ExprCXX.h revision aa165f8458b51c546bebff947343e1a36f3594cb
1//===--- ExprCXX.h - Classes for representing expressions -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses for C++ expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPRCXX_H
15#define LLVM_CLANG_AST_EXPRCXX_H
16
17#include "clang/Basic/TypeTraits.h"
18#include "clang/AST/Expr.h"
19#include "clang/AST/UnresolvedSet.h"
20#include "clang/AST/TemplateBase.h"
21
22namespace clang {
23
24class CXXConstructorDecl;
25class CXXDestructorDecl;
26class CXXMethodDecl;
27class CXXTemporary;
28class TemplateArgumentListInfo;
29
30//===--------------------------------------------------------------------===//
31// C++ Expressions.
32//===--------------------------------------------------------------------===//
33
34/// \brief A call to an overloaded operator written using operator
35/// syntax.
36///
37/// Represents a call to an overloaded operator written using operator
38/// syntax, e.g., "x + y" or "*p". While semantically equivalent to a
39/// normal call, this AST node provides better information about the
40/// syntactic representation of the call.
41///
42/// In a C++ template, this expression node kind will be used whenever
43/// any of the arguments are type-dependent. In this case, the
44/// function itself will be a (possibly empty) set of functions and
45/// function templates that were found by name lookup at template
46/// definition time.
47class CXXOperatorCallExpr : public CallExpr {
48  /// \brief The overloaded operator.
49  OverloadedOperatorKind Operator;
50
51public:
52  CXXOperatorCallExpr(ASTContext& C, OverloadedOperatorKind Op, Expr *fn,
53                      Expr **args, unsigned numargs, QualType t,
54                      ExprValueKind VK, SourceLocation operatorloc)
55    : CallExpr(C, CXXOperatorCallExprClass, fn, args, numargs, t, VK,
56               operatorloc),
57      Operator(Op) {}
58  explicit CXXOperatorCallExpr(ASTContext& C, EmptyShell Empty) :
59    CallExpr(C, CXXOperatorCallExprClass, Empty) { }
60
61
62  /// getOperator - Returns the kind of overloaded operator that this
63  /// expression refers to.
64  OverloadedOperatorKind getOperator() const { return Operator; }
65  void setOperator(OverloadedOperatorKind Kind) { Operator = Kind; }
66
67  /// getOperatorLoc - Returns the location of the operator symbol in
68  /// the expression. When @c getOperator()==OO_Call, this is the
69  /// location of the right parentheses; when @c
70  /// getOperator()==OO_Subscript, this is the location of the right
71  /// bracket.
72  SourceLocation getOperatorLoc() const { return getRParenLoc(); }
73
74  virtual SourceRange getSourceRange() const;
75
76  static bool classof(const Stmt *T) {
77    return T->getStmtClass() == CXXOperatorCallExprClass;
78  }
79  static bool classof(const CXXOperatorCallExpr *) { return true; }
80};
81
82/// CXXMemberCallExpr - Represents a call to a member function that
83/// may be written either with member call syntax (e.g., "obj.func()"
84/// or "objptr->func()") or with normal function-call syntax
85/// ("func()") within a member function that ends up calling a member
86/// function. The callee in either case is a MemberExpr that contains
87/// both the object argument and the member function, while the
88/// arguments are the arguments within the parentheses (not including
89/// the object argument).
90class CXXMemberCallExpr : public CallExpr {
91public:
92  CXXMemberCallExpr(ASTContext &C, Expr *fn, Expr **args, unsigned numargs,
93                    QualType t, ExprValueKind VK, SourceLocation RP)
94    : CallExpr(C, CXXMemberCallExprClass, fn, args, numargs, t, VK, RP) {}
95
96  CXXMemberCallExpr(ASTContext &C, EmptyShell Empty)
97    : CallExpr(C, CXXMemberCallExprClass, Empty) { }
98
99  /// getImplicitObjectArgument - Retrieves the implicit object
100  /// argument for the member call. For example, in "x.f(5)", this
101  /// operation would return "x".
102  Expr *getImplicitObjectArgument();
103
104  /// getRecordDecl - Retrieves the CXXRecordDecl for the underlying type of
105  /// the implicit object argument. Note that this is may not be the same
106  /// declaration as that of the class context of the CXXMethodDecl which this
107  /// function is calling.
108  /// FIXME: Returns 0 for member pointer call exprs.
109  CXXRecordDecl *getRecordDecl();
110
111  virtual SourceRange getSourceRange() const;
112
113  static bool classof(const Stmt *T) {
114    return T->getStmtClass() == CXXMemberCallExprClass;
115  }
116  static bool classof(const CXXMemberCallExpr *) { return true; }
117};
118
119/// CXXNamedCastExpr - Abstract class common to all of the C++ "named"
120/// casts, @c static_cast, @c dynamic_cast, @c reinterpret_cast, or @c
121/// const_cast.
122///
123/// This abstract class is inherited by all of the classes
124/// representing "named" casts, e.g., CXXStaticCastExpr,
125/// CXXDynamicCastExpr, CXXReinterpretCastExpr, and CXXConstCastExpr.
126class CXXNamedCastExpr : public ExplicitCastExpr {
127private:
128  SourceLocation Loc; // the location of the casting op
129
130protected:
131  CXXNamedCastExpr(StmtClass SC, QualType ty, ExprValueKind VK,
132                   CastKind kind, Expr *op, unsigned PathSize,
133                   TypeSourceInfo *writtenTy, SourceLocation l)
134    : ExplicitCastExpr(SC, ty, VK, kind, op, PathSize, writtenTy), Loc(l) {}
135
136  explicit CXXNamedCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
137    : ExplicitCastExpr(SC, Shell, PathSize) { }
138
139public:
140  const char *getCastName() const;
141
142  /// \brief Retrieve the location of the cast operator keyword, e.g.,
143  /// "static_cast".
144  SourceLocation getOperatorLoc() const { return Loc; }
145  void setOperatorLoc(SourceLocation L) { Loc = L; }
146
147  virtual SourceRange getSourceRange() const {
148    return SourceRange(Loc, getSubExpr()->getSourceRange().getEnd());
149  }
150  static bool classof(const Stmt *T) {
151    switch (T->getStmtClass()) {
152    case CXXStaticCastExprClass:
153    case CXXDynamicCastExprClass:
154    case CXXReinterpretCastExprClass:
155    case CXXConstCastExprClass:
156      return true;
157    default:
158      return false;
159    }
160  }
161  static bool classof(const CXXNamedCastExpr *) { return true; }
162};
163
164/// CXXStaticCastExpr - A C++ @c static_cast expression (C++ [expr.static.cast]).
165///
166/// This expression node represents a C++ static cast, e.g.,
167/// @c static_cast<int>(1.0).
168class CXXStaticCastExpr : public CXXNamedCastExpr {
169  CXXStaticCastExpr(QualType ty, ExprValueKind vk, CastKind kind, Expr *op,
170                    unsigned pathSize, TypeSourceInfo *writtenTy,
171                    SourceLocation l)
172    : CXXNamedCastExpr(CXXStaticCastExprClass, ty, vk, kind, op, pathSize,
173                       writtenTy, l) {}
174
175  explicit CXXStaticCastExpr(EmptyShell Empty, unsigned PathSize)
176    : CXXNamedCastExpr(CXXStaticCastExprClass, Empty, PathSize) { }
177
178public:
179  static CXXStaticCastExpr *Create(ASTContext &Context, QualType T,
180                                   ExprValueKind VK, CastKind K, Expr *Op,
181                                   const CXXCastPath *Path,
182                                   TypeSourceInfo *Written, SourceLocation L);
183  static CXXStaticCastExpr *CreateEmpty(ASTContext &Context,
184                                        unsigned PathSize);
185
186  static bool classof(const Stmt *T) {
187    return T->getStmtClass() == CXXStaticCastExprClass;
188  }
189  static bool classof(const CXXStaticCastExpr *) { return true; }
190};
191
192/// CXXDynamicCastExpr - A C++ @c dynamic_cast expression
193/// (C++ [expr.dynamic.cast]), which may perform a run-time check to
194/// determine how to perform the type cast.
195///
196/// This expression node represents a dynamic cast, e.g.,
197/// @c dynamic_cast<Derived*>(BasePtr).
198class CXXDynamicCastExpr : public CXXNamedCastExpr {
199  CXXDynamicCastExpr(QualType ty, ExprValueKind VK, CastKind kind,
200                     Expr *op, unsigned pathSize, TypeSourceInfo *writtenTy,
201                     SourceLocation l)
202    : CXXNamedCastExpr(CXXDynamicCastExprClass, ty, VK, kind, op, pathSize,
203                       writtenTy, l) {}
204
205  explicit CXXDynamicCastExpr(EmptyShell Empty, unsigned pathSize)
206    : CXXNamedCastExpr(CXXDynamicCastExprClass, Empty, pathSize) { }
207
208public:
209  static CXXDynamicCastExpr *Create(ASTContext &Context, QualType T,
210                                    ExprValueKind VK, CastKind Kind, Expr *Op,
211                                    const CXXCastPath *Path,
212                                    TypeSourceInfo *Written, SourceLocation L);
213
214  static CXXDynamicCastExpr *CreateEmpty(ASTContext &Context,
215                                         unsigned pathSize);
216
217  static bool classof(const Stmt *T) {
218    return T->getStmtClass() == CXXDynamicCastExprClass;
219  }
220  static bool classof(const CXXDynamicCastExpr *) { return true; }
221};
222
223/// CXXReinterpretCastExpr - A C++ @c reinterpret_cast expression (C++
224/// [expr.reinterpret.cast]), which provides a differently-typed view
225/// of a value but performs no actual work at run time.
226///
227/// This expression node represents a reinterpret cast, e.g.,
228/// @c reinterpret_cast<int>(VoidPtr).
229class CXXReinterpretCastExpr : public CXXNamedCastExpr {
230  CXXReinterpretCastExpr(QualType ty, ExprValueKind vk, CastKind kind,
231                         Expr *op, unsigned pathSize,
232                         TypeSourceInfo *writtenTy, SourceLocation l)
233    : CXXNamedCastExpr(CXXReinterpretCastExprClass, ty, vk, kind, op,
234                       pathSize, writtenTy, l) {}
235
236  CXXReinterpretCastExpr(EmptyShell Empty, unsigned pathSize)
237    : CXXNamedCastExpr(CXXReinterpretCastExprClass, Empty, pathSize) { }
238
239public:
240  static CXXReinterpretCastExpr *Create(ASTContext &Context, QualType T,
241                                        ExprValueKind VK, CastKind Kind,
242                                        Expr *Op, const CXXCastPath *Path,
243                                 TypeSourceInfo *WrittenTy, SourceLocation L);
244  static CXXReinterpretCastExpr *CreateEmpty(ASTContext &Context,
245                                             unsigned pathSize);
246
247  static bool classof(const Stmt *T) {
248    return T->getStmtClass() == CXXReinterpretCastExprClass;
249  }
250  static bool classof(const CXXReinterpretCastExpr *) { return true; }
251};
252
253/// CXXConstCastExpr - A C++ @c const_cast expression (C++ [expr.const.cast]),
254/// which can remove type qualifiers but does not change the underlying value.
255///
256/// This expression node represents a const cast, e.g.,
257/// @c const_cast<char*>(PtrToConstChar).
258class CXXConstCastExpr : public CXXNamedCastExpr {
259  CXXConstCastExpr(QualType ty, ExprValueKind VK, Expr *op,
260                   TypeSourceInfo *writtenTy, SourceLocation l)
261    : CXXNamedCastExpr(CXXConstCastExprClass, ty, VK, CK_NoOp, op,
262                       0, writtenTy, l) {}
263
264  explicit CXXConstCastExpr(EmptyShell Empty)
265    : CXXNamedCastExpr(CXXConstCastExprClass, Empty, 0) { }
266
267public:
268  static CXXConstCastExpr *Create(ASTContext &Context, QualType T,
269                                  ExprValueKind VK, Expr *Op,
270                                  TypeSourceInfo *WrittenTy, SourceLocation L);
271  static CXXConstCastExpr *CreateEmpty(ASTContext &Context);
272
273  static bool classof(const Stmt *T) {
274    return T->getStmtClass() == CXXConstCastExprClass;
275  }
276  static bool classof(const CXXConstCastExpr *) { return true; }
277};
278
279/// CXXBoolLiteralExpr - [C++ 2.13.5] C++ Boolean Literal.
280///
281class CXXBoolLiteralExpr : public Expr {
282  bool Value;
283  SourceLocation Loc;
284public:
285  CXXBoolLiteralExpr(bool val, QualType Ty, SourceLocation l) :
286    Expr(CXXBoolLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
287         false),
288    Value(val), Loc(l) {}
289
290  explicit CXXBoolLiteralExpr(EmptyShell Empty)
291    : Expr(CXXBoolLiteralExprClass, Empty) { }
292
293  bool getValue() const { return Value; }
294  void setValue(bool V) { Value = V; }
295
296  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
297
298  SourceLocation getLocation() const { return Loc; }
299  void setLocation(SourceLocation L) { Loc = L; }
300
301  static bool classof(const Stmt *T) {
302    return T->getStmtClass() == CXXBoolLiteralExprClass;
303  }
304  static bool classof(const CXXBoolLiteralExpr *) { return true; }
305
306  // Iterators
307  virtual child_iterator child_begin();
308  virtual child_iterator child_end();
309};
310
311/// CXXNullPtrLiteralExpr - [C++0x 2.14.7] C++ Pointer Literal
312class CXXNullPtrLiteralExpr : public Expr {
313  SourceLocation Loc;
314public:
315  CXXNullPtrLiteralExpr(QualType Ty, SourceLocation l) :
316    Expr(CXXNullPtrLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
317         false),
318    Loc(l) {}
319
320  explicit CXXNullPtrLiteralExpr(EmptyShell Empty)
321    : Expr(CXXNullPtrLiteralExprClass, Empty) { }
322
323  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
324
325  SourceLocation getLocation() const { return Loc; }
326  void setLocation(SourceLocation L) { Loc = L; }
327
328  static bool classof(const Stmt *T) {
329    return T->getStmtClass() == CXXNullPtrLiteralExprClass;
330  }
331  static bool classof(const CXXNullPtrLiteralExpr *) { return true; }
332
333  virtual child_iterator child_begin();
334  virtual child_iterator child_end();
335};
336
337/// CXXTypeidExpr - A C++ @c typeid expression (C++ [expr.typeid]), which gets
338/// the type_info that corresponds to the supplied type, or the (possibly
339/// dynamic) type of the supplied expression.
