ExprCXX.h revision 9e8c92a9c9b949bbb0408fbbd9a58e34894b6efc
1//===--- ExprCXX.h - Classes for representing expressions -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses for C++ expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPRCXX_H
15#define LLVM_CLANG_AST_EXPRCXX_H
16
17#include "clang/AST/Expr.h"
18#include "clang/AST/UnresolvedSet.h"
19#include "clang/AST/TemplateBase.h"
20#include "clang/Basic/ExpressionTraits.h"
21#include "clang/Basic/Lambda.h"
22#include "clang/Basic/TypeTraits.h"
23
24namespace clang {
25
26class CXXConstructorDecl;
27class CXXDestructorDecl;
28class CXXMethodDecl;
29class CXXTemporary;
30class TemplateArgumentListInfo;
31
32//===--------------------------------------------------------------------===//
33// C++ Expressions.
34//===--------------------------------------------------------------------===//
35
36/// \brief A call to an overloaded operator written using operator
37/// syntax.
38///
39/// Represents a call to an overloaded operator written using operator
40/// syntax, e.g., "x + y" or "*p". While semantically equivalent to a
41/// normal call, this AST node provides better information about the
42/// syntactic representation of the call.
43///
44/// In a C++ template, this expression node kind will be used whenever
45/// any of the arguments are type-dependent. In this case, the
46/// function itself will be a (possibly empty) set of functions and
47/// function templates that were found by name lookup at template
48/// definition time.
49class CXXOperatorCallExpr : public CallExpr {
50  /// \brief The overloaded operator.
51  OverloadedOperatorKind Operator;
52
53public:
54  CXXOperatorCallExpr(ASTContext& C, OverloadedOperatorKind Op, Expr *fn,
55                      Expr **args, unsigned numargs, QualType t,
56                      ExprValueKind VK, SourceLocation operatorloc)
57    : CallExpr(C, CXXOperatorCallExprClass, fn, 0, args, numargs, t, VK,
58               operatorloc),
59      Operator(Op) {}
60  explicit CXXOperatorCallExpr(ASTContext& C, EmptyShell Empty) :
61    CallExpr(C, CXXOperatorCallExprClass, Empty) { }
62
63
64  /// getOperator - Returns the kind of overloaded operator that this
65  /// expression refers to.
66  OverloadedOperatorKind getOperator() const { return Operator; }
67  void setOperator(OverloadedOperatorKind Kind) { Operator = Kind; }
68
69  /// getOperatorLoc - Returns the location of the operator symbol in
70  /// the expression. When @c getOperator()==OO_Call, this is the
71  /// location of the right parentheses; when @c
72  /// getOperator()==OO_Subscript, this is the location of the right
73  /// bracket.
74  SourceLocation getOperatorLoc() const { return getRParenLoc(); }
75
76  SourceRange getSourceRange() const;
77
78  static bool classof(const Stmt *T) {
79    return T->getStmtClass() == CXXOperatorCallExprClass;
80  }
81  static bool classof(const CXXOperatorCallExpr *) { return true; }
82};
83
84/// CXXMemberCallExpr - Represents a call to a member function that
85/// may be written either with member call syntax (e.g., "obj.func()"
86/// or "objptr->func()") or with normal function-call syntax
87/// ("func()") within a member function that ends up calling a member
88/// function. The callee in either case is a MemberExpr that contains
89/// both the object argument and the member function, while the
90/// arguments are the arguments within the parentheses (not including
91/// the object argument).
92class CXXMemberCallExpr : public CallExpr {
93public:
94  CXXMemberCallExpr(ASTContext &C, Expr *fn, Expr **args, unsigned numargs,
95                    QualType t, ExprValueKind VK, SourceLocation RP)
96    : CallExpr(C, CXXMemberCallExprClass, fn, 0, args, numargs, t, VK, RP) {}
97
98  CXXMemberCallExpr(ASTContext &C, EmptyShell Empty)
99    : CallExpr(C, CXXMemberCallExprClass, Empty) { }
100
101  /// getImplicitObjectArgument - Retrieves the implicit object
102  /// argument for the member call. For example, in "x.f(5)", this
103  /// operation would return "x".
104  Expr *getImplicitObjectArgument() const;
105
106  /// Retrieves the declaration of the called method.
107  CXXMethodDecl *getMethodDecl() const;
108
109  /// getRecordDecl - Retrieves the CXXRecordDecl for the underlying type of
110  /// the implicit object argument. Note that this is may not be the same
111  /// declaration as that of the class context of the CXXMethodDecl which this
112  /// function is calling.
113  /// FIXME: Returns 0 for member pointer call exprs.
114  CXXRecordDecl *getRecordDecl();
115
116  static bool classof(const Stmt *T) {
117    return T->getStmtClass() == CXXMemberCallExprClass;
118  }
119  static bool classof(const CXXMemberCallExpr *) { return true; }
120};
121
122/// CUDAKernelCallExpr - Represents a call to a CUDA kernel function.
123class CUDAKernelCallExpr : public CallExpr {
124private:
125  enum { CONFIG, END_PREARG };
126
127public:
128  CUDAKernelCallExpr(ASTContext &C, Expr *fn, CallExpr *Config,
129                     Expr **args, unsigned numargs, QualType t,
130                     ExprValueKind VK, SourceLocation RP)
131    : CallExpr(C, CUDAKernelCallExprClass, fn, END_PREARG, args, numargs, t, VK,
132               RP) {
133    setConfig(Config);
134  }
135
136  CUDAKernelCallExpr(ASTContext &C, EmptyShell Empty)
137    : CallExpr(C, CUDAKernelCallExprClass, END_PREARG, Empty) { }
138
139  const CallExpr *getConfig() const {
140    return cast_or_null<CallExpr>(getPreArg(CONFIG));
141  }
142  CallExpr *getConfig() { return cast_or_null<CallExpr>(getPreArg(CONFIG)); }
143  void setConfig(CallExpr *E) { setPreArg(CONFIG, E); }
144
145  static bool classof(const Stmt *T) {
146    return T->getStmtClass() == CUDAKernelCallExprClass;
147  }
148  static bool classof(const CUDAKernelCallExpr *) { return true; }
149};
150
151/// CXXNamedCastExpr - Abstract class common to all of the C++ "named"
152/// casts, @c static_cast, @c dynamic_cast, @c reinterpret_cast, or @c
153/// const_cast.
154///
155/// This abstract class is inherited by all of the classes
156/// representing "named" casts, e.g., CXXStaticCastExpr,
157/// CXXDynamicCastExpr, CXXReinterpretCastExpr, and CXXConstCastExpr.
158class CXXNamedCastExpr : public ExplicitCastExpr {
159private:
160  SourceLocation Loc; // the location of the casting op
161  SourceLocation RParenLoc; // the location of the right parenthesis
162
163protected:
164  CXXNamedCastExpr(StmtClass SC, QualType ty, ExprValueKind VK,
165                   CastKind kind, Expr *op, unsigned PathSize,
166                   TypeSourceInfo *writtenTy, SourceLocation l,
167                   SourceLocation RParenLoc)
168    : ExplicitCastExpr(SC, ty, VK, kind, op, PathSize, writtenTy), Loc(l),
169      RParenLoc(RParenLoc) {}
170
171  explicit CXXNamedCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
172    : ExplicitCastExpr(SC, Shell, PathSize) { }
173
174  friend class ASTStmtReader;
175
176public:
177  const char *getCastName() const;
178
179  /// \brief Retrieve the location of the cast operator keyword, e.g.,
180  /// "static_cast".
181  SourceLocation getOperatorLoc() const { return Loc; }
182
183  /// \brief Retrieve the location of the closing parenthesis.
184  SourceLocation getRParenLoc() const { return RParenLoc; }
185
186  SourceRange getSourceRange() const {
187    return SourceRange(Loc, RParenLoc);
188  }
189  static bool classof(const Stmt *T) {
190    switch (T->getStmtClass()) {
191    case CXXStaticCastExprClass:
192    case CXXDynamicCastExprClass:
193    case CXXReinterpretCastExprClass:
194    case CXXConstCastExprClass:
195      return true;
196    default:
197      return false;
198    }
199  }
200  static bool classof(const CXXNamedCastExpr *) { return true; }
201};
202
203/// CXXStaticCastExpr - A C++ @c static_cast expression
204/// (C++ [expr.static.cast]).
205///
206/// This expression node represents a C++ static cast, e.g.,
207/// @c static_cast<int>(1.0).
208class CXXStaticCastExpr : public CXXNamedCastExpr {
209  CXXStaticCastExpr(QualType ty, ExprValueKind vk, CastKind kind, Expr *op,
210                    unsigned pathSize, TypeSourceInfo *writtenTy,
211                    SourceLocation l, SourceLocation RParenLoc)
212    : CXXNamedCastExpr(CXXStaticCastExprClass, ty, vk, kind, op, pathSize,
213                       writtenTy, l, RParenLoc) {}
214
215  explicit CXXStaticCastExpr(EmptyShell Empty, unsigned PathSize)
216    : CXXNamedCastExpr(CXXStaticCastExprClass, Empty, PathSize) { }
217
218public:
219  static CXXStaticCastExpr *Create(ASTContext &Context, QualType T,
220                                   ExprValueKind VK, CastKind K, Expr *Op,
221                                   const CXXCastPath *Path,
222                                   TypeSourceInfo *Written, SourceLocation L,
223                                   SourceLocation RParenLoc);
224  static CXXStaticCastExpr *CreateEmpty(ASTContext &Context,
225                                        unsigned PathSize);
226
227  static bool classof(const Stmt *T) {
228    return T->getStmtClass() == CXXStaticCastExprClass;
229  }
230  static bool classof(const CXXStaticCastExpr *) { return true; }
231};
232
233/// CXXDynamicCastExpr - A C++ @c dynamic_cast expression
234/// (C++ [expr.dynamic.cast]), which may perform a run-time check to
235/// determine how to perform the type cast.
236///
237/// This expression node represents a dynamic cast, e.g.,
238/// @c dynamic_cast<Derived*>(BasePtr).
239class CXXDynamicCastExpr : public CXXNamedCastExpr {
240  CXXDynamicCastExpr(QualType ty, ExprValueKind VK, CastKind kind,
241                     Expr *op, unsigned pathSize, TypeSourceInfo *writtenTy,
242                     SourceLocation l, SourceLocation RParenLoc)
243    : CXXNamedCastExpr(CXXDynamicCastExprClass, ty, VK, kind, op, pathSize,
244                       writtenTy, l, RParenLoc) {}
245
246  explicit CXXDynamicCastExpr(EmptyShell Empty, unsigned pathSize)
247    : CXXNamedCastExpr(CXXDynamicCastExprClass, Empty, pathSize) { }
248
249public:
250  static CXXDynamicCastExpr *Create(ASTContext &Context, QualType T,
251                                    ExprValueKind VK, CastKind Kind, Expr *Op,
252                                    const CXXCastPath *Path,
253                                    TypeSourceInfo *Written, SourceLocation L,
254                                    SourceLocation RParenLoc);
255
256  static CXXDynamicCastExpr *CreateEmpty(ASTContext &Context,
257                                         unsigned pathSize);
258
259  bool isAlwaysNull() const;
260
261  static bool classof(const Stmt *T) {
262    return T->getStmtClass() == CXXDynamicCastExprClass;
263  }
264  static bool classof(const CXXDynamicCastExpr *) { return true; }
265};
266
267/// CXXReinterpretCastExpr - A C++ @c reinterpret_cast expression (C++
268/// [expr.reinterpret.cast]), which provides a differently-typed view
269/// of a value but performs no actual work at run time.
270///
271/// This expression node represents a reinterpret cast, e.g.,
272/// @c reinterpret_cast<int>(VoidPtr).
273class CXXReinterpretCastExpr : public CXXNamedCastExpr {
274  CXXReinterpretCastExpr(QualType ty, ExprValueKind vk, CastKind kind,
275                         Expr *op, unsigned pathSize,
276                         TypeSourceInfo *writtenTy, SourceLocation l,
277                         SourceLocation RParenLoc)
278    : CXXNamedCastExpr(CXXReinterpretCastExprClass, ty, vk, kind, op,
279                       pathSize, writtenTy, l, RParenLoc) {}
280
281  CXXReinterpretCastExpr(EmptyShell Empty, unsigned pathSize)
282    : CXXNamedCastExpr(CXXReinterpretCastExprClass, Empty, pathSize) { }
283
284public:
285  static CXXReinterpretCastExpr *Create(ASTContext &Context, QualType T,
286                                        ExprValueKind VK, CastKind Kind,
287                                        Expr *Op, const CXXCastPath *Path,
288                                 TypeSourceInfo *WrittenTy, SourceLocation L,
289                                        SourceLocation RParenLoc);
290  static CXXReinterpretCastExpr *CreateEmpty(ASTContext &Context,
291                                             unsigned pathSize);
292
293  static bool classof(const Stmt *T) {
294    return T->getStmtClass() == CXXReinterpretCastExprClass;
295  }
296  static bool classof(const CXXReinterpretCastExpr *) { return true; }
297};
298
299/// CXXConstCastExpr - A C++ @c const_cast expression (C++ [expr.const.cast]),
300/// which can remove type qualifiers but does not change the underlying value.
301///
302/// This expression node represents a const cast, e.g.,
303/// @c const_cast<char*>(PtrToConstChar).
304class CXXConstCastExpr : public CXXNamedCastExpr {
305  CXXConstCastExpr(QualType ty, ExprValueKind VK, Expr *op,
306                   TypeSourceInfo *writtenTy, SourceLocation l,
307                   SourceLocation RParenLoc)
308    : CXXNamedCastExpr(CXXConstCastExprClass, ty, VK, CK_NoOp, op,
309                       0, writtenTy, l, RParenLoc) {}
310
311  explicit CXXConstCastExpr(EmptyShell Empty)
312    : CXXNamedCastExpr(CXXConstCastExprClass, Empty, 0) { }
313
314public:
315  static CXXConstCastExpr *Create(ASTContext &Context, QualType T,
316                                  ExprValueKind VK, Expr *Op,
317                                  TypeSourceInfo *WrittenTy, SourceLocation L,
318                                  SourceLocation RParenLoc);
319  static CXXConstCastExpr *CreateEmpty(ASTContext &Context);
320
321  static bool classof(const Stmt *T) {
322    return T->getStmtClass() == CXXConstCastExprClass;
323  }
324  static bool classof(const CXXConstCastExpr *) { return true; }
325};
326
327/// CXXBoolLiteralExpr - [C++ 2.13.5] C++ Boolean Literal.
328///
329class CXXBoolLiteralExpr : public Expr {
330  bool Value;
331  SourceLocation Loc;
332public:
333  CXXBoolLiteralExpr(bool val, QualType Ty, SourceLocation l) :
334    Expr(CXXBoolLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
335         false, false),
336    Value(val), Loc(l) {}
337
338  explicit CXXBoolLiteralExpr(EmptyShell Empty)
339    : Expr(CXXBoolLiteralExprClass, Empty) { }
340
341  bool getValue() const { return Value; }
342  void setValue(bool V) { Value = V; }
343
344  SourceRange getSourceRange() const { return SourceRange(Loc); }
345
346  SourceLocation getLocation() const { return Loc; }
347  void setLocation(SourceLocation L) { Loc = L; }
348
349  static bool classof(const Stmt *T) {
350    return T->getStmtClass() == CXXBoolLiteralExprClass;
351  }
352  static bool classof(const CXXBoolLiteralExpr *) { return true; }
353
354  // Iterators
355  child_range children() { return child_range(); }
356};
357
358/// CXXNullPtrLiteralExpr - [C++0x 2.14.7] C++ Pointer Literal
359class CXXNullPtrLiteralExpr : public Expr {
360  SourceLocation Loc;
361public:
362  CXXNullPtrLiteralExpr(QualType Ty, SourceLocation l) :
363    Expr(CXXNullPtrLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
364         false, false),
365    Loc(l) {}
366
367  explicit CXXNullPtrLiteralExpr(EmptyShell Empty)
368    : Expr(CXXNullPtrLiteralExprClass, Empty) { }
369
370  SourceRange getSourceRange() const { return SourceRange(Loc); }
371
372  SourceLocation getLocation() const { return Loc; }
373  void setLocation(SourceLocation L) { Loc = L; }
374
375  static bool classof(const Stmt *T) {
376    return T->getStmtClass() == CXXNullPtrLiteralExprClass;
377  }
378  static bool classof(const CXXNullPtrLiteralExpr *) { return true; }
379
380  child_range children() { return child_range(); }
381};
382
383/// CXXTypeidExpr - A C++ @c typeid expression (C++ [expr.typeid]), which gets
384/// the type_info that corresponds to the supplied type, or the (possibly
385/// dynamic) type of the supplied expression.
386///
387/// This represents code like @c typeid(int) or @c typeid(*objPtr)
388class CXXTypeidExpr : public Expr {
389private:
390  llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
391  SourceRange Range;
392
393public:
394  CXXTypeidExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
395    : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
396           // typeid is never type-dependent (C++ [temp.dep.expr]p4)
397           false,
398           // typeid is value-dependent if the type or expression are dependent
399           Operand->getType()->isDependentType(),
400           Operand->getType()->isInstantiationDependentType(),
401           Operand->getType()->containsUnexpandedParameterPack()),
402      Operand(Operand), Range(R) { }
403
404  CXXTypeidExpr(QualType Ty, Expr *Operand, SourceRange R)
405    : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
406        // typeid is never type-dependent (C++ [temp.dep.expr]p4)
407           false,
408        // typeid is value-dependent if the type or expression are dependent
409           Operand->isTypeDependent() || Operand->isValueDependent(),
410           Operand->isInstantiationDependent(),
411           Operand->containsUnexpandedParameterPack()),
412      Operand(Operand), Range(R) { }
413
414  CXXTypeidExpr(EmptyShell Empty, bool isExpr)
415    : Expr(CXXTypeidExprClass, Empty) {
416    if (isExpr)
417      Operand = (Expr*)0;
418    else
419      Operand = (TypeSourceInfo*)0;
420  }
421
422  bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
423
424  /// \brief Retrieves the type operand of this typeid() expression after
425  /// various required adjustments (removing reference types, cv-qualifiers).
