
1627/// \endcode
1628///
1629/// for scalar types. A pseudo-destructor expression has no run-time semantics
1630/// beyond evaluating the base expression.
1631class CXXPseudoDestructorExpr : public Expr {
1632  /// \brief The base expression (that is being destroyed).
1633  Stmt *Base;
1634
1635  /// \brief Whether the operator was an arrow ('->'); otherwise, it was a
1636  /// period ('.').
1637  bool IsArrow : 1;
1638
1639  /// \brief The location of the '.' or '->' operator.
1640  SourceLocation OperatorLoc;
1641
1642  /// \brief The nested-name-specifier that follows the operator, if present.
1643  NestedNameSpecifierLoc QualifierLoc;
1644
1645  /// \brief The type that precedes the '::' in a qualified pseudo-destructor
1646  /// expression.
1647  TypeSourceInfo *ScopeType;
1648
1649  /// \brief The location of the '::' in a qualified pseudo-destructor
1650  /// expression.
1651  SourceLocation ColonColonLoc;
1652
1653  /// \brief The location of the '~'.
1654  SourceLocation TildeLoc;
1655
1656  /// \brief The type being destroyed, or its name if we were unable to
1657  /// resolve the name.
1658  PseudoDestructorTypeStorage DestroyedType;
1659
1660  friend class ASTStmtReader;
1661
1662public:
1663  CXXPseudoDestructorExpr(ASTContext &Context,
1664                          Expr *Base, bool isArrow, SourceLocation OperatorLoc,
1665                          NestedNameSpecifierLoc QualifierLoc,
1666                          TypeSourceInfo *ScopeType,
1667                          SourceLocation ColonColonLoc,
1668                          SourceLocation TildeLoc,
1669                          PseudoDestructorTypeStorage DestroyedType);
1670
1671  explicit CXXPseudoDestructorExpr(EmptyShell Shell)
1672    : Expr(CXXPseudoDestructorExprClass, Shell),
1673      Base(0), IsArrow(false), QualifierLoc(), ScopeType(0) { }
1674
1675  Expr *getBase() const { return cast<Expr>(Base); }
1676
1677  /// \brief Determines whether this member expression actually had
1678  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
1679  /// x->Base::foo.
1680  bool hasQualifier() const { return QualifierLoc; }
1681
1682  /// \brief Retrieves the nested-name-specifier that qualifies the type name,
1683  /// with source-location information.
1684  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
1685
1686  /// \brief If the member name was qualified, retrieves the
1687  /// nested-name-specifier that precedes the member name. Otherwise, returns
1688  /// NULL.
1689  NestedNameSpecifier *getQualifier() const {
1690    return QualifierLoc.getNestedNameSpecifier();
1691  }
1692
1693  /// \brief Determine whether this pseudo-destructor expression was written
1694  /// using an '->' (otherwise, it used a '.').
1695  bool isArrow() const { return IsArrow; }
1696
1697  /// \brief Retrieve the location of the '.' or '->' operator.
1698  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1699
1700  /// \brief Retrieve the scope type in a qualified pseudo-destructor
1701  /// expression.
1702  ///
1703  /// Pseudo-destructor expressions can have extra qualification within them
1704  /// that is not part of the nested-name-specifier, e.g., \c p->T::~T().
1705  /// Here, if the object type of the expression is (or may be) a scalar type,
1706  /// \p T may also be a scalar type and, therefore, cannot be part of a
1707  /// nested-name-specifier. It is stored as the "scope type" of the pseudo-
1708  /// destructor expression.
1709  TypeSourceInfo *getScopeTypeInfo() const { return ScopeType; }
1710
1711  /// \brief Retrieve the location of the '::' in a qualified pseudo-destructor
1712  /// expression.
1713  SourceLocation getColonColonLoc() const { return ColonColonLoc; }
1714
1715  /// \brief Retrieve the location of the '~'.
1716  SourceLocation getTildeLoc() const { return TildeLoc; }
1717
1718  /// \brief Retrieve the source location information for the type
1719  /// being destroyed.
1720  ///
1721  /// This type-source information is available for non-dependent
1722  /// pseudo-destructor expressions and some dependent pseudo-destructor
1723  /// expressions. Returns NULL if we only have the identifier for a
1724  /// dependent pseudo-destructor expression.
1725  TypeSourceInfo *getDestroyedTypeInfo() const {
1726    return DestroyedType.getTypeSourceInfo();
1727  }
1728
1729  /// \brief In a dependent pseudo-destructor expression for which we do not
1730  /// have full type information on the destroyed type, provides the name
1731  /// of the destroyed type.
1732  IdentifierInfo *getDestroyedTypeIdentifier() const {
1733    return DestroyedType.getIdentifier();
1734  }
1735
1736  /// \brief Retrieve the type being destroyed.
1737  QualType getDestroyedType() const;
1738
1739  /// \brief Retrieve the starting location of the type being destroyed.
1740  SourceLocation getDestroyedTypeLoc() const {
1741    return DestroyedType.getLocation();
1742  }
1743
1744  /// \brief Set the name of destroyed type for a dependent pseudo-destructor
1745  /// expression.
1746  void setDestroyedType(IdentifierInfo *II, SourceLocation Loc) {
1747    DestroyedType = PseudoDestructorTypeStorage(II, Loc);
1748  }
1749
1750  /// \brief Set the destroyed type.
1751  void setDestroyedType(TypeSourceInfo *Info) {
1752    DestroyedType = PseudoDestructorTypeStorage(Info);
1753  }
1754
1755  SourceRange getSourceRange() const;
1756
1757  static bool classof(const Stmt *T) {
1758    return T->getStmtClass() == CXXPseudoDestructorExprClass;
1759  }
1760  static bool classof(const CXXPseudoDestructorExpr *) { return true; }
1761
1762  // Iterators
1763  child_range children() { return child_range(&Base, &Base + 1); }
1764};
1765
1766/// UnaryTypeTraitExpr - A GCC or MS unary type trait, as used in the
1767/// implementation of TR1/C++0x type trait templates.
1768/// Example:
1769/// __is_pod(int) == true
1770/// __is_enum(std::string) == false
1771class UnaryTypeTraitExpr : public Expr {
1772  /// UTT - The trait. A UnaryTypeTrait enum in MSVC compat unsigned.
1773  unsigned UTT : 31;
1774  /// The value of the type trait. Unspecified if dependent.
1775  bool Value : 1;
1776
1777  /// Loc - The location of the type trait keyword.
1778  SourceLocation Loc;
1779
1780  /// RParen - The location of the closing paren.
1781  SourceLocation RParen;
1782
1783  /// The type being queried.
1784  TypeSourceInfo *QueriedType;
1785
1786public:
1787  UnaryTypeTraitExpr(SourceLocation loc, UnaryTypeTrait utt,
1788                     TypeSourceInfo *queried, bool value,
1789                     SourceLocation rparen, QualType ty)
1790    : Expr(UnaryTypeTraitExprClass, ty, VK_RValue, OK_Ordinary,
1791           false,  queried->getType()->isDependentType(),
1792           queried->getType()->isInstantiationDependentType(),
1793           queried->getType()->containsUnexpandedParameterPack()),
1794      UTT(utt), Value(value), Loc(loc), RParen(rparen), QueriedType(queried) { }
1795
1796  explicit UnaryTypeTraitExpr(EmptyShell Empty)
1797    : Expr(UnaryTypeTraitExprClass, Empty), UTT(0), Value(false),
1798      QueriedType() { }
1799
1800  SourceRange getSourceRange() const { return SourceRange(Loc, RParen);}
1801
1802  UnaryTypeTrait getTrait() const { return static_cast<UnaryTypeTrait>(UTT); }
1803
1804  QualType getQueriedType() const { return QueriedType->getType(); }
1805
1806  TypeSourceInfo *getQueriedTypeSourceInfo() const { return QueriedType; }
1807
1808  bool getValue() const { return Value; }
1809
1810  static bool classof(const Stmt *T) {
1811    return T->getStmtClass() == UnaryTypeTraitExprClass;
1812  }
1813  static bool classof(const UnaryTypeTraitExpr *) { return true; }
1814
1815  // Iterators
1816  child_range children() { return child_range(); }
1817
1818  friend class ASTStmtReader;
1819};
1820
1821/// BinaryTypeTraitExpr - A GCC or MS binary type trait, as used in the
1822/// implementation of TR1/C++0x type trait templates.
1823/// Example:
1824/// __is_base_of(Base, Derived) == true
1825class BinaryTypeTraitExpr : public Expr {
1826  /// BTT - The trait. A BinaryTypeTrait enum in MSVC compat unsigned.
1827  unsigned BTT : 8;
1828
1829  /// The value of the type trait. Unspecified if dependent.
1830  bool Value : 1;
1831
1832  /// Loc - The location of the type trait keyword.
1833  SourceLocation Loc;
1834
1835  /// RParen - The location of the closing paren.
1836  SourceLocation RParen;
1837
1838  /// The lhs type being queried.
1839  TypeSourceInfo *LhsType;
1840
1841  /// The rhs type being queried.
