ExprCXX.h revision ba243b59a1074e0962f6abfa3bb9aa984eac1245
1//===--- ExprCXX.h - Classes for representing expressions -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses for C++ expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPRCXX_H
15#define LLVM_CLANG_AST_EXPRCXX_H
16
17#include "clang/Basic/TypeTraits.h"
18#include "clang/Basic/ExpressionTraits.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/UnresolvedSet.h"
21#include "clang/AST/TemplateBase.h"
22
23namespace clang {
24
25class CXXConstructorDecl;
26class CXXDestructorDecl;
27class CXXMethodDecl;
28class CXXTemporary;
29class TemplateArgumentListInfo;
30
31//===--------------------------------------------------------------------===//
32// C++ Expressions.
33//===--------------------------------------------------------------------===//
34
35/// \brief A call to an overloaded operator written using operator
36/// syntax.
37///
38/// Represents a call to an overloaded operator written using operator
39/// syntax, e.g., "x + y" or "*p". While semantically equivalent to a
40/// normal call, this AST node provides better information about the
41/// syntactic representation of the call.
42///
43/// In a C++ template, this expression node kind will be used whenever
44/// any of the arguments are type-dependent. In this case, the
45/// function itself will be a (possibly empty) set of functions and
46/// function templates that were found by name lookup at template
47/// definition time.
48class CXXOperatorCallExpr : public CallExpr {
49  /// \brief The overloaded operator.
50  OverloadedOperatorKind Operator;
51
52public:
53  CXXOperatorCallExpr(ASTContext& C, OverloadedOperatorKind Op, Expr *fn,
54                      Expr **args, unsigned numargs, QualType t,
55                      ExprValueKind VK, SourceLocation operatorloc)
56    : CallExpr(C, CXXOperatorCallExprClass, fn, 0, args, numargs, t, VK,
57               operatorloc),
58      Operator(Op) {}
59  explicit CXXOperatorCallExpr(ASTContext& C, EmptyShell Empty) :
60    CallExpr(C, CXXOperatorCallExprClass, Empty) { }
61
62
63  /// getOperator - Returns the kind of overloaded operator that this
64  /// expression refers to.
65  OverloadedOperatorKind getOperator() const { return Operator; }
66  void setOperator(OverloadedOperatorKind Kind) { Operator = Kind; }
67
68  /// getOperatorLoc - Returns the location of the operator symbol in
69  /// the expression. When @c getOperator()==OO_Call, this is the
70  /// location of the right parentheses; when @c
71  /// getOperator()==OO_Subscript, this is the location of the right
72  /// bracket.
73  SourceLocation getOperatorLoc() const { return getRParenLoc(); }
74
75  SourceRange getSourceRange() const;
76
77  static bool classof(const Stmt *T) {
78    return T->getStmtClass() == CXXOperatorCallExprClass;
79  }
80  static bool classof(const CXXOperatorCallExpr *) { return true; }
81};
82
83/// CXXMemberCallExpr - Represents a call to a member function that
84/// may be written either with member call syntax (e.g., "obj.func()"
85/// or "objptr->func()") or with normal function-call syntax
86/// ("func()") within a member function that ends up calling a member
87/// function. The callee in either case is a MemberExpr that contains
88/// both the object argument and the member function, while the
89/// arguments are the arguments within the parentheses (not including
90/// the object argument).
91class CXXMemberCallExpr : public CallExpr {
92public:
93  CXXMemberCallExpr(ASTContext &C, Expr *fn, Expr **args, unsigned numargs,
94                    QualType t, ExprValueKind VK, SourceLocation RP)
95    : CallExpr(C, CXXMemberCallExprClass, fn, 0, args, numargs, t, VK, RP) {}
96
97  CXXMemberCallExpr(ASTContext &C, EmptyShell Empty)
98    : CallExpr(C, CXXMemberCallExprClass, Empty) { }
99
100  /// getImplicitObjectArgument - Retrieves the implicit object
101  /// argument for the member call. For example, in "x.f(5)", this
102  /// operation would return "x".
103  Expr *getImplicitObjectArgument() const;
104
105  /// Retrieves the declaration of the called method.
106  CXXMethodDecl *getMethodDecl() const;
107
108  /// getRecordDecl - Retrieves the CXXRecordDecl for the underlying type of
109  /// the implicit object argument. Note that this is may not be the same
110  /// declaration as that of the class context of the CXXMethodDecl which this
111  /// function is calling.
112  /// FIXME: Returns 0 for member pointer call exprs.
113  CXXRecordDecl *getRecordDecl();
114
115  static bool classof(const Stmt *T) {
116    return T->getStmtClass() == CXXMemberCallExprClass;
117  }
118  static bool classof(const CXXMemberCallExpr *) { return true; }
119};
120
121/// CUDAKernelCallExpr - Represents a call to a CUDA kernel function.
122class CUDAKernelCallExpr : public CallExpr {
123private:
124  enum { CONFIG, END_PREARG };
125
126public:
127  CUDAKernelCallExpr(ASTContext &C, Expr *fn, CallExpr *Config,
128                     Expr **args, unsigned numargs, QualType t,
129                     ExprValueKind VK, SourceLocation RP)
130    : CallExpr(C, CUDAKernelCallExprClass, fn, END_PREARG, args, numargs, t, VK,
131               RP) {
132    setConfig(Config);
133  }
134
135  CUDAKernelCallExpr(ASTContext &C, EmptyShell Empty)
136    : CallExpr(C, CUDAKernelCallExprClass, END_PREARG, Empty) { }
137
138  const CallExpr *getConfig() const {
139    return cast_or_null<CallExpr>(getPreArg(CONFIG));
140  }
141  CallExpr *getConfig() { return cast_or_null<CallExpr>(getPreArg(CONFIG)); }
142  void setConfig(CallExpr *E) { setPreArg(CONFIG, E); }
143
144  static bool classof(const Stmt *T) {
145    return T->getStmtClass() == CUDAKernelCallExprClass;
146  }
147  static bool classof(const CUDAKernelCallExpr *) { return true; }
148};
149
150/// CXXNamedCastExpr - Abstract class common to all of the C++ "named"
151/// casts, @c static_cast, @c dynamic_cast, @c reinterpret_cast, or @c
152/// const_cast.
153///
154/// This abstract class is inherited by all of the classes
155/// representing "named" casts, e.g., CXXStaticCastExpr,
156/// CXXDynamicCastExpr, CXXReinterpretCastExpr, and CXXConstCastExpr.
157class CXXNamedCastExpr : public ExplicitCastExpr {
158private:
159  SourceLocation Loc; // the location of the casting op
160  SourceLocation RParenLoc; // the location of the right parenthesis
161
162protected:
163  CXXNamedCastExpr(StmtClass SC, QualType ty, ExprValueKind VK,
164                   CastKind kind, Expr *op, unsigned PathSize,
165                   TypeSourceInfo *writtenTy, SourceLocation l,
166                   SourceLocation RParenLoc)
167    : ExplicitCastExpr(SC, ty, VK, kind, op, PathSize, writtenTy), Loc(l),
168      RParenLoc(RParenLoc) {}
169
170  explicit CXXNamedCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
171    : ExplicitCastExpr(SC, Shell, PathSize) { }
172
173  friend class ASTStmtReader;
174
175public:
176  const char *getCastName() const;
177
178  /// \brief Retrieve the location of the cast operator keyword, e.g.,
179  /// "static_cast".
180  SourceLocation getOperatorLoc() const { return Loc; }
181
182  /// \brief Retrieve the location of the closing parenthesis.
183  SourceLocation getRParenLoc() const { return RParenLoc; }
184
185  SourceRange getSourceRange() const {
186    return SourceRange(Loc, RParenLoc);
187  }
188  static bool classof(const Stmt *T) {
189    switch (T->getStmtClass()) {
190    case CXXStaticCastExprClass:
191    case CXXDynamicCastExprClass:
192    case CXXReinterpretCastExprClass:
193    case CXXConstCastExprClass:
194      return true;
195    default:
196      return false;
197    }
198  }
199  static bool classof(const CXXNamedCastExpr *) { return true; }
200};
201
202/// CXXStaticCastExpr - A C++ @c static_cast expression
203/// (C++ [expr.static.cast]).
204///
205/// This expression node represents a C++ static cast, e.g.,
206/// @c static_cast<int>(1.0).
207class CXXStaticCastExpr : public CXXNamedCastExpr {
208  CXXStaticCastExpr(QualType ty, ExprValueKind vk, CastKind kind, Expr *op,
209                    unsigned pathSize, TypeSourceInfo *writtenTy,
210                    SourceLocation l, SourceLocation RParenLoc)
211    : CXXNamedCastExpr(CXXStaticCastExprClass, ty, vk, kind, op, pathSize,
212                       writtenTy, l, RParenLoc) {}
213
214  explicit CXXStaticCastExpr(EmptyShell Empty, unsigned PathSize)
215    : CXXNamedCastExpr(CXXStaticCastExprClass, Empty, PathSize) { }
216
217public:
218  static CXXStaticCastExpr *Create(ASTContext &Context, QualType T,
219                                   ExprValueKind VK, CastKind K, Expr *Op,
220                                   const CXXCastPath *Path,
221                                   TypeSourceInfo *Written, SourceLocation L,
222                                   SourceLocation RParenLoc);
223  static CXXStaticCastExpr *CreateEmpty(ASTContext &Context,
224                                        unsigned PathSize);
225
226  static bool classof(const Stmt *T) {
227    return T->getStmtClass() == CXXStaticCastExprClass;
228  }
229  static bool classof(const CXXStaticCastExpr *) { return true; }
230};
231
232/// CXXDynamicCastExpr - A C++ @c dynamic_cast expression
233/// (C++ [expr.dynamic.cast]), which may perform a run-time check to
234/// determine how to perform the type cast.
235///
236/// This expression node represents a dynamic cast, e.g.,
237/// @c dynamic_cast<Derived*>(BasePtr).
238class CXXDynamicCastExpr : public CXXNamedCastExpr {
239  CXXDynamicCastExpr(QualType ty, ExprValueKind VK, CastKind kind,
240                     Expr *op, unsigned pathSize, TypeSourceInfo *writtenTy,
241                     SourceLocation l, SourceLocation RParenLoc)
242    : CXXNamedCastExpr(CXXDynamicCastExprClass, ty, VK, kind, op, pathSize,
243                       writtenTy, l, RParenLoc) {}
244
245  explicit CXXDynamicCastExpr(EmptyShell Empty, unsigned pathSize)
246    : CXXNamedCastExpr(CXXDynamicCastExprClass, Empty, pathSize) { }
247
248public:
249  static CXXDynamicCastExpr *Create(ASTContext &Context, QualType T,
250                                    ExprValueKind VK, CastKind Kind, Expr *Op,
251                                    const CXXCastPath *Path,
252                                    TypeSourceInfo *Written, SourceLocation L,
253                                    SourceLocation RParenLoc);
254
255  static CXXDynamicCastExpr *CreateEmpty(ASTContext &Context,
256                                         unsigned pathSize);
257
258  bool isAlwaysNull() const;
259
260  static bool classof(const Stmt *T) {
261    return T->getStmtClass() == CXXDynamicCastExprClass;
262  }
263  static bool classof(const CXXDynamicCastExpr *) { return true; }
264};
265
266/// CXXReinterpretCastExpr - A C++ @c reinterpret_cast expression (C++
267/// [expr.reinterpret.cast]), which provides a differently-typed view
268/// of a value but performs no actual work at run time.
269///
270/// This expression node represents a reinterpret cast, e.g.,
271/// @c reinterpret_cast<int>(VoidPtr).
272class CXXReinterpretCastExpr : public CXXNamedCastExpr {
273  CXXReinterpretCastExpr(QualType ty, ExprValueKind vk, CastKind kind,
274                         Expr *op, unsigned pathSize,
275                         TypeSourceInfo *writtenTy, SourceLocation l,
276                         SourceLocation RParenLoc)
277    : CXXNamedCastExpr(CXXReinterpretCastExprClass, ty, vk, kind, op,
278                       pathSize, writtenTy, l, RParenLoc) {}
279
280  CXXReinterpretCastExpr(EmptyShell Empty, unsigned pathSize)
281    : CXXNamedCastExpr(CXXReinterpretCastExprClass, Empty, pathSize) { }
282
283public:
284  static CXXReinterpretCastExpr *Create(ASTContext &Context, QualType T,
285                                        ExprValueKind VK, CastKind Kind,
286                                        Expr *Op, const CXXCastPath *Path,
287                                 TypeSourceInfo *WrittenTy, SourceLocation L,
288                                        SourceLocation RParenLoc);
289  static CXXReinterpretCastExpr *CreateEmpty(ASTContext &Context,
290                                             unsigned pathSize);
291
292  static bool classof(const Stmt *T) {
293    return T->getStmtClass() == CXXReinterpretCastExprClass;
294  }
295  static bool classof(const CXXReinterpretCastExpr *) { return true; }
296};
297
298/// CXXConstCastExpr - A C++ @c const_cast expression (C++ [expr.const.cast]),
299/// which can remove type qualifiers but does not change the underlying value.
300///
301/// This expression node represents a const cast, e.g.,
302/// @c const_cast<char*>(PtrToConstChar).
303class CXXConstCastExpr : public CXXNamedCastExpr {
304  CXXConstCastExpr(QualType ty, ExprValueKind VK, Expr *op,
305                   TypeSourceInfo *writtenTy, SourceLocation l,
306                   SourceLocation RParenLoc)
307    : CXXNamedCastExpr(CXXConstCastExprClass, ty, VK, CK_NoOp, op,
308                       0, writtenTy, l, RParenLoc) {}
309
310  explicit CXXConstCastExpr(EmptyShell Empty)
311    : CXXNamedCastExpr(CXXConstCastExprClass, Empty, 0) { }
312
313public:
314  static CXXConstCastExpr *Create(ASTContext &Context, QualType T,
315                                  ExprValueKind VK, Expr *Op,
316                                  TypeSourceInfo *WrittenTy, SourceLocation L,
317                                  SourceLocation RParenLoc);
318  static CXXConstCastExpr *CreateEmpty(ASTContext &Context);
319
320  static bool classof(const Stmt *T) {
321    return T->getStmtClass() == CXXConstCastExprClass;
322  }
323  static bool classof(const CXXConstCastExpr *) { return true; }
324};
325
326/// CXXBoolLiteralExpr - [C++ 2.13.5] C++ Boolean Literal.
327///
328class CXXBoolLiteralExpr : public Expr {
329  bool Value;
330  SourceLocation Loc;
331public:
332  CXXBoolLiteralExpr(bool val, QualType Ty, SourceLocation l) :
333    Expr(CXXBoolLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
334         false, false),
335    Value(val), Loc(l) {}
336
337  explicit CXXBoolLiteralExpr(EmptyShell Empty)
338    : Expr(CXXBoolLiteralExprClass, Empty) { }
339
340  bool getValue() const { return Value; }
341  void setValue(bool V) { Value = V; }
342
343  SourceRange getSourceRange() const { return SourceRange(Loc); }
344
345  SourceLocation getLocation() const { return Loc; }
346  void setLocation(SourceLocation L) { Loc = L; }
347
348  static bool classof(const Stmt *T) {
349    return T->getStmtClass() == CXXBoolLiteralExprClass;
350  }
351  static bool classof(const CXXBoolLiteralExpr *) { return true; }
352
353  // Iterators
354  child_range children() { return child_range(); }
355};
356
357/// CXXNullPtrLiteralExpr - [C++0x 2.14.7] C++ Pointer Literal
358class CXXNullPtrLiteralExpr : public Expr {
359  SourceLocation Loc;
360public:
361  CXXNullPtrLiteralExpr(QualType Ty, SourceLocation l) :
362    Expr(CXXNullPtrLiteralExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
363         false, false),
364    Loc(l) {}
365
366  explicit CXXNullPtrLiteralExpr(EmptyShell Empty)
367    : Expr(CXXNullPtrLiteralExprClass, Empty) { }
368
369  SourceRange getSourceRange() const { return SourceRange(Loc); }
370
371  SourceLocation getLocation() const { return Loc; }
372  void setLocation(SourceLocation L) { Loc = L; }
373
374  static bool classof(const Stmt *T) {
375    return T->getStmtClass() == CXXNullPtrLiteralExprClass;
376  }
377  static bool classof(const CXXNullPtrLiteralExpr *) { return true; }
378
379  child_range children() { return child_range(); }
380};
381
382/// CXXTypeidExpr - A C++ @c typeid expression (C++ [expr.typeid]), which gets
383/// the type_info that corresponds to the supplied type, or the (possibly
384/// dynamic) type of the supplied expression.