426  QualType getTypeOperand() const;
427
428  /// \brief Retrieve source information for the type operand.
429  TypeSourceInfo *getTypeOperandSourceInfo() const {
430    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
431    return Operand.get<TypeSourceInfo *>();
432  }
433
434  void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
435    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
436    Operand = TSI;
437  }
438
439  Expr *getExprOperand() const {
440    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
441    return static_cast<Expr*>(Operand.get<Stmt *>());
442  }
443
444  void setExprOperand(Expr *E) {
445    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
446    Operand = E;
447  }
448
449  SourceRange getSourceRange() const { return Range; }
450  void setSourceRange(SourceRange R) { Range = R; }
451
452  static bool classof(const Stmt *T) {
453    return T->getStmtClass() == CXXTypeidExprClass;
454  }
455  static bool classof(const CXXTypeidExpr *) { return true; }
456
457  // Iterators
458  child_range children() {
459    if (isTypeOperand()) return child_range();
460    Stmt **begin = reinterpret_cast<Stmt**>(&Operand);
461    return child_range(begin, begin + 1);
462  }
463};
464
465/// CXXUuidofExpr - A microsoft C++ @c __uuidof expression, which gets
466/// the _GUID that corresponds to the supplied type or expression.
467///
468/// This represents code like @c __uuidof(COMTYPE) or @c __uuidof(*comPtr)
469class CXXUuidofExpr : public Expr {
470private:
471  llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
472  SourceRange Range;
473
474public:
475  CXXUuidofExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
476    : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary,
477           false, Operand->getType()->isDependentType(),
478           Operand->getType()->isInstantiationDependentType(),
479           Operand->getType()->containsUnexpandedParameterPack()),
480      Operand(Operand), Range(R) { }
481
482  CXXUuidofExpr(QualType Ty, Expr *Operand, SourceRange R)
483    : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary,
484           false, Operand->isTypeDependent(),
485           Operand->isInstantiationDependent(),
486           Operand->containsUnexpandedParameterPack()),
487      Operand(Operand), Range(R) { }
488
489  CXXUuidofExpr(EmptyShell Empty, bool isExpr)
490    : Expr(CXXUuidofExprClass, Empty) {
491    if (isExpr)
492      Operand = (Expr*)0;
493    else
494      Operand = (TypeSourceInfo*)0;
495  }
496
497  bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
498
499  /// \brief Retrieves the type operand of this __uuidof() expression after
500  /// various required adjustments (removing reference types, cv-qualifiers).
501  QualType getTypeOperand() const;
502
503  /// \brief Retrieve source information for the type operand.
504  TypeSourceInfo *getTypeOperandSourceInfo() const {
505    assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
506    return Operand.get<TypeSourceInfo *>();
507  }
508
509  void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
510    assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
511    Operand = TSI;
512  }
513
514  Expr *getExprOperand() const {
515    assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
516    return static_cast<Expr*>(Operand.get<Stmt *>());
517  }
518
519  void setExprOperand(Expr *E) {
520    assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
521    Operand = E;
522  }
523
524  SourceRange getSourceRange() const { return Range; }
525  void setSourceRange(SourceRange R) { Range = R; }
526
527  static bool classof(const Stmt *T) {
528    return T->getStmtClass() == CXXUuidofExprClass;
529  }
530  static bool classof(const CXXUuidofExpr *) { return true; }
531
532  // Iterators
533  child_range children() {
534    if (isTypeOperand()) return child_range();
535    Stmt **begin = reinterpret_cast<Stmt**>(&Operand);
536    return child_range(begin, begin + 1);
537  }
538};
539
540/// CXXThisExpr - Represents the "this" expression in C++, which is a
541/// pointer to the object on which the current member function is
542/// executing (C++ [expr.prim]p3). Example:
543///
544/// @code
545/// class Foo {
546/// public:
547///   void bar();
548///   void test() { this->bar(); }
549/// };
550/// @endcode
551class CXXThisExpr : public Expr {
552  SourceLocation Loc;
553  bool Implicit : 1;
554
555public:
556  CXXThisExpr(SourceLocation L, QualType Type, bool isImplicit)
557    : Expr(CXXThisExprClass, Type, VK_RValue, OK_Ordinary,
558           // 'this' is type-dependent if the class type of the enclosing
559           // member function is dependent (C++ [temp.dep.expr]p2)
560           Type->isDependentType(), Type->isDependentType(),
561           Type->isInstantiationDependentType(),
562           /*ContainsUnexpandedParameterPack=*/false),
563      Loc(L), Implicit(isImplicit) { }
564
565  CXXThisExpr(EmptyShell Empty) : Expr(CXXThisExprClass, Empty) {}
566
567  SourceLocation getLocation() const { return Loc; }
568  void setLocation(SourceLocation L) { Loc = L; }
569
570  SourceRange getSourceRange() const { return SourceRange(Loc); }
571
572  bool isImplicit() const { return Implicit; }
573  void setImplicit(bool I) { Implicit = I; }
574
575  static bool classof(const Stmt *T) {
576    return T->getStmtClass() == CXXThisExprClass;
577  }
578  static bool classof(const CXXThisExpr *) { return true; }
579
580  // Iterators
581  child_range children() { return child_range(); }
582};
583
584///  CXXThrowExpr - [C++ 15] C++ Throw Expression.  This handles
585///  'throw' and 'throw' assignment-expression.  When
586///  assignment-expression isn't present, Op will be null.
587///
588class CXXThrowExpr : public Expr {
589  Stmt *Op;
590  SourceLocation ThrowLoc;
591  /// \brief Whether the thrown variable (if any) is in scope.
592  unsigned IsThrownVariableInScope : 1;
593
594  friend class ASTStmtReader;
595
596public:
597  // Ty is the void type which is used as the result type of the
598  // exepression.  The l is the location of the throw keyword.  expr
599  // can by null, if the optional expression to throw isn't present.
600  CXXThrowExpr(Expr *expr, QualType Ty, SourceLocation l,
601               bool IsThrownVariableInScope) :
602    Expr(CXXThrowExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
603         expr && expr->isInstantiationDependent(),
604         expr && expr->containsUnexpandedParameterPack()),
605    Op(expr), ThrowLoc(l), IsThrownVariableInScope(IsThrownVariableInScope) {}
606  CXXThrowExpr(EmptyShell Empty) : Expr(CXXThrowExprClass, Empty) {}
607
608  const Expr *getSubExpr() const { return cast_or_null<Expr>(Op); }
609  Expr *getSubExpr() { return cast_or_null<Expr>(Op); }
610
611  SourceLocation getThrowLoc() const { return ThrowLoc; }
612
613  /// \brief Determines whether the variable thrown by this expression (if any!)
614  /// is within the innermost try block.
615  ///
616  /// This information is required to determine whether the NRVO can apply to
617  /// this variable.
618  bool isThrownVariableInScope() const { return IsThrownVariableInScope; }
619
620  SourceRange getSourceRange() const {
621    if (getSubExpr() == 0)
622      return SourceRange(ThrowLoc, ThrowLoc);
623    return SourceRange(ThrowLoc, getSubExpr()->getSourceRange().getEnd());
624  }
625
626  static bool classof(const Stmt *T) {
627    return T->getStmtClass() == CXXThrowExprClass;
628  }
629  static bool classof(const CXXThrowExpr *) { return true; }
630
631  // Iterators
632  child_range children() {
633    return child_range(&Op, Op ? &Op+1 : &Op);
634  }
635};
636
637/// CXXDefaultArgExpr - C++ [dcl.fct.default]. This wraps up a
638/// function call argument that was created from the corresponding
639/// parameter's default argument, when the call did not explicitly
640/// supply arguments for all of the parameters.
641class CXXDefaultArgExpr : public Expr {
642  /// \brief The parameter whose default is being used.
643  ///
644  /// When the bit is set, the subexpression is stored after the
645  /// CXXDefaultArgExpr itself. When the bit is clear, the parameter's
646  /// actual default expression is the subexpression.
647  llvm::PointerIntPair<ParmVarDecl *, 1, bool> Param;
648
649  /// \brief The location where the default argument expression was used.
650  SourceLocation Loc;
651
652  CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param)
653    : Expr(SC,
654           param->hasUnparsedDefaultArg()
655             ? param->getType().getNonReferenceType()
656             : param->getDefaultArg()->getType(),
657           param->getDefaultArg()->getValueKind(),
658           param->getDefaultArg()->getObjectKind(), false, false, false, false),
659      Param(param, false), Loc(Loc) { }
660
661  CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param,
662                    Expr *SubExpr)
663    : Expr(SC, SubExpr->getType(),
664           SubExpr->getValueKind(), SubExpr->getObjectKind(),
665           false, false, false, false),
666      Param(param, true), Loc(Loc) {
667    *reinterpret_cast<Expr **>(this + 1) = SubExpr;
668  }
669
670public:
671  CXXDefaultArgExpr(EmptyShell Empty) : Expr(CXXDefaultArgExprClass, Empty) {}
672
673
674  // Param is the parameter whose default argument is used by this
675  // expression.
676  static CXXDefaultArgExpr *Create(ASTContext &C, SourceLocation Loc,
677                                   ParmVarDecl *Param) {
678    return new (C) CXXDefaultArgExpr(CXXDefaultArgExprClass, Loc, Param);
679  }
680
681  // Param is the parameter whose default argument is used by this
682  // expression, and SubExpr is the expression that will actually be used.
683  static CXXDefaultArgExpr *Create(ASTContext &C,
684                                   SourceLocation Loc,
685                                   ParmVarDecl *Param,
686                                   Expr *SubExpr);
687
688  // Retrieve the parameter that the argument was created from.
689  const ParmVarDecl *getParam() const { return Param.getPointer(); }
690  ParmVarDecl *getParam() { return Param.getPointer(); }
691
692  // Retrieve the actual argument to the function call.
693  const Expr *getExpr() const {
694    if (Param.getInt())
695      return *reinterpret_cast<Expr const * const*> (this + 1);
696    return getParam()->getDefaultArg();
697  }
698  Expr *getExpr() {
699    if (Param.getInt())
700      return *reinterpret_cast<Expr **> (this + 1);
701    return getParam()->getDefaultArg();
702  }
703
704  /// \brief Retrieve the location where this default argument was actually
705  /// used.
706  SourceLocation getUsedLocation() const { return Loc; }
707
708  SourceRange getSourceRange() const {
709    // Default argument expressions have no representation in the
710    // source, so they have an empty source range.
711    return SourceRange();
712  }
713
714  static bool classof(const Stmt *T) {
715    return T->getStmtClass() == CXXDefaultArgExprClass;
716  }
717  static bool classof(const CXXDefaultArgExpr *) { return true; }
718
719  // Iterators
720  child_range children() { return child_range(); }
721
722  friend class ASTStmtReader;
723  friend class ASTStmtWriter;
724};
725
726/// CXXTemporary - Represents a C++ temporary.
727class CXXTemporary {
728  /// Destructor - The destructor that needs to be called.
729  const CXXDestructorDecl *Destructor;
730
731  CXXTemporary(const CXXDestructorDecl *destructor)
732    : Destructor(destructor) { }
733
734public:
735  static CXXTemporary *Create(ASTContext &C,
736                              const CXXDestructorDecl *Destructor);
737
738  const CXXDestructorDecl *getDestructor() const { return Destructor; }
739};
740
741/// \brief Represents binding an expression to a temporary.
742///
743/// This ensures the destructor is called for the temporary. It should only be
744/// needed for non-POD, non-trivially destructable class types. For example:
745///
746/// \code
747///   struct S {
748///     S() { }  // User defined constructor makes S non-POD.
749///     ~S() { } // User defined destructor makes it non-trivial.
750///   };
751///   void test() {
752///     const S &s_ref = S(); // Requires a CXXBindTemporaryExpr.
753///   }
754/// \endcode
755class CXXBindTemporaryExpr : public Expr {
756  CXXTemporary *Temp;
757
758  Stmt *SubExpr;
759
760  CXXBindTemporaryExpr(CXXTemporary *temp, Expr* SubExpr)
761   : Expr(CXXBindTemporaryExprClass, SubExpr->getType(),
762          VK_RValue, OK_Ordinary, SubExpr->isTypeDependent(),
763          SubExpr->isValueDependent(),
764          SubExpr->isInstantiationDependent(),
765          SubExpr->containsUnexpandedParameterPack()),
766     Temp(temp), SubExpr(SubExpr) { }
767
768public:
769  CXXBindTemporaryExpr(EmptyShell Empty)
770    : Expr(CXXBindTemporaryExprClass, Empty), Temp(0), SubExpr(0) {}
771
772  static CXXBindTemporaryExpr *Create(ASTContext &C, CXXTemporary *Temp,
773                                      Expr* SubExpr);
774
775  CXXTemporary *getTemporary() { return Temp; }
776  const CXXTemporary *getTemporary() const { return Temp; }
777  void setTemporary(CXXTemporary *T) { Temp = T; }
778
779  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
780  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
781  void setSubExpr(Expr *E) { SubExpr = E; }
782
783  SourceRange getSourceRange() const {
784    return SubExpr->getSourceRange();
785  }
786
787  // Implement isa/cast/dyncast/etc.
788  static bool classof(const Stmt *T) {
789    return T->getStmtClass() == CXXBindTemporaryExprClass;
790  }
791  static bool classof(const CXXBindTemporaryExpr *) { return true; }
792
793  // Iterators
794  child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
795};
796
797/// CXXConstructExpr - Represents a call to a C++ constructor.
798class CXXConstructExpr : public Expr {
799public:
800  enum ConstructionKind {
801    CK_Complete,
802    CK_NonVirtualBase,
803    CK_VirtualBase,
804    CK_Delegating
805  };
806
807private:
808  CXXConstructorDecl *Constructor;
809
810  SourceLocation Loc;
811  SourceRange ParenRange;
812  unsigned NumArgs : 16;
813  bool Elidable : 1;
814  bool HadMultipleCandidates : 1;
815  bool ListInitialization : 1;
816  bool ZeroInitialization : 1;
817  unsigned ConstructKind : 2;
818  Stmt **Args;
819
820protected:
821  CXXConstructExpr(ASTContext &C, StmtClass SC, QualType T,
822                   SourceLocation Loc,
823                   CXXConstructorDecl *d, bool elidable,
824                   Expr **args, unsigned numargs,
825                   bool HadMultipleCandidates,
826                   bool ListInitialization,
827                   bool ZeroInitialization,
828                   ConstructionKind ConstructKind,
829                   SourceRange ParenRange);
830
831  /// \brief Construct an empty C++ construction expression.
832  CXXConstructExpr(StmtClass SC, EmptyShell Empty)
833    : Expr(SC, Empty), Constructor(0), NumArgs(0), Elidable(false),
834      HadMultipleCandidates(false), ListInitialization(false),
835      ZeroInitialization(false), ConstructKind(0), Args(0)
836  { }
837
838public:
839  /// \brief Construct an empty C++ construction expression.
840  explicit CXXConstructExpr(EmptyShell Empty)
841    : Expr(CXXConstructExprClass, Empty), Constructor(0),
842      NumArgs(0), Elidable(false), HadMultipleCandidates(false),
843      ListInitialization(false), ZeroInitialization(false),
844      ConstructKind(0), Args(0)
845  { }
846
847  static CXXConstructExpr *Create(ASTContext &C, QualType T,
848                                  SourceLocation Loc,
849                                  CXXConstructorDecl *D, bool Elidable,
850                                  Expr **Args, unsigned NumArgs,
851                                  bool HadMultipleCandidates,
852                                  bool ListInitialization,
853                                  bool ZeroInitialization,
854                                  ConstructionKind ConstructKind,
855                                  SourceRange ParenRange);
856
857  CXXConstructorDecl* getConstructor() const { return Constructor; }
858  void setConstructor(CXXConstructorDecl *C) { Constructor = C; }
859
860  SourceLocation getLocation() const { return Loc; }
861  void setLocation(SourceLocation Loc) { this->Loc = Loc; }
862
863  /// \brief Whether this construction is elidable.
864  bool isElidable() const { return Elidable; }
865  void setElidable(bool E) { Elidable = E; }
866
867  /// \brief Whether the referred constructor was resolved from
868  /// an overloaded set having size greater than 1.
869  bool hadMultipleCandidates() const { return HadMultipleCandidates; }
870  void setHadMultipleCandidates(bool V) { HadMultipleCandidates = V; }
871
872  /// \brief Whether this constructor call was written as list-initialization.
873  bool isListInitialization() const { return ListInitialization; }
874  void setListInitialization(bool V) { ListInitialization = V; }
875
876  /// \brief Whether this construction first requires
877  /// zero-initialization before the initializer is called.
878  bool requiresZeroInitialization() const { return ZeroInitialization; }
879  void setRequiresZeroInitialization(bool ZeroInit) {
880    ZeroInitialization = ZeroInit;
881  }
882
883  /// \brief Determines whether this constructor is actually constructing
884  /// a base class (rather than a complete object).