1842  TypeSourceInfo *RhsType;
1843
1844public:
1845  BinaryTypeTraitExpr(SourceLocation loc, BinaryTypeTrait btt,
1846                     TypeSourceInfo *lhsType, TypeSourceInfo *rhsType,
1847                     bool value, SourceLocation rparen, QualType ty)
1848    : Expr(BinaryTypeTraitExprClass, ty, VK_RValue, OK_Ordinary, false,
1849           lhsType->getType()->isDependentType() ||
1850           rhsType->getType()->isDependentType(),
1851           (lhsType->getType()->isInstantiationDependentType() ||
1852            rhsType->getType()->isInstantiationDependentType()),
1853           (lhsType->getType()->containsUnexpandedParameterPack() ||
1854            rhsType->getType()->containsUnexpandedParameterPack())),
1855      BTT(btt), Value(value), Loc(loc), RParen(rparen),
1856      LhsType(lhsType), RhsType(rhsType) { }
1857
1858
1859  explicit BinaryTypeTraitExpr(EmptyShell Empty)
1860    : Expr(BinaryTypeTraitExprClass, Empty), BTT(0), Value(false),
1861      LhsType(), RhsType() { }
1862
1863  SourceRange getSourceRange() const {
1864    return SourceRange(Loc, RParen);
1865  }
1866
1867  BinaryTypeTrait getTrait() const {
1868    return static_cast<BinaryTypeTrait>(BTT);
1869  }
1870
1871  QualType getLhsType() const { return LhsType->getType(); }
1872  QualType getRhsType() const { return RhsType->getType(); }
1873
1874  TypeSourceInfo *getLhsTypeSourceInfo() const { return LhsType; }
1875  TypeSourceInfo *getRhsTypeSourceInfo() const { return RhsType; }
1876
1877  bool getValue() const { assert(!isTypeDependent()); return Value; }
1878
1879  static bool classof(const Stmt *T) {
1880    return T->getStmtClass() == BinaryTypeTraitExprClass;
1881  }
1882  static bool classof(const BinaryTypeTraitExpr *) { return true; }
1883
1884  // Iterators
1885  child_range children() { return child_range(); }
1886
1887  friend class ASTStmtReader;
1888};
1889
1890/// ArrayTypeTraitExpr - An Embarcadero array type trait, as used in the
1891/// implementation of __array_rank and __array_extent.
1892/// Example:
1893/// __array_rank(int[10][20]) == 2
1894/// __array_extent(int, 1)    == 20
1895class ArrayTypeTraitExpr : public Expr {
1896  virtual void anchor();
1897
1898  /// ATT - The trait. An ArrayTypeTrait enum in MSVC compat unsigned.
1899  unsigned ATT : 2;
1900
1901  /// The value of the type trait. Unspecified if dependent.
1902  uint64_t Value;
1903
1904  /// The array dimension being queried, or -1 if not used
1905  Expr *Dimension;
1906
1907  /// Loc - The location of the type trait keyword.
1908  SourceLocation Loc;
1909
1910  /// RParen - The location of the closing paren.
1911  SourceLocation RParen;
1912
1913  /// The type being queried.
1914  TypeSourceInfo *QueriedType;
1915
1916public:
1917  ArrayTypeTraitExpr(SourceLocation loc, ArrayTypeTrait att,
1918                     TypeSourceInfo *queried, uint64_t value,
1919                     Expr *dimension, SourceLocation rparen, QualType ty)
1920    : Expr(ArrayTypeTraitExprClass, ty, VK_RValue, OK_Ordinary,
1921           false, queried->getType()->isDependentType(),
1922           (queried->getType()->isInstantiationDependentType() ||
1923            (dimension && dimension->isInstantiationDependent())),
1924           queried->getType()->containsUnexpandedParameterPack()),
1925      ATT(att), Value(value), Dimension(dimension),
1926      Loc(loc), RParen(rparen), QueriedType(queried) { }
1927
1928
1929  explicit ArrayTypeTraitExpr(EmptyShell Empty)
1930    : Expr(ArrayTypeTraitExprClass, Empty), ATT(0), Value(false),
1931      QueriedType() { }
1932
1933  virtual ~ArrayTypeTraitExpr() { }
1934
1935  virtual SourceRange getSourceRange() const {
1936    return SourceRange(Loc, RParen);
1937  }
1938
1939  ArrayTypeTrait getTrait() const { return static_cast<ArrayTypeTrait>(ATT); }
1940
1941  QualType getQueriedType() const { return QueriedType->getType(); }
1942
1943  TypeSourceInfo *getQueriedTypeSourceInfo() const { return QueriedType; }
1944
1945  uint64_t getValue() const { assert(!isTypeDependent()); return Value; }
1946
1947  Expr *getDimensionExpression() const { return Dimension; }
1948
1949  static bool classof(const Stmt *T) {
1950    return T->getStmtClass() == ArrayTypeTraitExprClass;
1951  }
1952  static bool classof(const ArrayTypeTraitExpr *) { return true; }
1953
1954  // Iterators
1955  child_range children() { return child_range(); }
1956
1957  friend class ASTStmtReader;
1958};
1959
1960/// ExpressionTraitExpr - An expression trait intrinsic
1961/// Example:
1962/// __is_lvalue_expr(std::cout) == true
1963/// __is_lvalue_expr(1) == false
1964class ExpressionTraitExpr : public Expr {
1965  /// ET - The trait. A ExpressionTrait enum in MSVC compat unsigned.
1966  unsigned ET : 31;
1967  /// The value of the type trait. Unspecified if dependent.
1968  bool Value : 1;
1969
1970  /// Loc - The location of the type trait keyword.
1971  SourceLocation Loc;
1972
1973  /// RParen - The location of the closing paren.
1974  SourceLocation RParen;
1975
1976  Expr* QueriedExpression;
1977public:
1978  ExpressionTraitExpr(SourceLocation loc, ExpressionTrait et,
1979                     Expr *queried, bool value,
1980                     SourceLocation rparen, QualType resultType)
1981    : Expr(ExpressionTraitExprClass, resultType, VK_RValue, OK_Ordinary,
1982           false, // Not type-dependent
1983           // Value-dependent if the argument is type-dependent.
1984           queried->isTypeDependent(),
1985           queried->isInstantiationDependent(),
1986           queried->containsUnexpandedParameterPack()),
1987      ET(et), Value(value), Loc(loc), RParen(rparen),
1988      QueriedExpression(queried) { }
1989
1990  explicit ExpressionTraitExpr(EmptyShell Empty)
1991    : Expr(ExpressionTraitExprClass, Empty), ET(0), Value(false),
1992      QueriedExpression() { }
1993
1994  SourceRange getSourceRange() const { return SourceRange(Loc, RParen);}
1995
1996  ExpressionTrait getTrait() const { return static_cast<ExpressionTrait>(ET); }
1997
1998  Expr *getQueriedExpression() const { return QueriedExpression; }
1999
2000  bool getValue() const { return Value; }
2001
2002  static bool classof(const Stmt *T) {
2003    return T->getStmtClass() == ExpressionTraitExprClass;
2004  }
2005  static bool classof(const ExpressionTraitExpr *) { return true; }
2006
2007  // Iterators
2008  child_range children() { return child_range(); }
2009
2010  friend class ASTStmtReader;
2011};
2012
2013
2014/// \brief A reference to an overloaded function set, either an
2015/// \t UnresolvedLookupExpr or an \t UnresolvedMemberExpr.
2016class OverloadExpr : public Expr {
2017  /// The results.  These are undesugared, which is to say, they may
2018  /// include UsingShadowDecls.  Access is relative to the naming
2019  /// class.
2020  // FIXME: Allocate this data after the OverloadExpr subclass.
2021  DeclAccessPair *Results;
2022  unsigned NumResults;
2023
2024  /// The common name of these declarations.
2025  DeclarationNameInfo NameInfo;
2026
2027  /// \brief The nested-name-specifier that qualifies the name, if any.
2028  NestedNameSpecifierLoc QualifierLoc;
2029
2030protected:
2031  /// \brief Whether the name includes info for explicit template
2032  /// keyword and arguments.
2033  bool HasTemplateKWAndArgsInfo;
2034
2035  /// \brief Return the optional template keyword and arguments info.
2036  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo(); // defined far below.
2037
2038  /// \brief Return the optional template keyword and arguments info.
2039  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
2040    return const_cast<OverloadExpr*>(this)->getTemplateKWAndArgsInfo();
2041  }
2042
2043  OverloadExpr(StmtClass K, ASTContext &C,
2044               NestedNameSpecifierLoc QualifierLoc,
2045               SourceLocation TemplateKWLoc,
2046               const DeclarationNameInfo &NameInfo,
2047               const TemplateArgumentListInfo *TemplateArgs,
2048               UnresolvedSetIterator Begin, UnresolvedSetIterator End,
2049               bool KnownDependent,
2050               bool KnownInstantiationDependent,
2051               bool KnownContainsUnexpandedParameterPack);
2052
2053  OverloadExpr(StmtClass K, EmptyShell Empty)
2054    : Expr(K, Empty), Results(0), NumResults(0),
2055      QualifierLoc(), HasTemplateKWAndArgsInfo(false) { }
2056
2057  void initializeResults(ASTContext &C,
2058                         UnresolvedSetIterator Begin,
2059                         UnresolvedSetIterator End);
2060
2061public:
2062  struct FindResult {
2063    OverloadExpr *Expression;
2064    bool IsAddressOfOperand;
2065    bool HasFormOfMemberPointer;
2066  };
2067
2068  /// Finds the overloaded expression in the given expression of
2069  /// OverloadTy.