385///
386/// This represents code like @c typeid(int) or @c typeid(*objPtr)
387class CXXTypeidExpr : public Expr {
388private:
389  llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
390  SourceRange Range;
391
392public:
393  CXXTypeidExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
394    : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
395           // typeid is never type-dependent (C++ [temp.dep.expr]p4)
396           false,
397           // typeid is value-dependent if the type or expression are dependent
398           Operand->getType()->isDependentType(),
399           Operand->getType()->isInstantiationDependentType(),
400           Operand->getType()->containsUnexpandedParameterPack()),
401      Operand(Operand), Range(R) { }
402
403  CXXTypeidExpr(QualType Ty, Expr *Operand, SourceRange R)
404    : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary,
405        // typeid is never type-dependent (C++ [temp.dep.expr]p4)
406           false,
407        // typeid is value-dependent if the type or expression are dependent
408           Operand->isTypeDependent() || Operand->isValueDependent(),
409           Operand->isInstantiationDependent(),
410           Operand->containsUnexpandedParameterPack()),
411      Operand(Operand), Range(R) { }
412
413  CXXTypeidExpr(EmptyShell Empty, bool isExpr)
414    : Expr(CXXTypeidExprClass, Empty) {
415    if (isExpr)
416      Operand = (Expr*)0;
417    else
418      Operand = (TypeSourceInfo*)0;
419  }
420
421  bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
422
423  /// \brief Retrieves the type operand of this typeid() expression after
424  /// various required adjustments (removing reference types, cv-qualifiers).
425  QualType getTypeOperand() const;
426
427  /// \brief Retrieve source information for the type operand.
428  TypeSourceInfo *getTypeOperandSourceInfo() const {
429    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
430    return Operand.get<TypeSourceInfo *>();
431  }
432
433  void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
434    assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
435    Operand = TSI;
436  }
437
438  Expr *getExprOperand() const {
439    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
440    return static_cast<Expr*>(Operand.get<Stmt *>());
441  }
442
443  void setExprOperand(Expr *E) {
444    assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
445    Operand = E;
446  }
447
448  SourceRange getSourceRange() const { return Range; }
449  void setSourceRange(SourceRange R) { Range = R; }
450
451  static bool classof(const Stmt *T) {
452    return T->getStmtClass() == CXXTypeidExprClass;
453  }
454  static bool classof(const CXXTypeidExpr *) { return true; }
455
456  // Iterators
457  child_range children() {
458    if (isTypeOperand()) return child_range();
459    Stmt **begin = reinterpret_cast<Stmt**>(&Operand);
460    return child_range(begin, begin + 1);
461  }
462};
463
464/// CXXUuidofExpr - A microsoft C++ @c __uuidof expression, which gets
465/// the _GUID that corresponds to the supplied type or expression.
466///
467/// This represents code like @c __uuidof(COMTYPE) or @c __uuidof(*comPtr)
468class CXXUuidofExpr : public Expr {
469private:
470  llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
471  SourceRange Range;
472
473public:
474  CXXUuidofExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
475    : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary,
476           false, Operand->getType()->isDependentType(),
477           Operand->getType()->isInstantiationDependentType(),
478           Operand->getType()->containsUnexpandedParameterPack()),
479      Operand(Operand), Range(R) { }
480
481  CXXUuidofExpr(QualType Ty, Expr *Operand, SourceRange R)
482    : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary,
483           false, Operand->isTypeDependent(),
484           Operand->isInstantiationDependent(),
485           Operand->containsUnexpandedParameterPack()),
486      Operand(Operand), Range(R) { }
487
488  CXXUuidofExpr(EmptyShell Empty, bool isExpr)
489    : Expr(CXXUuidofExprClass, Empty) {
490    if (isExpr)
491      Operand = (Expr*)0;
492    else
493      Operand = (TypeSourceInfo*)0;
494  }
495
496  bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
497
498  /// \brief Retrieves the type operand of this __uuidof() expression after
499  /// various required adjustments (removing reference types, cv-qualifiers).
500  QualType getTypeOperand() const;
501
502  /// \brief Retrieve source information for the type operand.
503  TypeSourceInfo *getTypeOperandSourceInfo() const {
504    assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
505    return Operand.get<TypeSourceInfo *>();
506  }
507
508  void setTypeOperandSourceInfo(TypeSourceInfo *TSI) {
509    assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
510    Operand = TSI;
511  }
512
513  Expr *getExprOperand() const {
514    assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
515    return static_cast<Expr*>(Operand.get<Stmt *>());
516  }
517
518  void setExprOperand(Expr *E) {
519    assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
520    Operand = E;
521  }
522
523  SourceRange getSourceRange() const { return Range; }
524  void setSourceRange(SourceRange R) { Range = R; }
525
526  static bool classof(const Stmt *T) {
527    return T->getStmtClass() == CXXUuidofExprClass;
528  }
529  static bool classof(const CXXUuidofExpr *) { return true; }
530
531  // Iterators
532  child_range children() {
533    if (isTypeOperand()) return child_range();
534    Stmt **begin = reinterpret_cast<Stmt**>(&Operand);
535    return child_range(begin, begin + 1);
536  }
537};
538
539/// CXXThisExpr - Represents the "this" expression in C++, which is a
540/// pointer to the object on which the current member function is
541/// executing (C++ [expr.prim]p3). Example:
542///
543/// @code
544/// class Foo {
545/// public:
546///   void bar();
547///   void test() { this->bar(); }
548/// };
549/// @endcode
550class CXXThisExpr : public Expr {
551  SourceLocation Loc;
552  bool Implicit : 1;
553
554public:
555  CXXThisExpr(SourceLocation L, QualType Type, bool isImplicit)
556    : Expr(CXXThisExprClass, Type, VK_RValue, OK_Ordinary,
557           // 'this' is type-dependent if the class type of the enclosing
558           // member function is dependent (C++ [temp.dep.expr]p2)
559           Type->isDependentType(), Type->isDependentType(),
560           Type->isInstantiationDependentType(),
561           /*ContainsUnexpandedParameterPack=*/false),
562      Loc(L), Implicit(isImplicit) { }
563
564  CXXThisExpr(EmptyShell Empty) : Expr(CXXThisExprClass, Empty) {}
565
566  SourceLocation getLocation() const { return Loc; }
567  void setLocation(SourceLocation L) { Loc = L; }
568
569  SourceRange getSourceRange() const { return SourceRange(Loc); }
570
571  bool isImplicit() const { return Implicit; }
572  void setImplicit(bool I) { Implicit = I; }
573
574  static bool classof(const Stmt *T) {
575    return T->getStmtClass() == CXXThisExprClass;
576  }
577  static bool classof(const CXXThisExpr *) { return true; }
578
579  // Iterators
580  child_range children() { return child_range(); }
581};
582
583///  CXXThrowExpr - [C++ 15] C++ Throw Expression.  This handles
584///  'throw' and 'throw' assignment-expression.  When
585///  assignment-expression isn't present, Op will be null.
586///
587class CXXThrowExpr : public Expr {
588  Stmt *Op;
589  SourceLocation ThrowLoc;
590  /// \brief Whether the thrown variable (if any) is in scope.
591  unsigned IsThrownVariableInScope : 1;
592
593  friend class ASTStmtReader;
594
595public:
596  // Ty is the void type which is used as the result type of the
597  // exepression.  The l is the location of the throw keyword.  expr
598  // can by null, if the optional expression to throw isn't present.
599  CXXThrowExpr(Expr *expr, QualType Ty, SourceLocation l,
600               bool IsThrownVariableInScope) :
601    Expr(CXXThrowExprClass, Ty, VK_RValue, OK_Ordinary, false, false,
602         expr && expr->isInstantiationDependent(),
603         expr && expr->containsUnexpandedParameterPack()),
604    Op(expr), ThrowLoc(l), IsThrownVariableInScope(IsThrownVariableInScope) {}
605  CXXThrowExpr(EmptyShell Empty) : Expr(CXXThrowExprClass, Empty) {}
606
607  const Expr *getSubExpr() const { return cast_or_null<Expr>(Op); }
608  Expr *getSubExpr() { return cast_or_null<Expr>(Op); }
609
610  SourceLocation getThrowLoc() const { return ThrowLoc; }
611
612  /// \brief Determines whether the variable thrown by this expression (if any!)
613  /// is within the innermost try block.
614  ///
615  /// This information is required to determine whether the NRVO can apply to
616  /// this variable.
617  bool isThrownVariableInScope() const { return IsThrownVariableInScope; }
618
619  SourceRange getSourceRange() const {
620    if (getSubExpr() == 0)
621      return SourceRange(ThrowLoc, ThrowLoc);
622    return SourceRange(ThrowLoc, getSubExpr()->getSourceRange().getEnd());
623  }
624
625  static bool classof(const Stmt *T) {
626    return T->getStmtClass() == CXXThrowExprClass;
627  }
628  static bool classof(const CXXThrowExpr *) { return true; }
629
630  // Iterators
631  child_range children() {
632    return child_range(&Op, Op ? &Op+1 : &Op);
633  }
634};
635
636/// CXXDefaultArgExpr - C++ [dcl.fct.default]. This wraps up a
637/// function call argument that was created from the corresponding
638/// parameter's default argument, when the call did not explicitly
639/// supply arguments for all of the parameters.
640class CXXDefaultArgExpr : public Expr {
641  /// \brief The parameter whose default is being used.
642  ///
643  /// When the bit is set, the subexpression is stored after the
644  /// CXXDefaultArgExpr itself. When the bit is clear, the parameter's
645  /// actual default expression is the subexpression.
646  llvm::PointerIntPair<ParmVarDecl *, 1, bool> Param;
647
648  /// \brief The location where the default argument expression was used.
649  SourceLocation Loc;
650
651  CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param)
652    : Expr(SC,
653           param->hasUnparsedDefaultArg()
654             ? param->getType().getNonReferenceType()
655             : param->getDefaultArg()->getType(),
656           param->getDefaultArg()->getValueKind(),
657           param->getDefaultArg()->getObjectKind(), false, false, false, false),
658      Param(param, false), Loc(Loc) { }
659
660  CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *param,
661                    Expr *SubExpr)
662    : Expr(SC, SubExpr->getType(),
663           SubExpr->getValueKind(), SubExpr->getObjectKind(),
664           false, false, false, false),
665      Param(param, true), Loc(Loc) {
666    *reinterpret_cast<Expr **>(this + 1) = SubExpr;
667  }
668
669public:
670  CXXDefaultArgExpr(EmptyShell Empty) : Expr(CXXDefaultArgExprClass, Empty) {}
671
672
673  // Param is the parameter whose default argument is used by this
674  // expression.
675  static CXXDefaultArgExpr *Create(ASTContext &C, SourceLocation Loc,
676                                   ParmVarDecl *Param) {
677    return new (C) CXXDefaultArgExpr(CXXDefaultArgExprClass, Loc, Param);
678  }
679
680  // Param is the parameter whose default argument is used by this
681  // expression, and SubExpr is the expression that will actually be used.
682  static CXXDefaultArgExpr *Create(ASTContext &C,
683                                   SourceLocation Loc,
684                                   ParmVarDecl *Param,
685                                   Expr *SubExpr);
686
687  // Retrieve the parameter that the argument was created from.
688  const ParmVarDecl *getParam() const { return Param.getPointer(); }
689  ParmVarDecl *getParam() { return Param.getPointer(); }
690
691  // Retrieve the actual argument to the function call.
692  const Expr *getExpr() const {
693    if (Param.getInt())
694      return *reinterpret_cast<Expr const * const*> (this + 1);
695    return getParam()->getDefaultArg();
696  }
697  Expr *getExpr() {
698    if (Param.getInt())
699      return *reinterpret_cast<Expr **> (this + 1);
700    return getParam()->getDefaultArg();
701  }
702
703  /// \brief Retrieve the location where this default argument was actually
704  /// used.
705  SourceLocation getUsedLocation() const { return Loc; }
706
707  SourceRange getSourceRange() const {
708    // Default argument expressions have no representation in the
709    // source, so they have an empty source range.
710    return SourceRange();
711  }
712
713  static bool classof(const Stmt *T) {
714    return T->getStmtClass() == CXXDefaultArgExprClass;
715  }
716  static bool classof(const CXXDefaultArgExpr *) { return true; }
717
718  // Iterators
719  child_range children() { return child_range(); }
720
721  friend class ASTStmtReader;
722  friend class ASTStmtWriter;
723};
724
725/// CXXTemporary - Represents a C++ temporary.
726class CXXTemporary {
727  /// Destructor - The destructor that needs to be called.
728  const CXXDestructorDecl *Destructor;
729
730  CXXTemporary(const CXXDestructorDecl *destructor)
731    : Destructor(destructor) { }
732
733public:
734  static CXXTemporary *Create(ASTContext &C,
735                              const CXXDestructorDecl *Destructor);
736
737  const CXXDestructorDecl *getDestructor() const { return Destructor; }
738};
739
740/// \brief Represents binding an expression to a temporary.
741///
742/// This ensures the destructor is called for the temporary. It should only be
743/// needed for non-POD, non-trivially destructable class types. For example:
744///
745/// \code
746///   struct S {
747///     S() { }  // User defined constructor makes S non-POD.
748///     ~S() { } // User defined destructor makes it non-trivial.
749///   };
750///   void test() {
751///     const S &s_ref = S(); // Requires a CXXBindTemporaryExpr.
752///   }
753/// \endcode
754class CXXBindTemporaryExpr : public Expr {
755  CXXTemporary *Temp;
756
757  Stmt *SubExpr;
758
759  CXXBindTemporaryExpr(CXXTemporary *temp, Expr* SubExpr)
760   : Expr(CXXBindTemporaryExprClass, SubExpr->getType(),
761          VK_RValue, OK_Ordinary, SubExpr->isTypeDependent(),
762          SubExpr->isValueDependent(),
763          SubExpr->isInstantiationDependent(),
764          SubExpr->containsUnexpandedParameterPack()),
765     Temp(temp), SubExpr(SubExpr) { }
766
767public:
768  CXXBindTemporaryExpr(EmptyShell Empty)
769    : Expr(CXXBindTemporaryExprClass, Empty), Temp(0), SubExpr(0) {}
770
771  static CXXBindTemporaryExpr *Create(ASTContext &C, CXXTemporary *Temp,
772                                      Expr* SubExpr);
773
774  CXXTemporary *getTemporary() { return Temp; }
775  const CXXTemporary *getTemporary() const { return Temp; }
776  void setTemporary(CXXTemporary *T) { Temp = T; }
777
778  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
779  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
780  void setSubExpr(Expr *E) { SubExpr = E; }
781
782  SourceRange getSourceRange() const {
783    return SubExpr->getSourceRange();
784  }
785
786  // Implement isa/cast/dyncast/etc.
787  static bool classof(const Stmt *T) {
788    return T->getStmtClass() == CXXBindTemporaryExprClass;
789  }
790  static bool classof(const CXXBindTemporaryExpr *) { return true; }
791
792  // Iterators
793  child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
794};
795
796/// CXXConstructExpr - Represents a call to a C++ constructor.
797class CXXConstructExpr : public Expr {
798public:
799  enum ConstructionKind {
800    CK_Complete,
801    CK_NonVirtualBase,
802    CK_VirtualBase,
803    CK_Delegating
804  };
805
806private:
807  CXXConstructorDecl *Constructor;
808
809  SourceLocation Loc;
810  SourceRange ParenRange;
811  unsigned NumArgs : 16;
812  bool Elidable : 1;
813  bool HadMultipleCandidates : 1;
814  bool ZeroInitialization : 1;
815  unsigned ConstructKind : 2;
816  Stmt **Args;
817
818protected:
819  CXXConstructExpr(ASTContext &C, StmtClass SC, QualType T,
820                   SourceLocation Loc,
821                   CXXConstructorDecl *d, bool elidable,
822                   Expr **args, unsigned numargs,
823                   bool HadMultipleCandidates,
824                   bool ZeroInitialization = false,
825                   ConstructionKind ConstructKind = CK_Complete,
826                   SourceRange ParenRange = SourceRange());
827
828  /// \brief Construct an empty C++ construction expression.