340///
341/// This represents code like @c typeid(int) or @c typeid(*objPtr)
342class CXXTypeidExpr : public Expr {
343private:
344  llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
345  SourceRange Range;
346
347public:
348  CXXTypeidExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
349    : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
350           // typeid is never type-dependent (C++ [temp.dep.expr]p4)
351           false,
352           // typeid is value-dependent if the type or expression are dependent
353           Operand->getType()->isDependentType(),
354           Operand->getType()->containsUnexpandedParameterPack()),
355      Operand(Operand), Range(R) { }
356
357  CXXTypeidExpr(QualType Ty, Expr *Operand, SourceRange R)
358    : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
359        // typeid is never type-dependent (C++ [temp.dep.expr]p4)
360           false,
361        // typeid is value-dependent if the type or expression are dependent
362           Operand->isTypeDependent() || Operand->isValueDependent(),
363           Operand->containsUnexpandedParameterPack()),
364      Operand(Operand), Range(R) { }
365
366  CXXTypeidExpr(EmptyShell Empty, bool isExpr)
367    : Expr(CXXTypeidExprClass, Empty) {
368    if (isExpr)
369      Operand = (Expr*)0;
370    else
371      Operand = (TypeSourceInfo*)0;
372  }
373
374  bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
375
376  /// \brief Retrieves the type operand of this typeid() expression after
377  /// various required adjustments (removing reference types, cv-qualifiers).
378  QualType getTypeOperand() const;
379
380  /// \brief Retrieve source information for the type operand.
381  TypeSourceInfo *getTypeOperandSourceInfo() const {
382    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
383    return Operand.get<TypeSourceInfo *>();
384  }
385
386  void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
387    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
388    Operand = TSI;
389  }
390
391  Expr *getExprOperand() const {
392    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
393    return static_cast<Expr*>(Operand.get<Stmt *>());
394  }
395
396  void setExprOperand(Expr *E) {
397    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
398    Operand = E;
399  }
400
401  virtual SourceRange getSourceRange() const { return Range; }
402  void setSourceRange(SourceRange R) { Range = R; }
403
404  static bool classof(const Stmt *T) {
405    return T->getStmtClass() == CXXTypeidExprClass;
406  }
407  static bool classof(const CXXTypeidExpr *) { return true; }
408
409  // Iterators
410  virtual child_iterator child_begin();
411  virtual child_iterator child_end();
412};
413
414/// CXXUuidofExpr - A microsoft C++ @c __uuidof expression, which gets
415/// the _GUID that corresponds to the supplied type or expression.
416///
417/// This represents code like @c __uuidof(COMTYPE) or @c __uuidof(*comPtr)
418class CXXUuidofExpr : public Expr {
419private:
420  llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
421  SourceRange Range;
422
423public:
424  CXXUuidofExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
425    : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary,
426           false, Operand->getType()->isDependentType(),
427           Operand->getType()->containsUnexpandedParameterPack()),
428      Operand(Operand), Range(R) { }
429
430  CXXUuidofExpr(QualType Ty, Expr *Operand, SourceRange R)
431    : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary,
432           false, Operand->isTypeDependent(),
433           Operand->containsUnexpandedParameterPack()),
434      Operand(Operand), Range(R) { }
435
436  CXXUuidofExpr(EmptyShell Empty, bool isExpr)
437    : Expr(CXXUuidofExprClass, Empty) {
438    if (isExpr)
439      Operand = (Expr*)0;
440    else
441      Operand = (TypeSourceInfo*)0;
442  }
443
444  bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
445
446  /// \brief Retrieves the type operand of this __uuidof() expression after
447  /// various required adjustments (removing reference types, cv-qualifiers).
448  QualType getTypeOperand() const;
449
450  /// \brief Retrieve source information for the type operand.
451  TypeSourceInfo *getTypeOperandSourceInfo() const {
452    assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
453    return Operand.get<TypeSourceInfo *>();
454  }
455
456  void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
457    assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
458    Operand = TSI;
459  }
460
461  Expr *getExprOperand() const {
462    assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
463    return static_cast<Expr*>(Operand.get<Stmt *>());
464  }
465
466  void setExprOperand(Expr *E) {
467    assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
468    Operand = E;
469  }
470
471  virtual SourceRange getSourceRange() const { return Range; }
472  void setSourceRange(SourceRange R) { Range = R; }
473
474  static bool classof(const Stmt *T) {
475    return T->getStmtClass() == CXXUuidofExprClass;
476  }
477  static bool classof(const CXXUuidofExpr *) { return true; }
478
479  // Iterators
480  virtual child_iterator child_begin();
481  virtual child_iterator child_end();
482};
483
484/// CXXThisExpr - Represents the "this" expression in C++, which is a
485/// pointer to the object on which the current member function is
486/// executing (C++ [expr.prim]p3). Example:
487///
488/// @code
489/// class Foo {
490/// public:
491///   void bar();
492///   void test() { this->bar(); }
493/// };
494/// @endcode
495class CXXThisExpr : public Expr {
496  SourceLocation Loc;
497  bool Implicit : 1;
498
499public:
500  CXXThisExpr(SourceLocation L, QualType Type, bool isImplicit)
501    : Expr(CXXThisExprClass, Type, VK_RValue, OK_Ordinary,
502           // 'this' is type-dependent if the class type of the enclosing
503           // member function is dependent (C++ [temp.dep.expr]p2)
504           Type->isDependentType(), Type->isDependentType(),
505           /*ContainsUnexpandedParameterPack=*/false),
506      Loc(L), Implicit(isImplicit) { }
507
508  CXXThisExpr(EmptyShell Empty) : Expr(CXXThisExprClass, Empty) {}
509
510  SourceLocation getLocation() const { return Loc; }
511  void setLocation(SourceLocation L) { Loc = L; }
512
513  virtual SourceRange getSourceRange() const { return SourceRange(Loc); }
514
515  bool isImplicit() const { return Implicit; }
516  void setImplicit(bool I) { Implicit = I; }
517
518  static bool classof(const Stmt *T) {
519    return T->getStmtClass() == CXXThisExprClass;
520  }
521  static bool classof(const CXXThisExpr *) { return true; }
522
523  // Iterators
524  virtual child_iterator child_begin();
525  virtual child_iterator child_end();
526};
527
528///  CXXThrowExpr - [C++ 15] C++ Throw Expression.  This handles
529///  'throw' and 'throw' assignment-expression.  When
530///  assignment-expression isn't present, Op will be null.
531///
532class CXXThrowExpr : public Expr {
533  Stmt *Op;
534  SourceLocation ThrowLoc;
535public:
536  // Ty is the void type which is used as the result type of the
537  // exepression.  The l is the location of the throw keyword.  expr
538  // can by null, if the optional expression to throw isn't present.
539  CXXThrowExpr(Expr *expr, QualType Ty, SourceLocation l) :
540    Expr(CXXThrowExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
541         expr && expr->containsUnexpandedParameterPack()),
542    Op(expr), ThrowLoc(l) {}
543  CXXThrowExpr(EmptyShell Empty) : Expr(CXXThrowExprClass, Empty) {}
544
545  const Expr *getSubExpr() const { return cast_or_null<Expr>(Op); }
546  Expr *getSubExpr() { return cast_or_null<Expr>(Op); }
547  void setSubExpr(Expr *E) { Op = E; }
548
549  SourceLocation getThrowLoc() const { return ThrowLoc; }
550  void setThrowLoc(SourceLocation L) { ThrowLoc = L; }
551
552  virtual SourceRange getSourceRange() const {
553    if (getSubExpr() == 0)
554      return SourceRange(ThrowLoc, ThrowLoc);
555    return SourceRange(ThrowLoc, getSubExpr()->getSourceRange().getEnd());
556  }
557
558  static bool classof(const Stmt *T) {
559    return T->getStmtClass() == CXXThrowExprClass;
560  }
561  static bool classof(const CXXThrowExpr *) { return true; }
562
563  // Iterators
564  virtual child_iterator child_begin();
565  virtual child_iterator child_end();
566};
567
568/// CXXDefaultArgExpr - C++ [dcl.fct.default]. This wraps up a
569/// function call argument that was created from the corresponding
570/// parameter's default argument, when the call did not explicitly
571/// supply arguments for all of the parameters.
572class CXXDefaultArgExpr : public Expr {
573  /// \brief The parameter whose default is being used.
574  ///
575  /// When the bit is set, the subexpression is stored after the
576  /// CXXDefaultArgExpr itself. When the bit is clear, the parameter's
577  /// actual default expression is the subexpression.
578  llvm::PointerIntPair<ParmVarDecl *, 1, bool> Param;
579
580  /// \brief The location where the default argument expression was used.
581  SourceLocation Loc;
582
583  CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param)
584    : Expr(SC,
585           param->hasUnparsedDefaultArg()
586             ? param->getType().getNonReferenceType()
587             : param->getDefaultArg()->getType(),
588           param->getDefaultArg()->getValueKind(),
589           param->getDefaultArg()->getObjectKind(), false, false, false),
590      Param(param, false), Loc(Loc) { }
591
592  CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param,
593                    Expr *SubExpr)
594    : Expr(SC, SubExpr->getType(),
595           SubExpr->getValueKind(), SubExpr->getObjectKind(),
596           false, false, false),
597      Param(param, true), Loc(Loc) {
598    *reinterpret_cast<Expr **>(this + 1) = SubExpr;
599  }
600
601public:
602  CXXDefaultArgExpr(EmptyShell Empty) : Expr(CXXDefaultArgExprClass, Empty) {}
603
604
605  // Param is the parameter whose default argument is used by this
606  // expression.
607  static CXXDefaultArgExpr *Create(ASTContext &C, SourceLocation Loc,
608                                   ParmVarDecl *Param) {
609    return new (C) CXXDefaultArgExpr(CXXDefaultArgExprClass, Loc, Param);
610  }
611
612  // Param is the parameter whose default argument is used by this
613  // expression, and SubExpr is the expression that will actually be used.
614  static CXXDefaultArgExpr *Create(ASTContext &C,
615                                   SourceLocation Loc,
616                                   ParmVarDecl *Param,
617                                   Expr *SubExpr);
618
619  // Retrieve the parameter that the argument was created from.
620  const ParmVarDecl *getParam() const { return Param.getPointer(); }
621  ParmVarDecl *getParam() { return Param.getPointer(); }
622
623  // Retrieve the actual argument to the function call.
624  const Expr *getExpr() const {
625    if (Param.getInt())
626      return *reinterpret_cast<Expr const * const*> (this + 1);
627    return getParam()->getDefaultArg();
628  }
629  Expr *getExpr() {
630    if (Param.getInt())
631      return *reinterpret_cast<Expr **> (this + 1);
632    return getParam()->getDefaultArg();
633  }
634
635  /// \brief Retrieve the location where this default argument was actually
636  /// used.
637  SourceLocation getUsedLocation() const { return Loc; }
638
639  virtual SourceRange getSourceRange() const {
640    // Default argument expressions have no representation in the
641    // source, so they have an empty source range.
642    return SourceRange();
643  }
644
645  static bool classof(const Stmt *T) {
646    return T->getStmtClass() == CXXDefaultArgExprClass;
647  }
648  static bool classof(const CXXDefaultArgExpr *) { return true; }
649
650  // Iterators
651  virtual child_iterator child_begin();
652  virtual child_iterator child_end();
653
654  friend class ASTStmtReader;
655  friend class ASTStmtWriter;
656};
657
658/// CXXTemporary - Represents a C++ temporary.
659class CXXTemporary {
660  /// Destructor - The destructor that needs to be called.
661  const CXXDestructorDecl *Destructor;
662
663  CXXTemporary(const CXXDestructorDecl *destructor)
664    : Destructor(destructor) { }
665
666public:
667  static CXXTemporary *Create(ASTContext &C,
668                              const CXXDestructorDecl *Destructor);
669
670  const CXXDestructorDecl *getDestructor() const { return Destructor; }
671};
672
673/// \brief Represents binding an expression to a temporary.
674///
675/// This ensures the destructor is called for the temporary. It should only be
676/// needed for non-POD, non-trivially destructable class types. For example:
677///
678/// \code
679///   struct S {
680///     S() { }  // User defined constructor makes S non-POD.
681///     ~S() { } // User defined destructor makes it non-trivial.
682///   };
683///   void test() {
684///     const S &s_ref = S(); // Requires a CXXBindTemporaryExpr.