2070  ///
2071  /// \return the expression (which must be there) and true if it has
2072  /// the particular form of a member pointer expression
2073  static FindResult find(Expr *E) {
2074    assert(E->getType()->isSpecificBuiltinType(BuiltinType::Overload));
2075
2076    FindResult Result;
2077
2078    E = E->IgnoreParens();
2079    if (isa<UnaryOperator>(E)) {
2080      assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
2081      E = cast<UnaryOperator>(E)->getSubExpr();
2082      OverloadExpr *Ovl = cast<OverloadExpr>(E->IgnoreParens());
2083
2084      Result.HasFormOfMemberPointer = (E == Ovl && Ovl->getQualifier());
2085      Result.IsAddressOfOperand = true;
2086      Result.Expression = Ovl;
2087    } else {
2088      Result.HasFormOfMemberPointer = false;
2089      Result.IsAddressOfOperand = false;
2090      Result.Expression = cast<OverloadExpr>(E);
2091    }
2092
2093    return Result;
2094  }
2095
2096  /// Gets the naming class of this lookup, if any.
2097  CXXRecordDecl *getNamingClass() const;
2098
2099  typedef UnresolvedSetImpl::iterator decls_iterator;
2100  decls_iterator decls_begin() const { return UnresolvedSetIterator(Results); }
2101  decls_iterator decls_end() const {
2102    return UnresolvedSetIterator(Results + NumResults);
2103  }
2104
2105  /// Gets the number of declarations in the unresolved set.
2106  unsigned getNumDecls() const { return NumResults; }
2107
2108  /// Gets the full name info.
2109  const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
2110
2111  /// Gets the name looked up.
2112  DeclarationName getName() const { return NameInfo.getName(); }
2113
2114  /// Gets the location of the name.
2115  SourceLocation getNameLoc() const { return NameInfo.getLoc(); }
2116
2117  /// Fetches the nested-name qualifier, if one was given.
2118  NestedNameSpecifier *getQualifier() const {
2119    return QualifierLoc.getNestedNameSpecifier();
2120  }
2121
2122  /// Fetches the nested-name qualifier with source-location information, if
2123  /// one was given.
2124  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2125
2126  /// \brief Retrieve the location of the template keyword preceding
2127  /// this name, if any.
2128  SourceLocation getTemplateKeywordLoc() const {
2129    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2130    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
2131  }
2132
2133  /// \brief Retrieve the location of the left angle bracket starting the
2134  /// explicit template argument list following the name, if any.
2135  SourceLocation getLAngleLoc() const {
2136    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2137    return getTemplateKWAndArgsInfo()->LAngleLoc;
2138  }
2139
2140  /// \brief Retrieve the location of the right angle bracket ending the
2141  /// explicit template argument list following the name, if any.
2142  SourceLocation getRAngleLoc() const {
2143    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2144    return getTemplateKWAndArgsInfo()->RAngleLoc;
2145  }
2146
2147  /// Determines whether the name was preceded by the template keyword.
2148  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
2149
2150  /// Determines whether this expression had explicit template arguments.
2151  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
2152
2153  // Note that, inconsistently with the explicit-template-argument AST
2154  // nodes, users are *forbidden* from calling these methods on objects
2155  // without explicit template arguments.
2156
2157  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
2158    assert(hasExplicitTemplateArgs());
2159    return *getTemplateKWAndArgsInfo();
2160  }
2161
2162  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2163    return const_cast<OverloadExpr*>(this)->getExplicitTemplateArgs();
2164  }
2165
2166  TemplateArgumentLoc const *getTemplateArgs() const {
2167    return getExplicitTemplateArgs().getTemplateArgs();
2168  }
2169
2170  unsigned getNumTemplateArgs() const {
2171    return getExplicitTemplateArgs().NumTemplateArgs;
2172  }
2173
2174  /// Copies the template arguments into the given structure.
2175  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2176    getExplicitTemplateArgs().copyInto(List);
2177  }
2178
2179  /// \brief Retrieves the optional explicit template arguments.
2180  /// This points to the same data as getExplicitTemplateArgs(), but
2181  /// returns null if there are no explicit template arguments.
2182  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() {
2183    if (!hasExplicitTemplateArgs()) return 0;
2184    return &getExplicitTemplateArgs();
2185  }
2186
2187  static bool classof(const Stmt *T) {
2188    return T->getStmtClass() == UnresolvedLookupExprClass ||
2189           T->getStmtClass() == UnresolvedMemberExprClass;
2190  }
2191  static bool classof(const OverloadExpr *) { return true; }
2192
2193  friend class ASTStmtReader;
2194  friend class ASTStmtWriter;
2195};
2196
2197/// \brief A reference to a name which we were able to look up during
2198/// parsing but could not resolve to a specific declaration.  This
2199/// arises in several ways:
2200///   * we might be waiting for argument-dependent lookup
2201///   * the name might resolve to an overloaded function
2202/// and eventually:
2203///   * the lookup might have included a function template
2204/// These never include UnresolvedUsingValueDecls, which are always
2205/// class members and therefore appear only in
2206/// UnresolvedMemberLookupExprs.
2207class UnresolvedLookupExpr : public OverloadExpr {
2208  /// True if these lookup results should be extended by
2209  /// argument-dependent lookup if this is the operand of a function
2210  /// call.
2211  bool RequiresADL;
2212
2213  /// True if namespace ::std should be considered an associated namespace
2214  /// for the purposes of argument-dependent lookup. See C++0x [stmt.ranged]p1.
2215  bool StdIsAssociatedNamespace;
2216
2217  /// True if these lookup results are overloaded.  This is pretty
2218  /// trivially rederivable if we urgently need to kill this field.
2219  bool Overloaded;
2220
2221  /// The naming class (C++ [class.access.base]p5) of the lookup, if
2222  /// any.  This can generally be recalculated from the context chain,
2223  /// but that can be fairly expensive for unqualified lookups.  If we
2224  /// want to improve memory use here, this could go in a union
2225  /// against the qualified-lookup bits.
2226  CXXRecordDecl *NamingClass;
2227
2228  UnresolvedLookupExpr(ASTContext &C,
2229                       CXXRecordDecl *NamingClass,
2230                       NestedNameSpecifierLoc QualifierLoc,
2231                       SourceLocation TemplateKWLoc,
2232                       const DeclarationNameInfo &NameInfo,
2233                       bool RequiresADL, bool Overloaded,
2234                       const TemplateArgumentListInfo *TemplateArgs,
2235                       UnresolvedSetIterator Begin, UnresolvedSetIterator End,
2236                       bool StdIsAssociatedNamespace)
2237    : OverloadExpr(UnresolvedLookupExprClass, C, QualifierLoc, TemplateKWLoc,
2238                   NameInfo, TemplateArgs, Begin, End, false, false, false),
2239      RequiresADL(RequiresADL),
2240      StdIsAssociatedNamespace(StdIsAssociatedNamespace),
2241      Overloaded(Overloaded), NamingClass(NamingClass)
2242  {}
2243
2244  UnresolvedLookupExpr(EmptyShell Empty)
2245    : OverloadExpr(UnresolvedLookupExprClass, Empty),
2246      RequiresADL(false), StdIsAssociatedNamespace(false), Overloaded(false),
2247      NamingClass(0)
2248  {}
2249
2250  friend class ASTStmtReader;
2251
2252public:
2253  static UnresolvedLookupExpr *Create(ASTContext &C,
2254                                      CXXRecordDecl *NamingClass,
2255                                      NestedNameSpecifierLoc QualifierLoc,
2256                                      const DeclarationNameInfo &NameInfo,
2257                                      bool ADL, bool Overloaded,
2258                                      UnresolvedSetIterator Begin,
2259                                      UnresolvedSetIterator End,
2260                                      bool StdIsAssociatedNamespace = false) {
2261    assert((ADL || !StdIsAssociatedNamespace) &&
2262           "std considered associated namespace when not performing ADL");
2263    return new(C) UnresolvedLookupExpr(C, NamingClass, QualifierLoc,
2264                                       SourceLocation(), NameInfo,
2265                                       ADL, Overloaded, 0, Begin, End,
2266                                       StdIsAssociatedNamespace);
2267  }
2268
2269  static UnresolvedLookupExpr *Create(ASTContext &C,
2270                                      CXXRecordDecl *NamingClass,
2271                                      NestedNameSpecifierLoc QualifierLoc,
2272                                      SourceLocation TemplateKWLoc,
2273                                      const DeclarationNameInfo &NameInfo,
2274                                      bool ADL,
2275                                      const TemplateArgumentListInfo *Args,
2276                                      UnresolvedSetIterator Begin,
2277                                      UnresolvedSetIterator End);
2278
2279  static UnresolvedLookupExpr *CreateEmpty(ASTContext &C,
2280                                           bool HasTemplateKWAndArgsInfo,
2281                                           unsigned NumTemplateArgs);
2282
2283  /// True if this declaration should be extended by
2284  /// argument-dependent lookup.
2285  bool requiresADL() const { return RequiresADL; }
2286
2287  /// True if namespace ::std should be artificially added to the set of
2288  /// associated namespaecs for argument-dependent lookup purposes.
2289  bool isStdAssociatedNamespace() const { return StdIsAssociatedNamespace; }
2290
2291  /// True if this lookup is overloaded.
2292  bool isOverloaded() const { return Overloaded; }
2293
2294  /// Gets the 'naming class' (in the sense of C++0x
2295  /// [class.access.base]p5) of the lookup.  This is the scope
2296  /// that was looked in to find these results.