829  CXXConstructExpr(StmtClass SC, EmptyShell Empty)
830    : Expr(SC, Empty), Constructor(0), NumArgs(0), Elidable(0),
831      HadMultipleCandidates(false), ZeroInitialization(0),
832      ConstructKind(0), Args(0) { }
833
834public:
835  /// \brief Construct an empty C++ construction expression.
836  explicit CXXConstructExpr(EmptyShell Empty)
837    : Expr(CXXConstructExprClass, Empty), Constructor(0),
838      NumArgs(0), Elidable(0), HadMultipleCandidates(false),
839      ZeroInitialization(0), ConstructKind(0), Args(0) { }
840
841  static CXXConstructExpr *Create(ASTContext &C, QualType T,
842                                  SourceLocation Loc,
843                                  CXXConstructorDecl *D, bool Elidable,
844                                  Expr **Args, unsigned NumArgs,
845                                  bool HadMultipleCandidates,
846                                  bool ZeroInitialization = false,
847                                  ConstructionKind ConstructKind = CK_Complete,
848                                  SourceRange ParenRange = SourceRange());
849
850
851  CXXConstructorDecl* getConstructor() const { return Constructor; }
852  void setConstructor(CXXConstructorDecl *C) { Constructor = C; }
853
854  SourceLocation getLocation() const { return Loc; }
855  void setLocation(SourceLocation Loc) { this->Loc = Loc; }
856
857  /// \brief Whether this construction is elidable.
858  bool isElidable() const { return Elidable; }
859  void setElidable(bool E) { Elidable = E; }
860
861  /// \brief Whether the referred constructor was resolved from
862  /// an overloaded set having size greater than 1.
863  bool hadMultipleCandidates() const { return HadMultipleCandidates; }
864  void setHadMultipleCandidates(bool V) { HadMultipleCandidates = V; }
865
866  /// \brief Whether this construction first requires
867  /// zero-initialization before the initializer is called.
868  bool requiresZeroInitialization() const { return ZeroInitialization; }
869  void setRequiresZeroInitialization(bool ZeroInit) {
870    ZeroInitialization = ZeroInit;
871  }
872
873  /// \brief Determines whether this constructor is actually constructing
874  /// a base class (rather than a complete object).
875  ConstructionKind getConstructionKind() const {
876    return (ConstructionKind)ConstructKind;
877  }
878  void setConstructionKind(ConstructionKind CK) {
879    ConstructKind = CK;
880  }
881
882  typedef ExprIterator arg_iterator;
883  typedef ConstExprIterator const_arg_iterator;
884
885  arg_iterator arg_begin() { return Args; }
886  arg_iterator arg_end() { return Args + NumArgs; }
887  const_arg_iterator arg_begin() const { return Args; }
888  const_arg_iterator arg_end() const { return Args + NumArgs; }
889
890  Expr **getArgs() const { return reinterpret_cast<Expr **>(Args); }
891  unsigned getNumArgs() const { return NumArgs; }
892
893  /// getArg - Return the specified argument.
894  Expr *getArg(unsigned Arg) {
895    assert(Arg < NumArgs && "Arg access out of range!");
896    return cast<Expr>(Args[Arg]);
897  }
898  const Expr *getArg(unsigned Arg) const {
899    assert(Arg < NumArgs && "Arg access out of range!");
900    return cast<Expr>(Args[Arg]);
901  }
902
903  /// setArg - Set the specified argument.
904  void setArg(unsigned Arg, Expr *ArgExpr) {
905    assert(Arg < NumArgs && "Arg access out of range!");
906    Args[Arg] = ArgExpr;
907  }
908
909  SourceRange getSourceRange() const;
910  SourceRange getParenRange() const { return ParenRange; }
911
912  static bool classof(const Stmt *T) {
913    return T->getStmtClass() == CXXConstructExprClass ||
914      T->getStmtClass() == CXXTemporaryObjectExprClass;
915  }
916  static bool classof(const CXXConstructExpr *) { return true; }
917
918  // Iterators
919  child_range children() {
920    return child_range(&Args[0], &Args[0]+NumArgs);
921  }
922
923  friend class ASTStmtReader;
924};
925
926/// CXXFunctionalCastExpr - Represents an explicit C++ type conversion
927/// that uses "functional" notion (C++ [expr.type.conv]). Example: @c
928/// x = int(0.5);
929class CXXFunctionalCastExpr : public ExplicitCastExpr {
930  SourceLocation TyBeginLoc;
931  SourceLocation RParenLoc;
932
933  CXXFunctionalCastExpr(QualType ty, ExprValueKind VK,
934                        TypeSourceInfo *writtenTy,
935                        SourceLocation tyBeginLoc, CastKind kind,
936                        Expr *castExpr, unsigned pathSize,
937                        SourceLocation rParenLoc)
938    : ExplicitCastExpr(CXXFunctionalCastExprClass, ty, VK, kind,
939                       castExpr, pathSize, writtenTy),
940      TyBeginLoc(tyBeginLoc), RParenLoc(rParenLoc) {}
941
942  explicit CXXFunctionalCastExpr(EmptyShell Shell, unsigned PathSize)
943    : ExplicitCastExpr(CXXFunctionalCastExprClass, Shell, PathSize) { }
944
945public:
946  static CXXFunctionalCastExpr *Create(ASTContext &Context, QualType T,
947                                       ExprValueKind VK,
948                                       TypeSourceInfo *Written,
949                                       SourceLocation TyBeginLoc,
950                                       CastKind Kind, Expr *Op,
951                                       const CXXCastPath *Path,
952                                       SourceLocation RPLoc);
953  static CXXFunctionalCastExpr *CreateEmpty(ASTContext &Context,
954                                            unsigned PathSize);
955
956  SourceLocation getTypeBeginLoc() const { return TyBeginLoc; }
957  void setTypeBeginLoc(SourceLocation L) { TyBeginLoc = L; }
958  SourceLocation getRParenLoc() const { return RParenLoc; }
959  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
960
961  SourceRange getSourceRange() const {
962    return SourceRange(TyBeginLoc, RParenLoc);
963  }
964  static bool classof(const Stmt *T) {
965    return T->getStmtClass() == CXXFunctionalCastExprClass;
966  }
967  static bool classof(const CXXFunctionalCastExpr *) { return true; }
968};
969
970/// @brief Represents a C++ functional cast expression that builds a
971/// temporary object.
972///
973/// This expression type represents a C++ "functional" cast
974/// (C++[expr.type.conv]) with N != 1 arguments that invokes a
975/// constructor to build a temporary object. With N == 1 arguments the
976/// functional cast expression will be represented by CXXFunctionalCastExpr.
977/// Example:
978/// @code
979/// struct X { X(int, float); }
980///
981/// X create_X() {
982///   return X(1, 3.14f); // creates a CXXTemporaryObjectExpr
983/// };
984/// @endcode
985class CXXTemporaryObjectExpr : public CXXConstructExpr {
986  TypeSourceInfo *Type;
987
988public:
989  CXXTemporaryObjectExpr(ASTContext &C, CXXConstructorDecl *Cons,
990                         TypeSourceInfo *Type,
991                         Expr **Args,unsigned NumArgs,
992                         SourceRange parenRange,
993                         bool HadMultipleCandidates,
994                         bool ZeroInitialization = false);
995  explicit CXXTemporaryObjectExpr(EmptyShell Empty)
996    : CXXConstructExpr(CXXTemporaryObjectExprClass, Empty), Type() { }
997
998  TypeSourceInfo *getTypeSourceInfo() const { return Type; }
999
1000  SourceRange getSourceRange() const;
1001
1002  static bool classof(const Stmt *T) {
1003    return T->getStmtClass() == CXXTemporaryObjectExprClass;
1004  }
1005  static bool classof(const CXXTemporaryObjectExpr *) { return true; }
1006
1007  friend class ASTStmtReader;
1008};
1009
1010/// CXXScalarValueInitExpr - [C++ 5.2.3p2]
1011/// Expression "T()" which creates a value-initialized rvalue of type
1012/// T, which is a non-class type.
1013///
1014class CXXScalarValueInitExpr : public Expr {
1015  SourceLocation RParenLoc;
1016  TypeSourceInfo *TypeInfo;
1017
1018  friend class ASTStmtReader;
1019
1020public:
1021  /// \brief Create an explicitly-written scalar-value initialization
1022  /// expression.
1023  CXXScalarValueInitExpr(QualType Type,
1024                         TypeSourceInfo *TypeInfo,
1025                         SourceLocation rParenLoc ) :
1026    Expr(CXXScalarValueInitExprClass, Type, VK_RValue, OK_Ordinary,
1027         false, false, Type->isInstantiationDependentType(), false),
1028    RParenLoc(rParenLoc), TypeInfo(TypeInfo) {}
1029
1030  explicit CXXScalarValueInitExpr(EmptyShell Shell)
1031    : Expr(CXXScalarValueInitExprClass, Shell) { }
1032
1033  TypeSourceInfo *getTypeSourceInfo() const {
1034    return TypeInfo;
1035  }
1036
1037  SourceLocation getRParenLoc() const { return RParenLoc; }
1038
1039  SourceRange getSourceRange() const;
1040
1041  static bool classof(const Stmt *T) {
1042    return T->getStmtClass() == CXXScalarValueInitExprClass;
1043  }
1044  static bool classof(const CXXScalarValueInitExpr *) { return true; }
1045
1046  // Iterators
1047  child_range children() { return child_range(); }
1048};
1049
1050/// CXXNewExpr - A new expression for memory allocation and constructor calls,
1051/// e.g: "new CXXNewExpr(foo)".
1052class CXXNewExpr : public Expr {
1053  // Was the usage ::new, i.e. is the global new to be used?
1054  bool GlobalNew : 1;
1055  // Is there an initializer? If not, built-ins are uninitialized, else they're
1056  // value-initialized.
1057  bool Initializer : 1;
1058  // Do we allocate an array? If so, the first SubExpr is the size expression.
1059  bool Array : 1;
1060  // If this is an array allocation, does the usual deallocation
1061  // function for the allocated type want to know the allocated size?
1062  bool UsualArrayDeleteWantsSize : 1;
1063  // Whether the referred constructor (if any) was resolved from an
1064  // overload set having size greater than 1.
1065  bool HadMultipleCandidates : 1;
1066  // The number of placement new arguments.
1067  unsigned NumPlacementArgs : 13;
1068  // The number of constructor arguments. This may be 1 even for non-class
1069  // types; use the pseudo copy constructor.
1070  unsigned NumConstructorArgs : 14;
1071  // Contains an optional array size expression, any number of optional
1072  // placement arguments, and any number of optional constructor arguments,
1073  // in that order.
1074  Stmt **SubExprs;
1075  // Points to the allocation function used.
1076  FunctionDecl *OperatorNew;
1077  // Points to the deallocation function used in case of error. May be null.
1078  FunctionDecl *OperatorDelete;
1079  // Points to the constructor used. Cannot be null if AllocType is a record;
1080  // it would still point at the default constructor (even an implicit one).
1081  // Must be null for all other types.
1082  CXXConstructorDecl *Constructor;
1083
1084  /// \brief The allocated type-source information, as written in the source.
1085  TypeSourceInfo *AllocatedTypeInfo;
1086
1087  /// \brief If the allocated type was expressed as a parenthesized type-id,
1088  /// the source range covering the parenthesized type-id.
1089  SourceRange TypeIdParens;
1090
1091  SourceLocation StartLoc;
1092  SourceLocation EndLoc;
1093  SourceLocation ConstructorLParen;
1094  SourceLocation ConstructorRParen;
1095
1096  friend class ASTStmtReader;
1097public:
1098  CXXNewExpr(ASTContext &C, bool globalNew, FunctionDecl *operatorNew,
1099             Expr **placementArgs, unsigned numPlaceArgs,
1100             SourceRange TypeIdParens,
1101             Expr *arraySize, CXXConstructorDecl *constructor, bool initializer,
1102             Expr **constructorArgs, unsigned numConsArgs,
1103             bool HadMultipleCandidates,
1104             FunctionDecl *operatorDelete, bool usualArrayDeleteWantsSize,
1105             QualType ty, TypeSourceInfo *AllocatedTypeInfo,
1106             SourceLocation startLoc, SourceLocation endLoc,
1107             SourceLocation constructorLParen,
1108             SourceLocation constructorRParen);
1109  explicit CXXNewExpr(EmptyShell Shell)
1110    : Expr(CXXNewExprClass, Shell), SubExprs(0) { }
1111
1112  void AllocateArgsArray(ASTContext &C, bool isArray, unsigned numPlaceArgs,
1113                         unsigned numConsArgs);
1114
1115  QualType getAllocatedType() const {
1116    assert(getType()->isPointerType());
1117    return getType()->getAs<PointerType>()->getPointeeType();
1118  }
1119
1120  TypeSourceInfo *getAllocatedTypeSourceInfo() const {
1121    return AllocatedTypeInfo;
1122  }
1123
1124  /// \brief True if the allocation result needs to be null-checked.
1125  /// C++0x [expr.new]p13:
1126  ///   If the allocation function returns null, initialization shall
1127  ///   not be done, the deallocation function shall not be called,
1128  ///   and the value of the new-expression shall be null.
1129  /// An allocation function is not allowed to return null unless it
1130  /// has a non-throwing exception-specification.  The '03 rule is
1131  /// identical except that the definition of a non-throwing
1132  /// exception specification is just "is it throw()?".
1133  bool shouldNullCheckAllocation(ASTContext &Ctx) const;
1134
1135  FunctionDecl *getOperatorNew() const { return OperatorNew; }
1136  void setOperatorNew(FunctionDecl *D) { OperatorNew = D; }
1137  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
1138  void setOperatorDelete(FunctionDecl *D) { OperatorDelete = D; }
1139  CXXConstructorDecl *getConstructor() const { return Constructor; }
1140  void setConstructor(CXXConstructorDecl *D) { Constructor = D; }
1141
1142  bool isArray() const { return Array; }
1143  Expr *getArraySize() {
1144    return Array ? cast<Expr>(SubExprs[0]) : 0;
1145  }
1146  const Expr *getArraySize() const {
1147    return Array ? cast<Expr>(SubExprs[0]) : 0;
1148  }
1149
1150  unsigned getNumPlacementArgs() const { return NumPlacementArgs; }
1151  Expr **getPlacementArgs() {
1152    return reinterpret_cast<Expr **>(SubExprs + Array);
1153  }
1154
1155  Expr *getPlacementArg(unsigned i) {
1156    assert(i < NumPlacementArgs && "Index out of range");
1157    return cast<Expr>(SubExprs[Array + i]);
1158  }
1159  const Expr *getPlacementArg(unsigned i) const {
1160    assert(i < NumPlacementArgs && "Index out of range");
1161    return cast<Expr>(SubExprs[Array + i]);
1162  }
1163
1164  bool isParenTypeId() const { return TypeIdParens.isValid(); }
1165  SourceRange getTypeIdParens() const { return TypeIdParens; }
1166
1167  bool isGlobalNew() const { return GlobalNew; }
1168  bool hasInitializer() const { return Initializer; }
1169
1170  /// Answers whether the usual array deallocation function for the
1171  /// allocated type expects the size of the allocation as a
1172  /// parameter.
1173  bool doesUsualArrayDeleteWantSize() const {
1174    return UsualArrayDeleteWantsSize;
1175  }
1176
1177  unsigned getNumConstructorArgs() const { return NumConstructorArgs; }
1178
1179  Expr **getConstructorArgs() {
1180    return reinterpret_cast<Expr **>(SubExprs + Array + NumPlacementArgs);
1181  }
1182
1183  Expr *getConstructorArg(unsigned i) {
1184    assert(i < NumConstructorArgs && "Index out of range");
1185    return cast<Expr>(SubExprs[Array + NumPlacementArgs + i]);
1186  }
1187  const Expr *getConstructorArg(unsigned i) const {
1188    assert(i < NumConstructorArgs && "Index out of range");
1189    return cast<Expr>(SubExprs[Array + NumPlacementArgs + i]);
1190  }
1191
1192  /// \brief Whether the new expression refers a constructor that was
1193  /// resolved from an overloaded set having size greater than 1.