685///   }
686/// \endcode
687class CXXBindTemporaryExpr : public Expr {
688  CXXTemporary *Temp;
689
690  Stmt *SubExpr;
691
692  CXXBindTemporaryExpr(CXXTemporary *temp, Expr* SubExpr)
693   : Expr(CXXBindTemporaryExprClass, SubExpr->getType(),
694          VK_RValue, OK_Ordinary, SubExpr->isTypeDependent(),
695          SubExpr->isValueDependent(),
696          SubExpr->containsUnexpandedParameterPack()),
697     Temp(temp), SubExpr(SubExpr) { }
698
699public:
700  CXXBindTemporaryExpr(EmptyShell Empty)
701    : Expr(CXXBindTemporaryExprClass, Empty), Temp(0), SubExpr(0) {}
702
703  static CXXBindTemporaryExpr *Create(ASTContext &C, CXXTemporary *Temp,
704                                      Expr* SubExpr);
705
706  CXXTemporary *getTemporary() { return Temp; }
707  const CXXTemporary *getTemporary() const { return Temp; }
708  void setTemporary(CXXTemporary *T) { Temp = T; }
709
710  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
711  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
712  void setSubExpr(Expr *E) { SubExpr = E; }
713
714  virtual SourceRange getSourceRange() const {
715    return SubExpr->getSourceRange();
716  }
717
718  // Implement isa/cast/dyncast/etc.
719  static bool classof(const Stmt *T) {
720    return T->getStmtClass() == CXXBindTemporaryExprClass;
721  }
722  static bool classof(const CXXBindTemporaryExpr *) { return true; }
723
724  // Iterators
725  virtual child_iterator child_begin();
726  virtual child_iterator child_end();
727};
728
729/// CXXConstructExpr - Represents a call to a C++ constructor.
730class CXXConstructExpr : public Expr {
731public:
732  enum ConstructionKind {
733    CK_Complete,
734    CK_NonVirtualBase,
735    CK_VirtualBase
736  };
737
738private:
739  CXXConstructorDecl *Constructor;
740
741  SourceLocation Loc;
742  SourceRange ParenRange;
743  bool Elidable : 1;
744  bool ZeroInitialization : 1;
745  unsigned ConstructKind : 2;
746  Stmt **Args;
747  unsigned NumArgs;
748
749protected:
750  CXXConstructExpr(ASTContext &C, StmtClass SC, QualType T,
751                   SourceLocation Loc,
752                   CXXConstructorDecl *d, bool elidable,
753                   Expr **args, unsigned numargs,
754                   bool ZeroInitialization = false,
755                   ConstructionKind ConstructKind = CK_Complete,
756                   SourceRange ParenRange = SourceRange());
757
758  /// \brief Construct an empty C++ construction expression.
759  CXXConstructExpr(StmtClass SC, EmptyShell Empty)
760    : Expr(SC, Empty), Constructor(0), Elidable(0), ZeroInitialization(0),
761      ConstructKind(0), Args(0), NumArgs(0) { }
762
763public:
764  /// \brief Construct an empty C++ construction expression.
765  explicit CXXConstructExpr(EmptyShell Empty)
766    : Expr(CXXConstructExprClass, Empty), Constructor(0),
767      Elidable(0), ZeroInitialization(0),
768      ConstructKind(0), Args(0), NumArgs(0) { }
769
770  static CXXConstructExpr *Create(ASTContext &C, QualType T,
771                                  SourceLocation Loc,
772                                  CXXConstructorDecl *D, bool Elidable,
773                                  Expr **Args, unsigned NumArgs,
774                                  bool ZeroInitialization = false,
775                                  ConstructionKind ConstructKind = CK_Complete,
776                                  SourceRange ParenRange = SourceRange());
777
778
779  CXXConstructorDecl* getConstructor() const { return Constructor; }
780  void setConstructor(CXXConstructorDecl *C) { Constructor = C; }
781
782  SourceLocation getLocation() const { return Loc; }
783  void setLocation(SourceLocation Loc) { this->Loc = Loc; }
784
785  /// \brief Whether this construction is elidable.
786  bool isElidable() const { return Elidable; }
787  void setElidable(bool E) { Elidable = E; }
788
789  /// \brief Whether this construction first requires
790  /// zero-initialization before the initializer is called.
791  bool requiresZeroInitialization() const { return ZeroInitialization; }
792  void setRequiresZeroInitialization(bool ZeroInit) {
793    ZeroInitialization = ZeroInit;
794  }
795
796  /// \brief Determines whether this constructor is actually constructing
797  /// a base class (rather than a complete object).
798  ConstructionKind getConstructionKind() const {
799    return (ConstructionKind)ConstructKind;
800  }
801  void setConstructionKind(ConstructionKind CK) {
802    ConstructKind = CK;
803  }
804
805  typedef ExprIterator arg_iterator;
806  typedef ConstExprIterator const_arg_iterator;
807
808  arg_iterator arg_begin() { return Args; }
809  arg_iterator arg_end() { return Args + NumArgs; }
810  const_arg_iterator arg_begin() const { return Args; }
811  const_arg_iterator arg_end() const { return Args + NumArgs; }
812
813  Expr **getArgs() const { return reinterpret_cast<Expr **>(Args); }
814  unsigned getNumArgs() const { return NumArgs; }
815
816  /// getArg - Return the specified argument.
817  Expr *getArg(unsigned Arg) {
818    assert(Arg < NumArgs && "Arg access out of range!");
819    return cast<Expr>(Args[Arg]);
820  }
821  const Expr *getArg(unsigned Arg) const {
822    assert(Arg < NumArgs && "Arg access out of range!");
823    return cast<Expr>(Args[Arg]);
824  }
825
826  /// setArg - Set the specified argument.
827  void setArg(unsigned Arg, Expr *ArgExpr) {
828    assert(Arg < NumArgs && "Arg access out of range!");
829    Args[Arg] = ArgExpr;
830  }
831
832  virtual SourceRange getSourceRange() const;
833  SourceRange getParenRange() const { return ParenRange; }
834
835  static bool classof(const Stmt *T) {
836    return T->getStmtClass() == CXXConstructExprClass ||
837      T->getStmtClass() == CXXTemporaryObjectExprClass;
838  }
839  static bool classof(const CXXConstructExpr *) { return true; }
840
841  // Iterators
842  virtual child_iterator child_begin();
843  virtual child_iterator child_end();
844
845  friend class ASTStmtReader;
846};
847
848/// CXXFunctionalCastExpr - Represents an explicit C++ type conversion
849/// that uses "functional" notion (C++ [expr.type.conv]). Example: @c
850/// x = int(0.5);
851class CXXFunctionalCastExpr : public ExplicitCastExpr {
852  SourceLocation TyBeginLoc;
853  SourceLocation RParenLoc;
854
855  CXXFunctionalCastExpr(QualType ty, ExprValueKind VK,
856                        TypeSourceInfo *writtenTy,
857                        SourceLocation tyBeginLoc, CastKind kind,
858                        Expr *castExpr, unsigned pathSize,
859                        SourceLocation rParenLoc)
860    : ExplicitCastExpr(CXXFunctionalCastExprClass, ty, VK, kind,
861                       castExpr, pathSize, writtenTy),
862      TyBeginLoc(tyBeginLoc), RParenLoc(rParenLoc) {}
863
864  explicit CXXFunctionalCastExpr(EmptyShell Shell, unsigned PathSize)
865    : ExplicitCastExpr(CXXFunctionalCastExprClass, Shell, PathSize) { }
866
867public:
868  static CXXFunctionalCastExpr *Create(ASTContext &Context, QualType T,
869                                       ExprValueKind VK,
870                                       TypeSourceInfo *Written,
871                                       SourceLocation TyBeginLoc,
872                                       CastKind Kind, Expr *Op,
873                                       const CXXCastPath *Path,
874                                       SourceLocation RPLoc);
875  static CXXFunctionalCastExpr *CreateEmpty(ASTContext &Context,
876                                            unsigned PathSize);
877
878  SourceLocation getTypeBeginLoc() const { return TyBeginLoc; }
879  void setTypeBeginLoc(SourceLocation L) { TyBeginLoc = L; }
880  SourceLocation getRParenLoc() const { return RParenLoc; }
881  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
882
883  virtual SourceRange getSourceRange() const {
884    return SourceRange(TyBeginLoc, RParenLoc);
885  }
886  static bool classof(const Stmt *T) {
887    return T->getStmtClass() == CXXFunctionalCastExprClass;
888  }
889  static bool classof(const CXXFunctionalCastExpr *) { return true; }
890};
891
892/// @brief Represents a C++ functional cast expression that builds a
893/// temporary object.
894///
895/// This expression type represents a C++ "functional" cast
896/// (C++[expr.type.conv]) with N != 1 arguments that invokes a
897/// constructor to build a temporary object. With N == 1 arguments the
898/// functional cast expression will be represented by CXXFunctionalCastExpr.
899/// Example:
900/// @code
901/// struct X { X(int, float); }
902///
903/// X create_X() {
904///   return X(1, 3.14f); // creates a CXXTemporaryObjectExpr
905/// };
906/// @endcode
907class CXXTemporaryObjectExpr : public CXXConstructExpr {
908  TypeSourceInfo *Type;
909
910public:
911  CXXTemporaryObjectExpr(ASTContext &C, CXXConstructorDecl *Cons,
912                         TypeSourceInfo *Type,
913                         Expr **Args,unsigned NumArgs,
914                         SourceRange parenRange,
915                         bool ZeroInitialization = false);
916  explicit CXXTemporaryObjectExpr(EmptyShell Empty)
917    : CXXConstructExpr(CXXTemporaryObjectExprClass, Empty), Type() { }
918
919  TypeSourceInfo *getTypeSourceInfo() const { return Type; }
920
921  virtual SourceRange getSourceRange() const;
922
923  static bool classof(const Stmt *T) {
924    return T->getStmtClass() == CXXTemporaryObjectExprClass;
925  }
926  static bool classof(const CXXTemporaryObjectExpr *) { return true; }
927
928  friend class ASTStmtReader;
929};
930
931/// CXXScalarValueInitExpr - [C++ 5.2.3p2]
932/// Expression "T()" which creates a value-initialized rvalue of type
933/// T, which is a non-class type.
934///
935class CXXScalarValueInitExpr : public Expr {
936  SourceLocation RParenLoc;
937  TypeSourceInfo *TypeInfo;
938
939  friend class ASTStmtReader;
940
941public:
942  /// \brief Create an explicitly-written scalar-value initialization
943  /// expression.
944  CXXScalarValueInitExpr(QualType Type,
945                         TypeSourceInfo *TypeInfo,
946                         SourceLocation rParenLoc ) :
947    Expr(CXXScalarValueInitExprClass, Type, VK_RValue, OK_Ordinary,
948         false, false, false),
949    RParenLoc(rParenLoc), TypeInfo(TypeInfo) {}
950
951  explicit CXXScalarValueInitExpr(EmptyShell Shell)
952    : Expr(CXXScalarValueInitExprClass, Shell) { }
953
954  TypeSourceInfo *getTypeSourceInfo() const {
955    return TypeInfo;
956  }
957
958  SourceLocation getRParenLoc() const { return RParenLoc; }
959
960  virtual SourceRange getSourceRange() const;
961
962  static bool classof(const Stmt *T) {
963    return T->getStmtClass() == CXXScalarValueInitExprClass;
964  }
965  static bool classof(const CXXScalarValueInitExpr *) { return true; }
966
967  // Iterators
968  virtual child_iterator child_begin();
969  virtual child_iterator child_end();
970};
971
972/// CXXNewExpr - A new expression for memory allocation and constructor calls,
973/// e.g: "new CXXNewExpr(foo)".
974class CXXNewExpr : public Expr {
975  // Was the usage ::new, i.e. is the global new to be used?
976  bool GlobalNew : 1;
977  // Is there an initializer? If not, built-ins are uninitialized, else they're
978  // value-initialized.
979  bool Initializer : 1;
980  // Do we allocate an array? If so, the first SubExpr is the size expression.
981  bool Array : 1;
982  // The number of placement new arguments.
983  unsigned NumPlacementArgs : 15;
984  // The number of constructor arguments. This may be 1 even for non-class
985  // types; use the pseudo copy constructor.
986  unsigned NumConstructorArgs : 14;
987  // Contains an optional array size expression, any number of optional
988  // placement arguments, and any number of optional constructor arguments,
989  // in that order.
990  Stmt **SubExprs;
991  // Points to the allocation function used.
992  FunctionDecl *OperatorNew;
993  // Points to the deallocation function used in case of error. May be null.
994  FunctionDecl *OperatorDelete;
995  // Points to the constructor used. Cannot be null if AllocType is a record;
996  // it would still point at the default constructor (even an implicit one).
997  // Must be null for all other types.
998  CXXConstructorDecl *Constructor;
999
1000  /// \brief The allocated type-source information, as written in the source.
1001  TypeSourceInfo *AllocatedTypeInfo;
1002
1003  /// \brief If the allocated type was expressed as a parenthesized type-id,
1004  /// the source range covering the parenthesized type-id.