2297  CXXRecordDecl *getNamingClass() const { return NamingClass; }
2298
2299  SourceRange getSourceRange() const {
2300    SourceRange Range(getNameInfo().getSourceRange());
2301    if (getQualifierLoc())
2302      Range.setBegin(getQualifierLoc().getBeginLoc());
2303    if (hasExplicitTemplateArgs())
2304      Range.setEnd(getRAngleLoc());
2305    return Range;
2306  }
2307
2308  child_range children() { return child_range(); }
2309
2310  static bool classof(const Stmt *T) {
2311    return T->getStmtClass() == UnresolvedLookupExprClass;
2312  }
2313  static bool classof(const UnresolvedLookupExpr *) { return true; }
2314};
2315
2316/// \brief A qualified reference to a name whose declaration cannot
2317/// yet be resolved.
2318///
2319/// DependentScopeDeclRefExpr is similar to DeclRefExpr in that
2320/// it expresses a reference to a declaration such as
2321/// X<T>::value. The difference, however, is that an
2322/// DependentScopeDeclRefExpr node is used only within C++ templates when
2323/// the qualification (e.g., X<T>::) refers to a dependent type. In
2324/// this case, X<T>::value cannot resolve to a declaration because the
2325/// declaration will differ from on instantiation of X<T> to the
2326/// next. Therefore, DependentScopeDeclRefExpr keeps track of the
2327/// qualifier (X<T>::) and the name of the entity being referenced
2328/// ("value"). Such expressions will instantiate to a DeclRefExpr once the
2329/// declaration can be found.
2330class DependentScopeDeclRefExpr : public Expr {
2331  /// \brief The nested-name-specifier that qualifies this unresolved
2332  /// declaration name.
2333  NestedNameSpecifierLoc QualifierLoc;
2334
2335  /// The name of the entity we will be referencing.
2336  DeclarationNameInfo NameInfo;
2337
2338  /// \brief Whether the name includes info for explicit template
2339  /// keyword and arguments.
2340  bool HasTemplateKWAndArgsInfo;
2341
2342  /// \brief Return the optional template keyword and arguments info.
2343  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
2344    if (!HasTemplateKWAndArgsInfo) return 0;
2345    return reinterpret_cast<ASTTemplateKWAndArgsInfo*>(this + 1);
2346  }
2347  /// \brief Return the optional template keyword and arguments info.
2348  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
2349    return const_cast<DependentScopeDeclRefExpr*>(this)
2350      ->getTemplateKWAndArgsInfo();
2351  }
2352
2353  DependentScopeDeclRefExpr(QualType T,
2354                            NestedNameSpecifierLoc QualifierLoc,
2355                            SourceLocation TemplateKWLoc,
2356                            const DeclarationNameInfo &NameInfo,
2357                            const TemplateArgumentListInfo *Args);
2358
2359public:
2360  static DependentScopeDeclRefExpr *Create(ASTContext &C,
2361                                           NestedNameSpecifierLoc QualifierLoc,
2362                                           SourceLocation TemplateKWLoc,
2363                                           const DeclarationNameInfo &NameInfo,
2364                              const TemplateArgumentListInfo *TemplateArgs);
2365
2366  static DependentScopeDeclRefExpr *CreateEmpty(ASTContext &C,
2367                                                bool HasTemplateKWAndArgsInfo,
2368                                                unsigned NumTemplateArgs);
2369
2370  /// \brief Retrieve the name that this expression refers to.
2371  const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
2372
2373  /// \brief Retrieve the name that this expression refers to.
2374  DeclarationName getDeclName() const { return NameInfo.getName(); }
2375
2376  /// \brief Retrieve the location of the name within the expression.
2377  SourceLocation getLocation() const { return NameInfo.getLoc(); }
2378
2379  /// \brief Retrieve the nested-name-specifier that qualifies the
2380  /// name, with source location information.
2381  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2382
2383
2384  /// \brief Retrieve the nested-name-specifier that qualifies this
2385  /// declaration.
2386  NestedNameSpecifier *getQualifier() const {
2387    return QualifierLoc.getNestedNameSpecifier();
2388  }
2389
2390  /// \brief Retrieve the location of the template keyword preceding
2391  /// this name, if any.
2392  SourceLocation getTemplateKeywordLoc() const {
2393    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2394    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
2395  }
2396
2397  /// \brief Retrieve the location of the left angle bracket starting the
2398  /// explicit template argument list following the name, if any.
2399  SourceLocation getLAngleLoc() const {
2400    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2401    return getTemplateKWAndArgsInfo()->LAngleLoc;
2402  }
2403
2404  /// \brief Retrieve the location of the right angle bracket ending the
2405  /// explicit template argument list following the name, if any.
2406  SourceLocation getRAngleLoc() const {
2407    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2408    return getTemplateKWAndArgsInfo()->RAngleLoc;
2409  }
2410
2411  /// Determines whether the name was preceded by the template keyword.
2412  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
2413
2414  /// Determines whether this lookup had explicit template arguments.
2415  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
2416
2417  // Note that, inconsistently with the explicit-template-argument AST
2418  // nodes, users are *forbidden* from calling these methods on objects
2419  // without explicit template arguments.
2420
2421  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
2422    assert(hasExplicitTemplateArgs());
2423    return *reinterpret_cast<ASTTemplateArgumentListInfo*>(this + 1);
2424  }
2425
2426  /// Gets a reference to the explicit template argument list.
2427  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2428    assert(hasExplicitTemplateArgs());
2429    return *reinterpret_cast<const ASTTemplateArgumentListInfo*>(this + 1);
2430  }
2431
2432  /// \brief Retrieves the optional explicit template arguments.
2433  /// This points to the same data as getExplicitTemplateArgs(), but
2434  /// returns null if there are no explicit template arguments.
2435  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() {
2436    if (!hasExplicitTemplateArgs()) return 0;
2437    return &getExplicitTemplateArgs();
2438  }
2439
2440  /// \brief Copies the template arguments (if present) into the given
2441  /// structure.
2442  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2443    getExplicitTemplateArgs().copyInto(List);
2444  }
2445
2446  TemplateArgumentLoc const *getTemplateArgs() const {
2447    return getExplicitTemplateArgs().getTemplateArgs();
2448  }
2449
2450  unsigned getNumTemplateArgs() const {
2451    return getExplicitTemplateArgs().NumTemplateArgs;
2452  }
2453
2454  SourceRange getSourceRange() const {
2455    SourceRange Range(QualifierLoc.getBeginLoc(), getLocation());
2456    if (hasExplicitTemplateArgs())
2457      Range.setEnd(getRAngleLoc());
2458    return Range;
2459  }
2460
2461  static bool classof(const Stmt *T) {
2462    return T->getStmtClass() == DependentScopeDeclRefExprClass;
2463  }
2464  static bool classof(const DependentScopeDeclRefExpr *) { return true; }
2465
2466  child_range children() { return child_range(); }
2467
2468  friend class ASTStmtReader;
2469  friend class ASTStmtWriter;
2470};
2471
2472/// Represents an expression --- generally a full-expression --- which
2473/// introduces cleanups to be run at the end of the sub-expression's
2474/// evaluation.  The most common source of expression-introduced
2475/// cleanups is temporary objects in C++, but several other kinds of
2476/// expressions can create cleanups, including basically every
2477/// call in ARC that returns an Objective-C pointer.
2478///
2479/// This expression also tracks whether the sub-expression contains a
2480/// potentially-evaluated block literal.  The lifetime of a block
2481/// literal is the extent of the enclosing scope.
2482class ExprWithCleanups : public Expr {
2483public:
2484  /// The type of objects that are kept in the cleanup.
2485  /// It's useful to remember the set of blocks;  we could also
2486  /// remember the set of temporaries, but there's currently
2487  /// no need.
2488  typedef BlockDecl *CleanupObject;
2489
2490private:
2491  Stmt *SubExpr;
2492
2493  ExprWithCleanups(EmptyShell, unsigned NumObjects);
2494  ExprWithCleanups(Expr *SubExpr, ArrayRef<CleanupObject> Objects);
2495
2496  CleanupObject *getObjectsBuffer() {
2497    return reinterpret_cast<CleanupObject*>(this + 1);
2498  }
2499  const CleanupObject *getObjectsBuffer() const {
2500    return reinterpret_cast<const CleanupObject*>(this + 1);
2501  }
2502  friend class ASTStmtReader;
2503
2504public:
2505  static ExprWithCleanups *Create(ASTContext &C, EmptyShell empty,
2506                                  unsigned numObjects);
2507
2508  static ExprWithCleanups *Create(ASTContext &C, Expr *subexpr,
2509                                  ArrayRef<CleanupObject> objects);
2510
2511  ArrayRef<CleanupObject> getObjects() const {
2512    return ArrayRef<CleanupObject>(getObjectsBuffer(), getNumObjects());
2513  }
2514
2515  unsigned getNumObjects() const { return ExprWithCleanupsBits.NumObjects; }
2516
2517  CleanupObject getObject(unsigned i) const {
2518    assert(i < getNumObjects() && "Index out of range");
2519    return getObjects()[i];
2520  }
2521
2522  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
2523  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
2524
2525  /// setSubExpr - As with any mutator of the AST, be very careful
2526  /// when modifying an existing AST to preserve its invariants.
2527  void setSubExpr(Expr *E) { SubExpr = E; }
2528
2529  SourceRange getSourceRange() const {
2530    return SubExpr->getSourceRange();
2531  }
2532
2533  // Implement isa/cast/dyncast/etc.