1194  bool hadMultipleCandidates() const { return HadMultipleCandidates; }
1195  void setHadMultipleCandidates(bool V) { HadMultipleCandidates = V; }
1196
1197  typedef ExprIterator arg_iterator;
1198  typedef ConstExprIterator const_arg_iterator;
1199
1200  arg_iterator placement_arg_begin() {
1201    return SubExprs + Array;
1202  }
1203  arg_iterator placement_arg_end() {
1204    return SubExprs + Array + getNumPlacementArgs();
1205  }
1206  const_arg_iterator placement_arg_begin() const {
1207    return SubExprs + Array;
1208  }
1209  const_arg_iterator placement_arg_end() const {
1210    return SubExprs + Array + getNumPlacementArgs();
1211  }
1212
1213  arg_iterator constructor_arg_begin() {
1214    return SubExprs + Array + getNumPlacementArgs();
1215  }
1216  arg_iterator constructor_arg_end() {
1217    return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
1218  }
1219  const_arg_iterator constructor_arg_begin() const {
1220    return SubExprs + Array + getNumPlacementArgs();
1221  }
1222  const_arg_iterator constructor_arg_end() const {
1223    return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
1224  }
1225
1226  typedef Stmt **raw_arg_iterator;
1227  raw_arg_iterator raw_arg_begin() { return SubExprs; }
1228  raw_arg_iterator raw_arg_end() {
1229    return SubExprs + Array + getNumPlacementArgs() + getNumConstructorArgs();
1230  }
1231  const_arg_iterator raw_arg_begin() const { return SubExprs; }
1232  const_arg_iterator raw_arg_end() const { return constructor_arg_end(); }
1233
1234  SourceLocation getStartLoc() const { return StartLoc; }
1235  SourceLocation getEndLoc() const { return EndLoc; }
1236
1237  SourceLocation getConstructorLParen() const { return ConstructorLParen; }
1238  SourceLocation getConstructorRParen() const { return ConstructorRParen; }
1239
1240  SourceRange getSourceRange() const {
1241    return SourceRange(StartLoc, EndLoc);
1242  }
1243
1244  static bool classof(const Stmt *T) {
1245    return T->getStmtClass() == CXXNewExprClass;
1246  }
1247  static bool classof(const CXXNewExpr *) { return true; }
1248
1249  // Iterators
1250  child_range children() {
1251    return child_range(&SubExprs[0],
1252                       &SubExprs[0] + Array + getNumPlacementArgs()
1253                         + getNumConstructorArgs());
1254  }
1255};
1256
1257/// CXXDeleteExpr - A delete expression for memory deallocation and destructor
1258/// calls, e.g. "delete[] pArray".
1259class CXXDeleteExpr : public Expr {
1260  // Is this a forced global delete, i.e. "::delete"?
1261  bool GlobalDelete : 1;
1262  // Is this the array form of delete, i.e. "delete[]"?
1263  bool ArrayForm : 1;
1264  // ArrayFormAsWritten can be different from ArrayForm if 'delete' is applied
1265  // to pointer-to-array type (ArrayFormAsWritten will be false while ArrayForm
1266  // will be true).
1267  bool ArrayFormAsWritten : 1;
1268  // Does the usual deallocation function for the element type require
1269  // a size_t argument?
1270  bool UsualArrayDeleteWantsSize : 1;
1271  // Points to the operator delete overload that is used. Could be a member.
1272  FunctionDecl *OperatorDelete;
1273  // The pointer expression to be deleted.
1274  Stmt *Argument;
1275  // Location of the expression.
1276  SourceLocation Loc;
1277public:
1278  CXXDeleteExpr(QualType ty, bool globalDelete, bool arrayForm,
1279                bool arrayFormAsWritten, bool usualArrayDeleteWantsSize,
1280                FunctionDecl *operatorDelete, Expr *arg, SourceLocation loc)
1281    : Expr(CXXDeleteExprClass, ty, VK_RValue, OK_Ordinary, false, false,
1282           arg->isInstantiationDependent(),
1283           arg->containsUnexpandedParameterPack()),
1284      GlobalDelete(globalDelete),
1285      ArrayForm(arrayForm), ArrayFormAsWritten(arrayFormAsWritten),
1286      UsualArrayDeleteWantsSize(usualArrayDeleteWantsSize),
1287      OperatorDelete(operatorDelete), Argument(arg), Loc(loc) { }
1288  explicit CXXDeleteExpr(EmptyShell Shell)
1289    : Expr(CXXDeleteExprClass, Shell), OperatorDelete(0), Argument(0) { }
1290
1291  bool isGlobalDelete() const { return GlobalDelete; }
1292  bool isArrayForm() const { return ArrayForm; }
1293  bool isArrayFormAsWritten() const { return ArrayFormAsWritten; }
1294
1295  /// Answers whether the usual array deallocation function for the
1296  /// allocated type expects the size of the allocation as a
1297  /// parameter.  This can be true even if the actual deallocation
1298  /// function that we're using doesn't want a size.
1299  bool doesUsualArrayDeleteWantSize() const {
1300    return UsualArrayDeleteWantsSize;
1301  }
1302
1303  FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
1304
1305  Expr *getArgument() { return cast<Expr>(Argument); }
1306  const Expr *getArgument() const { return cast<Expr>(Argument); }
1307
1308  /// \brief Retrieve the type being destroyed.  If the type being
1309  /// destroyed is a dependent type which may or may not be a pointer,
1310  /// return an invalid type.
1311  QualType getDestroyedType() const;
1312
1313  SourceRange getSourceRange() const {
1314    return SourceRange(Loc, Argument->getLocEnd());
1315  }
1316
1317  static bool classof(const Stmt *T) {
1318    return T->getStmtClass() == CXXDeleteExprClass;
1319  }
1320  static bool classof(const CXXDeleteExpr *) { return true; }
1321
1322  // Iterators
1323  child_range children() { return child_range(&Argument, &Argument+1); }
1324
1325  friend class ASTStmtReader;
1326};
1327
1328/// \brief Structure used to store the type being destroyed by a
1329/// pseudo-destructor expression.
1330class PseudoDestructorTypeStorage {
1331  /// \brief Either the type source information or the name of the type, if
1332  /// it couldn't be resolved due to type-dependence.
1333  llvm::PointerUnion<TypeSourceInfo *, IdentifierInfo *> Type;
1334
1335  /// \brief The starting source location of the pseudo-destructor type.
1336  SourceLocation Location;
1337
1338public:
1339  PseudoDestructorTypeStorage() { }
1340
1341  PseudoDestructorTypeStorage(IdentifierInfo *II, SourceLocation Loc)
1342    : Type(II), Location(Loc) { }
1343
1344  PseudoDestructorTypeStorage(TypeSourceInfo *Info);
1345
1346  TypeSourceInfo *getTypeSourceInfo() const {
1347    return Type.dyn_cast<TypeSourceInfo *>();
1348  }
1349
1350  IdentifierInfo *getIdentifier() const {
1351    return Type.dyn_cast<IdentifierInfo *>();
1352  }
1353
1354  SourceLocation getLocation() const { return Location; }
1355};
1356
1357/// \brief Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
1358///
1359/// A pseudo-destructor is an expression that looks like a member access to a
1360/// destructor of a scalar type, except that scalar types don't have
1361/// destructors. For example:
1362///
1363/// \code
1364/// typedef int T;
1365/// void f(int *p) {
1366///   p->T::~T();
1367/// }
1368/// \endcode
1369///
1370/// Pseudo-destructors typically occur when instantiating templates such as:
1371///
1372/// \code
1373/// template<typename T>
1374/// void destroy(T* ptr) {
1375///   ptr->T::~T();
1376/// }
1377/// \endcode
1378///
1379/// for scalar types. A pseudo-destructor expression has no run-time semantics
1380/// beyond evaluating the base expression.
1381class CXXPseudoDestructorExpr : public Expr {
1382  /// \brief The base expression (that is being destroyed).
1383  Stmt *Base;
1384
1385  /// \brief Whether the operator was an arrow ('->'); otherwise, it was a
1386  /// period ('.').
1387  bool IsArrow : 1;
1388
1389  /// \brief The location of the '.' or '->' operator.
1390  SourceLocation OperatorLoc;
1391
1392  /// \brief The nested-name-specifier that follows the operator, if present.
1393  NestedNameSpecifierLoc QualifierLoc;
1394
1395  /// \brief The type that precedes the '::' in a qualified pseudo-destructor
1396  /// expression.
1397  TypeSourceInfo *ScopeType;
1398
1399  /// \brief The location of the '::' in a qualified pseudo-destructor
1400  /// expression.
1401  SourceLocation ColonColonLoc;
1402
1403  /// \brief The location of the '~'.
1404  SourceLocation TildeLoc;
1405
1406  /// \brief The type being destroyed, or its name if we were unable to
1407  /// resolve the name.
1408  PseudoDestructorTypeStorage DestroyedType;
1409
1410  friend class ASTStmtReader;
1411
1412public:
1413  CXXPseudoDestructorExpr(ASTContext &Context,
1414                          Expr *Base, bool isArrow, SourceLocation OperatorLoc,
1415                          NestedNameSpecifierLoc QualifierLoc,
1416                          TypeSourceInfo *ScopeType,
1417                          SourceLocation ColonColonLoc,
1418                          SourceLocation TildeLoc,
1419                          PseudoDestructorTypeStorage DestroyedType);
1420
1421  explicit CXXPseudoDestructorExpr(EmptyShell Shell)
1422    : Expr(CXXPseudoDestructorExprClass, Shell),
1423      Base(0), IsArrow(false), QualifierLoc(), ScopeType(0) { }
1424
1425  Expr *getBase() const { return cast<Expr>(Base); }
1426
1427  /// \brief Determines whether this member expression actually had
1428  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
1429  /// x->Base::foo.
1430  bool hasQualifier() const { return QualifierLoc; }
1431
1432  /// \brief Retrieves the nested-name-specifier that qualifies the type name,
1433  /// with source-location information.
1434  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
1435
1436  /// \brief If the member name was qualified, retrieves the
1437  /// nested-name-specifier that precedes the member name. Otherwise, returns
1438  /// NULL.
1439  NestedNameSpecifier *getQualifier() const {
1440    return QualifierLoc.getNestedNameSpecifier();
1441  }
1442
1443  /// \brief Determine whether this pseudo-destructor expression was written
1444  /// using an '->' (otherwise, it used a '.').
1445  bool isArrow() const { return IsArrow; }
1446
1447  /// \brief Retrieve the location of the '.' or '->' operator.
1448  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1449
1450  /// \brief Retrieve the scope type in a qualified pseudo-destructor
1451  /// expression.
1452  ///
1453  /// Pseudo-destructor expressions can have extra qualification within them
1454  /// that is not part of the nested-name-specifier, e.g., \c p->T::~T().
1455  /// Here, if the object type of the expression is (or may be) a scalar type,
1456  /// \p T may also be a scalar type and, therefore, cannot be part of a
1457  /// nested-name-specifier. It is stored as the "scope type" of the pseudo-
1458  /// destructor expression.
1459  TypeSourceInfo *getScopeTypeInfo() const { return ScopeType; }
1460
1461  /// \brief Retrieve the location of the '::' in a qualified pseudo-destructor
1462  /// expression.
1463  SourceLocation getColonColonLoc() const { return ColonColonLoc; }
1464
1465  /// \brief Retrieve the location of the '~'.
1466  SourceLocation getTildeLoc() const { return TildeLoc; }
1467
1468  /// \brief Retrieve the source location information for the type
1469  /// being destroyed.
1470  ///
1471  /// This type-source information is available for non-dependent
1472  /// pseudo-destructor expressions and some dependent pseudo-destructor
1473  /// expressions. Returns NULL if we only have the identifier for a
1474  /// dependent pseudo-destructor expression.
1475  TypeSourceInfo *getDestroyedTypeInfo() const {
1476    return DestroyedType.getTypeSourceInfo();
1477  }
1478
1479  /// \brief In a dependent pseudo-destructor expression for which we do not
1480  /// have full type information on the destroyed type, provides the name
1481  /// of the destroyed type.
1482  IdentifierInfo *getDestroyedTypeIdentifier() const {
1483    return DestroyedType.getIdentifier();
1484  }
1485
1486  /// \brief Retrieve the type being destroyed.
1487  QualType getDestroyedType() const;
1488
1489  /// \brief Retrieve the starting location of the type being destroyed.
1490  SourceLocation getDestroyedTypeLoc() const {
1491    return DestroyedType.getLocation();
1492  }
1493
1494  /// \brief Set the name of destroyed type for a dependent pseudo-destructor
1495  /// expression.
1496  void setDestroyedType(IdentifierInfo *II, SourceLocation Loc) {
1497    DestroyedType = PseudoDestructorTypeStorage(II, Loc);
1498  }
1499
1500  /// \brief Set the destroyed type.
1501  void setDestroyedType(TypeSourceInfo *Info) {
1502    DestroyedType = PseudoDestructorTypeStorage(Info);
1503  }
1504
1505  SourceRange getSourceRange() const;
1506
1507  static bool classof(const Stmt *T) {
1508    return T->getStmtClass() == CXXPseudoDestructorExprClass;
1509  }
1510  static bool classof(const CXXPseudoDestructorExpr *) { return true; }
1511
1512  // Iterators
1513  child_range children() { return child_range(&Base, &Base + 1); }
1514};
1515
1516/// UnaryTypeTraitExpr - A GCC or MS unary type trait, as used in the
1517/// implementation of TR1/C++0x type trait templates.
1518/// Example:
1519/// __is_pod(int) == true
1520/// __is_enum(std::string) == false
1521class UnaryTypeTraitExpr : public Expr {
1522  /// UTT - The trait. A UnaryTypeTrait enum in MSVC compat unsigned.
1523  unsigned UTT : 31;
1524  /// The value of the type trait. Unspecified if dependent.
1525  bool Value : 1;
1526
1527  /// Loc - The location of the type trait keyword.
1528  SourceLocation Loc;
1529
1530  /// RParen - The location of the closing paren.
1531  SourceLocation RParen;
1532
1533  /// The type being queried.
1534  TypeSourceInfo *QueriedType;
1535
1536public:
1537  UnaryTypeTraitExpr(SourceLocation loc, UnaryTypeTrait utt,
1538                     TypeSourceInfo *queried, bool value,
1539                     SourceLocation rparen, QualType ty)
1540    : Expr(UnaryTypeTraitExprClass, ty, VK_RValue, OK_Ordinary,
1541           false,  queried->getType()->isDependentType(),
1542           queried->getType()->isInstantiationDependentType(),
1543           queried->getType()->containsUnexpandedParameterPack()),
1544      UTT(utt), Value(value), Loc(loc), RParen(rparen), QueriedType(queried) { }
1545
1546  explicit UnaryTypeTraitExpr(EmptyShell Empty)
1547    : Expr(UnaryTypeTraitExprClass, Empty), UTT(0), Value(false),
1548      QueriedType() { }
1549
1550  SourceRange getSourceRange() const { return SourceRange(Loc, RParen);}
1551
1552  UnaryTypeTrait getTrait() const { return static_cast<UnaryTypeTrait>(UTT); }
1553
1554  QualType getQueriedType() const { return QueriedType->getType(); }
1555
1556  TypeSourceInfo *getQueriedTypeSourceInfo() const { return QueriedType; }
1557
1558  bool getValue() const { return Value; }
1559
1560  static bool classof(const Stmt *T) {
1561    return T->getStmtClass() == UnaryTypeTraitExprClass;
1562  }
1563  static bool classof(const UnaryTypeTraitExpr *) { return true; }
1564
1565  // Iterators
1566  child_range children() { return child_range(); }
1567
1568  friend class ASTStmtReader;
1569};
1570
1571/// BinaryTypeTraitExpr - A GCC or MS binary type trait, as used in the
1572/// implementation of TR1/C++0x type trait templates.