1005  SourceRange TypeIdParens;
1006
1007  SourceLocation StartLoc;
1008  SourceLocation EndLoc;
1009  SourceLocation ConstructorLParen;
1010  SourceLocation ConstructorRParen;
1011
1012  friend class ASTStmtReader;
1013public:
1014  CXXNewExpr(ASTContext &C, bool globalNew, FunctionDecl *operatorNew,
1015             Expr **placementArgs, unsigned numPlaceArgs,
1016             SourceRange TypeIdParens,
1017             Expr *arraySize, CXXConstructorDecl *constructor, bool initializer,
1018             Expr **constructorArgs, unsigned numConsArgs,
1019             FunctionDecl *operatorDelete, QualType ty,
1020             TypeSourceInfo *AllocatedTypeInfo,
1021             SourceLocation startLoc, SourceLocation endLoc,
1022             SourceLocation constructorLParen,
1023             SourceLocation constructorRParen);
1024  explicit CXXNewExpr(EmptyShell Shell)
1025    : Expr(CXXNewExprClass, Shell), SubExprs(0) { }
1026
1027  void AllocateArgsArray(ASTContext &C, bool isArray, unsigned numPlaceArgs,
1028                         unsigned numConsArgs);
1029
1030  QualType getAllocatedType() const {
1031    assert(getType()->isPointerType());
1032    return getType()->getAs<PointerType>()->getPointeeType();
1033  }
1034
1035  TypeSourceInfo *getAllocatedTypeSourceInfo() const {
1036    return AllocatedTypeInfo;
1037  }
1038
1039  FunctionDecl *getOperatorNew() const { return OperatorNew; }
1040  void setOperatorNew(FunctionDecl *D) { OperatorNew = D; }
1041  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
1042  void setOperatorDelete(FunctionDecl *D) { OperatorDelete = D; }
1043  CXXConstructorDecl *getConstructor() const { return Constructor; }
1044  void setConstructor(CXXConstructorDecl *D) { Constructor = D; }
1045
1046  bool isArray() const { return Array; }
1047  Expr *getArraySize() {
1048    return Array ? cast<Expr>(SubExprs[0]) : 0;
1049  }
1050  const Expr *getArraySize() const {
1051    return Array ? cast<Expr>(SubExprs[0]) : 0;
1052  }
1053
1054  unsigned getNumPlacementArgs() const { return NumPlacementArgs; }
1055  Expr **getPlacementArgs() {
1056    return reinterpret_cast<Expr **>(SubExprs + Array);
1057  }
1058
1059  Expr *getPlacementArg(unsigned i) {
1060    assert(i < NumPlacementArgs && "Index out of range");
1061    return cast<Expr>(SubExprs[Array + i]);
1062  }
1063  const Expr *getPlacementArg(unsigned i) const {
1064    assert(i < NumPlacementArgs && "Index out of range");
1065    return cast<Expr>(SubExprs[Array + i]);
1066  }
1067
1068  bool isParenTypeId() const { return TypeIdParens.isValid(); }
1069  SourceRange getTypeIdParens() const { return TypeIdParens; }
1070
1071  bool isGlobalNew() const { return GlobalNew; }
1072  void setGlobalNew(bool V) { GlobalNew = V; }
1073  bool hasInitializer() const { return Initializer; }
1074  void setHasInitializer(bool V) { Initializer = V; }
1075
1076  unsigned getNumConstructorArgs() const { return NumConstructorArgs; }
1077
1078  Expr **getConstructorArgs() {
1079    return reinterpret_cast<Expr **>(SubExprs + Array + NumPlacementArgs);
1080  }
1081
1082  Expr *getConstructorArg(unsigned i) {
1083    assert(i < NumConstructorArgs && "Index out of range");
1084    return cast<Expr>(SubExprs[Array + NumPlacementArgs + i]);
1085  }
1086  const Expr *getConstructorArg(unsigned i) const {
1087    assert(i < NumConstructorArgs && "Index out of range");
1088    return cast<Expr>(SubExprs[Array + NumPlacementArgs + i]);
1089  }
1090
1091  typedef ExprIterator arg_iterator;
1092  typedef ConstExprIterator const_arg_iterator;
1093
1094  arg_iterator placement_arg_begin() {
1095    return SubExprs + Array;
1096  }
1097  arg_iterator placement_arg_end() {
1098    return SubExprs + Array + getNumPlacementArgs();
1099  }
1100  const_arg_iterator placement_arg_begin() const {
1101    return SubExprs + Array;
1102  }
1103  const_arg_iterator placement_arg_end() const {
1104    return SubExprs + Array + getNumPlacementArgs();
1105  }
1106
1107  arg_iterator constructor_arg_begin() {
1108    return SubExprs + Array + getNumPlacementArgs();
1109  }
1110  arg_iterator constructor_arg_end() {
1111    return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
1112  }
1113  const_arg_iterator constructor_arg_begin() const {
1114    return SubExprs + Array + getNumPlacementArgs();
1115  }
1116  const_arg_iterator constructor_arg_end() const {
1117    return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
1118  }
1119
1120  typedef Stmt **raw_arg_iterator;
1121  raw_arg_iterator raw_arg_begin() { return SubExprs; }
1122  raw_arg_iterator raw_arg_end() {
1123    return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
1124  }
1125  const_arg_iterator raw_arg_begin() const { return SubExprs; }
1126  const_arg_iterator raw_arg_end() const { return constructor_arg_end(); }
1127
1128  SourceLocation getStartLoc() const { return StartLoc; }
1129  SourceLocation getEndLoc() const { return EndLoc; }
1130
1131  SourceLocation getConstructorLParen() const { return ConstructorLParen; }
1132  SourceLocation getConstructorRParen() const { return ConstructorRParen; }
1133
1134  virtual SourceRange getSourceRange() const {
1135    return SourceRange(StartLoc, EndLoc);
1136  }
1137
1138  static bool classof(const Stmt *T) {
1139    return T->getStmtClass() == CXXNewExprClass;
1140  }
1141  static bool classof(const CXXNewExpr *) { return true; }
1142
1143  // Iterators
1144  virtual child_iterator child_begin();
1145  virtual child_iterator child_end();
1146};
1147
1148/// CXXDeleteExpr - A delete expression for memory deallocation and destructor
1149/// calls, e.g. "delete[] pArray".
1150class CXXDeleteExpr : public Expr {
1151  // Is this a forced global delete, i.e. "::delete"?
1152  bool GlobalDelete : 1;
1153  // Is this the array form of delete, i.e. "delete[]"?
1154  bool ArrayForm : 1;
1155  // ArrayFormAsWritten can be different from ArrayForm if 'delete' is applied
1156  // to pointer-to-array type (ArrayFormAsWritten will be false while ArrayForm
1157  // will be true).
1158  bool ArrayFormAsWritten : 1;
1159  // Points to the operator delete overload that is used. Could be a member.
1160  FunctionDecl *OperatorDelete;
1161  // The pointer expression to be deleted.
1162  Stmt *Argument;
1163  // Location of the expression.
1164  SourceLocation Loc;
1165public:
1166  CXXDeleteExpr(QualType ty, bool globalDelete, bool arrayForm,
1167                bool arrayFormAsWritten, FunctionDecl *operatorDelete,
1168                Expr *arg, SourceLocation loc)
1169    : Expr(CXXDeleteExprClass, ty, VK_RValue, OK_Ordinary, false, false,
1170           arg->containsUnexpandedParameterPack()),
1171      GlobalDelete(globalDelete),
1172      ArrayForm(arrayForm), ArrayFormAsWritten(arrayFormAsWritten),
1173      OperatorDelete(operatorDelete), Argument(arg), Loc(loc) { }
1174  explicit CXXDeleteExpr(EmptyShell Shell)
1175    : Expr(CXXDeleteExprClass, Shell), OperatorDelete(0), Argument(0) { }
1176
1177  bool isGlobalDelete() const { return GlobalDelete; }
1178  bool isArrayForm() const { return ArrayForm; }
1179  bool isArrayFormAsWritten() const { return ArrayFormAsWritten; }
1180
1181  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
1182
1183  Expr *getArgument() { return cast<Expr>(Argument); }
1184  const Expr *getArgument() const { return cast<Expr>(Argument); }
1185
1186  /// \brief Retrieve the type being destroyed.  If the type being
1187  /// destroyed is a dependent type which may or may not be a pointer,
1188  /// return an invalid type.
1189  QualType getDestroyedType() const;
1190
1191  virtual SourceRange getSourceRange() const {
1192    return SourceRange(Loc, Argument->getLocEnd());
1193  }
1194
1195  static bool classof(const Stmt *T) {
1196    return T->getStmtClass() == CXXDeleteExprClass;
1197  }
1198  static bool classof(const CXXDeleteExpr *) { return true; }
1199
1200  // Iterators
1201  virtual child_iterator child_begin();
1202  virtual child_iterator child_end();
1203
1204  friend class ASTStmtReader;
1205};
1206
1207/// \brief Structure used to store the type being destroyed by a
1208/// pseudo-destructor expression.
1209class PseudoDestructorTypeStorage {
1210  /// \brief Either the type source information or the name of the type, if
1211  /// it couldn't be resolved due to type-dependence.
1212  llvm::PointerUnion<TypeSourceInfo *, IdentifierInfo *> Type;
1213
1214  /// \brief The starting source location of the pseudo-destructor type.
1215  SourceLocation Location;
1216
1217public:
1218  PseudoDestructorTypeStorage() { }
1219
1220  PseudoDestructorTypeStorage(IdentifierInfo *II, SourceLocation Loc)
1221    : Type(II), Location(Loc) { }
1222
1223  PseudoDestructorTypeStorage(TypeSourceInfo *Info);
1224
1225  TypeSourceInfo *getTypeSourceInfo() const {
1226    return Type.dyn_cast<TypeSourceInfo *>();
1227  }
1228
1229  IdentifierInfo *getIdentifier() const {
1230    return Type.dyn_cast<IdentifierInfo *>();
1231  }
1232
1233  SourceLocation getLocation() const { return Location; }
1234};
1235
1236/// \brief Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
1237///
1238/// A pseudo-destructor is an expression that looks like a member access to a
1239/// destructor of a scalar type, except that scalar types don't have
1240/// destructors. For example:
1241///
1242/// \code
1243/// typedef int T;
1244/// void f(int *p) {
1245///   p->T::~T();
1246/// }
1247/// \endcode
1248///
1249/// Pseudo-destructors typically occur when instantiating templates such as:
1250///
1251/// \code
1252/// template<typename T>
1253/// void destroy(T* ptr) {
1254///   ptr->T::~T();
1255/// }
1256/// \endcode
1257///
1258/// for scalar types. A pseudo-destructor expression has no run-time semantics
1259/// beyond evaluating the base expression.
1260class CXXPseudoDestructorExpr : public Expr {
1261  /// \brief The base expression (that is being destroyed).
1262  Stmt *Base;
1263
1264  /// \brief Whether the operator was an arrow ('->'); otherwise, it was a
1265  /// period ('.').
1266  bool IsArrow : 1;
1267
1268  /// \brief The location of the '.' or '->' operator.
1269  SourceLocation OperatorLoc;
1270
1271  /// \brief The nested-name-specifier that follows the operator, if present.
1272  NestedNameSpecifier *Qualifier;
1273
1274  /// \brief The source range that covers the nested-name-specifier, if
1275  /// present.
1276  SourceRange QualifierRange;
1277
1278  /// \brief The type that precedes the '::' in a qualified pseudo-destructor
1279  /// expression.
1280  TypeSourceInfo *ScopeType;
1281
1282  /// \brief The location of the '::' in a qualified pseudo-destructor
1283  /// expression.
1284  SourceLocation ColonColonLoc;
1285
1286  /// \brief The location of the '~'.
1287  SourceLocation TildeLoc;
1288
1289  /// \brief The type being destroyed, or its name if we were unable to
1290  /// resolve the name.
1291  PseudoDestructorTypeStorage DestroyedType;
1292
1293public:
1294  CXXPseudoDestructorExpr(ASTContext &Context,
1295                          Expr *Base, bool isArrow, SourceLocation OperatorLoc,
1296                          NestedNameSpecifier *Qualifier,
1297                          SourceRange QualifierRange,
1298                          TypeSourceInfo *ScopeType,
1299                          SourceLocation ColonColonLoc,
1300                          SourceLocation TildeLoc,
1301                          PseudoDestructorTypeStorage DestroyedType);
1302
1303  explicit CXXPseudoDestructorExpr(EmptyShell Shell)
1304    : Expr(CXXPseudoDestructorExprClass, Shell),
1305      Base(0), IsArrow(false), Qualifier(0), ScopeType(0) { }
1306
1307  void setBase(Expr *E) { Base = E; }
1308  Expr *getBase() const { return cast<Expr>(Base); }
1309
1310  /// \brief Determines whether this member expression actually had
1311  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
1312  /// x->Base::foo.
1313  bool hasQualifier() const { return Qualifier != 0; }
1314
1315  /// \brief If the member name was qualified, retrieves the source range of
1316  /// the nested-name-specifier that precedes the member name. Otherwise,
1317  /// returns an empty source range.
1318  SourceRange getQualifierRange() const { return QualifierRange; }
1319  void setQualifierRange(SourceRange R) { QualifierRange = R; }
1320
1321  /// \brief If the member name was qualified, retrieves the
1322  /// nested-name-specifier that precedes the member name. Otherwise, returns
1323  /// NULL.
1324  NestedNameSpecifier *getQualifier() const { return Qualifier; }
1325  void setQualifier(NestedNameSpecifier *NNS) { Qualifier = NNS; }
1326
1327  /// \brief Determine whether this pseudo-destructor expression was written
1328  /// using an '->' (otherwise, it used a '.').
1329  bool isArrow() const { return IsArrow; }
1330  void setArrow(bool A) { IsArrow = A; }
1331
1332  /// \brief Retrieve the location of the '.' or '->' operator.
1333  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1334  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
1335
1336  /// \brief Retrieve the scope type in a qualified pseudo-destructor
1337  /// expression.
1338  ///
1339  /// Pseudo-destructor expressions can have extra qualification within them
1340  /// that is not part of the nested-name-specifier, e.g., \c p->T::~T().
1341  /// Here, if the object type of the expression is (or may be) a scalar type,
1342  /// \p T may also be a scalar type and, therefore, cannot be part of a
1343  /// nested-name-specifier. It is stored as the "scope type" of the pseudo-
1344  /// destructor expression.
1345  TypeSourceInfo *getScopeTypeInfo() const { return ScopeType; }
1346  void setScopeTypeInfo(TypeSourceInfo *Info) { ScopeType = Info; }
1347
1348  /// \brief Retrieve the location of the '::' in a qualified pseudo-destructor
1349  /// expression.