2534  static bool classof(const Stmt *T) {
2535    return T->getStmtClass() == ExprWithCleanupsClass;
2536  }
2537  static bool classof(const ExprWithCleanups *) { return true; }
2538
2539  // Iterators
2540  child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
2541};
2542
2543/// \brief Describes an explicit type conversion that uses functional
2544/// notion but could not be resolved because one or more arguments are
2545/// type-dependent.
2546///
2547/// The explicit type conversions expressed by
2548/// CXXUnresolvedConstructExpr have the form \c T(a1, a2, ..., aN),
2549/// where \c T is some type and \c a1, a2, ..., aN are values, and
2550/// either \C T is a dependent type or one or more of the \c a's is
2551/// type-dependent. For example, this would occur in a template such
2552/// as:
2553///
2554/// \code
2555///   template<typename T, typename A1>
2556///   inline T make_a(const A1& a1) {
2557///     return T(a1);
2558///   }
2559/// \endcode
2560///
2561/// When the returned expression is instantiated, it may resolve to a
2562/// constructor call, conversion function call, or some kind of type
2563/// conversion.
2564class CXXUnresolvedConstructExpr : public Expr {
2565  /// \brief The type being constructed.
2566  TypeSourceInfo *Type;
2567
2568  /// \brief The location of the left parentheses ('(').
2569  SourceLocation LParenLoc;
2570
2571  /// \brief The location of the right parentheses (')').
2572  SourceLocation RParenLoc;
2573
2574  /// \brief The number of arguments used to construct the type.
2575  unsigned NumArgs;
2576
2577  CXXUnresolvedConstructExpr(TypeSourceInfo *Type,
2578                             SourceLocation LParenLoc,
2579                             Expr **Args,
2580                             unsigned NumArgs,
2581                             SourceLocation RParenLoc);
2582
2583  CXXUnresolvedConstructExpr(EmptyShell Empty, unsigned NumArgs)
2584    : Expr(CXXUnresolvedConstructExprClass, Empty), Type(), NumArgs(NumArgs) { }
2585
2586  friend class ASTStmtReader;
2587
2588public:
2589  static CXXUnresolvedConstructExpr *Create(ASTContext &C,
2590                                            TypeSourceInfo *Type,
2591                                            SourceLocation LParenLoc,
2592                                            Expr **Args,
2593                                            unsigned NumArgs,
2594                                            SourceLocation RParenLoc);
2595
2596  static CXXUnresolvedConstructExpr *CreateEmpty(ASTContext &C,
2597                                                 unsigned NumArgs);
2598
2599  /// \brief Retrieve the type that is being constructed, as specified
2600  /// in the source code.
2601  QualType getTypeAsWritten() const { return Type->getType(); }
2602
2603  /// \brief Retrieve the type source information for the type being
2604  /// constructed.
2605  TypeSourceInfo *getTypeSourceInfo() const { return Type; }
2606
2607  /// \brief Retrieve the location of the left parentheses ('(') that
2608  /// precedes the argument list.
2609  SourceLocation getLParenLoc() const { return LParenLoc; }
2610  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2611
2612  /// \brief Retrieve the location of the right parentheses (')') that
2613  /// follows the argument list.
2614  SourceLocation getRParenLoc() const { return RParenLoc; }
2615  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2616
2617  /// \brief Retrieve the number of arguments.
2618  unsigned arg_size() const { return NumArgs; }
2619
2620  typedef Expr** arg_iterator;
2621  arg_iterator arg_begin() { return reinterpret_cast<Expr**>(this + 1); }
2622  arg_iterator arg_end() { return arg_begin() + NumArgs; }
2623
2624  typedef const Expr* const * const_arg_iterator;
2625  const_arg_iterator arg_begin() const {
2626    return reinterpret_cast<const Expr* const *>(this + 1);
2627  }
2628  const_arg_iterator arg_end() const {
2629    return arg_begin() + NumArgs;
2630  }
2631
2632  Expr *getArg(unsigned I) {
2633    assert(I < NumArgs && "Argument index out-of-range");
2634    return *(arg_begin() + I);
2635  }
2636
2637  const Expr *getArg(unsigned I) const {
2638    assert(I < NumArgs && "Argument index out-of-range");
2639    return *(arg_begin() + I);
2640  }
2641
2642  void setArg(unsigned I, Expr *E) {
2643    assert(I < NumArgs && "Argument index out-of-range");
2644    *(arg_begin() + I) = E;
2645  }
2646
2647  SourceRange getSourceRange() const;
2648
2649  static bool classof(const Stmt *T) {
2650    return T->getStmtClass() == CXXUnresolvedConstructExprClass;
2651  }
2652  static bool classof(const CXXUnresolvedConstructExpr *) { return true; }
2653
2654  // Iterators
2655  child_range children() {
2656    Stmt **begin = reinterpret_cast<Stmt**>(this+1);
2657    return child_range(begin, begin + NumArgs);
2658  }
2659};
2660
2661/// \brief Represents a C++ member access expression where the actual
2662/// member referenced could not be resolved because the base
2663/// expression or the member name was dependent.
2664///
2665/// Like UnresolvedMemberExprs, these can be either implicit or
2666/// explicit accesses.  It is only possible to get one of these with
2667/// an implicit access if a qualifier is provided.
2668class CXXDependentScopeMemberExpr : public Expr {
2669  /// \brief The expression for the base pointer or class reference,
2670  /// e.g., the \c x in x.f.  Can be null in implicit accesses.
2671  Stmt *Base;
2672
2673  /// \brief The type of the base expression.  Never null, even for
2674  /// implicit accesses.
2675  QualType BaseType;
2676
2677  /// \brief Whether this member expression used the '->' operator or
2678  /// the '.' operator.
2679  bool IsArrow : 1;
2680
2681  /// \brief Whether this member expression has info for explicit template
2682  /// keyword and arguments.
2683  bool HasTemplateKWAndArgsInfo : 1;
2684
2685  /// \brief The location of the '->' or '.' operator.
2686  SourceLocation OperatorLoc;
2687
2688  /// \brief The nested-name-specifier that precedes the member name, if any.
2689  NestedNameSpecifierLoc QualifierLoc;
2690
2691  /// \brief In a qualified member access expression such as t->Base::f, this
2692  /// member stores the resolves of name lookup in the context of the member
2693  /// access expression, to be used at instantiation time.
2694  ///
2695  /// FIXME: This member, along with the QualifierLoc, could
2696  /// be stuck into a structure that is optionally allocated at the end of
2697  /// the CXXDependentScopeMemberExpr, to save space in the common case.
2698  NamedDecl *FirstQualifierFoundInScope;
2699
2700  /// \brief The member to which this member expression refers, which
2701  /// can be name, overloaded operator, or destructor.
2702  /// FIXME: could also be a template-id
2703  DeclarationNameInfo MemberNameInfo;
2704
2705  /// \brief Return the optional template keyword and arguments info.
2706  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
2707    if (!HasTemplateKWAndArgsInfo) return 0;
2708    return reinterpret_cast<ASTTemplateKWAndArgsInfo*>(this + 1);
2709  }
2710  /// \brief Return the optional template keyword and arguments info.
2711  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
2712    return const_cast<CXXDependentScopeMemberExpr*>(this)
2713      ->getTemplateKWAndArgsInfo();
2714  }
2715
2716  CXXDependentScopeMemberExpr(ASTContext &C,
2717                          Expr *Base, QualType BaseType, bool IsArrow,
2718                          SourceLocation OperatorLoc,
2719                          NestedNameSpecifierLoc QualifierLoc,
2720                          SourceLocation TemplateKWLoc,
2721                          NamedDecl *FirstQualifierFoundInScope,
2722                          DeclarationNameInfo MemberNameInfo,
2723                          const TemplateArgumentListInfo *TemplateArgs);
2724
2725public:
2726  CXXDependentScopeMemberExpr(ASTContext &C,
2727                              Expr *Base, QualType BaseType,
2728                              bool IsArrow,
2729                              SourceLocation OperatorLoc,
2730                              NestedNameSpecifierLoc QualifierLoc,
2731                              NamedDecl *FirstQualifierFoundInScope,
2732                              DeclarationNameInfo MemberNameInfo);
2733
2734  static CXXDependentScopeMemberExpr *
2735  Create(ASTContext &C,
2736         Expr *Base, QualType BaseType, bool IsArrow,
2737         SourceLocation OperatorLoc,
2738         NestedNameSpecifierLoc QualifierLoc,
2739         SourceLocation TemplateKWLoc,
2740         NamedDecl *FirstQualifierFoundInScope,
2741         DeclarationNameInfo MemberNameInfo,
2742         const TemplateArgumentListInfo *TemplateArgs);
2743
2744  static CXXDependentScopeMemberExpr *
2745  CreateEmpty(ASTContext &C, bool HasTemplateKWAndArgsInfo,
2746              unsigned NumTemplateArgs);
2747
2748  /// \brief True if this is an implicit access, i.e. one in which the
2749  /// member being accessed was not written in the source.  The source
2750  /// location of the operator is invalid in this case.
2751  bool isImplicitAccess() const;
2752
2753  /// \brief Retrieve the base object of this member expressions,
2754  /// e.g., the \c x in \c x.m.