1573/// Example:
1574/// __is_base_of(Base, Derived) == true
1575class BinaryTypeTraitExpr : public Expr {
1576  /// BTT - The trait. A BinaryTypeTrait enum in MSVC compat unsigned.
1577  unsigned BTT : 8;
1578
1579  /// The value of the type trait. Unspecified if dependent.
1580  bool Value : 1;
1581
1582  /// Loc - The location of the type trait keyword.
1583  SourceLocation Loc;
1584
1585  /// RParen - The location of the closing paren.
1586  SourceLocation RParen;
1587
1588  /// The lhs type being queried.
1589  TypeSourceInfo *LhsType;
1590
1591  /// The rhs type being queried.
1592  TypeSourceInfo *RhsType;
1593
1594public:
1595  BinaryTypeTraitExpr(SourceLocation loc, BinaryTypeTrait btt,
1596                     TypeSourceInfo *lhsType, TypeSourceInfo *rhsType,
1597                     bool value, SourceLocation rparen, QualType ty)
1598    : Expr(BinaryTypeTraitExprClass, ty, VK_RValue, OK_Ordinary, false,
1599           lhsType->getType()->isDependentType() ||
1600           rhsType->getType()->isDependentType(),
1601           (lhsType->getType()->isInstantiationDependentType() ||
1602            rhsType->getType()->isInstantiationDependentType()),
1603           (lhsType->getType()->containsUnexpandedParameterPack() ||
1604            rhsType->getType()->containsUnexpandedParameterPack())),
1605      BTT(btt), Value(value), Loc(loc), RParen(rparen),
1606      LhsType(lhsType), RhsType(rhsType) { }
1607
1608
1609  explicit BinaryTypeTraitExpr(EmptyShell Empty)
1610    : Expr(BinaryTypeTraitExprClass, Empty), BTT(0), Value(false),
1611      LhsType(), RhsType() { }
1612
1613  SourceRange getSourceRange() const {
1614    return SourceRange(Loc, RParen);
1615  }
1616
1617  BinaryTypeTrait getTrait() const {
1618    return static_cast<BinaryTypeTrait>(BTT);
1619  }
1620
1621  QualType getLhsType() const { return LhsType->getType(); }
1622  QualType getRhsType() const { return RhsType->getType(); }
1623
1624  TypeSourceInfo *getLhsTypeSourceInfo() const { return LhsType; }
1625  TypeSourceInfo *getRhsTypeSourceInfo() const { return RhsType; }
1626
1627  bool getValue() const { assert(!isTypeDependent()); return Value; }
1628
1629  static bool classof(const Stmt *T) {
1630    return T->getStmtClass() == BinaryTypeTraitExprClass;
1631  }
1632  static bool classof(const BinaryTypeTraitExpr *) { return true; }
1633
1634  // Iterators
1635  child_range children() { return child_range(); }
1636
1637  friend class ASTStmtReader;
1638};
1639
1640/// ArrayTypeTraitExpr - An Embarcadero array type trait, as used in the
1641/// implementation of __array_rank and __array_extent.
1642/// Example:
1643/// __array_rank(int[10][20]) == 2
1644/// __array_extent(int, 1)    == 20
1645class ArrayTypeTraitExpr : public Expr {
1646  /// ATT - The trait. An ArrayTypeTrait enum in MSVC compat unsigned.
1647  unsigned ATT : 2;
1648
1649  /// The value of the type trait. Unspecified if dependent.
1650  uint64_t Value;
1651
1652  /// The array dimension being queried, or -1 if not used
1653  Expr *Dimension;
1654
1655  /// Loc - The location of the type trait keyword.
1656  SourceLocation Loc;
1657
1658  /// RParen - The location of the closing paren.
1659  SourceLocation RParen;
1660
1661  /// The type being queried.
1662  TypeSourceInfo *QueriedType;
1663
1664public:
1665  ArrayTypeTraitExpr(SourceLocation loc, ArrayTypeTrait att,
1666                     TypeSourceInfo *queried, uint64_t value,
1667                     Expr *dimension, SourceLocation rparen, QualType ty)
1668    : Expr(ArrayTypeTraitExprClass, ty, VK_RValue, OK_Ordinary,
1669           false, queried->getType()->isDependentType(),
1670           (queried->getType()->isInstantiationDependentType() ||
1671            (dimension && dimension->isInstantiationDependent())),
1672           queried->getType()->containsUnexpandedParameterPack()),
1673      ATT(att), Value(value), Dimension(dimension),
1674      Loc(loc), RParen(rparen), QueriedType(queried) { }
1675
1676
1677  explicit ArrayTypeTraitExpr(EmptyShell Empty)
1678    : Expr(ArrayTypeTraitExprClass, Empty), ATT(0), Value(false),
1679      QueriedType() { }
1680
1681  virtual ~ArrayTypeTraitExpr() { }
1682
1683  virtual SourceRange getSourceRange() const {
1684    return SourceRange(Loc, RParen);
1685  }
1686
1687  ArrayTypeTrait getTrait() const { return static_cast<ArrayTypeTrait>(ATT); }
1688
1689  QualType getQueriedType() const { return QueriedType->getType(); }
1690
1691  TypeSourceInfo *getQueriedTypeSourceInfo() const { return QueriedType; }
1692
1693  uint64_t getValue() const { assert(!isTypeDependent()); return Value; }
1694
1695  Expr *getDimensionExpression() const { return Dimension; }
1696
1697  static bool classof(const Stmt *T) {
1698    return T->getStmtClass() == ArrayTypeTraitExprClass;
1699  }
1700  static bool classof(const ArrayTypeTraitExpr *) { return true; }
1701
1702  // Iterators
1703  child_range children() { return child_range(); }
1704
1705  friend class ASTStmtReader;
1706};
1707
1708/// ExpressionTraitExpr - An expression trait intrinsic
1709/// Example:
1710/// __is_lvalue_expr(std::cout) == true
1711/// __is_lvalue_expr(1) == false
1712class ExpressionTraitExpr : public Expr {
1713  /// ET - The trait. A ExpressionTrait enum in MSVC compat unsigned.
1714  unsigned ET : 31;
1715  /// The value of the type trait. Unspecified if dependent.
1716  bool Value : 1;
1717
1718  /// Loc - The location of the type trait keyword.
1719  SourceLocation Loc;
1720
1721  /// RParen - The location of the closing paren.
1722  SourceLocation RParen;
1723
1724  Expr* QueriedExpression;
1725public:
1726  ExpressionTraitExpr(SourceLocation loc, ExpressionTrait et,
1727                     Expr *queried, bool value,
1728                     SourceLocation rparen, QualType resultType)
1729    : Expr(ExpressionTraitExprClass, resultType, VK_RValue, OK_Ordinary,
1730           false, // Not type-dependent
1731           // Value-dependent if the argument is type-dependent.
1732           queried->isTypeDependent(),
1733           queried->isInstantiationDependent(),
1734           queried->containsUnexpandedParameterPack()),
1735      ET(et), Value(value), Loc(loc), RParen(rparen),
1736      QueriedExpression(queried) { }
1737
1738  explicit ExpressionTraitExpr(EmptyShell Empty)
1739    : Expr(ExpressionTraitExprClass, Empty), ET(0), Value(false),
1740      QueriedExpression() { }
1741
1742  SourceRange getSourceRange() const { return SourceRange(Loc, RParen);}
1743
1744  ExpressionTrait getTrait() const { return static_cast<ExpressionTrait>(ET); }
1745
1746  Expr *getQueriedExpression() const { return QueriedExpression; }
1747
1748  bool getValue() const { return Value; }
1749
1750  static bool classof(const Stmt *T) {
1751    return T->getStmtClass() == ExpressionTraitExprClass;
1752  }
1753  static bool classof(const ExpressionTraitExpr *) { return true; }
1754
1755  // Iterators
1756  child_range children() { return child_range(); }
1757
1758  friend class ASTStmtReader;
1759};
1760
1761
1762/// \brief A reference to an overloaded function set, either an
1763/// \t UnresolvedLookupExpr or an \t UnresolvedMemberExpr.
1764class OverloadExpr : public Expr {
1765  /// The results.  These are undesugared, which is to say, they may
1766  /// include UsingShadowDecls.  Access is relative to the naming
1767  /// class.
1768  // FIXME: Allocate this data after the OverloadExpr subclass.
1769  DeclAccessPair *Results;
1770  unsigned NumResults;
1771
1772  /// The common name of these declarations.
1773  DeclarationNameInfo NameInfo;
1774
1775  /// \brief The nested-name-specifier that qualifies the name, if any.
1776  NestedNameSpecifierLoc QualifierLoc;
1777
1778protected:
1779  /// True if the name was a template-id.
1780  bool HasExplicitTemplateArgs;
1781
1782  OverloadExpr(StmtClass K, ASTContext &C,
1783               NestedNameSpecifierLoc QualifierLoc,
1784               const DeclarationNameInfo &NameInfo,
1785               const TemplateArgumentListInfo *TemplateArgs,
1786               UnresolvedSetIterator Begin, UnresolvedSetIterator End,
1787               bool KnownDependent,
1788               bool KnownInstantiationDependent,
1789               bool KnownContainsUnexpandedParameterPack);
1790
1791  OverloadExpr(StmtClass K, EmptyShell Empty)
1792    : Expr(K, Empty), Results(0), NumResults(0),
1793      QualifierLoc(), HasExplicitTemplateArgs(false) { }
1794
1795  void initializeResults(ASTContext &C,
1796                         UnresolvedSetIterator Begin,
1797                         UnresolvedSetIterator End);
1798
1799public:
1800  struct FindResult {
1801    OverloadExpr *Expression;
1802    bool IsAddressOfOperand;
1803    bool HasFormOfMemberPointer;
1804  };
1805
1806  /// Finds the overloaded expression in the given expression of
1807  /// OverloadTy.
1808  ///
1809  /// \return the expression (which must be there) and true if it has
1810  /// the particular form of a member pointer expression
1811  static FindResult find(Expr *E) {
1812    assert(E->getType()->isSpecificBuiltinType(BuiltinType::Overload));
1813
1814    FindResult Result;
1815
1816    E = E->IgnoreParens();
1817    if (isa<UnaryOperator>(E)) {
1818      assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
1819      E = cast<UnaryOperator>(E)->getSubExpr();
1820      OverloadExpr *Ovl = cast<OverloadExpr>(E->IgnoreParens());
1821
1822      Result.HasFormOfMemberPointer = (E == Ovl && Ovl->getQualifier());
1823      Result.IsAddressOfOperand = true;
1824      Result.Expression = Ovl;
1825    } else {
1826      Result.HasFormOfMemberPointer = false;
1827      Result.IsAddressOfOperand = false;
1828      Result.Expression = cast<OverloadExpr>(E);
1829    }
1830
1831    return Result;
1832  }
1833
1834  /// Gets the naming class of this lookup, if any.
1835  CXXRecordDecl *getNamingClass() const;
1836
1837  typedef UnresolvedSetImpl::iterator decls_iterator;
1838  decls_iterator decls_begin() const { return UnresolvedSetIterator(Results); }
1839  decls_iterator decls_end() const {
1840    return UnresolvedSetIterator(Results + NumResults);
1841  }
1842
1843  /// Gets the number of declarations in the unresolved set.
1844  unsigned getNumDecls() const { return NumResults; }
1845
1846  /// Gets the full name info.
1847  const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
1848
1849  /// Gets the name looked up.
1850  DeclarationName getName() const { return NameInfo.getName(); }
1851
1852  /// Gets the location of the name.
1853  SourceLocation getNameLoc() const { return NameInfo.getLoc(); }
1854
1855  /// Fetches the nested-name qualifier, if one was given.
1856  NestedNameSpecifier *getQualifier() const {
1857    return QualifierLoc.getNestedNameSpecifier();
1858  }
1859
1860  /// Fetches the nested-name qualifier with source-location information, if
1861  /// one was given.
1862  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
1863
1864  /// \brief Determines whether this expression had an explicit
1865  /// template argument list, e.g. f<int>.
1866  bool hasExplicitTemplateArgs() const { return HasExplicitTemplateArgs; }
1867
1868  ASTTemplateArgumentListInfo &getExplicitTemplateArgs(); // defined far below
1869
1870  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
1871    return const_cast<OverloadExpr*>(this)->getExplicitTemplateArgs();
1872  }
1873
1874  /// \brief Retrieves the optional explicit template arguments.
1875  /// This points to the same data as getExplicitTemplateArgs(), but
1876  /// returns null if there are no explicit template arguments.
1877  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() {
1878    if (!hasExplicitTemplateArgs()) return 0;
1879    return &getExplicitTemplateArgs();
1880  }
1881
1882  static bool classof(const Stmt *T) {
1883    return T->getStmtClass() == UnresolvedLookupExprClass ||
1884           T->getStmtClass() == UnresolvedMemberExprClass;
1885  }
1886  static bool classof(const OverloadExpr *) { return true; }
1887
1888  friend class ASTStmtReader;
1889  friend class ASTStmtWriter;
1890};
1891
1892/// \brief A reference to a name which we were able to look up during
1893/// parsing but could not resolve to a specific declaration.  This
1894/// arises in several ways:
1895///   * we might be waiting for argument-dependent lookup
1896///   * the name might resolve to an overloaded function
1897/// and eventually:
1898///   * the lookup might have included a function template
1899/// These never include UnresolvedUsingValueDecls, which are always
1900/// class members and therefore appear only in
1901/// UnresolvedMemberLookupExprs.
1902class UnresolvedLookupExpr : public OverloadExpr {
1903  /// True if these lookup results should be extended by
1904  /// argument-dependent lookup if this is the operand of a function
1905  /// call.
1906  bool RequiresADL;
1907
1908  /// True if namespace ::std should be considered an associated namespace
1909  /// for the purposes of argument-dependent lookup. See C++0x [stmt.ranged]p1.
1910  bool StdIsAssociatedNamespace;
1911
1912  /// True if these lookup results are overloaded.  This is pretty
1913  /// trivially rederivable if we urgently need to kill this field.
1914  bool Overloaded;
1915
1916  /// The naming class (C++ [class.access.base]p5) of the lookup, if
1917  /// any.  This can generally be recalculated from the context chain,
1918  /// but that can be fairly expensive for unqualified lookups.  If we
1919  /// want to improve memory use here, this could go in a union
1920  /// against the qualified-lookup bits.
1921  CXXRecordDecl *NamingClass;
1922
1923  UnresolvedLookupExpr(ASTContext &C,
1924                       CXXRecordDecl *NamingClass,
1925                       NestedNameSpecifierLoc QualifierLoc,
1926                       const DeclarationNameInfo &NameInfo,
1927                       bool RequiresADL, bool Overloaded,
1928                       const TemplateArgumentListInfo *TemplateArgs,
1929                       UnresolvedSetIterator Begin, UnresolvedSetIterator End,
1930                       bool StdIsAssociatedNamespace)
1931    : OverloadExpr(UnresolvedLookupExprClass, C, QualifierLoc, NameInfo,
1932                   TemplateArgs, Begin, End, false, false, false),
1933      RequiresADL(RequiresADL),
1934      StdIsAssociatedNamespace(StdIsAssociatedNamespace),
1935      Overloaded(Overloaded), NamingClass(NamingClass)
1936  {}
1937
1938  UnresolvedLookupExpr(EmptyShell Empty)
1939    : OverloadExpr(UnresolvedLookupExprClass, Empty),
1940      RequiresADL(false), StdIsAssociatedNamespace(false), Overloaded(false),
1941      NamingClass(0)
1942  {}
1943
1944  friend class ASTStmtReader;
1945
1946public:
1947  static UnresolvedLookupExpr *Create(ASTContext &C,
1948                                      CXXRecordDecl *NamingClass,
1949                                      NestedNameSpecifierLoc QualifierLoc,
1950                                      const DeclarationNameInfo &NameInfo,
1951                                      bool ADL, bool Overloaded,
1952                                      UnresolvedSetIterator Begin,
1953                                      UnresolvedSetIterator End,
1954                                      bool StdIsAssociatedNamespace = false) {
1955    assert((ADL || !StdIsAssociatedNamespace) &&
1956           "std considered associated namespace when not performing ADL");
1957    return new(C) UnresolvedLookupExpr(C, NamingClass, QualifierLoc, NameInfo,
1958                                       ADL, Overloaded, 0, Begin, End,
1959                                       StdIsAssociatedNamespace);
1960  }
1961
1962  static UnresolvedLookupExpr *Create(ASTContext &C,
1963                                      CXXRecordDecl *NamingClass,
1964                                      NestedNameSpecifierLoc QualifierLoc,
1965                                      const DeclarationNameInfo &NameInfo,
1966                                      bool ADL,
1967                                      const TemplateArgumentListInfo &Args,
1968                                      UnresolvedSetIterator Begin,
1969                                      UnresolvedSetIterator End);
1970
1971  static UnresolvedLookupExpr *CreateEmpty(ASTContext &C,
1972                                           bool HasExplicitTemplateArgs,
1973                                           unsigned NumTemplateArgs);
1974
1975  /// True if this declaration should be extended by
1976  /// argument-dependent lookup.