885  ConstructionKind getConstructionKind() const {
886    return (ConstructionKind)ConstructKind;
887  }
888  void setConstructionKind(ConstructionKind CK) {
889    ConstructKind = CK;
890  }
891
892  typedef ExprIterator arg_iterator;
893  typedef ConstExprIterator const_arg_iterator;
894
895  arg_iterator arg_begin() { return Args; }
896  arg_iterator arg_end() { return Args + NumArgs; }
897  const_arg_iterator arg_begin() const { return Args; }
898  const_arg_iterator arg_end() const { return Args + NumArgs; }
899
900  Expr **getArgs() const { return reinterpret_cast<Expr **>(Args); }
901  unsigned getNumArgs() const { return NumArgs; }
902
903  /// getArg - Return the specified argument.
904  Expr *getArg(unsigned Arg) {
905    assert(Arg < NumArgs && "Arg access out of range!");
906    return cast<Expr>(Args[Arg]);
907  }
908  const Expr *getArg(unsigned Arg) const {
909    assert(Arg < NumArgs && "Arg access out of range!");
910    return cast<Expr>(Args[Arg]);
911  }
912
913  /// setArg - Set the specified argument.
914  void setArg(unsigned Arg, Expr *ArgExpr) {
915    assert(Arg < NumArgs && "Arg access out of range!");
916    Args[Arg] = ArgExpr;
917  }
918
919  SourceRange getSourceRange() const;
920  SourceRange getParenRange() const { return ParenRange; }
921
922  static bool classof(const Stmt *T) {
923    return T->getStmtClass() == CXXConstructExprClass ||
924      T->getStmtClass() == CXXTemporaryObjectExprClass;
925  }
926  static bool classof(const CXXConstructExpr *) { return true; }
927
928  // Iterators
929  child_range children() {
930    return child_range(&Args[0], &Args[0]+NumArgs);
931  }
932
933  friend class ASTStmtReader;
934};
935
936/// CXXFunctionalCastExpr - Represents an explicit C++ type conversion
937/// that uses "functional" notion (C++ [expr.type.conv]). Example: @c
938/// x = int(0.5);
939class CXXFunctionalCastExpr : public ExplicitCastExpr {
940  SourceLocation TyBeginLoc;
941  SourceLocation RParenLoc;
942
943  CXXFunctionalCastExpr(QualType ty, ExprValueKind VK,
944                        TypeSourceInfo *writtenTy,
945                        SourceLocation tyBeginLoc, CastKind kind,
946                        Expr *castExpr, unsigned pathSize,
947                        SourceLocation rParenLoc)
948    : ExplicitCastExpr(CXXFunctionalCastExprClass, ty, VK, kind,
949                       castExpr, pathSize, writtenTy),
950      TyBeginLoc(tyBeginLoc), RParenLoc(rParenLoc) {}
951
952  explicit CXXFunctionalCastExpr(EmptyShell Shell, unsigned PathSize)
953    : ExplicitCastExpr(CXXFunctionalCastExprClass, Shell, PathSize) { }
954
955public:
956  static CXXFunctionalCastExpr *Create(ASTContext &Context, QualType T,
957                                       ExprValueKind VK,
958                                       TypeSourceInfo *Written,
959                                       SourceLocation TyBeginLoc,
960                                       CastKind Kind, Expr *Op,
961                                       const CXXCastPath *Path,
962                                       SourceLocation RPLoc);
963  static CXXFunctionalCastExpr *CreateEmpty(ASTContext &Context,
964                                            unsigned PathSize);
965
966  SourceLocation getTypeBeginLoc() const { return TyBeginLoc; }
967  void setTypeBeginLoc(SourceLocation L) { TyBeginLoc = L; }
968  SourceLocation getRParenLoc() const { return RParenLoc; }
969  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
970
971  SourceRange getSourceRange() const {
972    return SourceRange(TyBeginLoc, RParenLoc);
973  }
974  static bool classof(const Stmt *T) {
975    return T->getStmtClass() == CXXFunctionalCastExprClass;
976  }
977  static bool classof(const CXXFunctionalCastExpr *) { return true; }
978};
979
980/// @brief Represents a C++ functional cast expression that builds a
981/// temporary object.
982///
983/// This expression type represents a C++ "functional" cast
984/// (C++[expr.type.conv]) with N != 1 arguments that invokes a
985/// constructor to build a temporary object. With N == 1 arguments the
986/// functional cast expression will be represented by CXXFunctionalCastExpr.
987/// Example:
988/// @code
989/// struct X { X(int, float); }
990///
991/// X create_X() {
992///   return X(1, 3.14f); // creates a CXXTemporaryObjectExpr
993/// };
994/// @endcode
995class CXXTemporaryObjectExpr : public CXXConstructExpr {
996  TypeSourceInfo *Type;
997
998public:
999  CXXTemporaryObjectExpr(ASTContext &C, CXXConstructorDecl *Cons,
1000                         TypeSourceInfo *Type,
1001                         Expr **Args,unsigned NumArgs,
1002                         SourceRange parenRange,
1003                         bool HadMultipleCandidates,
1004                         bool ZeroInitialization = false);
1005  explicit CXXTemporaryObjectExpr(EmptyShell Empty)
1006    : CXXConstructExpr(CXXTemporaryObjectExprClass, Empty), Type() { }
1007
1008  TypeSourceInfo *getTypeSourceInfo() const { return Type; }
1009
1010  SourceRange getSourceRange() const;
1011
1012  static bool classof(const Stmt *T) {
1013    return T->getStmtClass() == CXXTemporaryObjectExprClass;
1014  }
1015  static bool classof(const CXXTemporaryObjectExpr *) { return true; }
1016
1017  friend class ASTStmtReader;
1018};
1019
1020/// \brief A C++ lambda expression, which produces a function object
1021/// (of unspecified type) that can be invoked later.
1022///
1023/// Example:
1024/// \code
1025/// void low_pass_filter(std::vector<double> &values, double cutoff) {
1026///   values.erase(std::remove_if(values.begin(), values.end(),
1027//                                [=](double value) { return value > cutoff; });
1028/// }
1029/// \endcode
1030///
1031/// Lambda expressions can capture local variables, either by copying
1032/// the values of those local variables at the time the function
1033/// object is constructed (not when it is called!) or by holding a
1034/// reference to the local variable. These captures can occur either
1035/// implicitly or can be written explicitly between the square
1036/// brackets ([...]) that start the lambda expression.
1037class LambdaExpr : public Expr {
1038  enum {
1039    /// \brief Flag used by the Capture class to indicate that the given
1040    /// capture was implicit.
1041    Capture_Implicit = 0x01,
1042
1043    /// \brief Flag used by the Capture class to indciate that the
1044    /// given capture was by-copy.
1045    Capture_ByCopy = 0x02
1046  };
1047
1048  /// \brief The source range that covers the lambda introducer ([...]).
1049  SourceRange IntroducerRange;
1050
1051  /// \brief The number of captures.
1052  unsigned NumCaptures : 16;
1053
1054  /// \brief The default capture kind, which is a value of type
1055  /// LambdaCaptureDefault.
1056  unsigned CaptureDefault : 2;
1057
1058  /// \brief Whether this lambda had an explicit parameter list vs. an
1059  /// implicit (and empty) parameter list.
1060  unsigned ExplicitParams : 1;
1061
1062  /// \brief Whether this lambda had the result type explicitly specified.
1063  unsigned ExplicitResultType : 1;
1064
1065  /// \brief Whether there are any array index variables stored at the end of
1066  /// this lambda expression.
1067  unsigned HasArrayIndexVars : 1;
1068
1069  /// \brief The location of the closing brace ('}') that completes
1070  /// the lambda.
1071  ///
1072  /// The location of the brace is also available by looking up the
1073  /// function call operator in the lambda class. However, it is
1074  /// stored here to improve the performance of getSourceRange(), and
1075  /// to avoid having to deserialize the function call operator from a
1076  /// module file just to determine the source range.
1077  SourceLocation ClosingBrace;
1078
1079  // Note: The capture initializers are stored directly after the lambda
1080  // expression, along with the index variables used to initialize by-copy
1081  // array captures.
1082
1083public:
1084  /// \brief Describes the capture of either a variable or 'this'.
1085  class Capture {
1086    llvm::PointerIntPair<VarDecl *, 2> VarAndBits;
1087    SourceLocation Loc;
1088    SourceLocation EllipsisLoc;
1089
1090    friend class ASTStmtReader;
1091    friend class ASTStmtWriter;
1092
1093  public:
1094    /// \brief Create a new capture.
1095    ///
1096    /// \param Loc The source location associated with this capture.
1097    ///
1098    /// \param Kind The kind of capture (this, byref, bycopy).
1099    ///
1100    /// \param Implicit Whether the capture was implicit or explicit.
1101    ///
1102    /// \param Var The local variable being captured, or null if capturing this.
1103    ///
1104    /// \param EllipsisLoc The location of the ellipsis (...) for a
1105    /// capture that is a pack expansion, or an invalid source
1106    /// location to indicate that this is not a pack expansion.
1107    Capture(SourceLocation Loc, bool Implicit,
1108            LambdaCaptureKind Kind, VarDecl *Var = 0,
1109            SourceLocation EllipsisLoc = SourceLocation());
1110
1111    /// \brief Determine the kind of capture.
1112    LambdaCaptureKind getCaptureKind() const;
1113
1114    /// \brief Determine whether this capture handles the C++ 'this'
1115    /// pointer.
1116    bool capturesThis() const { return VarAndBits.getPointer() == 0; }
1117
1118    /// \brief Determine whether this capture handles a variable.
1119    bool capturesVariable() const { return VarAndBits.getPointer() != 0; }
1120
1121    /// \brief Retrieve the declaration of the local variable being
1122    /// captured.
1123    ///
1124    /// This operation is only valid if this capture does not capture
1125    /// 'this'.
1126    VarDecl *getCapturedVar() const {
1127      assert(!capturesThis() && "No variable available for 'this' capture");
1128      return VarAndBits.getPointer();
1129    }
1130
1131    /// \brief Determine whether this was an implicit capture (not
1132    /// written between the square brackets introducing the lambda).
1133    bool isImplicit() const { return VarAndBits.getInt() & Capture_Implicit; }
1134
1135    /// \brief Determine whether this was an explicit capture, written
1136    /// between the square brackets introducing the lambda.
1137    bool isExplicit() const { return !isImplicit(); }
1138
1139    /// \brief Retrieve the source location of the capture.
1140    ///
1141    /// For an explicit capture, this returns the location of the
1142    /// explicit capture in the source. For an implicit capture, this
1143    /// returns the location at which the variable or 'this' was first
1144    /// used.
1145    SourceLocation getLocation() const { return Loc; }
1146
1147    /// \brief Determine whether this capture is a pack expansion,
1148    /// which captures a function parameter pack.
1149    bool isPackExpansion() const { return EllipsisLoc.isValid(); }
1150
1151    /// \brief Retrieve the location of the ellipsis for a capture
1152    /// that is a pack expansion.
1153    SourceLocation getEllipsisLoc() const {
1154      assert(isPackExpansion() && "No ellipsis location for a non-expansion");
1155      return EllipsisLoc;
1156    }
1157  };
1158
1159private:
1160  /// \brief Construct a lambda expression.
1161  LambdaExpr(QualType T, SourceRange IntroducerRange,
1162             LambdaCaptureDefault CaptureDefault,
1163             ArrayRef<Capture> Captures,
1164             bool ExplicitParams,
1165             bool ExplicitResultType,
1166             ArrayRef<Expr *> CaptureInits,
1167             ArrayRef<VarDecl *> ArrayIndexVars,
1168             ArrayRef<unsigned> ArrayIndexStarts,
1169             SourceLocation ClosingBrace,
1170             unsigned ManglingNumber);
1171
1172  /// \brief Construct an empty lambda expression.
1173  LambdaExpr(EmptyShell Empty, unsigned NumCaptures, bool HasArrayIndexVars)
1174    : Expr(LambdaExprClass, Empty),
1175      NumCaptures(NumCaptures), CaptureDefault(LCD_None), ExplicitParams(false),
1176      ExplicitResultType(false), HasArrayIndexVars(true) {
1177    getStoredStmts()[NumCaptures] = 0;
1178  }
1179
1180  Stmt **getStoredStmts() const {
1181    return reinterpret_cast<Stmt **>(const_cast<LambdaExpr *>(this) + 1);
1182  }
1183
1184  /// \brief Retrieve the mapping from captures to the first array index
1185  /// variable.
1186  unsigned *getArrayIndexStarts() const {
1187    return reinterpret_cast<unsigned *>(getStoredStmts() + NumCaptures + 1);
1188  }
1189
1190  /// \brief Retrieve the complete set of array-index variables.
1191  VarDecl **getArrayIndexVars() const {
1192    return reinterpret_cast<VarDecl **>(
1193             getArrayIndexStarts() + NumCaptures + 1);
1194  }
1195
1196public:
1197  /// \brief Construct a new lambda expression.
1198  static LambdaExpr *Create(ASTContext &C,
1199                            CXXRecordDecl *Class,
1200                            SourceRange IntroducerRange,
1201                            LambdaCaptureDefault CaptureDefault,
1202                            ArrayRef<Capture> Captures,
1203                            bool ExplicitParams,
1204                            bool ExplicitResultType,
1205                            ArrayRef<Expr *> CaptureInits,
1206                            ArrayRef<VarDecl *> ArrayIndexVars,
1207                            ArrayRef<unsigned> ArrayIndexStarts,
1208                            SourceLocation ClosingBrace,
1209                            unsigned ManglingNumber);
1210
1211  /// \brief Construct a new lambda expression that will be deserialized from
1212  /// an external source.
1213  static LambdaExpr *CreateDeserialized(ASTContext &C, unsigned NumCaptures,
1214                                        unsigned NumArrayIndexVars);
1215
1216  /// \brief Determine the default capture kind for this lambda.
1217  LambdaCaptureDefault getCaptureDefault() const {
1218    return static_cast<LambdaCaptureDefault>(CaptureDefault);
1219  }
1220
1221  /// \brief An iterator that walks over the captures of the lambda,
1222  /// both implicit and explicit.
1223  typedef const Capture *capture_iterator;
1224
1225  /// \brief Retrieve an iterator pointing to the first lambda capture.
1226  capture_iterator capture_begin() const;
1227
1228  /// \brief Retrieve an iterator pointing past the end of the
1229  /// sequence of lambda captures.
1230  capture_iterator capture_end() const;
1231
1232  /// \brief Determine the number of captures in this lambda.
1233  unsigned capture_size() const { return NumCaptures; }
1234
1235  /// \brief Retrieve an iterator pointing to the first explicit
1236  /// lambda capture.
1237  capture_iterator explicit_capture_begin() const;
1238
1239  /// \brief Retrieve an iterator pointing past the end of the sequence of
1240  /// explicit lambda captures.
1241  capture_iterator explicit_capture_end() const;
1242
1243  /// \brief Retrieve an iterator pointing to the first implicit
1244  /// lambda capture.
1245  capture_iterator implicit_capture_begin() const;
1246
1247  /// \brief Retrieve an iterator pointing past the end of the sequence of
1248  /// implicit lambda captures.
1249  capture_iterator implicit_capture_end() const;
1250
1251  /// \brief Iterator that walks over the capture initialization
1252  /// arguments.
1253  typedef Expr **capture_init_iterator;
1254
1255  /// \brief Retrieve the first initialization argument for this
1256  /// lambda expression (which initializes the first capture field).
1257  capture_init_iterator capture_init_begin() const {
1258    return reinterpret_cast<Expr **>(getStoredStmts());
1259  }
1260
1261  /// \brief Retrieve the iterator pointing one past the last
1262  /// initialization argument for this lambda expression.
1263  capture_init_iterator capture_init_end() const {
1264    return capture_init_begin() + NumCaptures;
1265  }
1266
1267  /// \brief Retrieve the set of index variables used in the capture
1268  /// initializer of an array captured by copy.
1269  ///
1270  /// \param Iter The iterator that points at the capture initializer for
1271  /// which we are extracting the corresponding index variables.
1272  ArrayRef<VarDecl *> getCaptureInitIndexVars(capture_init_iterator Iter) const;
1273
1274  /// \brief Retrieve the source range covering the lambda introducer,
1275  /// which contains the explicit capture list surrounded by square
1276  /// brackets ([...]).
1277  SourceRange getIntroducerRange() const { return IntroducerRange; }
1278
1279  /// \brief Retrieve the class that corresponds to the lambda, which
1280  /// stores the captures in its fields and provides the various
1281  /// operations permitted on a lambda (copying, calling).
1282  CXXRecordDecl *getLambdaClass() const;
1283
1284  /// \brief Retrieve the function call operator associated with this
1285  /// lambda expression.
1286  CXXMethodDecl *getCallOperator() const;
1287
1288  /// \brief Retrieve the body of the lambda.
1289  CompoundStmt *getBody() const;
1290
1291  /// \brief Determine whether the lambda is mutable, meaning that any
1292  /// captures values can be modified.
1293  bool isMutable() const;
1294
1295  /// \brief Determine whether this lambda has an explicit parameter
1296  /// list vs. an implicit (empty) parameter list.
1297  bool hasExplicitParameters() const { return ExplicitParams; }
1298
1299  /// \brief Whether this lambda had its result type explicitly specified.
1300  bool hasExplicitResultType() const { return ExplicitResultType; }
1301
1302  static bool classof(const Stmt *T) {
1303    return T->getStmtClass() == LambdaExprClass;
1304  }
1305  static bool classof(const LambdaExpr *) { return true; }
1306
1307  SourceRange getSourceRange() const {
1308    return SourceRange(IntroducerRange.getBegin(), ClosingBrace);
1309  }
1310
1311  child_range children() {
1312    return child_range(getStoredStmts(), getStoredStmts() + NumCaptures + 1);
1313  }
1314
1315  friend class ASTStmtReader;
1316  friend class ASTStmtWriter;
1317};
1318
1319/// CXXScalarValueInitExpr - [C++ 5.2.3p2]
1320/// Expression "T()" which creates a value-initialized rvalue of type
1321/// T, which is a non-class type.