2755  Expr *getBase() const {
2756    assert(!isImplicitAccess());
2757    return cast<Expr>(Base);
2758  }
2759
2760  QualType getBaseType() const { return BaseType; }
2761
2762  /// \brief Determine whether this member expression used the '->'
2763  /// operator; otherwise, it used the '.' operator.
2764  bool isArrow() const { return IsArrow; }
2765
2766  /// \brief Retrieve the location of the '->' or '.' operator.
2767  SourceLocation getOperatorLoc() const { return OperatorLoc; }
2768
2769  /// \brief Retrieve the nested-name-specifier that qualifies the member
2770  /// name.
2771  NestedNameSpecifier *getQualifier() const {
2772    return QualifierLoc.getNestedNameSpecifier();
2773  }
2774
2775  /// \brief Retrieve the nested-name-specifier that qualifies the member
2776  /// name, with source location information.
2777  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2778
2779
2780  /// \brief Retrieve the first part of the nested-name-specifier that was
2781  /// found in the scope of the member access expression when the member access
2782  /// was initially parsed.
2783  ///
2784  /// This function only returns a useful result when member access expression
2785  /// uses a qualified member name, e.g., "x.Base::f". Here, the declaration
2786  /// returned by this function describes what was found by unqualified name
2787  /// lookup for the identifier "Base" within the scope of the member access
2788  /// expression itself. At template instantiation time, this information is
2789  /// combined with the results of name lookup into the type of the object
2790  /// expression itself (the class type of x).
2791  NamedDecl *getFirstQualifierFoundInScope() const {
2792    return FirstQualifierFoundInScope;
2793  }
2794
2795  /// \brief Retrieve the name of the member that this expression
2796  /// refers to.
2797  const DeclarationNameInfo &getMemberNameInfo() const {
2798    return MemberNameInfo;
2799  }
2800
2801  /// \brief Retrieve the name of the member that this expression
2802  /// refers to.
2803  DeclarationName getMember() const { return MemberNameInfo.getName(); }
2804
2805  // \brief Retrieve the location of the name of the member that this
2806  // expression refers to.
2807  SourceLocation getMemberLoc() const { return MemberNameInfo.getLoc(); }
2808
2809  /// \brief Retrieve the location of the template keyword preceding the
2810  /// member name, if any.
2811  SourceLocation getTemplateKeywordLoc() const {
2812    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2813    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
2814  }
2815
2816  /// \brief Retrieve the location of the left angle bracket starting the
2817  /// explicit template argument list following the member name, if any.
2818  SourceLocation getLAngleLoc() const {
2819    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2820    return getTemplateKWAndArgsInfo()->LAngleLoc;
2821  }
2822
2823  /// \brief Retrieve the location of the right angle bracket ending the
2824  /// explicit template argument list following the member name, if any.
2825  SourceLocation getRAngleLoc() const {
2826    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2827    return getTemplateKWAndArgsInfo()->RAngleLoc;
2828  }
2829
2830  /// Determines whether the member name was preceded by the template keyword.
2831  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
2832
2833  /// \brief Determines whether this member expression actually had a C++
2834  /// template argument list explicitly specified, e.g., x.f<int>.
2835  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
2836
2837  /// \brief Retrieve the explicit template argument list that followed the
2838  /// member template name, if any.
2839  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
2840    assert(hasExplicitTemplateArgs());
2841    return *reinterpret_cast<ASTTemplateArgumentListInfo *>(this + 1);
2842  }
2843
2844  /// \brief Retrieve the explicit template argument list that followed the
2845  /// member template name, if any.
2846  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2847    return const_cast<CXXDependentScopeMemberExpr *>(this)
2848             ->getExplicitTemplateArgs();
2849  }
2850
2851  /// \brief Retrieves the optional explicit template arguments.
2852  /// This points to the same data as getExplicitTemplateArgs(), but
2853  /// returns null if there are no explicit template arguments.
2854  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() {
2855    if (!hasExplicitTemplateArgs()) return 0;
2856    return &getExplicitTemplateArgs();
2857  }
2858
2859  /// \brief Copies the template arguments (if present) into the given
2860  /// structure.
2861  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2862    getExplicitTemplateArgs().copyInto(List);
2863  }
2864
2865  /// \brief Initializes the template arguments using the given structure.
2866  void initializeTemplateArgumentsFrom(const TemplateArgumentListInfo &List) {
2867    getExplicitTemplateArgs().initializeFrom(List);
2868  }
2869
2870  /// \brief Retrieve the template arguments provided as part of this
2871  /// template-id.
2872  const TemplateArgumentLoc *getTemplateArgs() const {
2873    return getExplicitTemplateArgs().getTemplateArgs();
2874  }
2875
2876  /// \brief Retrieve the number of template arguments provided as part of this
2877  /// template-id.
2878  unsigned getNumTemplateArgs() const {
2879    return getExplicitTemplateArgs().NumTemplateArgs;
2880  }
2881
2882  SourceRange getSourceRange() const {
2883    SourceRange Range;
2884    if (!isImplicitAccess())
2885      Range.setBegin(Base->getSourceRange().getBegin());
2886    else if (getQualifier())
2887      Range.setBegin(getQualifierLoc().getBeginLoc());
2888    else
2889      Range.setBegin(MemberNameInfo.getBeginLoc());
2890
2891    if (hasExplicitTemplateArgs())
2892      Range.setEnd(getRAngleLoc());
2893    else
2894      Range.setEnd(MemberNameInfo.getEndLoc());
2895    return Range;
2896  }
2897
2898  static bool classof(const Stmt *T) {
2899    return T->getStmtClass() == CXXDependentScopeMemberExprClass;
2900  }
2901  static bool classof(const CXXDependentScopeMemberExpr *) { return true; }
2902
2903  // Iterators
2904  child_range children() {
2905    if (isImplicitAccess()) return child_range();
2906    return child_range(&Base, &Base + 1);
2907  }
2908
2909  friend class ASTStmtReader;
2910  friend class ASTStmtWriter;
2911};
2912
2913/// \brief Represents a C++ member access expression for which lookup
2914/// produced a set of overloaded functions.
2915///
2916/// The member access may be explicit or implicit:
2917///    struct A {
2918///      int a, b;
2919///      int explicitAccess() { return this->a + this->A::b; }
2920///      int implicitAccess() { return a + A::b; }
2921///    };
2922///
2923/// In the final AST, an explicit access always becomes a MemberExpr.
2924/// An implicit access may become either a MemberExpr or a
2925/// DeclRefExpr, depending on whether the member is static.
2926class UnresolvedMemberExpr : public OverloadExpr {
2927  /// \brief Whether this member expression used the '->' operator or
2928  /// the '.' operator.
2929  bool IsArrow : 1;
2930
2931  /// \brief Whether the lookup results contain an unresolved using
2932  /// declaration.
2933  bool HasUnresolvedUsing : 1;
2934
2935  /// \brief The expression for the base pointer or class reference,
2936  /// e.g., the \c x in x.f.  This can be null if this is an 'unbased'
2937  /// member expression
2938  Stmt *Base;
2939
2940  /// \brief The type of the base expression;  never null.
2941  QualType BaseType;
2942
2943  /// \brief The location of the '->' or '.' operator.
2944  SourceLocation OperatorLoc;
2945
2946  UnresolvedMemberExpr(ASTContext &C, bool HasUnresolvedUsing,
2947                       Expr *Base, QualType BaseType, bool IsArrow,
2948                       SourceLocation OperatorLoc,
2949                       NestedNameSpecifierLoc QualifierLoc,
2950                       SourceLocation TemplateKWLoc,
2951                       const DeclarationNameInfo &MemberNameInfo,
2952                       const TemplateArgumentListInfo *TemplateArgs,
2953                       UnresolvedSetIterator Begin, UnresolvedSetIterator End);
2954
2955  UnresolvedMemberExpr(EmptyShell Empty)
2956    : OverloadExpr(UnresolvedMemberExprClass, Empty), IsArrow(false),
2957      HasUnresolvedUsing(false), Base(0) { }
2958
2959  friend class ASTStmtReader;
2960
2961public:
2962  static UnresolvedMemberExpr *
2963  Create(ASTContext &C, bool HasUnresolvedUsing,
2964         Expr *Base, QualType BaseType, bool IsArrow,
2965         SourceLocation OperatorLoc,
2966         NestedNameSpecifierLoc QualifierLoc,
2967         SourceLocation TemplateKWLoc,
2968         const DeclarationNameInfo &MemberNameInfo,
2969         const TemplateArgumentListInfo *TemplateArgs,
2970         UnresolvedSetIterator Begin, UnresolvedSetIterator End);
2971
2972  static UnresolvedMemberExpr *
2973  CreateEmpty(ASTContext &C, bool HasTemplateKWAndArgsInfo,
2974              unsigned NumTemplateArgs);
2975
2976  /// \brief True if this is an implicit access, i.e. one in which the
2977  /// member being accessed was not written in the source.  The source
2978  /// location of the operator is invalid in this case.
2979  bool isImplicitAccess() const;
2980
2981  /// \brief Retrieve the base object of this member expressions,
2982  /// e.g., the \c x in \c x.m.
2983  Expr *getBase() {
2984    assert(!isImplicitAccess());
2985    return cast<Expr>(Base);
2986  }
2987  const Expr *getBase() const {
2988    assert(!isImplicitAccess());
2989    return cast<Expr>(Base);
2990  }
2991
2992  QualType getBaseType() const { return BaseType; }
2993
2994  /// \brief Determine whether the lookup results contain an unresolved using
2995  /// declaration.