1350  SourceLocation getColonColonLoc() const { return ColonColonLoc; }
1351  void setColonColonLoc(SourceLocation L) { ColonColonLoc = L; }
1352
1353  /// \brief Retrieve the location of the '~'.
1354  SourceLocation getTildeLoc() const { return TildeLoc; }
1355  void setTildeLoc(SourceLocation L) { TildeLoc = L; }
1356
1357  /// \brief Retrieve the source location information for the type
1358  /// being destroyed.
1359  ///
1360  /// This type-source information is available for non-dependent
1361  /// pseudo-destructor expressions and some dependent pseudo-destructor
1362  /// expressions. Returns NULL if we only have the identifier for a
1363  /// dependent pseudo-destructor expression.
1364  TypeSourceInfo *getDestroyedTypeInfo() const {
1365    return DestroyedType.getTypeSourceInfo();
1366  }
1367
1368  /// \brief In a dependent pseudo-destructor expression for which we do not
1369  /// have full type information on the destroyed type, provides the name
1370  /// of the destroyed type.
1371  IdentifierInfo *getDestroyedTypeIdentifier() const {
1372    return DestroyedType.getIdentifier();
1373  }
1374
1375  /// \brief Retrieve the type being destroyed.
1376  QualType getDestroyedType() const;
1377
1378  /// \brief Retrieve the starting location of the type being destroyed.
1379  SourceLocation getDestroyedTypeLoc() const {
1380    return DestroyedType.getLocation();
1381  }
1382
1383  /// \brief Set the name of destroyed type for a dependent pseudo-destructor
1384  /// expression.
1385  void setDestroyedType(IdentifierInfo *II, SourceLocation Loc) {
1386    DestroyedType = PseudoDestructorTypeStorage(II, Loc);
1387  }
1388
1389  /// \brief Set the destroyed type.
1390  void setDestroyedType(TypeSourceInfo *Info) {
1391    DestroyedType = PseudoDestructorTypeStorage(Info);
1392  }
1393
1394  virtual SourceRange getSourceRange() const;
1395
1396  static bool classof(const Stmt *T) {
1397    return T->getStmtClass() == CXXPseudoDestructorExprClass;
1398  }
1399  static bool classof(const CXXPseudoDestructorExpr *) { return true; }
1400
1401  // Iterators
1402  virtual child_iterator child_begin();
1403  virtual child_iterator child_end();
1404};
1405
1406/// UnaryTypeTraitExpr - A GCC or MS unary type trait, as used in the
1407/// implementation of TR1/C++0x type trait templates.
1408/// Example:
1409/// __is_pod(int) == true
1410/// __is_enum(std::string) == false
1411class UnaryTypeTraitExpr : public Expr {
1412  /// UTT - The trait. A UnaryTypeTrait enum in MSVC compat unsigned.
1413  unsigned UTT : 31;
1414  /// The value of the type trait. Unspecified if dependent.
1415  bool Value : 1;
1416
1417  /// Loc - The location of the type trait keyword.
1418  SourceLocation Loc;
1419
1420  /// RParen - The location of the closing paren.
1421  SourceLocation RParen;
1422
1423  /// The type being queried.
1424  TypeSourceInfo *QueriedType;
1425
1426public:
1427  UnaryTypeTraitExpr(SourceLocation loc, UnaryTypeTrait utt,
1428                     TypeSourceInfo *queried, bool value,
1429                     SourceLocation rparen, QualType ty)
1430    : Expr(UnaryTypeTraitExprClass, ty, VK_RValue, OK_Ordinary,
1431           false,  queried->getType()->isDependentType(),
1432           queried->getType()->containsUnexpandedParameterPack()),
1433      UTT(utt), Value(value), Loc(loc), RParen(rparen), QueriedType(queried) { }
1434
1435  explicit UnaryTypeTraitExpr(EmptyShell Empty)
1436    : Expr(UnaryTypeTraitExprClass, Empty), UTT(0), Value(false),
1437      QueriedType() { }
1438
1439  virtual SourceRange getSourceRange() const { return SourceRange(Loc, RParen);}
1440
1441  UnaryTypeTrait getTrait() const { return static_cast<UnaryTypeTrait>(UTT); }
1442
1443  QualType getQueriedType() const { return QueriedType->getType(); }
1444
1445  TypeSourceInfo *getQueriedTypeSourceInfo() const { return QueriedType; }
1446
1447  bool getValue() const { return Value; }
1448
1449  static bool classof(const Stmt *T) {
1450    return T->getStmtClass() == UnaryTypeTraitExprClass;
1451  }
1452  static bool classof(const UnaryTypeTraitExpr *) { return true; }
1453
1454  // Iterators
1455  virtual child_iterator child_begin();
1456  virtual child_iterator child_end();
1457
1458  friend class ASTStmtReader;
1459};
1460
1461/// BinaryTypeTraitExpr - A GCC or MS binary type trait, as used in the
1462/// implementation of TR1/C++0x type trait templates.
1463/// Example:
1464/// __is_base_of(Base, Derived) == true
1465class BinaryTypeTraitExpr : public Expr {
1466  /// BTT - The trait. A BinaryTypeTrait enum in MSVC compat unsigned.
1467  unsigned BTT : 8;
1468
1469  /// The value of the type trait. Unspecified if dependent.
1470  bool Value : 1;
1471
1472  /// Loc - The location of the type trait keyword.
1473  SourceLocation Loc;
1474
1475  /// RParen - The location of the closing paren.
1476  SourceLocation RParen;
1477
1478  /// The lhs type being queried.
1479  TypeSourceInfo *LhsType;
1480
1481  /// The rhs type being queried.
1482  TypeSourceInfo *RhsType;
1483
1484public:
1485  BinaryTypeTraitExpr(SourceLocation loc, BinaryTypeTrait btt,
1486                     TypeSourceInfo *lhsType, TypeSourceInfo *rhsType,
1487                     bool value, SourceLocation rparen, QualType ty)
1488    : Expr(BinaryTypeTraitExprClass, ty, VK_RValue, OK_Ordinary, false,
1489           lhsType->getType()->isDependentType() ||
1490           rhsType->getType()->isDependentType(),
1491           (lhsType->getType()->containsUnexpandedParameterPack() ||
1492            rhsType->getType()->containsUnexpandedParameterPack())),
1493      BTT(btt), Value(value), Loc(loc), RParen(rparen),
1494      LhsType(lhsType), RhsType(rhsType) { }
1495
1496
1497  explicit BinaryTypeTraitExpr(EmptyShell Empty)
1498    : Expr(BinaryTypeTraitExprClass, Empty), BTT(0), Value(false),
1499      LhsType(), RhsType() { }
1500
1501  virtual SourceRange getSourceRange() const {
1502    return SourceRange(Loc, RParen);
1503  }
1504
1505  BinaryTypeTrait getTrait() const {
1506    return static_cast<BinaryTypeTrait>(BTT);
1507  }
1508
1509  QualType getLhsType() const { return LhsType->getType(); }
1510  QualType getRhsType() const { return RhsType->getType(); }
1511
1512  TypeSourceInfo *getLhsTypeSourceInfo() const { return LhsType; }
1513  TypeSourceInfo *getRhsTypeSourceInfo() const { return RhsType; }
1514
1515  bool getValue() const { assert(!isTypeDependent()); return Value; }
1516
1517  static bool classof(const Stmt *T) {
1518    return T->getStmtClass() == BinaryTypeTraitExprClass;
1519  }
1520  static bool classof(const BinaryTypeTraitExpr *) { return true; }
1521
1522  // Iterators
1523  virtual child_iterator child_begin();
1524  virtual child_iterator child_end();
1525
1526  friend class ASTStmtReader;
1527};
1528
1529/// \brief A reference to an overloaded function set, either an
1530/// \t UnresolvedLookupExpr or an \t UnresolvedMemberExpr.
1531class OverloadExpr : public Expr {
1532  /// The results.  These are undesugared, which is to say, they may
1533  /// include UsingShadowDecls.  Access is relative to the naming
1534  /// class.
1535  // FIXME: Allocate this data after the OverloadExpr subclass.
1536  DeclAccessPair *Results;
1537  unsigned NumResults;
1538
1539  /// The common name of these declarations.
1540  DeclarationNameInfo NameInfo;
1541
1542  /// The scope specifier, if any.
1543  NestedNameSpecifier *Qualifier;
1544
1545  /// The source range of the scope specifier.
1546  SourceRange QualifierRange;
1547
1548protected:
1549  /// True if the name was a template-id.
1550  bool HasExplicitTemplateArgs;
1551
1552  OverloadExpr(StmtClass K, ASTContext &C,
1553               NestedNameSpecifier *Qualifier, SourceRange QRange,
1554               const DeclarationNameInfo &NameInfo,
1555               const TemplateArgumentListInfo *TemplateArgs,
1556               UnresolvedSetIterator Begin, UnresolvedSetIterator End,
1557               bool KnownDependent = false,
1558               bool KnownContainsUnexpandedParameterPack = false);
1559
1560  OverloadExpr(StmtClass K, EmptyShell Empty)
1561    : Expr(K, Empty), Results(0), NumResults(0),
1562      Qualifier(0), HasExplicitTemplateArgs(false) { }
1563
1564  void initializeResults(ASTContext &C,
1565                         UnresolvedSetIterator Begin,
1566                         UnresolvedSetIterator End);
1567
1568public:
1569  struct FindResult {
1570    OverloadExpr *Expression;
1571    bool IsAddressOfOperand;
1572    bool HasFormOfMemberPointer;
1573  };
1574
1575  /// Finds the overloaded expression in the given expression of
1576  /// OverloadTy.
1577  ///
1578  /// \return the expression (which must be there) and true if it has
1579  /// the particular form of a member pointer expression
1580  static FindResult find(Expr *E) {
1581    assert(E->getType()->isSpecificBuiltinType(BuiltinType::Overload));
1582
1583    FindResult Result;
1584
1585    E = E->IgnoreParens();
1586    if (isa<UnaryOperator>(E)) {
1587      assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
1588      E = cast<UnaryOperator>(E)->getSubExpr();
1589      OverloadExpr *Ovl = cast<OverloadExpr>(E->IgnoreParens());
1590
1591      Result.HasFormOfMemberPointer = (E == Ovl && Ovl->getQualifier());
1592      Result.IsAddressOfOperand = true;
1593      Result.Expression = Ovl;
1594    } else {
1595      Result.HasFormOfMemberPointer = false;
1596      Result.IsAddressOfOperand = false;
1597      Result.Expression = cast<OverloadExpr>(E);
1598    }
1599
1600    return Result;
1601  }
1602
1603  /// Gets the naming class of this lookup, if any.
1604  CXXRecordDecl *getNamingClass() const;
1605
1606  typedef UnresolvedSetImpl::iterator decls_iterator;
1607  decls_iterator decls_begin() const { return UnresolvedSetIterator(Results); }
1608  decls_iterator decls_end() const {
1609    return UnresolvedSetIterator(Results + NumResults);
1610  }
1611
1612  /// Gets the number of declarations in the unresolved set.
1613  unsigned getNumDecls() const { return NumResults; }
1614
1615  /// Gets the full name info.
1616  const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
1617  void setNameInfo(const DeclarationNameInfo &N) { NameInfo = N; }
1618
1619  /// Gets the name looked up.
1620  DeclarationName getName() const { return NameInfo.getName(); }
1621  void setName(DeclarationName N) { NameInfo.setName(N); }
1622
1623  /// Gets the location of the name.
1624  SourceLocation getNameLoc() const { return NameInfo.getLoc(); }
1625  void setNameLoc(SourceLocation Loc) { NameInfo.setLoc(Loc); }
1626
1627  /// Fetches the nested-name qualifier, if one was given.
1628  NestedNameSpecifier *getQualifier() const { return Qualifier; }
1629  void setQualifier(NestedNameSpecifier *NNS) { Qualifier = NNS; }
1630
1631  /// Fetches the range of the nested-name qualifier.
1632  SourceRange getQualifierRange() const { return QualifierRange; }
1633  void setQualifierRange(SourceRange R) { QualifierRange = R; }
1634
1635  /// \brief Determines whether this expression had an explicit
1636  /// template argument list, e.g. f<int>.
1637  bool hasExplicitTemplateArgs() const { return HasExplicitTemplateArgs; }
1638
1639  ExplicitTemplateArgumentList &getExplicitTemplateArgs(); // defined far below
1640
1641  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
1642    return const_cast<OverloadExpr*>(this)->getExplicitTemplateArgs();
1643  }
1644
1645  /// \brief Retrieves the optional explicit template arguments.
1646  /// This points to the same data as getExplicitTemplateArgs(), but
1647  /// returns null if there are no explicit template arguments.
1648  const ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() {
1649    if (!hasExplicitTemplateArgs()) return 0;
1650    return &getExplicitTemplateArgs();
1651  }
1652
1653  static bool classof(const Stmt *T) {
1654    return T->getStmtClass() == UnresolvedLookupExprClass ||
1655           T->getStmtClass() == UnresolvedMemberExprClass;
1656  }
1657  static bool classof(const OverloadExpr *) { return true; }
1658
1659  friend class ASTStmtReader;
1660  friend class ASTStmtWriter;
1661};
1662
1663/// \brief A reference to a name which we were able to look up during
1664/// parsing but could not resolve to a specific declaration.  This
1665/// arises in several ways:
1666///   * we might be waiting for argument-dependent lookup
1667///   * the name might resolve to an overloaded function
1668/// and eventually:
1669///   * the lookup might have included a function template
1670/// These never include UnresolvedUsingValueDecls, which are always
1671/// class members and therefore appear only in
1672/// UnresolvedMemberLookupExprs.