1322///
1323class CXXScalarValueInitExpr : public Expr {
1324  SourceLocation RParenLoc;
1325  TypeSourceInfo *TypeInfo;
1326
1327  friend class ASTStmtReader;
1328
1329public:
1330  /// \brief Create an explicitly-written scalar-value initialization
1331  /// expression.
1332  CXXScalarValueInitExpr(QualType Type,
1333                         TypeSourceInfo *TypeInfo,
1334                         SourceLocation rParenLoc ) :
1335    Expr(CXXScalarValueInitExprClass, Type, VK_RValue, OK_Ordinary,
1336         false, false, Type->isInstantiationDependentType(), false),
1337    RParenLoc(rParenLoc), TypeInfo(TypeInfo) {}
1338
1339  explicit CXXScalarValueInitExpr(EmptyShell Shell)
1340    : Expr(CXXScalarValueInitExprClass, Shell) { }
1341
1342  TypeSourceInfo *getTypeSourceInfo() const {
1343    return TypeInfo;
1344  }
1345
1346  SourceLocation getRParenLoc() const { return RParenLoc; }
1347
1348  SourceRange getSourceRange() const;
1349
1350  static bool classof(const Stmt *T) {
1351    return T->getStmtClass() == CXXScalarValueInitExprClass;
1352  }
1353  static bool classof(const CXXScalarValueInitExpr *) { return true; }
1354
1355  // Iterators
1356  child_range children() { return child_range(); }
1357};
1358
1359/// CXXNewExpr - A new expression for memory allocation and constructor calls,
1360/// e.g: "new CXXNewExpr(foo)".
1361class CXXNewExpr : public Expr {
1362  // Was the usage ::new, i.e. is the global new to be used?
1363  bool GlobalNew : 1;
1364  // Do we allocate an array? If so, the first SubExpr is the size expression.
1365  bool Array : 1;
1366  // If this is an array allocation, does the usual deallocation
1367  // function for the allocated type want to know the allocated size?
1368  bool UsualArrayDeleteWantsSize : 1;
1369  // The number of placement new arguments.
1370  unsigned NumPlacementArgs : 13;
1371  // What kind of initializer do we have? Could be none, parens, or braces.
1372  // In storage, we distinguish between "none, and no initializer expr", and
1373  // "none, but an implicit initializer expr".
1374  unsigned StoredInitializationStyle : 2;
1375  // Contains an optional array size expression, an optional initialization
1376  // expression, and any number of optional placement arguments, in that order.
1377  Stmt **SubExprs;
1378  // Points to the allocation function used.
1379  FunctionDecl *OperatorNew;
1380  // Points to the deallocation function used in case of error. May be null.
1381  FunctionDecl *OperatorDelete;
1382
1383  /// \brief The allocated type-source information, as written in the source.
1384  TypeSourceInfo *AllocatedTypeInfo;
1385
1386  /// \brief If the allocated type was expressed as a parenthesized type-id,
1387  /// the source range covering the parenthesized type-id.
1388  SourceRange TypeIdParens;
1389
1390  /// \brief Location of the first token.
1391  SourceLocation StartLoc;
1392
1393  /// \brief Source-range of a paren-delimited initializer.
1394  SourceRange DirectInitRange;
1395
1396  friend class ASTStmtReader;
1397  friend class ASTStmtWriter;
1398public:
1399  enum InitializationStyle {
1400    NoInit,   ///< New-expression has no initializer as written.
1401    CallInit, ///< New-expression has a C++98 paren-delimited initializer.
1402    ListInit  ///< New-expression has a C++11 list-initializer.
1403  };
1404
1405  CXXNewExpr(ASTContext &C, bool globalNew, FunctionDecl *operatorNew,
1406             FunctionDecl *operatorDelete, bool usualArrayDeleteWantsSize,
1407             Expr **placementArgs, unsigned numPlaceArgs,
1408             SourceRange typeIdParens, Expr *arraySize,
1409             InitializationStyle initializationStyle, Expr *initializer,
1410             QualType ty, TypeSourceInfo *AllocatedTypeInfo,
1411             SourceLocation startLoc, SourceRange directInitRange);
1412  explicit CXXNewExpr(EmptyShell Shell)
1413    : Expr(CXXNewExprClass, Shell), SubExprs(0) { }
1414
1415  void AllocateArgsArray(ASTContext &C, bool isArray, unsigned numPlaceArgs,
1416                         bool hasInitializer);
1417
1418  QualType getAllocatedType() const {
1419    assert(getType()->isPointerType());
1420    return getType()->getAs<PointerType>()->getPointeeType();
1421  }
1422
1423  TypeSourceInfo *getAllocatedTypeSourceInfo() const {
1424    return AllocatedTypeInfo;
1425  }
1426
1427  /// \brief True if the allocation result needs to be null-checked.
1428  /// C++0x [expr.new]p13:
1429  ///   If the allocation function returns null, initialization shall
1430  ///   not be done, the deallocation function shall not be called,
1431  ///   and the value of the new-expression shall be null.
1432  /// An allocation function is not allowed to return null unless it
1433  /// has a non-throwing exception-specification.  The '03 rule is
1434  /// identical except that the definition of a non-throwing
1435  /// exception specification is just "is it throw()?".
1436  bool shouldNullCheckAllocation(ASTContext &Ctx) const;
1437
1438  FunctionDecl *getOperatorNew() const { return OperatorNew; }
1439  void setOperatorNew(FunctionDecl *D) { OperatorNew = D; }
1440  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
1441  void setOperatorDelete(FunctionDecl *D) { OperatorDelete = D; }
1442
1443  bool isArray() const { return Array; }
1444  Expr *getArraySize() {
1445    return Array ? cast<Expr>(SubExprs[0]) : 0;
1446  }
1447  const Expr *getArraySize() const {
1448    return Array ? cast<Expr>(SubExprs[0]) : 0;
1449  }
1450
1451  unsigned getNumPlacementArgs() const { return NumPlacementArgs; }
1452  Expr **getPlacementArgs() {
1453    return reinterpret_cast<Expr **>(SubExprs + Array + hasInitializer());
1454  }
1455
1456  Expr *getPlacementArg(unsigned i) {
1457    assert(i < NumPlacementArgs && "Index out of range");
1458    return getPlacementArgs()[i];
1459  }
1460  const Expr *getPlacementArg(unsigned i) const {
1461    assert(i < NumPlacementArgs && "Index out of range");
1462    return const_cast<CXXNewExpr*>(this)->getPlacementArg(i);
1463  }
1464
1465  bool isParenTypeId() const { return TypeIdParens.isValid(); }
1466  SourceRange getTypeIdParens() const { return TypeIdParens; }
1467
1468  bool isGlobalNew() const { return GlobalNew; }
1469
1470  /// \brief Whether this new-expression has any initializer at all.
1471  bool hasInitializer() const { return StoredInitializationStyle > 0; }
1472
1473  /// \brief The kind of initializer this new-expression has.
1474  InitializationStyle getInitializationStyle() const {
1475    if (StoredInitializationStyle == 0)
1476      return NoInit;
1477    return static_cast<InitializationStyle>(StoredInitializationStyle-1);
1478  }
1479
1480  /// \brief The initializer of this new-expression.
1481  Expr *getInitializer() {
1482    return hasInitializer() ? cast<Expr>(SubExprs[Array]) : 0;
1483  }
1484  const Expr *getInitializer() const {
1485    return hasInitializer() ? cast<Expr>(SubExprs[Array]) : 0;
1486  }
1487
1488  /// Answers whether the usual array deallocation function for the
1489  /// allocated type expects the size of the allocation as a
1490  /// parameter.
1491  bool doesUsualArrayDeleteWantSize() const {
1492    return UsualArrayDeleteWantsSize;
1493  }
1494
1495  typedef ExprIterator arg_iterator;
1496  typedef ConstExprIterator const_arg_iterator;
1497
1498  arg_iterator placement_arg_begin() {
1499    return SubExprs + Array + hasInitializer();
1500  }
1501  arg_iterator placement_arg_end() {
1502    return SubExprs + Array + hasInitializer() + getNumPlacementArgs();
1503  }
1504  const_arg_iterator placement_arg_begin() const {
1505    return SubExprs + Array + hasInitializer();
1506  }
1507  const_arg_iterator placement_arg_end() const {
1508    return SubExprs + Array + hasInitializer() + getNumPlacementArgs();
1509  }
1510
1511  typedef Stmt **raw_arg_iterator;
1512  raw_arg_iterator raw_arg_begin() { return SubExprs; }
1513  raw_arg_iterator raw_arg_end() {
1514    return SubExprs + Array + hasInitializer() + getNumPlacementArgs();
1515  }
1516  const_arg_iterator raw_arg_begin() const { return SubExprs; }
1517  const_arg_iterator raw_arg_end() const {
1518    return SubExprs + Array + hasInitializer() + getNumPlacementArgs();
1519  }
1520
1521  SourceLocation getStartLoc() const { return StartLoc; }
1522  SourceLocation getEndLoc() const;
1523
1524  SourceRange getDirectInitRange() const { return DirectInitRange; }
1525
1526  SourceRange getSourceRange() const {
1527    return SourceRange(getStartLoc(), getEndLoc());
1528  }
1529
1530  static bool classof(const Stmt *T) {
1531    return T->getStmtClass() == CXXNewExprClass;
1532  }
1533  static bool classof(const CXXNewExpr *) { return true; }
1534
1535  // Iterators
1536  child_range children() {
1537    return child_range(raw_arg_begin(), raw_arg_end());
1538  }
1539};
1540
1541/// CXXDeleteExpr - A delete expression for memory deallocation and destructor
1542/// calls, e.g. "delete[] pArray".
1543class CXXDeleteExpr : public Expr {
1544  // Is this a forced global delete, i.e. "::delete"?
1545  bool GlobalDelete : 1;
1546  // Is this the array form of delete, i.e. "delete[]"?
1547  bool ArrayForm : 1;
1548  // ArrayFormAsWritten can be different from ArrayForm if 'delete' is applied
1549  // to pointer-to-array type (ArrayFormAsWritten will be false while ArrayForm
1550  // will be true).
1551  bool ArrayFormAsWritten : 1;
1552  // Does the usual deallocation function for the element type require
1553  // a size_t argument?
1554  bool UsualArrayDeleteWantsSize : 1;
1555  // Points to the operator delete overload that is used. Could be a member.
1556  FunctionDecl *OperatorDelete;
1557  // The pointer expression to be deleted.
1558  Stmt *Argument;
1559  // Location of the expression.
1560  SourceLocation Loc;
1561public:
1562  CXXDeleteExpr(QualType ty, bool globalDelete, bool arrayForm,
1563                bool arrayFormAsWritten, bool usualArrayDeleteWantsSize,
1564                FunctionDecl *operatorDelete, Expr *arg, SourceLocation loc)
1565    : Expr(CXXDeleteExprClass, ty, VK_RValue, OK_Ordinary, false, false,
1566           arg->isInstantiationDependent(),
1567           arg->containsUnexpandedParameterPack()),
1568      GlobalDelete(globalDelete),
1569      ArrayForm(arrayForm), ArrayFormAsWritten(arrayFormAsWritten),
1570      UsualArrayDeleteWantsSize(usualArrayDeleteWantsSize),
1571      OperatorDelete(operatorDelete), Argument(arg), Loc(loc) { }
1572  explicit CXXDeleteExpr(EmptyShell Shell)
1573    : Expr(CXXDeleteExprClass, Shell), OperatorDelete(0), Argument(0) { }
1574
1575  bool isGlobalDelete() const { return GlobalDelete; }
1576  bool isArrayForm() const { return ArrayForm; }
1577  bool isArrayFormAsWritten() const { return ArrayFormAsWritten; }
1578
1579  /// Answers whether the usual array deallocation function for the
1580  /// allocated type expects the size of the allocation as a
1581  /// parameter.  This can be true even if the actual deallocation
1582  /// function that we're using doesn't want a size.
1583  bool doesUsualArrayDeleteWantSize() const {
1584    return UsualArrayDeleteWantsSize;
1585  }
1586
1587  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
1588
1589  Expr *getArgument() { return cast<Expr>(Argument); }
1590  const Expr *getArgument() const { return cast<Expr>(Argument); }
1591
1592  /// \brief Retrieve the type being destroyed.  If the type being
1593  /// destroyed is a dependent type which may or may not be a pointer,
1594  /// return an invalid type.
1595  QualType getDestroyedType() const;
1596
1597  SourceRange getSourceRange() const {
1598    return SourceRange(Loc, Argument->getLocEnd());
1599  }
1600
1601  static bool classof(const Stmt *T) {
1602    return T->getStmtClass() == CXXDeleteExprClass;
1603  }
1604  static bool classof(const CXXDeleteExpr *) { return true; }
1605
1606  // Iterators
1607  child_range children() { return child_range(&Argument, &Argument+1); }
1608
1609  friend class ASTStmtReader;
1610};
1611
1612/// \brief Structure used to store the type being destroyed by a
1613/// pseudo-destructor expression.
1614class PseudoDestructorTypeStorage {
1615  /// \brief Either the type source information or the name of the type, if
1616  /// it couldn't be resolved due to type-dependence.
1617  llvm::PointerUnion<TypeSourceInfo *, IdentifierInfo *> Type;
1618
1619  /// \brief The starting source location of the pseudo-destructor type.
1620  SourceLocation Location;
1621
1622public:
1623  PseudoDestructorTypeStorage() { }
1624
1625  PseudoDestructorTypeStorage(IdentifierInfo *II, SourceLocation Loc)
1626    : Type(II), Location(Loc) { }
1627
1628  PseudoDestructorTypeStorage(TypeSourceInfo *Info);
1629
1630  TypeSourceInfo *getTypeSourceInfo() const {
1631    return Type.dyn_cast<TypeSourceInfo *>();
1632  }
1633
1634  IdentifierInfo *getIdentifier() const {
1635    return Type.dyn_cast<IdentifierInfo *>();
1636  }
1637
1638  SourceLocation getLocation() const { return Location; }
1639};
1640
1641/// \brief Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
1642///
1643/// A pseudo-destructor is an expression that looks like a member access to a
1644/// destructor of a scalar type, except that scalar types don't have
1645/// destructors. For example:
1646///
1647/// \code
1648/// typedef int T;
1649/// void f(int *p) {
1650///   p->T::~T();
1651/// }
1652/// \endcode
1653///
1654/// Pseudo-destructors typically occur when instantiating templates such as:
1655///
1656/// \code
1657/// template<typename T>
1658/// void destroy(T* ptr) {
1659///   ptr->T::~T();
1660/// }
1661/// \endcode
1662///
1663/// for scalar types. A pseudo-destructor expression has no run-time semantics
1664/// beyond evaluating the base expression.
1665class CXXPseudoDestructorExpr : public Expr {
1666  /// \brief The base expression (that is being destroyed).
1667  Stmt *Base;
1668
1669  /// \brief Whether the operator was an arrow ('->'); otherwise, it was a
1670  /// period ('.').
1671  bool IsArrow : 1;
1672
1673  /// \brief The location of the '.' or '->' operator.
1674  SourceLocation OperatorLoc;
1675
1676  /// \brief The nested-name-specifier that follows the operator, if present.
1677  NestedNameSpecifierLoc QualifierLoc;
1678
1679  /// \brief The type that precedes the '::' in a qualified pseudo-destructor
1680  /// expression.
1681  TypeSourceInfo *ScopeType;
1682
1683  /// \brief The location of the '::' in a qualified pseudo-destructor
1684  /// expression.
1685  SourceLocation ColonColonLoc;
1686
1687  /// \brief The location of the '~'.
1688  SourceLocation TildeLoc;
1689
1690  /// \brief The type being destroyed, or its name if we were unable to
1691  /// resolve the name.
1692  PseudoDestructorTypeStorage DestroyedType;
1693
1694  friend class ASTStmtReader;
1695
1696public:
1697  CXXPseudoDestructorExpr(ASTContext &Context,
1698                          Expr *Base, bool isArrow, SourceLocation OperatorLoc,
1699                          NestedNameSpecifierLoc QualifierLoc,
1700                          TypeSourceInfo *ScopeType,
1701                          SourceLocation ColonColonLoc,
1702                          SourceLocation TildeLoc,
1703                          PseudoDestructorTypeStorage DestroyedType);
1704
1705  explicit CXXPseudoDestructorExpr(EmptyShell Shell)
1706    : Expr(CXXPseudoDestructorExprClass, Shell),
1707      Base(0), IsArrow(false), QualifierLoc(), ScopeType(0) { }
1708
1709  Expr *getBase() const { return cast<Expr>(Base); }
1710
1711  /// \brief Determines whether this member expression actually had
1712  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
1713  /// x->Base::foo.
1714  bool hasQualifier() const { return QualifierLoc; }
1715
1716  /// \brief Retrieves the nested-name-specifier that qualifies the type name,
1717  /// with source-location information.
1718  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
1719
1720  /// \brief If the member name was qualified, retrieves the
1721  /// nested-name-specifier that precedes the member name. Otherwise, returns
1722  /// NULL.
1723  NestedNameSpecifier *getQualifier() const {
1724    return QualifierLoc.getNestedNameSpecifier();
1725  }
1726
1727  /// \brief Determine whether this pseudo-destructor expression was written
1728  /// using an '->' (otherwise, it used a '.').
1729  bool isArrow() const { return IsArrow; }
1730
1731  /// \brief Retrieve the location of the '.' or '->' operator.
1732  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1733
1734  /// \brief Retrieve the scope type in a qualified pseudo-destructor
1735  /// expression.
1736  ///
1737  /// Pseudo-destructor expressions can have extra qualification within them
1738  /// that is not part of the nested-name-specifier, e.g., \c p->T::~T().