2996  bool hasUnresolvedUsing() const { return HasUnresolvedUsing; }
2997
2998  /// \brief Determine whether this member expression used the '->'
2999  /// operator; otherwise, it used the '.' operator.
3000  bool isArrow() const { return IsArrow; }
3001
3002  /// \brief Retrieve the location of the '->' or '.' operator.
3003  SourceLocation getOperatorLoc() const { return OperatorLoc; }
3004
3005  /// \brief Retrieves the naming class of this lookup.
3006  CXXRecordDecl *getNamingClass() const;
3007
3008  /// \brief Retrieve the full name info for the member that this expression
3009  /// refers to.
3010  const DeclarationNameInfo &getMemberNameInfo() const { return getNameInfo(); }
3011
3012  /// \brief Retrieve the name of the member that this expression
3013  /// refers to.
3014  DeclarationName getMemberName() const { return getName(); }
3015
3016  // \brief Retrieve the location of the name of the member that this
3017  // expression refers to.
3018  SourceLocation getMemberLoc() const { return getNameLoc(); }
3019
3020  SourceRange getSourceRange() const {
3021    SourceRange Range = getMemberNameInfo().getSourceRange();
3022    if (!isImplicitAccess())
3023      Range.setBegin(Base->getSourceRange().getBegin());
3024    else if (getQualifierLoc())
3025      Range.setBegin(getQualifierLoc().getBeginLoc());
3026
3027    if (hasExplicitTemplateArgs())
3028      Range.setEnd(getRAngleLoc());
3029    return Range;
3030  }
3031
3032  static bool classof(const Stmt *T) {
3033    return T->getStmtClass() == UnresolvedMemberExprClass;
3034  }
3035  static bool classof(const UnresolvedMemberExpr *) { return true; }
3036
3037  // Iterators
3038  child_range children() {
3039    if (isImplicitAccess()) return child_range();
3040    return child_range(&Base, &Base + 1);
3041  }
3042};
3043
3044/// \brief Represents a C++0x noexcept expression (C++ [expr.unary.noexcept]).
3045///
3046/// The noexcept expression tests whether a given expression might throw. Its
3047/// result is a boolean constant.
3048class CXXNoexceptExpr : public Expr {
3049  bool Value : 1;
3050  Stmt *Operand;
3051  SourceRange Range;
3052
3053  friend class ASTStmtReader;
3054
3055public:
3056  CXXNoexceptExpr(QualType Ty, Expr *Operand, CanThrowResult Val,
3057                  SourceLocation Keyword, SourceLocation RParen)
3058    : Expr(CXXNoexceptExprClass, Ty, VK_RValue, OK_Ordinary,
3059           /*TypeDependent*/false,
3060           /*ValueDependent*/Val == CT_Dependent,
3061           Val == CT_Dependent || Operand->isInstantiationDependent(),
3062           Operand->containsUnexpandedParameterPack()),
3063      Value(Val == CT_Cannot), Operand(Operand), Range(Keyword, RParen)
3064  { }
3065
3066  CXXNoexceptExpr(EmptyShell Empty)
3067    : Expr(CXXNoexceptExprClass, Empty)
3068  { }
3069
3070  Expr *getOperand() const { return static_cast<Expr*>(Operand); }
3071
3072  SourceRange getSourceRange() const { return Range; }
3073
3074  bool getValue() const { return Value; }
3075
3076  static bool classof(const Stmt *T) {
3077    return T->getStmtClass() == CXXNoexceptExprClass;
3078  }
3079  static bool classof(const CXXNoexceptExpr *) { return true; }
3080
3081  // Iterators
3082  child_range children() { return child_range(&Operand, &Operand + 1); }
3083};
3084
3085/// \brief Represents a C++0x pack expansion that produces a sequence of
3086/// expressions.
3087///
3088/// A pack expansion expression contains a pattern (which itself is an
3089/// expression) followed by an ellipsis. For example:
3090///
3091/// \code
3092/// template<typename F, typename ...Types>
3093/// void forward(F f, Types &&...args) {
3094///   f(static_cast<Types&&>(args)...);
3095/// }
3096/// \endcode
3097///
3098/// Here, the argument to the function object \c f is a pack expansion whose
3099/// pattern is \c static_cast<Types&&>(args). When the \c forward function
3100/// template is instantiated, the pack expansion will instantiate to zero or
3101/// or more function arguments to the function object \c f.
3102class PackExpansionExpr : public Expr {
3103  SourceLocation EllipsisLoc;
3104
3105  /// \brief The number of expansions that will be produced by this pack
3106  /// expansion expression, if known.
3107  ///
3108  /// When zero, the number of expansions is not known. Otherwise, this value
3109  /// is the number of expansions + 1.
3110  unsigned NumExpansions;
3111
3112  Stmt *Pattern;
3113
3114  friend class ASTStmtReader;
3115  friend class ASTStmtWriter;
3116
3117public:
3118  PackExpansionExpr(QualType T, Expr *Pattern, SourceLocation EllipsisLoc,
3119                    llvm::Optional<unsigned> NumExpansions)
3120    : Expr(PackExpansionExprClass, T, Pattern->getValueKind(),
3121           Pattern->getObjectKind(), /*TypeDependent=*/true,
3122           /*ValueDependent=*/true, /*InstantiationDependent=*/true,
3123           /*ContainsUnexpandedParameterPack=*/false),
3124      EllipsisLoc(EllipsisLoc),
3125      NumExpansions(NumExpansions? *NumExpansions + 1 : 0),
3126      Pattern(Pattern) { }
3127
3128  PackExpansionExpr(EmptyShell Empty) : Expr(PackExpansionExprClass, Empty) { }
3129
3130  /// \brief Retrieve the pattern of the pack expansion.
3131  Expr *getPattern() { return reinterpret_cast<Expr *>(Pattern); }
3132
3133  /// \brief Retrieve the pattern of the pack expansion.
3134  const Expr *getPattern() const { return reinterpret_cast<Expr *>(Pattern); }
3135
3136  /// \brief Retrieve the location of the ellipsis that describes this pack
3137  /// expansion.
3138  SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
3139
3140  /// \brief Determine the number of expansions that will be produced when
3141  /// this pack expansion is instantiated, if already known.
3142  llvm::Optional<unsigned> getNumExpansions() const {
3143    if (NumExpansions)
3144      return NumExpansions - 1;
3145
3146    return llvm::Optional<unsigned>();
3147  }
3148
3149  SourceRange getSourceRange() const {
3150    return SourceRange(Pattern->getLocStart(), EllipsisLoc);
3151  }
3152
3153  static bool classof(const Stmt *T) {
3154    return T->getStmtClass() == PackExpansionExprClass;
3155  }
3156  static bool classof(const PackExpansionExpr *) { return true; }
3157
3158  // Iterators
3159  child_range children() {
3160    return child_range(&Pattern, &Pattern + 1);
3161  }
3162};
3163
3164inline ASTTemplateKWAndArgsInfo *OverloadExpr::getTemplateKWAndArgsInfo() {
3165  if (!HasTemplateKWAndArgsInfo) return 0;
3166  if (isa<UnresolvedLookupExpr>(this))
3167    return reinterpret_cast<ASTTemplateKWAndArgsInfo*>
3168      (cast<UnresolvedLookupExpr>(this) + 1);
3169  else
3170    return reinterpret_cast<ASTTemplateKWAndArgsInfo*>
3171      (cast<UnresolvedMemberExpr>(this) + 1);
3172}
3173
3174/// \brief Represents an expression that computes the length of a parameter
3175/// pack.
3176///
3177/// \code
3178/// template<typename ...Types>
3179/// struct count {
3180///   static const unsigned value = sizeof...(Types);
3181/// };
3182/// \endcode
3183class SizeOfPackExpr : public Expr {
3184  /// \brief The location of the 'sizeof' keyword.
3185  SourceLocation OperatorLoc;
3186
3187  /// \brief The location of the name of the parameter pack.
3188  SourceLocation PackLoc;
3189
3190  /// \brief The location of the closing parenthesis.
3191  SourceLocation RParenLoc;
3192
3193  /// \brief The length of the parameter pack, if known.
3194  ///
3195  /// When this expression is value-dependent, the length of the parameter pack
3196  /// is unknown. When this expression is not value-dependent, the length is
3197  /// known.
3198  unsigned Length;
3199
3200  /// \brief The parameter pack itself.
3201  NamedDecl *Pack;
3202
3203  friend class ASTStmtReader;
3204  friend class ASTStmtWriter;
3205
3206public:
3207  /// \brief Creates a value-dependent expression that computes the length of
3208  /// the given parameter pack.
3209  SizeOfPackExpr(QualType SizeType, SourceLocation OperatorLoc, NamedDecl *Pack,
3210                 SourceLocation PackLoc, SourceLocation RParenLoc)
3211    : Expr(SizeOfPackExprClass, SizeType, VK_RValue, OK_Ordinary,
3212           /*TypeDependent=*/false, /*ValueDependent=*/true,
3213           /*InstantiationDependent=*/true,
3214           /*ContainsUnexpandedParameterPack=*/false),
3215      OperatorLoc(OperatorLoc), PackLoc(PackLoc), RParenLoc(RParenLoc),
3216      Length(0), Pack(Pack) { }
3217
3218  /// \brief Creates an expression that computes the length of
3219  /// the given parameter pack, which is already known.