1673class UnresolvedLookupExpr : public OverloadExpr {
1674  /// True if these lookup results should be extended by
1675  /// argument-dependent lookup if this is the operand of a function
1676  /// call.
1677  bool RequiresADL;
1678
1679  /// True if these lookup results are overloaded.  This is pretty
1680  /// trivially rederivable if we urgently need to kill this field.
1681  bool Overloaded;
1682
1683  /// The naming class (C++ [class.access.base]p5) of the lookup, if
1684  /// any.  This can generally be recalculated from the context chain,
1685  /// but that can be fairly expensive for unqualified lookups.  If we
1686  /// want to improve memory use here, this could go in a union
1687  /// against the qualified-lookup bits.
1688  CXXRecordDecl *NamingClass;
1689
1690  UnresolvedLookupExpr(ASTContext &C,
1691                       CXXRecordDecl *NamingClass,
1692                       NestedNameSpecifier *Qualifier, SourceRange QRange,
1693                       const DeclarationNameInfo &NameInfo,
1694                       bool RequiresADL, bool Overloaded,
1695                       const TemplateArgumentListInfo *TemplateArgs,
1696                       UnresolvedSetIterator Begin, UnresolvedSetIterator End)
1697    : OverloadExpr(UnresolvedLookupExprClass, C, Qualifier,  QRange, NameInfo,
1698                   TemplateArgs, Begin, End),
1699      RequiresADL(RequiresADL), Overloaded(Overloaded), NamingClass(NamingClass)
1700  {}
1701
1702  UnresolvedLookupExpr(EmptyShell Empty)
1703    : OverloadExpr(UnresolvedLookupExprClass, Empty),
1704      RequiresADL(false), Overloaded(false), NamingClass(0)
1705  {}
1706
1707public:
1708  static UnresolvedLookupExpr *Create(ASTContext &C,
1709                                      CXXRecordDecl *NamingClass,
1710                                      NestedNameSpecifier *Qualifier,
1711                                      SourceRange QualifierRange,
1712                                      const DeclarationNameInfo &NameInfo,
1713                                      bool ADL, bool Overloaded,
1714                                      UnresolvedSetIterator Begin,
1715                                      UnresolvedSetIterator End) {
1716    return new(C) UnresolvedLookupExpr(C, NamingClass, Qualifier,
1717                                       QualifierRange, NameInfo, ADL,
1718                                       Overloaded, 0, Begin, End);
1719  }
1720
1721  static UnresolvedLookupExpr *Create(ASTContext &C,
1722                                      CXXRecordDecl *NamingClass,
1723                                      NestedNameSpecifier *Qualifier,
1724                                      SourceRange QualifierRange,
1725                                      const DeclarationNameInfo &NameInfo,
1726                                      bool ADL,
1727                                      const TemplateArgumentListInfo &Args,
1728                                      UnresolvedSetIterator Begin,
1729                                      UnresolvedSetIterator End);
1730
1731  static UnresolvedLookupExpr *CreateEmpty(ASTContext &C,
1732                                           unsigned NumTemplateArgs);
1733
1734  /// True if this declaration should be extended by
1735  /// argument-dependent lookup.
1736  bool requiresADL() const { return RequiresADL; }
1737  void setRequiresADL(bool V) { RequiresADL = V; }
1738
1739  /// True if this lookup is overloaded.
1740  bool isOverloaded() const { return Overloaded; }
1741  void setOverloaded(bool V) { Overloaded = V; }
1742
1743  /// Gets the 'naming class' (in the sense of C++0x
1744  /// [class.access.base]p5) of the lookup.  This is the scope
1745  /// that was looked in to find these results.
1746  CXXRecordDecl *getNamingClass() const { return NamingClass; }
1747  void setNamingClass(CXXRecordDecl *D) { NamingClass = D; }
1748
1749  // Note that, inconsistently with the explicit-template-argument AST
1750  // nodes, users are *forbidden* from calling these methods on objects
1751  // without explicit template arguments.
1752
1753  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
1754    assert(hasExplicitTemplateArgs());
1755    return *reinterpret_cast<ExplicitTemplateArgumentList*>(this + 1);
1756  }
1757
1758  /// Gets a reference to the explicit template argument list.
1759  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
1760    assert(hasExplicitTemplateArgs());
1761    return *reinterpret_cast<const ExplicitTemplateArgumentList*>(this + 1);
1762  }
1763
1764  /// \brief Retrieves the optional explicit template arguments.
1765  /// This points to the same data as getExplicitTemplateArgs(), but
1766  /// returns null if there are no explicit template arguments.
1767  const ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() {
1768    if (!hasExplicitTemplateArgs()) return 0;
1769    return &getExplicitTemplateArgs();
1770  }
1771
1772  /// \brief Copies the template arguments (if present) into the given
1773  /// structure.
1774  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1775    getExplicitTemplateArgs().copyInto(List);
1776  }
1777
1778  SourceLocation getLAngleLoc() const {
1779    return getExplicitTemplateArgs().LAngleLoc;
1780  }
1781
1782  SourceLocation getRAngleLoc() const {
1783    return getExplicitTemplateArgs().RAngleLoc;
1784  }
1785
1786  TemplateArgumentLoc const *getTemplateArgs() const {
1787    return getExplicitTemplateArgs().getTemplateArgs();
1788  }
1789
1790  unsigned getNumTemplateArgs() const {
1791    return getExplicitTemplateArgs().NumTemplateArgs;
1792  }
1793
1794  virtual SourceRange getSourceRange() const {
1795    SourceRange Range(getNameInfo().getSourceRange());
1796    if (getQualifier()) Range.setBegin(getQualifierRange().getBegin());
1797    if (hasExplicitTemplateArgs()) Range.setEnd(getRAngleLoc());
1798    return Range;
1799  }
1800
1801  virtual StmtIterator child_begin();
1802  virtual StmtIterator child_end();
1803
1804  static bool classof(const Stmt *T) {
1805    return T->getStmtClass() == UnresolvedLookupExprClass;
1806  }
1807  static bool classof(const UnresolvedLookupExpr *) { return true; }
1808};
1809
1810/// \brief A qualified reference to a name whose declaration cannot
1811/// yet be resolved.
1812///
1813/// DependentScopeDeclRefExpr is similar to DeclRefExpr in that
1814/// it expresses a reference to a declaration such as
1815/// X<T>::value. The difference, however, is that an
1816/// DependentScopeDeclRefExpr node is used only within C++ templates when
1817/// the qualification (e.g., X<T>::) refers to a dependent type. In
1818/// this case, X<T>::value cannot resolve to a declaration because the
1819/// declaration will differ from on instantiation of X<T> to the
1820/// next. Therefore, DependentScopeDeclRefExpr keeps track of the
1821/// qualifier (X<T>::) and the name of the entity being referenced
1822/// ("value"). Such expressions will instantiate to a DeclRefExpr once the
1823/// declaration can be found.
1824class DependentScopeDeclRefExpr : public Expr {
1825  /// The name of the entity we will be referencing.
1826  DeclarationNameInfo NameInfo;
1827
1828  /// QualifierRange - The source range that covers the
1829  /// nested-name-specifier.
1830  SourceRange QualifierRange;
1831
1832  /// \brief The nested-name-specifier that qualifies this unresolved
1833  /// declaration name.
1834  NestedNameSpecifier *Qualifier;
1835
1836  /// \brief Whether the name includes explicit template arguments.
1837  bool HasExplicitTemplateArgs;
1838
1839  DependentScopeDeclRefExpr(QualType T,
1840                            NestedNameSpecifier *Qualifier,
1841                            SourceRange QualifierRange,
1842                            const DeclarationNameInfo &NameInfo,
1843                            const TemplateArgumentListInfo *Args);
1844
1845public:
1846  static DependentScopeDeclRefExpr *Create(ASTContext &C,
1847                                           NestedNameSpecifier *Qualifier,
1848                                           SourceRange QualifierRange,
1849                                           const DeclarationNameInfo &NameInfo,
1850                              const TemplateArgumentListInfo *TemplateArgs = 0);
1851
1852  static DependentScopeDeclRefExpr *CreateEmpty(ASTContext &C,
1853                                                unsigned NumTemplateArgs);
1854
1855  /// \brief Retrieve the name that this expression refers to.
1856  const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
1857  void setNameInfo(const DeclarationNameInfo &N) { NameInfo =  N; }
1858
1859  /// \brief Retrieve the name that this expression refers to.
1860  DeclarationName getDeclName() const { return NameInfo.getName(); }
1861  void setDeclName(DeclarationName N) { NameInfo.setName(N); }
1862
1863  /// \brief Retrieve the location of the name within the expression.
1864  SourceLocation getLocation() const { return NameInfo.getLoc(); }
1865  void setLocation(SourceLocation L) { NameInfo.setLoc(L); }
1866
1867  /// \brief Retrieve the source range of the nested-name-specifier.
1868  SourceRange getQualifierRange() const { return QualifierRange; }
1869  void setQualifierRange(SourceRange R) { QualifierRange = R; }
1870
1871  /// \brief Retrieve the nested-name-specifier that qualifies this
1872  /// declaration.
1873  NestedNameSpecifier *getQualifier() const { return Qualifier; }
1874  void setQualifier(NestedNameSpecifier *NNS) { Qualifier = NNS; }
1875
1876  /// Determines whether this lookup had explicit template arguments.
1877  bool hasExplicitTemplateArgs() const { return HasExplicitTemplateArgs; }
1878
1879  // Note that, inconsistently with the explicit-template-argument AST
1880  // nodes, users are *forbidden* from calling these methods on objects
1881  // without explicit template arguments.
1882
1883  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
1884    assert(hasExplicitTemplateArgs());
1885    return *reinterpret_cast<ExplicitTemplateArgumentList*>(this + 1);
1886  }
1887
1888  /// Gets a reference to the explicit template argument list.
1889  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
1890    assert(hasExplicitTemplateArgs());
1891    return *reinterpret_cast<const ExplicitTemplateArgumentList*>(this + 1);
1892  }
1893
1894  /// \brief Retrieves the optional explicit template arguments.
1895  /// This points to the same data as getExplicitTemplateArgs(), but
1896  /// returns null if there are no explicit template arguments.
1897  const ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() {
1898    if (!hasExplicitTemplateArgs()) return 0;
1899    return &getExplicitTemplateArgs();
1900  }
1901
1902  /// \brief Copies the template arguments (if present) into the given
1903  /// structure.
1904  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1905    getExplicitTemplateArgs().copyInto(List);
1906  }
1907
1908  SourceLocation getLAngleLoc() const {
1909    return getExplicitTemplateArgs().LAngleLoc;
1910  }
1911
1912  SourceLocation getRAngleLoc() const {
1913    return getExplicitTemplateArgs().RAngleLoc;
1914  }
1915
1916  TemplateArgumentLoc const *getTemplateArgs() const {
1917    return getExplicitTemplateArgs().getTemplateArgs();
1918  }
1919
1920  unsigned getNumTemplateArgs() const {
1921    return getExplicitTemplateArgs().NumTemplateArgs;
1922  }
1923
1924  virtual SourceRange getSourceRange() const {
1925    SourceRange Range(QualifierRange.getBegin(), getLocation());
1926    if (hasExplicitTemplateArgs())
1927      Range.setEnd(getRAngleLoc());
1928    return Range;
1929  }
1930
1931  static bool classof(const Stmt *T) {
1932    return T->getStmtClass() == DependentScopeDeclRefExprClass;
1933  }
1934  static bool classof(const DependentScopeDeclRefExpr *) { return true; }
1935
1936  virtual StmtIterator child_begin();
1937  virtual StmtIterator child_end();
1938
1939  friend class ASTStmtReader;
1940  friend class ASTStmtWriter;
1941};
1942
1943/// Represents an expression --- generally a full-expression --- which
1944/// introduces cleanups to be run at the end of the sub-expression's
1945/// evaluation.  The most common source of expression-introduced
1946/// cleanups is temporary objects in C++, but several other C++
1947/// expressions can create cleanups.
1948class ExprWithCleanups : public Expr {
1949  Stmt *SubExpr;
1950
1951  CXXTemporary **Temps;
1952  unsigned NumTemps;
1953
1954  ExprWithCleanups(ASTContext &C, Expr *SubExpr,
1955                   CXXTemporary **Temps, unsigned NumTemps);
1956
1957public:
1958  ExprWithCleanups(EmptyShell Empty)
1959    : Expr(ExprWithCleanupsClass, Empty),
1960      SubExpr(0), Temps(0), NumTemps(0) {}
1961
1962  static ExprWithCleanups *Create(ASTContext &C, Expr *SubExpr,
1963                                        CXXTemporary **Temps,
1964                                        unsigned NumTemps);
1965
1966  unsigned getNumTemporaries() const { return NumTemps; }
1967  void setNumTemporaries(ASTContext &C, unsigned N);
1968
1969  CXXTemporary *getTemporary(unsigned i) {
1970    assert(i < NumTemps && "Index out of range");
1971    return Temps[i];
1972  }
1973  const CXXTemporary *getTemporary(unsigned i) const {
1974    return const_cast<ExprWithCleanups*>(this)->getTemporary(i);
1975  }
1976  void setTemporary(unsigned i, CXXTemporary *T) {
1977    assert(i < NumTemps && "Index out of range");
1978    Temps[i] = T;
1979  }
1980
1981  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
1982  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
1983  void setSubExpr(Expr *E) { SubExpr = E; }
1984
1985  virtual SourceRange getSourceRange() const {
1986    return SubExpr->getSourceRange();
1987  }
1988
1989  // Implement isa/cast/dyncast/etc.