1977  bool requiresADL() const { return RequiresADL; }
1978
1979  /// True if namespace ::std should be artificially added to the set of
1980  /// associated namespaecs for argument-dependent lookup purposes.
1981  bool isStdAssociatedNamespace() const { return StdIsAssociatedNamespace; }
1982
1983  /// True if this lookup is overloaded.
1984  bool isOverloaded() const { return Overloaded; }
1985
1986  /// Gets the 'naming class' (in the sense of C++0x
1987  /// [class.access.base]p5) of the lookup.  This is the scope
1988  /// that was looked in to find these results.
1989  CXXRecordDecl *getNamingClass() const { return NamingClass; }
1990
1991  // Note that, inconsistently with the explicit-template-argument AST
1992  // nodes, users are *forbidden* from calling these methods on objects
1993  // without explicit template arguments.
1994
1995  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
1996    assert(hasExplicitTemplateArgs());
1997    return *reinterpret_cast<ASTTemplateArgumentListInfo*>(this + 1);
1998  }
1999
2000  /// Gets a reference to the explicit template argument list.
2001  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2002    assert(hasExplicitTemplateArgs());
2003    return *reinterpret_cast<const ASTTemplateArgumentListInfo*>(this + 1);
2004  }
2005
2006  /// \brief Retrieves the optional explicit template arguments.
2007  /// This points to the same data as getExplicitTemplateArgs(), but
2008  /// returns null if there are no explicit template arguments.
2009  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() {
2010    if (!hasExplicitTemplateArgs()) return 0;
2011    return &getExplicitTemplateArgs();
2012  }
2013
2014  /// \brief Copies the template arguments (if present) into the given
2015  /// structure.
2016  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2017    getExplicitTemplateArgs().copyInto(List);
2018  }
2019
2020  SourceLocation getLAngleLoc() const {
2021    return getExplicitTemplateArgs().LAngleLoc;
2022  }
2023
2024  SourceLocation getRAngleLoc() const {
2025    return getExplicitTemplateArgs().RAngleLoc;
2026  }
2027
2028  TemplateArgumentLoc const *getTemplateArgs() const {
2029    return getExplicitTemplateArgs().getTemplateArgs();
2030  }
2031
2032  unsigned getNumTemplateArgs() const {
2033    return getExplicitTemplateArgs().NumTemplateArgs;
2034  }
2035
2036  SourceRange getSourceRange() const {
2037    SourceRange Range(getNameInfo().getSourceRange());
2038    if (getQualifierLoc())
2039      Range.setBegin(getQualifierLoc().getBeginLoc());
2040    if (hasExplicitTemplateArgs())
2041      Range.setEnd(getRAngleLoc());
2042    return Range;
2043  }
2044
2045  child_range children() { return child_range(); }
2046
2047  static bool classof(const Stmt *T) {
2048    return T->getStmtClass() == UnresolvedLookupExprClass;
2049  }
2050  static bool classof(const UnresolvedLookupExpr *) { return true; }
2051};
2052
2053/// \brief A qualified reference to a name whose declaration cannot
2054/// yet be resolved.
2055///
2056/// DependentScopeDeclRefExpr is similar to DeclRefExpr in that
2057/// it expresses a reference to a declaration such as
2058/// X<T>::value. The difference, however, is that an
2059/// DependentScopeDeclRefExpr node is used only within C++ templates when
2060/// the qualification (e.g., X<T>::) refers to a dependent type. In
2061/// this case, X<T>::value cannot resolve to a declaration because the
2062/// declaration will differ from on instantiation of X<T> to the
2063/// next. Therefore, DependentScopeDeclRefExpr keeps track of the
2064/// qualifier (X<T>::) and the name of the entity being referenced
2065/// ("value"). Such expressions will instantiate to a DeclRefExpr once the
2066/// declaration can be found.
2067class DependentScopeDeclRefExpr : public Expr {
2068  /// \brief The nested-name-specifier that qualifies this unresolved
2069  /// declaration name.
2070  NestedNameSpecifierLoc QualifierLoc;
2071
2072  /// The name of the entity we will be referencing.
2073  DeclarationNameInfo NameInfo;
2074
2075  /// \brief Whether the name includes explicit template arguments.
2076  bool HasExplicitTemplateArgs;
2077
2078  DependentScopeDeclRefExpr(QualType T,
2079                            NestedNameSpecifierLoc QualifierLoc,
2080                            const DeclarationNameInfo &NameInfo,
2081                            const TemplateArgumentListInfo *Args);
2082
2083public:
2084  static DependentScopeDeclRefExpr *Create(ASTContext &C,
2085                                           NestedNameSpecifierLoc QualifierLoc,
2086                                           const DeclarationNameInfo &NameInfo,
2087                              const TemplateArgumentListInfo *TemplateArgs = 0);
2088
2089  static DependentScopeDeclRefExpr *CreateEmpty(ASTContext &C,
2090                                                bool HasExplicitTemplateArgs,
2091                                                unsigned NumTemplateArgs);
2092
2093  /// \brief Retrieve the name that this expression refers to.
2094  const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
2095
2096  /// \brief Retrieve the name that this expression refers to.
2097  DeclarationName getDeclName() const { return NameInfo.getName(); }
2098
2099  /// \brief Retrieve the location of the name within the expression.
2100  SourceLocation getLocation() const { return NameInfo.getLoc(); }
2101
2102  /// \brief Retrieve the nested-name-specifier that qualifies the
2103  /// name, with source location information.
2104  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2105
2106
2107  /// \brief Retrieve the nested-name-specifier that qualifies this
2108  /// declaration.
2109  NestedNameSpecifier *getQualifier() const {
2110    return QualifierLoc.getNestedNameSpecifier();
2111  }
2112
2113  /// Determines whether this lookup had explicit template arguments.
2114  bool hasExplicitTemplateArgs() const { return HasExplicitTemplateArgs; }
2115
2116  // Note that, inconsistently with the explicit-template-argument AST
2117  // nodes, users are *forbidden* from calling these methods on objects
2118  // without explicit template arguments.
2119
2120  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
2121    assert(hasExplicitTemplateArgs());
2122    return *reinterpret_cast<ASTTemplateArgumentListInfo*>(this + 1);
2123  }
2124
2125  /// Gets a reference to the explicit template argument list.
2126  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2127    assert(hasExplicitTemplateArgs());
2128    return *reinterpret_cast<const ASTTemplateArgumentListInfo*>(this + 1);
2129  }
2130
2131  /// \brief Retrieves the optional explicit template arguments.
2132  /// This points to the same data as getExplicitTemplateArgs(), but
2133  /// returns null if there are no explicit template arguments.
2134  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() {
2135    if (!hasExplicitTemplateArgs()) return 0;
2136    return &getExplicitTemplateArgs();
2137  }
2138
2139  /// \brief Copies the template arguments (if present) into the given
2140  /// structure.
2141  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2142    getExplicitTemplateArgs().copyInto(List);
2143  }
2144
2145  SourceLocation getLAngleLoc() const {
2146    return getExplicitTemplateArgs().LAngleLoc;
2147  }
2148
2149  SourceLocation getRAngleLoc() const {
2150    return getExplicitTemplateArgs().RAngleLoc;
2151  }
2152
2153  TemplateArgumentLoc const *getTemplateArgs() const {
2154    return getExplicitTemplateArgs().getTemplateArgs();
2155  }
2156
2157  unsigned getNumTemplateArgs() const {
2158    return getExplicitTemplateArgs().NumTemplateArgs;
2159  }
2160
2161  SourceRange getSourceRange() const {
2162    SourceRange Range(QualifierLoc.getBeginLoc(), getLocation());
2163    if (hasExplicitTemplateArgs())
2164      Range.setEnd(getRAngleLoc());
2165    return Range;
2166  }
2167
2168  static bool classof(const Stmt *T) {
2169    return T->getStmtClass() == DependentScopeDeclRefExprClass;
2170  }
2171  static bool classof(const DependentScopeDeclRefExpr *) { return true; }
2172
2173  child_range children() { return child_range(); }
2174
2175  friend class ASTStmtReader;
2176  friend class ASTStmtWriter;
2177};
2178
2179/// Represents an expression --- generally a full-expression --- which
2180/// introduces cleanups to be run at the end of the sub-expression's
2181/// evaluation.  The most common source of expression-introduced
2182/// cleanups is temporary objects in C++, but several other C++
2183/// expressions can create cleanups.
2184class ExprWithCleanups : public Expr {
2185  Stmt *SubExpr;
2186
2187  CXXTemporary **Temps;
2188  unsigned NumTemps;
2189
2190  ExprWithCleanups(ASTContext &C, Expr *SubExpr,
2191                   CXXTemporary **Temps, unsigned NumTemps);
2192
2193public:
2194  ExprWithCleanups(EmptyShell Empty)
2195    : Expr(ExprWithCleanupsClass, Empty),
2196      SubExpr(0), Temps(0), NumTemps(0) {}
2197
2198  static ExprWithCleanups *Create(ASTContext &C, Expr *SubExpr,
2199                                        CXXTemporary **Temps,
2200                                        unsigned NumTemps);
2201
2202  unsigned getNumTemporaries() const { return NumTemps; }
2203  void setNumTemporaries(ASTContext &C, unsigned N);
2204
2205  CXXTemporary *getTemporary(unsigned i) {
2206    assert(i < NumTemps && "Index out of range");
2207    return Temps[i];
2208  }
2209  const CXXTemporary *getTemporary(unsigned i) const {
2210    return const_cast<ExprWithCleanups*>(this)->getTemporary(i);
2211  }
2212  void setTemporary(unsigned i, CXXTemporary *T) {
2213    assert(i < NumTemps && "Index out of range");
2214    Temps[i] = T;
2215  }
2216
2217  Expr *getSubExpr() { return cast<Expr>(SubExpr); }
2218  const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
2219  void setSubExpr(Expr *E) { SubExpr = E; }
2220
2221  SourceRange getSourceRange() const {
2222    return SubExpr->getSourceRange();
2223  }
2224
2225  // Implement isa/cast/dyncast/etc.
2226  static bool classof(const Stmt *T) {
2227    return T->getStmtClass() == ExprWithCleanupsClass;
2228  }
2229  static bool classof(const ExprWithCleanups *) { return true; }
2230
2231  // Iterators
2232  child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
2233};
2234
2235/// \brief Describes an explicit type conversion that uses functional
2236/// notion but could not be resolved because one or more arguments are
2237/// type-dependent.
2238///
2239/// The explicit type conversions expressed by
2240/// CXXUnresolvedConstructExpr have the form \c T(a1, a2, ..., aN),
2241/// where \c T is some type and \c a1, a2, ..., aN are values, and
2242/// either \C T is a dependent type or one or more of the \c a's is
2243/// type-dependent. For example, this would occur in a template such
2244/// as:
2245///
2246/// \code
2247///   template<typename T, typename A1>
2248///   inline T make_a(const A1& a1) {
2249///     return T(a1);
2250///   }
2251/// \endcode
2252///
2253/// When the returned expression is instantiated, it may resolve to a
2254/// constructor call, conversion function call, or some kind of type
2255/// conversion.
2256class CXXUnresolvedConstructExpr : public Expr {
2257  /// \brief The type being constructed.
2258  TypeSourceInfo *Type;
2259
2260  /// \brief The location of the left parentheses ('(').
2261  SourceLocation LParenLoc;
2262
2263  /// \brief The location of the right parentheses (')').
2264  SourceLocation RParenLoc;
2265
2266  /// \brief The number of arguments used to construct the type.
2267  unsigned NumArgs;
2268
2269  CXXUnresolvedConstructExpr(TypeSourceInfo *Type,
2270                             SourceLocation LParenLoc,
2271                             Expr **Args,
2272                             unsigned NumArgs,
2273                             SourceLocation RParenLoc);
2274
2275  CXXUnresolvedConstructExpr(EmptyShell Empty, unsigned NumArgs)
2276    : Expr(CXXUnresolvedConstructExprClass, Empty), Type(), NumArgs(NumArgs) { }
2277
2278  friend class ASTStmtReader;
2279
2280public:
2281  static CXXUnresolvedConstructExpr *Create(ASTContext &C,
2282                                            TypeSourceInfo *Type,
2283                                            SourceLocation LParenLoc,
2284                                            Expr **Args,
2285                                            unsigned NumArgs,
2286                                            SourceLocation RParenLoc);
2287
2288  static CXXUnresolvedConstructExpr *CreateEmpty(ASTContext &C,
2289                                                 unsigned NumArgs);
2290
2291  /// \brief Retrieve the type that is being constructed, as specified
2292  /// in the source code.
2293  QualType getTypeAsWritten() const { return Type->getType(); }
2294
2295  /// \brief Retrieve the type source information for the type being
2296  /// constructed.
2297  TypeSourceInfo *getTypeSourceInfo() const { return Type; }
2298
2299  /// \brief Retrieve the location of the left parentheses ('(') that
2300  /// precedes the argument list.
2301  SourceLocation getLParenLoc() const { return LParenLoc; }
2302  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2303
2304  /// \brief Retrieve the location of the right parentheses (')') that
2305  /// follows the argument list.
2306  SourceLocation getRParenLoc() const { return RParenLoc; }
2307  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2308
2309  /// \brief Retrieve the number of arguments.
2310  unsigned arg_size() const { return NumArgs; }
2311
2312  typedef Expr** arg_iterator;
2313  arg_iterator arg_begin() { return reinterpret_cast<Expr**>(this + 1); }
2314  arg_iterator arg_end() { return arg_begin() + NumArgs; }
2315
2316  typedef const Expr* const * const_arg_iterator;
2317  const_arg_iterator arg_begin() const {
2318    return reinterpret_cast<const Expr* const *>(this + 1);
2319  }
2320  const_arg_iterator arg_end() const {
2321    return arg_begin() + NumArgs;
2322  }
2323
2324  Expr *getArg(unsigned I) {
2325    assert(I < NumArgs && "Argument index out-of-range");
2326    return *(arg_begin() + I);
2327  }
2328
2329  const Expr *getArg(unsigned I) const {
2330    assert(I < NumArgs && "Argument index out-of-range");
2331    return *(arg_begin() + I);
2332  }
2333
2334  void setArg(unsigned I, Expr *E) {
2335    assert(I < NumArgs && "Argument index out-of-range");
2336    *(arg_begin() + I) = E;
2337  }
2338
2339  SourceRange getSourceRange() const;
2340
2341  static bool classof(const Stmt *T) {
2342    return T->getStmtClass() == CXXUnresolvedConstructExprClass;
2343  }
2344  static bool classof(const CXXUnresolvedConstructExpr *) { return true; }
2345
2346  // Iterators
2347  child_range children() {
2348    Stmt **begin = reinterpret_cast<Stmt**>(this+1);
2349    return child_range(begin, begin + NumArgs);
2350  }
2351};
2352
2353/// \brief Represents a C++ member access expression where the actual
2354/// member referenced could not be resolved because the base
2355/// expression or the member name was dependent.
2356///
2357/// Like UnresolvedMemberExprs, these can be either implicit or
2358/// explicit accesses.  It is only possible to get one of these with
2359/// an implicit access if a qualifier is provided.
2360class CXXDependentScopeMemberExpr : public Expr {
2361  /// \brief The expression for the base pointer or class reference,
2362  /// e.g., the \c x in x.f.  Can be null in implicit accesses.
2363  Stmt *Base;
2364
2365  /// \brief The type of the base expression.  Never null, even for
2366  /// implicit accesses.