1739  /// Here, if the object type of the expression is (or may be) a scalar type,
1740  /// \p T may also be a scalar type and, therefore, cannot be part of a
1741  /// nested-name-specifier. It is stored as the "scope type" of the pseudo-
1742  /// destructor expression.
1743  TypeSourceInfo *getScopeTypeInfo() const { return ScopeType; }
1744
1745  /// \brief Retrieve the location of the '::' in a qualified pseudo-destructor
1746  /// expression.
1747  SourceLocation getColonColonLoc() const { return ColonColonLoc; }
1748
1749  /// \brief Retrieve the location of the '~'.
1750  SourceLocation getTildeLoc() const { return TildeLoc; }
1751
1752  /// \brief Retrieve the source location information for the type
1753  /// being destroyed.
1754  ///
1755  /// This type-source information is available for non-dependent
1756  /// pseudo-destructor expressions and some dependent pseudo-destructor
1757  /// expressions. Returns NULL if we only have the identifier for a
1758  /// dependent pseudo-destructor expression.
1759  TypeSourceInfo *getDestroyedTypeInfo() const {
1760    return DestroyedType.getTypeSourceInfo();
1761  }
1762
1763  /// \brief In a dependent pseudo-destructor expression for which we do not
1764  /// have full type information on the destroyed type, provides the name
1765  /// of the destroyed type.
1766  IdentifierInfo *getDestroyedTypeIdentifier() const {
1767    return DestroyedType.getIdentifier();
1768  }
1769
1770  /// \brief Retrieve the type being destroyed.
1771  QualType getDestroyedType() const;
1772
1773  /// \brief Retrieve the starting location of the type being destroyed.
1774  SourceLocation getDestroyedTypeLoc() const {
1775    return DestroyedType.getLocation();
1776  }
1777
1778  /// \brief Set the name of destroyed type for a dependent pseudo-destructor
1779  /// expression.
1780  void setDestroyedType(IdentifierInfo *II, SourceLocation Loc) {
1781    DestroyedType = PseudoDestructorTypeStorage(II, Loc);
1782  }
1783
1784  /// \brief Set the destroyed type.
1785  void setDestroyedType(TypeSourceInfo *Info) {
1786    DestroyedType = PseudoDestructorTypeStorage(Info);
1787  }
1788
1789  SourceRange getSourceRange() const;
1790
1791  static bool classof(const Stmt *T) {
1792    return T->getStmtClass() == CXXPseudoDestructorExprClass;
1793  }
1794  static bool classof(const CXXPseudoDestructorExpr *) { return true; }
1795
1796  // Iterators
1797  child_range children() { return child_range(&Base, &Base + 1); }
1798};
1799
1800/// UnaryTypeTraitExpr - A GCC or MS unary type trait, as used in the
1801/// implementation of TR1/C++0x type trait templates.
1802/// Example:
1803/// __is_pod(int) == true
1804/// __is_enum(std::string) == false
1805class UnaryTypeTraitExpr : public Expr {
1806  /// UTT - The trait. A UnaryTypeTrait enum in MSVC compat unsigned.
1807  unsigned UTT : 31;
1808  /// The value of the type trait. Unspecified if dependent.
1809  bool Value : 1;
1810
1811  /// Loc - The location of the type trait keyword.
1812  SourceLocation Loc;
1813
1814  /// RParen - The location of the closing paren.
1815  SourceLocation RParen;
1816
1817  /// The type being queried.
1818  TypeSourceInfo *QueriedType;
1819
1820public:
1821  UnaryTypeTraitExpr(SourceLocation loc, UnaryTypeTrait utt,
1822                     TypeSourceInfo *queried, bool value,
1823                     SourceLocation rparen, QualType ty)
1824    : Expr(UnaryTypeTraitExprClass, ty, VK_RValue, OK_Ordinary,
1825           false,  queried->getType()->isDependentType(),
1826           queried->getType()->isInstantiationDependentType(),
1827           queried->getType()->containsUnexpandedParameterPack()),
1828      UTT(utt), Value(value), Loc(loc), RParen(rparen), QueriedType(queried) { }
1829
1830  explicit UnaryTypeTraitExpr(EmptyShell Empty)
1831    : Expr(UnaryTypeTraitExprClass, Empty), UTT(0), Value(false),
1832      QueriedType() { }
1833
1834  SourceRange getSourceRange() const { return SourceRange(Loc, RParen);}
1835
1836  UnaryTypeTrait getTrait() const { return static_cast<UnaryTypeTrait>(UTT); }
1837
1838  QualType getQueriedType() const { return QueriedType->getType(); }
1839
1840  TypeSourceInfo *getQueriedTypeSourceInfo() const { return QueriedType; }
1841
1842  bool getValue() const { return Value; }
1843
1844  static bool classof(const Stmt *T) {
1845    return T->getStmtClass() == UnaryTypeTraitExprClass;
1846  }
1847  static bool classof(const UnaryTypeTraitExpr *) { return true; }
1848
1849  // Iterators
1850  child_range children() { return child_range(); }
1851
1852  friend class ASTStmtReader;
1853};
1854
1855/// BinaryTypeTraitExpr - A GCC or MS binary type trait, as used in the
1856/// implementation of TR1/C++0x type trait templates.
1857/// Example:
1858/// __is_base_of(Base, Derived) == true
1859class BinaryTypeTraitExpr : public Expr {
1860  /// BTT - The trait. A BinaryTypeTrait enum in MSVC compat unsigned.
1861  unsigned BTT : 8;
1862
1863  /// The value of the type trait. Unspecified if dependent.
1864  bool Value : 1;
1865
1866  /// Loc - The location of the type trait keyword.
1867  SourceLocation Loc;
1868
1869  /// RParen - The location of the closing paren.
1870  SourceLocation RParen;
1871
1872  /// The lhs type being queried.
1873  TypeSourceInfo *LhsType;
1874
1875  /// The rhs type being queried.
1876  TypeSourceInfo *RhsType;
1877
1878public:
1879  BinaryTypeTraitExpr(SourceLocation loc, BinaryTypeTrait btt,
1880                     TypeSourceInfo *lhsType, TypeSourceInfo *rhsType,
1881                     bool value, SourceLocation rparen, QualType ty)
1882    : Expr(BinaryTypeTraitExprClass, ty, VK_RValue, OK_Ordinary, false,
1883           lhsType->getType()->isDependentType() ||
1884           rhsType->getType()->isDependentType(),
1885           (lhsType->getType()->isInstantiationDependentType() ||
1886            rhsType->getType()->isInstantiationDependentType()),
1887           (lhsType->getType()->containsUnexpandedParameterPack() ||
1888            rhsType->getType()->containsUnexpandedParameterPack())),
1889      BTT(btt), Value(value), Loc(loc), RParen(rparen),
1890      LhsType(lhsType), RhsType(rhsType) { }
1891
1892
1893  explicit BinaryTypeTraitExpr(EmptyShell Empty)
1894    : Expr(BinaryTypeTraitExprClass, Empty), BTT(0), Value(false),
1895      LhsType(), RhsType() { }
1896
1897  SourceRange getSourceRange() const {
1898    return SourceRange(Loc, RParen);
1899  }
1900
1901  BinaryTypeTrait getTrait() const {
1902    return static_cast<BinaryTypeTrait>(BTT);
1903  }
1904
1905  QualType getLhsType() const { return LhsType->getType(); }
1906  QualType getRhsType() const { return RhsType->getType(); }
1907
1908  TypeSourceInfo *getLhsTypeSourceInfo() const { return LhsType; }
1909  TypeSourceInfo *getRhsTypeSourceInfo() const { return RhsType; }
1910
1911  bool getValue() const { assert(!isTypeDependent()); return Value; }
1912
1913  static bool classof(const Stmt *T) {
1914    return T->getStmtClass() == BinaryTypeTraitExprClass;
1915  }
1916  static bool classof(const BinaryTypeTraitExpr *) { return true; }
1917
1918  // Iterators
1919  child_range children() { return child_range(); }
1920
1921  friend class ASTStmtReader;
1922};
1923
1924/// ArrayTypeTraitExpr - An Embarcadero array type trait, as used in the
1925/// implementation of __array_rank and __array_extent.
1926/// Example:
1927/// __array_rank(int[10][20]) == 2
1928/// __array_extent(int, 1)    == 20
1929class ArrayTypeTraitExpr : public Expr {
1930  virtual void anchor();
1931
1932  /// ATT - The trait. An ArrayTypeTrait enum in MSVC compat unsigned.
1933  unsigned ATT : 2;
1934
1935  /// The value of the type trait. Unspecified if dependent.
1936  uint64_t Value;
1937
1938  /// The array dimension being queried, or -1 if not used
1939  Expr *Dimension;
1940
1941  /// Loc - The location of the type trait keyword.
1942  SourceLocation Loc;
1943
1944  /// RParen - The location of the closing paren.
1945  SourceLocation RParen;
1946
1947  /// The type being queried.
1948  TypeSourceInfo *QueriedType;
1949
1950public:
1951  ArrayTypeTraitExpr(SourceLocation loc, ArrayTypeTrait att,
1952                     TypeSourceInfo *queried, uint64_t value,
1953                     Expr *dimension, SourceLocation rparen, QualType ty)
1954    : Expr(ArrayTypeTraitExprClass, ty, VK_RValue, OK_Ordinary,
1955           false, queried->getType()->isDependentType(),
1956           (queried->getType()->isInstantiationDependentType() ||
1957            (dimension && dimension->isInstantiationDependent())),
1958           queried->getType()->containsUnexpandedParameterPack()),
1959      ATT(att), Value(value), Dimension(dimension),
1960      Loc(loc), RParen(rparen), QueriedType(queried) { }
1961
1962
1963  explicit ArrayTypeTraitExpr(EmptyShell Empty)
1964    : Expr(ArrayTypeTraitExprClass, Empty), ATT(0), Value(false),
1965      QueriedType() { }
1966
1967  virtual ~ArrayTypeTraitExpr() { }
1968
1969  virtual SourceRange getSourceRange() const {
1970    return SourceRange(Loc, RParen);
1971  }
1972
1973  ArrayTypeTrait getTrait() const { return static_cast<ArrayTypeTrait>(ATT); }
1974
1975  QualType getQueriedType() const { return QueriedType->getType(); }
1976
1977  TypeSourceInfo *getQueriedTypeSourceInfo() const { return QueriedType; }
1978
1979  uint64_t getValue() const { assert(!isTypeDependent()); return Value; }
1980
1981  Expr *getDimensionExpression() const { return Dimension; }
1982
1983  static bool classof(const Stmt *T) {
1984    return T->getStmtClass() == ArrayTypeTraitExprClass;
1985  }
1986  static bool classof(const ArrayTypeTraitExpr *) { return true; }
1987
1988  // Iterators
1989  child_range children() { return child_range(); }
1990
1991  friend class ASTStmtReader;
1992};
1993
1994/// ExpressionTraitExpr - An expression trait intrinsic
1995/// Example:
1996/// __is_lvalue_expr(std::cout) == true
1997/// __is_lvalue_expr(1) == false
1998class ExpressionTraitExpr : public Expr {
1999  /// ET - The trait. A ExpressionTrait enum in MSVC compat unsigned.
2000  unsigned ET : 31;
2001  /// The value of the type trait. Unspecified if dependent.
2002  bool Value : 1;
2003
2004  /// Loc - The location of the type trait keyword.
2005  SourceLocation Loc;
2006
2007  /// RParen - The location of the closing paren.
2008  SourceLocation RParen;
2009
2010  Expr* QueriedExpression;
2011public:
2012  ExpressionTraitExpr(SourceLocation loc, ExpressionTrait et,
2013                     Expr *queried, bool value,
2014                     SourceLocation rparen, QualType resultType)
2015    : Expr(ExpressionTraitExprClass, resultType, VK_RValue, OK_Ordinary,
2016           false, // Not type-dependent
2017           // Value-dependent if the argument is type-dependent.
2018           queried->isTypeDependent(),
2019           queried->isInstantiationDependent(),
2020           queried->containsUnexpandedParameterPack()),
2021      ET(et), Value(value), Loc(loc), RParen(rparen),
2022      QueriedExpression(queried) { }
2023
2024  explicit ExpressionTraitExpr(EmptyShell Empty)
2025    : Expr(ExpressionTraitExprClass, Empty), ET(0), Value(false),
2026      QueriedExpression() { }
2027
2028  SourceRange getSourceRange() const { return SourceRange(Loc, RParen);}
2029
2030  ExpressionTrait getTrait() const { return static_cast<ExpressionTrait>(ET); }
2031
2032  Expr *getQueriedExpression() const { return QueriedExpression; }
2033
2034  bool getValue() const { return Value; }
2035
2036  static bool classof(const Stmt *T) {
2037    return T->getStmtClass() == ExpressionTraitExprClass;
2038  }
2039  static bool classof(const ExpressionTraitExpr *) { return true; }
2040
2041  // Iterators
2042  child_range children() { return child_range(); }
2043
2044  friend class ASTStmtReader;
2045};
2046
2047
2048/// \brief A reference to an overloaded function set, either an
2049/// \t UnresolvedLookupExpr or an \t UnresolvedMemberExpr.
2050class OverloadExpr : public Expr {
2051  /// The results.  These are undesugared, which is to say, they may
2052  /// include UsingShadowDecls.  Access is relative to the naming
2053  /// class.
2054  // FIXME: Allocate this data after the OverloadExpr subclass.
2055  DeclAccessPair *Results;
2056  unsigned NumResults;
2057
2058  /// The common name of these declarations.
2059  DeclarationNameInfo NameInfo;
2060
2061  /// \brief The nested-name-specifier that qualifies the name, if any.
2062  NestedNameSpecifierLoc QualifierLoc;
2063
2064protected:
2065  /// \brief Whether the name includes info for explicit template
2066  /// keyword and arguments.
2067  bool HasTemplateKWAndArgsInfo;
2068
2069  /// \brief Return the optional template keyword and arguments info.
2070  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo(); // defined far below.
2071
2072  /// \brief Return the optional template keyword and arguments info.
2073  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
2074    return const_cast<OverloadExpr*>(this)->getTemplateKWAndArgsInfo();
2075  }
2076
2077  OverloadExpr(StmtClass K, ASTContext &C,
2078               NestedNameSpecifierLoc QualifierLoc,
2079               SourceLocation TemplateKWLoc,
2080               const DeclarationNameInfo &NameInfo,
2081               const TemplateArgumentListInfo *TemplateArgs,
2082               UnresolvedSetIterator Begin, UnresolvedSetIterator End,
2083               bool KnownDependent,
2084               bool KnownInstantiationDependent,
2085               bool KnownContainsUnexpandedParameterPack);
2086
2087  OverloadExpr(StmtClass K, EmptyShell Empty)
2088    : Expr(K, Empty), Results(0), NumResults(0),
2089      QualifierLoc(), HasTemplateKWAndArgsInfo(false) { }
2090
2091  void initializeResults(ASTContext &C,
2092                         UnresolvedSetIterator Begin,
2093                         UnresolvedSetIterator End);
2094
2095public:
2096  struct FindResult {
2097    OverloadExpr *Expression;
2098    bool IsAddressOfOperand;
2099    bool HasFormOfMemberPointer;
2100  };
2101
2102  /// Finds the overloaded expression in the given expression of
2103  /// OverloadTy.
2104  ///
2105  /// \return the expression (which must be there) and true if it has
2106  /// the particular form of a member pointer expression
2107  static FindResult find(Expr *E) {
2108    assert(E->getType()->isSpecificBuiltinType(BuiltinType::Overload));
2109
2110    FindResult Result;
2111
2112    E = E->IgnoreParens();
2113    if (isa<UnaryOperator>(E)) {
2114      assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
2115      E = cast<UnaryOperator>(E)->getSubExpr();
2116      OverloadExpr *Ovl = cast<OverloadExpr>(E->IgnoreParens());
2117
2118      Result.HasFormOfMemberPointer = (E == Ovl && Ovl->getQualifier());
2119      Result.IsAddressOfOperand = true;
2120      Result.Expression = Ovl;
2121    } else {
2122      Result.HasFormOfMemberPointer = false;
2123      Result.IsAddressOfOperand = false;
2124      Result.Expression = cast<OverloadExpr>(E);
2125    }
2126
2127    return Result;
2128  }
2129
2130  /// Gets the naming class of this lookup, if any.
2131  CXXRecordDecl *getNamingClass() const;
2132
2133  typedef UnresolvedSetImpl::iterator decls_iterator;
2134  decls_iterator decls_begin() const { return UnresolvedSetIterator(Results); }
2135  decls_iterator decls_end() const {
2136    return UnresolvedSetIterator(Results + NumResults);
2137  }
2138
2139  /// Gets the number of declarations in the unresolved set.
2140  unsigned getNumDecls() const { return NumResults; }
2141
2142  /// Gets the full name info.
2143  const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
2144
2145  /// Gets the name looked up.
2146  DeclarationName getName() const { return NameInfo.getName(); }
2147
2148  /// Gets the location of the name.
2149  SourceLocation getNameLoc() const { return NameInfo.getLoc(); }
2150
2151  /// Fetches the nested-name qualifier, if one was given.
2152  NestedNameSpecifier *getQualifier() const {
2153    return QualifierLoc.getNestedNameSpecifier();
2154  }
2155
2156  /// Fetches the nested-name qualifier with source-location information, if
2157  /// one was given.
2158  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2159
2160  /// \brief Retrieve the location of the template keyword preceding
2161  /// this name, if any.
2162  SourceLocation getTemplateKeywordLoc() const {
2163    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2164    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
2165  }
2166
2167  /// \brief Retrieve the location of the left angle bracket starting the
2168  /// explicit template argument list following the name, if any.
2169  SourceLocation getLAngleLoc() const {
2170    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2171    return getTemplateKWAndArgsInfo()->LAngleLoc;
2172  }
2173
2174  /// \brief Retrieve the location of the right angle bracket ending the
2175  /// explicit template argument list following the name, if any.