1990  static bool classof(const Stmt *T) {
1991    return T->getStmtClass() == ExprWithCleanupsClass;
1992  }
1993  static bool classof(const ExprWithCleanups *) { return true; }
1994
1995  // Iterators
1996  virtual child_iterator child_begin();
1997  virtual child_iterator child_end();
1998};
1999
2000/// \brief Describes an explicit type conversion that uses functional
2001/// notion but could not be resolved because one or more arguments are
2002/// type-dependent.
2003///
2004/// The explicit type conversions expressed by
2005/// CXXUnresolvedConstructExpr have the form \c T(a1, a2, ..., aN),
2006/// where \c T is some type and \c a1, a2, ..., aN are values, and
2007/// either \C T is a dependent type or one or more of the \c a's is
2008/// type-dependent. For example, this would occur in a template such
2009/// as:
2010///
2011/// \code
2012///   template<typename T, typename A1>
2013///   inline T make_a(const A1& a1) {
2014///     return T(a1);
2015///   }
2016/// \endcode
2017///
2018/// When the returned expression is instantiated, it may resolve to a
2019/// constructor call, conversion function call, or some kind of type
2020/// conversion.
2021class CXXUnresolvedConstructExpr : public Expr {
2022  /// \brief The type being constructed.
2023  TypeSourceInfo *Type;
2024
2025  /// \brief The location of the left parentheses ('(').
2026  SourceLocation LParenLoc;
2027
2028  /// \brief The location of the right parentheses (')').
2029  SourceLocation RParenLoc;
2030
2031  /// \brief The number of arguments used to construct the type.
2032  unsigned NumArgs;
2033
2034  CXXUnresolvedConstructExpr(TypeSourceInfo *Type,
2035                             SourceLocation LParenLoc,
2036                             Expr **Args,
2037                             unsigned NumArgs,
2038                             SourceLocation RParenLoc);
2039
2040  CXXUnresolvedConstructExpr(EmptyShell Empty, unsigned NumArgs)
2041    : Expr(CXXUnresolvedConstructExprClass, Empty), Type(), NumArgs(NumArgs) { }
2042
2043  friend class ASTStmtReader;
2044
2045public:
2046  static CXXUnresolvedConstructExpr *Create(ASTContext &C,
2047                                            TypeSourceInfo *Type,
2048                                            SourceLocation LParenLoc,
2049                                            Expr **Args,
2050                                            unsigned NumArgs,
2051                                            SourceLocation RParenLoc);
2052
2053  static CXXUnresolvedConstructExpr *CreateEmpty(ASTContext &C,
2054                                                 unsigned NumArgs);
2055
2056  /// \brief Retrieve the type that is being constructed, as specified
2057  /// in the source code.
2058  QualType getTypeAsWritten() const { return Type->getType(); }
2059
2060  /// \brief Retrieve the type source information for the type being
2061  /// constructed.
2062  TypeSourceInfo *getTypeSourceInfo() const { return Type; }
2063
2064  /// \brief Retrieve the location of the left parentheses ('(') that
2065  /// precedes the argument list.
2066  SourceLocation getLParenLoc() const { return LParenLoc; }
2067  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2068
2069  /// \brief Retrieve the location of the right parentheses (')') that
2070  /// follows the argument list.
2071  SourceLocation getRParenLoc() const { return RParenLoc; }
2072  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2073
2074  /// \brief Retrieve the number of arguments.
2075  unsigned arg_size() const { return NumArgs; }
2076
2077  typedef Expr** arg_iterator;
2078  arg_iterator arg_begin() { return reinterpret_cast<Expr**>(this + 1); }
2079  arg_iterator arg_end() { return arg_begin() + NumArgs; }
2080
2081  typedef const Expr* const * const_arg_iterator;
2082  const_arg_iterator arg_begin() const {
2083    return reinterpret_cast<const Expr* const *>(this + 1);
2084  }
2085  const_arg_iterator arg_end() const {
2086    return arg_begin() + NumArgs;
2087  }
2088
2089  Expr *getArg(unsigned I) {
2090    assert(I < NumArgs && "Argument index out-of-range");
2091    return *(arg_begin() + I);
2092  }
2093
2094  const Expr *getArg(unsigned I) const {
2095    assert(I < NumArgs && "Argument index out-of-range");
2096    return *(arg_begin() + I);
2097  }
2098
2099  void setArg(unsigned I, Expr *E) {
2100    assert(I < NumArgs && "Argument index out-of-range");
2101    *(arg_begin() + I) = E;
2102  }
2103
2104  virtual SourceRange getSourceRange() const;
2105
2106  static bool classof(const Stmt *T) {
2107    return T->getStmtClass() == CXXUnresolvedConstructExprClass;
2108  }
2109  static bool classof(const CXXUnresolvedConstructExpr *) { return true; }
2110
2111  // Iterators
2112  virtual child_iterator child_begin();
2113  virtual child_iterator child_end();
2114};
2115
2116/// \brief Represents a C++ member access expression where the actual
2117/// member referenced could not be resolved because the base
2118/// expression or the member name was dependent.
2119///
2120/// Like UnresolvedMemberExprs, these can be either implicit or
2121/// explicit accesses.  It is only possible to get one of these with
2122/// an implicit access if a qualifier is provided.
2123class CXXDependentScopeMemberExpr : public Expr {
2124  /// \brief The expression for the base pointer or class reference,
2125  /// e.g., the \c x in x.f.  Can be null in implicit accesses.
2126  Stmt *Base;
2127
2128  /// \brief The type of the base expression.  Never null, even for
2129  /// implicit accesses.
2130  QualType BaseType;
2131
2132  /// \brief Whether this member expression used the '->' operator or
2133  /// the '.' operator.
2134  bool IsArrow : 1;
2135
2136  /// \brief Whether this member expression has explicitly-specified template
2137  /// arguments.
2138  bool HasExplicitTemplateArgs : 1;
2139
2140  /// \brief The location of the '->' or '.' operator.
2141  SourceLocation OperatorLoc;
2142
2143  /// \brief The nested-name-specifier that precedes the member name, if any.
2144  NestedNameSpecifier *Qualifier;
2145
2146  /// \brief The source range covering the nested name specifier.
2147  SourceRange QualifierRange;
2148
2149  /// \brief In a qualified member access expression such as t->Base::f, this
2150  /// member stores the resolves of name lookup in the context of the member
2151  /// access expression, to be used at instantiation time.
2152  ///
2153  /// FIXME: This member, along with the Qualifier and QualifierRange, could
2154  /// be stuck into a structure that is optionally allocated at the end of
2155  /// the CXXDependentScopeMemberExpr, to save space in the common case.
2156  NamedDecl *FirstQualifierFoundInScope;
2157
2158  /// \brief The member to which this member expression refers, which
2159  /// can be name, overloaded operator, or destructor.
2160  /// FIXME: could also be a template-id
2161  DeclarationNameInfo MemberNameInfo;
2162
2163  CXXDependentScopeMemberExpr(ASTContext &C,
2164                          Expr *Base, QualType BaseType, bool IsArrow,
2165                          SourceLocation OperatorLoc,
2166                          NestedNameSpecifier *Qualifier,
2167                          SourceRange QualifierRange,
2168                          NamedDecl *FirstQualifierFoundInScope,
2169                          DeclarationNameInfo MemberNameInfo,
2170                          const TemplateArgumentListInfo *TemplateArgs);
2171
2172public:
2173  CXXDependentScopeMemberExpr(ASTContext &C,
2174                              Expr *Base, QualType BaseType,
2175                              bool IsArrow,
2176                              SourceLocation OperatorLoc,
2177                              NestedNameSpecifier *Qualifier,
2178                              SourceRange QualifierRange,
2179                              NamedDecl *FirstQualifierFoundInScope,
2180                              DeclarationNameInfo MemberNameInfo);
2181
2182  static CXXDependentScopeMemberExpr *
2183  Create(ASTContext &C,
2184         Expr *Base, QualType BaseType, bool IsArrow,
2185         SourceLocation OperatorLoc,
2186         NestedNameSpecifier *Qualifier,
2187         SourceRange QualifierRange,
2188         NamedDecl *FirstQualifierFoundInScope,
2189         DeclarationNameInfo MemberNameInfo,
2190         const TemplateArgumentListInfo *TemplateArgs);
2191
2192  static CXXDependentScopeMemberExpr *
2193  CreateEmpty(ASTContext &C, unsigned NumTemplateArgs);
2194
2195  /// \brief True if this is an implicit access, i.e. one in which the
2196  /// member being accessed was not written in the source.  The source
2197  /// location of the operator is invalid in this case.
2198  bool isImplicitAccess() const { return Base == 0; }
2199
2200  /// \brief Retrieve the base object of this member expressions,
2201  /// e.g., the \c x in \c x.m.
2202  Expr *getBase() const {
2203    assert(!isImplicitAccess());
2204    return cast<Expr>(Base);
2205  }
2206  void setBase(Expr *E) { Base = E; }
2207
2208  QualType getBaseType() const { return BaseType; }
2209  void setBaseType(QualType T) { BaseType = T; }
2210
2211  /// \brief Determine whether this member expression used the '->'
2212  /// operator; otherwise, it used the '.' operator.
2213  bool isArrow() const { return IsArrow; }
2214  void setArrow(bool A) { IsArrow = A; }
2215
2216  /// \brief Retrieve the location of the '->' or '.' operator.
2217  SourceLocation getOperatorLoc() const { return OperatorLoc; }
2218  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
2219
2220  /// \brief Retrieve the nested-name-specifier that qualifies the member
2221  /// name.
2222  NestedNameSpecifier *getQualifier() const { return Qualifier; }
2223  void setQualifier(NestedNameSpecifier *NNS) { Qualifier = NNS; }
2224
2225  /// \brief Retrieve the source range covering the nested-name-specifier
2226  /// that qualifies the member name.
2227  SourceRange getQualifierRange() const { return QualifierRange; }
2228  void setQualifierRange(SourceRange R) { QualifierRange = R; }
2229
2230  /// \brief Retrieve the first part of the nested-name-specifier that was
2231  /// found in the scope of the member access expression when the member access
2232  /// was initially parsed.
2233  ///
2234  /// This function only returns a useful result when member access expression
2235  /// uses a qualified member name, e.g., "x.Base::f". Here, the declaration
2236  /// returned by this function describes what was found by unqualified name
2237  /// lookup for the identifier "Base" within the scope of the member access
2238  /// expression itself. At template instantiation time, this information is
2239  /// combined with the results of name lookup into the type of the object
2240  /// expression itself (the class type of x).
2241  NamedDecl *getFirstQualifierFoundInScope() const {
2242    return FirstQualifierFoundInScope;
2243  }
2244  void setFirstQualifierFoundInScope(NamedDecl *D) {
2245    FirstQualifierFoundInScope = D;
2246  }
2247
2248  /// \brief Retrieve the name of the member that this expression
2249  /// refers to.
2250  const DeclarationNameInfo &getMemberNameInfo() const {
2251    return MemberNameInfo;
2252  }
2253  void setMemberNameInfo(const DeclarationNameInfo &N) { MemberNameInfo = N; }
2254
2255  /// \brief Retrieve the name of the member that this expression
2256  /// refers to.
2257  DeclarationName getMember() const { return MemberNameInfo.getName(); }
2258  void setMember(DeclarationName N) { MemberNameInfo.setName(N); }
2259
2260  // \brief Retrieve the location of the name of the member that this
2261  // expression refers to.
2262  SourceLocation getMemberLoc() const { return MemberNameInfo.getLoc(); }
2263  void setMemberLoc(SourceLocation L) { MemberNameInfo.setLoc(L); }
2264
2265  /// \brief Determines whether this member expression actually had a C++
2266  /// template argument list explicitly specified, e.g., x.f<int>.
2267  bool hasExplicitTemplateArgs() const {
2268    return HasExplicitTemplateArgs;
2269  }
2270
2271  /// \brief Retrieve the explicit template argument list that followed the
2272  /// member template name, if any.
2273  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
2274    assert(HasExplicitTemplateArgs);
2275    return *reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
2276  }
2277
2278  /// \brief Retrieve the explicit template argument list that followed the
2279  /// member template name, if any.
2280  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
2281    return const_cast<CXXDependentScopeMemberExpr *>(this)
2282             ->getExplicitTemplateArgs();
2283  }
2284
2285  /// \brief Retrieves the optional explicit template arguments.
2286  /// This points to the same data as getExplicitTemplateArgs(), but
2287  /// returns null if there are no explicit template arguments.
2288  const ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() {
2289    if (!hasExplicitTemplateArgs()) return 0;
2290    return &getExplicitTemplateArgs();
2291  }
2292
2293  /// \brief Copies the template arguments (if present) into the given
2294  /// structure.
2295  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2296    getExplicitTemplateArgs().copyInto(List);
2297  }
2298
2299  /// \brief Initializes the template arguments using the given structure.
2300  void initializeTemplateArgumentsFrom(const TemplateArgumentListInfo &List) {
2301    getExplicitTemplateArgs().initializeFrom(List);
2302  }
2303
2304  /// \brief Retrieve the location of the left angle bracket following the
2305  /// member name ('<'), if any.
2306  SourceLocation getLAngleLoc() const {
2307    return getExplicitTemplateArgs().LAngleLoc;
2308  }
2309
2310  /// \brief Retrieve the template arguments provided as part of this
2311  /// template-id.
2312  const TemplateArgumentLoc *getTemplateArgs() const {
2313    return getExplicitTemplateArgs().getTemplateArgs();
2314  }
2315
2316  /// \brief Retrieve the number of template arguments provided as part of this
2317  /// template-id.