2367  QualType BaseType;
2368
2369  /// \brief Whether this member expression used the '->' operator or
2370  /// the '.' operator.
2371  bool IsArrow : 1;
2372
2373  /// \brief Whether this member expression has explicitly-specified template
2374  /// arguments.
2375  bool HasExplicitTemplateArgs : 1;
2376
2377  /// \brief The location of the '->' or '.' operator.
2378  SourceLocation OperatorLoc;
2379
2380  /// \brief The nested-name-specifier that precedes the member name, if any.
2381  NestedNameSpecifierLoc QualifierLoc;
2382
2383  /// \brief In a qualified member access expression such as t->Base::f, this
2384  /// member stores the resolves of name lookup in the context of the member
2385  /// access expression, to be used at instantiation time.
2386  ///
2387  /// FIXME: This member, along with the QualifierLoc, could
2388  /// be stuck into a structure that is optionally allocated at the end of
2389  /// the CXXDependentScopeMemberExpr, to save space in the common case.
2390  NamedDecl *FirstQualifierFoundInScope;
2391
2392  /// \brief The member to which this member expression refers, which
2393  /// can be name, overloaded operator, or destructor.
2394  /// FIXME: could also be a template-id
2395  DeclarationNameInfo MemberNameInfo;
2396
2397  CXXDependentScopeMemberExpr(ASTContext &C,
2398                          Expr *Base, QualType BaseType, bool IsArrow,
2399                          SourceLocation OperatorLoc,
2400                          NestedNameSpecifierLoc QualifierLoc,
2401                          NamedDecl *FirstQualifierFoundInScope,
2402                          DeclarationNameInfo MemberNameInfo,
2403                          const TemplateArgumentListInfo *TemplateArgs);
2404
2405public:
2406  CXXDependentScopeMemberExpr(ASTContext &C,
2407                              Expr *Base, QualType BaseType,
2408                              bool IsArrow,
2409                              SourceLocation OperatorLoc,
2410                              NestedNameSpecifierLoc QualifierLoc,
2411                              NamedDecl *FirstQualifierFoundInScope,
2412                              DeclarationNameInfo MemberNameInfo);
2413
2414  static CXXDependentScopeMemberExpr *
2415  Create(ASTContext &C,
2416         Expr *Base, QualType BaseType, bool IsArrow,
2417         SourceLocation OperatorLoc,
2418         NestedNameSpecifierLoc QualifierLoc,
2419         NamedDecl *FirstQualifierFoundInScope,
2420         DeclarationNameInfo MemberNameInfo,
2421         const TemplateArgumentListInfo *TemplateArgs);
2422
2423  static CXXDependentScopeMemberExpr *
2424  CreateEmpty(ASTContext &C, bool HasExplicitTemplateArgs,
2425              unsigned NumTemplateArgs);
2426
2427  /// \brief True if this is an implicit access, i.e. one in which the
2428  /// member being accessed was not written in the source.  The source
2429  /// location of the operator is invalid in this case.
2430  bool isImplicitAccess() const;
2431
2432  /// \brief Retrieve the base object of this member expressions,
2433  /// e.g., the \c x in \c x.m.
2434  Expr *getBase() const {
2435    assert(!isImplicitAccess());
2436    return cast<Expr>(Base);
2437  }
2438
2439  QualType getBaseType() const { return BaseType; }
2440
2441  /// \brief Determine whether this member expression used the '->'
2442  /// operator; otherwise, it used the '.' operator.
2443  bool isArrow() const { return IsArrow; }
2444
2445  /// \brief Retrieve the location of the '->' or '.' operator.
2446  SourceLocation getOperatorLoc() const { return OperatorLoc; }
2447
2448  /// \brief Retrieve the nested-name-specifier that qualifies the member
2449  /// name.
2450  NestedNameSpecifier *getQualifier() const {
2451    return QualifierLoc.getNestedNameSpecifier();
2452  }
2453
2454  /// \brief Retrieve the nested-name-specifier that qualifies the member
2455  /// name, with source location information.
2456  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2457
2458
2459  /// \brief Retrieve the first part of the nested-name-specifier that was
2460  /// found in the scope of the member access expression when the member access
2461  /// was initially parsed.
2462  ///
2463  /// This function only returns a useful result when member access expression
2464  /// uses a qualified member name, e.g., "x.Base::f". Here, the declaration
2465  /// returned by this function describes what was found by unqualified name
2466  /// lookup for the identifier "Base" within the scope of the member access
2467  /// expression itself. At template instantiation time, this information is
2468  /// combined with the results of name lookup into the type of the object
2469  /// expression itself (the class type of x).
2470  NamedDecl *getFirstQualifierFoundInScope() const {
2471    return FirstQualifierFoundInScope;
2472  }
2473
2474  /// \brief Retrieve the name of the member that this expression
2475  /// refers to.
2476  const DeclarationNameInfo &getMemberNameInfo() const {
2477    return MemberNameInfo;
2478  }
2479
2480  /// \brief Retrieve the name of the member that this expression
2481  /// refers to.
2482  DeclarationName getMember() const { return MemberNameInfo.getName(); }
2483
2484  // \brief Retrieve the location of the name of the member that this
2485  // expression refers to.
2486  SourceLocation getMemberLoc() const { return MemberNameInfo.getLoc(); }
2487
2488  /// \brief Determines whether this member expression actually had a C++
2489  /// template argument list explicitly specified, e.g., x.f<int>.
2490  bool hasExplicitTemplateArgs() const {
2491    return HasExplicitTemplateArgs;
2492  }
2493
2494  /// \brief Retrieve the explicit template argument list that followed the
2495  /// member template name, if any.
2496  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
2497    assert(HasExplicitTemplateArgs);
2498    return *reinterpret_cast<ASTTemplateArgumentListInfo *>(this + 1);
2499  }
2500
2501  /// \brief Retrieve the explicit template argument list that followed the
2502  /// member template name, if any.
2503  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2504    return const_cast<CXXDependentScopeMemberExpr *>(this)
2505             ->getExplicitTemplateArgs();
2506  }
2507
2508  /// \brief Retrieves the optional explicit template arguments.
2509  /// This points to the same data as getExplicitTemplateArgs(), but
2510  /// returns null if there are no explicit template arguments.
2511  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() {
2512    if (!hasExplicitTemplateArgs()) return 0;
2513    return &getExplicitTemplateArgs();
2514  }
2515
2516  /// \brief Copies the template arguments (if present) into the given
2517  /// structure.
2518  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2519    getExplicitTemplateArgs().copyInto(List);
2520  }
2521
2522  /// \brief Initializes the template arguments using the given structure.
2523  void initializeTemplateArgumentsFrom(const TemplateArgumentListInfo &List) {
2524    getExplicitTemplateArgs().initializeFrom(List);
2525  }
2526
2527  /// \brief Retrieve the location of the left angle bracket following the
2528  /// member name ('<'), if any.
2529  SourceLocation getLAngleLoc() const {
2530    return getExplicitTemplateArgs().LAngleLoc;
2531  }
2532
2533  /// \brief Retrieve the template arguments provided as part of this
2534  /// template-id.
2535  const TemplateArgumentLoc *getTemplateArgs() const {
2536    return getExplicitTemplateArgs().getTemplateArgs();
2537  }
2538
2539  /// \brief Retrieve the number of template arguments provided as part of this
2540  /// template-id.
2541  unsigned getNumTemplateArgs() const {
2542    return getExplicitTemplateArgs().NumTemplateArgs;
2543  }
2544
2545  /// \brief Retrieve the location of the right angle bracket following the
2546  /// template arguments ('>').
2547  SourceLocation getRAngleLoc() const {
2548    return getExplicitTemplateArgs().RAngleLoc;
2549  }
2550
2551  SourceRange getSourceRange() const {
2552    SourceRange Range;
2553    if (!isImplicitAccess())
2554      Range.setBegin(Base->getSourceRange().getBegin());
2555    else if (getQualifier())
2556      Range.setBegin(getQualifierLoc().getBeginLoc());
2557    else
2558      Range.setBegin(MemberNameInfo.getBeginLoc());
2559
2560    if (hasExplicitTemplateArgs())
2561      Range.setEnd(getRAngleLoc());
2562    else
2563      Range.setEnd(MemberNameInfo.getEndLoc());
2564    return Range;
2565  }
2566
2567  static bool classof(const Stmt *T) {
2568    return T->getStmtClass() == CXXDependentScopeMemberExprClass;
2569  }
2570  static bool classof(const CXXDependentScopeMemberExpr *) { return true; }
2571
2572  // Iterators
2573  child_range children() {
2574    if (isImplicitAccess()) return child_range();
2575    return child_range(&Base, &Base + 1);
2576  }
2577
2578  friend class ASTStmtReader;
2579  friend class ASTStmtWriter;
2580};
2581
2582/// \brief Represents a C++ member access expression for which lookup
2583/// produced a set of overloaded functions.
2584///
2585/// The member access may be explicit or implicit:
2586///    struct A {
2587///      int a, b;
2588///      int explicitAccess() { return this->a + this->A::b; }
2589///      int implicitAccess() { return a + A::b; }
2590///    };
2591///
2592/// In the final AST, an explicit access always becomes a MemberExpr.
2593/// An implicit access may become either a MemberExpr or a
2594/// DeclRefExpr, depending on whether the member is static.
2595class UnresolvedMemberExpr : public OverloadExpr {
2596  /// \brief Whether this member expression used the '->' operator or
2597  /// the '.' operator.
2598  bool IsArrow : 1;
2599
2600  /// \brief Whether the lookup results contain an unresolved using
2601  /// declaration.
2602  bool HasUnresolvedUsing : 1;
2603
2604  /// \brief The expression for the base pointer or class reference,
2605  /// e.g., the \c x in x.f.  This can be null if this is an 'unbased'
2606  /// member expression
2607  Stmt *Base;
2608
2609  /// \brief The type of the base expression;  never null.
2610  QualType BaseType;
2611
2612  /// \brief The location of the '->' or '.' operator.
2613  SourceLocation OperatorLoc;
2614
2615  UnresolvedMemberExpr(ASTContext &C, bool HasUnresolvedUsing,
2616                       Expr *Base, QualType BaseType, bool IsArrow,
2617                       SourceLocation OperatorLoc,
2618                       NestedNameSpecifierLoc QualifierLoc,
2619                       const DeclarationNameInfo &MemberNameInfo,
2620                       const TemplateArgumentListInfo *TemplateArgs,
2621                       UnresolvedSetIterator Begin, UnresolvedSetIterator End);
2622
2623  UnresolvedMemberExpr(EmptyShell Empty)
2624    : OverloadExpr(UnresolvedMemberExprClass, Empty), IsArrow(false),
2625      HasUnresolvedUsing(false), Base(0) { }
2626
2627  friend class ASTStmtReader;
2628
2629public:
2630  static UnresolvedMemberExpr *
2631  Create(ASTContext &C, bool HasUnresolvedUsing,
2632         Expr *Base, QualType BaseType, bool IsArrow,
2633         SourceLocation OperatorLoc,
2634         NestedNameSpecifierLoc QualifierLoc,
2635         const DeclarationNameInfo &MemberNameInfo,
2636         const TemplateArgumentListInfo *TemplateArgs,
2637         UnresolvedSetIterator Begin, UnresolvedSetIterator End);
2638
2639  static UnresolvedMemberExpr *
2640  CreateEmpty(ASTContext &C, bool HasExplicitTemplateArgs,
2641              unsigned NumTemplateArgs);
2642
2643  /// \brief True if this is an implicit access, i.e. one in which the
2644  /// member being accessed was not written in the source.  The source
2645  /// location of the operator is invalid in this case.
2646  bool isImplicitAccess() const;
2647
2648  /// \brief Retrieve the base object of this member expressions,
2649  /// e.g., the \c x in \c x.m.
2650  Expr *getBase() {
2651    assert(!isImplicitAccess());
2652    return cast<Expr>(Base);
2653  }
2654  const Expr *getBase() const {
2655    assert(!isImplicitAccess());
2656    return cast<Expr>(Base);
2657  }
2658
2659  QualType getBaseType() const { return BaseType; }
2660
2661  /// \brief Determine whether the lookup results contain an unresolved using
2662  /// declaration.
2663  bool hasUnresolvedUsing() const { return HasUnresolvedUsing; }
2664
2665  /// \brief Determine whether this member expression used the '->'
2666  /// operator; otherwise, it used the '.' operator.
2667  bool isArrow() const { return IsArrow; }
2668
2669  /// \brief Retrieve the location of the '->' or '.' operator.
2670  SourceLocation getOperatorLoc() const { return OperatorLoc; }
2671
2672  /// \brief Retrieves the naming class of this lookup.
2673  CXXRecordDecl *getNamingClass() const;
2674
2675  /// \brief Retrieve the full name info for the member that this expression
2676  /// refers to.
2677  const DeclarationNameInfo &getMemberNameInfo() const { return getNameInfo(); }
2678
2679  /// \brief Retrieve the name of the member that this expression
2680  /// refers to.
2681  DeclarationName getMemberName() const { return getName(); }
2682
2683  // \brief Retrieve the location of the name of the member that this
2684  // expression refers to.
2685  SourceLocation getMemberLoc() const { return getNameLoc(); }
2686
2687  /// \brief Retrieve the explicit template argument list that followed the
2688  /// member template name.
2689  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
2690    assert(hasExplicitTemplateArgs());
2691    return *reinterpret_cast<ASTTemplateArgumentListInfo *>(this + 1);
2692  }
2693
2694  /// \brief Retrieve the explicit template argument list that followed the
2695  /// member template name, if any.
2696  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2697    assert(hasExplicitTemplateArgs());
2698    return *reinterpret_cast<const ASTTemplateArgumentListInfo *>(this + 1);
2699  }
2700
2701  /// \brief Retrieves the optional explicit template arguments.
2702  /// This points to the same data as getExplicitTemplateArgs(), but
2703  /// returns null if there are no explicit template arguments.
2704  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() {
2705    if (!hasExplicitTemplateArgs()) return 0;
2706    return &getExplicitTemplateArgs();
2707  }
2708
2709  /// \brief Copies the template arguments into the given structure.
2710  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2711    getExplicitTemplateArgs().copyInto(List);
2712  }
2713
2714  /// \brief Retrieve the location of the left angle bracket following
2715  /// the member name ('<').
2716  SourceLocation getLAngleLoc() const {
2717    return getExplicitTemplateArgs().LAngleLoc;
2718  }
2719
2720  /// \brief Retrieve the template arguments provided as part of this
2721  /// template-id.
2722  const TemplateArgumentLoc *getTemplateArgs() const {
2723    return getExplicitTemplateArgs().getTemplateArgs();
2724  }
2725
2726  /// \brief Retrieve the number of template arguments provided as
2727  /// part of this template-id.
2728  unsigned getNumTemplateArgs() const {
2729    return getExplicitTemplateArgs().NumTemplateArgs;
2730  }
2731
2732  /// \brief Retrieve the location of the right angle bracket
2733  /// following the template arguments ('>').
2734  SourceLocation getRAngleLoc() const {
2735    return getExplicitTemplateArgs().RAngleLoc;
2736  }
2737
2738  SourceRange getSourceRange() const {
2739    SourceRange Range = getMemberNameInfo().getSourceRange();
2740    if (!isImplicitAccess())
2741      Range.setBegin(Base->getSourceRange().getBegin());
2742    else if (getQualifierLoc())
2743      Range.setBegin(getQualifierLoc().getBeginLoc());
2744
2745    if (hasExplicitTemplateArgs())
2746      Range.setEnd(getRAngleLoc());
2747    return Range;
2748  }
2749
2750  static bool classof(const Stmt *T) {
2751    return T->getStmtClass() == UnresolvedMemberExprClass;
2752  }
2753  static bool classof(const UnresolvedMemberExpr *) { return true; }
2754
2755  // Iterators
2756  child_range children() {
2757    if (isImplicitAccess()) return child_range();
2758    return child_range(&Base, &Base + 1);
2759  }
2760};
2761
2762/// \brief Represents a C++0x noexcept expression (C++ [expr.unary.noexcept]).
2763///
2764/// The noexcept expression tests whether a given expression might throw. Its
2765/// result is a boolean constant.