2176  SourceLocation getRAngleLoc() const {
2177    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2178    return getTemplateKWAndArgsInfo()->RAngleLoc;
2179  }
2180
2181  /// Determines whether the name was preceded by the template keyword.
2182  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
2183
2184  /// Determines whether this expression had explicit template arguments.
2185  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
2186
2187  // Note that, inconsistently with the explicit-template-argument AST
2188  // nodes, users are *forbidden* from calling these methods on objects
2189  // without explicit template arguments.
2190
2191  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
2192    assert(hasExplicitTemplateArgs());
2193    return *getTemplateKWAndArgsInfo();
2194  }
2195
2196  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2197    return const_cast<OverloadExpr*>(this)->getExplicitTemplateArgs();
2198  }
2199
2200  TemplateArgumentLoc const *getTemplateArgs() const {
2201    return getExplicitTemplateArgs().getTemplateArgs();
2202  }
2203
2204  unsigned getNumTemplateArgs() const {
2205    return getExplicitTemplateArgs().NumTemplateArgs;
2206  }
2207
2208  /// Copies the template arguments into the given structure.
2209  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2210    getExplicitTemplateArgs().copyInto(List);
2211  }
2212
2213  /// \brief Retrieves the optional explicit template arguments.
2214  /// This points to the same data as getExplicitTemplateArgs(), but
2215  /// returns null if there are no explicit template arguments.
2216  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() {
2217    if (!hasExplicitTemplateArgs()) return 0;
2218    return &getExplicitTemplateArgs();
2219  }
2220
2221  static bool classof(const Stmt *T) {
2222    return T->getStmtClass() == UnresolvedLookupExprClass ||
2223           T->getStmtClass() == UnresolvedMemberExprClass;
2224  }
2225  static bool classof(const OverloadExpr *) { return true; }
2226
2227  friend class ASTStmtReader;
2228  friend class ASTStmtWriter;
2229};
2230
2231/// \brief A reference to a name which we were able to look up during
2232/// parsing but could not resolve to a specific declaration.  This
2233/// arises in several ways:
2234///   * we might be waiting for argument-dependent lookup
2235///   * the name might resolve to an overloaded function
2236/// and eventually:
2237///   * the lookup might have included a function template
2238/// These never include UnresolvedUsingValueDecls, which are always
2239/// class members and therefore appear only in
2240/// UnresolvedMemberLookupExprs.
2241class UnresolvedLookupExpr : public OverloadExpr {
2242  /// True if these lookup results should be extended by
2243  /// argument-dependent lookup if this is the operand of a function
2244  /// call.
2245  bool RequiresADL;
2246
2247  /// True if namespace ::std should be considered an associated namespace
2248  /// for the purposes of argument-dependent lookup. See C++0x [stmt.ranged]p1.
2249  bool StdIsAssociatedNamespace;
2250
2251  /// True if these lookup results are overloaded.  This is pretty
2252  /// trivially rederivable if we urgently need to kill this field.
2253  bool Overloaded;
2254
2255  /// The naming class (C++ [class.access.base]p5) of the lookup, if
2256  /// any.  This can generally be recalculated from the context chain,
2257  /// but that can be fairly expensive for unqualified lookups.  If we
2258  /// want to improve memory use here, this could go in a union
2259  /// against the qualified-lookup bits.
2260  CXXRecordDecl *NamingClass;
2261
2262  UnresolvedLookupExpr(ASTContext &C,
2263                       CXXRecordDecl *NamingClass,
2264                       NestedNameSpecifierLoc QualifierLoc,
2265                       SourceLocation TemplateKWLoc,
2266                       const DeclarationNameInfo &NameInfo,
2267                       bool RequiresADL, bool Overloaded,
2268                       const TemplateArgumentListInfo *TemplateArgs,
2269                       UnresolvedSetIterator Begin, UnresolvedSetIterator End,
2270                       bool StdIsAssociatedNamespace)
2271    : OverloadExpr(UnresolvedLookupExprClass, C, QualifierLoc, TemplateKWLoc,
2272                   NameInfo, TemplateArgs, Begin, End, false, false, false),
2273      RequiresADL(RequiresADL),
2274      StdIsAssociatedNamespace(StdIsAssociatedNamespace),
2275      Overloaded(Overloaded), NamingClass(NamingClass)
2276  {}
2277
2278  UnresolvedLookupExpr(EmptyShell Empty)
2279    : OverloadExpr(UnresolvedLookupExprClass, Empty),
2280      RequiresADL(false), StdIsAssociatedNamespace(false), Overloaded(false),
2281      NamingClass(0)
2282  {}
2283
2284  friend class ASTStmtReader;
2285
2286public:
2287  static UnresolvedLookupExpr *Create(ASTContext &C,
2288                                      CXXRecordDecl *NamingClass,
2289                                      NestedNameSpecifierLoc QualifierLoc,
2290                                      const DeclarationNameInfo &NameInfo,
2291                                      bool ADL, bool Overloaded,
2292                                      UnresolvedSetIterator Begin,
2293                                      UnresolvedSetIterator End,
2294                                      bool StdIsAssociatedNamespace = false) {
2295    assert((ADL || !StdIsAssociatedNamespace) &&
2296           "std considered associated namespace when not performing ADL");
2297    return new(C) UnresolvedLookupExpr(C, NamingClass, QualifierLoc,
2298                                       SourceLocation(), NameInfo,
2299                                       ADL, Overloaded, 0, Begin, End,
2300                                       StdIsAssociatedNamespace);
2301  }
2302
2303  static UnresolvedLookupExpr *Create(ASTContext &C,
2304                                      CXXRecordDecl *NamingClass,
2305                                      NestedNameSpecifierLoc QualifierLoc,
2306                                      SourceLocation TemplateKWLoc,
2307                                      const DeclarationNameInfo &NameInfo,
2308                                      bool ADL,
2309                                      const TemplateArgumentListInfo *Args,
2310                                      UnresolvedSetIterator Begin,
2311                                      UnresolvedSetIterator End);
2312
2313  static UnresolvedLookupExpr *CreateEmpty(ASTContext &C,
2314                                           bool HasTemplateKWAndArgsInfo,
2315                                           unsigned NumTemplateArgs);
2316
2317  /// True if this declaration should be extended by
2318  /// argument-dependent lookup.
2319  bool requiresADL() const { return RequiresADL; }
2320
2321  /// True if namespace ::std should be artificially added to the set of
2322  /// associated namespaecs for argument-dependent lookup purposes.
2323  bool isStdAssociatedNamespace() const { return StdIsAssociatedNamespace; }
2324
2325  /// True if this lookup is overloaded.
2326  bool isOverloaded() const { return Overloaded; }
2327
2328  /// Gets the 'naming class' (in the sense of C++0x
2329  /// [class.access.base]p5) of the lookup.  This is the scope
2330  /// that was looked in to find these results.
2331  CXXRecordDecl *getNamingClass() const { return NamingClass; }
2332
2333  SourceRange getSourceRange() const {
2334    SourceRange Range(getNameInfo().getSourceRange());
2335    if (getQualifierLoc())
2336      Range.setBegin(getQualifierLoc().getBeginLoc());
2337    if (hasExplicitTemplateArgs())
2338      Range.setEnd(getRAngleLoc());
2339    return Range;
2340  }
2341
2342  child_range children() { return child_range(); }
2343
2344  static bool classof(const Stmt *T) {
2345    return T->getStmtClass() == UnresolvedLookupExprClass;
2346  }
2347  static bool classof(const UnresolvedLookupExpr *) { return true; }
2348};
2349
2350/// \brief A qualified reference to a name whose declaration cannot
2351/// yet be resolved.
2352///
2353/// DependentScopeDeclRefExpr is similar to DeclRefExpr in that
2354/// it expresses a reference to a declaration such as
2355/// X<T>::value. The difference, however, is that an
2356/// DependentScopeDeclRefExpr node is used only within C++ templates when
2357/// the qualification (e.g., X<T>::) refers to a dependent type. In
2358/// this case, X<T>::value cannot resolve to a declaration because the
2359/// declaration will differ from on instantiation of X<T> to the
2360/// next. Therefore, DependentScopeDeclRefExpr keeps track of the
2361/// qualifier (X<T>::) and the name of the entity being referenced
2362/// ("value"). Such expressions will instantiate to a DeclRefExpr once the
2363/// declaration can be found.
2364class DependentScopeDeclRefExpr : public Expr {
2365  /// \brief The nested-name-specifier that qualifies this unresolved
2366  /// declaration name.
2367  NestedNameSpecifierLoc QualifierLoc;
2368
2369  /// The name of the entity we will be referencing.
2370  DeclarationNameInfo NameInfo;
2371
2372  /// \brief Whether the name includes info for explicit template
2373  /// keyword and arguments.
2374  bool HasTemplateKWAndArgsInfo;
2375
2376  /// \brief Return the optional template keyword and arguments info.
2377  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
2378    if (!HasTemplateKWAndArgsInfo) return 0;
2379    return reinterpret_cast<ASTTemplateKWAndArgsInfo*>(this + 1);
2380  }
2381  /// \brief Return the optional template keyword and arguments info.
2382  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
2383    return const_cast<DependentScopeDeclRefExpr*>(this)
2384      ->getTemplateKWAndArgsInfo();
2385  }
2386
2387  DependentScopeDeclRefExpr(QualType T,
2388                            NestedNameSpecifierLoc QualifierLoc,
2389                            SourceLocation TemplateKWLoc,
2390                            const DeclarationNameInfo &NameInfo,
2391                            const TemplateArgumentListInfo *Args);
2392
2393public:
2394  static DependentScopeDeclRefExpr *Create(ASTContext &C,
2395                                           NestedNameSpecifierLoc QualifierLoc,
2396                                           SourceLocation TemplateKWLoc,
2397                                           const DeclarationNameInfo &NameInfo,
2398                              const TemplateArgumentListInfo *TemplateArgs);
2399
2400  static DependentScopeDeclRefExpr *CreateEmpty(ASTContext &C,
2401                                                bool HasTemplateKWAndArgsInfo,
2402                                                unsigned NumTemplateArgs);
2403
2404  /// \brief Retrieve the name that this expression refers to.
2405  const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
2406
2407  /// \brief Retrieve the name that this expression refers to.
2408  DeclarationName getDeclName() const { return NameInfo.getName(); }
2409
2410  /// \brief Retrieve the location of the name within the expression.
2411  SourceLocation getLocation() const { return NameInfo.getLoc(); }
2412
2413  /// \brief Retrieve the nested-name-specifier that qualifies the
2414  /// name, with source location information.
2415  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2416
2417
2418  /// \brief Retrieve the nested-name-specifier that qualifies this
2419  /// declaration.
2420  NestedNameSpecifier *getQualifier() const {
2421    return QualifierLoc.getNestedNameSpecifier();
2422  }
2423
2424  /// \brief Retrieve the location of the template keyword preceding
2425  /// this name, if any.
2426  SourceLocation getTemplateKeywordLoc() const {
2427    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2428    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
2429  }
2430
2431  /// \brief Retrieve the location of the left angle bracket starting the
2432  /// explicit template argument list following the name, if any.
2433  SourceLocation getLAngleLoc() const {
2434    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2435    return getTemplateKWAndArgsInfo()->LAngleLoc;
2436  }
2437
2438  /// \brief Retrieve the location of the right angle bracket ending the
2439  /// explicit template argument list following the name, if any.
2440  SourceLocation getRAngleLoc() const {
2441    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2442    return getTemplateKWAndArgsInfo()->RAngleLoc;
2443  }
2444
2445  /// Determines whether the name was preceded by the template keyword.
2446  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
2447
2448  /// Determines whether this lookup had explicit template arguments.
2449  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
2450
2451  // Note that, inconsistently with the explicit-template-argument AST
2452  // nodes, users are *forbidden* from calling these methods on objects
2453  // without explicit template arguments.
2454
2455  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
2456    assert(hasExplicitTemplateArgs());
2457    return *reinterpret_cast<ASTTemplateArgumentListInfo*>(this + 1);
2458  }
2459
2460  /// Gets a reference to the explicit template argument list.
2461  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2462    assert(hasExplicitTemplateArgs());
2463    return *reinterpret_cast<const ASTTemplateArgumentListInfo*>(this + 1);
2464  }
2465
2466  /// \brief Retrieves the optional explicit template arguments.
2467  /// This points to the same data as getExplicitTemplateArgs(), but
2468  /// returns null if there are no explicit template arguments.
2469  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() {
2470    if (!hasExplicitTemplateArgs()) return 0;
2471    return &getExplicitTemplateArgs();
2472  }
2473
2474  /// \brief Copies the template arguments (if present) into the given
2475  /// structure.
2476  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2477    getExplicitTemplateArgs().copyInto(List);
2478  }
2479
2480  TemplateArgumentLoc const *getTemplateArgs() const {
2481    return getExplicitTemplateArgs().getTemplateArgs();
2482  }
2483
2484  unsigned getNumTemplateArgs() const {
2485    return getExplicitTemplateArgs().NumTemplateArgs;
2486  }
2487
2488  SourceRange getSourceRange() const {
2489    SourceRange Range(QualifierLoc.getBeginLoc(), getLocation());
2490    if (hasExplicitTemplateArgs())
2491      Range.setEnd(getRAngleLoc());
2492    return Range;
2493  }
2494
2495  static bool classof(const Stmt *T) {
2496    return T->getStmtClass() == DependentScopeDeclRefExprClass;
2497  }
2498  static bool classof(const DependentScopeDeclRefExpr *) { return true; }
2499
2500  child_range children() { return child_range(); }
2501
2502  friend class ASTStmtReader;
2503  friend class ASTStmtWriter;
2504};
2505
2506/// Represents an expression --- generally a full-expression --- which
2507/// introduces cleanups to be run at the end of the sub-expression's
2508/// evaluation.  The most common source of expression-introduced
2509/// cleanups is temporary objects in C++, but several other kinds of
2510/// expressions can create cleanups, including basically every
2511/// call in ARC that returns an Objective-C pointer.
2512///
2513/// This expression also tracks whether the sub-expression contains a
2514/// potentially-evaluated block literal.  The lifetime of a block
2515/// literal is the extent of the enclosing scope.
2516class ExprWithCleanups : public Expr {
2517public:
2518  /// The type of objects that are kept in the cleanup.
2519  /// It's useful to remember the set of blocks;  we could also
2520  /// remember the set of temporaries, but there's currently
2521  /// no need.
2522  typedef BlockDecl *CleanupObject;
2523
2524private:
2525  Stmt *SubExpr;
2526
2527  ExprWithCleanups(EmptyShell, unsigned NumObjects);
2528  ExprWithCleanups(Expr *SubExpr, ArrayRef<CleanupObject> Objects);
2529
2530  CleanupObject *getObjectsBuffer() {
2531    return reinterpret_cast<CleanupObject*>(this + 1);
2532  }
2533  const CleanupObject *getObjectsBuffer() const {
2534    return reinterpret_cast<const CleanupObject*>(this + 1);
2535  }
2536  friend class ASTStmtReader;
2537
2538public:
2539  static ExprWithCleanups *Create(ASTContext &C, EmptyShell empty,
2540                                  unsigned numObjects);
2541
2542  static ExprWithCleanups *Create(ASTContext &C, Expr *subexpr,
2543                                  ArrayRef<CleanupObject> objects);
2544
2545  ArrayRef<CleanupObject> getObjects() const {
2546    return ArrayRef<CleanupObject>(getObjectsBuffer(), getNumObjects());
2547  }
2548
2549  unsigned getNumObjects() const { return ExprWithCleanupsBits.NumObjects; }
2550
2551  CleanupObject getObject(unsigned i) const {
2552    assert(i < getNumObjects() && "Index out of range");
2553    return getObjects()[i];
2554  }
2555
2556  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
2557  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
2558
2559  /// setSubExpr - As with any mutator of the AST, be very careful
2560  /// when modifying an existing AST to preserve its invariants.
2561  void setSubExpr(Expr *E) { SubExpr = E; }
2562
2563  SourceRange getSourceRange() const {
2564    return SubExpr->getSourceRange();
2565  }
2566
2567  // Implement isa/cast/dyncast/etc.
2568  static bool classof(const Stmt *T) {
2569    return T->getStmtClass() == ExprWithCleanupsClass;
2570  }
2571  static bool classof(const ExprWithCleanups *) { return true; }
2572
2573  // Iterators
2574  child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
2575};
2576
2577/// \brief Describes an explicit type conversion that uses functional
2578/// notion but could not be resolved because one or more arguments are
2579/// type-dependent.
2580///
2581/// The explicit type conversions expressed by
2582/// CXXUnresolvedConstructExpr have the form \c T(a1, a2, ..., aN),
2583/// where \c T is some type and \c a1, a2, ..., aN are values, and
2584/// either \C T is a dependent type or one or more of the \c a's is
2585/// type-dependent. For example, this would occur in a template such
2586/// as:
2587///
2588/// \code
2589///   template<typename T, typename A1>
2590///   inline T make_a(const A1& a1) {
2591///     return T(a1);
2592///   }
2593/// \endcode
2594///
2595/// When the returned expression is instantiated, it may resolve to a
2596/// constructor call, conversion function call, or some kind of type
2597/// conversion.
2598class CXXUnresolvedConstructExpr : public Expr {
2599  /// \brief The type being constructed.
2600  TypeSourceInfo *Type;
2601
2602  /// \brief The location of the left parentheses ('(').
2603  SourceLocation LParenLoc;
2604
2605  /// \brief The location of the right parentheses (')').
2606  SourceLocation RParenLoc;
2607
2608  /// \brief The number of arguments used to construct the type.