2318  unsigned getNumTemplateArgs() const {
2319    return getExplicitTemplateArgs().NumTemplateArgs;
2320  }
2321
2322  /// \brief Retrieve the location of the right angle bracket following the
2323  /// template arguments ('>').
2324  SourceLocation getRAngleLoc() const {
2325    return getExplicitTemplateArgs().RAngleLoc;
2326  }
2327
2328  virtual SourceRange getSourceRange() const {
2329    SourceRange Range;
2330    if (!isImplicitAccess())
2331      Range.setBegin(Base->getSourceRange().getBegin());
2332    else if (getQualifier())
2333      Range.setBegin(getQualifierRange().getBegin());
2334    else
2335      Range.setBegin(MemberNameInfo.getBeginLoc());
2336
2337    if (hasExplicitTemplateArgs())
2338      Range.setEnd(getRAngleLoc());
2339    else
2340      Range.setEnd(MemberNameInfo.getEndLoc());
2341    return Range;
2342  }
2343
2344  static bool classof(const Stmt *T) {
2345    return T->getStmtClass() == CXXDependentScopeMemberExprClass;
2346  }
2347  static bool classof(const CXXDependentScopeMemberExpr *) { return true; }
2348
2349  // Iterators
2350  virtual child_iterator child_begin();
2351  virtual child_iterator child_end();
2352
2353  friend class ASTStmtReader;
2354  friend class ASTStmtWriter;
2355};
2356
2357/// \brief Represents a C++ member access expression for which lookup
2358/// produced a set of overloaded functions.
2359///
2360/// The member access may be explicit or implicit:
2361///    struct A {
2362///      int a, b;
2363///      int explicitAccess() { return this->a + this->A::b; }
2364///      int implicitAccess() { return a + A::b; }
2365///    };
2366///
2367/// In the final AST, an explicit access always becomes a MemberExpr.
2368/// An implicit access may become either a MemberExpr or a
2369/// DeclRefExpr, depending on whether the member is static.
2370class UnresolvedMemberExpr : public OverloadExpr {
2371  /// \brief Whether this member expression used the '->' operator or
2372  /// the '.' operator.
2373  bool IsArrow : 1;
2374
2375  /// \brief Whether the lookup results contain an unresolved using
2376  /// declaration.
2377  bool HasUnresolvedUsing : 1;
2378
2379  /// \brief The expression for the base pointer or class reference,
2380  /// e.g., the \c x in x.f.  This can be null if this is an 'unbased'
2381  /// member expression
2382  Stmt *Base;
2383
2384  /// \brief The type of the base expression;  never null.
2385  QualType BaseType;
2386
2387  /// \brief The location of the '->' or '.' operator.
2388  SourceLocation OperatorLoc;
2389
2390  UnresolvedMemberExpr(ASTContext &C, bool HasUnresolvedUsing,
2391                       Expr *Base, QualType BaseType, bool IsArrow,
2392                       SourceLocation OperatorLoc,
2393                       NestedNameSpecifier *Qualifier,
2394                       SourceRange QualifierRange,
2395                       const DeclarationNameInfo &MemberNameInfo,
2396                       const TemplateArgumentListInfo *TemplateArgs,
2397                       UnresolvedSetIterator Begin, UnresolvedSetIterator End);
2398
2399  UnresolvedMemberExpr(EmptyShell Empty)
2400    : OverloadExpr(UnresolvedMemberExprClass, Empty), IsArrow(false),
2401      HasUnresolvedUsing(false), Base(0) { }
2402
2403public:
2404  static UnresolvedMemberExpr *
2405  Create(ASTContext &C, bool HasUnresolvedUsing,
2406         Expr *Base, QualType BaseType, bool IsArrow,
2407         SourceLocation OperatorLoc,
2408         NestedNameSpecifier *Qualifier,
2409         SourceRange QualifierRange,
2410         const DeclarationNameInfo &MemberNameInfo,
2411         const TemplateArgumentListInfo *TemplateArgs,
2412         UnresolvedSetIterator Begin, UnresolvedSetIterator End);
2413
2414  static UnresolvedMemberExpr *
2415  CreateEmpty(ASTContext &C, unsigned NumTemplateArgs);
2416
2417  /// \brief True if this is an implicit access, i.e. one in which the
2418  /// member being accessed was not written in the source.  The source
2419  /// location of the operator is invalid in this case.
2420  bool isImplicitAccess() const { return Base == 0; }
2421
2422  /// \brief Retrieve the base object of this member expressions,
2423  /// e.g., the \c x in \c x.m.
2424  Expr *getBase() {
2425    assert(!isImplicitAccess());
2426    return cast<Expr>(Base);
2427  }
2428  const Expr *getBase() const {
2429    assert(!isImplicitAccess());
2430    return cast<Expr>(Base);
2431  }
2432  void setBase(Expr *E) { Base = E; }
2433
2434  QualType getBaseType() const { return BaseType; }
2435  void setBaseType(QualType T) { BaseType = T; }
2436
2437  /// \brief Determine whether the lookup results contain an unresolved using
2438  /// declaration.
2439  bool hasUnresolvedUsing() const { return HasUnresolvedUsing; }
2440  void setHasUnresolvedUsing(bool V) { HasUnresolvedUsing = V; }
2441
2442  /// \brief Determine whether this member expression used the '->'
2443  /// operator; otherwise, it used the '.' operator.
2444  bool isArrow() const { return IsArrow; }
2445  void setArrow(bool A) { IsArrow = A; }
2446
2447  /// \brief Retrieve the location of the '->' or '.' operator.
2448  SourceLocation getOperatorLoc() const { return OperatorLoc; }
2449  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
2450
2451  /// \brief Retrieves the naming class of this lookup.
2452  CXXRecordDecl *getNamingClass() const;
2453
2454  /// \brief Retrieve the full name info for the member that this expression
2455  /// refers to.
2456  const DeclarationNameInfo &getMemberNameInfo() const { return getNameInfo(); }
2457  void setMemberNameInfo(const DeclarationNameInfo &N) { setNameInfo(N); }
2458
2459  /// \brief Retrieve the name of the member that this expression
2460  /// refers to.
2461  DeclarationName getMemberName() const { return getName(); }
2462  void setMemberName(DeclarationName N) { setName(N); }
2463
2464  // \brief Retrieve the location of the name of the member that this
2465  // expression refers to.
2466  SourceLocation getMemberLoc() const { return getNameLoc(); }
2467  void setMemberLoc(SourceLocation L) { setNameLoc(L); }
2468
2469  /// \brief Retrieve the explicit template argument list that followed the
2470  /// member template name.
2471  ExplicitTemplateArgumentList &getExplicitTemplateArgs() {
2472    assert(hasExplicitTemplateArgs());
2473    return *reinterpret_cast<ExplicitTemplateArgumentList *>(this + 1);
2474  }
2475
2476  /// \brief Retrieve the explicit template argument list that followed the
2477  /// member template name, if any.
2478  const ExplicitTemplateArgumentList &getExplicitTemplateArgs() const {
2479    assert(hasExplicitTemplateArgs());
2480    return *reinterpret_cast<const ExplicitTemplateArgumentList *>(this + 1);
2481  }
2482
2483  /// \brief Retrieves the optional explicit template arguments.
2484  /// This points to the same data as getExplicitTemplateArgs(), but
2485  /// returns null if there are no explicit template arguments.
2486  const ExplicitTemplateArgumentList *getOptionalExplicitTemplateArgs() {
2487    if (!hasExplicitTemplateArgs()) return 0;
2488    return &getExplicitTemplateArgs();
2489  }
2490
2491  /// \brief Copies the template arguments into the given structure.
2492  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2493    getExplicitTemplateArgs().copyInto(List);
2494  }
2495
2496  /// \brief Retrieve the location of the left angle bracket following
2497  /// the member name ('<').
2498  SourceLocation getLAngleLoc() const {
2499    return getExplicitTemplateArgs().LAngleLoc;
2500  }
2501
2502  /// \brief Retrieve the template arguments provided as part of this
2503  /// template-id.
2504  const TemplateArgumentLoc *getTemplateArgs() const {
2505    return getExplicitTemplateArgs().getTemplateArgs();
2506  }
2507
2508  /// \brief Retrieve the number of template arguments provided as
2509  /// part of this template-id.
2510  unsigned getNumTemplateArgs() const {
2511    return getExplicitTemplateArgs().NumTemplateArgs;
2512  }
2513
2514  /// \brief Retrieve the location of the right angle bracket
2515  /// following the template arguments ('>').
2516  SourceLocation getRAngleLoc() const {
2517    return getExplicitTemplateArgs().RAngleLoc;
2518  }
2519
2520  virtual SourceRange getSourceRange() const {
2521    SourceRange Range = getMemberNameInfo().getSourceRange();
2522    if (!isImplicitAccess())
2523      Range.setBegin(Base->getSourceRange().getBegin());
2524    else if (getQualifier())
2525      Range.setBegin(getQualifierRange().getBegin());
2526
2527    if (hasExplicitTemplateArgs())
2528      Range.setEnd(getRAngleLoc());
2529    return Range;
2530  }
2531
2532  static bool classof(const Stmt *T) {
2533    return T->getStmtClass() == UnresolvedMemberExprClass;
2534  }
2535  static bool classof(const UnresolvedMemberExpr *) { return true; }
2536
2537  // Iterators
2538  virtual child_iterator child_begin();
2539  virtual child_iterator child_end();
2540};
2541
2542/// \brief Represents a C++0x noexcept expression (C++ [expr.unary.noexcept]).
2543///
2544/// The noexcept expression tests whether a given expression might throw. Its
2545/// result is a boolean constant.
2546class CXXNoexceptExpr : public Expr {
2547  bool Value : 1;
2548  Stmt *Operand;
2549  SourceRange Range;
2550
2551  friend class ASTStmtReader;
2552
2553public:
2554  CXXNoexceptExpr(QualType Ty, Expr *Operand, CanThrowResult Val,
2555                  SourceLocation Keyword, SourceLocation RParen)
2556    : Expr(CXXNoexceptExprClass, Ty, VK_RValue, OK_Ordinary,
2557           /*TypeDependent*/false,
2558           /*ValueDependent*/Val == CT_Dependent,
2559           Operand->containsUnexpandedParameterPack()),
2560      Value(Val == CT_Cannot), Operand(Operand), Range(Keyword, RParen)
2561  { }
2562
2563  CXXNoexceptExpr(EmptyShell Empty)
2564    : Expr(CXXNoexceptExprClass, Empty)
2565  { }
2566
2567  Expr *getOperand() const { return static_cast<Expr*>(Operand); }
2568
2569  virtual SourceRange getSourceRange() const { return Range; }
2570
2571  bool getValue() const { return Value; }
2572
2573  static bool classof(const Stmt *T) {
2574    return T->getStmtClass() == CXXNoexceptExprClass;
2575  }
2576  static bool classof(const CXXNoexceptExpr *) { return true; }
2577
2578  // Iterators
2579  virtual child_iterator child_begin();
2580  virtual child_iterator child_end();
2581};
2582
2583/// \brief Represents a C++0x pack expansion that produces a sequence of
2584/// expressions.
2585///
2586/// A pack expansion expression contains a pattern (which itself is an
2587/// expression) followed by an ellipsis. For example:
2588///
2589/// \code
2590/// template<typename F, typename ...Types>
2591/// void forward(F f, Types &&...args) {
2592///   f(static_cast<Types&&>(args)...);
2593/// }
2594/// \endcode
2595///
2596/// Here, the argument to the function object \c f is a pack expansion whose
2597/// pattern is \c static_cast<Types&&>(args). When the \c forward function
2598/// template is instantiated, the pack expansion will instantiate to zero or
2599/// or more function arguments to the function object \c f.
2600class PackExpansionExpr : public Expr {
2601  SourceLocation EllipsisLoc;
2602  Stmt *Pattern;
2603
2604  friend class ASTStmtReader;
2605
2606public:
2607  PackExpansionExpr(QualType T, Expr *Pattern, SourceLocation EllipsisLoc)
2608    : Expr(PackExpansionExprClass, T, Pattern->getValueKind(),
2609           Pattern->getObjectKind(), /*TypeDependent=*/true,
2610           /*ValueDependent=*/true, /*ContainsUnexpandedParameterPack=*/false),
2611      EllipsisLoc(EllipsisLoc),
2612      Pattern(Pattern) { }
2613
2614  PackExpansionExpr(EmptyShell Empty) : Expr(PackExpansionExprClass, Empty) { }
2615
2616  /// \brief Retrieve the pattern of the pack expansion.
2617  Expr *getPattern() { return reinterpret_cast<Expr *>(Pattern); }
2618
2619  /// \brief Retrieve the pattern of the pack expansion.
2620  const Expr *getPattern() const { return reinterpret_cast<Expr *>(Pattern); }
2621
2622  /// \brief Retrieve the location of the ellipsis that describes this pack
2623  /// expansion.
2624  SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
2625
2626  virtual SourceRange getSourceRange() const;
2627
2628  static bool classof(const Stmt *T) {
2629    return T->getStmtClass() == PackExpansionExprClass;
2630  }
2631  static bool classof(const PackExpansionExpr *) { return true; }
2632
2633  // Iterators
2634  virtual child_iterator child_begin();
2635  virtual child_iterator child_end();
2636};
2637
2638inline ExplicitTemplateArgumentList &OverloadExpr::getExplicitTemplateArgs() {
2639  if (isa<UnresolvedLookupExpr>(this))
2640    return cast<UnresolvedLookupExpr>(this)->getExplicitTemplateArgs();
2641  else
2642    return cast<UnresolvedMemberExpr>(this)->getExplicitTemplateArgs();
2643}
2644
2645}  // end namespace clang
2646
2647#endif
2648