2766class CXXNoexceptExpr : public Expr {
2767  bool Value : 1;
2768  Stmt *Operand;
2769  SourceRange Range;
2770
2771  friend class ASTStmtReader;
2772
2773public:
2774  CXXNoexceptExpr(QualType Ty, Expr *Operand, CanThrowResult Val,
2775                  SourceLocation Keyword, SourceLocation RParen)
2776    : Expr(CXXNoexceptExprClass, Ty, VK_RValue, OK_Ordinary,
2777           /*TypeDependent*/false,
2778           /*ValueDependent*/Val == CT_Dependent,
2779           Val == CT_Dependent || Operand->isInstantiationDependent(),
2780           Operand->containsUnexpandedParameterPack()),
2781      Value(Val == CT_Cannot), Operand(Operand), Range(Keyword, RParen)
2782  { }
2783
2784  CXXNoexceptExpr(EmptyShell Empty)
2785    : Expr(CXXNoexceptExprClass, Empty)
2786  { }
2787
2788  Expr *getOperand() const { return static_cast<Expr*>(Operand); }
2789
2790  SourceRange getSourceRange() const { return Range; }
2791
2792  bool getValue() const { return Value; }
2793
2794  static bool classof(const Stmt *T) {
2795    return T->getStmtClass() == CXXNoexceptExprClass;
2796  }
2797  static bool classof(const CXXNoexceptExpr *) { return true; }
2798
2799  // Iterators
2800  child_range children() { return child_range(&Operand, &Operand + 1); }
2801};
2802
2803/// \brief Represents a C++0x pack expansion that produces a sequence of
2804/// expressions.
2805///
2806/// A pack expansion expression contains a pattern (which itself is an
2807/// expression) followed by an ellipsis. For example:
2808///
2809/// \code
2810/// template<typename F, typename ...Types>
2811/// void forward(F f, Types &&...args) {
2812///   f(static_cast<Types&&>(args)...);
2813/// }
2814/// \endcode
2815///
2816/// Here, the argument to the function object \c f is a pack expansion whose
2817/// pattern is \c static_cast<Types&&>(args). When the \c forward function
2818/// template is instantiated, the pack expansion will instantiate to zero or
2819/// or more function arguments to the function object \c f.
2820class PackExpansionExpr : public Expr {
2821  SourceLocation EllipsisLoc;
2822
2823  /// \brief The number of expansions that will be produced by this pack
2824  /// expansion expression, if known.
2825  ///
2826  /// When zero, the number of expansions is not known. Otherwise, this value
2827  /// is the number of expansions + 1.
2828  unsigned NumExpansions;
2829
2830  Stmt *Pattern;
2831
2832  friend class ASTStmtReader;
2833  friend class ASTStmtWriter;
2834
2835public:
2836  PackExpansionExpr(QualType T, Expr *Pattern, SourceLocation EllipsisLoc,
2837                    llvm::Optional<unsigned> NumExpansions)
2838    : Expr(PackExpansionExprClass, T, Pattern->getValueKind(),
2839           Pattern->getObjectKind(), /*TypeDependent=*/true,
2840           /*ValueDependent=*/true, /*InstantiationDependent=*/true,
2841           /*ContainsUnexpandedParameterPack=*/false),
2842      EllipsisLoc(EllipsisLoc),
2843      NumExpansions(NumExpansions? *NumExpansions + 1 : 0),
2844      Pattern(Pattern) { }
2845
2846  PackExpansionExpr(EmptyShell Empty) : Expr(PackExpansionExprClass, Empty) { }
2847
2848  /// \brief Retrieve the pattern of the pack expansion.
2849  Expr *getPattern() { return reinterpret_cast<Expr *>(Pattern); }
2850
2851  /// \brief Retrieve the pattern of the pack expansion.
2852  const Expr *getPattern() const { return reinterpret_cast<Expr *>(Pattern); }
2853
2854  /// \brief Retrieve the location of the ellipsis that describes this pack
2855  /// expansion.
2856  SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
2857
2858  /// \brief Determine the number of expansions that will be produced when
2859  /// this pack expansion is instantiated, if already known.
2860  llvm::Optional<unsigned> getNumExpansions() const {
2861    if (NumExpansions)
2862      return NumExpansions - 1;
2863
2864    return llvm::Optional<unsigned>();
2865  }
2866
2867  SourceRange getSourceRange() const {
2868    return SourceRange(Pattern->getLocStart(), EllipsisLoc);
2869  }
2870
2871  static bool classof(const Stmt *T) {
2872    return T->getStmtClass() == PackExpansionExprClass;
2873  }
2874  static bool classof(const PackExpansionExpr *) { return true; }
2875
2876  // Iterators
2877  child_range children() {
2878    return child_range(&Pattern, &Pattern + 1);
2879  }
2880};
2881
2882inline ASTTemplateArgumentListInfo &OverloadExpr::getExplicitTemplateArgs() {
2883  if (isa<UnresolvedLookupExpr>(this))
2884    return cast<UnresolvedLookupExpr>(this)->getExplicitTemplateArgs();
2885  else
2886    return cast<UnresolvedMemberExpr>(this)->getExplicitTemplateArgs();
2887}
2888
2889/// \brief Represents an expression that computes the length of a parameter
2890/// pack.
2891///
2892/// \code
2893/// template<typename ...Types>
2894/// struct count {
2895///   static const unsigned value = sizeof...(Types);
2896/// };
2897/// \endcode
2898class SizeOfPackExpr : public Expr {
2899  /// \brief The location of the 'sizeof' keyword.
2900  SourceLocation OperatorLoc;
2901
2902  /// \brief The location of the name of the parameter pack.
2903  SourceLocation PackLoc;
2904
2905  /// \brief The location of the closing parenthesis.
2906  SourceLocation RParenLoc;
2907
2908  /// \brief The length of the parameter pack, if known.
2909  ///
2910  /// When this expression is value-dependent, the length of the parameter pack
2911  /// is unknown. When this expression is not value-dependent, the length is
2912  /// known.
2913  unsigned Length;
2914
2915  /// \brief The parameter pack itself.
2916  NamedDecl *Pack;
2917
2918  friend class ASTStmtReader;
2919  friend class ASTStmtWriter;
2920
2921public:
2922  /// \brief Creates a value-dependent expression that computes the length of
2923  /// the given parameter pack.
2924  SizeOfPackExpr(QualType SizeType, SourceLocation OperatorLoc, NamedDecl *Pack,
2925                 SourceLocation PackLoc, SourceLocation RParenLoc)
2926    : Expr(SizeOfPackExprClass, SizeType, VK_RValue, OK_Ordinary,
2927           /*TypeDependent=*/false, /*ValueDependent=*/true,
2928           /*InstantiationDependent=*/true,
2929           /*ContainsUnexpandedParameterPack=*/false),
2930      OperatorLoc(OperatorLoc), PackLoc(PackLoc), RParenLoc(RParenLoc),
2931      Length(0), Pack(Pack) { }
2932
2933  /// \brief Creates an expression that computes the length of
2934  /// the given parameter pack, which is already known.
2935  SizeOfPackExpr(QualType SizeType, SourceLocation OperatorLoc, NamedDecl *Pack,
2936                 SourceLocation PackLoc, SourceLocation RParenLoc,
2937                 unsigned Length)
2938  : Expr(SizeOfPackExprClass, SizeType, VK_RValue, OK_Ordinary,
2939         /*TypeDependent=*/false, /*ValueDependent=*/false,
2940         /*InstantiationDependent=*/false,
2941         /*ContainsUnexpandedParameterPack=*/false),
2942    OperatorLoc(OperatorLoc), PackLoc(PackLoc), RParenLoc(RParenLoc),
2943    Length(Length), Pack(Pack) { }
2944
2945  /// \brief Create an empty expression.
2946  SizeOfPackExpr(EmptyShell Empty) : Expr(SizeOfPackExprClass, Empty) { }
2947
2948  /// \brief Determine the location of the 'sizeof' keyword.
2949  SourceLocation getOperatorLoc() const { return OperatorLoc; }
2950
2951  /// \brief Determine the location of the parameter pack.
2952  SourceLocation getPackLoc() const { return PackLoc; }
2953
2954  /// \brief Determine the location of the right parenthesis.
2955  SourceLocation getRParenLoc() const { return RParenLoc; }
2956
2957  /// \brief Retrieve the parameter pack.
2958  NamedDecl *getPack() const { return Pack; }
2959
2960  /// \brief Retrieve the length of the parameter pack.
2961  ///
2962  /// This routine may only be invoked when the expression is not
2963  /// value-dependent.
2964  unsigned getPackLength() const {
2965    assert(!isValueDependent() &&
2966           "Cannot get the length of a value-dependent pack size expression");
2967    return Length;
2968  }
2969
2970  SourceRange getSourceRange() const {
2971    return SourceRange(OperatorLoc, RParenLoc);
2972  }
2973
2974  static bool classof(const Stmt *T) {
2975    return T->getStmtClass() == SizeOfPackExprClass;
2976  }
2977  static bool classof(const SizeOfPackExpr *) { return true; }
2978
2979  // Iterators
2980  child_range children() { return child_range(); }
2981};
2982
2983/// \brief Represents a reference to a non-type template parameter
2984/// that has been substituted with a template argument.
2985class SubstNonTypeTemplateParmExpr : public Expr {
2986  /// \brief The replaced parameter.
2987  NonTypeTemplateParmDecl *Param;
2988
2989  /// \brief The replacement expression.
2990  Stmt *Replacement;
2991
2992  /// \brief The location of the non-type template parameter reference.
2993  SourceLocation NameLoc;
2994
2995  friend class ASTReader;
2996  friend class ASTStmtReader;
2997  explicit SubstNonTypeTemplateParmExpr(EmptyShell Empty)
2998    : Expr(SubstNonTypeTemplateParmExprClass, Empty) { }
2999
3000public:
3001  SubstNonTypeTemplateParmExpr(QualType type,
3002                               ExprValueKind valueKind,
3003                               SourceLocation loc,
3004                               NonTypeTemplateParmDecl *param,
3005                               Expr *replacement)
3006    : Expr(SubstNonTypeTemplateParmExprClass, type, valueKind, OK_Ordinary,
3007           replacement->isTypeDependent(), replacement->isValueDependent(),
3008           replacement->isInstantiationDependent(),
3009           replacement->containsUnexpandedParameterPack()),
3010      Param(param), Replacement(replacement), NameLoc(loc) {}
3011
3012  SourceLocation getNameLoc() const { return NameLoc; }
3013  SourceRange getSourceRange() const { return NameLoc; }
3014
3015  Expr *getReplacement() const { return cast<Expr>(Replacement); }
3016
3017  NonTypeTemplateParmDecl *getParameter() const { return Param; }
3018
3019  static bool classof(const Stmt *s) {
3020    return s->getStmtClass() == SubstNonTypeTemplateParmExprClass;
3021  }
3022  static bool classof(const SubstNonTypeTemplateParmExpr *) {
3023    return true;
3024  }
3025
3026  // Iterators
3027  child_range children() { return child_range(&Replacement, &Replacement+1); }
3028};
3029
3030/// \brief Represents a reference to a non-type template parameter pack that
3031/// has been substituted with a non-template argument pack.
3032///
3033/// When a pack expansion in the source code contains multiple parameter packs
3034/// and those parameter packs correspond to different levels of template
3035/// parameter lists, this node node is used to represent a non-type template
3036/// parameter pack from an outer level, which has already had its argument pack
3037/// substituted but that still lives within a pack expansion that itself
3038/// could not be instantiated. When actually performing a substitution into
3039/// that pack expansion (e.g., when all template parameters have corresponding
3040/// arguments), this type will be replaced with the appropriate underlying
3041/// expression at the current pack substitution index.
3042class SubstNonTypeTemplateParmPackExpr : public Expr {
3043  /// \brief The non-type template parameter pack itself.
3044  NonTypeTemplateParmDecl *Param;
3045
3046  /// \brief A pointer to the set of template arguments that this
3047  /// parameter pack is instantiated with.
3048  const TemplateArgument *Arguments;
3049
3050  /// \brief The number of template arguments in \c Arguments.
3051  unsigned NumArguments;
3052
3053  /// \brief The location of the non-type template parameter pack reference.
3054  SourceLocation NameLoc;
3055
3056  friend class ASTReader;
3057  friend class ASTStmtReader;
3058  explicit SubstNonTypeTemplateParmPackExpr(EmptyShell Empty)
3059    : Expr(SubstNonTypeTemplateParmPackExprClass, Empty) { }
3060
3061public:
3062  SubstNonTypeTemplateParmPackExpr(QualType T,
3063                                   NonTypeTemplateParmDecl *Param,
3064                                   SourceLocation NameLoc,
3065                                   const TemplateArgument &ArgPack);
3066
3067  /// \brief Retrieve the non-type template parameter pack being substituted.
3068  NonTypeTemplateParmDecl *getParameterPack() const { return Param; }
3069
3070  /// \brief Retrieve the location of the parameter pack name.
3071  SourceLocation getParameterPackLocation() const { return NameLoc; }
3072
3073  /// \brief Retrieve the template argument pack containing the substituted
3074  /// template arguments.
3075  TemplateArgument getArgumentPack() const;
3076
3077  SourceRange getSourceRange() const { return NameLoc; }
3078
3079  static bool classof(const Stmt *T) {
3080    return T->getStmtClass() == SubstNonTypeTemplateParmPackExprClass;
3081  }
3082  static bool classof(const SubstNonTypeTemplateParmPackExpr *) {
3083    return true;
3084  }
3085
3086  // Iterators
3087  child_range children() { return child_range(); }
3088};
3089
3090/// \brief Represents a prvalue temporary that written into memory so that
3091/// a reference can bind to it.
3092///
3093/// Prvalue expressions are materialized when they need to have an address
3094/// in memory for a reference to bind to. This happens when binding a
3095/// reference to the result of a conversion, e.g.,
3096///
3097/// \code
3098/// const int &r = 1.0;
3099/// \endcode
3100///
3101/// Here, 1.0 is implicitly converted to an \c int. That resulting \c int is
3102/// then materialized via a \c MaterializeTemporaryExpr, and the reference
3103/// binds to the temporary. \c MaterializeTemporaryExprs are always glvalues
3104/// (either an lvalue or an xvalue, depending on the kind of reference binding
3105/// to it), maintaining the invariant that references always bind to glvalues.
3106class MaterializeTemporaryExpr : public Expr {
3107  /// \brief The temporary-generating expression whose value will be
3108  /// materialized.
3109 Stmt *Temporary;
3110
3111  friend class ASTStmtReader;
3112  friend class ASTStmtWriter;
3113
3114public:
3115  MaterializeTemporaryExpr(QualType T, Expr *Temporary,
3116                           bool BoundToLvalueReference)
3117    : Expr(MaterializeTemporaryExprClass, T,
3118           BoundToLvalueReference? VK_LValue : VK_XValue, OK_Ordinary,
3119           Temporary->isTypeDependent(), Temporary->isValueDependent(),
3120           Temporary->isInstantiationDependent(),
3121           Temporary->containsUnexpandedParameterPack()),
3122      Temporary(Temporary) { }
3123
3124  MaterializeTemporaryExpr(EmptyShell Empty)
3125    : Expr(MaterializeTemporaryExprClass, Empty) { }
3126
3127  /// \brief Retrieve the temporary-generating subexpression whose value will
3128  /// be materialized into a glvalue.
3129  Expr *GetTemporaryExpr() const { return reinterpret_cast<Expr *>(Temporary); }
3130
3131  /// \brief Determine whether this materialized temporary is bound to an
3132  /// lvalue reference; otherwise, it's bound to an rvalue reference.
3133  bool isBoundToLvalueReference() const {
3134    return getValueKind() == VK_LValue;
3135  }
3136
3137  SourceRange getSourceRange() const { return Temporary->getSourceRange(); }
3138
3139  static bool classof(const Stmt *T) {
3140    return T->getStmtClass() == MaterializeTemporaryExprClass;
3141  }
3142  static bool classof(const MaterializeTemporaryExpr *) {
3143    return true;
3144  }
3145
3146  // Iterators
3147  child_range children() { return child_range(&Temporary, &Temporary + 1); }
3148};
3149
3150}  // end namespace clang
3151
3152#endif
3153