3220  SizeOfPackExpr(QualType SizeType, SourceLocation OperatorLoc, NamedDecl *Pack,
3221                 SourceLocation PackLoc, SourceLocation RParenLoc,
3222                 unsigned Length)
3223  : Expr(SizeOfPackExprClass, SizeType, VK_RValue, OK_Ordinary,
3224         /*TypeDependent=*/false, /*ValueDependent=*/false,
3225         /*InstantiationDependent=*/false,
3226         /*ContainsUnexpandedParameterPack=*/false),
3227    OperatorLoc(OperatorLoc), PackLoc(PackLoc), RParenLoc(RParenLoc),
3228    Length(Length), Pack(Pack) { }
3229
3230  /// \brief Create an empty expression.
3231  SizeOfPackExpr(EmptyShell Empty) : Expr(SizeOfPackExprClass, Empty) { }
3232
3233  /// \brief Determine the location of the 'sizeof' keyword.
3234  SourceLocation getOperatorLoc() const { return OperatorLoc; }
3235
3236  /// \brief Determine the location of the parameter pack.
3237  SourceLocation getPackLoc() const { return PackLoc; }
3238
3239  /// \brief Determine the location of the right parenthesis.
3240  SourceLocation getRParenLoc() const { return RParenLoc; }
3241
3242  /// \brief Retrieve the parameter pack.
3243  NamedDecl *getPack() const { return Pack; }
3244
3245  /// \brief Retrieve the length of the parameter pack.
3246  ///
3247  /// This routine may only be invoked when the expression is not
3248  /// value-dependent.
3249  unsigned getPackLength() const {
3250    assert(!isValueDependent() &&
3251           "Cannot get the length of a value-dependent pack size expression");
3252    return Length;
3253  }
3254
3255  SourceRange getSourceRange() const {
3256    return SourceRange(OperatorLoc, RParenLoc);
3257  }
3258
3259  static bool classof(const Stmt *T) {
3260    return T->getStmtClass() == SizeOfPackExprClass;
3261  }
3262  static bool classof(const SizeOfPackExpr *) { return true; }
3263
3264  // Iterators
3265  child_range children() { return child_range(); }
3266};
3267
3268/// \brief Represents a reference to a non-type template parameter
3269/// that has been substituted with a template argument.
3270class SubstNonTypeTemplateParmExpr : public Expr {
3271  /// \brief The replaced parameter.
3272  NonTypeTemplateParmDecl *Param;
3273
3274  /// \brief The replacement expression.
3275  Stmt *Replacement;
3276
3277  /// \brief The location of the non-type template parameter reference.
3278  SourceLocation NameLoc;
3279
3280  friend class ASTReader;
3281  friend class ASTStmtReader;
3282  explicit SubstNonTypeTemplateParmExpr(EmptyShell Empty)
3283    : Expr(SubstNonTypeTemplateParmExprClass, Empty) { }
3284
3285public:
3286  SubstNonTypeTemplateParmExpr(QualType type,
3287                               ExprValueKind valueKind,
3288                               SourceLocation loc,
3289                               NonTypeTemplateParmDecl *param,
3290                               Expr *replacement)
3291    : Expr(SubstNonTypeTemplateParmExprClass, type, valueKind, OK_Ordinary,
3292           replacement->isTypeDependent(), replacement->isValueDependent(),
3293           replacement->isInstantiationDependent(),
3294           replacement->containsUnexpandedParameterPack()),
3295      Param(param), Replacement(replacement), NameLoc(loc) {}
3296
3297  SourceLocation getNameLoc() const { return NameLoc; }
3298  SourceRange getSourceRange() const { return NameLoc; }
3299
3300  Expr *getReplacement() const { return cast<Expr>(Replacement); }
3301
3302  NonTypeTemplateParmDecl *getParameter() const { return Param; }
3303
3304  static bool classof(const Stmt *s) {
3305    return s->getStmtClass() == SubstNonTypeTemplateParmExprClass;
3306  }
3307  static bool classof(const SubstNonTypeTemplateParmExpr *) {
3308    return true;
3309  }
3310
3311  // Iterators
3312  child_range children() { return child_range(&Replacement, &Replacement+1); }
3313};
3314
3315/// \brief Represents a reference to a non-type template parameter pack that
3316/// has been substituted with a non-template argument pack.
3317///
3318/// When a pack expansion in the source code contains multiple parameter packs
3319/// and those parameter packs correspond to different levels of template
3320/// parameter lists, this node node is used to represent a non-type template
3321/// parameter pack from an outer level, which has already had its argument pack
3322/// substituted but that still lives within a pack expansion that itself
3323/// could not be instantiated. When actually performing a substitution into
3324/// that pack expansion (e.g., when all template parameters have corresponding
3325/// arguments), this type will be replaced with the appropriate underlying
3326/// expression at the current pack substitution index.
3327class SubstNonTypeTemplateParmPackExpr : public Expr {
3328  /// \brief The non-type template parameter pack itself.
3329  NonTypeTemplateParmDecl *Param;
3330
3331  /// \brief A pointer to the set of template arguments that this
3332  /// parameter pack is instantiated with.
3333  const TemplateArgument *Arguments;
3334
3335  /// \brief The number of template arguments in \c Arguments.
3336  unsigned NumArguments;
3337
3338  /// \brief The location of the non-type template parameter pack reference.
3339  SourceLocation NameLoc;
3340
3341  friend class ASTReader;
3342  friend class ASTStmtReader;
3343  explicit SubstNonTypeTemplateParmPackExpr(EmptyShell Empty)
3344    : Expr(SubstNonTypeTemplateParmPackExprClass, Empty) { }
3345
3346public:
3347  SubstNonTypeTemplateParmPackExpr(QualType T,
3348                                   NonTypeTemplateParmDecl *Param,
3349                                   SourceLocation NameLoc,
3350                                   const TemplateArgument &ArgPack);
3351
3352  /// \brief Retrieve the non-type template parameter pack being substituted.
3353  NonTypeTemplateParmDecl *getParameterPack() const { return Param; }
3354
3355  /// \brief Retrieve the location of the parameter pack name.
3356  SourceLocation getParameterPackLocation() const { return NameLoc; }
3357
3358  /// \brief Retrieve the template argument pack containing the substituted
3359  /// template arguments.
3360  TemplateArgument getArgumentPack() const;
3361
3362  SourceRange getSourceRange() const { return NameLoc; }
3363
3364  static bool classof(const Stmt *T) {
3365    return T->getStmtClass() == SubstNonTypeTemplateParmPackExprClass;
3366  }
3367  static bool classof(const SubstNonTypeTemplateParmPackExpr *) {
3368    return true;
3369  }
3370
3371  // Iterators
3372  child_range children() { return child_range(); }
3373};
3374
3375/// \brief Represents a prvalue temporary that written into memory so that
3376/// a reference can bind to it.
3377///
3378/// Prvalue expressions are materialized when they need to have an address
3379/// in memory for a reference to bind to. This happens when binding a
3380/// reference to the result of a conversion, e.g.,
3381///
3382/// \code
3383/// const int &r = 1.0;
3384/// \endcode
3385///
3386/// Here, 1.0 is implicitly converted to an \c int. That resulting \c int is
3387/// then materialized via a \c MaterializeTemporaryExpr, and the reference
3388/// binds to the temporary. \c MaterializeTemporaryExprs are always glvalues
3389/// (either an lvalue or an xvalue, depending on the kind of reference binding
3390/// to it), maintaining the invariant that references always bind to glvalues.
3391class MaterializeTemporaryExpr : public Expr {
3392  /// \brief The temporary-generating expression whose value will be
3393  /// materialized.
3394 Stmt *Temporary;
3395
3396  friend class ASTStmtReader;
3397  friend class ASTStmtWriter;
3398
3399public:
3400  MaterializeTemporaryExpr(QualType T, Expr *Temporary,
3401                           bool BoundToLvalueReference)
3402    : Expr(MaterializeTemporaryExprClass, T,
3403           BoundToLvalueReference? VK_LValue : VK_XValue, OK_Ordinary,
3404           Temporary->isTypeDependent(), Temporary->isValueDependent(),
3405           Temporary->isInstantiationDependent(),
3406           Temporary->containsUnexpandedParameterPack()),
3407      Temporary(Temporary) { }
3408
3409  MaterializeTemporaryExpr(EmptyShell Empty)
3410    : Expr(MaterializeTemporaryExprClass, Empty) { }
3411
3412  /// \brief Retrieve the temporary-generating subexpression whose value will
3413  /// be materialized into a glvalue.
3414  Expr *GetTemporaryExpr() const { return reinterpret_cast<Expr *>(Temporary); }
3415
3416  /// \brief Determine whether this materialized temporary is bound to an
3417  /// lvalue reference; otherwise, it's bound to an rvalue reference.
3418  bool isBoundToLvalueReference() const {
3419    return getValueKind() == VK_LValue;
3420  }
3421
3422  SourceRange getSourceRange() const { return Temporary->getSourceRange(); }
3423
3424  static bool classof(const Stmt *T) {
3425    return T->getStmtClass() == MaterializeTemporaryExprClass;
3426  }
3427  static bool classof(const MaterializeTemporaryExpr *) {
3428    return true;
3429  }
3430
3431  // Iterators
3432  child_range children() { return child_range(&Temporary, &Temporary + 1); }
3433};
3434
3435}  // end namespace clang
3436
3437#endif
3438