2609  unsigned NumArgs;
2610
2611  CXXUnresolvedConstructExpr(TypeSourceInfo *Type,
2612                             SourceLocation LParenLoc,
2613                             Expr **Args,
2614                             unsigned NumArgs,
2615                             SourceLocation RParenLoc);
2616
2617  CXXUnresolvedConstructExpr(EmptyShell Empty, unsigned NumArgs)
2618    : Expr(CXXUnresolvedConstructExprClass, Empty), Type(), NumArgs(NumArgs) { }
2619
2620  friend class ASTStmtReader;
2621
2622public:
2623  static CXXUnresolvedConstructExpr *Create(ASTContext &C,
2624                                            TypeSourceInfo *Type,
2625                                            SourceLocation LParenLoc,
2626                                            Expr **Args,
2627                                            unsigned NumArgs,
2628                                            SourceLocation RParenLoc);
2629
2630  static CXXUnresolvedConstructExpr *CreateEmpty(ASTContext &C,
2631                                                 unsigned NumArgs);
2632
2633  /// \brief Retrieve the type that is being constructed, as specified
2634  /// in the source code.
2635  QualType getTypeAsWritten() const { return Type->getType(); }
2636
2637  /// \brief Retrieve the type source information for the type being
2638  /// constructed.
2639  TypeSourceInfo *getTypeSourceInfo() const { return Type; }
2640
2641  /// \brief Retrieve the location of the left parentheses ('(') that
2642  /// precedes the argument list.
2643  SourceLocation getLParenLoc() const { return LParenLoc; }
2644  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2645
2646  /// \brief Retrieve the location of the right parentheses (')') that
2647  /// follows the argument list.
2648  SourceLocation getRParenLoc() const { return RParenLoc; }
2649  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2650
2651  /// \brief Retrieve the number of arguments.
2652  unsigned arg_size() const { return NumArgs; }
2653
2654  typedef Expr** arg_iterator;
2655  arg_iterator arg_begin() { return reinterpret_cast<Expr**>(this + 1); }
2656  arg_iterator arg_end() { return arg_begin() + NumArgs; }
2657
2658  typedef const Expr* const * const_arg_iterator;
2659  const_arg_iterator arg_begin() const {
2660    return reinterpret_cast<const Expr* const *>(this + 1);
2661  }
2662  const_arg_iterator arg_end() const {
2663    return arg_begin() + NumArgs;
2664  }
2665
2666  Expr *getArg(unsigned I) {
2667    assert(I < NumArgs && "Argument index out-of-range");
2668    return *(arg_begin() + I);
2669  }
2670
2671  const Expr *getArg(unsigned I) const {
2672    assert(I < NumArgs && "Argument index out-of-range");
2673    return *(arg_begin() + I);
2674  }
2675
2676  void setArg(unsigned I, Expr *E) {
2677    assert(I < NumArgs && "Argument index out-of-range");
2678    *(arg_begin() + I) = E;
2679  }
2680
2681  SourceRange getSourceRange() const;
2682
2683  static bool classof(const Stmt *T) {
2684    return T->getStmtClass() == CXXUnresolvedConstructExprClass;
2685  }
2686  static bool classof(const CXXUnresolvedConstructExpr *) { return true; }
2687
2688  // Iterators
2689  child_range children() {
2690    Stmt **begin = reinterpret_cast<Stmt**>(this+1);
2691    return child_range(begin, begin + NumArgs);
2692  }
2693};
2694
2695/// \brief Represents a C++ member access expression where the actual
2696/// member referenced could not be resolved because the base
2697/// expression or the member name was dependent.
2698///
2699/// Like UnresolvedMemberExprs, these can be either implicit or
2700/// explicit accesses.  It is only possible to get one of these with
2701/// an implicit access if a qualifier is provided.
2702class CXXDependentScopeMemberExpr : public Expr {
2703  /// \brief The expression for the base pointer or class reference,
2704  /// e.g., the \c x in x.f.  Can be null in implicit accesses.
2705  Stmt *Base;
2706
2707  /// \brief The type of the base expression.  Never null, even for
2708  /// implicit accesses.
2709  QualType BaseType;
2710
2711  /// \brief Whether this member expression used the '->' operator or
2712  /// the '.' operator.
2713  bool IsArrow : 1;
2714
2715  /// \brief Whether this member expression has info for explicit template
2716  /// keyword and arguments.
2717  bool HasTemplateKWAndArgsInfo : 1;
2718
2719  /// \brief The location of the '->' or '.' operator.
2720  SourceLocation OperatorLoc;
2721
2722  /// \brief The nested-name-specifier that precedes the member name, if any.
2723  NestedNameSpecifierLoc QualifierLoc;
2724
2725  /// \brief In a qualified member access expression such as t->Base::f, this
2726  /// member stores the resolves of name lookup in the context of the member
2727  /// access expression, to be used at instantiation time.
2728  ///
2729  /// FIXME: This member, along with the QualifierLoc, could
2730  /// be stuck into a structure that is optionally allocated at the end of
2731  /// the CXXDependentScopeMemberExpr, to save space in the common case.
2732  NamedDecl *FirstQualifierFoundInScope;
2733
2734  /// \brief The member to which this member expression refers, which
2735  /// can be name, overloaded operator, or destructor.
2736  /// FIXME: could also be a template-id
2737  DeclarationNameInfo MemberNameInfo;
2738
2739  /// \brief Return the optional template keyword and arguments info.
2740  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
2741    if (!HasTemplateKWAndArgsInfo) return 0;
2742    return reinterpret_cast<ASTTemplateKWAndArgsInfo*>(this + 1);
2743  }
2744  /// \brief Return the optional template keyword and arguments info.
2745  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
2746    return const_cast<CXXDependentScopeMemberExpr*>(this)
2747      ->getTemplateKWAndArgsInfo();
2748  }
2749
2750  CXXDependentScopeMemberExpr(ASTContext &C,
2751                          Expr *Base, QualType BaseType, bool IsArrow,
2752                          SourceLocation OperatorLoc,
2753                          NestedNameSpecifierLoc QualifierLoc,
2754                          SourceLocation TemplateKWLoc,
2755                          NamedDecl *FirstQualifierFoundInScope,
2756                          DeclarationNameInfo MemberNameInfo,
2757                          const TemplateArgumentListInfo *TemplateArgs);
2758
2759public:
2760  CXXDependentScopeMemberExpr(ASTContext &C,
2761                              Expr *Base, QualType BaseType,
2762                              bool IsArrow,
2763                              SourceLocation OperatorLoc,
2764                              NestedNameSpecifierLoc QualifierLoc,
2765                              NamedDecl *FirstQualifierFoundInScope,
2766                              DeclarationNameInfo MemberNameInfo);
2767
2768  static CXXDependentScopeMemberExpr *
2769  Create(ASTContext &C,
2770         Expr *Base, QualType BaseType, bool IsArrow,
2771         SourceLocation OperatorLoc,
2772         NestedNameSpecifierLoc QualifierLoc,
2773         SourceLocation TemplateKWLoc,
2774         NamedDecl *FirstQualifierFoundInScope,
2775         DeclarationNameInfo MemberNameInfo,
2776         const TemplateArgumentListInfo *TemplateArgs);
2777
2778  static CXXDependentScopeMemberExpr *
2779  CreateEmpty(ASTContext &C, bool HasTemplateKWAndArgsInfo,
2780              unsigned NumTemplateArgs);
2781
2782  /// \brief True if this is an implicit access, i.e. one in which the
2783  /// member being accessed was not written in the source.  The source
2784  /// location of the operator is invalid in this case.
2785  bool isImplicitAccess() const;
2786
2787  /// \brief Retrieve the base object of this member expressions,
2788  /// e.g., the \c x in \c x.m.
2789  Expr *getBase() const {
2790    assert(!isImplicitAccess());
2791    return cast<Expr>(Base);
2792  }
2793
2794  QualType getBaseType() const { return BaseType; }
2795
2796  /// \brief Determine whether this member expression used the '->'
2797  /// operator; otherwise, it used the '.' operator.
2798  bool isArrow() const { return IsArrow; }
2799
2800  /// \brief Retrieve the location of the '->' or '.' operator.
2801  SourceLocation getOperatorLoc() const { return OperatorLoc; }
2802
2803  /// \brief Retrieve the nested-name-specifier that qualifies the member
2804  /// name.
2805  NestedNameSpecifier *getQualifier() const {
2806    return QualifierLoc.getNestedNameSpecifier();
2807  }
2808
2809  /// \brief Retrieve the nested-name-specifier that qualifies the member
2810  /// name, with source location information.
2811  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2812
2813
2814  /// \brief Retrieve the first part of the nested-name-specifier that was
2815  /// found in the scope of the member access expression when the member access
2816  /// was initially parsed.
2817  ///
2818  /// This function only returns a useful result when member access expression
2819  /// uses a qualified member name, e.g., "x.Base::f". Here, the declaration
2820  /// returned by this function describes what was found by unqualified name
2821  /// lookup for the identifier "Base" within the scope of the member access
2822  /// expression itself. At template instantiation time, this information is
2823  /// combined with the results of name lookup into the type of the object
2824  /// expression itself (the class type of x).
2825  NamedDecl *getFirstQualifierFoundInScope() const {
2826    return FirstQualifierFoundInScope;
2827  }
2828
2829  /// \brief Retrieve the name of the member that this expression
2830  /// refers to.
2831  const DeclarationNameInfo &getMemberNameInfo() const {
2832    return MemberNameInfo;
2833  }
2834
2835  /// \brief Retrieve the name of the member that this expression
2836  /// refers to.
2837  DeclarationName getMember() const { return MemberNameInfo.getName(); }
2838
2839  // \brief Retrieve the location of the name of the member that this
2840  // expression refers to.
2841  SourceLocation getMemberLoc() const { return MemberNameInfo.getLoc(); }
2842
2843  /// \brief Retrieve the location of the template keyword preceding the
2844  /// member name, if any.
2845  SourceLocation getTemplateKeywordLoc() const {
2846    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2847    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
2848  }
2849
2850  /// \brief Retrieve the location of the left angle bracket starting the
2851  /// explicit template argument list following the member name, if any.
2852  SourceLocation getLAngleLoc() const {
2853    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2854    return getTemplateKWAndArgsInfo()->LAngleLoc;
2855  }
2856
2857  /// \brief Retrieve the location of the right angle bracket ending the
2858  /// explicit template argument list following the member name, if any.
2859  SourceLocation getRAngleLoc() const {
2860    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2861    return getTemplateKWAndArgsInfo()->RAngleLoc;
2862  }
2863
2864  /// Determines whether the member name was preceded by the template keyword.
2865  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
2866
2867  /// \brief Determines whether this member expression actually had a C++
2868  /// template argument list explicitly specified, e.g., x.f<int>.
2869  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
2870
2871  /// \brief Retrieve the explicit template argument list that followed the
2872  /// member template name, if any.
2873  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
2874    assert(hasExplicitTemplateArgs());
2875    return *reinterpret_cast<ASTTemplateArgumentListInfo *>(this + 1);
2876  }
2877
2878  /// \brief Retrieve the explicit template argument list that followed the
2879  /// member template name, if any.
2880  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2881    return const_cast<CXXDependentScopeMemberExpr *>(this)
2882             ->getExplicitTemplateArgs();
2883  }
2884
2885  /// \brief Retrieves the optional explicit template arguments.
2886  /// This points to the same data as getExplicitTemplateArgs(), but
2887  /// returns null if there are no explicit template arguments.
2888  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() {
2889    if (!hasExplicitTemplateArgs()) return 0;
2890    return &getExplicitTemplateArgs();
2891  }
2892
2893  /// \brief Copies the template arguments (if present) into the given
2894  /// structure.
2895  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2896    getExplicitTemplateArgs().copyInto(List);
2897  }
2898
2899  /// \brief Initializes the template arguments using the given structure.
2900  void initializeTemplateArgumentsFrom(const TemplateArgumentListInfo &List) {
2901    getExplicitTemplateArgs().initializeFrom(List);
2902  }
2903
2904  /// \brief Retrieve the template arguments provided as part of this
2905  /// template-id.
2906  const TemplateArgumentLoc *getTemplateArgs() const {
2907    return getExplicitTemplateArgs().getTemplateArgs();
2908  }
2909
2910  /// \brief Retrieve the number of template arguments provided as part of this
2911  /// template-id.
2912  unsigned getNumTemplateArgs() const {
2913    return getExplicitTemplateArgs().NumTemplateArgs;
2914  }
2915
2916  SourceRange getSourceRange() const {
2917    SourceRange Range;
2918    if (!isImplicitAccess())
2919      Range.setBegin(Base->getSourceRange().getBegin());
2920    else if (getQualifier())
2921      Range.setBegin(getQualifierLoc().getBeginLoc());
2922    else
2923      Range.setBegin(MemberNameInfo.getBeginLoc());
2924
2925    if (hasExplicitTemplateArgs())
2926      Range.setEnd(getRAngleLoc());
2927    else
2928      Range.setEnd(MemberNameInfo.getEndLoc());
2929    return Range;
2930  }
2931
2932  static bool classof(const Stmt *T) {
2933    return T->getStmtClass() == CXXDependentScopeMemberExprClass;
2934  }
2935  static bool classof(const CXXDependentScopeMemberExpr *) { return true; }
2936
2937  // Iterators
2938  child_range children() {
2939    if (isImplicitAccess()) return child_range();
2940    return child_range(&Base, &Base + 1);
2941  }
2942
2943  friend class ASTStmtReader;
2944  friend class ASTStmtWriter;
2945};
2946
2947/// \brief Represents a C++ member access expression for which lookup
2948/// produced a set of overloaded functions.
2949///
2950/// The member access may be explicit or implicit:
2951///    struct A {
2952///      int a, b;
2953///      int explicitAccess() { return this->a + this->A::b; }
2954///      int implicitAccess() { return a + A::b; }
2955///    };
2956///
2957/// In the final AST, an explicit access always becomes a MemberExpr.
2958/// An implicit access may become either a MemberExpr or a
2959/// DeclRefExpr, depending on whether the member is static.
2960class UnresolvedMemberExpr : public OverloadExpr {
2961  /// \brief Whether this member expression used the '->' operator or
2962  /// the '.' operator.
2963  bool IsArrow : 1;
2964
2965  /// \brief Whether the lookup results contain an unresolved using
2966  /// declaration.
2967  bool HasUnresolvedUsing : 1;
2968
2969  /// \brief The expression for the base pointer or class reference,
2970  /// e.g., the \c x in x.f.  This can be null if this is an 'unbased'
2971  /// member expression
2972  Stmt *Base;
2973
2974  /// \brief The type of the base expression;  never null.
2975  QualType BaseType;
2976
2977  /// \brief The location of the '->' or '.' operator.
2978  SourceLocation OperatorLoc;
2979
2980  UnresolvedMemberExpr(ASTContext &C, bool HasUnresolvedUsing,
2981                       Expr *Base, QualType BaseType, bool IsArrow,
2982                       SourceLocation OperatorLoc,
2983                       NestedNameSpecifierLoc QualifierLoc,
2984                       SourceLocation TemplateKWLoc,
2985                       const DeclarationNameInfo &MemberNameInfo,
2986                       const TemplateArgumentListInfo *TemplateArgs,
2987                       UnresolvedSetIterator Begin, UnresolvedSetIterator End);
2988
2989  UnresolvedMemberExpr(EmptyShell Empty)
2990    : OverloadExpr(UnresolvedMemberExprClass, Empty), IsArrow(false),
2991      HasUnresolvedUsing(false), Base(0) { }
2992
2993  friend class ASTStmtReader;
2994
2995public:
2996  static UnresolvedMemberExpr *
2997  Create(ASTContext &C, bool HasUnresolvedUsing,
2998         Expr *Base, QualType BaseType, bool IsArrow,
2999         SourceLocation OperatorLoc,
3000         NestedNameSpecifierLoc QualifierLoc,
3001         SourceLocation TemplateKWLoc,
3002         const DeclarationNameInfo &MemberNameInfo,
3003         const TemplateArgumentListInfo *TemplateArgs,
3004         UnresolvedSetIterator Begin, UnresolvedSetIterator End);
3005
3006  static UnresolvedMemberExpr *
3007  CreateEmpty(ASTContext &C, bool HasTemplateKWAndArgsInfo,
3008              unsigned NumTemplateArgs);
3009
3010  /// \brief True if this is an implicit access, i.e. one in which the
3011  /// member being accessed was not written in the source.  The source
3012  /// location of the operator is invalid in this case.
3013  bool isImplicitAccess() const;
3014
3015  /// \brief Retrieve the base object of this member expressions,
3016  /// e.g., the \c x in \c x.m.
3017  Expr *getBase() {
3018    assert(!isImplicitAccess());
3019    return cast<Expr>(Base);
3020  }
3021  const Expr *getBase() const {
3022    assert(!isImplicitAccess());
3023    return cast<Expr>(Base);
3024  }
3025
3026  QualType getBaseType() const { return BaseType; }
3027
3028  /// \brief Determine whether the lookup results contain an unresolved using
3029  /// declaration.
3030  bool hasUnresolvedUsing() const { return HasUnresolvedUsing; }
3031
3032  /// \brief Determine whether this member expression used the '->'
3033  /// operator; otherwise, it used the '.' operator.
3034  bool isArrow() const { return IsArrow; }
3035
3036  /// \brief Retrieve the location of the '->' or '.' operator.
3037  SourceLocation getOperatorLoc() const { return OperatorLoc; }
3038
3039  /// \brief Retrieves the naming class of this lookup.
3040  CXXRecordDecl *getNamingClass() const;
3041
3042  /// \brief Retrieve the full name info for the member that this expression
3043  /// refers to.
3044  const DeclarationNameInfo &getMemberNameInfo() const { return getNameInfo(); }
3045
3046  /// \brief Retrieve the name of the member that this expression
3047  /// refers to.
3048  DeclarationName getMemberName() const { return getName(); }
3049
3050  // \brief Retrieve the location of the name of the member that this
3051  // expression refers to.
3052  SourceLocation getMemberLoc() const { return getNameLoc(); }
3053
3054  SourceRange getSourceRange() const {
3055    SourceRange Range = getMemberNameInfo().getSourceRange();
3056    if (!isImplicitAccess())
3057      Range.setBegin(Base->getSourceRange().getBegin());
3058    else if (getQualifierLoc())
3059      Range.setBegin(getQualifierLoc().getBeginLoc());
3060
3061    if (hasExplicitTemplateArgs())
3062      Range.setEnd(getRAngleLoc());
3063    return Range;
3064  }
3065
3066  static bool classof(const Stmt *T) {
3067    return T->getStmtClass() == UnresolvedMemberExprClass;
3068  }
3069  static bool classof(const UnresolvedMemberExpr *) { return true; }
3070
3071  // Iterators
3072  child_range children() {
3073    if (isImplicitAccess()) return child_range();
3074    return child_range(&Base, &Base + 1);
3075  }
3076};
3077
3078/// \brief Represents a C++0x noexcept expression (C++ [expr.unary.noexcept]).
3079///
3080/// The noexcept expression tests whether a given expression might throw. Its
3081/// result is a boolean constant.
3082class CXXNoexceptExpr : public Expr {
3083  bool Value : 1;
3084  Stmt *Operand;
3085  SourceRange Range;
3086
3087  friend class ASTStmtReader;
3088
3089public:
3090  CXXNoexceptExpr(QualType Ty, Expr *Operand, CanThrowResult Val,
3091                  SourceLocation Keyword, SourceLocation RParen)
3092    : Expr(CXXNoexceptExprClass, Ty, VK_RValue, OK_Ordinary,
3093           /*TypeDependent*/false,
3094           /*ValueDependent*/Val == CT_Dependent,
3095           Val == CT_Dependent || Operand->isInstantiationDependent(),
3096           Operand->containsUnexpandedParameterPack()),
3097      Value(Val == CT_Cannot), Operand(Operand), Range(Keyword, RParen)
3098  { }
3099
3100  CXXNoexceptExpr(EmptyShell Empty)
3101    : Expr(CXXNoexceptExprClass, Empty)
3102  { }
3103
3104  Expr *getOperand() const { return static_cast<Expr*>(Operand); }
3105
3106  SourceRange getSourceRange() const { return Range; }
3107
3108  bool getValue() const { return Value; }
3109
3110  static bool classof(const Stmt *T) {
3111    return T->getStmtClass() == CXXNoexceptExprClass;
3112  }
3113  static bool classof(const CXXNoexceptExpr *) { return true; }
3114
3115  // Iterators
3116  child_range children() { return child_range(&Operand, &Operand + 1); }
3117};
3118
3119/// \brief Represents a C++0x pack expansion that produces a sequence of
3120/// expressions.
3121///
3122/// A pack expansion expression contains a pattern (which itself is an
3123/// expression) followed by an ellipsis. For example:
3124///
3125/// \code
3126/// template<typename F, typename ...Types>
3127/// void forward(F f, Types &&...args) {
3128///   f(static_cast<Types&&>(args)...);
3129/// }
3130/// \endcode
3131///
3132/// Here, the argument to the function object \c f is a pack expansion whose
3133/// pattern is \c static_cast<Types&&>(args). When the \c forward function
3134/// template is instantiated, the pack expansion will instantiate to zero or
3135/// or more function arguments to the function object \c f.
3136class PackExpansionExpr : public Expr {
3137  SourceLocation EllipsisLoc;
3138
3139  /// \brief The number of expansions that will be produced by this pack
3140  /// expansion expression, if known.
3141  ///
3142  /// When zero, the number of expansions is not known. Otherwise, this value
3143  /// is the number of expansions + 1.
3144  unsigned NumExpansions;
3145
3146  Stmt *Pattern;
3147
3148  friend class ASTStmtReader;
3149  friend class ASTStmtWriter;
3150
3151public:
3152  PackExpansionExpr(QualType T, Expr *Pattern, SourceLocation EllipsisLoc,
3153                    llvm::Optional<unsigned> NumExpansions)
3154    : Expr(PackExpansionExprClass, T, Pattern->getValueKind(),
3155           Pattern->getObjectKind(), /*TypeDependent=*/true,
3156           /*ValueDependent=*/true, /*InstantiationDependent=*/true,
3157           /*ContainsUnexpandedParameterPack=*/false),
3158      EllipsisLoc(EllipsisLoc),
3159      NumExpansions(NumExpansions? *NumExpansions + 1 : 0),
3160      Pattern(Pattern) { }
3161
3162  PackExpansionExpr(EmptyShell Empty) : Expr(PackExpansionExprClass, Empty) { }
3163
3164  /// \brief Retrieve the pattern of the pack expansion.
3165  Expr *getPattern() { return reinterpret_cast<Expr *>(Pattern); }
3166
3167  /// \brief Retrieve the pattern of the pack expansion.
3168  const Expr *getPattern() const { return reinterpret_cast<Expr *>(Pattern); }
3169
3170  /// \brief Retrieve the location of the ellipsis that describes this pack
3171  /// expansion.
3172  SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
3173
3174  /// \brief Determine the number of expansions that will be produced when
3175  /// this pack expansion is instantiated, if already known.
3176  llvm::Optional<unsigned> getNumExpansions() const {
3177    if (NumExpansions)
3178      return NumExpansions - 1;
3179
3180    return llvm::Optional<unsigned>();
3181  }
3182
3183  SourceRange getSourceRange() const {
3184    return SourceRange(Pattern->getLocStart(), EllipsisLoc);
3185  }
3186
3187  static bool classof(const Stmt *T) {
3188    return T->getStmtClass() == PackExpansionExprClass;
3189  }
3190  static bool classof(const PackExpansionExpr *) { return true; }
3191
3192  // Iterators
3193  child_range children() {
3194    return child_range(&Pattern, &Pattern + 1);
3195  }
3196};
3197
3198inline ASTTemplateKWAndArgsInfo *OverloadExpr::getTemplateKWAndArgsInfo() {
3199  if (!HasTemplateKWAndArgsInfo) return 0;
3200  if (isa<UnresolvedLookupExpr>(this))
3201    return reinterpret_cast<ASTTemplateKWAndArgsInfo*>
3202      (cast<UnresolvedLookupExpr>(this) + 1);
3203  else
3204    return reinterpret_cast<ASTTemplateKWAndArgsInfo*>
3205      (cast<UnresolvedMemberExpr>(this) + 1);
3206}
3207
3208/// \brief Represents an expression that computes the length of a parameter
3209/// pack.
3210///
3211/// \code
3212/// template<typename ...Types>
3213/// struct count {
3214///   static const unsigned value = sizeof...(Types);
3215/// };
3216/// \endcode
3217class SizeOfPackExpr : public Expr {
3218  /// \brief The location of the 'sizeof' keyword.
3219  SourceLocation OperatorLoc;
3220
3221  /// \brief The location of the name of the parameter pack.
3222  SourceLocation PackLoc;
3223
3224  /// \brief The location of the closing parenthesis.
3225  SourceLocation RParenLoc;
3226
3227  /// \brief The length of the parameter pack, if known.
3228  ///
3229  /// When this expression is value-dependent, the length of the parameter pack
3230  /// is unknown. When this expression is not value-dependent, the length is
3231  /// known.
3232  unsigned Length;
3233
3234  /// \brief The parameter pack itself.
3235  NamedDecl *Pack;
3236
3237  friend class ASTStmtReader;
3238  friend class ASTStmtWriter;
3239
3240public:
3241  /// \brief Creates a value-dependent expression that computes the length of
3242  /// the given parameter pack.
3243  SizeOfPackExpr(QualType SizeType, SourceLocation OperatorLoc, NamedDecl *Pack,
3244                 SourceLocation PackLoc, SourceLocation RParenLoc)
3245    : Expr(SizeOfPackExprClass, SizeType, VK_RValue, OK_Ordinary,
3246           /*TypeDependent=*/false, /*ValueDependent=*/true,
3247           /*InstantiationDependent=*/true,
3248           /*ContainsUnexpandedParameterPack=*/false),
3249      OperatorLoc(OperatorLoc), PackLoc(PackLoc), RParenLoc(RParenLoc),
3250      Length(0), Pack(Pack) { }
3251
3252  /// \brief Creates an expression that computes the length of
3253  /// the given parameter pack, which is already known.
3254  SizeOfPackExpr(QualType SizeType, SourceLocation OperatorLoc, NamedDecl *Pack,
3255                 SourceLocation PackLoc, SourceLocation RParenLoc,
3256                 unsigned Length)
3257  : Expr(SizeOfPackExprClass, SizeType, VK_RValue, OK_Ordinary,
3258         /*TypeDependent=*/false, /*ValueDependent=*/false,
3259         /*InstantiationDependent=*/false,
3260         /*ContainsUnexpandedParameterPack=*/false),
3261    OperatorLoc(OperatorLoc), PackLoc(PackLoc), RParenLoc(RParenLoc),
3262    Length(Length), Pack(Pack) { }
3263
3264  /// \brief Create an empty expression.
3265  SizeOfPackExpr(EmptyShell Empty) : Expr(SizeOfPackExprClass, Empty) { }
3266
3267  /// \brief Determine the location of the 'sizeof' keyword.
3268  SourceLocation getOperatorLoc() const { return OperatorLoc; }
3269
3270  /// \brief Determine the location of the parameter pack.
3271  SourceLocation getPackLoc() const { return PackLoc; }
3272
3273  /// \brief Determine the location of the right parenthesis.
3274  SourceLocation getRParenLoc() const { return RParenLoc; }
3275
3276  /// \brief Retrieve the parameter pack.
3277  NamedDecl *getPack() const { return Pack; }
3278
3279  /// \brief Retrieve the length of the parameter pack.
3280  ///
3281  /// This routine may only be invoked when the expression is not
3282  /// value-dependent.
3283  unsigned getPackLength() const {
3284    assert(!isValueDependent() &&
3285           "Cannot get the length of a value-dependent pack size expression");
3286    return Length;
3287  }
3288
3289  SourceRange getSourceRange() const {
3290    return SourceRange(OperatorLoc, RParenLoc);
3291  }
3292
3293  static bool classof(const Stmt *T) {
3294    return T->getStmtClass() == SizeOfPackExprClass;
3295  }
3296  static bool classof(const SizeOfPackExpr *) { return true; }
3297
3298  // Iterators
3299  child_range children() { return child_range(); }
3300};
3301
3302/// \brief Represents a reference to a non-type template parameter
3303/// that has been substituted with a template argument.
3304class SubstNonTypeTemplateParmExpr : public Expr {
3305  /// \brief The replaced parameter.
3306  NonTypeTemplateParmDecl *Param;
3307
3308  /// \brief The replacement expression.
3309  Stmt *Replacement;
3310
3311  /// \brief The location of the non-type template parameter reference.
3312  SourceLocation NameLoc;
3313
3314  friend class ASTReader;
3315  friend class ASTStmtReader;
3316  explicit SubstNonTypeTemplateParmExpr(EmptyShell Empty)
3317    : Expr(SubstNonTypeTemplateParmExprClass, Empty) { }
3318
3319public:
3320  SubstNonTypeTemplateParmExpr(QualType type,
3321                               ExprValueKind valueKind,
3322                               SourceLocation loc,
3323                               NonTypeTemplateParmDecl *param,
3324                               Expr *replacement)
3325    : Expr(SubstNonTypeTemplateParmExprClass, type, valueKind, OK_Ordinary,
3326           replacement->isTypeDependent(), replacement->isValueDependent(),
3327           replacement->isInstantiationDependent(),
3328           replacement->containsUnexpandedParameterPack()),
3329      Param(param), Replacement(replacement), NameLoc(loc) {}
3330
3331  SourceLocation getNameLoc() const { return NameLoc; }
3332  SourceRange getSourceRange() const { return NameLoc; }
3333
3334  Expr *getReplacement() const { return cast<Expr>(Replacement); }
3335
3336  NonTypeTemplateParmDecl *getParameter() const { return Param; }
3337
3338  static bool classof(const Stmt *s) {
3339    return s->getStmtClass() == SubstNonTypeTemplateParmExprClass;
3340  }
3341  static bool classof(const SubstNonTypeTemplateParmExpr *) {
3342    return true;
3343  }
3344
3345  // Iterators
3346  child_range children() { return child_range(&Replacement, &Replacement+1); }
3347};
3348
3349/// \brief Represents a reference to a non-type template parameter pack that
3350/// has been substituted with a non-template argument pack.
3351///
3352/// When a pack expansion in the source code contains multiple parameter packs
3353/// and those parameter packs correspond to different levels of template
3354/// parameter lists, this node node is used to represent a non-type template
3355/// parameter pack from an outer level, which has already had its argument pack
3356/// substituted but that still lives within a pack expansion that itself
3357/// could not be instantiated. When actually performing a substitution into
3358/// that pack expansion (e.g., when all template parameters have corresponding
3359/// arguments), this type will be replaced with the appropriate underlying
3360/// expression at the current pack substitution index.
3361class SubstNonTypeTemplateParmPackExpr : public Expr {
3362  /// \brief The non-type template parameter pack itself.
3363  NonTypeTemplateParmDecl *Param;
3364
3365  /// \brief A pointer to the set of template arguments that this
3366  /// parameter pack is instantiated with.
3367  const TemplateArgument *Arguments;
3368
3369  /// \brief The number of template arguments in \c Arguments.
3370  unsigned NumArguments;
3371
3372  /// \brief The location of the non-type template parameter pack reference.
3373  SourceLocation NameLoc;
3374
3375  friend class ASTReader;
3376  friend class ASTStmtReader;
3377  explicit SubstNonTypeTemplateParmPackExpr(EmptyShell Empty)
3378    : Expr(SubstNonTypeTemplateParmPackExprClass, Empty) { }
3379
3380public:
3381  SubstNonTypeTemplateParmPackExpr(QualType T,
3382                                   NonTypeTemplateParmDecl *Param,
3383                                   SourceLocation NameLoc,
3384                                   const TemplateArgument &ArgPack);
3385
3386  /// \brief Retrieve the non-type template parameter pack being substituted.
3387  NonTypeTemplateParmDecl *getParameterPack() const { return Param; }
3388
3389  /// \brief Retrieve the location of the parameter pack name.
3390  SourceLocation getParameterPackLocation() const { return NameLoc; }
3391
3392  /// \brief Retrieve the template argument pack containing the substituted
3393  /// template arguments.
3394  TemplateArgument getArgumentPack() const;
3395
3396  SourceRange getSourceRange() const { return NameLoc; }
3397
3398  static bool classof(const Stmt *T) {
3399    return T->getStmtClass() == SubstNonTypeTemplateParmPackExprClass;
3400  }
3401  static bool classof(const SubstNonTypeTemplateParmPackExpr *) {
3402    return true;
3403  }
3404
3405  // Iterators
3406  child_range children() { return child_range(); }
3407};
3408
3409/// \brief Represents a prvalue temporary that written into memory so that
3410/// a reference can bind to it.
3411///
3412/// Prvalue expressions are materialized when they need to have an address
3413/// in memory for a reference to bind to. This happens when binding a
3414/// reference to the result of a conversion, e.g.,
3415///
3416/// \code
3417/// const int &r = 1.0;
3418/// \endcode
3419///
3420/// Here, 1.0 is implicitly converted to an \c int. That resulting \c int is
3421/// then materialized via a \c MaterializeTemporaryExpr, and the reference
3422/// binds to the temporary. \c MaterializeTemporaryExprs are always glvalues
3423/// (either an lvalue or an xvalue, depending on the kind of reference binding
3424/// to it), maintaining the invariant that references always bind to glvalues.
3425class MaterializeTemporaryExpr : public Expr {
3426  /// \brief The temporary-generating expression whose value will be
3427  /// materialized.
3428 Stmt *Temporary;
3429
3430  friend class ASTStmtReader;
3431  friend class ASTStmtWriter;
3432
3433public:
3434  MaterializeTemporaryExpr(QualType T, Expr *Temporary,
3435                           bool BoundToLvalueReference)
3436    : Expr(MaterializeTemporaryExprClass, T,
3437           BoundToLvalueReference? VK_LValue : VK_XValue, OK_Ordinary,
3438           Temporary->isTypeDependent(), Temporary->isValueDependent(),
3439           Temporary->isInstantiationDependent(),
3440           Temporary->containsUnexpandedParameterPack()),
3441      Temporary(Temporary) { }
3442
3443  MaterializeTemporaryExpr(EmptyShell Empty)
3444    : Expr(MaterializeTemporaryExprClass, Empty) { }
3445
3446  /// \brief Retrieve the temporary-generating subexpression whose value will
3447  /// be materialized into a glvalue.
3448  Expr *GetTemporaryExpr() const { return reinterpret_cast<Expr *>(Temporary); }
3449
3450  /// \brief Determine whether this materialized temporary is bound to an
3451  /// lvalue reference; otherwise, it's bound to an rvalue reference.
3452  bool isBoundToLvalueReference() const {
3453    return getValueKind() == VK_LValue;
3454  }
3455
3456  SourceRange getSourceRange() const { return Temporary->getSourceRange(); }
3457
3458  static bool classof(const Stmt *T) {
3459    return T->getStmtClass() == MaterializeTemporaryExprClass;
3460  }
3461  static bool classof(const MaterializeTemporaryExpr *) {
3462    return true;
3463  }
3464
3465  // Iterators
3466  child_range children() { return child_range(&Temporary, &Temporary + 1); }
3467};
3468
3469}  // end namespace clang
3470
3471#endif
3472